
University of Zagreb

Department of Mathematics

Tina Bosner

Knot insertion algorithms for

Chebyshev splines

Doctoral Thesis

Ph.D. Supervisor: dr. sc. Mladen Rogina

Zagreb, 2006.

Contents

1 Introduction 5

2 Chebyshev splines 7
2.1 Canonical complete Chebyshev systems 7
2.2 Determinants and Chebyshev divided differences 11
2.3 Green’s function . 17
2.4 Chebyshev B-splines . 20
2.5 Integrals of B-splines . 27

3 Knot insertion 29
3.1 Knot insertion matrices . 29
3.2 Single knot insertion matrices . 31
3.3 Oslo type algorithms . 34

3.3.1 General knot insertion matrices 34
3.3.2 Recurrence for elements of knot insertion matrices 35

3.4 Generalized deBoor algorithm . 38
3.4.1 Splines of general order . 39
3.4.2 Splines of order 3 and 4 . 41

4 Weighted splines 44
4.1 Weighted splines of order 4 (k = 2) 45
4.2 Weighted splines of order k + 2 (k > 2) 46

4.2.1 Recurrence for integrals of polynomial B-splines 47
4.2.2 Generalized Oslo algorithm for calculating integrals of B-splines 50

5 q-Splines 52
5.1 q-Splines by the generalized deBoor algorithm 53
5.2 q-Splines by the Oslo type algorithm 55

6 Tension splines 57
6.1 C1 tension splines . 59

6.1.1 Generalized deBoor algorithm for C1 tension splines 60
6.1.2 Splines associated with the reduced systems 65
6.1.3 Generalized and ordinary derivatives of C1 tension spline . . 66

6.2 Chebyshev tension splines . 67

3

4 CONTENTS

6.3 C2 tension splines . 68
6.3.1 Quasi–Oslo type algorithm for C2 tension splines 68
6.3.2 Quasi–derivative formula for C2 tension splines 69
6.3.3 Derivatives of C2 tension spline 70

7 Cycloidal splines 72
7.1 Equidistant cycloidal splines . 72
7.2 Equidistant Bezier cycloidal splines 74
7.3 Nonequidistant Bezier cycloidal splines 75
7.4 The choice of CCC–systems . 76

8 Program codes 77
8.1 C1 tension splines . 79
8.2 C2 tension splines . 96

A Summary 109

B Sažetak 110

C Curriculum vitæ 111

Chapter 1

Introduction

Almost everything is said, until now, about algorithms for calculating with poly-
nomial splines, but sometimes we need some properties of a curve that polynomial
splines can not satisfy. For example, polynomials are inferior to approximate expo-
nential growth of a curve, or sometimes polynomial splines have some unnecessary
inflections that can not be removed. Also, for solving some specific differential
[16, 17, 3] or integral [9] equations, certain minimization problems [12, 7], or finding
kernel of differential operators [39, 29], it is much better to use curves picewisely
spanned by other functions than polynomials. These, and some other problems can
be resolved by using splines described by Chebyshev theory [39, 38]. Although,
theoretically, we know a lot about them, there are relatively few algorithms which
are stable when applied on a computer. More is said about splines associated with
extended Chebyshev systems and extended complete Chebyshev (ECC)–systems
[39, 21, 24, 23], but we have more freedom with those associated with canonical
complete Chebyshev (CCC)–system. The main idea of this thesis is generalization
of some algorithms for polynomial splines, based on knot insertion, to CCC–systems.

In Chapter 2 we introduce Chebyshev splines: starting with the definition
of CCC–systems, then through determinants, Chebyshev divided differences and
Green’s function we arrive to B-splines. We gathered here only those parts of the
whole theory, that we need, and for some theorems we give slightly updated proofs.
We are interested in the properties of B-splines, and the most important property
for us is the derivative formula (2.27) for B-splines, which connects the B-splines
of certain order with the B-splines of one order less. This derivative formula is the
basis for the development of knot insertion, and further algorithms described in
Chapter 3. First, we examine the single knot insertion matrices, then Oslo type
algorithms, giving the recurrence for elements of knot insertion matrices, with ret-
rospect on special cases for order 3 and 4. We end this chapter by generalizing the
well known deBoor algorithm, and again emphasize specially rearranged variant for
order 3 and 4.

After this theoretical part, to show the practical value of the algorithms from
Chapter 3, we apply them on four kinds of splines. As the first and most simple
example, in Chapter 4 we develop algorithms for weighted splines [7, 2, 33]. First,
we treat, as a special case, weighted splines of order 4, and then the splines of

5

6 CHAPTER 1. INTRODUCTION

order higher than 4. These are the only splines of higher order we calculate with.
In particular, we give our consideration to calculation of the integrals of B-splines
associated with reduced systems, needed for knot insertion matrices.

The next example, q-splines [12, 3, 1], are also Chebyshev–polynomial splines
and we give two simple ways of calculating with them in Chapter 5.

Maybe the most interesting case in this thesis are the tension splines [18, 11, 13,
37, 19, 16, 17, 9], due to their good properties and wide application. In Chapter
6 we elaborate three kinds of tension splines: C1, C2, which are mostly used, and
Chebyshev tension splines. The algorithms for calculating with these splines, as
well as for calculating the first and the second derivatives of the C1 and C2 tension
splines, are described in details, with special emphasize on numerical stability.

Finally, cycloidal splines [5, 14, 15, 28] from Chapter 7 are our last example.
Again, we discuss three cases: equidistant, equidistant Bezier and nonequidistant
Bezier cycloidal splines, and explain the reasons for the way we defined them.

In the last Chapter 8, to illustrate the practical computer use of algorithms
based on Chapter 6, we list program codes involved in calculating with C1 and C2

tension splines.

I sincerely thank my supervisor prof. Mladen Rogina for the support, lot of
patience, care, and very motivating guidance in making this thesis.

Chapter 2

Chebyshev splines

In this chapter we will give the preliminaries, i.e. the basic facts of Chebyshev
theory [39, 38, 32] needed for our algorithms.

2.1 Canonical complete Chebyshev systems

Let {ui}
m
1 be a set of functions sufficiently differentiable on the set I ⊆ R, and let

t1, t2, . . . , tm be points in I such that

t1 6 t2 6 · · · 6 tm = x1, . . . , x1︸ ︷︷ ︸
l1

, . . . , xd, . . . , xd︸ ︷︷ ︸
ld

,

where each xi is repeated exactly li times with
∑d

i=1 li = m. Then we define the
matrix associated with {ui}

m
1 and {ti}

m
1 by

M̄

(
t1, . . . , tm
u1, . . . , um

)
:=




u1(x1) u2(x1) · · · um(x1)
Du1(x1) Du2(x1) · · · Dum(x1)

· · ·
Dl1−1u1(x1) Dl1−1u2(x1) · · · Dl1−1um(x1)

· · ·
u1(xd) u2(xd) · · · um(xd)

Du1(xd) Du2(xd) · · · Dum(xd)
· · ·

Dld−1u1(xd) Dld−1u2(xd) · · · Dld−1um(xd)




.

We denote its determinant by

D̄

(
t1, . . . , tm
u1, . . . , um

)
:= det M̄

(
t1, . . . , tm
u1, . . . , um

)
.

Definition 2.1 Let I be a subinterval of R, suppose Uk := {ui}
k
1 is a set of functions

in Ck−1(I), and let Um := {ui}
m
1 for m = 1, . . . , k − 1. We call Uk an Extended

Complete Chebyshev (ECC)–system provided that

D̄Um
(t1, . . . , tm) := D̄

(
t1, . . . , tm
u1, . . . , um

)
> 0 for all t1 6 t2 6 · · · 6 tm in I

7

8 CHAPTER 2. CHEBYSHEV SPLINES

and all m = 1, 2, . . . , k.

Definition 2.2 Let u1 be a bounded positive function on the interval [a, b], and let
there be given a measure vector dσ := (dσ2, . . . dσk)

T, where σ2, . . . , σk are bounded,
right continuous and monotone–increasing functions on [a, b]. Let

u2(x) = u1(x)

∫ x

a

dσ2(τ2),

... (2.1)

uk(x) = u1(x)

∫ x

a

dσ2(τ2)

∫ τ2

a

. . .

∫ τk−1

a

dσk(τk),

for x ∈ [a, b]. We call Uk = {ui}
k
1 a Canonical Complete Chebyshev (CCC)–system.

We are particularly interested in CCC–systems with u1 ≡ 1 (see Theorem

2.15 and Remark 2.5). We can also define the ith restricted CCC–systems U
[i]
k :=

{u1, . . . , ui} associated with the restricted measure vector dσ[i] := (dσ2, . . . , dσi)
T for

i = 2, . . . , k − 1.
If all of the measures dσi possess smooth densities:

σi(t) =

∫ t

a

wi(s)ds, i = 2, . . . , k

with w2, . . . , wk positive functions and wi ∈ Ck−i+1([a, b]), then {1, u2, . . . uk} is an
ECC–system.

Lemma 2.1 Suppose {ui}
k
1 is a CCC–system on an interval [a, b]. Then each of

these functions can be extended to form a CCC–system on any interval [c, d] con-
taining [a, b].

Proof: We only need to extend u1 to remain positive and bounded on [c, d], and
then to extend each of the σi, i = 2, . . . , k, to be bounded, right continuous, and
monotone increasing. �

Theorem 2.1 If {ui}
k
1 is a CCC–system on [a, b], then there exists a function ūk+1

such that Ū
[k+1]
k := {ui}

k
1 ∪ {ūk+1} is a CCC–system of k + 1 functions on [a, b]

associated with extended measure vector dσ̄[k+1] := (dσ2, . . . dσk, dσ̄k+1)
T.

Proof: We simply choose, for example, dσ̄k+1 = dλ (or any other measure that
satisfies properties from Definition 2.2), where dλ is the Lebesgue measure, and
define

ūk+1 := u1(x)

∫ x

a

dσ2(τ2)

∫ τ2

a

. . .

∫ τk

a

dσ̄k+1(τk+1). �

Of course, such an extension Ū
[k+1]
k is not unique. The bar in the notation of

the extended measure vector and CCC–system emphasizes that dσ̄k+1 is, in fact,

arbitrary. It is also obvious that (Ū
[k+1]
k)[k] = Uk.

2.1. CANONICAL COMPLETE CHEBYSHEV SYSTEMS 9

The ith reduced system is defined to be a Chebyshev system corresponding to
the reduced measure vector, that is

dσ(i)(δ) := (dσi+2(δ), . . . , dσk(δ))
T ∈ R

k−(i+1), i = 1, . . . k − 2,

for δ ⊂ [a, b] measurable with respect to all dσj . We write U
(i)
k := {ui,j}

k−i
j=1 for

i = 1, 2, . . . , k − 1, where

ui,1(x) = 1,

ui,2(x) =

∫ x

a

dσi+2(τi+2),

...

ui,k−i(x) =

∫ x

a

dσi+2(τi+2) . . .

∫ τk−1

a

dσk(τk).

We can also define dσ(0) := dσ, dσ(k−1) := ∅ and u0,j := uj(x) for j = 1, . . . , k, as

well as U
(k−1)
k := {1}.

Definition 2.3 The linear space S(k, dσ, u1) := span{Uk} is called a CCC–space if
Uk is a CCC–system. If u1 ≡ 1 then S(k, dσ) := S(k, dσ, u1).

Remark 2.1 We denote the Lebesgue measure as dλ, the measure vector with all
measures equal to the Lebesgue measure as dλ := (dλ, . . . , dλ), and the space of
polynomial splines as Pk := S(k, dλ).

Definition 2.4 Assuming that each of the functions u1, σ2, . . . ,σk have been ex-
tended to an interval to the left of a and to the right of b, i.e. to an interval
[c, d] ⊃ [a, b] with c < a, d > b according to Lemma 2.1, then for f ∈ S(k, dσ, u1)
and x ∈ [a, b] we define generalized derivatives as

L(j,d�,u1) := Dj · · ·D1D0, j = 0, . . . , k − 1,

where

D0f(x) :=
f(x)

u1(x)
,

Djf(x) := lim
δ→0+

f(x+ δ) − f(x)

σj+1(x+ δ) − σj+1(x)
, j = 1, . . . , k − 1.

If u1 ≡ 1 then L(j,d�) := L(j,d�,u1).

According to Theorem 2.1, we can also define

Dkf(x) := lim
δ→0+

f(x+ δ) − f(x)

σ̄k+1(x+ δ) − σ̄k+1(x)
,

for x ∈ [a, b], and L(k,d�,u1) := L(k,d�̄[k+1],u1) := Dk · · ·D1D0. Then we have

L(j,d�,u1)ui =

{
0, i = 1, 2, . . . , j
uj,i−j, i = j + 1, . . . , k,

(2.2)

for j = 0, 1, . . . , k.

10 CHAPTER 2. CHEBYSHEV SPLINES

Lemma 2.2 The functions u1, u2, . . . , uk are linearly independent.

Proof: Let x ∈ [a, b], and assume that

a1u1(x) + a2u2(x) + · · ·+ akuk(x) = 0 (2.3)

for some a1, a2, . . . , ak ∈ R. If we apply general derivatives L(j,d�,u1), for j =
1, . . . , k − 1, on (2.3), we get a system of k equations

a1L(j,d�,u1)u1(x)+a2L(j,d�,u1)u2(x)+ · · ·+akL(j,d�,u1)uk(x) = 0, j = 0, 1, . . . , k−1.

Because of (2.2), the determinant of this system is

det




u1(x) u2(x) u3(x) · · · uk(x)
0 1 u1,2(x) · · · u1,k−1(x)
0 0 1 · · · u2,k−2
...

...
...

. . .
...

0 0 0 · · · 1




= u1(x) > 0

for each x ∈ [a, b], so the only solution is aj = 0 for j = 1, 2, . . . , k. �

The direct consequence of Lemma 2.2 and the equations (2.2) is:

Theorem 2.2 CCC–space S(k, dσ, u1) is k–dimensional linear space and L(j,d�,u1)

is liner operator S(k, dσ, u1) → S(k − j, dσ(j)) := span{U
(j)
k } for j = 1, . . . , k − 1.

Finally, given u1, . . . , uk defined as in (2.1), we define the dual CCC–system U∗
k =

{u∗i }
k
i=1 by

u∗1(y) = 1,

u∗2(y) =

∫ y

a

dσk(τk),

...

u∗k(y) =

∫ y

a

dσk(τk)

∫ τk

a

· · ·

∫ τ3

a

dσ2(τ2).

Let dσ∗ := (dσk, . . . dσ2)
T, then S(k, dσ∗) := span{u∗1, u

∗
2, . . . u

∗
k}. For a given dual

CCC–system, as for any CCC–system, we define dσ(∗,(i)) := (dσk−i, . . . , dσ2) and

the ith reduced system U
(∗,(i))
k := {u∗i,j}

k−i
j=1 by

u∗i,1(y) = 1,

u∗i,2(y) =

∫ y

a

dσk−i(τk−i)

...

u∗i,k−i(y) =

∫ y

a

dσk−i(τk−i)

∫ τk−i

a

· · ·

∫ τ3

a

dσ2(τ2),

2.2. DETERMINANTS AND CHEBYSHEV DIVIDED DIFFERENCES 11

for i = 0, 1, . . . , k−1. Associated with this CCC–system, we have the dual derivatives

L(j,d�∗) : S(k, dσ∗) → S(k − j, dσ(∗,(j))) := span{U
(∗,(j))
k }:

L(j,d�∗) := D∗
j · · ·D

∗
1, j = 1, . . . , k − 1,

where by Lemma 2.1, for f ∈ S(k, dσ∗) and x ∈ [a, b], we define

D∗
jf(y) := lim

δ→0+

f(y)− f(y − δ)

σk−j+1(y) − σk−j+1(y − δ)
, j = 1, . . . , k − 1.

The dual derivatives act on dual CCC–systems like the general derivatives on classic
CCC–systems:

L(j,d�∗)u
∗
i =

{
0, i = 1, 2, . . . , j
u∗j,i−j, i = j + 1, . . . , k,

for j = 1, . . . , k − 1.

Remark 2.2 Further we will use notation U
(s,z)
k := (Us

k)z and dσ(s,z) := (dσs)z

where s and z are any of (i), [i] or ∗.

2.2 Determinants and Chebyshev divided differ-

ences

Further, we need a generalization of divided differences, which play a very important
role in definition of the local basis for Chebyshev spline spaces, but first, we have
to define determinants D in a CCC–system. Let Uk be the given CCC–system, and
v1, . . . , vk ∈ S(k, dσ, u1). Then, if

M

(
t1, . . . , tk
v1, . . . , vk

)
:=
[
L(di,d�,u1)vj(ti)

]k
i,j=1

,

where t1 6 t2 6 · · · 6 tk and

di := max{j : ti = · · · , ti−j}, i = 1, 2, . . . , k,

then

D

(
t1, . . . , tk
v1, . . . , vk

)
:= detM

(
t1, . . . , tk
v1, . . . , vk

)
.

The next lemma is important to prove Theorem 2.3, and it is a variant of the
Newton–Leibniz formula for Chebyshev spaces, which is the basis of the whole
Chebyshev theory.

Lemma 2.3 (Chebyshev Newton–Leibniz formula) Let S(k, dσ, u1) be a
CCC–space on [a, b], f ∈ S(k, dσ, u1) and a 6 c 6 d 6 b. Then

f(d)

u1(d)
−

f(c)

u1(c)
=

∫ d

c

L(1,d�,u1)f(t) dσ2(t). (2.4)

12 CHAPTER 2. CHEBYSHEV SPLINES

Proof: We will prove that (2.4) holds for the basis functions in S(k, dσ, u1), i.e.
that

uj(d)

u1(d)
−
uj(c)

u1(c)
=

∫ d

c

L(1,d�,u1)uj(t) dσ2(t) (2.5)

holds for j = 1, 2, . . . , k. For j = 1 (2.5) is trivial. Let us prove (2.5) for fixed j,
j = 2, . . . , k. We can show a stronger assertion:

ψ
j
i (d) − ψ

j
i (c) =

∫ d

c

Di−1ψ
j
i (t) dσi(t) (2.6)

for i = 2, . . . , j, where

ψ
j
i (t) =

∫ t

a

dσi(τi)

∫ τi

a

dσi+1(τi+1) · · ·

∫ τj−1

a

dσj(τj).

To do that, we proceed by induction on i. The function ψ
j
i has few simple proper-

ties:

ψ
j
i (t) > 0 for x > a, and ψj

i (a) = 0, (2.7)

ψ
j
i (t) =

∫ t

a

ψ
j
i+1(τi) dσi(τi),

Di−1ψ
j
i (t) = ψ

j
i+1(t), (2.8)

and because of (2.7) and (2.8), ψj
i is an increasing function. The basis of induction

(i = j) is trivial, because ψj
j (t) =

∫ t

a
dσj(τj). Now, assume that (2.6) holds for

j, j − 1, . . . , i + 1, and let us show it holds for i. Let us start with the right hand
side of the equation (2.6):

∫ d

c

Di−1ψ
j
i (t) dσi(t) =

∫ d

c

lim
δ→0+

ψ
j
i (t+ δ) − ψ

j
i (t)

σi(t+ δ) − σi(t)
dσi(t)

=

∫ d

c

lim
δ→0+

∫ t+δ

t
ψ

j
i+1(τi) dσi(τi)

σi(t+ δ) − σi(t)
dσi(t)

=

∫ d

c

lim
δ→0+

∫ t+δ

t
dσi(τi)

∫ τi

a
ψ

j
i+2(τi+1) dσi+1(τi+1)

σi(t+ δ) − σi(t)
dσi(t)

=

∫ d

c

lim
δ→0+

∫ t+δ

t
dσi(τi)

∫ τi

a
Diψ

j
i+1(τi+1) dσi+1(τi+1)

σi(t+ δ) − σi(t)
dσi(t),

and if we take into account the induction assumption for ψj
i+1, we get

∫ d

c

Di−1ψ
j
i (t)dσi(t) =

∫ d

c

lim
δ→0+

∫ t+δ

t

(
ψ

j
i+1(τi) − ψ

j
i+1(a)

)
dσi(τi)

σi(t+ δ) − σi(t)
dσi(t)

=

∫ d

c

lim
δ→0+

(
1

σi(t+ δ) − σi(t)

∫ t+δ

t

ψ
j
i+1(τi) dσi(τi)

−ψj
i+1(a)

)
dσi(t).

2.2. DETERMINANTS AND CHEBYSHEV DIVIDED DIFFERENCES 13

Then, we apply ψj
i+1(a) = 0 to the equation above, and use the Mean value theorem

for Lebesgue–Stieltjes integrals (see [4]) applied on ψj
i+1, which says that there exist

ξi+1(δ), ψ
j
i+1(t) 6 ξi+1(δ) 6 ψ

j
i+1(t + δ), (ψj

i+1 is increasing and, in general, only
right continuous), such that

∫ t+δ

t

ψ
j
i+1(τi) dσi(τi) = ξi+1(δ)

∫ t+δ

t

dσi(τi),

and we get

∫ d

c

Di−1ψ
j
i (t) dσi(t) =

∫ d

c

lim
δ→0+

(
ξi+1(δ)

σi(t+ δ) − σi(t)

∫ t+δ

t

dσi(τi)

)
dσi(t)

=

∫ d

c

ψ
j
i+1(t) dσi(t)

= ψ
j
i (d) − ψ

j
i (c),

so, the assertion (2.6) is proved. �

Lemma 2.3 also produces a generalization of Taylor expansion for polynomials:

Lemma 2.4 (Chebyshev Taylor Expansion) Let S(k, dσ, u1) be a CCC–space
on [a, b], f ∈ S(k, dσ, u1) and a 6 c 6 d 6 b. Then for l = 2, · · · , k

f(d)

u1(d)
=

f(c)

u1(c)
+ L(1,d�,u1)f(c)

∫ d

c

dσ2(τ2) + L(2,d�,u1)f(c)

∫ d

c

dσ2(τ2)

∫ τ2

c

dσ3(τ3)

+ · · ·+ L(l−2,d�,u1)f(c)

∫ d

c

dσ2(τ2) · · ·

∫ τl−2

c

dσl−1(τl−1) (2.9)

+

∫ d

c

dσ2(τ2) · · ·

∫ τl−2

c

dσl−1(τl−1)

∫ τl−1

c

L(l−1,d�,u1)f(τl) dσl(τl),

and there exist ξ(d), infx∈[c,d]L(l−1,d�,u1)f 6 ξ(d) 6 supx∈[c,d] L(l−1,d�,u1)f such that

f(d)

u1(d)
=

f(c)

u1(c)
+ L(1,d�,u1)f(c)

∫ d

c

dσ2(τ2) + L(2,d�,u1)f(c)

∫ d

c

dσ2(τ2)

∫ τ2

c

dσ3(τ3)

+ · · ·+ L(l−2,d�,u1)f(c)

∫ d

c

dσ2(τ2) · · ·

∫ τl−2

c

dσl−1(τl−1) (2.10)

+ξ(d)

∫ d

c

dσ2(τ2) · · ·

∫ τl−2

c

dσl−1(τl−1)

∫ τl−1

c

dσl(τl).

Proof: We will prove (2.9) by induction. The basis is the Chebyshev Newton–
Leibniz formula (2.4). Let us assume that (2.9) holds for l − 1:

f(d)

u1(d)
=

f(c)

u1(c)
+ L(1,d�,u1)f(c)

∫ d

c

dσ2(τ2) + L(2,d�,u1)f(c)

∫ d

c

dσ2(τ2)

∫ τ2

c

dσ3(τ3)

+ · · ·+

∫ d

c

dσ2(τ2) · · ·

∫ τl−2

c

L(l−2,d�,u1)f(τl−1) dσl−1(τl−1)

14 CHAPTER 2. CHEBYSHEV SPLINES

=
f(c)

u1(c)
+ L(1,d�,u1)f(c)

∫ d

c

dσ2(τ2) + L(2,d�,u1)f(c)

∫ d

c

dσ2(τ2)

∫ τ2

c

dσ3(τ3)

+ · · ·+

∫ d

c

dσ2(τ2) · · ·

∫ τl−2

c

(
(L(l−2,d�,u1)f(τl−1) − L(l−2,d�,u1)f(c))

+L(l−2,d�,u1)f(c)
)
dσl(τl−1),

then, again, by the Chebyshev Newton–Leibniz formula (2.4) applied on L(l−2,d�,u1)f ,
this becomes (2.9). For proving (2.10) we need the fact that by the Mean value
theorem for Lebesgue–Stieltjes integrals we have

∫ d

c

f(τi)g(τi) dσi(τi) = ξi−1(d)

∫ d

c

g(τi) dσi(τi), (2.11)

for f and g right continuous, f bounded, g > 0 and

m(f, [c, d]) := inf
x∈[c,d]

f(x) 6 ξi−1(d) 6 M(f, [c, d]) := sup
x∈[c,d]

f(x). (2.12)

It is obvious that ξi−1 is also right continuous. Let

ξl :≡ L(l−1,d�,u1)f,

gl
l :≡ 1,

gl
i(d) :=

∫ d

c

dσi+1(τi+1) · · ·

∫ τl−1

c

dσl(τl), for l = 2, . . . , l − 1.

Then by (2.11) and the inductive argument gl
i > 0, and

∫ τi−1

c

ξi(τi)g
l
i(τi) dσi(τi) = ξi−1(τi−1)

∫ τi−1

c

gl
i(τi) dσi(τi),

with m(L(l−1,d�,u1)f, [c, d]) 6 m(ξi, [c, τi−1]) 6 ξi−1(τi−1) 6 M(ξi, [c, τi−1]) 6

M(L(l−1,d�,u1)f, [c, d]) and

lim
τi−1→c+

ξi−1(τi−1) = L(l−1,d�,u1)f(c). (2.13)

For ξ :≡ ξ1 (2.10) is proved. �

Theorem 2.3 Let Uk be a CCC–system on the interval [a, b]. Then

D

(
t1, . . . , tk
u1, . . . , uk

)
> 0

for all a 6 t1 6 t2 6 · · · 6 tk 6 b.

Proof: The proof in [38] relies only on Lemma 2.3.

2.2. DETERMINANTS AND CHEBYSHEV DIVIDED DIFFERENCES 15

Definition 2.5 Let a = t1 6 t2 6 · · · 6 tk+1 = b, where each ti is repeated li
times. Let Uk+1 be a CCC–system and f a function for which all L(j−1,d�[k],u1)f(ti),

j = 1, . . . , li exist. Chebyshev kth order divided difference with respect to CCC–system
Uk+1 is a linear functional

[t1, t2, . . . , tk+1]Uk+1
f =

D

(
t1, . . . , tk+1

u1, . . . , uk, f

)

D

(
t1, . . . , tk+1

u1, . . . , uk+1

) . (2.14)

Some properties of divided differences are listed in the next theorem:

Theorem 2.4

(i) Divided difference is a linear functional of the form:

[t1, . . . , tk+1]Uk+1
f =

d∑

i=1

li∑

j=1

αi,jL(j−1,d�[k],u1)f(ti),

where αi,j ∈ R, αi,li 6= 0, and the function f satisfies the smoothness conditions
from Definition 2.5.

(ii)

[t1, . . . , tk+1]Uk+1
u = 0, for each u ∈ S(k, dσ[k], u1).

(iii) If t1,δ, . . . , tk+1,δ is a sequence of points satisfying ti,δ → t+i when δ → 0, then
for sufficiently smooth function f (as in Definition 2.5)

[t1,δ, . . . , tk+1,δ]Uk+1
f −→ [t1, . . . , tk+1]Uk+1

f

for δ → 0.

(iv) If t1 6= tk+1, divided differences satisfy the recurrence:

[t1, . . . , tk+1]Uk+1
f =

[t2, . . . , tk+1]U [k]
k+1
f − [t1, . . . , tk]U [k]

k+1
f

[t2, . . . , tk+1]U [k]
k+1
uk+1 − [t1, . . . , tk]U [k]

k+1
uk+1

. (2.15)

Proof: The proof of (i) and (ii) is analogous to the proof for ECC–systems [39, 26];
the recurrence for divided differences in (iv) is the result of Mülbach’s recurrence
[25] and can easily be extended to CCC–systems [30].

Let us prove (iii). It is sufficient to consider the case where just one t moves
with δ. Now suppose t1 6 · · · 6 ti < ti+1 = · · · = ti+l < ti+l+1 6 · · · 6 tk+1, and

16 CHAPTER 2. CHEBYSHEV SPLINES

that ti+l,δ → t+i+l. Then

[t1, . . . , ti+l−1, ti+l,δ, ti+l+1, . . . , tk+1]Uk+1
f

=

det




· · · · · ·
u1(ti+1) · · · uk(ti+1) f(ti+1)

· · ·
L(l−2,d�,u1)u1(ti+1) · · · L(l−2,d�,u1)uk(ti+1) L(l−2,d�,u1)f(ti+1)

u1(ti+l,δ) · · · uk(ti+l,δ) f(ti+l,δ)
· · · · · ·




det




· · · · · ·
u1(ti+1) · · · uk+1(ti+1)

· · ·
L(l−2,d�,u1)u1(ti+1) · · · L(l−2,d�,u1)uk+1(ti+1)

u1(ti+l,δ) · · · uk+1(ti+l,δ)
· · · · · ·




.

After applying Chebyshev Taylor expansion (2.10) on u1(ti+l,δ), . . . , uk+1(ti+l,δ),
f(ti+l,δ) and some simplifications, we get

[t1, . . . , ti+l−1, ti+l,δ, ti+l+1, . . . , tk+1]Uk+1
f

=

det




· · · · · ·
u1(ti+1) · · · uk(ti+1) f(ti+1)

· · ·
L(l−2,d�,u1)u1(ti+1) · · · L(l−2,d�,u1)uk(ti+1) L(l−2,d�,u1)f(ti+1)

ξ1(ti+l,δ) · · · ξk(ti+l,δ) ξ(ti+l,δ)
· · · · · ·




det




· · · · · ·
u1(ti+1) · · · uk+1(ti+1)

· · ·
L(l−2,d�,u1)u1(ti+1) · · · L(l−2,d�,u1)uk+1(ti+1)

ξ1(ti+l,δ) · · · ξk+1(ti+l,δ)
· · · · · ·




,

for L(l−1,d�,u1)ui(ti+l) 6 ξi(ti+l,δ) 6 L(l−1,d�,u1)ui(ti+l,δ), i = 1, . . . , k + 1, because
L(l−1,d�,u1)ui are increasing, and (see (2.12))

m(L(l−1,d�,u1)f, [ti+l, ti+l,δ]) 6 ξ(ti+l,δ) 6 M(L(l−1,d�,u1)f, [ti+l, ti+l,δ]).

By (2.13) ξi(ti+l,δ) → L(l−1,d�,u1)ui(ti+l) and ξ(ti+l,δ) → L(l−1,d�,u1)f(ti+l) as ti+l,δ →
t+i+l, so by taking the limit, we obtain (iii). �

Remark 2.3 As we usually observe CCC–system Uk, then for Uk+1, from Defini-

tion 2.5, we take Ū
[k+1]
k . In this case (Ū

[k+1]
k)[k] = Uk.

2.3. GREEN’S FUNCTION 17

2.3 Green’s function

Definition 2.6 For a CCC–space S(k, dσ, u1) the function G(k,d�,u1)(x, y) : [a, b]×
[a, b] → R defined by

G(k,d�,u1)(x, y) =

{
H(k,d�,u1)(x, y), x > y,

0, otherwise,

where

H(k,d�,u1)(x, y) = u1(x)

∫ x

y

dσ2(τ2)

∫ τ2

y

· · ·

∫ τk−1

y

dσk(τk),

is called a Green’s function with respect to dσ. If u1 ≡ 1 then G(k,d�) := G(k,d�,u1)

and H(k,d�) := H(k,d�,u1).

The following theorems show some characteristic properties of the Green’s func-
tion:

Theorem 2.5 For a 6 y 6 x 6 b and i = 0, 1 . . . k − 2 holds

G(k−i,d�(i),ui,1)(x, y) =
k∑

l=i+1

(−1)k−lui,l−i(x)u
∗
k−l+1(y). (2.16)

Proof: To prove (2.16), let us define:

ψi(x, y) := δi(x)

∫ x

y

dσi+2(τi+2)

∫ τi+2

y

dσi+3(τi+3) · · ·

∫ τk−1

y

dσk(τk)

for i = 0, 1, . . . , k − 2, with

δi(x) =

{
u1(x) for i = 0,
1 for i = 1, . . . , k − 2.

So, we want to establish even more, that

ψi(x, y) =

k∑

l=i+1

(−1)k−lui,l−i(x)u
∗
k−l+1(y), (2.17)

holds for i = 0, 1, . . . , k − 2 and all x, y ∈ [a, b]. We prove this by induction on i.
For i = k − 2 we have

δk−2(x)

∫ x

y

dσk(τk) = δk−2(x)

∫ x

a

dσk(τk) − δk−2(x)

∫ y

a

dσk(τk)

= uk−2,2(x)u
∗
1(y) − uk−2,1(x)u

∗
2(y),

which is (2.17) in this case. Now assume that (2.17) holds for i+ 1, . . . , k − 2, and
we prove it for i. We have

ψi(x, y) = δi(x)

∫ x

a

ψi+1(τi+2, y) dσi+2(τi+2) − δi(x)

∫ y

a

ψi+1(τi+2, y) dσi+2(τi+2).

(2.18)

18 CHAPTER 2. CHEBYSHEV SPLINES

After applying the induction assumption to the first term of the right hand side of
(2.18), we see that it reduces to

k∑

l=i+2

(−1)k−lui,l−i(x)u
∗
k−l+1(y).

Now, a simple induction argument shows that
∫ y

a

dσi+2(τi+2)

∫ τi+2

y

dσi+3(τi+3) · · ·

∫ τk−1

y

dσk(τk)

= (−1)k−i

∫ y

a

dσk(τk)

∫ τk

a

dσk−1(τk−1) · · ·

∫ τi+3

a

dσi+2(τi+2).

Since ui,1(x) = 1 for i > 0, the second term of (2.18) is

(−1)k−i−1ui,1(x)u
∗
k−i(y),

and (2.17) is proved for i. �

Theorem 2.6
L(i,d�,u1)G(k,d�,u1)(·, y) = G(k−i,d�(i))(·, y)

for i = 1, . . . , k − 1.

Proof: If x > y, according to Theorem 2.5:

G(k,d�,u1)(x, y) =
k∑

l=1

(−1)k−lul(x)u
∗
k+1−l(y).

From this, and (2.2), it follows that

L(i,d�,u1)G(k,d�,u1)(x, y) =
k∑

l=i+1

(−1)k−lui,l−i(x)u
∗
k+1−l(y).

The right hand side of the equation can be recognized as G(k−i,d�(i)). �

Theorem 2.7 Let r ∈ L1[a, b], and suppose f0, . . . , fk−1 are given real numbers.
Let u be the unique member of S(k, dσ, u1) such that

L(i,d�,u1)u(a) = fi, i = 0, 1, . . . , k − 1,

and let the measure dσ̄k+1 be defined as in Theorem 2.1. Then

f(x) = u(x) +

∫ b

a

G(k,d�,u1)(x, τk+1)r(τk+1) dσ̄k+1(τk+1)

is the unique solution of the initial–value problem

L(k,d�̄[k+1],u1)f(x) = r(x), x ∈ [a, b], (2.19)

L(i,d�,u1)f(a) = fi, i = 0, 1, . . . , k − 1. (2.20)

2.3. GREEN’S FUNCTION 19

Proof: It is easily checked from Definition 2.6 and Theorem 2.6 that

L(i,d�,u1)

∫ b

a

G(k,d�,u1)(x, τk+1)r(τk+1) dσ̄k+1(τk+1)|x=a = 0, i = 0, 1, . . . , k − 1,

and thus f satisfies the initial conditions (2.20). On the other hand, since

L(k−1,d�,u1)G(k,d�,u1)(x, y) =

{
1, x > y,

0, otherwise,

we have

L(k−1,d�,u1)f(x) = L(k−1,d�,u1)u(x) +

∫ x

a

r(τk+1) dσ̄k+1(τk+1).

After applying the differential operator Dk, with L(k−1,d�,u1)u(x) = const, we obtain
(2.19). �

As in the polynomial case, the function G(k,d�,u1) also plays an important role
in generalization of the Taylor expansion, and gives an alternative to the Lemma
2.4:

Theorem 2.8 (Generalized Taylor Expansion) Suppose L(k,d�̄[k+1],u1)f ∈
L1[a, b]. Then for all a 6 x 6 b,

f(x) = uf(x) +

∫ b

a

G(k,d�,u1)(x, τk+1)L(k,d�̄[k+1],u1)f(τk+1) dσ̄k+1(τk+1),

where uf is the function in S(k, dσ, u1) such that

L(i,d�,u1)uf(a) = L(i,d�,u1)f(a), i = 0, 1, . . . , k − 1.

Proof: Let

g(x) = uf(x) +

∫ b

a

G(k,d�,u1)(x, τk+1)L(k,d�̄[k+1],u1)f(τk+1) dσ̄k+1(τk+1).

Theorem 2.7 implies that L(k,d�̄[k+1],u1)f(x) = L(k,d�̄[k+1],u1)g(x), for all a 6 x 6 b,
and thus f − g ∈ S(k, dσ, u1). But, as Theorem 2.7 also asserts that L(i,d�,u1)(f −
g)(a) = 0, i = 0, 1, . . . , k − 1, we conclude that f = g. �

Analogously, we can prove the dual version of previous theorems:

Theorem 2.9 If dσ[k−i] = (dσ2, . . . , dσk−i)
T is the restricted measure vector, then

L(i,d�∗)G(k,d�,u1)(x, ·) = (−1)iG(k−i,d�[k−i],u1)(x, ·)

for i = 1, . . . , k − 1.

20 CHAPTER 2. CHEBYSHEV SPLINES

Theorem 2.10 Let r ∈ L1[a, b], and suppose f0, . . . , fk−1 are given real numbers.
Let u∗ be the unique member of S(k, dσ, u1) such that

L(i,d�∗)u
∗(b) = fi, i = 0, 1, . . . , k − 1.

Then

f(y) = u∗(y) +

∫ b

a

(−1)kr(τk+1)G(k,d�,u1)(τk+1, y) dσ̄
∗
k+1(τk+1),

where dσ̄∗
k+1 is the extension of dσ∗ according to Theorem 2.1, dσ̄(∗,[k+1]) := (dσk,

. . . dσ2, σ̄
∗
k+1)

T, is the unique solution of the initial–value problem

L(k,d�̄(∗,[k+1]))f(y) = r(y), y ∈ [a, b],

L(i,d�∗)f(b) = fi, i = 0, 1, . . . , k − 1.

Theorem 2.11 (Dual Taylor Expansion) Let L(k,d�̄(∗,[k+1]))f ∈ L1[a, b]. Then
for all a 6 y 6 b,

f(y) = u∗f(y) +

∫ b

a

G(k,d�,u1)(τk+1, y)(−1)kL(k,d�̄(∗,[k+1]))f(τk+1) dσ̄
∗
k+1(τk+1), (2.21)

where dσ̄∗
k+1 is as in Theorem 2.10, and u∗f is an element of S(k, dσ∗) such that

L(i,d�∗)u
∗
f(b) = L(i,d�∗)f(b), i = 0, 1, . . . , k − 1.

2.4 Chebyshev B-splines

For a partition ∆ = {xi}
l+1
i=0 of an interval [a, b], given multiplicity vector m =

(m1, . . . , ml), (0 < mi 6 k), and M :=
∑l

i=1mi, we shall denote by T (∆,m) :=
{t1 . . . t2k+M}, an extended partition in the usual way:

t1 6 . . . 6 tk = x0 = a,

tk+1 6 . . . 6 tk+M = x1, . . . , x1︸ ︷︷ ︸
m1

, . . . , xl, . . . , xl︸ ︷︷ ︸
ml

, (2.22)

b = xl+1 = tk+M+1 6 . . . 6 t2k+M .

When it is obvious which partition and multiplicity vector the extended partition
is associated with, we will use shorter notation: T := T (∆,m). Most often, to avoid
that the first k − 1 or the last k − 1 knots lie outside the interval [a, b], we take
t1 = . . . = tk = x0 = a and b = xl+1 = tk+M+1 = . . . = t2k+M .

Definition 2.7 Let S(k, dσ, u1) be a CCC–space. A set S(k, dσ, u1,T) of bounded
functions on [a, b] such that:

(i) for each s ∈ S(k, dσ, u1,T) and each i = 0, . . . , l, there exists si ∈ S(k, dσ, u1)
such that s|[xi,xi+1] = si|[xi,xi+1],

2.4. CHEBYSHEV B-SPLINES 21

(ii) L(j,d�,u1)si−1(xi) = L(j,d�,u1)si(xi) for j = 0, . . . , k −mi − 1, i = 1, . . . , l

is called the space of Chebyshev splines on extended partition T . If u1 ≡ 1, then
S(k, dσ,T) := S(k, dσ, u1,T).

It is clear that S(k, dσ, u1,T) is a linear space. It can be easy proved (see [38])
that

n := dimS(k, dσ, u1,T) = k +M.

For our purpose, the most convenient basis for S(k, dσ, u1,T) are B-splines:

Definition 2.8 Given an extended partition T = {ti}
n+k
1 as in (2.22), with ti <

ti+k for i = k, . . . , n, and CCC–system Uk, we define the associated normalized
B-spline, or just B-spline T k

(i,d�,u1,T) as

T k
(i,d�,u1,T)(x) := αk

(i,d�̄(∗,[k+1]),u1,T)Q
k
(i,d�̄(∗,[k+1]),u1,T)(x),

Qk
(i,d�̄(∗,[k+1]),u1,T)(x) := (−1)k[ti, . . . , ti+k]Ū (∗,[k+1])

k

G(k,d�,u1)(x, ·), (2.23)

αk
(i,d�̄(∗,[k+1]),u1,T) :=

D

(
ti, . . . , ti+k

u∗1, . . . , ū
∗
k+1

)
D

(
ti+1, . . . , ti+k−1

u∗1, . . . , u
∗
k−1

)

D

(
ti+1, . . . , ti+k

u∗1, . . . , u
∗
k

)
D

(
ti, . . . , ti+k−1

u∗1, . . . , u∗k

)

for i = 1, . . . , n + k, with the extension ū∗k+1 of U∗
k as in Theorem 2.1. The

spline Qk
(i,d�̄(∗,[k+1]),u1,T)

is called unnormalized B-spline. If u1 ≡ 1 then T k
(i,d�,T) :=

T k
(i,d�,u1,T), Q

k
(i,d�̄(∗,[k+1]),T)

:= Qk
(i,d�̄(∗,[k+1]),u1,T)

and αk
(i,d�̄(∗,[k+1]),T)

:= αk
(i,d�̄(∗,[k+1]),u1,T)

.

Theorem 2.12 B-splines T k
(i,d�,u1,T), i = 1, . . . , n from Definition 2.8 make a basis

for S(k, dσ, u1,T), and αk
(i,d�̄(∗,[k+1]),u1,T)

> 0.

Proof: See [38, 39]. �

Although unnormalized B-splines Qk
(i,d�̄(∗,[k+1]),u1,T)

in (2.23) depend on extension

by measure dσ̄∗
k+1 in the extended CCC–system Ū

(∗,k+1)
k , which can be arbitrarily

chosen, for normalized B-splines this is not true:

Lemma 2.5 The B-spline T k
(i,d�,u1,T) does not depend on the function ū∗k+1, i.e. on

the measure dσ̄∗
k+1 by which we extend the CCC–system.

Proof: From Definition 2.8 follows that

T k
(i,d�,u1,T)(x) = (−1)k

D

(
ti, . . . , ti+k

u∗1, . . . , ū
∗
k+1

)
D

(
ti+1, . . . , ti+k−1

u∗1, . . . , u
∗
k−1

)

D

(
ti+1, . . . , ti+k

u∗1, . . . , u
∗
k

)
D

(
ti, . . . , ti+k−1

u∗1, . . . , u∗k

)

·

D

(
ti, . . . , ti+k−1, ti+k

u∗1, . . . , u∗k, G(k,d�,u1)

)

D

(
ti, . . . , ti+k

u∗1, . . . , ū
∗
k+1

) , (2.24)

22 CHAPTER 2. CHEBYSHEV SPLINES

so determinants which depend on ū∗k+1 cancel. �

We now continue with some properties of the B-splines:

Theorem 2.13 Let T = {ti}
n+k
1 be an extended partition of [a, b], as in (2.22). Let

T k
(i,d�,u1,T)(x) be the B-spline associated with ti, . . . , ti+k, ti < ti+k, i = 1, 2, . . . , n.

Then

T k
(i,d�,u1,T)(x) = 0, x < ti and x > ti+k,

T k
(i,d�,u1,T)(x) > 0, ti < x < ti+k,

i = 1, 2, . . . , n, and
n∑

i=1

T k
(i,d�,u1,T)(x) = u1(x)

for all a 6 x 6 b.

Proof: See [38, 39] �

Remark 2.4 Direct consequence of Theorem 2.13 is that for u1 ≡ 1 B-splines make
a partition of unity:

n∑

i=1

T k
(i,d�,T)(x) = 1 (2.25)

for all x ∈ [a, b].

Theorem 2.14 (Peano representation of Chebyshev divided differences)
Let L

(k,d�̄(∗,[k+1])
k

)
f ∈ L1[ti, ti+k]. Then

[ti, . . . , ti+k]Ū (∗,[k+1])
k

f =

∫ ti+k

ti

Qk
(i,d�̄(∗,[k+1]),u1,T)(τk+1)L(k,d�̄(∗,[k+1])

k
)
f(τk+1)dσ̄

∗
k+1(τk+1),

with dσ̄∗
k+1 as in Theorem 2.10.

Proof: We simply apply the divided difference to the dual Taylor expansion (2.21)
and use Definition 2.8. �

Lemma 2.6 B-spline is equal to the difference of divided differences of Green’s
function:

T k
(i,d�,u1,T)(x) = (−1)k

(
[ti+1, . . . , ti+k]U∗

k
G(k,d�,u1)(x, ·) −

[ti, . . . , ti+k−1]U∗

k
G(k,d�,u1)(x, ·)

)
.

2.4. CHEBYSHEV B-SPLINES 23

Proof: The well known Sylvester’s identity, which is very important in total posi-
tivity theory (see page 8 in [10]), gives us

D

(
ti+1, . . . , ti+k−1

u∗1, . . . , u
∗
k−1

)
D

(
ti, . . . , ti+k−1, ti+k

u∗1, . . . , u∗k, G(k,d�,u1)

)
=

D

(
ti+1, . . . , ti+k−1, ti+k

u∗1, . . . , u
∗
k−1, G(k,d�,u1)

)
D

(
ti, . . . , ti+k−1

u∗1, . . . , u∗k

)
−

D

(
ti, . . . , ti+k−2, ti+k−1

u∗1, . . . , u
∗
k−1, G(k,d�,u1)

)
D

(
ti+1, . . . , ti+k

u∗1, . . . , u
∗
k

)
,

and the proof follows from (2.24) and (2.23) when we divide both sides of the
equation above with the product of positive determinants

D

(
ti+1, . . . , ti+k

u∗1, . . . , u
∗
k

)
·D

(
ti, . . . , ti+k−1

u∗1, . . . , u∗k

)
,

and use the definition of divided difference (2.14). �

Theorem 2.15 The B-splines T k
(i,d�,u1,T) ∈ S(k, dσ, u1,T), T k

(i,d�,T) ∈ S(k, dσ,T)
satisfy:

T k
(i,d�,u1,T)(x) = u1(x) · T

k
(i,d�,T)(x), i = 1, . . . , n,

for x ∈ [a, b].

Proof: The proof follows directly from (2.24) and Theorem 2.9. �

Remark 2.5 Because of Theorem 2.15 from now on we can assume, without loss
of generality, that u1 ≡ 1.

With u1 ≡ 1, B-splines have one more important property: the continuity of B-
splines as a function of their knots, or to be precise:

Theorem 2.16 Let

Tk
i,d�(x; ti, ti+1, . . . , ti+k) := T k

(i,d�,T)(x), (2.26)

for x ∈ [a, b] and i = 1, . . . , n. If ti,δ, . . . , ti+k,δ is a sequence of points satisfying
tj,δ → t+j , j = i, . . . , i+ k, when δ → 0, then

Tk
i,d�(x; ti,δ, . . . , ti+k,δ) −→ Tk

i,d�(x; ti, . . . , ti+k)

when δ → 0.

Proof: The proof of Theorem 2.16 follows from Lemma 2.6, and Theorem 2.4 (iii).
�

Remark 2.6 The use of different font in the notation of Tk
i,d� emphasizes that func-

tions Tk
i,d� and T k

(i,d�,T) have different arguments: Tk
i,d� is a function of x, ti, ti+1, . . . ,

ti+k, while T k
(i,d�,T) is a function of x, i.e. ti, ti+1, . . . , ti+k are fixed.

24 CHAPTER 2. CHEBYSHEV SPLINES

It is known that the deBoor–Cox type recurrence does not exist for the general
Chebyshev splines [40], so we will use the derivative formula (2.27) [31, 32] when
applicable.

Theorem 2.17 (Derivative formula) Let L(1,d�) be the first generalized deriva-
tive with respect to CCC–space S(k, dσ), and let the multiplicity vector m = (m1,

. . . , ml) satisfy mi 6 k for i = 1, . . . , l. Then for x ∈ [a, b] and i = 1, . . . , n, the
following derivative formula holds:

L(1,d�)T
k
(i,d�,T)(x) =

T k−1
(i,d�(1),T)

(x)

Ck−1
(i,d�,T)

−
T k−1

(i+1,d�(1),T)
(x)

Ck−1
(i+1,d�,T)

, (2.27)

where

Ck−1
(i,d�,T) :=

∫ ti+k−1

ti

T k−1
(i,d�(1),T)

(τ2) dσ2(τ2). (2.28)

Proof: According to Lemma 2.6

T k
(i,d�,T)(x) = (−1)k

(
[ti+1, . . . , ti+k]U∗

k
G(k,d�)(x, ·) −

[ti, . . . , ti+k−1]U∗

k
G(k,d�)(x, ·)

)
. (2.29)

After applying derivative L(1,d�) on (2.29), we conclude that

L(1,d�)T
k
(i,d�,T)(x) = −(ωi+1 − ωi),

with (see Theorem 2.6)

ωi := (−1)k−1[ti, . . . , ti+k−1]U∗

k
G(k−1,d�(1))(x, ·).

The order of the divided difference can be reduced by Theorem 2.4 (iv):

ωi =
(−1)k−1

γi

(
[ti+1, . . . , ti+k−1]U (∗,[k−1])

k

G(k−1,d�(1))(x, ·)

− [ti, . . . , ti+k−2]U (∗,[k−1])
k

G(k−1,d�(1))(x, ·)
)
,

γi := [ti+1, . . . , ti+k−1]U (∗,[k−1])
k

u∗k − [ti, . . . , ti+k−2]U (∗,[k−1])
k

u∗k.

It is trivial to see that U
(∗,[k−1])
k = U

((1),∗)
k , which implies

ωi =
(−1)k−1

γi

(
[ti+1, . . . , ti+k−1]U ((1),∗)

k

G(k−1,d�(1))(x, ·)

− [ti, . . . , ti+k−2]U ((1),∗)
k

G(k−1,d�(1))(x, ·)
)
,

and
γi := [ti+1, . . . , ti+k−1]U ((1),∗)

k

u∗k − [ti, . . . , ti+k−2]U ((1),∗)
k

u∗k. (2.30)

2.4. CHEBYSHEV B-SPLINES 25

As in (2.29), we conclude that

ωi =
T k−1

(i,d�(1),T)

γi

,

so it only remains to prove that γi = Ck−1
(i,d�,T). The recurrence for divided differences

(2.15) in S(k, dσ̄((1),∗,[k])), with dσ̄((1),∗,[k]) = (dσk, . . . , dσ3, dσ̄
∗
k)

T (see Remark 2.3),
applied to u∗k gives

[ti, . . . , ti+k−1]Ū ((1),∗,[k])
k

u∗k =
[ti+1, . . . , ti+k−1]U ((1),∗)

k

u∗k − [ti, . . . , ti+k−2]U ((1),∗)
k

u∗k

[ti+1, . . . , ti+k−1]U ((1),∗)
k

ū∗k − [ti, . . . , ti+k−2]U ((1),∗)
k

ū∗k
,

(2.31)
where ū∗k is the element from the extended reduced system (see Theorem 2.1):

ū∗k(y) =

∫ y

a

dσk(τk)

∫ τk

a

· · ·

∫ τ4

a

dσ3(τ3)

∫ τ3

a

dσ̄∗
k(τ2).

From equations (2.30) and (2.31) follows:

γi = [ti, . . . , ti+k−1]Ū ((1),∗,[k])
k

u∗k ·
(
[ti+1, . . . , ti+k−1]U ((1),∗)

k

ū∗k − [ti, . . . , ti+k−2]U ((1),∗)
k

ū∗k

)
.

By using the Peano representation of Chebyshev divided differences (Theorem 2.14),
we conclude that

[ti, . . . , ti+k−1]Ū ((1),∗,[k])
k

u∗k =

∫ ti+k−1

ti

Qk−1
(i,d�̄((1),∗,[k]),T)

(τ2)L(k−1,d�̄((1),∗,[k]))u
∗
k(τ2) dσ̄

∗
k(τ2),

(2.32)
and by trivial calculation we get

L(k−1,d�̄((1),∗,[k]))u
∗
k(y) = D̄∗

k−1

∫ y

a

dσ2(τ2),

with

D̄∗
k−1f(y) := lim

δ→0+

f(y) − f(y − δ)

dσ̄∗
k(y) − dσ̄∗

k(y − δ)

for f ∈ S(k, dσ∗,T). If we choose dσ̄∗
k = dσ2, then dσ∗ = dσ̄((1),∗,[k]), and once

more, the Sylvester identity gives

ak−1
(i,d�∗,T) =

(
[ti+1, . . . , ti+k−1]U ((1),∗)

k

ū∗k − [ti, . . . , ti+k−2]U ((1),∗)
k

ū∗k

)
,

where ak−1
(i,d�∗,T) is the normalizing constant from Definition 2.8. Also

L(k−1,d�̄((1),∗,[k]))u
∗
k(y) = L(k−1,d�∗)u

∗
k(y) = 1,

then from (2.32) follows

[ti, . . . , ti+k−1]Ū ((1),∗,[k])
k

u∗k =

∫ ti+k−1

ti

Qk−1
(i,d�∗,T)(τ2) dσ2(τ2).

With this we accomplished (2.27). If some mi = k− 1 or mi = k, then in (2.27) we
just have the right continuity. �

26 CHAPTER 2. CHEBYSHEV SPLINES

Corollary 2.1 Let f ∈ S(k, dσ,T), f(x) =
∑n

j=1 ajT
k
(j,d�,T)(x) for x ∈ [a, b], with

S(k, dσ) and m the multiplicity vector as in Theorem 2.17. Then

L(1,d�)f(x) =
n∑

j=2

ājT
k−1
(j,d�(1),T)

(x), (2.33)

where

āj =
aj − aj−1

Ck−1
(j,d�,T)

(2.34)

for j = 2, . . . , n.

Proof: When we apply L(1,d�) on f(x), use Theorem 2.17, and the fact that for
x ∈ [a, b], T k−1

(1,d�(1))
(x) = T k−1

(n+1,d�(1))
(x) = 0, we get (2.33) with coefficients (2.34).

�

Corollary 2.2 Let the CCC–space S(k, dσ) and the multiplicity vector m be as in
Theorem 2.17, and x ∈ [a, b]. Then

T k
(i,d�,T)(x) − T k

(i,d�,T)(ti) =

∫ x

ti
T k−1

(i,d�(1),T)
(τ2)dσ2(τ2)

Ck−1
(i,d�,T)

−

∫ x

ti+1
T k−1

(i+1,d�(1),T)
(τ2)dσ2(τ2)

Ck−1
(i+1,d�,T)

.

(2.35)

Proof: If the multiplicity of every knot contained in the support [ti, ti+k] of the
B-spline T k

(i,d�,T) is less then k, or the multiplicity of the ti+k is equal to k, then by

integrating the derivative formula (2.27) from ti to x, we get our assertion (2.35).
In this case T k

(i,d�,T)(ti) = 0. When the multiplicity of ti is equal to k, the derivative

formula (2.27) gives

L(1,d�)T
k
(i,d�,T)(x) = −

T k−1
(i+1,d�(1),T)

(x)

Ck−1
(i+1,d�,T)

.

By integrating this equation, together with T k
(i,d�,T)(ti) = 1, we get

T k
(i,d�,T)(x) − 1 = −

∫ x

ti+1
T k−1

(i+1,d�(1),T)
(τ2) dσ2(τ2)

Ck−1
(i+1,d�,T)

,

what is again equal to the assertion (2.35), upon which the deBoor’s maxim is
applied: anything multiplied by zero is zero, in fact, in our case, zero divided by
anything is zero. �

Corollary 2.3 Let the CCC–space S(k, dσ) and the multiplicity vector m be as in
Theorem 2.17, ti < ti+k−1 and x ∈ [a, b]. Then

∫ x

a

T k−1
(i,d�(1),T)

(τ2) dσ2(τ2) = Ck−1
(i,d�,T)

n∑

j=i

T k
(j,d�,T)(x). (2.36)

2.5. INTEGRALS OF B-SPLINES 27

Proof: For x ∈ [ti, ti+k−1] by consecutive use of Corollary 2.2 on T k
(j,d�,T), j =

i, . . . , i+ k− 2, and because T k
(j,d�,T)(x) = 0, j = i+ k− 1, . . . , n for x ∈ [ti, ti+k−1],

we have

∫ x

a

T k−1
(i,d�(1),T)

(τ2) dσ2(τ2) = Ck−1
(i,d�,T)

i+k−2∑

j=i

(
T k

(j,d�,T)(x) − T k
(j,d�,T)(ti)

)
,

but as {tj}
i+k−1
j=i contains only the points of multiplicity less than k, because of the

assumption ti < ti+k−1, the previous equation gives (2.36). For x < ti, both sides
of the equation (2.36) are equal to zero, while for x > ti+k−1

n∑

j=i

T k
(j,d�,T)(x) = 1,

so the assertion holds for this case also. �

2.5 Integrals of B-splines

Theorem 2.16 assures that B-splines are continuous functions of their knots. To
prove the same for the integrals of B-splines, we need a theorem from the measure
theory:

Theorem 2.18 (Lebesgue dominated convergence theorem) If (fl) is a se-
quence of measurable functions on a measure space (X,M, µ) such that liml fl = f

(a.e.), and if |fl| 6 g for all l, where g is integrable on X, then

lim
l

∫

X

fl dµ =

∫

X

f dµ.

Proof: See [4]. �

Theorem 2.19 Let
Ck−1

i,d�(ti, . . . , ti+k−1) := Ck−1
(i,d�,T),

for i = 2, . . . , n. If ti,δ, . . . , ti+k−1,δ is a sequence of points satisfying tj,δ → t+j ,
j = i, . . . , i+ k − 1, when δ → 0, then

Ck−1
i,d�(ti,δ, . . . , ti+k−1,δ) −→ Ck−1

i,d�(ti, . . . , ti+k−1)

when δ → 0.

Proof: The proof is a direct consequence of Theorem 2.18. First, let us fix i =
2, . . . , n, let a 6 tli 6 · · · 6 tli+k−1 6 b and a 6 ti 6 · · · 6 ti+k−1 6 b such that

lim
l

(tli, . . . , t
l
i+k−1) = (t+i , . . . , t

+
i+k−1).

28 CHAPTER 2. CHEBYSHEV SPLINES

We have to check that
∫ ti+k−1

ti

Tk−1
i,d�(1)(τ2; t

l
i, . . . , t

l
i+k−1) dσ2(τ2) →

∫ ti+k−1

ti

Tk−1
i,d�(1)(τ2; ti, . . . , ti+k−1) dσ2(τ2),

(2.37)
when (tli, . . . , t

l
i+k−1) → (t+i , . . . , t

+
i+k−1) for Tk−1

i,d�(1) defined in (2.26), because

Ck−1
i,d�(tli, . . . , t

l
i+k−1) =

∫ ti+k−1

ti

Tk−1
i,d�(1)(τ2; t

l
i, . . . , t

l
i+k−1) dσ2(τ2).

Let
fl(x) := Tk−1

i,d�(1)(x; t
l
i, . . . , t

l
i+k−1)

for x ∈ [a, b]. We have to check if the conditions of Theorem 2.18 are fulfilled.
Because of Theorem 2.13 we have

|fl(x)| 6 1 =: g(x)

for x ∈ [a, b] and each l, and from Theorem 2.16 we get

lim
l
fl(x) = f(x) := Tk−1

i,d�(1)(x; ti, . . . , ti+k−1),

for each x ∈ [a, b], so (2.37) holds. �

Here, again, we apply the same arguments for using the notation Ck−1
i,d� as in Remark

2.6.

Remark 2.7 It can be easily shown that Tk−1
i,d�(1)(x; ti, . . . , ti+k−1) and Ck−1

i,d�(ti, . . . ,

ti+k−1) are continuous functions of their knots, if each σj is a continuous function
on [a, b] for j = 2, . . . , k.

Because of Theorem 2.19 and Remark 2.7, it will be sufficient to calculate only
the integrals of B-splines associated with the extended partition with all interior
knots of multiplicity one for which we will usually have explicit formulæ. For all
other cases of extended partitions, we just take the limits of the knots.

Chapter 3

Knot insertion

There are a lot of algorithms for calculating with polynomial splines based on knot
insertion [8]. Our attempt is to generalize some of these algorithms to a general class
of Chebyshev splines. In this chapter we introduce the knot insertion for Chebyshev
splines, and algorithms based on it [34, 36]. This topic has already been elaborated
in [21, 22, 23, 27, 24], but from a different point of view. Although geometrical
approach they offer is very nice and more theoretical, practical realization, as well
as numerical stability, are not discussed. As we will show in this chapter for the
general case, and for the special cases of CCC–systems in chapters 4, 5, 6 and 7,
we manage to avoid the problems with numerical stability in our algorithms.

In the previous chapter we have introduced a very important equation: the
derivative formula (2.27), so the first idea that occurs is to build an algorithm
which calculates a spline by recursive use of integral version of the derivative formula
(2.35). It is very easy to see that (2.35) can lead to an error caused by catastrophic
cancellation for some values of x. To confirm this assertion, we use such an algorithm
to calculate the most simplest splines: the polynomial splines.

Example 3.1 Let us observe Bezier splines of order k = 8, with extended partition
T where t1 = · · · = t8 = 0 and t9 = · · · = t16 = 1. The integrals in (2.35)
are calculated by Gauss–Legendre quadrature formula. The Table 3.1 shows relative
errors of the values of B-splines T 8

(i,d�,T)(x) for i = 1, . . . , 8, at the points x given
at the top of the table. B-splines are calculated with the recursive use of derivative
formula, and compared to the deBoor algorithm. According to the table, the biggest
error is for T 8

(1,d�,T)(x) when x approaches 1.

3.1 Knot insertion matrices

Definition 3.1 Let ∆ and ∆̃ be arbitrary partitions of [a, b], m and m̃ their mul-

tiplicity vectors, T := T (∆,m) and T̃ := T (e∆,fm) associated extended partitions, such

that S(k, dσ,T) ⊂ S(k, dσ, T̃). Let T = {tj}
n+k
j=1 and T̃ = {t̃i}

m+k
i=1 , with n 6 m,

and let T k
(j,d�,T), T

k

(i,d�,eT)
be B-splines in S(k, dσ,T), S(k, dσ, T̃) respectively. If

29

30 CHAPTER 3. KNOT INSERTION

i\x 0.75000000 0.87500000 0.93750000 0.96875000 0.98437500

1 -0.7731D-11 0.3783D-08 -0.2012D-06 -0.1621D-04 0.2808D-02
2 0.1516D-12 -0.3409D-09 0.1490D-08 -0.3076D-06 -0.3681D-04
3 0.1853D-12 0.2495D-10 0.3311D-10 0.1323D-07 0.1640D-06
4 -0.1684D-13 -0.7127D-12 0.8389D-11 -0.7683D-10 0.4101D-08
5 -0.7860D-14 -0.1358D-12 -0.1119D-11 -0.9500D-11 -0.1193D-09
6 0.5347D-14 0.3463D-13 0.9157D-13 0.5219D-12 0.2009D-11
7 -0.2673D-14 -0.3393D-14 -0.1682D-14 -0.8596D-14 -0.3905D-14
8 -0.2287D-14 -0.2544D-14 -0.2616D-14 -0.1941D-14 -0.2603D-14

i\x 0.99218750 0.99609375 0.99804688 0.99902344

1 0.1250D+00 0.4300D+02 -0.1791D+04 -0.2294D+06
2 -0.2215D-02 -0.9020D-01 -0.1957D-02 0.2893D+03
3 0.1098D-04 -0.6664D-04 -0.4245D-02 -0.5551D+00
4 0.2899D-07 0.1484D-05 0.2532D-04 0.7497D-03
5 -0.9730D-09 -0.7426D-08 -0.7057D-07 -0.7397D-06
6 0.9616D-11 0.2937D-10 0.1420D-09 0.6090D-09
7 -0.7448D-14 -0.4001D-13 -0.8627D-13 -0.1197D-12
8 -0.2815D-14 -0.1940D-14 -0.1913D-14 -0.2236D-14

Table 3.1: Relative error of Bezier splines calculated with recursive use of the
derivative formula

f ∈ S(k, dσ,T) is given with

f(x) =
n∑

j=1

cjT
k
(j,d�,T)(x) =

m∑

i=1

diT
k

(i,d�,eT)
(x),

then m× n matrix Γk

(d�,T ,eT)
= [γk

i,j]
m,n
i=1,j=1, such that

d = Γk

(d�,T ,eT)
c,

with c := (c1, . . . , cn)T and d := (d1, . . . , dm)T, is called the knot insertion matrix of

order k from T to T̃ .

The next theorem is an alternative definition of the knot insertion matrix:

Theorem 3.1 Let S(k, dσ,T) ⊂ S(k, dσ, T̃) as in Definition 3.1, and let T k
(j,d�,T),

T k

(i,d�,eT)
be B-splines from these spline spaces respectively. Then

T k
(j,d�,T)(x) =

m∑

i=1

γk
i,jT

k

(i,d�,eT)
(x), j = 1, . . . , n. (3.1)

Proof: Follows directly from Definition 3.1 and the linear independence of B-splines
(see Theorem 2.12). �

3.2. SINGLE KNOT INSERTION MATRICES 31

Theorem 3.2 The knot insertion matrix is unique.

Proof: The uniqueness follows from Theorem 3.1 and the linear independence of
B-splines. �

For each row of knot insertion matrix we have:

Theorem 3.3 The elements of knot insertion matrix Γk

(d�,T ,eT)
satisfy:

n∑

j=1

γk
i,j = 1, i = 1, . . .m.

Proof: From Definition 3.1 we have

di =

n∑

j=1

cjγ
k
i,j, i = 1, . . .m,

and the rest follows from partition of unity (2.25).

3.2 Single knot insertion matrices

Our goal is to calculate explicitly the nontrivial elements of the knot insertion
matrix. We start by considering the knot insertion matrices for inserting just one
knot.

Let T = T (∆,m) = {tj}
n+k
j=1 be the extended partition as defined in (2.22), and

let t̄ ∈ (ti, ti+1) ⊂ [a, b]. Let us denote T̄ := T ∪ {t̄} = {t̄j}
n+k+1
j=1 with

t̄j = tj for j = 1, . . . , i, t̄i+1 = t̄, t̄j = tj−1 for j = i+ 2, . . . , n + k + 1,

and let S(k, dσ,T) and S(k, dσ, T̄) be the spline spaces associated with T and T̄ .
Then, we will denote the B-splines in these spline spaces, as well as in the reduced
spaces, with:

T k−l

j,d�(l) := T k−l

(j,d�(l),T)
, T̄ k−l

j,d�(l) := T k−l

(j,d�(l),T̄)
,

for l = 0, . . . , k − 1, and their integrals:

Ck−l(j) := Ck−l

(j,d�(l−1),T)
:=

∫ tj+k−l

tj

T k−l

j,d�(l)(τl+1) dσl+1(τl+1), (3.2)

C̄k−l(j) := Ck−l

(j,d�(l−1),T̄)
:=

∫ t̄j+k−l

t̄j

T̄ k−l

j,d�(l)(τl+1) dσl+1(τl+1), (3.3)

for l = 1, . . . , k − 1. We will also use new notation for the single knot insertion
matrix Γl

(d�(k−l),T ,t̄)
:= Γl

(d�(k−l),T ,T̄)
and for the multiplicity vector

m
(1) := (1, . . . , 1). (3.4)

32 CHAPTER 3. KNOT INSERTION

Theorem 3.4 Let T := T (∆,m(1)) = {tj}
n+k
j=1 be an extended partition of [a, b] with

all interior knots of multiplicity one. Let Uk = {1, u2, . . . , uk} be the CCC–system
associated with the measure vector dσ := (dσ2, . . . , dσk)

T. For t̄ ∈ (a, b), and i

such that t̄ ∈ (ti, ti+1), let T̄ = T ∪ {t̄}. Then the nontrivial elements of the knot
insertion matrix Γl

(d�(k−l),T ,t̄)
= [γl

i,j] of order l from T to T̄ are:

γ1
j,j = 1 for j ≤ i,

γ1
j,j−1 = 1 for j ≥ i+ 1,

for l = 1, and

γl
j,j = 1 for j ≤ i− l + 1,

γl
j,j = γl−1

j,j

C̄l−1(j)
Cl−1(j)

for i− l + 2 ≤ j ≤ i,

γl
j,j−1 = γl−1

j+1,j

C̄l−1(j + 1)
Cl−1(j)

for i− l + 2 ≤ j ≤ i,

γl
j,j−1 = 1 for j ≥ i+ 1,

(3.5)

for l = 2, . . . , k, where Cl−1(j) and C̄l−1(j), for l = 2, . . . , k, are defined as in (3.2)
and (3.3). B-splines T l−1

j,d�(k−l+1) and T̄ l−1
j,d�(k−l+1) are associated with the extended

partitions T and T̄ , respectively.

Proof: We will prove Theorem 3.4 by induction and Theorem 3.1. The knot
insertion matrix of order 1, Γ1

(d�(k−1),T ,T̄)
, is trivial. Let us assume that the theorem

holds for l − 1. By (3.1), let us define

f(x) := T l
j,d�(k−l)(x),

g(x) := γl−1
j,j

C̄l−1(j)

Cl−1(j)
T̄ l

j,d�(k−l)(x) + γl−1
j+2,j+1

C̄l−1(j + 2)

Cl−1(j + 1)
T̄ l

j+1,d�(k−l)(x).

We need to prove that f = g, because from that we directly get (3.5). We will do
that by using the fact that two splines are equal if and only if they have equal gener-
alized derivatives and the same value at the same point, what follows from Cheby-
shev Newton–Leibniz formula (2.4). Obviously, f(tj) = g(tj), then by derivative
formula (2.27) and the use of Γl−1

(d�(k−l+1),T ,t̄)
, we have

L(1,d�(k−l))f =
T l−1

j,d�(k−l+1)

Cl−1(j)
−
T l−1

j+1,d�(k−l+1)

Cl−1(j + 1)

=
1

Cl−1(j)

(
γl−1

j,j T̄
l−1
j,d�(k−l+1) + γl−1

j+1,jT̄
l−1
j+1,d�(k−l+1)

)

−
1

Cl−1(j + 1)

(
γl−1

j+1,j+1T̄
l−1
j+1,d�(k−l+1) + γl−1

j+2,j+1T̄
l−1
j+2,d�(k−l+1)

)

=
γl−1

j,j

Cl−1(j)
T̄ l−1

j,d�(k−l+1) +

(
γl−1

j+1,j

Cl−1(j)
−

γl−1
j+1,j+1

Cl−1(j + 1)

)
T̄ l−1

j+1,d�(k−l+1)

3.2. SINGLE KNOT INSERTION MATRICES 33

−
γl−1

j+2,j+1

Cl−1(j + 1)
T̄ l−1

j+2,d�(k−l+1),

L(1,d�(k−l))g = γl−1
j,j

C̄l−1(j)

Cl−1(j)

(
T̄ l−1

j,d�(k−l+1)

C̄l−1(j)
−
T̄ l−1

j+1,d�(k−l+1)

C̄l−1(j + 1)

)

+γl−1
j+2,j+1

C̄l−1(j + 2)

Cl−1(j + 1)

(
T̄ l−1

j+1,d�(k−l+1)

C̄l−1(j + 1)
−
T̄ l−1

j+2,d�(k−l+1)

C̄l−1(j + 2)

)

=
γl−1

j,j

Cl−1(j)
T̄ l−1

j,d�(k−l+1) +
1

C̄l−1(j + 1)

(
−
γl−1

j,j C̄l−1(j)

Cl−1(j)

+
γl−1

j+2,j+1C̄l−1(j + 2)

Cl−1(j + 1)

)
T̄ l−1

j+1,d�(k−l+1) −
γl−1

j+2,j+1

Cl−1(j + 1)
T̄ l−1

j+2,d�(k−l+1).

If we integrate equation (3.1) and apply it to the knot insertion matrix
Γl−1

(d�(k−l+1),T ,t̄)
, we get

Cl−1(r) = γl−1
r,r C̄l−1(r) + γl−1

r+1,rC̄l−1(r + 1), r = j, j + 1,

and therefore L(1,d�(k−l))f = L(1,d�(k−l))g. �

Corollary 3.1 Let T = T (∆,m) be an extended partition of [a, b] associated with an

arbitrary multiplicity vector m = (m1, . . . , ml), t̄ ∈ (xi, xi+1), and let ∆̃ = {yj}
M+1
j=0

where M :=
∑l

j=1mj, and

y0 = x0,

ysj−1+1 = xj, s0 := 0, sj :=

j∑

r=1

mr,

ysj−1+1 < ysj−1+2 < · · · < ysj
< ysj+1,

ysi
< t̄,

yM+1 = xl+1,

for j = 1, . . . , l. If T̃ := T (e∆,m(1)), then for l = 1, . . . , k

Γl

(d�(k−l),eT ,t̄)
−→ Γl

(d�(k−l),T ,t̄),

when ysj−1+r → x+
j for j = 1, . . . , l and r = 2, . . . , mi.

Proof: This Corollary is a direct consequence of the application of Theorem 2.19
on Theorem 3.4. �

Remark 3.1 According to Remark 2.7, single knot insertion matrices are con-
tinuous functions of (t1, . . . , tn+k) if each σj is continuous function on [a, b] for
j = 2, . . . , k.

34 CHAPTER 3. KNOT INSERTION

Corollary 3.2 For T as in Corollary 3.1 and l = 1, . . . , k, it is valid that

lim
t̄→t+i

Γl
(d�(k−l),T ,t̄) = Γl

(d�(k−l),T ,ti)
.

Proof: Again, Theorem 2.19 applied to Γl
(d�(k−l),T ,t̄)

in Corollary 3.1 proves the

assertion of Corollary 3.2. �

Corollaries 3.1, 3.2 and Remark 3.1 show how to calculate the single knot inser-
tion matrix on arbitrary extended partitions.

3.3 Oslo type algorithms

3.3.1 General knot insertion matrices

Next, we are interested in the more general knot insertion matrices, when more
than one knot is inserted. Let, again, S(k, dσ,T) ⊂ S(k, dσ, T̃), with T = {tj}

n+k
j=1

and T̃ = {t̃l}
m+k
l=1 , where m = n+ r. Let

T = T
[0] ⊂ T

[1] ⊂ · · · ⊂ T
[r−1] ⊂ T

[r] = T̃ ,

where T
[l] = T

[l−1] ∪ {t̄l} for some t̄l ∈ T̃ . Then, also,

S(k, dσ,T) ⊂ S(k, dσ,T [1]) ⊂ · · · ⊂ S(k, dσ,T [r−1]) ⊂ S(k, dσ, T̃),

and we can observe the algorithm in r steps, where in the ith step we insert one
knot, forming new extended partition T

[i], which stops when we finally get T̃ . Let
for f ∈ S(k, dσ,T) and T

k,[l]
j,d� := T k

(j,d�,T [l])

f =

n∑

j=1

c
[0]
j T

k,[0]
j,d� =

n+1∑

j=1

c
[1]
j T

k,[1]
j,d� = · · · =

m∑

j=1

c
[r]
j T

k,[r]
j,d� .

Then for c[l] := (c
[l]
1 , . . . , c

[l]
n+l)

T and Γk

(d�,T [l−1],T [l])
= [γ

k,[l]
i,j]n+l,n+l−1

i=1,j=1 the results in the

previous section imply that

c[l] = Γk

(d�,T [l−1],T [l])
c[l−1]. (3.6)

Applying (3.6) for l = 1, . . . , r we obtain

c[r] = Γk

(d�,T [r−1],T [r])
Γk

(d�,T [r−2],T [r−1])
· · ·Γk

(d�,T [0],T [1])
c[0].

The uniqueness of the knot insertion matrices (see Theorem 3.2) finally implies
that:

Γk

(d�,T ,eT)
= Γk

(d�,T [r−1],T [r])
Γk

(d�,T [r−2],T [r−1])
· · ·Γk

(d�,T [0],T [1])
. (3.7)

3.3. OSLO TYPE ALGORITHMS 35

Theorem 3.5 The elements of the knot insertion matrix Γk

(d�,T ,eT)
= [γk

i,j]
m,n
i=1,j=1

satisfy
γk

i,j > 0 i = 1, . . . , m, j = 1, . . . , n.

Proof: From Theorem 3.4 and accompanying two Corollaries, every single knot
insertion matrix has nonnegative elements, and from (3.7) the same is true for
every general knot insertion matrix. �

Remark 3.2 Theorem 3.5 and Theorem 3.3 say that elements of a knot insertion
matrix in each row make a partition of unity, similarly to B-splines (2.25).

3.3.2 Recurrence for elements of knot insertion matrices

In the general case, we can also find a different algorithm from the one in the
previous subsection, based on multiplying single knot insertion matrices (3.7). Let,

again S(k, dσ,T) ⊂ S(k, dσ, T̃), and let

T k−l

j,d�(l) := T k−l

(j,d�(l),T)
, T̃ k−l

j,d�(l) := T k−l

(j,d�(l),eT)
,

for l = 0, . . . , k − 1 be the B-splines associated with T and T̃ ,

C̃k−l(j) := Ck−l

(j,d�(l−1),eT)
:=

∫ t̃j+k−l

t̃j

T̃ k−l

j,d�(l)(τl+1) dσl+1(τl+1).

Then, according to Theorem 3.1

T l
i,d�(k−l)(x) =

∑

j

γl
j,iT̃

l
j,d�(k−l)(x), (3.8)

for l = 1, . . . , k and x ∈ [a, b], where Γl

(d�(k−l),T ,eT)
= [γl

i,j].

Theorem 3.6 Let Uk = {1, u2, . . . , uk} be the CCC–system associated with the

measure vector dσ := (dσ2, . . . , dσk)
T. Let T k−l

j,d�(l), T̃
k−l

j,d�(l) be the B-splines and

Ck−l(j), C̃k−l(j) the integrals of B-splines associated with extended partitions T , T̃ ,

respectively, where S(k, dσ,T) ⊂ S(k, dσ, T̃). Then

γl
j,i = γl

j−1,i + C̃l−1(j)

(
γl−1

j,i

Cl−1(i)
−

γl−1
j,i+1

Cl−1(i+ 1)

)
, (3.9)

and

γl
j,i =

∑

r6j

γl−1
r,i C̃l−1(r)

Cl−1(i)
−

∑

r6j

γl−1
r,i+1C̃l−1(r)

Cl−1(i+ 1)
, (3.10)

with Γl

(d�(k−l),T ,eT)
= [γl

i,j] for l = 2, . . . , k.

36 CHAPTER 3. KNOT INSERTION

Proof: The proof is based on (3.8), the derivative formula (2.27) and induction.
The knot insertion matrix Γ1

(d�(k−1),T ,eT)
is trivial to calculate since

γ1
i,j =

{
1 if t̃i < t̃i+1 and [t̃i, t̃i+1) ⊂ [tj , tj+1),
0 else.

By using the first general derivative on (3.8), we get

T l−1
i,d�(k−l+1)(x)

Cl−1(i)
−
T l−1

i+1,d�(k−l+1)(x)

Cl−1(i+ 1)
=
∑

j

γl
j,i

(
T̃ l−1

j,d�(k−l+1)(x)

C̃l−1(j)
−
T̃ l−1

j+1,d�(k−l+1)(x)

C̃l−1(j + 1)

)
.

(3.11)
After applying the induction assumption, i.e. Γl−1

(d�(k−l+1),T ,eT)
, the left hand side of

(3.11) becomes

∑

j

(
1

Cl−1(i)
γl−1

j,i −
1

Cl−1(i+ 1)
γl−1

j,i+1

)
T̃ l−1

j,d�(k−l+1)(x),

while the right hand side of (3.11), after rearranging, equals

∑

j

1

C̃l−1(j)

(
γl

j,i − γl
j−1,i

)
T̃ l−1

j,d�(k−l+1)(x).

Because of the linear independence of the B-splines, we get (3.9), and just by
iterating (3.9), we get (3.10). �

The recursive formula (3.10) for γl
j,i is like a discrete integral version of derivative

formula (2.35) for B-splines. As it is shown in this chapter, γl
j,i has some analogous

properties as the discrete polynomial splines [6, 39, 8]. One of this properties is the
Oslo type algorithm from Theorem 3.6 which is the generalized Oslo algorithm for
polynomial splines. The recurrence (3.9) for polynomial splines equals

γl
j,i = γl

j−1,i + (t̃j+l−1 − t̃j)

(
γl−1

j,i

ti+l−1 − ti
−

γl−1
j,i+1

ti+l − ti+1

)
,

what is a recurrence which follows from the column oriented approach to the Oslo
algorithm (see the equation (4.6) on the page 114 in [8]).

Although (3.9) and (3.10), generally, do not have to be numerically stable, there

are special cases: for k = 4, l = 3, 4, T := T (∆,m(1)) and T̃ := T (∆,m(2)) with

m
(2) = (2, . . . , 2), (3.12)

· · · ti−1 ti ti+1 ti+2 · · ·
p p p p

· · · t̃r−3 t̃r−1 t̃r+1 t̃r+3 · · ·
· · · t̃r−2 t̃r t̃r+2 t̃r+4 · · ·

,

where (3.10) can be rearranged to avoid the subtractions.
The following lemma and theorem connect Chebyshev B-splines of orders 3 and

4 with the less smooth ones, which are, usually, easier to calculate.

3.3. OSLO TYPE ALGORITHMS 37

Lemma 3.1 Let T 3
i,d�(1) ∈ S(3, dσ(1),T) be the Chebyshev 3rd order B-spline associ-

ated with the multiplicity vector m
(1) = (1, . . . , 1)T, and let us assume that T̃ 3

i,d�(1) ∈

S(3, dσ(1), T̃) are B-splines associated with multiplicity vector m
(2) = (2, . . . , 2) on

the same knot sequence. If T = {tj}
n+4
j=1 and T̃ = {t̃j}

2n
j=1, and r is an index such

that ti = t̃r < t̃r+1, then for i = 2, . . . , n:

T 3
i,d�(1) =

C̃2(r)

C2(i)
T̃ 3

r,d�(1) + T̃ 3
r+1,d�(1) +

C̃2(r + 3)

C2(i+ 1)
T̃ 3

r+2,d�(1).

Proof: In this case, the elements of the knot insertion matrix Γ2
(d�(2),T ,eT)

can simply

be calculated by

γ2
j,i =

{
1 for t̃j−1 = t̃j = ti or t̃j = t̃j+1 = ti+1,

0 else,

what implies that

C2(i)= γ2
r,iC̃2(r) + γ2

r+1,iC̃2(r + 1) = C̃2(r) + C̃2(r + 1), (3.13)

C2(i+ 1)= γ2
r+2,i+1C̃2(r + 2) + γ2

r+3,i+1C̃2(r + 3)

= C̃2(r + 2) + C̃2(r + 3). (3.14)

The equations (3.13) and (3.14), together with the recurrence (3.10) applied to
k = 4, l = 3 and m = m

(2), give

γ3
r,i =

γ2
r,iC̃2(r)

C2(i)
=
C̃2(r)

C2(i)
,

γ3
r+1,i =

γ2
r,iC̃2(r) + γ2

r+1,iC̃2(r + 1)

C2(i)
= 1,

γ3
r+2,i =

γ2
r,iC̃2(r) + γ2

r+1,iC̃2(r + 1)

C2(i)
−
γ2

r+2,i+1C̃2(r + 2)

C2(i+ 1)
=

=1 −
γ2

r+2,i+1C̃2(r + 2)

C2(i+ 1)
=
C̃2(r + 3)

C2(i+ 1)
. �

Theorem 3.7 Let T 4
i,d� ∈ S(4, dσ,T), T̃ 4

i,d� ∈ S(4, dσ, T̃) be associated with the

multiplicity vectors m
(1), m

(2) as in Lemma 3.1. Then there exist positive γ4
j,i, such

that

T 4
i,d� =

r+3∑

j=r

γ4
j,iT̃

4
j,d�,

where r = ri satisfies

ti = t̃ri
< t̃ri+1,

38 CHAPTER 3. KNOT INSERTION

and γ4
j,i, j = r, . . . , r + 3 are determined by the formulæ:

γ4
r,i =

γ3
r,iC̃3(r)

C3(i)
,

γ4
r+1,i =

γ3
r,iC̃3(r) + γ3

r+1,iC̃3(r + 1)

C3(i)
,

γ4
r+2,i =

γ3
r+3,i+1C̃3(r + 3) + γ3

r+4,i+1C̃3(r + 4)

C3(i+ 1)
,

γ4
r+3,i =

γ3
r+4,i+1C̃3(r + 4)

C3(i+ 1)
.

Proof: Again, (3.10) for k = 4, l = 4 and m = m
(2) gives

γ4
r,i =

γ3
r,iC̃3(r)

C3(i)
,

γ4
r+1,i =

γ3
r,iC̃3(r) + γ3

r+1,iC̃3(r + 1)

C3(i)
,

γ4
r+2,i =

γ3
r,iC̃3(r) + γ3

r+1,iC̃3(r + 1) + γ3
r+2,iC̃3(r + 2)

C3(i)
−
γ3

r+2,i+1C̃3(r + 2)

C3(i+ 1)

= 1 −
γ3

r+2,i+1C̃3(r + 2)

C3(i+ 1)
=
γ3

r+3,i+1C̃3(r + 3) + γ3
r+4,i+1C̃3(r + 4)

C3(i+ 1)
,

γ4
r+3,i =

γ3
r,iC̃3(r) + γ3

r+1,iC̃3(r + 1) + γ3
r+2,iC̃3(r + 2)

C3(i)

−
γ3

r+2,i+1C̃3(r + 2)γ3
r+3,i+1C̃3(r + 3)

C3(i+ 1)

= 1 −
γ3

r+2,i+1C̃3(r + 2)γ3
r+3,i+1C̃3(r + 3)

C3(i+ 1)
=
γ3

r+4,i+1C̃3(r + 4)

C3(i+ 1)
,

with the help of Γ3
(d�(1),T ,eT)

and

C3(i) = γ3
r,iC̃3(r) + γ3

r+1,iC̃3(r + 1) + γ3
r+2,iC̃3(r + 2),

C3(i+ 1) = γ3
r+2,i+1C̃3(r + 2) + γ3

r+3,i+1C̃3(r + 3) + γ3
r+4,i+1C̃3(r + 4). �

3.4 Generalized deBoor algorithm

For calculating with polynomial splines, an alternative way to the deBoor–Cox
recurrence is the well known deBoor algorithm. It can be shown that the deBoor–
Cox type recurrence exists only for polynomial, trigonometric and hyperbolic splines
[40], but on the other hand, the deBoor algorithm can be generalized to general

3.4. GENERALIZED DEBOOR ALGORITHM 39

Chebyshev splines. The main idea, as in the polynomial case, is to insert the point
at which we want to calculate the value until maximum multiplicity, when the value
of the spline is equal to a single deBoor point. As in Section 3.2, we will observe
the extended partition with all interior knots of multiplicity one, and the general
case can be deduced from Theorem 2.19 and Remark 2.7.

3.4.1 Splines of general order

Let, again, T = {tj}
n+k
j=1 be an extended partition of [a, b] with all interior knots of

multiplicity one. Let S(k, dσ,T) be the spline space of order k associated with T ,
and f ∈ S(k, dσ,T). Then

f(x) =
n∑

j=1

cjT
k
j,d�(x), x ∈ [a, b]

for some deBoor points cj ∈ R. We want to calculate the value f(t̄) for some
t̄ ∈ [a, b], and let index i be such that t̄ ∈ [ti, ti+1) ⊂ [a, b]. First, we assume that
t̄ 6= ti, i.e. ∆̄ := ∆ ∪ {t̄}. Next, let us define

m̄
[l] := (1, . . . , 1︸ ︷︷ ︸

i−k

, l, 1, . . . , 1︸ ︷︷ ︸
n−i

)

and T̄
[l]

:= T (∆̄,m̄[l]) for l = 1, . . . , k − 1. The B-splines associated with these
extended partitions we denote as

T̄
k,[l]
j,d� := T k

(j,d�,T̄ [l]
)
, l = 1, . . . , k − 1.

At lth step of the algorithm, we insert t̄ into T̄
[l−1]

, with T̄
[0]

:= T , for l = 1, . . . , k−
1, and use the fact that

S(k, dσ,T) ⊂ S(k, dσ, T̄
[1]

) ⊂ · · ·⊂ S(k, dσ, T̄
[l−1]

) ⊂ S(k, dσ, T̄
[l]

) ⊂

· · ·⊂ S(k, dσ, T̄
[k−1]

).

Then

f(t̄)=

n∑

j=1

cjT
k
j,d�(t̄) =

n+1∑

j=1

c
[1]
j T̄

k,[1]
j,d� (t̄) = · · · =

n+l∑

j=1

c
[l]
j T̄

k,[l]
j,d�(t̄)

= · · · =

n+k−1∑

j=1

c
[k−1]
j T̄

k,[k−1]
j,d� (t̄) = c

[k−1]
i ,

because T̄
k,[k−1]
i,d� is the only nontrivial B-spline in S(k, dσ, T̄

[k−1]
) at the point t̄.

The deBoor points c
[l]
j are calculated by using the single knot insertion matrices

from Corollary 3.1:

c
[l]
j = γ

k,[l]
j,j−1c

[l−1]
j−1 + γ

k,[l]
j,j c

[l−1]
j , j = i− k + l + 1, . . . , i, (3.15)

40 CHAPTER 3. KNOT INSERTION

for l = 1, . . . , k − 1, where Γk

(d�,T̄ [l−1]
,t̄)

= [γ
k,[l]
i,j]n+l,n+l−1

i=1,j=1 , and c
[0]
j := cj for j =

1, . . . , n. As in the polynomial case, the recurrence (3.15) can be represented with
a triangle scheme, as for order k = 4 on Figure 3.1.

ci−3 ci−2 ci−1 ci

�

J
JJ

J
JJ]

�

J
JJ

J
JJ]

�

J
JJ

J
JJ]

c
[1]
i−2

c
[1]
i−1

c
[1]
i

γ
4,[1]
i−2,i−3 γ

4,[1]
i−2,i−2 γ

4,[1]
i−1,i−2 γ

4,[1]
i−1,i−1 γ

4,[1]
i,i−1 γ

4,[1]
i,i

�

J
JJ

J
JJ]

�

J
JJ

J
JJ]

c
[2]
i−1

c
[2]
i

γ
4,[2]
i−1,i−2 γ

4,[2]
i−1,i−1 γ

4,[2]
i,i−1 γ

4,[2]
i,i

�

J
JJ

J
JJ]

c
[3]
i

γ
4,[3]
i,i−1 γ

4,[3]
i,i

Figure 3.1: The deBoor algorithm for splines of order 4 and t̄ 6= ti

Now, if t̄ = ti, then T = T̄
[1]

, only this time ∆̄ = ∆ and

m̄
[l] := (1, . . . , 1︸ ︷︷ ︸

i−k−1

, l, 1, . . . , 1︸ ︷︷ ︸
n−i

),

for l = 1, . . . , k − 1, so, we actually can skip the first step and shift the indices one
place to the left:

f(ti) =
n∑

j=1

c
[1]
j T̄

k,[1]
j,d� (ti) = · · · =

n+l−1∑

j=1

c
[l]
j T̄

k,[l]
j,d�(ti) = · · ·

=

n+k−2∑

j=1

c
[k−1]
j T̄

k,[k−1]
j,d� (ti) = c

[k−1]
i−1 ,

where

c
[l]
j = γ

k,[l]
j,j−1c

[l−1]
j−1 + γ

k,[l]
j,j c

[l−1]
j , j = i− k + l, . . . , i− 1,

3.4. GENERALIZED DEBOOR ALGORITHM 41

for l = 2, . . . , k − 1 and Γk

(d�,T̄ [l−1]
,t̄)

:= [γ
k,[l]
i,j]n+l−1,n+l−2

i=1,j=1 .

We can proceed in the same way even if t̄ = ti, and ti is of multiplicity mi. In
that case we can skip the first mi steps.

3.4.2 Splines of order 3 and 4

When the order of splines is relatively small, 3 or 4, the generalized deBoor algo-
rithm can be rearranged. If we multiply the single knot insertion matrices (as we
have done in the general case in previous section), some of the integrals of B-splines
cancel.

First, let us introduce some new notation. Let T be an extended partition with

all interior knots of multiplicity one, then, for t̄ ∈ (ti, ti+1), T̄ = {t̄j} := T̄
[1]

,

T̃ = {t̃j} := T̄
[2]

and T̂ = {t̂j} := T̄
[3]

:

· · · t̄i−1 t̄i t̄i+1 t̄i+2 t̄i+3 · · ·

· · · ti−1 ti t̄ ti+1 ti+2 · · ·
p p • p p

· · · t̃i−1 t̃i t̃i+1 t̃i+3 t̃i+4 · · ·
t̃i+2

· · · t̂i−1 t̂i t̂i+1 t̂i+4 t̂i+5 · · ·
t̂i+2

t̂i+3

.

The B-splines associated with these extended partitions are denoted by:

T 4−l

j,d�(l) := T 4−l

(j,d�(l),T)
,

T̄ 4−l

j,d�(l) := T 4−l

(j,d�(l),T̄)
,

T̃ 4−l

j,d�(l) := T 4−l

(j,d�(l),eT)
,

T̂ 4−l

j,d�(l) := T 4−l

(j,d�(l),bT)
,

for l = 0, . . . , 3. We use the same notation for the integrals of these B-splines:

C4−l(j) := C4−l

(j,d�(l−1),T)
:=

∫ tj+k−l

tj

T k−l

j,d�(l)(τl+1) dσl+1(τl+1),

C̄4−l(j) := C4−l

(j,d�(l−1),T̄)
:=

∫ t̄j+k−l

t̄j

T̄ k−l

j,d�(l)(τl+1) dσl+1(τl+1),

C̃4−l(j) := C4−l

(j,d�(l−1),eT)
:=

∫ t̃j+k−l

t̃j

T̃ k−l

j,d�(l)(τl+1) dσl+1(τl+1),

Ĉ4−l(j) := C4−l

(j,d�(l−1),bT)
:=

∫ t̂j+k−l

t̂j

T̂ k−l

j,d�(l)(τl+1) dσl+1(τl+1),

42 CHAPTER 3. KNOT INSERTION

for l = 1, . . . , 3. Then, the algorithm for f ∈ S(3, dσ(1),T) looks like

f(t̄) =

n∑

j=2

cjT
3
j,d�(1)(t̄) =

n+2∑

j=2

c̃jT̃
3
j,d�(1)(t̄) = c̃i,

with

c̃i =
C̄1(i+ 1) C̃2(i+ 1)

C1(i)C2(i− 1)
ci−2 +

(
C̃2(i+ 1) C̄2(i− 1)

C̄2(i)C2(i− 1)
+
C̃2(i) C̄2(i+ 1)

C̄2(i)C2(i)

)
ci−1

+
C̄1(i) C̃2(i)

C1(i)C2(i)
ci. (3.16)

The equation above follows from (3.15) for k = 3, and

Γ2
(d�,T ,t̄)(i− 1 : i+ 1, i− 1 : i) =




i−1 i

i−1 1 0

i
C̄1(i+1)

C1(i)
C̄1(i)
C1(i)

i+1 0 1


, (3.17)

Γ3
(d�,T ,t̄)(i− 2 : i+ 1, i− 2 : i) =




i−2 i−1 i

i−2 1 0 0

i−1 γ2
i,i−1

C̄2(i)
C2(i−1)

C̄2(i−1)
C2(i−1)

0

i 0 C̄2(i+1)
C2(i)

γ2
i,i

C̄2(i)
C2(i)

i+1 0 0 1



, (3.18)

and

Γ3
(d�,T̄ ,t̄)(i− 1 : i+ 1, i− 1 : i) =




i−1 i

i−1 1 0

i

eC2(i+1)

C̄2(i)

eC2(i)

C̄2(i)

i+1 0 1


. (3.19)

For t̄ = ti we just take t̄ → t+i , by Corollary 3.2, wherever it appears in the
algorithm.

For f ∈ S(4, dσ,T) and t̄ ∈ (ti, ti+1), the algorithm becomes:

f(t̄) =

n∑

j=1

cjT
4
j (t̄) =

n+3∑

j=1

ĉjT̂
4
j (t̄) = ĉi,

with

ĉi = ci−3
Ĉ3(i+ 1)C̃2(i+ 1)C̄1(i+ 1)

C1(i)C2(i− 1)C3(i− 2)
+ ci−2

(
Ĉ3(i+ 1)C̃2(i+ 1)C̄3(i− 2)

C̄2(i)C̄3(i− 1)C3(i− 2)

3.4. GENERALIZED DEBOOR ALGORITHM 43

+
Ĉ3(i+ 1)C̃3(i− 1)C̄2(i+ 1)C̄3(i)

C̃3(i)C̄3(i− 1)C2(i)C3(i− 1)
+
Ĉ3(i)C̃3(i+ 1)C̄2(i+ 1)

C̃3(i)C2(i)C3(i− 1)

)

+ ci−1

(
Ĉ3(i+ 1)C̃3(i− 1)C̄2(i− 1)

C̃3(i)C2(i− 1)C3(i− 1)
+
Ĉ3(i)C̃3(i+ 1)C̄2(i− 1)C̄3(i− 1)

C̃3(i)C̄3(i)C2(i− 1)C3(i− 1)

+
Ĉ3(i)C̃2(i)C̄3(i+ 1)

C̄2(i)C̄3(i)C3(i)

)
+ ci

Ĉ3(i)C̃2(i)C̄1(i)

C1(i)C2(i)C3(i)
. (3.20)

This follows from (3.15), (3.17), (3.18), (3.19) and

Γ4 =




i−3 i−2 i−1 i

i−3 1 0 0 0

i−2 γ3
i−1,i−2

C̄3(i−1)
C3(i−2)

C̄3(i−2)
C3(i−2)

0 0

i−1 0 γ3
i,i−1

C̄3(i)
C3(i−1)

γ3
i−1,i−1

C̄3(i−1)
C3(i−1)

0

i 0 0 C̄3(i+1)
C3(i)

γ3
i,i

C̄3(i)
C3(i)

i+1 0 0 0 1




,

with Γ4 := Γ4
(d�,T ,t̄)(i− 3 : i+ 1, i− 3 : i),

Γ4
(d�,T̄ ,t̄)(i− 2 : i+ 1, i− 2 : i) =




i−2 i−1 i

i−2 1 0 0

i−1 γ̄3
i,i−1

eC3(i)
C̄3(i−1)

eC3(i−1)
C̄3(i−1)

0

i 0
eC3(i+1)
C̄3(i)

γ̄3
i,i

eC3(i)
C̄3(i)

i+1 0 0 1



,

and

Γ4
(d�,eT ,t̄)

(i− 1 : i+ 1, i− 1, i) =




i−1 i

i−1 1 0

i

bC3(i+1)eC3(i)

bC3(i)eC3(i)

i+1 0 1


.

For t̄ = ti we do the same as for k = 3. If T is a general extended partition, we can
use Corollary 3.1 to coalesce the knots in the same way.

Chapter 4

Weighted splines

Weighted splines [7, 2, 33] serve as the first and relatively simple step in general-
ization of polynomial splines, because they are also piecewise polynomial. We will
use the algorithms developed in the previous chapter for calculating with weighted
splines. First, we will observe splines of order 4 as the special case, and then
weighted splines of general order. Weighted splines are as yet the only nontrivial
case of arbitrary order splines that we can evaluate by the knot insertion algorithms.

Let T be, again, the extended partition with all interior knots of multiplicity
one: T = {tj}

n+k+2
j=1 and t1 6 t2 6 · · · 6 a = tk+2 < tk+3 < · · · < tn < tn+1 =

b 6 · · · 6 tn+k+1 6 tn+k+2, associated with partition ∆ = {ti}
n+1
i=k+2. If we define

a positive function w as w|[ti,ti+1) :≡ wi, wi = const for i = k + 2, . . . , n − 1 and

w|[tn,tn+1] :≡ wn, wn = const, then let dσ := (dλ(τ2),
dλ(τ3)
w(τ3)

, . . . , dλ(τk+2))
T, where

dλ is the Lebesgue measure. Weighted powers of order k + 2, with k > 2, are:

u1(x) = 1,

u2(x) =

∫ x

a

dτ2,

u3(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)
,

...

uk+2(x) =

∫ x

a

dτ2

∫ τ2

a

dτ3

w(τ3)

∫ τ3

a

dτ4 · · ·

∫ τk+1

a

dτk+2,

while the first reduced CCC–system is:

u1,1(x) = 1,

u1,2(x) =

∫ x

a

dτ3

w(τ3)
,

...

u1,k+1(x) =

∫ x

a

dτ3

w(τ3)

∫ τ3

a

dτ4 · · ·

∫ τk+1

a

dτk+2.

44

4.1. WEIGHTED SPLINES OF ORDER 4 (K = 2) 45

Further, we need generalized derivatives:

L(0,d�)f(x) = f(x),

L(1,d�)f(x) = Df(x),

L(2,d�)f(x) = w(x)D2f(x),

L(3,d�)f(x) = Dw(x)D2f(x),

...

L(k+2,d�)f(x) = Dkw(x)D2f(x),

where for L(k+2,d�), the measure by which we extend the CCC–system is again the
Lebesgue measure, and also generalized derivative with respect to the first reduced
system:

L(0,d�(1))f(x) = f(x),

L(1,d�(1))f(x) = w(x)Df(x),

L(2,d�(1))f(x) = Dw(x)Df(x),

...

L(k+1,d�(1))f(x) = Dkw(x)Df(x).

This produces few important properties:

S(k + 2, dσ) ⊆ KerL(k+2,d�) = KerDkwD2,

S(k + 1, dσ(1)) ⊆ KerL(k+1,d�(1)) = KerDkwD,

weighted splines are C1 polynomial splines of order k+2, splines associated with the
first reduced system are C0 polynomial splines of order k+1, and splines associated
with the jth reduced system are ordinary polynomial splines of order k + 2 − j for
j = 2, . . . , k + 1. Therefore L(j,d�) : S(k + 2, dσ) → Pk+2−j (see Remark 2.1) for
j > 2.

4.1 Weighted splines of order 4 (k = 2)

For k = 2, dσ = (dλ(τ2),
dλ(τ3)
w(τ3)

, dλ(τ4))
T. Let T̃ = {t̃j}

2n
l=1 = T (∆,m(2)) with m(2) =

(2, . . . , 2), as in section 3.3.2. Let dλ := (dλ(τ2), dλ(τ3), dλ(τ4))
T and

T l
j := T l

(j,d�(4−l),T)
, T̃ l

j := T l

(j,d�(4−l),eT)
,

Bl
j := T l

(j,d�(4−l),T)
, B̃l

j := T l

(j,d�(4−l),eT)
,

for l = 1, . . . , 4, then obviously T̃ 4
j = B̃4

j , T̃
3
j = B̃3

j , T̃
2
j = B̃2

j , and T 2
j = B2

j . The
integrals of B-splines are as follows:

C̃2(r − 1) =

∫ t̃r+1

t̃r−1

T̃ 2
r−1(τ3)

dτ3

w(τ3)
=

hi

2wi

,

46 CHAPTER 4. WEIGHTED SPLINES

C̃2(r) =

∫ t̃r+2

t̃r

T̃ 2
r (τ3)

dτ3

w(τ3)
=

hi

2wi

,

C2(i) =

∫ ti+2

ti

T 2
i (τ3)

dτ3

w(τ3)
= C̃2(r) + C̃2(r + 1) =

1

2

(
hi

wi

+
hi+1

wi+1

)
,

C̃3(r − 1) =

∫ t̃r+2

t̃r−1

T̃ 3
r−1(τ2) dτ2 =

hi

3
,

C̃3(r) =

∫ t̃r+3

t̃r

T̃ 3
r (τ2) dτ2 =

hi + hi+1

3
,

and by Lemma 3.1

C3(i) =

∫ ti+3

ti

T 3
i (τ2) dτ2

=
C̃2(r)

C2(i)
C̃3(r) + C̃3(r + 1) +

C̃2(r + 3)

C2(i+ 1)
C̃3(r + 2)

=
1

3




hi

wi

(hi + hi+1)

hi

wi

+
hi+1

wi+1

+ hi+1 +

hi+2

wi+2
(hi+1 + hi+2)

hi+1

wi+1
+
hi+2

wi+2


 , (4.1)

with hi := ti+1 − ti and ti = t̃r < t̃r+1. Now, from (4.1) we can calculate C3(i)
and C3(i + 1), and further, we can get all four coefficients γ4

j,i from Theorem 3.7.

Finally, to obtain B-splines T 4
j according to Theorem 3.7, we only need T̃ 4

j . As we

mentioned before, S(4, dσ, T̃) = S(4, dλ, T̃), i.e. T̃ 4
j = B̃4

j , and the polynomial
splines of order 4 are easy to calculate.

4.2 Weighted splines of order k + 2 (k > 2)

For the general case we use the generalized deBoor algorithm from Section 3.4.
As the single knot insertion matrices have the main role in this algorithm, with
nontrivial elements consisting of quotients of integrals of B-splines, the problem of
calculating the value of a spline becomes the problem of calculating the integrals
of B-splines associated with the reduced systems. The simplest idea is to calculate
these integrals by Gauss–Legendre integration, but the complexity of such an algo-
rithm would be too large, and if, for example, we would like to make a interactive
program in which we change parameters and check the results, the algorithm would
be too slow. Fortunately, there are two ways of calculating these integrals that
perform better.

Let us introduce some new notation. Like in the previous section, let dλ :=
(dλ, . . . , dλ︸ ︷︷ ︸

k+1

)T,

T l
j := T l

(j,d�(k+2−l),T), Bl
j := T l

(j,d�(k+2−l),T)
,

4.2. WEIGHTED SPLINES OF ORDER K + 2 (K > 2) 47

for l = 1, . . . , k + 2, and

Ck+1(j) =

∫ tj+k+1

tj

T k+1
j (τ2) dτ2, Ck(j) =

∫ tj+k

tj

T k
j (τ3)

dτ3

w(τ3)
,

Cl(j) =

∫ tj+l

tj

T l
j (τk+3−l) dτk+3−l for l = 1, . . . , k − 1.

(4.2)

4.2.1 Recurrence for integrals of polynomial B-splines

For weighted splines T k
j = Bk

j , in fact

Ck(j) =

∫ tj+k

tj

Bk
j (τ3)

dτ3

w(τ3)
.

We want to find a recurrence for
∫ x

ti

Bk
i (τ)

dτ

w(τ)
, x ∈ [ti, ti+k],

and ∫ tj+1

tj

Bk
i (τ)

dτ

w(τ)
, j = i, . . . , i+ k − 1,

(see [35]). Let x ∈ [tj , tj+1), then

∫ x

ti

Bk
i (τ)

dτ

w(τ)
=

j−1∑

s=i

∫ ts+1

ts

Bk
i (τ)

1

ws

dτ +
1

wj

∫ x

tj

Bk
i (τ) dτ

=

j−1∑

s=i

1

ws

(∫ ts+1

ti

Bk
i (τ) dτ −

∫ ts

ti

Bk
i (τ) dτ

)

+
1

wj

(∫ x

ti

Bk
i (τ) dτ −

∫ tj

ti

Bk
i (τ) dτ

)

=

j−1∑

s=i

1

ws

ti+k − ti

k

(
s∑

r=i

Bk+1
r (ts+1) −

s−1∑

r=i

Bk+1
r (ts)

)

+
1

wj

ti+k − ti

k

(
j∑

r=i

Bk+1
r (x) −

j−1∑

r=i

Bk+1
r (tj)

)
, (4.3)

from the well known formula for integrals of polynomial splines. Let us define

ᾱk+1
i,j+1(x) :=

j∑

r=i

Bk+1
r (x) and αk+1

i,j+1 := ᾱk+1
i,j+1(tj+1). (4.4)

Then (4.3) becomes

∫ x

ti

Bk
i (τ)

dτ

w(τ)
=
ti+k − ti

k

(
j−1∑

s=i

1

ws

(
αk+1

i,s+1 − αk+1
i,s

)
+

1

wj

(
ᾱk+1

i,j+1(x) − αk+1
i,j

))
.

(4.5)

48 CHAPTER 4. WEIGHTED SPLINES

Next, we derive a recurrence for ᾱk+1
i,j+1(x). By the deBoor–Cox recurrence

j∑

r=i

Bk+1
r (x) =

j∑

r=i

(
x− tr

tr+k − tr
Bk

r (x) +
tr+k+1 − x

tr+k+1 − tr+1

Bk
r+1(x)

)

=

j∑

r=i

x− tr

tr+k − tr
Bk

r (x) +

j∑

r=i

Bk
r+1(x) −

j∑

r=i

x− tr+1

tr+k+1 − tr+1
Bk

r+1(x)

=

j∑

r=i+1

(
x− tr

tr+k − tr
−

x− tr

tr+k − tr

)
Bk

r (x) +
x− ti

ti+k − ti
Bk

i (x) +

j−1∑

r=i

Bk
r+1(x)

=
x− ti

ti+k − ti
Bk

i (x) +

j∑

r=i+1

Bk
r (x)

=
x− ti

ti+k − ti
Bk

i (x) + ᾱk
i+1,j+1(x),

because Bk
j+1(x) = 0, so we get the recurrence:

ᾱk+1
i,j+1(x) =

x− ti

ti+k − ti
Bk

i (x) + ᾱk
i+1,j+1(x), (4.6)

for x ∈ [tj , tj+1) and j = i, . . . , i+ k − 1. Obviously

ᾱk
i,j+1(x) =

j∑

r=i

Bk
r (x) = Bk

i (x) +

j∑

r=i+1

Bk
r (x)

= Bk
i (x) + ᾱk

i+1,j+1(x),

and from here Bk
i (x) = ᾱk

i,j+1(x) − ᾱk
i+1,j+1(x), which applied to (4.6) gives

ᾱk+1
i,j+1(x) =

x− ti

ti+k − ti

(
ᾱk

i,j+1(x) − ᾱk
i+1,j+1(x)

)
+ ᾱk

i+1,j+1(x)

=
x− ti

ti+k − ti
ᾱk

i,j+1(x) + ᾱk
i+1,j+1(x)

(
1 −

x− ti

ti+k − ti

)
.

Finally, we have the recurrence

ᾱk+1
i,j+1(x) =

x− ti

ti+k − ti
ᾱk

i,j+1(x) +
ti+k − x

ti+k − ti
ᾱk

i+1,j+1(x), (4.7)

for x ∈ [tj , tj+1) and j = i, . . . , i+ k − 1.
Let us first calculate

1

wj

ti+k − ti

k

(
j∑

r=i

Bk+1
r (x) −

j−1∑

r=i

Bk+1
r (tj)

)
=
ti+k − ti

k wj

(
ᾱk+1

i,j+1(x) − αk+1
i,j

)
.

If we define
δ̄k+1
i,j (x) := ᾱk+1

i,j+1(x) − αk+1
i,j ,

4.2. WEIGHTED SPLINES OF ORDER K + 2 (K > 2) 49

then from (4.7), we have

δ̄k+1
i,j (x) =

x− ti

ti+k − ti
ᾱk

i,j+1(x) +
ti+k − x

ti+k − ti
ᾱk

i+1,j+1(x) −
tj − ti

ti+k − ti
αk

i,j −
ti+k − tj

ti+k − ti
αk

i+1,j

=
tj − ti

ti+k − ti
δ̄k
i,j(x) +

ti+k − x

ti+k − ti
δ̄k
i+1,j(x) +

x− tj

ti+k − ti

(
ᾱk

i,j+1(x) − αk
i+1,j

)
. (4.8)

Further,

ᾱk
i,j+1(x) − αk

i+1,j = ᾱk
i,j+1(x) − ᾱk

i+1,j+1(x) + ᾱk
i+1,j+1(x) − αk

i+1,j

= ᾱk
i,j+1(x) − ᾱk

i+1,j+1(x) + δ̄k
i+1,j(x)

=

j∑

r=i

Bk
r (x) −

j∑

r=i+1

Bk
r (x) + δ̄k

i+1,j(x)

= Bk
i (x) + δ̄k

i+1,j(x), (4.9)

which follows from the definition (4.4). Applying (4.9) to (4.8), we get

δ̄k+1
i,j (x) =

tj − ti

ti+k − ti
δ̄k
i,j(x) +

ti+k − tj

ti+k − ti
δ̄k
i+1,j(x) +

x− tj

ti+k − ti
Bk

i (x), (4.10)

for x ∈ [tj, tj+1) and j = i, . . . , i+ k − 1. Finally, from (4.5) we have

k

ti+k − ti

∫ x

ti

Bk
i (τ)

dτ

w(τ)
=

j−1∑

s=i

δk+1
i,s

ws

+
1

wj

δ̄k+1
i,j (x), (4.11)

with
δk+1
i,s := δ̄k+1

i,s (ts+1),

x ∈ [tj , tj+1) and j = i, . . . , i+ k − 1. Specially,

k

ti+k − ti

∫ ti+k

ti

Bk
i (τ)

dτ

w(τ)
=

i+k−1∑

s=i

δk+1
i,s

ws

,

and by (4.11)

k

ti+k − ti

∫ tj+1

tj

Bk
i (τ)dτ =

k

ti+k − ti
wj

(∫ tj+1

ti

Bk
i (τ)

dτ

w(τ)

−

∫ tj

ti

Bk
i (τ)

dτ

w(τ)

)
= δk+1

i,j ,

where δk+1
i,j is calculated, because of (4.10), by the recurrence

δ2
i,j =

{
1 for j = i,

0 for j 6= i,

δk+1
i,j =

tj − ti

ti+k − ti
δk
i,j +

ti+k − tj

ti+k − ti
δk
i+1,j +

tj+1 − tj

ti+k − ti
Bk

i (tj+1),

for j = i, . . . , i+ k − 1 (see also [41]). This is one way how to calculate Ck(j) from
(4.2).

50 CHAPTER 4. WEIGHTED SPLINES

4.2.2 Generalized Oslo algorithm for calculating integrals
of B-splines

As we emphasized before, the splines associated with the second reduced system
are polynomial splines of order k. But, for Ck(j) in (4.2), we need to calculate
the integral with respect to the Lebesgue–Stieltjes measure, which has piecewise
constant density. One possibility is to represent T k

j as a linear combination of B-
splines from the space of weighted splines which are not even continuous. These
B-splines are one–interval supported. The integrals of such B-splines with given
measure are trivial to calculate. It is also important to mention that all knot
insertion matrices up to order k are polynomial knot insertion matrices. This fact
makes the calculation of the single knot insertion matrices, by the recurrence in
Theorem 3.4, much easier.

To be precise, for this case we observe T with t1 = t2 = · · · = tk+2 = a and

b = tn+1 = · · · = tn+k+1 = tn+k+2, then, let m
(k) := (k, . . . , k), T̃ = {t̃j}

k(n−k)+4
j=1 :=

T (∆,m(k)), and let t̃j = tr < tr+1 = t̃j+k. Thereupon

C̃k(j) :=

∫ t̃j+k

t̃j

T̃ k
j (τ)

dτ

w(τ)
=
tr+1 − tr

wr k
,

where T̃ k
j := T k

(j,d�(2),eT)
. Let

T k
j (x) =

k(j−3)+3∑

i=k(j−k−1)+2

γk
i,jT̃

k
i (x),

then the knot insertion matrix Γk := Γk

(d�(2),T ,eT)
= Γk

(d�(2),T ,eT)
= [γk

i,j], which is a

polynomial knot insertion matrix, can be obtained explicitly (see pages 159, 160 in
[8]). So, from previous

Ck(j) =

k(j−3)+3∑

i=k(j−k−1)+2

γk
i,j

tri+1 − tri

wri
k

,

with t̃i = tri
< tri+1 = t̃i+k.

Now, when we know how to calculate the integrals of B-spline associated with
the second reduced system, we can also calculate the knot insertion matrices of order
k + 1. Let us remember that the splines from S(k + 1, dσ(1),T) are C0 polynomial

splines of order k+ 1, and it is obvious that S(k+ 1, dσ(1), T̃) = S(k+ 1, dλ(1), T̃).

For B-spline from S(k + 1, dσ(1), T̃) we have

C̃k+1(j) :=

∫ t̃j+k+1

t̃j

T̃ k+1
j dτ =

t̃j+k+1 − t̃j

k + 1
,

then

Ck+1(j) =

k(j−2)+2∑

i=k(j−k−1)+2

γk+1
i,j

t̃i+k+1 − t̃i

k + 1
,

4.2. WEIGHTED SPLINES OF ORDER K + 2 (K > 2) 51

with Γk+1 := Γk+1

(d�(1),T ,eT)
= [γk+1

i,j] being again calculated as the product of the single

knot insertion matrices of order k + 1.
This algorithm is a generalization of the Oslo algorithm for polynomial splines.

As in polynomial case, the generalized Oslo algorithm can be represented with
a triangle scheme, and it can also be accelerated by avoiding operations where
multiplication by zero or addition of zero occurs.

This generalized Oslo algorithm for calculating Ck+1(j) can be combined either
with the recurrence for calculating Ck(j) from the previous subsection, or with
the generalized Oslo algorithm for Ck(j). The rest of the integrals of B-splines
associated with the partition with multiplicities higher than one, which we need for
the deBoor algorithm, can then be achieved by Theorem 2.19 or Remark 2.7.

Let now t̄ ∈ [ti, ti+1) ⊂ [a, b] and f ∈ S(k + 2, dσ,T) with f =
∑n

i=1 cjT
k+2
j .

Our goal is to calculate f(t̄). Having Ck(j) and Ck+1(j) calculated, the single
knot insertion matrices Γk+2

(d�,T̄ [l−1]
,t̄)

from Subsection 3.4.1 needed for the deBoor

algorithm, can be obtained in two steps. As we mentioned before, Γk

(d�(2),T̄ [l−1]
,t̄)

is polynomial knot insertion matrix, which we can get explicitly, so the first step
is to calculate Γk+1

(d�(1),T̄ [l−1]
,t̄)

by the recurrence in Theorem 3.4 and by using Ck(j).

The second step is to get Γk+2

(d�,T̄ [l−1]
,t̄)

, again from Theorem 3.4 and with Ck+1(j).

Now, we have all elements to proceed with the generalized deBoor algorithm, and
calculate the value of the given weighted spline.

Chapter 5

q-Splines

The q-splines [12, 3, 1] are also, like weighted splines, Chebyshev–polynomial splines,
but only of order 4. They have the following analogue in the beam theory. Consider
a simply supported elastic beam with supports {(xi, fi)}

l+1
i=0. Then the deflection

of the beam between successive supports is the solution s(x) of the differential
equation [E · I · D2]s = M . Here E denotes the Young’s modulus of elasticity,
I is the cross-sectional moment of inertia, and M is the bending moment. We
suppose that E · I = 1

q
, q > 0, where q and, under assumption of weightlessness,

M , are piecewise linear continuous functions with break points at the supports.
Differentiating the above equation twice, we arrive at the two-point boundary value
problem on [xi, xi+1] for i = 0, . . . , l

D21

q
D2s = 0, s(xi) = fi, s(xi+1) = fi+1, s

′′(xi) = s′′i , s
′′(xi+1) = s′′i+1, (5.1)

where s′′i and s′′i+1 are so chosen to ensure s ∈ C2[x0, xl+1] when s′(x0) and s′(xl+1)
are given. Such a function s is called a q-spline. We will deal with q-splines through
Chebyshev theory, and by using algorithms from Chapter 3.

Let T be, again, the extended partition of [a, b] with all interior knots of mul-
tiplicity one: T = {tj}

n+4
j=1 and t1 6 t2 6 t3 6 a = x0 = t4 < t5 < · · · < tn <

tn+1 = b = xl+1 6 tn+2 6 tn+3 6 tn+4, with n = l + 4, associated with partition
∆ = {xi}

l+1
i=0. Let q be a positive continuous piecewise linear function defined by

q|[ti,ti+1](x) :=
qi+1 − qi

hi

(x− ti) + qi,

for ti < ti+1, where hi := ti+1 − ti. The positivity assumption on q is equivalent to
qi > 0 for each i. Then for dσ := (dλ(τ2), q(τ3)dλ(τ3), dλ(τ4))

T, with dλ being the
Lebesgue measure as in the previous chapter, CCC–system associated with dσ is

u1(x) = 1

u2(x) =

∫ x

a

dτ2 (5.2)

u3(x) =

∫ x

a

dτ2

∫ τ2

a

q(τ3) dτ3

52

5.1. Q-SPLINES BY THE GENERALIZED DEBOOR ALGORITHM 53

u4(x) =

∫ x

a

dτ2

∫ τ2

a

q(τ3) dτ3

∫ τ3

a

dτ4.

The first reduced system is

u1,1(x) = 1

u1,2(x) =

∫ x

a

q(τ3) dτ3

u1,3(x) =

∫ x

a

q(τ3) dτ3

∫ τ3

a

dτ4,

while the generalized derivatives are

L(1,d�) = D, L(1,d�(1)) = 1
q
D,

L(2,d�) = 1
q
D2, L(2,d�(1)) = D 1

q
D,

L(3,d�) = D 1
q
D2, L(3,d�(1)) = D2 1

q
D.

L(4,d�) = D2 1
q
D2,

For L(4,d�), the measure by which we extend the CCC–system is also the Lebesgue
measure. Then S(4, dσ,T) ⊆ KerL(4,d�) ∩C

2[a, b], i.e. s ∈ S(4, dσ,T) fulfils (5.1)
for some fi and s′′i , i = 0, . . . , l + 1, so S(4, dσ,T) is the space of q-splines. From

(5.2) it is obvious that S(4, dσ,T) ⊂ S(5, dλ, T̃) where dλ := (dλ, dλ, dλ, dλ) and

T̃ = {t̃j} := T (∆,m(2)):

· · · ti−1 ti ti+1 ti+2 · · ·
p p p p

· · · t̃r−3 t̃r−1 t̃r+1 t̃r+3 · · ·
· · · t̃r−2 t̃r t̃r+2 t̃r+4 · · ·

,

with m
(2) defined as in (3.12). Also, S(3, dσ(1),T) ⊆ KerL(3,d�(1)) ∩ C

1[a, b], and

S(3, dσ(1),T) ⊂ S(4, dλ(1), T̃). The spline space associated with the second reduced
system is the space of ordinary polynomial splines of order 2.

To calculate with q-splines, we use the generalized deBoor algorithm described
in Subsection 3.4.2, or the Oslo type recurrence from Subsection 3.3.2. It remains
to derive the integrals of B-splines needed for both of algorithms. Lemma 3.1 is
suitable for calculating C3(j).

5.1 q-Splines by the generalized deBoor algori-

thm

Let us consider less smooth B-splines T̃ l
j := T l

(j,d�(4−l),eT)
, for l = 2, 3, 4, T̂ = {t̂j} :=

T (∆,m(3)), m
(3) := (3, . . . , 3):

54 CHAPTER 5. Q-SPLINES

· · · ti−1 ti ti+1 ti+2 · · ·
p p p p

· · · t̂s−5 t̂s−2 t̂s+1 t̂s+4 · · ·
· · · t̂s−4 t̂s−1 t̂s+2 t̂s+5 · · ·
· · · t̂s−3 t̂s t̂s+3 t̂s+6 · · ·

and B̂l
j := T

l

(j,d�(5−l),bT)
for l = 4, 5. As S(3, dσ(1), T̃) ⊂ S(4, dλ(1), T̂), we can write

T̃ 3
r−1(x) =

s−1∑

j=s−2

ar−1,jB̂
4
j (x),

T̃ 3
r (x) =

s+1∑

j=s−1

ar,jB̂
4
j (x),

for ti = t̃r−1 = t̃r = t̂s−2 = t̂s−1 = t̂s < t̃r+1 = t̂s+1. To determine ar−1,j and ar,j , we
need

L(1,d�(1))T̃
3
r−1(x) =

B̃2
r−1(x)

C̃2(r − 1)
−
B̃2

r (x)

C̃2(r)
, (5.3)

by the derivative formula (2.27), with T̃ 2
j = B̃2

j := T 2
(2,d�(3),eT)

and

C̃2(j) :=

∫ t̃j+2

t̃j

B̃2
j (τ3) q(τ3) dτ3.

Specially,

C̃2(r − 1) =
(2qi + qi+1)hi

6
, C̃2(r) =

(qi + 2qi+1)hi

6
.

By (5.3) we have

L(1,d�(1))T̃
3
r−1(t

+
i) =

1

C̃2(r − 1)
, L(1,d�(1))T̃

3
r−1(t

−
i+1) = −

1

C̃2(r)
,

and further

ar−1,s−2 =
2qi

2qi + qi+1
, ar−1,s−1 =

2qi+1

qi + 2qi+1
,

so

T̃ 3
r−1(x) =

2qi
2qi + qi+1

B̂4
s−2(x) +

2qi+1

qi + 2qi+1

B̂4
s−1(x). (5.4)

For T̃ 3
r we use

T̃ 3
r (ti+1) = 1, L(1,d�(1))T̃

3
r (t−i+1) =

1

C̃2(r)
, L(1,d�(1))T̃

3
r (t+i+1) = −

1

C̃2(r + 1)
,

to get

ar,s−1 =
qi

2qi+1 + qi
, ar,s = 1, ar,s+1 =

qi+2

2qi+1 + qi+2
,

5.2. Q-SPLINES BY THE OSLO TYPE ALGORITHM 55

and finally

T̃ 3
r (x) =

qi

qi + 2qi+1

B̂4
s−1(x) + B̂4

s (x) +
qi+2

2qi+1 + qi+2

B̂4
s+1(x). (5.5)

If we denote

C̃3(j) :=

∫ t̃j+3

t̃j

T̃ 3
j (τ2) dτ2,

then it is easy to see from (5.4) and (5.5) that

C̃3(r − 1) =
hi

4

(
2qi

2qi + qi+1
+

2qi+1

qi + 2qi+1

)
,

C̃3(r) =
1

4

(
qihi

qi + 2qi+1

+ hi + hi+1 +
qi+2hi+1

2qi+1 + qi+2

)
,

and it is obvious that C2(i) = C̃2(r) + C̃2(r + 1). Now, according to Lemma 3.1

C3(i) =
C̃2(r)

C2(i)
C̃3(r) + C̃3(r + 1) +

C̃2(r + 3)

C2(i+ 1)
C̃3(r + 2)

=
(qi + 2qi+1)hi

(qi + 2qi+1)hi + (2qi+1 + qi+2)hi+2
C̃3(r) + C̃3(r + 1)

+
(2qi+2 + qi+3)hi+2

(qi+1 + 2qi+2)hi+1 + (2qi+2 + qi+3)hi+2

C̃3(r + 2).

The rest of the integrals of B-splines needed for the generalized deBoor algorithm,
with C1(j) = hj, follow from Theorem 2.19 or Remark 2.7, just by taking the limits
of the knots.

5.2 q-Splines by the Oslo type algorithm

In this case, by (2.35), we can get the B-splines of higher order in a stable manner.
Let us start with

T̃ 4
r−1(x) =

1

C̃3(r − 1)

∫ x

t̃r−1

T̃ 3
r−1(τ2) dτ2 −

1

C̃3(r)

∫ x

t̃r

T̃ 3
r (τ2) dτ2. (5.6)

From (5.6), by using (5.4), (5.5) and the well known equation for integrals of poly-
nomial splines (which is a generalization of (2.36))

∫ x

−∞

T k

(i,d�(1),T)
(t) dt =

ti+k − ti

k

i+k−1∑

j=i

T k+1
(i,d�,T)(x),

56 CHAPTER 5. Q-SPLINES

for any extended partition T = {tj} and x ∈ [ti, ti+k], we get

T̃ 4
r−1(x) =

1

C̃3(r − 1)

2qi
2qi + qi+1

hi

4
B̂5

s−2(x)

+
1

C̃3(r)

(
hi + hi+1

4
+

qi+2

2qi+1 + qi+2

hi+1

4

)
B̂5

s−1(x)

+
1

C̃3(r)

qi+2

2qi+1 + qi+2

hi+1

4
B̂5

s (x).

In the same way

T̃ 4
r (x) =

1

C̃3(r)

qi

qi + 2qi+1

hi

4
B̂5

s−1(x)

+
1

C̃3(r)

(
qi

qi + 2qi+1

hi

4
+
hi + hi+1

4

)
B̂5

s (x)

+
1

C̃3(r + 1)

2qi+2

qi+1 + 2qi+2

hi+1

4
B̂5

s+1(x).

Again Lemma 3.1 and Theorem 3.7 give T 4
i := T 4

(i,d�,T).

Chapter 6

Tension splines

As the first example of non–polynomial Chebyshev splines we will observe tension
splines [18, 11, 13, 37]. It is well known that they have very good shape preserving
and approximation properties widely used in removing extraneous inflections [13],
and solution of singularly perturbed differential [19] and integral equations [9].

Let a = x0 < x1 < · · · < xl < xl+1 = b be a partition of [a, b], and tension

parameters pi ∈ R, pi > 0 for i = 0, . . . , l. Tension spline is function s such that

s(4)(x) − p2
i s

(2)(x) = (D2 − p2
i)D

2s(x) = 0

for every x ∈ [xi, xi+1), i = 0, . . . , l. It immediately follows that

s|[xi,xi+1) ∈ span{1, x, sinh (pix), cosh (pix)}

for i = 0, . . . , l. Most often, tension splines of class C1 or C2 are used, but C2 ones
are not covered by the Chebyshev theory, so we will treat them as a subspace of C1

tension splines. In fact, C2 tension splines belong to the class of generalized tension
B-splines examined in [13] (see also [16]). Next to this two spline spaces, we will also
observe tension splines that are, like C1, Chebyshev splines, and have continuous
second generalized derivative at the joining points xi instead of the second ordinary
derivative. This kind of splines we will call Chebyshev tension splines.

To derive CCC–system for tension splines, we have to represent the differential
operator L4 := (D2−p2)D2, with p|[xi,xi+1) :≡ pi, for i = 0, . . . , l−1 and p|[xl,xl+1] :≡
pl, more conveniently:

Theorem 6.1 Let a = x0 < x1 < · · · < xl < xl+1 = b be a partition of [a, b],

q ∈
l−1⋂

i=0

C1([xi, xi+1)) ∩ C
1([xl, xl+1]), r ∈

l−1⋂

i=0

C([xi, xi+1)) ∩ C([xl, xl+1]),

and let L2[y] := D(q Dy) + r y = 0 have a solution u without zeros on the interval

[a, b]. Then for every y ∈
l−1⋂

i=0

C2([xi, xi+1)) ∩ C
2([xl, xl+1])

L2[y] =
1

u
D
[
q u2D

(y
u

)]
.

57

58 CHAPTER 6. TENSION SPLINES

Proof: Let u be a solution without zeros on the interval [a, b], i.e.

L2[u] = q u′′ + q′u′ + r u = 0. (6.1)

Then on each [xi, xi+1) and [xl, xl+1]:

1

u
D
[
q u2D

(y
u

)]
=

1

u
D

[
q u2 y

′u− y u′

u2

]

=
1

u
D [q(y′u− y u′)]

=
1

u
[q′(y′u− y u′) + q(y′′u+ y′u′ − y′u′ − y u′′)]

=
1

u
[(q y′′ + q′y′)u− (q u′′ + q′u′)y]

=
1

u
[(q y′′ + q′y′)u+ r u y]

=
1

u
[(q y′′ + q′y′ + r y)u] = L2[y],

because of (6.1). �

If we apply Theorem 6.1 on L2[y] = (D2−p2)y = y′′−p2y, with u(x) = cosh (p(x) x),
then q ≡ 1 and r ≡ −p2, and we get

L2[y] =
1

cosh (p x)
D

[
cosh2 (p x)D

(
y

cosh (p x)

)]
.

Because L4 = L2D
2,

L4 =

(
1

cosh (p x)
D

)(
cosh2 (p x)D

)(1

cosh (p x)
D

)
D.

Therefore, the associated measure vector for tension splines is

dσ := (dτ2, cosh (p(τ3) τ3) dτ3,
dτ4

cosh2 (p(τ4) τ4)
)T,

with the measure by which we extend the CCC–system (see Theorem 2.1) dσ5 :=
cosh (p(τ5) dτ5), the associated CCC–system:

u1(x) = 1

u2(x) =

∫ x

a

dτ2

u3(x) =

∫ x

a

dτ2

∫ τ2

a

cosh (p(τ3) τ3) dτ3

u4(x) =

∫ x

a

dτ2

∫ τ2

a

cosh (p(τ3) τ3) dτ3

∫ τ3

a

dτ4

cosh2 (p(τ4) τ4)
,

6.1. C1 TENSION SPLINES 59

and the generalized derivatives are given by

L(1,d�) = D

L(2,d�) =

(
1

cosh (p x)
D

)
D

L(3,d�) =
(
cosh2 (p x)D

)(1

cosh (p x)
D

)
D

L(4,d�) = L4 =

(
1

cosh (p x)
D

)(
cosh2 (p x)D

)(1

cosh (p x)
D

)
D.

So, we have S(4, dσ) = span{1, x, sinh (p(x) x), cosh (p(x) x)} ⊆ KerL(4,d�). For the
first reduced system

u1,1(x) = 1

u1,2(x) =

∫ x

a

cosh (p(τ3) τ3) dτ3

u1,3(x) =

∫ x

a

cosh (p(τ3) τ3) dτ3

∫ τ3

a

dτ4

cosh2 (p(τ4) τ4)

holds S(3, dσ(1)) = span{1, sinh (p(x) x), cosh (p(x) x)} ⊆ KerL(3,d�(1)), with

L(3,d�(1)) =

(
1

cosh (p x)
D

)(
cosh2 (p x)D

)(1

cosh (p x)
D

)
,

while the second reduced system

u2,1(x) = 1

u2,2(x) =

∫ x

a

dτ4

cosh2 (p(τ4) τ4)

satisfies S(2, dσ(2)) = span{1, tanh (p(x) x)} ⊆ KerL(2,d�(2)) with

L(2,d�(2)) =

(
1

cosh (p x)
D

)(
cosh2 (p x)D

)
.

6.1 C1 tension splines

C1 tension splines will also be a starting point for calculating with Chebyshev and
C2 tension splines. Let ∆ = {xi}

l+1
i=0, T = {ti} := T (∆,m(1)) with m

(1) as in (3.4)

and T̃ = {t̃r} := T (∆,m(2)) with m
(2) as in (3.12). With the notation from the

previous chapter, for ti = t̃r−1 = t̃r < t̃r+1

C̃1(r) :=

∫ t̃r+1

t̃r

dτ4

cosh2 (p(τ4) τ4)
=

sinh (pihi)

pi cosh (piti) cosh (piti+1)
,

60 CHAPTER 6. TENSION SPLINES

where hi := ti+1 − ti. By Corollary 2.2

T̃ 2
r−1(x) =

cosh (piti) sinh (pi(ti+1 − x))

cosh (pix) sinh (pihi)
,

T̃ 2
r (x) =

cosh (piti+1) sinh (pi(x− ti))

cosh (pix) sinh (pihi)
,

for x ∈ [ti, ti+1) (and hence in what follows, if i = l we assume the subinterval
[xl, xl+1] instead), and from here

C̃2(r − 1) :=

∫ t̃r+1

t̃r−1

T̃ 2
r−1(τ3) cosh (p(τ3) τ3) dτ3 =

cosh (piti)

pi

tanh

(
pihi

2

)
,

C̃2(r) :=

∫ t̃r+2

t̃r

T̃ 2
r (τ3) cosh (p(τ3) τ3) dτ3 =

cosh (piti+1)

pi

tanh

(
pihi

2

)
.

Again, because of Corollary 2.2:

T̃ 3
r−1(x) = 2 cosh

(
pihi

2

)sinh
(

pi(x−ti)
2

)
sinh

(
pi(ti+1−x)

2

)

sinh2
(

pihi

2

) , for x ∈ [ti, ti+1)

T̃ 3
r (x) =





sinh2
(

pi(x−ti)
2

)

sinh2
(

pihi

2

) for x ∈ [ti, ti+1),

sinh2
(

pi+1(ti+2−x)
2

)

sinh2
(

pi+1hi+1

2

) for x ∈ [ti+1, ti+2),

and

C̃3(r − 1) :=

∫ t̃r+2

t̃r−1

T̃ 3
r−1(τ2) dτ2

=
2 cosh

(
pihi

2

)

pi sinh2
(

pihi

2

)
(
pihi

2
cosh

(
pihi

2

)
− sinh

(
pihi

2

))
, (6.2)

C̃3(r) :=

∫ t̃r+3

t̃r

T̃ 3
r (τ2) dτ2

=
sinh (pihi) − pihi

2pi sinh2
(

pihi

2

) +
sinh (pi+1hi+1) − pi+1hi+1

2pi+1 sinh2
(

pi+1hi+1

2

) . (6.3)

6.1.1 Generalized deBoor algorithm for C1 tension splines

Now we can apply the generalized deBoor algorithm. Let s ∈ S(4, dσ, T̃), s =∑
j cjT̃

4
j , and t̄ ∈ (t̃r, t̃r+1) = (ti, ti+1). In this case, the knot insertion matrices

6.1. C1 TENSION SPLINES 61

involved in the generalized deBoor algorithm can be explicitly calculated by using
Theorem 3.4. Let Γ2

(d�,eT ,t̄)
= [γ2

i,j]. Then

γ2
r,r−1 =

sinh (pi(ti+1 − t̄)) cosh (piti)

sinh (pihi) cosh (pit̄)
,

γ2
r,r =

sinh (pi(t̄− ti)) cosh (piti+1)

sinh (pihi) cosh (pit̄)
.

From here, we can get Γ3
(d�,eT ,t̄)

= [γ3
i,j]:

γ3
r−1,r−2 =

sinh (pi(ti+1 − t̄))
(
tanh

(
pi(t̄−ti)

2

)
+ tanh

(
pi(ti+1−t̄)

2

))

sinh (pihi) tanh
(

pihi

2

) ,

γ3
r−1,r−1 =

tanh
(

pi(t̄−ti)
2

)

tanh
(

pihi

2

) ,

γ3
r,r−1 =

tanh
(

pi(ti+1−t̄)
2

)

tanh
(

pihi

2

) ,

γ3
r,r =

sinh (pi(t̄− ti))
(
tanh

(
pi(t̄−ti)

2

)
+ tanh

(
pi(ti+1−t̄)

2

))

sinh (pihi) tanh
(

pihi

2

) .

If we denote

f̃(x) :=
sinh x− x

2 sinh2 x
2

, g̃(x) :=
x cosh x− sinh x

sinh2 x
, ũ(x, y) :=

sinh x

sinh (x+ y)
(6.4)

then the elements of Γ4
(d�,eT ,t̄)

= [γ4
i,j] are:

γ4
r−2,r−3 = ũ

(
pi(ti+1−t̄)

2
,

pi(t̄−ti)
2

)
·

1
pi

[
2g̃
(

pi(t̄−ti)
2

)
+ ũ

(
pi(ti+1−t̄)

2
,

pi(t̄−ti)
2

)(
f̃(pi(t̄− ti)) + f̃(pi(ti+1 − t̄))

)]

1
pi−1

f̃(pi−1hi−1) + 1
pi
f̃(pihi)

,

γ4
r−2,r−2 =

1
pi−1

f̃(pi−1hi−1) + 1
pi
f̃(pi(t̄− ti))

1
pi−1

f̃(pi−1hi−1) + 1
pi
f̃(pihi)

,

γ4
r−1,r−2 = ũ

(
pi(ti+1−t̄)

2
,

pi(t̄−ti)
2

)
·

ũ
(

pi(t̄−ti)
2

,
pi(ti+1−t̄)

2

)(
f̃(pi(t̄− ti)) + f̃(pi(ti+1 − t̄))

)
+ 2g̃

(
pi(ti+1−t̄)

2

)

2g̃
(

pihi

2

) ,

γ4
r−1,r−1 = ũ

(
pi(t̄−ti)

2
,

pi(ti+1−t̄)
2

)
·

2g̃
(

pi(t̄−ti)
2

)
+ ũ

(
pi(ti+1−t̄)

2
,

pi(t̄−ti)
2

)(
f̃(pi(t̄− ti)) + f̃(pi(ti+1 − t̄))

)

2g̃
(

pihi

2

) ,

62 CHAPTER 6. TENSION SPLINES

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

Figure 6.1: Function f̃

γ4
r,r−1 =

1
pi
f̃(pi(ti+1 − t̄)) + 1

pi+1
f̃(pi+1hi+1)

1
pi
f̃(pihi) + 1

pi+1
f̃(pi+1hi+1)

,

γ4
r,r = ũ

(
pi(t̄−ti)

2
,

pi(ti+1−t̄)
2

)
·

1
pi

[
ũ
(

pi(t̄−ti)
2

,
pi(ti+1−t̄)

2

)(
f̃(pi(t̄− ti)) + f̃(pi(ti+1 − t̄))

)
+ 2g̃

(
pi(ti+1−t̄)

2

)]

1
pi
f̃(pihi) + 1

pi+1
f̃(pi+1hi+1)

.

To calculate the rest of the knot insertion matrices needed for the deBoor algo-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12

Figure 6.2: Function g̃

6.1. C1 TENSION SPLINES 63

rithm by Corollaries 3.1 and 3.2 we have to say more about the functions f̃ , g̃ and
ũ (6.4) (see Figure 6.1 and 6.2). We only need arguments for all three functions to
be nonnegative. It can be easily shown that g̃(x) > 0 for x > 0, and

lim
x→0

g̃(x) = 0, lim
x→∞

g̃(x) = 0.

Because f̃ ′(x) =
g̃(x

2)
sinh (x

2)
, f̃ is increasing nonnegative function with

lim
x→0

f̃(x) = 0, lim
x→∞

f̃(x) = 1.

The function ũ is clearly positive for positive arguments, and

lim
x→0

ũ(x, y) = 0, lim
y→0

ũ(x, y) = 1, lim
x→∞

ũ(x, y) = e−y, lim
y→∞

ũ(x, y) = 0.

To achieve numerical stability we have to do some rearranging. First, let us
define new functions

f(x) :=
f̃(x)

x
=

sinh x− x

2x sinh2 x
2

, (6.5)

g(x) := ex g̃(x)

x
= exx cosh x− sinh x

x sinh2 x
, (6.6)

u(x, y) := eyũ(x, y) = ey sinh x

sinh (x+ y)
(6.7)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30

f
1/x

Figure 6.3: Functions f and 1
x

from (6.4). The functions f̃ and g̃ are divided by x to achieve that algorithm can
deal even with some of the tension parameters equal to zero, and by multiplying g̃

64 CHAPTER 6. TENSION SPLINES

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

g
2(x-1)/x

Figure 6.4: Functions g and 2x−1
x

and ũ by exponential function, the algorithm avoids possible underflows, which can
lead to division of zero by zero. The function f is positive, decreasing, f(x) < 1

x

for x > 0, in fact f(x) ≈ 1
x

for large x (see Figure 6.3), and

lim
x→0

f(x) =
1

3
, lim

x→∞
f(x) = 0,

while g is positive, increasing, g(x) ≈ 2x−1
x

for large x (see Figure 6.4), and

lim
x→0

g(x) =
1

3
, lim

x→∞
g(x) = 2.

It is again trivial to see that u is positive, with 0 6 u(x, y) 6 1 and

lim
x→0

u(x, y) = 0, lim
y→0

u(x, y) = 1, lim
x→∞

u(x, y) = 1, lim
y→∞

u(x, y) = 1 − e−2x.

u is not continuous at (0, 0), but this is not a problem, since u is always calculated
as u(p h, p k). If h = k = 0, then u is multiplied by zero and the deBoor’s maxim
gives zero. If p = 0 and at least h 6= 0, then

lim
p→0

u(p h, p k) =
h

h+ k
,

and in this case u is multiplied by nonzero expression. If we set all pi = 0, we
get the cubic polynomial spline, as expected. All three functions can be calculated
numerically stable up to the computer accuracy by Padé or Chebyshev polynomial
approximation, combined with the asymptotic formulæ.

We use the function CC3 instead of C̃3(j):

CC3(h1, h2, h3; p1, p2, p3) := u

(
p̃1h1

2
,
p̃1h2

2

)(
h1f(p1h1) + h2f(p2h2)

)

+h2g

(
p2h2

2

)
+ u

(
p̃2h3

2
,
p̃2h2

2

)(
h2f(p2h2) + h3f(p3h3)

)
, (6.8)

6.1. C1 TENSION SPLINES 65

which unites both C̃3(r−1) and C̃3(r) from (6.2) and (6.3), up to some multiplicative
factor, with p̃1 = max {p1, p2} and p̃2 = max {p2, p3}. Then the deBoor algorithm
for order 4 (3.20) can be represented as

s(t̄) = cr−3Br−3 + cr−2Br−2 + cr−1Br−1 + crBr,

where Bj := T̃ 4
j (t̄), j = r − 3, . . . , r are given by

Br−3 = u2
1e

−pi(t̄−ti)
C1

C2
,

Br−2 = u1

(
C1C11

C3C2
+

1

C6C7

(
C1C4C5

C3
+ C8C9

))
,

Br−1 = u2

(
1

C6C7

(
C1C4 +

C8C9C3

C5

)
+
C8C12

C5C10

)
,

Br = u2
2e

−pi(ti+1−t̄) C8

C10
,

with

u1 := u(pi(ti+1 − t̄), pi(t̄− ti)),

u2 := u(pi(t̄− ti), pi(ti+1 − t̄)),

C1 := CC3(0, 0, ti+1 − t̄; 0, 0, pi),

C2 := CC3(hi−1, 0, hi; pi−1, 0, pi),

C3 := CC3(0, t̄− ti, ti+1 − t̄; 0, pi, pi),

C4 := CC3(0, t̄− ti, 0; 0, pi, 0),

C5 := CC3(t̄− ti, ti+1 − t̄, 0; pi, pi, 0),

C6 := CC3(t̄− ti, 0, ti+1 − t̄; pi, 0, pi),

C7 := CC3(0, hi, 0; 0, pi, 0),

C8 := CC3(t̄− ti, 0, 0; pi, 0, 0),

C9 := CC3(0, ti+1 − t̄, 0; 0, pi, 0),

C10 := CC3(hi, 0, hi+1; pi, 0, pi+1),

C11 := CC3(hi−1, 0, t̄− ti; pi−1, 0, pi),

C12 := CC3(ti+1 − t̄, 0, hi+1; pi, 0, pi+1).

For t̄ = ti, we just have to take the limit t̄ → t+i wherever it appears in the algo-
rithm. Therefore, C1 tension spline can be calculated numerically stable, avoiding
dangerous subtractions.

6.1.2 Splines associated with the reduced systems

We can also stably calculate splines associated with reduced systems. Let s ∈ S(3,

dσ(1), T̃), s =
∑

j c
1
j T̃

3
j , and t̄ ∈ [t̃r, t̃r+1) = [ti, ti+1), then the generalized deBoor

66 CHAPTER 6. TENSION SPLINES

algorithm expressed by (3.16) looks like

s(t̄) = c1r−2Br−2 + c1r−1Br−1 + c1rBr.

In the expression above Bj := T̃ 3
j (t̄) are given by

Br−2 = e−pi(t̄−ti)u(pi(ti+1 − t̄), pi(t̄− ti))
tanh

(
pi(ti+1−t̄)

2

)

tanh
(

pihi

2

) , (6.9)

Br−1 =
2 tanh

(
pi(t̄−ti)

2

)
tanh

(
pi(ti+1−t̄)

2

)

(
tanh

(
pi(t̄−ti)

2

)
+ tanh

(
pi(ti+1−t̄)

2

))
tanh

(
pihi

2

) , (6.10)

Br = e−pi(ti+1−t̄)u(pi(t̄− ti), pi(ti+1 − t̄))
tanh

(
pi(t̄−ti)

2

)

tanh
(

pihi

2

) . (6.11)

Again, taking the limit when pi → 0 is not a problem, since

lim
p→0

tanh p x

tanh p y
=
x

y
, lim

p→0

tanh p x

tanh p x+ tanh p y
=

x

x+ y
. (6.12)

Let now s ∈ S(2, dσ(2), T̃), s =
∑

j c
2
j T̃

2
j . Then for t̄ ∈ [t̃r, t̃r+1) = [ti, ti+1)

s(t̄) = c2r−1T̃
2
r−1(t̄) + c2rT̃

2
r (t̄),

and T̃ 2
r−1(t̄), T̃

2
r (t̄) can be stably calculated as

T̃ 2
r−1(t̄) =

cosh (piti) sinh (pi(ti+1 − t̄))

cosh (pit̄) sinh (pihi)

=
1 + e−2|piti|

1 + e−2|pit̄|
e−2pi(max {0,t̄}−max {0,ti})u(pi(ti+1 − t̄), pi(t̄− ti)),

T̃ 2
r (t̄) =

cosh (piti+1) sinh (pi(t̄− ti))

cosh (pit̄) sinh (pihi)

=
1 + e−2|piti+1|

1 + e−2|pit̄|
e−2pi(min {0,ti+1}−min {0,t̄})u(pi(t̄− ti), pi(ti+1 − t̄)),

for ti, ti+1 and t̄ being either positive or negative.

6.1.3 Generalized and ordinary derivatives of C
1 tension

spline

By the previous subsection and Corollary 2.1, we can get the first and the second
generalized derivative of any C1 tension spline. To be precise, for t̄ ∈ [t̃r, t̃r+1) =
[ti, ti+1)

s(t̄) =

r∑

j=r−3

cjT̃
4
j (t̄),

6.2. CHEBYSHEV TENSION SPLINES 67

and the first generalized derivative is

L(1,d�)s(t̄) =

r∑

j=r−2

c1j T̃
3
j (t̄),

with

c1j =
cj − cj−1

C̃3(j)
,

for j = r − 2, r − 1, r. The second generalized derivative of this spline is

L(2,d�)s(t̄) =

r∑

j=r−1

c2j T̃
2
j (t̄), (6.13)

with

c2j =
c1j − c1j−1

C̃2(j)
, (6.14)

for j = r − 1, r. But, if we want to get ordinary derivatives of tension spline, it
is also possible to do it in a stable manner. The first derivative is equal to the
first generalized derivative, what we already have, and for the second is D2 =
cosh (p x)L(2,d�). By multiplying (6.13) with cosh (pit̄) and inserting (6.14) we get
that

D2s(t̄) =
c1r−1 − c1r−2

C̃2(r − 1)
e−pi(t̄−ti)u(pi(ti+1 − t̄), pi(t̄− ti))

+
c1r − c1r−1

C̃2(r)
e−pi(ti+1−t̄)u(pi(t̄− ti), pi(ti+1 − t̄)), (6.15)

where C̃2(r − 1) and C̃2(r) are defined in (6.19) and (6.20), which can be approx-
imated to the machine precision. It is now not a problem, for example, to apply
collocation methods with tension splines in a numerically stable way (see [17]), since
for these methods, except the spline value, we need the first and the second ordinary
derivative of the spline to form a collocation matrix.

6.2 Chebyshev tension splines

As we have already calculated tension splines associated to the multiplicity vector
m

(2), we will apply Lemma 3.1 and Theorem 3.7 to get tension splines associated
to m

(1). Lemma 3.1 gives us

C3(i) =
C̃2(r)

C2(i)
C̃3(r) + C̃3(r + 1) +

C̃2(r + 3)

C2(i+ 1)
C̃3(r + 2), (6.16)

68 CHAPTER 6. TENSION SPLINES

with

C̃2(r)

C2(i)
=

cosh (piti+1)

pi

tanh

(
pihi

2

)

cosh (piti+1)

pi

tanh

(
pihi

2

)
+

cosh (pi+1ti+1)

pi+1
tanh

(
pi+1hi+1

2

) ,

C̃2(r + 3)

C2(i+ 1)
=

cosh (pi+2ti+2)

pi+2
tanh

(
pi+2hi+2

2

)

cosh (pi+1ti+2)

pi+1
tanh

(
pi+1hi+1

2

)
+

cosh (pi+2ti+2)

pi+2
tanh

(
pi+2hi+2

2

) ,

which can be calculated by means of the functions

s(x, y) :=
x tanh y

y tanh x
, z(x, y, a) :=

1

1 + a cosh y

cosh x

, (6.17)

with arguments x and y nonnegative and a positive. The function s is positive, and

lim
(x,y)→(0,0)

s(x, y) = 1, lim
x→0

s(x, y) =
tanh y

y
, lim

y→0
s(x, y) =

x

tanhx
, (6.18)

and s(x, y) ≈ x
y

for large x and y. The function z satisfies: 0 < z(x, y, a) 6 1,

z(0, 0, 0) = 1, lim
x→∞

z(x, y, a) = 1, lim
y→∞

z(x, y, a) = 0, lim
a→∞

z(x, y, a) = 0,

and z ≈ e−b−y+x 1+e−2x

1+e−2y for b+ y − x large, where b := ln a. Now,

C̃2(r)

C2(i)
= z

(
piti+1, pi+1ti+1,

hi+1

hi

s

(
pihi

2
,
pi+1hi+1

2

))
,

C̃2(r + 3)

C2(i+ 1)
= z

(
pi+2ti+2, pi+1ti+2,

hi+1

hi+2
s

(
pi+2hi+2

2
,
pi+1hi+1

2

))
,

and (6.16) can be calculated numerically stable. Further, Theorem 3.7 gives T 4
i ,

the B-spline of Chebyshev tension spline space.

6.3 C2 tension splines

As we mentioned before, we will treat the C2 tension splines space as the subspace
of S(4, dσ, T̃).

6.3.1 Quasi–Oslo type algorithm for C2 tension splines

Let us define

C̃2(r − 1) :=
tanh

(
pihi

2

)

pi

, (6.19)

C̃2(r) :=
tanh

(
pihi

2

)

pi

, (6.20)

C2(i) := C̃2(r) + C̃2(r + 1).

6.3. C2 TENSION SPLINES 69

Then, we can also define a variation of Lemma 3.1 and Theorem 3.7 for C2 tension
splines. If

γ3
r,i :=

C̃2(r)

C2(i)
,

γ3
r+1,i := 1,

γ3
r+2,i :=

C̃2(r + 3)

C2(i+ 1)
,

and

γ4
r,i :=

γ3
r,iC̃3(r)

C3(i)
, (6.21)

γ4
r+1,i :=

γ3
r,iC̃3(r) + γ3

r+1,iC̃3(r + 1)

C3(i)
, (6.22)

γ4
r+2,i :=

γ3
r+3,i+1C̃3(r + 3) + γ3

r+4,i+1C̃3(r + 4)

C3(i+ 1)
, (6.23)

γ4
r+3,i :=

γ3
r+4,i+1C̃3(r + 4)

C3(i+ 1)
, (6.24)

with
C3(i) := γ3

r,iC̃3(r) + C̃3(r + 1) + γ3
r+2,iC̃3(r + 2), (6.25)

then

T
4
i :=

r+3∑

j=r

γ4
j,iT̃

4
j

make B-splines for C2 tension splines space according to [16]. Straightforward
calculation can prove that T

4
i is of class C2.

6.3.2 Quasi–derivative formula for C2 tension splines

Also, the variation of derivative formula (2.27) holds. Let

T
3
i :=

C̃2(r)

C2(i)
T̃ 3

r + T̃ 3
r+1 +

C̃2(r + 3)

C2(i+ 1)
T̃ 3

r+2, (6.26)

then obviously

C3(i) =

∫ ti+3

ti

T
3
i (τ2) dτ2,

and easy calculation shows that T
3
i is of class C1 and

DT
4
i =

T
3
i

C3(i)
−

T
3
i+1

C3(i+ 1)
. (6.27)

70 CHAPTER 6. TENSION SPLINES

Now, let

T̃
2
r(x) :=





sinh (pi(x− ti))

sinh (pihi)
, for x ∈ [ti, ti+1),

0 otherwise,
(6.28)

T̃
2
r+1(x) :=





sinh (pi+1(ti+2 − x))

sinh (pi+1hi+1)
, for x ∈ [ti+1, ti+2),

0 otherwise,
(6.29)

and
T

2
i = T̃

2
r + T̃

2
r+1. (6.30)

Then it is easy to see that T2
i is continuous,

C̃2(r) =

∫ t̃r+2

t̃r

T̃
2
r(τ3) dτ3, C̃2(r + 1) =

∫ t̃r+3

t̃r+1

T̃
2
r+1(τ3) dτ3,

and

DT
3
i =

T2
i

C2(i)
−

T2
i+1

C2(i+ 1)
. (6.31)

For the simplicity, the linear combination of T3
i (T2

i) we shall call just a tension
spline of order 3 (2).

For numerical stability, next to the functions defined in section 6.1, we need

w(x, y, p, q) :=
1

1 + y

x
s
(

p x

2
, q y

2

) , (6.32)

with s defined in (6.17). Then 0 < w(x, y, p, q) 6 1,

lim
y→0

w(x, y, p, q) = 1, lim
x→0

w(x, y, p, q) = 0, lim
p,q→0

w(x, y, p, q) =
x

x+ y
, (6.33)

for x 6= 0, so w is not continuous at (0, 0, 0, 0), but as with the function u, this is
not a problem, since in this case w is multiplied by zero. Now

C̃2(r)

C2(i)
= w(hi, hi+1, pi, pi+1),

C̃2(r + 3)

C2(i+ 1)
= w(hi+2, hi+1, pi+2, pi+1),

and the rest can be stably calculated with previous functions.

6.3.3 Derivatives of C2 tension spline

As in the case of C1 tension splines, we can also calculate derivatives of C2 tension
spline. Let s =

∑
j cjT

4
j and t̄ ∈ [ti, ti+1). Then

s(t̄) =

i∑

j=i−3

cjT
4
j(t̄).

6.3. C2 TENSION SPLINES 71

The first derivative is equal to

Ds(t̄) =
i∑

j=i−2

c1jT
3
j(t̄),

where

c1j =
cj − cj−1

C3(j)
,

for j = i− 2, i− 1, i, by (6.27). The second derivative is

D2s(t̄) =

i∑

j=i−1

c2jT
2
j(t̄),

with

c2j =
c1j − c1j−1

C2(j)
,

for j = i− 1, i by (6.31).
The numerical stability in these algorithms is achieved by using only positive

linear (most often convex) combinations of positive values, and special functions
calculated up to the computer accuracy.

Chapter 7

Cycloidal splines

The last example of applications of knot insertion algorithms are cycloidal splines

(also called helix splines). We can notice that a lot of shapes of the things are made
from straight lines or circle arcs. Also, in the industry, sometimes the computer
guided machines have to cut shapes like circles or helices. Therefore, it is useful to
have curves piecewisely spanned by linear polynomials, sine and cosine, i.e. cycloidal

curves [5, 14, 15, 28], and of course a stable algorithm for calculating with them.

7.1 Equidistant cycloidal splines

Let ∆ = {xi}
l+1
i=0 be a partition of [0, (l+1)π

2
], such that xi = iπ

2
, and let Cs : R → R

be defined by

Cs(x) := cos (x −
π

4
− i

π

2
)

for x ∈ [iπ
2
, (i+1)π

2
], i ∈ Z. Cs is continuous, periodical extension of cos (x− π

4
)|[0, π

2
].

Consider a CCC–system on R:

u1(x) = 1,

u2(x) =

∫ x

0

dτ2,

u3(x) =

∫ x

0

dτ2

∫ τ2

0

Cs(τ3) dτ3,

u4(x) =

∫ x

0

dτ2

∫ τ2

0

Cs(τ3) dτ3

∫ τ3

0

1

Cs2(τ4)
dτ4,

and the associated generalized derivatives:

L(1,d�) = D,

L(2,d�) =
1

Cs
D2,

L(3,d�) = Cs2D
1

Cs
D2,

L(4,d�) =
1

Cs
DCs2D

1

Cs
D2.

72

7.1. EQUIDISTANT CYCLOIDAL SPLINES 73

One easily verifies that span{u1, u2, u3, u4} = span{1, x, sinx, cos x} on each interval
[iπ

2
, (i+ 1)π

2
].

Let t̄ ∈ (ti, ti+1) where T , T̄ , T̃ and T̂ , and the rest of the notation as in
subsection 3.4.2 (T has all interior knots of multiplicity one). Then by Lemma 3.1

C1(j) =
sinhj

Cs(tj)Cs(tj+1)
, (7.1)

C2(j) = Cs(tj+1)
sin

hj+hj+1

2

cos
hj

2
cos

hj+1

2

, (7.2)

C3(j) = cos
hj+1

2

[
sin

hj

2

sin
hj+hj+1

2

(
hj − sinhj

2 sin2 hj

2

+
hj+1 − sinhj+1

2 sin2 hj+1

2

)

+
2

sin2 hj+1

2

(
sin

hj+1

2
−
hj+1

2
cos

hj+1

2

)

+
sin

hj+2

2

sin
hj+1+hj+2

2

(
hj+1 − sin hj+1

2 sin2 hj+1

2

+
hj+2 − sin hj+2

2 sin2 hj+2

2

)]
. (7.3)

The cycloidal splines can now be calculated with the deBoor algorithm (3.20). As
in the case of the tension splines, in order to avoid redundant operations and for
numerical stability, instead of C1, C2, C3 we define functions CC1, CC2 and CC3:

CC1(x) := sin
x

2
, CC2(x, y) := sin

x+ y

2
, (7.4)

CC3(x, y, z) :=
1

2
u
(x

2
,
y

2

)
(f(x) + f(y)) + 2g(

y

2
) +

1

2
u
(z

2
,
y

2

)
(f(y) + f(z)),

with

f(x) :=
x− sin x

sin2 x
2

, g(x) :=
sin x− x cosx

sin2 x
, u(x, y) :=

sin x

sin (x+ y)
. (7.5)

The function f has to be evaluated only on interval [0, π
2
], with limx→0 f(x) = 0,

so it can be nicely approximated by Padé approximant on the whole interval. The
same is true for g, which we only need on interval [0, π

4
], also with limx→0 g(x) = 0.

Because

lim
x→0

u(x, y) = 0, lim
y→0

u(x, y) = 1,

the function u is not continuous at (0, 0), like the function u from tensions splines,
but from (7.4) it is obvious that u(0, 0) is then multiplied by zero. Further the
algorithm proceeds in the same manner as the one for C1 tension splines.

To give an example of application of the algorithm, we will use elementary
functions x, sin x and cosx. For that, we need their deBoor points, on interval
[0, (l+1)π

2
] (t1 = −3π

2
, t2 = −π, t3 = −π

2
, t4 = 0 and tl+5 = (l+1)π

2
, tl+6 = (l+2)π

2
,

tl+7 = (l + 3)π
2
, tl+8 = (l + 4)π

2
):

74 CHAPTER 7. CYCLOIDAL SPLINES

x : ci = (i− 2)
π

2
, i = 1, 2, . . . , l + 4,

sin x : c4i+1 = −
π

2
, c4i+2 = c4(i+1) = 0, c4i+3 =

π

2
, i = 0, 1, . . . ,

cos x : c4i+1 = c4i+3 = 0, c4i+2 =
π

2
, c4(i+1) = −

π

2
, i = 0, 1,

Because some of deBoor points alternate in sign, catastrophic cancellation can occur
in some cases. Also, the continuity of the second generalized derivative is probably
unnecessary condition. There is no such difficulty if we use the Bezier variant of
cycloidal splines.

This algorithm can also be carried out for t̄ = ti and even with extended partition
with knots of arbitrary multiplicities, just by applying Theorem 2.19 or Remark 2.7
in (7.1), (7.2) and (7.3).

7.2 Equidistant Bezier cycloidal splines

We will, nevertheless, proceed with the Bezier case. Let t̄ ∈ (xi, xi+1) ⊂ [0, (l+1)π
2
],

and let T , T̄ , T̃ and T̂ be extended partitions of the interval [0, (l+ 1)π
2
] whose all

interior knots, except maybe one, have multiplicity 4: T = {tj}
4(l+2)
j=1 where

t4j+1 = t4j+2 = t4j+3 = t4(j+1) = xj for j = 0, . . . , l + 1;

T̄ = {t̄j}
4(l+2)+1
j=1 where

t̄j = tj for j = 1, . . . , 4(i+ 1),

t̄4(i+1)+1 = t̄,

t̄j = tj−1 for j = 4(i+ 1) + 2, . . . , 4(l + 2) + 1;

T̃ = {t̃j}
4(l+2)+2
j=1 where

t̃j = tj for j = 1, . . . , 4(i+ 1),

t̃4(i+1)+1 = t̃4(i+1)+2 = t̄,

t̃j = tj−2 for j = 4(i+ 1) + 3, . . . , 4(l + 2) + 2;

and finally, T̂ = {t̂j}
4(l+2)+3
j=1 , where

t̂j = tj for j = 1, . . . , 4(i+ 1),

t̂4(i+1)+1 = t̂4(i+1)+2 = t̂4(i+1)+3 = t̄,

t̂j = tj−3 for j = 4(i+ 1) + 4, . . . , 4(l + 2) + 3.

We use the notation T̄ k
j , T̃

k
j , T̂

k
j , C̄k−1(j), C̃k−1(j), Ĉk−1(j) for B-splines and

their integrals accordingly. These integrals are then calculated from (7.1), (7.2) and
(7.3) according to Theorem 2.19 or Remark 2.7 by coalescing the knots. For com-
puter implementation, we again use the deBoor algorithm together with functions
defined in (7.4), only now more arguments are equal to zero.

7.3. NONEQUIDISTANT BEZIER CYCLOIDAL SPLINES 75

Given splines are generalized Bezier splines, and analogous properties are valid:
if we observe an interval [xi, xi+1] = [iπ

2
, (i+1)π

2
], and a parameterized curve in R

2:

[
x(t)
y(t)

]
=

[
axT

4
4i+1(t) + bxT

4
4i+2(t) + cxT

4
4i+3 + dxT

4
4(i+1)(t)

ayT
4
4i+1(t) + byT

4
4i+2(t) + cyT

4
4i+3 + dyT

4
4(i+1)(t)

]

on a given interval, for some index i and deBoor points

A =

[
ax

ay

]
, B =

[
bx
by

]
, C =

[
cx
cy

]
, D =

[
dx

dy

]
,

then the curve passes through points A and D, i.e.

[
x(xi)
y(xi)

]
= A,

[
x(xi+1)
y(xi+1)

]
= D,

and derivatives at the end points, by the derivative formula (2.27), since L(1,d�) = D,
are

[
ẋ(xi)
ẏ(xi)

]
=

1

C3(4i+ 1)
(B − A),

[
ẋ(xi+1)
ẏ(xi+1)

]
=

1

C3(4i+ 3)
(D − C).

When we, for example, want to derive deBoor points for x, sin x and cosx, we
get:

x : d0 = 0, d1 = π
2
− 1, d2 = 1, d3 = π

2
,

sin x : d0 = 0, d1 = π
2
− 1, d2 = 1, d3 = 1,

cos x : d0 = 1, d1 = 1, d2 = π
2
− 1, d3 = 0.

This time we do not have any problems with catastrophic cancellations, because all
of the deBoor points are nonnegative.

7.3 Nonequidistant Bezier cycloidal splines

Further, a generalization can be made in sense that, instead of taking an equidistant
partition, we take an arbitrary partition {xi}

l+1
i=0 of [a, b], such that 0 < hi = xi+1 −

xi 6 π
2
, and multiplicity vector m

(4) = (4, . . . , 4). Now, Cs : [a, b] → R is defined
by Cs(x) := cos (x − π

4
− xi) for x ∈ [xi, xi+1), i = 0, . . . , l − 1 or x ∈ [xl, xl+1] for

i = l. Generally, Cs is not continuous.

The algorithm from previous section can be easily modified for this case: we
only need to replace the knots iπ

2
with given xi in (7.1),(7.2) and (7.3). We can

again apply this algorithm to express functions x, sin x, cosx, x−sin x and 1−cos x
on interval [0, z], z 6 π

2
(with t1 = 0), where their deBoor points are:

76 CHAPTER 7. CYCLOIDAL SPLINES

x : d0 = 0, d1 =
z − sin z

2 sin2 z
2

, d2 =
sin z − z cos z

2 sin2 z
2

, d3 = z,

sin x : d0 = 0, d1 =
z − sin z

2 sin2 z
2

, d2 =
sin z − z cos z

2 sin2 z
2

, d3 = sin z,

cos x : d0 = 1, d1 = 1, d2 = z cot
z

2
− 1, d3 = cos z,

x−sin x : d0 = 0, d1 = 0, d2 = 0, d3 = z − sin z,

1−cos x : d0 = 0, d1 = 0, d2 = 2 − z cot
z

2
, d3 = 1 − cos z.

All of these expressions can be stably calculated as in (7.5).

7.4 The choice of CCC–systems

In this section we just want to comment the choice of the CCC–systems in Sections
7.1 and 7.3. We know that ECC–system for span(1, x, sin x, cosx) exists on interval
only of length less than 2π (although there exists an ECC–space on interval [a, a+2π]
which contains 1, x, sin x and cos x but, its dimension is higher than 4, (see [5])).
We want to overcome this restriction by substituting ECC–system with the CCC–
system. The choice of the length of the basic subinterval hi = π

2
and of the function

Cs in Sections 7.1 and 7.2, is purely for obtaining a nice CCC–system and reduced
systems in the sense of easy calculation and numerical stability, and in Section 7.3
we put the restriction hi 6 π

2
because the algorithm from Section 7.2 can be very

easily generalized for that case.
The problem of calculating cycloidal splines has already attracted a lot of atten-

tion, and although in [15, 21, 28] algorithms for calculating with cycloidal splines
have been developed, the explicit numerically stable algorithms for practical use
have not yet been discussed, what we have, in our case, presented in this chapter.

Chapter 8

Program codes

In this thesis we have given the algorithms for calculating with several kinds of
splines. For all of them we have made the program codes, but for brevity, we will
list here only the program codes of subroutines involved in calculating the tension
splines, as well as their first and second derivatives. The subroutines are written in
Fortran 90, and the algorithms for them are described in Chapter 6. All the program
codes of the routines, as well as the examples, can be found on the enclosed CD.

The routines are divided in two groups: the first is for calculating with C1

tension splines, and the second with C2. To avoid confusion in notations in the
comments of the subroutines, when we refer to C1 tension splines, we call them
Chebyshev tension splines, while when we refer to C2 tension splines, we simply
call them tension splines. What both groups have in common is the use of the
module functions, which contains all auxiliary and elementary functions needed
in calculations:

f, g and u correspond to the functions having the same names defined in (6.5),
(6.6) and (6.7). To be precise, f(x)= f(x), g(x)= g(x) and u(h,k,p)=
u(p·h,p·k). We calculate f and g by Padé approximation for small x, and
for large x, i.e. large p·h and p·k, we use limits and asymptotic behavior of
all three functions, as described in Subsection 6.1.1;

CC3 is needed for calculating the integrals of B-splines associated with the first
reduced system of C1 tension splines, i.e. CC3 calculates the function CC3

from (6.8);

divth1 and divth2 calculate divth1(h,k,p)=
tanh (p · h)
tanh (p · k)

and divth2(h,k,l,p)

=
tanh (p · h)

tanh (p · h) + tanh (p · k)
, with l=h+k, needed for (6.9), (6.10) and (6.11).

In these functions, limits (6.12) are used;

s corresponds to the function having the same name in (6.17), again, its limits
(6.18) are used;

KC2div calculates the function w defined in (6.32) and uses (6.33);

77

78 CHAPTER 8. PROGRAM CODES

KC2 is needed for (6.19) and (6.20), KC2(x)=
tanh (x)

x ;

KC3 derives C3(i) from (6.25), where the call of the function has the arguments
KC3(h,p), with h and p being arrays of length 3: h(1)= hi, h(2)= hi+1,
h(3)= hi+2, and p(1)= pi, p(2)= pi+1, p(3)= pi+2.

gamma4, gamma4d1 and gamma4d4 calculate the coefficients of the quasi–Oslo type
algorithm which connects C2 tension B-splines to C1 tension B-splines: the
subroutine gamma4 produces all four coefficients (6.21)–(6.24), while the func-
tion gamma4d1 only the first one (6.21) and gamma4d4 only the last one (6.24).
A call of the subroutine is gamma4(h,p,d), where all three arguments are ar-
rays of 4 elements: h(1)= hi, h(2)= hi+1, h(3)= hi+2, h(4)= hi+3; p(1)= pi,
p(2)= pi+1, p(3)= pi+2, p(4)= pi+3 and the output argument d contains
d(1)= γ4

r,i, d(2)= γ4
r+1,i, d(3)=γ

4
r+2,i, d(4)= γ4

r+3,i. In the call of the func-
tion gamma4d1(h,p) the arrays h and p contain only hi, hi+1, hi+2, pi, pi+1,
pi+2, while in gamma4d4(h,p) hi+1, hi+2, hi+3, pi+1, pi+2, pi+3.

The notation above is the same as in Chapter 6, and the functions that do not
have their arguments listed here have the same arguments as in Chapter 6. Each
of the following subroutines uses the module functions. Some of the subroutines
use some other, as represented in Table 8.1:

subroutine ...calls the subroutine:

tension4C1

tension3C1

tension2

tension1der4C1 tension3C1

tension2der4C1 tension2

tension1der4C1coeff

tension1der3C1coeff

tension4C2 tension4C1

tension3C2 tension3C1

tension1der4C2 tension3C2

tension2der4C2 tension2

tension1der4C2coeff

tension1der3C2coeff

Table 8.1: The subroutines for calculating C1 and C2 tension splines and their
derivatives

In the comments of the subroutines, we also mention an auxiliary term: dimx,
which we do not use explicitly in most of the subroutines. It is put here just to
help the user to define the dimensions of the actual parameters in the call of the
subroutines.

8.1. C1 TENSION SPLINES 79

8.1 C1 tension splines

Although the comments in subroutines describe the input and output variables,
few things need detailed explanations. C1 tension splines are associated with an
extended partition with all interior knots of multiplicity two, and the boundary
points of multiplicity four, but the algorithms are developed in such a way that it is
not necessary to remember each interior knot twice. Therefore the array xx in the
following routines has each interior knot saved only once, and for consistence, both
boundary points are saved twice. The points in the array xx represent modified
partition of the given interval (not the extended one). The array px contains the
tension parameters of each subinterval defined by xx, but as the first and the last
subinterval are trivial, the first and the last elements of px do not matter, and can
therefore be arbitrary. Further, the routines are designed so that they can calculate
the value of a parameterized spline curve whose deBoor points have dimension
dim. It is also important to emphasize that the deBoor points given in cx have
numeration that corresponds to the extended partition, and not to the xx.

The subroutine tension4C1 calculates the value of the spline curve defined with
deBoor points cx at the point x, by the generalized deBoor algorithm described in
Subsection 6.1.1:

subroutine tension4C1 (x,xx,px,ileft,cx,dim,spl)

!

! Generalized de Boor algorithm for calculating Chebyshev tension

! spline curve

!

! INPUT:

! x = double precision variable, the point at which the

! spline curve is evaluated

! xx = rank-one double precision array of size dimx, the

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx-1, the

! array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1) and px(dimx-1) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

80 CHAPTER 8. PROGRAM CODES

! cx = rank-two double precision array of shape dim by

! 2*dimx-4, the array of de Boor points associated

! with the extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+4)]

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the Chebyshev tension spline curve

! at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision, parameter :: zero=0.0d0

double precision :: t(-1:2),p(-1:1),c(dim,-3:0) ! t(0)<=x<=t(1)

double precision :: temp1,temp2,temp3,temp4,h(-1:1),xa,xb,u1,u2

double precision :: C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12

integer :: ileftc,i

!

! Storing only relevant data

!

t(-1:2)=xx(ileft-1:ileft+2)

p(-1:1)=px(ileft-1:ileft+1)

ileftc=2*ileft

c(1:dim,-3:0)=cx(1:dim,ileftc-3:ileftc)

!

! Calculating the length of the subintervals involved

!

do i=-1,1

h(i)=t(i+1)-t(i)

enddo

8.1. C1 TENSION SPLINES 81

!

! If x is equal to the left end point of subinterval

! [xx(ileft),xx(ileft+1)], then the point x must be inserted only

! once...

!

if (x==t(0)) then

if (t(-1)==t(0)) then

spl=c(1:dim,-3)

return

endif

temp1=CC3(zero,zero,h(0),zero,zero,p(0))

temp2=CC3(h(-1),zero,zero,p(-1),zero,zero)

spl=(c(1:dim,-3)*temp1+c(1:dim,-2)*temp2)/ &

CC3(h(-1),zero,h(0),p(-1),zero,p(0))

return

!

! ... and also if x is equal to the right end point

!

elseif (x==t(1)) then

if (t(1)==t(2)) then

spl=c(1:dim,0)

return

endif

temp1=CC3(zero,zero,h(1),zero,zero,p(1))

temp2=CC3(h(0),zero,zero,p(0),zero,zero)

spl=(c(1:dim,-1)*temp1+c(1:dim,0)*temp2)/ &

CC3(h(0),zero,h(1),p(0),zero,p(1))

return

endif

!

! If x is in the interior of [xx(ileft),xx(ileft+1)], then the

! generalized de Boor algorithm of order 4 is performed, where the

! point x is inserted 3 times, but first, 12 integrals of

! B-splines of order 3 are calculated

!

xa=x-t(0)

xb=t(1)-x

u1=u(xb/2,xa/2,p(0))

u2=u(xa/2,xb/2,p(0))

82 CHAPTER 8. PROGRAM CODES

C1=CC3(zero,zero,xb,zero,zero,p(0))

C2=CC3(h(-1),zero,h(0),p(-1),zero,p(0))

C3=CC3(zero,xa,xb,zero,p(0),p(0))

C4=CC3(zero,xa,zero,zero,p(0),zero)

C5=CC3(xa,xb,zero,p(0),p(0),zero)

C6=CC3(xa,zero,xb,p(0),zero,p(0))

C7=CC3(zero,h(0),zero,zero,p(0),zero)

C8=CC3(xa,zero,zero,p(0),zero,zero)

C9=CC3(zero,xb,zero,zero,p(0),zero)

C10=CC3(h(0),zero,h(1),p(0),zero,p(1))

C11=CC3(h(-1),zero,xa,p(-1),zero,p(0))

C12=CC3(xb,zero,h(1),p(0),zero,p(1))

!

! Calculation of 4 nontrivial B-splines at the point x

!

temp1=u1*C1/C2

temp2=C1*C11/(C3*C2) + (C1*C4*C5/C3 + C8*C9)/(C6*C7)

temp3=(C1*C4 + C8*C9*C3/C5)/(C6*C7) + C8*C12/(C5*C10)

temp4=u2*C8/C10

!

! The final value of the Chebyshev tension spline curve

! represented as the linear combination of B-splines

!

spl=u1*(exp(-p(0)*xa)*c(1:dim,-3)*temp1+c(1:dim,-2)*temp2)+ &

u2*(c(1:dim,-1)*temp3+exp(-p(0)*xb)*c(1:dim,0)*temp4)

end subroutine tension4C1

If we want to calculate the value of the first derivative of a spline curve, first we
need to be able to calculate the splines associated with the first reduced system as
in Subsection 6.1.2. The subroutine tension3C1 performs this task. The extended
partition associated with these splines is the same as for the splines of order 4:

subroutine tension3C1 (x,xx,px,ileft,cx,dim,spl)

!

! Generalized de Boor algorithm for calculating the third order

! Chebyshev tension spline curve, i.e. a spline curve associated

! with the first reduced system of Chebyshev tension splines

!

! INPUT:

! x = double precision variable, the point at which the

! spline curve is evaluated

! xx = rank-one double precision array of size dimx, the

8.1. C1 TENSION SPLINES 83

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx-1, the

! array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1) and px(dimx-1) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! 2*dimx-4, the array of de Boor points of the third

! order Chebyshev tension spline, associated with the

! extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+3)], so cx(1:dim,1) can be

! arbitrary

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the spline curve associated with

! the first reduced system at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision :: t(0:1),p,c(dim,-2:0) !t(0)<=x<=t(1)

double precision :: temp1,temp2,temp3,h,xa,xb,temp

84 CHAPTER 8. PROGRAM CODES

integer :: ileftc

!

! Storing only relevant data

!

t(0:1)=xx(ileft:ileft+1)

p=px(ileft)

ileftc=2*ileft

c(1:dim,-2:0)=cx(1:dim,ileftc-2:ileftc)

!

! Calculating the length of the subintervals involved

!

h=t(1)-t(0)

xa=x-t(0)

xb=t(1)-x

!

! If x is equal to the left end point of subinterval

! [xx(ileft),xx(ileft+1)], then the value of the spline at x is

! equal to the de Boor point cx(ileft-2)...

!

if (x==t(0)) then

spl=c(1:dim,-2)

return

!

! ... and also if x is equal to the right end point, then the

! spline is equal to the cx(ileft)

!

elseif (x==t(1)) then

spl=c(1:dim,0)

return

endif

!

! If x is in the interior of [xx(ileft),xx(ileft+1)], then the

! generalized de Boor algorithm of order 3 is performed, where the

! point x is inserted 2 times

!

temp=divth1(xb/2,h/2,p)

temp1=exp(-p*xa)*u(xb,xa,p)*temp

temp2=2*temp*divth2(xa/2,xb/2,h/2,p)

temp3=exp(-p*xb)*u(xa,xb,p)*divth1(xa/2,h/2,p)

!

! The final value of the spline curve

!

spl=c(1:dim,-2)*temp1+c(1:dim,-1)*temp2+c(1:dim,0)*temp3

8.1. C1 TENSION SPLINES 85

end subroutine tension3C1

Now we can calculate the first derivative of a tension spline curve like in Sub-
section 6.1.3:

subroutine tension1der4C1 (x,xx,px,ileft,cx,dim,spl)

!

! Calculating the first derivative of the Chebyshev tension spline

! curve

!

! INPUT:

! x = double precision variable, the point at which the

! first derivative of the spline curve is evaluated

! xx = rank-one double precision array of size dimx, the

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx-1, the

! array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1) and px(dimx-1) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! 2*dimx-4, the array of de Boor points of the

! Chebyshev tension spline, associated with the

! extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+4)]

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)

!

! OUTPUT:

86 CHAPTER 8. PROGRAM CODES

! spl = rank-one double precision array of size dim, the

! output value of the first derivative of the

! Chebyshev tension spline curve at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision, parameter :: zero=0.0d0

double precision :: t(-1:2),p(-1:1),c(dim,-3:0) ! t(0)<=x<=t(1)

double precision :: h(-1:1)

integer :: ileftc,i

!

! Storing only relevant data

!

t(-1:2)=xx(ileft-1:ileft+2)

p(-1:1)=px(ileft-1:ileft+1)

ileftc=2*ileft

c(1:dim,-3:0)=cx(1:dim,ileftc-3:ileftc)

!

! Calculating the length of the subintervals involved

!

do i=-1,1

h(i)=t(i+1)-t(i)

enddo

!

! Calculating the de Boor points of the first derivative

!

c(1:dim,0)=(c(1:dim,0)-c(1:dim,-1))/ &

CC3(h(0),zero,h(1),p(0),zero ,p(1))

c(1:dim,-1)=(c(1:dim,-1)-c(1:dim,-2))*2/ &

CC3(zero,h(0),zero,zero,p(0),zero)/ &

(1.0d0+exp(-p(0)*h(0)))

c(1:dim,-2)=(c(1:dim,-2)-c(1:dim,-3))/ &

CC3(h(-1),zero,h(0),p(-1),zero,p(0))

!

! Calculating the value of the first derivative of the Chebyshev

! tension spline curve as the linear combination of the B-splines

8.1. C1 TENSION SPLINES 87

! associated with the first reduced system

!

call tension3C1 (x,t,p,2,c,dim,spl)

end subroutine tension1der4C1

Sometimes, the user wants to calculate the first derivative of the given spline
at many points, for example for drawing the graph of the first derivative, which
can be done with the subroutine tension1der4C1. In that case, the most of the
deBoor points of the first derivative would be calculated several times. To avoid the
repetition of the same calculation, we suggest the subroutine tension1der4C1coeff
which calculates all deBoor points of the first derivative:

subroutine tension1der4C1coeff (xx,px,cx,dimx,dim)

!

! Calculating all de Boor points of the first derivative of the

! Chebyshev tension spline curve

!

! INPUT:

! xx = rank-one double precision array of size dimx, the

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx-1, the

! array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1) and px(dimx-1) can be arbitrary

! dimx = integer variable, the size of the array xx

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! INPUT and OUTPUT:

! cx = rank-two double precision array of shape dim by

! 2*dimx-4;

! ON INPUT: the array of de Boor points of the

! Chebyshev tension spline, associated with the

! extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

88 CHAPTER 8. PROGRAM CODES

! support [T(i),T(i+4)]

! ON OUTPUT: the array of de Boor points of the

! first derivative of the Chebyshev tension spline;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+3)] (cx(1:dim,1) will not be used)

!

use functions

implicit none

integer, intent(in) :: dimx,dim

double precision, intent(in) :: xx(dimx),px(dimx-1)

double precision, intent(inout) :: cx(dim,2*dimx-4)

double precision, parameter :: zero=0.0d0

double precision :: h(2*dimx-1),p(2*dimx-1)

integer :: i

!

! Calculating the length of all subintervals involved and creating

! the array of tension parameters corresponding to the extended

! partition T

!

do i=1,dimx-1

h(2*i-1)=zero

h(2*i)=xx(i+1)-xx(i)

p(2*i-1)=zero

p(2*i)=px(i)

enddo

h(2*dimx-1)=zero

p(2*dimx-1)=zero

!

! Calculating the de Boor points of the first derivative

!

do i=2*dimx-4,2,-1

cx(1:dim,i)=(cx(1:dim,i)-cx(1:dim,i-1))*2/ &

CC3(h(i),h(i+1),h(i+2),p(i),p(i+1),p(i+2))/ &

(1.0d0+exp(-p(i+1)*h(i+1)))

enddo

end subroutine tension1der4C1coeff

The second derivatives of the C1 tension splines form a space of splines piece-

8.1. C1 TENSION SPLINES 89

wisely spanned by sinh (p x) and cosh (p x), and possibly discontinuous at the knots
of the partition. The spline s from such a spline space is calculated (see (6.15)) by

s(t̄) = cr−1 e
−pi(t̄−ti)u(pi(ti+1 − t̄), pi(t̄− ti))

+cr e
−pi(ti+1−t̄)u(pi(t̄− ti), pi(ti+1 − t̄)),

what performs the subroutine tension2. We also use the same subroutine for
calculating the second order C2 tension splines, therefore the comments referring
to C1 tension splines will follow after a), and for C2 tension splines after b).

subroutine tension2 (x,xx,px,ileft,cx,ileftc,dim,spl)

!

! Calculating the second order a) Chebyshev tension spline or

! b) tension spline curves

!

! INPUT:

! x = double precision variable, the point at which the

! spline curve is evaluated

! xx = a) rank-one double precision array of size dimx, the

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4;

! b) rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size

! a) dimx-1, b) dimx+3,

! the array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! a) px(1) and px(dimx-1) can be arbitrary

! b) px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

90 CHAPTER 8. PROGRAM CODES

! [xx(ileft),xx(ileft+1)]

! cx = a) rank-two double precision array of shape dim by

! 2*dimx-4, the array of de Boor pints of the second

! order Chebyshev tension spline associated with the

! extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+2)], so cx(1:dim,1) and

! cx(2:dim,2) can be arbitrary

! b) rank-two double precision array of shape dim by

! dimx, the array of de Boor points of the second

! order tension spline associated with the extended

! partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+2)], so cx(1:dim,1) and

! cx(2:dim,2) can be arbitrary

! ileftc = a) integer variable, the index in the second

! dimension of the array cx such that cx(1:dim,ileftc)

! corresponds to the B-spline with the support

! [T(ileftc),T(ileftc+2)] where

! T(ileftc-1)=T(ileftc)=xx(ileft)

! b) ileftc=ileft

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = a) size(xx)

! b) size(xx)-4

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the second order (Chebyshev)

! tension spline curve at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,ileftc,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision :: t(0:1),p,c(dim,-1:0) ! t(0)<=x<=t(1)

double precision :: h1,h2,temp1,temp2

8.1. C1 TENSION SPLINES 91

!

! Storing only relevant data

!

t(0:1)=xx(ileft:ileft+1)

p=px(ileft)

c(1:dim,-1:0)=cx(1:dim,ileftc-1:ileftc)

!

! Calculating the length of the subintervals involved

!

h1=x-t(0)

h2=t(1)-x

!

! Direct calculation of 2 nontrivial B-splines at the point x

!

temp1=dexp(-p*h1)*u(h2,h1,p)

temp2=dexp(-p*h2)*u(h1,h2,p)

!

! The final value of the spline curve

!

spl=c(1:dim,-1)*temp1+c(1:dim,0)*temp2

end subroutine tension2

The second derivative (see Subsection 6.1.3) of a given C1 tension spline now
can be obtained by tension2der4C1:

subroutine tension2der4C1 (x,xx,px,ileft,cx,dim,spl)

!

! Calculating the second derivative of the Chebyshev tension

! spline curve

!

! INPUT:

! x = double precision variable, the point at which the

! second derivative of the spline curve is evaluated

! xx = rank-one double precision array of size dimx, the

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4

92 CHAPTER 8. PROGRAM CODES

! px = rank-one double precision array of size dimx-1, the

! array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1) and px(dimx-1) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! 2*dimx-4, the array of de Boor points of the

! Chebyshev tension spline, associated with the

! extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+4)]

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the second derivative of the

! Chebyshev tension spline curve at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision, parameter :: zero=0.0d0

double precision :: t(-1:2),p(-1:1),c(dim,-3:0) ! t(0)<=x<=t(1)

double precision :: h(-1:1),kc2ph

integer :: ileftc,i

!

! Storing only relevant data

!

t(-1:2)=xx(ileft-1:ileft+2)

p(-1:1)=px(ileft-1:ileft+1)

8.1. C1 TENSION SPLINES 93

ileftc=2*ileft

c(1:dim,-3:0)=cx(1:dim,ileftc-3:ileftc)

!

! Calculating the length of the subintervals involved

!

do i=-1,1

h(i)=t(i+1)-t(i)

enddo

!

! Calculating the de Boor points of the first derivative

!

c(1:dim,0)=(c(1:dim,0)-c(1:dim,-1))/ &

CC3(h(0),zero,h(1),p(0),zero ,p(1))

c(1:dim,-1)=(c(1:dim,-1)-c(1:dim,-2))*2/ &

CC3(zero,h(0),zero,zero,p(0),zero)/ &

(1.0d0+exp(-p(0)*h(0)))

c(1:dim,-2)=(c(1:dim,-2)-c(1:dim,-3))/ &

CC3(h(-1),zero,h(0),p(-1),zero,p(0))

!

! Calculating the de Boor points of the second derivative

!

kc2ph=h(0)*KC2(p(0)*h(0)/2)/2

do i=0,-1,-1

c(1:dim,i)=(c(1:dim,i)-c(1:dim,i-1))/kc2ph

enddo

!

! Calculating the value of the second derivative of the Chebyshev

! tension spline curve as the linear combination of the second

! order B-splines

!

call tension2(x,t,p,2,c(1:dim,-1:0),2,dim,spl)

end subroutine tension2der4C1

Again, if we want to calculate the second derivative of the given spline at
many points, to avoid repetitions, as we explained for tension1der4C1coeff, we
need the subroutine tension1der3C1coeff which calculates all deBoor points of
the first derivative of the third order Chebyshev tension spline. The subroutine
tension1der3C1coeff in combination with tension1der4C1coeff, gives deBoor
points of the second derivative of C1 tension spline.

subroutine tension1der3C1coeff (xx,px,cx,dimx,dim)

!

! Calculating all de Boor points of the first derivative of the

94 CHAPTER 8. PROGRAM CODES

! third order Chebyshev tension spline curve

!

! INPUT:

! xx = rank-one double precision array of size dimx, the

! increasing array of knots, assumed to fulfill the

! conditions:

! xx(1)=xx(2)<xx(3)<...<xx(i)<xx(i+1)<...<xx(dimx-1)=

! xx(dimx); xx(3),...,xx(dimx-2) is the partition of

! [xx(1),xx(dimx)]; the associated extended

! partition T has all interior knots of multiplicity

! 2, and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx-1, the

! array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1) and px(dimx-1) can be arbitrary

! dimx = integer variable, the size of the array xx

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! INPUT and OUTPUT:

! cx = rank-two double precision array of shape dim by

! 2*dimx-4;

! ON INPUT: the array of de Boor points of the

! third order Chebyshev tension spline, associated

! with the extended partition T;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+3)], so cx(1:dim,1) can be

! arbitrary

! ON OUTPUT: the array of de Boor points of the

! first derivative of the third order Chebyshev

! tension spline;

! cx(1:dim,i) corresponds to the B-spline with the

! support [T(i),T(i+2)] (cx(1:dim,1) and cx(1:dim,2)

! will not be used)

!

use functions

implicit none

integer, intent(in) :: dimx,dim

double precision, intent(in) :: xx(dimx),px(dimx-1)

double precision, intent(inout) :: cx(dim,2*dimx-4)

8.1. C1 TENSION SPLINES 95

double precision :: h,kc2ph

integer :: i

!

! Calculating the de Boor points of the first derivative

!

do i=dimx-2,2,-1

h=xx(i+1)-xx(i)

kc2ph=h*KC2(px(i)*h/2)/2

cx(1:dim,2*i)=(cx(1:dim,2*i)-cx(1:dim,2*i-1))/kc2ph

cx(1:dim,2*i-1)=(cx(1:dim,2*i-1)-cx(1:dim,2*i-2))/kc2ph

enddo

end subroutine tension1der3C1coeff

To illustrate the use of the subroutines above, we suggest you the following
example, which can be also found on the enclosed CD:

Example 8.1 We solve the singularly perturbed differential two-point boundary
value problem

εy′′ + y′ − (1 + ε)y = 0, (8.1)

y(0) = 1 + e−1, y(1) = 1 + e−
1+ε

ε , (8.2)

by the collocation method by C1 tension spline at the generalized Gaussian points
(for all details see [17] and [19]), where the choice of tension parameters is done
by (6.4) on the page 152 of [19], and the generalized Gaussian points are calculated
by equations (3.3) and (3.4) from the same source. Important remark is that the
tension parameters pi from [17] and [19] are equal to the pihi from this thesis.

The main program exampleC1 calculates the approximation of the given problem,
with ε = 2−6, by C1 tension spline where [0, 1] is divided on n = 64 subintervals,
then plots the approximation together with the exact solution

y(x) = e−x 1+ε
ε + ex−1, (8.3)

the absolute error, the first and the second derivative of the approximating C1 ten-
sion spline, and derive maximal absolute error. exampleC1 calls the subroutine
linsystemC1 which forms the matrix and the vector of the system of linear equa-
tions, produced by the collocation method, and then solves the system. To do that
we also need the function gausspoints, for calculating the generalized Gaussian
points, and the subroutine diffopC1 which calculates the value of the differential
operator from (8.1) applied on C1 tension spline. The module examplediffeqC1

contains all functions that define the boundary value problem (8.1)–(8.2).

96 CHAPTER 8. PROGRAM CODES

8.2 C2 tension splines

The extended partition associated with C2 tension splines has all interior knots of
multiplicity one and the both boundary points of multiplicity four, and, this time,
it is placed in the array xx. Because of that, the numeration of the elements of
array cx with deBoor points corresponds to the array xx. The array of tension
parameters px is again associated with the xx. Similarly to the previous case, the
first and the last three elements of the array px are arbitrary.

The subroutine tension4C2 calculates the value of a C2 spline by the quasi–Oslo
type algorithm described in Subsection 6.3.1:

subroutine tension4C2 (x,xx,px,ileft,cx,dim,spl)

!

! Quasi-Oslo type algorithm for tension spline curves

!

! INPUT:

! x = double precision variable, the point at which the

! spline curve is evaluated

! xx = rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx+3,

! the array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! dimx, the array of de Boor points associated with

! the extended partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+4)]

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

8.2. C2 TENSION SPLINES 97

! dimx = size(xx)-4

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the tension spline curve at the

! point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision :: t(-2:3),p(-2:2),c(dim,-3:0) ! t(0)<=x<=t(1)

integer :: i,j

double precision :: h(-2:2),cc(4,4),tspl(4),Bspl1,Bspl2,Bspl3, &

Bspl4,d(4)

!

! Storing only relevant data

!

t(-2:3)=xx(ileft-2:ileft+3)

p(-2:2)=px(ileft-2:ileft+2)

c(1:dim,-3:0)=cx(1:dim,ileft-3:ileft)

!

! Calculating the length of the subintervals involved

!

do i=-2,2

h(i)=t(i+1)-t(i)

enddo

!

! Calculating nontrivial Chebyshev tension B-splines at the

! point x

!

cc=0.0d0

do i=1,4

cc(i,i)=1.0d0

enddo

call tension4C1 (x,t(-1:2),p(-1:1),2,cc,4,tspl)

!

98 CHAPTER 8. PROGRAM CODES

! Calculating tension B-splines as the linear combination of the

! Chebyshev tension B-splines

!

Bspl1=gamma4d4(h(-2:0),p(-2:0))*tspl(1)

call gamma4(h(-2:1),p(-2:1),d)

Bspl2=d(2)*tspl(1)+d(3)*tspl(2)+d(4)*tspl(3)

call gamma4(h(-1:2),p(-1:2),d)

Bspl3=d(1)*tspl(2)+d(2)*tspl(3)+d(3)*tspl(4)

Bspl4=gamma4d1(h(0:2),p(0:2))*tspl(4)

!

! The final value of the spline curve

!

spl=c(1:dim,-3)*Bspl1+c(1:dim,-2)*Bspl2+c(1:dim,-1)*Bspl3+ &

c(1:dim,0)*Bspl4

end subroutine tension4C2

The equation (6.26) gives us the formula for calculating the third order B-spline,
and subroutine tension3C2 produces the value of such a spline:

subroutine tension3C2 (x,xx,px,ileft,cx,dim,spl)

!

! Quasi-Oslo type algorithm for the third order tension spline

! curves

!

! INPUT:

! x = double precision variable, the point at which the

! spline curve is evaluated

! xx = rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx+3,

! the array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! ileft = integer variable, the index of the array xx such

8.2. C2 TENSION SPLINES 99

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! dimx, the array of de Boor points of the third order

! tension spline, associated with the extended

! partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+3)], so cx(1:dim,1) can be

! arbitrary

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)-4

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the third order tension spline curve

! at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision :: t(-1:2),p(-1:1),c(dim,-2:0) ! t(0)<=x<=t(1)

double precision :: h(-1:1),cc(3,4),tspl(3),Bspl1,Bspl2,Bspl3

integer :: i

!

! Storing only relevant data

!

t(-1:2)=xx(ileft-1:ileft+2)

p(-1:1)=px(ileft-1:ileft+1)

c(1:dim,-2:0)=cx(1:dim,ileft-2:ileft)

!

! Calculating the length of the subintervals involved

!

do i=-1,1

h(i)=t(i+1)-t(i)

100 CHAPTER 8. PROGRAM CODES

enddo

!

! Calculating the nontrivial third order Chebyshev tension

! B-splines at the point x

!

cc=0.0d0

do i=1,3

cc(i,i+1)=1.0d0

enddo

call tension3C1 (x,t(-1:1),p(-1:0),2,cc,3,tspl)

!

! Calculating the third order tension B-splines as the linear

! combination of the third order Chebyshev tension B-splines

!

Bspl1=KC2div(h(0),h(-1),p(0),p(-1))*tspl(1)

Bspl2=KC2div(h(-1),h(0),p(-1),p(0))*tspl(1)+tspl(2)+ &

KC2div(h(1),h(0),p(1),p(0))*tspl(3)

Bspl3=KC2div(h(0),h(1),p(0),p(1))*tspl(3)

!

! The final value of the spline curve

!

spl=c(1:dim,-2)*Bspl1+c(1:dim,-1)*Bspl2+c(1:dim,0)*Bspl3

end subroutine tension3C2

Then, the first derivative of a C2 tension spline is calculated as in Subsection
6.3.3:

subroutine tension1der4C2 (x,xx,px,ileft,cx,dim,spl)

!

! Calculating the first derivative of the tension spline curve

!

! INPUT:

! x = double precision variable, the point at which the

! the first derivative of the spline curve is

! evaluated

! xx = rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

8.2. C2 TENSION SPLINES 101

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx+3,

! the array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! dimx, the array of de Boor points of the tension

! spline, associated with the extended partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+4)]

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)-4

!

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the first derivative of the tension

! spline curve at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision :: t(-2:3),p(-2:2),c(dim,-3:0) ! t(0)<=x<=t(1)

double precision :: h(-2:2)

integer :: i

!

! Storing only relevant data

!

t(-2:3)=xx(ileft-2:ileft+3)

102 CHAPTER 8. PROGRAM CODES

p(-2:2)=px(ileft-2:ileft+2)

c(1:dim,-3:0)=cx(1:dim,ileft-3:ileft)

!

! Calculating the length of the subintervals involved

!

do i=-2,2

h(i)=t(i+1)-t(i)

enddo

!

! Calculating the de Boor points of the first derivative

!

do i=0,-2,-1

c(1:dim,i)=(c(1:dim,i)-c(1:dim,i-1))/KC3(h(i:i+2),p(i:i+2))

enddo

!

! Calculating the value of the first derivative of the tension

! spline curve as the linear combination of the third order

! tension B-splines

!

call tension3C2 (x,t,p,3,c(1:dim,-2:0),dim,spl)

end subroutine tension1der4C2

As in previous section, to speed up the calculation of the first derivative of C2

tension spline at many points, it is useful to calculate all deBoor points of the first
derivative in advance:

subroutine tension1der4C2coeff (xx,px,cx,dimx,dim)

!

! Calculating all de Boor points of the first derivative of the

! tension spline curve

!

! INPUT:

! xx = rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx+3,

! the array of tension parameters, assumed to be

8.2. C2 TENSION SPLINES 103

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! dimx = integer variable, dimx+4 is the size of the array xx

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! INPUT and OUTPUT:

! cx = rank-two double precision array of shape dim by

! dimx;

! ON INPUT: the array of de Boor points of the tension

! spline, associated with the extended partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+4)]

! ON OUTPUT: the array of the de Boor points of the

! first derivative of the tension spline;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+3)] (cx(1:dim,1) will not be

! used)

!

use functions

implicit none

integer, intent(in) :: dimx,dim

double precision, intent(in) :: xx(dimx+4),px(dimx+3)

double precision, intent(inout) :: cx(dim,dimx)

double precision :: h(3)

integer :: i

!

! Calculating the de Boor points of the first derivative

!

h=0.0d0

do i=dimx,2,-1

h(1)=xx(i+1)-xx(i)

cx(1:dim,i)=(cx(1:dim,i)-cx(1:dim,i-1))/KC3(h,px(i:i+2))

h(2:3)=h(1:2)

enddo

104 CHAPTER 8. PROGRAM CODES

end subroutine tension1der4C2coeff

We get the value of the second order B-spline by (6.28), (6.29) and (6.30), which
leads us to the the algorithm for calculating the value of a spline from the space of
the second derivatives of the C2 tension splines, and this can be also achieved by
tension2, listed in the previous section. So, the second derivative of the C2 tension
spline is calculated, again as in Subsection 6.3.3, by:

subroutine tension2der4C2 (x,xx,px,ileft,cx,dim,spl)

!

! Calculating the second derivative of the tension spline curve

!

! INPUT:

! x = double precision variable, the point at which the

! the second derivative of the spline curve is

! evaluated

! xx = rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx+3,

! the array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! ileft = integer variable, the index of the array xx such

! that x is contained in the subinterval

! [xx(ileft),xx(ileft+1)]

! cx = rank-two double precision array of shape dim by

! dimx, the array of de Boor points of the tension

! spline, associated with the extended partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+4)]

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! AUXILIARY TERM:

! dimx = size(xx)-4

!

8.2. C2 TENSION SPLINES 105

! OUTPUT:

! spl = rank-one double precision array of size dim, the

! output value of the second derivative of the tension

! spline curve at the point x

!

use functions

implicit none

integer, intent(in) :: ileft,dim

double precision, intent(in) :: x,xx(*),px(*),cx(dim,*)

double precision, intent(out) :: spl(dim)

double precision :: t(-2:3),p(-2:2),c(dim,-3:0) ! t(0)<=x<=t(1)

double precision :: h(-2:2),kc2ph(-1:1)

integer :: i

!

! Storing only relevant data

!

t(-2:3)=xx(ileft-2:ileft+3)

p(-2:2)=px(ileft-2:ileft+2)

c(1:dim,-3:0)=cx(1:dim,ileft-3:ileft)

!

! Calculating the length of the subintervals involved and relevant

! integrals

!

do i=-2,2

h(i)=t(i+1)-t(i)

if (i>-2 .and. i<2) kc2ph(i)=h(i)*KC2(p(i)*h(i)/2)/2

enddo

!

! Calculating the de Boor points of the first derivative

!

do i=0,-2,-1

c(1:dim,i)=(c(1:dim,i)-c(1:dim,i-1))/KC3(h(i:i+2),p(i:i+2))

enddo

!

! Calculating the de Boor points of the second derivative

!

do i=0,-1,-1

c(1:dim,i)=(c(1:dim,i)-c(1:dim,i-1))/(kc2ph(i)+kc2ph(i+1))

enddo

106 CHAPTER 8. PROGRAM CODES

!

! Calculating the value of the second derivative of the tension

! spline curve as the linear combination of the second order

! tension B-splines

!

call tension2 (x,t,p,3,c(1:dim,-1:0),2,dim,spl)

end subroutine tension2der4C2

At the end, the subroutine tension1der3C2coeff calculates all deBoor points
of the first derivative of the third order tension spline. Again, with tension1der4C2-
coeff and tension1der3C2coeff we can get all deBoor points of the second deriva-
tive of the given C2 tension spline.

subroutine tension1der3C2coeff (xx,px,cx,dimx,dim)

!

! Calculating de Boor points of the first derivative of the third

! order tension spline curve

!

! INPUT:

! xx = rank-one double precision array of size dimx+4,

! the increasing array of knots, assumed to fulfill

! the conditions:

! xx(1)=xx(2)=xx(3)=xx(4)<xx(5)<...<xx(i)<xx(i+1)<...

! <xx(dimx)<xx(dimx+1)=xx(dimx+2)=xx(dimx+3)=

! xx(dimx+4); xx(1),...,xx(dimx+4) is the extended

! partition with all interior knots of multiplicity 1,

! and the boundary points of multiplicity 4

! px = rank-one double precision array of size dimx+3,

! the array of tension parameters, assumed to be

! nonnegative: px(i)>=0 is the tension parameter on

! the subinterval [xx(i),xx(i+1));

! px(1),px(2),px(3),px(dimx+1),px(dimx+2) and

! px(dimx+3) can be arbitrary

! dimx = integer variable, dimx+4 is the size of the array xx

! dim = integer variable, the extent of the first dimension

! in the array cx, assumed to be positive

!

! INPUT and OUTPUT:

! cx = rank-two double precision array of shape dim by

! dim;

! ON INPUT: the array of de Boor points of the

! third order tension spline, associated with the

8.2. C2 TENSION SPLINES 107

! extended partition xx;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+3)], so cx(1:dim,1) can be

! arbitrary

! ON OUTPUT: the array of the de Boor points of the

! first derivative of the third order tension spline;

! cx(1:dim,i) corresponds to the B-spline with the

! support [xx(i),xx(i+2)] (cx(1:dim,1) and cx(1:dim,2)

! will not be used)

!

use functions

implicit none

integer, intent(in) :: dimx,dim

double precision, intent(in) :: xx(dimx+4),px(dimx+3)

double precision, intent(inout) :: cx(dim,dimx)

double precision :: h(2),kc2ph(2)

integer :: i

!

! Calculating the de Boor points of the first derivative

!

h=0.0d0

kc2ph=0.0d0

do i=dimx,3,-1

h(1)=xx(i+1)-xx(i)

kc2ph(1)=h(1)*KC2(px(i)*h(1)/2)/2

cx(1:dim,i)=(cx(1:dim,i)-cx(1:dim,i-1))/(kc2ph(1)+kc2ph(2))

h(2)=h(1)

kc2ph(2)=kc2ph(1)

enddo

end subroutine tension1der3C2coeff

As in the case of the C1 tension splines, we apply the C2 tension spline subrou-
tines for solving the same problem as in Example 8.1, which is also enclosed on the
CD:

Example 8.2 We solve the singularly perturbed differential two-point boundary
value problem (8.1)–(8.2) by the collocation method by C2 tension spline (for all
details see [16] and [20]). The tension parameters are defined as in [17] and [19], so

108 CHAPTER 8. PROGRAM CODES

the remark from Example 8.1 about their relationship with those defined here, holds
still. The choice of the tension parameters are made by (18)-(20) from [20].

The main program exampleC2 solves the given problem, where it is again ε =
2−6, by the collocation method by C2 tension spline, and with [0, 1] being divided on
n = 64 subintervals. exampleC2 produces the same kind of results as exampleC1,
and for forming and solving the collocation linear system uses the subroutine linsys-
temC2. For collocation points, in this case, we use the knots of the partition. Finally,
the subroutine diffopC1 calculates the value of the the differential operator from
(8.1) applied on C2 tension spline, and the module examplediffeqC2 has the same
role as examplediffeqC1 from Example 8.1.

Appendix A

Summary

In this thesis our point of interest are canonical complete Chebyshev (CCC)–systems
and splines associated with them. We are interested in finding numerically stable
algorithms for calculating with such splines, and we do that by generalizing the
knot insertion based algorithms for polynomial splines to CCC–systems. To be
able to construct these algorithms, we introduce knot insertion matrices, and then
develop Oslo type algorithms and the generalized deBoor algorithm. To show
the practical value of these algorithms, we apply them on four kinds of splines:
weighted, q-splines, tension and cycloidal splines. Weighted and tension splines are
particulary interesting, since weighted splines are the only splines of order higher
than 4 which can be stably evaluated, and tension splines because of their wide
application. For each of these splines, algorithms are developed with all the details
specific for the spline in question. Finally to illustrate the practical computer use
of given algorithms, we list program codes involved in calculating with C1 and C2

tension splines.

109

Appendix B

Sažetak

Sredǐste zanimanja ove disertacije su kanonski kompletni Čebǐsevljevi (CCC)–siste-
mi i splajnovi izvedeni iz njih, a takoder i numerički stabilni algoritmi za računanje
takvih splajnova. Njih pronalazimo u generalizaciji algoritama baziranih na ubaci-
vanju čvorova za polinomne splajnove na CCC-sisteme. Za konstrukciju takvih
algoritama uvode se matrice za ubacivanje čvorova, a iz njih algoritmi tipa Oslo
i generalizirani deBoor-ov algoritam. U svrhu pokazivanja praktičnosti ovih al-
goritama, oni se primjenjuju za računanje četiri vrste splajnova: za težinske, q-
splajnove, napete i cikloidne splajnove. Težinski i napeti splajnovi su posebno zan-
imljivi, pošto su težinski, u ovoj disertaciji, jedini splajnovi reda vǐseg od 4 koji se
računaju, a napeti zbog njihove široke primjene. Za svaki od tih splajnova razvijeni
su algoritmi sa svim detaljima specifičnim za dotični splajn. Na kraju, kao ilus-
tracija praktične upotrebe danih algoritama na računalu, popisani su programski
kodovi za računanje s C1 i C2 napetim splajnovima.

110

Appendix C

Curriculum vitæ

I was born on July 8, 1973 in Zagreb, where I have finished elementary school. I
continued my education at the Mathematics high school in Zagreb, and in 1992 I
have entered upon University of Zagreb, Department of Mathematics. I graduated
applied mathematics in 1997, and the same year started postgraduate studies in
mathematics. Next year I took a job as an assistant on the same faculty. Until
now, my work field is numerical mathematics, more precisely, I am involved in the
development of Chebyshev spline theory, with an emphasis on numerically stable
algorithms for calculating with spline curves. My motivation was the growing need
for such algorithms, especially in CAGD, solving ordinary differential equations,
and some minimization problems. In 2002 I got masters degree in mathematics by
defending master’s thesis on the subject “Polar Forms of Splines and Knot Insertion
Algorithms”. Most of my results are published in 4 reviewed articles, and presented
in scientific meetings and seminars. I also participated in several conferences in
Croatia and abroad. Next to my scientific work, I am also engaged in lectures for
students, mostly in subjects connected to the numerical mathematics and computer
science.

111

Bibliography

[1] T. Bosner, Polarne forme i ubacivanje čvorova splajnova, master’s thesis,
Dept. of Mathematics, University of Zagreb, 2002.

[2] , Knot insertion algorithms for weighted splines, in Proceedings of the
Conference on Applied Mathematics and Scientific Computing, Z. Drmač,
M. Marušić, and Z. Tutek, eds., Springer, 2005, pp. 151–160.

[3] T. Bosner and M. Rogina, A stable algorithms for calculating with
q-splines, in Proceedings of Computational and Applied Mathematics,
M. Rogina, V. Hari, Z. Tutek, and N. Limić, eds., 2001, pp. 99–104.

[4] C. W. Burrill, Measure, Integration, and Probability, McGraw–Hill Book
Company, 1972.

[5] J. M. Carnicer, E. Mainar, and J. M. Peña, A unified framework for
cubics and cycloids, in Curve and Surface Design, T. Lyche, M.-L. Mazure,
and L. L. Schumaker, eds., Brentwood, 2003, Nashboro Press, pp. 31–40.

[6] E. Cohen, T. Lyche, and R. Riesenfeld, Discrete B-splines and subdivi-
sion techniques in computer–aided geometric and computer graphic, Computer
Graphic and Image Processing, 14 (1980), pp. 87–111.

[7] T. A. Foley, Interpolation with interval and point tension controls using cubic
weighted ν-splines, ACM Transactions on Mathematical Software, Vol. 13, No.
1. (1987), pp. 68–96.

[8] R. N. Goldman and T. Lyche, eds., Knot Insertion and Deletion Algo-
rithms for B-Spline Curves and Surfaces, SIAM, 1993.

[9] V. Horvat and M. Rogina, Tension spline collocation methods for singu-
larly perturbed Volterra integro-differential and Volterra integral equations, J.
Comput. Appl. Math., 140 (2002), pp. 381–402.

[10] S. Karlin, Total Positivity, Stanford Univ. Press, California, 1968.

[11] P. E. Koch and T. Lyche, Construction of exponential tension B-splines
of arbitrary order, in Curves and Surfaces, P. J. Laurent, A. Le Méhauté, and
L. L. Schumaker, eds., Boston, 1991, Academic Press, pp. 255–258.

112

BIBLIOGRAPHY 113

[12] R. Kulkarni and P.-J. Laurent, Q-splines, Numer. Algorithms, 1 (1991),
pp. 45–73.

[13] B. I. Kvasov, Shape–Preserving Spline Approximation, World Scientific, Sin-
gapore, 2000.

[14] E. Mainar and J. M. Peña, Quadratic–cycloidal curves, Advances in Com-
putational Mathematics, 20 (2004), pp. 161–175.

[15] E. Mainar, J. M. Peña, and J. Sánchez-Reyes, Shape preserving alter-
natives to the rational Bézier model, Computer Aided Geometric Design, 18
(2001), pp. 37–60.

[16] M. Marušić, Kolokacija napetim splajnom, master’s thesis, Dept. of Mathe-
matics, University of Zagreb, 1992.

[17] , Napeti B-spline i kolokacija u generaliziranim Gaussovim točkama, PhD
thesis, Dept. of Mathematics, University of Zagreb, 1995.

[18] , Stable calculation by splines in tension, Grazer Mathematische Berichte,
328 (1996), pp. 65–76.

[19] , A fourth/second order accurate collocation method for singularly per-
turbed two-point boundary value problems using tension splines, Numer. Math.,
88 (2001), pp. 135–158.

[20] M. Marušić and M. Rogina, A collocation method for singularly perturbed
two-point boundary value problems with splines in tension, Adv. Comput.
Math., Vol. 6, No. 1. (1996), pp. 65–76.

[21] M.-L. Mazure, Chebyshev blossoming. RR 953M IMAG, Université Joseph
Fourier, Grenoble, January 1996.

[22] , Blossoming: a geometrical approach, Constr. Approx., 15 (1999), pp. 33–
68.

[23] , Blossoms and optimal bases, Advances in Computational Mathematics,
20 (2004), pp. 177–203.

[24] M.-L. Mazure and H. Pottmann, Tchebycheff curves, in Total Positivity
and its Applications, M. Gasca and C. A. Micchelli, eds., Kluwer Academic
Pub., 1996, pp. 187–218.

[25] G. Mülbach, A recurrence formula for generalized divided differences and
some applications, J. of Approx. Theory, 9 (1973), pp. 165–172.

[26] G. Nürnberger, Approximation by Spline Functions, Springer–Verlag,
Berlin, 1989.

114 BIBLIOGRAPHY

[27] H. Pottmann, The geometry of Tchebycheffian splines, Computer Aided Ge-
ometric Design, 10 (1993), pp. 181–210.

[28] H. Pottmann and M. G. Wagner, Helix splines as an example of affine
Tchebycheffian splines, Advances on Computational Math., 2 (1994), pp. 123–
142.

[29] P. M. Prenter, Piecewise L-splines, Numer. Math., 18 (1971), pp. 243–253.

[30] M. Rogina, TB-spline funkcije i primjene, master’s thesis, Dept. of Mathe-
matics, University of Zagreb, 1984.

[31] , Basis of splines associated with some singular differential operators, BIT,
32 (1992), pp. 496–505.

[32] , Nove rekurentne relacije za Čebǐsevljeve spline funkcije i njihove prim-
jene, PhD thesis, Dept. of Mathematics, University of Zagreb, 1994.

[33] , A knot insertion algorithm for weighted cubic splines, in Curves and Sur-
faces with Applications in CAGD, A. Le Méhauté, C. Rabut, and L. L. Schu-
maker, eds., Nashville & London, 1997, Vanderbilt University Press, pp. 387–
395.

[34] , On construction of fourth order Chebyshev splines, Math. Commun., 4
(1999), pp. 83–92.

[35] , Weighted integrals of polynomial splines, in Proceedings of A4A5 (to
appear), Chester, 2006.

[36] M. Rogina and T. Bosner, On calculating with lower order Chebyshev
splines, in Curves and Surfaces Design, P. J. Laurent, P. Sabloniere, and L. L.
Schumaker, eds., Nashville, 2000, Vanderbilt Univ. Press, pp. 343–353.

[37] , A deBoor type algorithm for tension splines, in Curve and Surface Fit-
ting, A. Cohen, J.-L. Merrien, and L. L. Schumaker, eds., Brentwood, 2003,
Nashboro Press, pp. 343–352.

[38] L. L. Schumaker, On Tchebycheffian spline functions, J. of Approx. Theory,
18 (1976), pp. 278–303.

[39] , Spline Functions: Basic Theory, John Wiley & Sons, New York, 1981.

[40] , On recursions for generalized splines, J. of Approx. Theory, 36 (1982),
pp. 16–31.

[41] A. H. Vermeulen, R. H. Bartels, and G. R. Heppler, Integrating prod-
ucts of B-splines, Siam J. Sci. Stat. Comput., Vol. 13, No. 4 (1992), pp. 1025–
1038.

