Tina Bosner

Croatian
Portrait of Tina Bosner
Doc. dr. sc. Tina Bosner
Faculty of Science, Department of Mathematics
University of Zagreb
Bijenička 30
10000 Zagreb
e-mail: Tina's e-mail
phone: ++385 1 4605 741
Science Teaching Dept. of Mathematics

Science

Fields of interest:

Publications:

  1. T. Bosner, et al., On calculating with lower order Chebyshev splines, Curves and Surfaces Design, Nashville, 2000, Vanderbild Univ. Press, pp. 343-353. (link)
  2. T. Bosner, et al., Stable algorithms for calculating with q-splines, Proceedings of Computational and Applied Mathematics, 2001, pp. 99-104.(link)
  3. T. Bosner, Polar forms of splines and knot insertion algorithms (in Croatian), master's thesis, Dept. of Mathematics, University of Zagreb, 2002. (ps, pdf)
  4. T. Bosner, et al., A de Boor type algorithm for tension splines, Curve and Surface Fitting, Brentwood, 2003, Nashboro Press, pp. 343-352. (link)
  5. T. Bosner, Knot insertion algorithms for weighted splines, Proceedings of the Conference on Applied Mathematics and Scientific Computing, Springer, 2005, pp. 151-160. (link)
  6. T. Bosner, Knot insertion algorithms for Chebyshev splines, PhD thesis, Dept. of Mathematics, University of Zagreb, 2006.(ps, pdf)
  7. T. Bosner, et al., Numerically stable algorithm for cycloidal splines, Annali dell'Universita di Ferrara, 53(2), 2007, pp. 189-197.(link)
  8. T. Bosner and, et al., Non-uniform exponential tension splines, Numerical Algorithms, 46(3), 2007, pp. 265-294. (link)
  9. T. Bosner, et al., Collocation by singular splines, Annali dell'Universita di Ferrara, 54(2), 2008, pp. 217-227.(link)
  10. T. Bosner, et al., Comparison of operator-fitted methods for singularly perturbed advection-diffusion-reaction problems, Proceedings of the 3rd International Conference on Approximation Methods and numerical Modeling in Environment and Natural Resources (MAMERN 2009), 2009, pp. 521-525. (link)
  11. T. Bosner, Basis of splines associated with singularly perturbed advection-diffusion problems, Mathematical Communications, 15(1), 2010, pp. 1-12.(link)
  12. T. Bosner, et al., Singularly perturbed advection-diffusion-reaction problems: Comparison of operator-fitted methods, Mathematics and computers in simulation, 81(10), 2011, pp. 2215-2224. (link)
  13. T. Bosner, et al., Variable degree polynomial splines are Chebyshev splines, Advances in computational mathematics, 38(2), 2013, pp. 383-400. (link)
  14. T. Bosner et al., Tension spline with application on image resampling, Mathematical Communications, 19(3), 2014, pp. 517-529. (link)
  15. T. Bosner, et al., Quadratic convergence of approximations by CCC-Schoenberg operators, Numerische Mathematik, 135(4), 2017, pp. 1253-1287, DOI: 10.1007/s00211-016-0831-0. (link)
  16. T. Bosner, et al., Application of CCC-Schoenberg operators on image resampling, BIT Numerical Mathematics, 60, 2020., pp. 129-155, DOI: 10.1007/s10543-019-00770-7. (link)
  17. T. Bosner, High order approximation by CCC-spline quasi-interpolants, Journal of Computational and Applied Mathematics, 442, 2024, DOI: 10.1016/j.cam.2023.115715. (link)

Software:


Teaching

Time-table in the winter semester of the school year 2024/25:

Consulting:

The consultings in the summer semester of the school year 2023/24 are on Monday 15:00-16:00 and Wednesday 16:00-17:00 in the room 223.

Top

Valid XHTML 1.0 Strict

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.