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Chapter 1

Introduction

This thesis deals with two major topics in numerical linear algebra: the singular value
decomposition (SVD) and the eigenvalue problem. Both represent a standard tool for
numerical solutions of problems which appear in many applications in various �elds
of natural sciences. The singular values and eigenvalues are connected, and they are
usually considered to be two aspects of the same problem. The singular value decom-
position of a rectangular matrix A ∈ Rm×n, where without loss of generality m ≥ n,
is a decomposition obtained by orthogonal transformation which produces a diagonal
matrix:

A = UΣV T ,

where

U ∈ Rm×m, UT U = I, V ∈ Rn×n, V T V = I, Σ ∈ Rm×n, Σ = diag(σ1, . . . , σn).

The diagonal elements of Σ, σi ≥ 0 are called singular values.
There are several natural parallels between singular values and eigenvalues:

• for the singular value σi of the matrix A, σ2
i is an eigenvalue of the matrices AT A

and AAT ,

• for the singular value σi of the matrix A, ±σi are eigenvalues of the matrix[
0 AT

A 0

]
,

• for the eigenvalue λi of the symmetric matrix A, |λi| is a singular value of A.

With the accelerating speed of computers, we can now solve eigenvalue and singular
value problems of very large dimension. Thus our algorithms need to be e�cient with
large matrices. On the other hand, computers do not use real arithmetic, they use
�oating point arithmetic, and they do not produce exact solutions. Because of that our
algorithms need to be e�cient in modern architectures and accurate in �oating point
arithmetic.

In this work two new algorithms are proposed: one for �nding the singular value
decomposition, and one for solving the partial eigenvalue problem of a symmetric posi-
tive de�nite matrix. They are both designed to be e�cient, and numerical analysis for
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2 CHAPTER 1. INTRODUCTION

both algorithms con�rms that they are also accurate. In addition to the algorithms, a
new perturbation result for singular value approximations obtained from subspaces is
presented, which measures relative error in singular values by means of angles of ap-
propriate subspaces. This result gives us new insight into approximate solutions of the
singular value decomposition.

The work is organized as follows. In §2 we analyze the singular value decomposition,
which includes basic de�nitions and properties, applications, perturbation theory and
most important existing methods for computing the SVD. This chapter serves as an
introduction for the new bidiagonalization algorithm presented in §3. The new bidiag-
onalization algorithm was proposed by Barlow in [2], and it constitutes the �rst step
in computing the singular value decomposition. In §3 an elegant proof of numerical
stability of the bidiagonalization algorithm is presented, obtained independently from
the results in [2]. Further, it is shown that despite of possible loss of orthogonality of
columns in the computed matrix U , the bidiagonalization algorithm can be used as a
tool for solving several problems in numerical linear algebra with high accuracy. The
e�ciency of the algorithm is also considered. The new bidiagonalization algorithm has
fewer �oating point operations than other standard algorithms, but in the original ver-
sion the usage of the hierarchical structure of memory was not optimized. Hence, the
new algorithm, executed on a computer, was slower than the algorithm implemented in
LAPACK [1], and it required modi�cation to optimize the time spent on transfer be-
tween di�erent types of computer memory. This was the reason for developing the block
version of the bidiagonalization algorithm, which is proven to be numerically stable. The
parallel version of the algorithm was also considered, since the new bidiagonalization is
more suitable for parallel computing than the standard algorithms. Extensive testing
was performed for all versions of the bidiagonalization algorithm, the tests showed that
on our computers the block and parallel versions of the new algorithm were faster than
the algorithms in LAPACK [1] and ScaLAPACK [7].

In §4, we deal with the symmetric eigenvalue problem, and analyzes some aspects
of the problem, such as: basic de�nitions and properties, applications, perturbation
theory and most important existing subspace methods for solving the partial eigenvalue
problem. Again, this chapter serves as an introduction for the new subspace method
described in §5, which is called multispace. Multispace is a combination of multigrid
approach and of two very well known subspace methods: inverse iteration and the
block Lanczos method. Inverse iteration is known to stagnate when eigenvalues are not
conveniently distributed, and the new multigrid approach is designed to speed up the
convergence. A convergence rate for multispace is also presented, proving that the whole
process converges to an invariant subspace. The numerical examples are presented at
the end of this chapter.

§6 presents the new perturbation results for singular value approximations.
At last, we have introduce some notation. First of all, we will consider real matrices

A ∈ Rm×n or A ∈ Rn×n, and without loss of generality we will assume that m ≥ n.
If m < n then we can take AT , where T denotes the transposed matrix. The matrices
will be denoted by capital Latin letters, the vectors by small letters, the subspaces by
calligraphic letters, and in most cases Greek letters will be used to denote scalar values
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such as parameters and angles.
Let x ∈ Rn be an n dimensional vector, then we denote x = [xi], or

x =




x1
...

xn


 ,

which means that the i-th component of x is equal to xi. Next, let A ∈ Rm×n be an
m× n matrix, then we denote A = [aij], or

A =




a11 · · · a1n
... ...

am1 · · · amn


 ,

where aij is the element in the position (i, j). Sometimes, we will also use MATLAB
notation:

x(i) = xi,

x(i : j) =




xi
...
xj


 ,

A(i, j) = aij,

A(i : j, k : `) =




aik · · · ai`,
... ...

ajk · · · aj`


 ,

A(:, k : `) = A(1 : m, k : `),

A(i : j, :) = A(i : j, 1 : n).

The matrices Ik and 0k denote k × k identity and zero matrix, respectively.
The scalar product used in the work is the standard scalar product in Rn

〈x, y〉 = xT y =
n∑

i=1

xiyi, or

〈x, y〉A = xT Ay, for a symmetric positive de�nite matrix A.

We also use the Euclidean vector norm

‖x‖2 =
√

xT x,

and two matrix norms

‖A‖2 = max
‖x‖2=1

‖Ax‖2 =
√

spr(AT A),

‖A‖F =
√

trace(AT A) =

√√√√
m∑

i=1

n∑
j=1

a2
ij,
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where for B ∈ Rn×n

spr(B) = max{|λ| : λ is an eigenvalue of B},

denotes spectral radius, and

trace(B) =
n∑

i=1

bii.

Since we are dealing with �nite precision arithmetic, the computed quantities in
numerical analysis are denoted by ,̃ and the exact quantities by .̂ Hence, we denote
quantity x computed in �nite precision arithmetic by x̃, and x̂ presents an exact, some-
times only theoretical entity, which is obtained in exact arithmetic in some phase of the
computation. The unit roundo� error of a computer is denoted by ε.



Chapter 2

The Singular Value Decomposition

2.1 De�nitions and Properties
The singular value decomposition (SVD) of a real matrix A ∈ Rm×n is a very powerful
computation tool for solving many problems in numerical linear algebra. From the
theoretical point of view, it is also used in numerical analysis as a decomposition that
reveals important information about the matrix and the problem it is involved with.
The singular value decomposition was discovered independently by Beltrami in 1873
[4] and Jordan in 1874 [54] during their research on bilinear forms. Since then, many
mathematicians have been working on discovering its properties, both in exact and
�nite precision arithmetic, and developing algorithms for its computation. The SVD
decomposition is described in the following theorem.

Theorem 2.1.1 (Singular Value Decomposition (SVD), [35, p. 71]). If A ∈
Rm×n is a real m× n matrix, then there exist orthogonal matrices

U = [u1, . . . , um] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n

such that
UT AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min{m,n}, (2.1)

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

Proof. From the de�nition of matrix 2 norm, there exists v1 ∈ Rn with ‖v1‖2 = 1, such
that ‖A‖2 = ‖Av1‖2. Let u1 ∈ Rn be a vector with ‖u1‖2 = 1, which satis�es

Av1 = σ1u1, where σ1 = ‖A‖2. (2.2)

Since any orthonormal set of vectors can be extended to an orthonormal basis, it is
possible to �nd V1,2 ∈ Rn×(n−1) and U1,2 ∈ Rm×(m−1) so that

V1 = [ v1 V1,2 ] ∈ Rn×n and U1 = [ u1 U1,2 ] ∈ Rm×m

are orthogonal. UT
1 AV1 has the following structure:

UT
1 AV1 =

[
σ1u

T
1 u1 uT

1 AV1,2

σ1U
T
1,2u1 UT

1,2AV1,2

]
=

[
σ1 wT

1

0 A2

]
= Ā1,

5



6 CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION

where w1 = V T
1,2A

T u1 and A2 = UT
1,2AV1,2. Since

‖Ā1‖2
2(σ

2
1 + wT

1 w1) = ‖Ā1‖2
2

∥∥∥∥
[

σ1

w1

]∥∥∥∥
2

2

≥
∥∥∥∥Ā1

[
σ1

w1

]∥∥∥∥
2

2

=

= (σ2
1 + wT

1 w1)
2 + wT

1 AT
2 A2w1 ≥ (σ2

1 + wT
1 w1)

2

we have ‖Ā1‖2
2 ≥ σ2

1 + wT
1 w1. From the de�nition of σ1 in (2.2) it follows that

σ2
1 = ‖A‖2

2 = ‖Ā1‖2
2 ≥ σ2

1 + wT
1 w1,

and this implies that w1 = 0, and

UT
1 AV1 =

[
σ1 0
0 A2

]
.

The rest of the proof is done by applying the same technique to A2, and (2.1) follows
from the induction argument.

Remark 2.1.2. For every A ∈ Rm×n, Theorem 2.1.1 implies that (see [89, pp. 30�31])

UT AV =

[
Σ+ 0
0 0

]
r

m−r

r n−r

where r = rank(A), and Σ+ = diag(σ1, . . . , σr), with σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Remark 2.1.3. For m ≥ n and every matrix A ∈ Rm×n with rank(A) = r ≤ n,
Theorem 2.1.1 implies that the matrix A can be factorized as

A = UΣV T , (2.3)

or for the partition
U = [ U1 U2 ] V = [ V1 V2 ]

r m−r r n−r

where U1 ∈ Rm×r and V1 ∈ Rn×r, as

A = U1Σ+V T
1 =

r∑
i=1

σiuiv
T
i . (2.4)

There are many notions connected with SVD, and the most important of them are
as follows:

• The factorization described in equation (2.4) is the abbreviated SVD and the
right equation represents the SVD expansion.

• The nonnegative values σi are the singular values of A.



2.1. DEFINITIONS AND PROPERTIES 7

• The set1 of all singular values of A is denoted by σ(A) = {σ1, . . . , σp}, where
p = min{m,n}.

• The vectors ui are the left singular vectors.

• The vectors vi are the right singular vectors.

Besides these basic notions, there are many matrix properties which are based on the
SVD. Before expressing their de�nitions we should note that by comparing columns in
equations AV = ΣV and AT U = ΣV it follows that

Avi = σiui

AT ui = σivi

}
i = 1, . . . , p = min{m,n}.

Three important characteristics of a matrix A are immediately available from the
singular value decomposition of A.

Corollary 2.1.4 ([35, p. 72]). If the SVD of A ∈ Rm×n is given by Theorem 2.1.1,
and if we de�ne r by

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, p = min{m,n},

then

• rank(A) = r

• null(A) = span{vr+1, . . . , vn}

• range(A) = span{u1, . . . , ur}

A further important property of the singular value decomposition is that there exists
a connection between the singular values and the eigenvalues.

De�nition 2.1.5 ([35, pp. 332�333]). The eigenvalues of a square matrix A ∈ Rn×n

are n roots of its characteristic polynomial p(λ) = det(λI − A). The set2 of these
roots is called the spectrum and is denoted by

λ(A) = {λ1, . . . , λn}.

If λ ∈ λ(A) then a nonzero vector x ∈ Rn, which satis�es

Ax = λx

is called an eigenvector.
1Since the singular values can be multiple, σ(A) is in fact a multiset. It can also be regarded as an

element of the quotient space Rp/Sp , where Sp is the symmetric group on the �nite set {1, . . . , p}.
2Again, since the eigenvalues can be multiple, λ(A) is in fact a multiset. It can also be regarded as

an element o the quotient space Cn/Sn , where Sn is the symmetric group on the �nite set {1, . . . , n}.
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It can be easily veri�ed that, for a matrix A ∈ Rm×n of rank r ≤ min{m,n},
matrices AT A ∈ Rn×n and AAT ∈ Rm×m are symmetric and positive semide�nite. The
relationship between the singular value decomposition of the matrix A, and the spectral
decomposition of the above two matrices is shown in the following theorem.

Theorem 2.1.6. If A ∈ Rm×n, then the following holds:

•
V T AT AV = diag(σ2

1, . . . , σ
2
r , 0, . . . , 0︸ ︷︷ ︸

n−r

), σ1 ≥ σ2 ≥ · · · ≥ σr > 0

that is, the squares of singular values of the matrix A are the eigenvalues of the
matrix AT A, and n − r of them are zeros. The columns of the matrix V are the
corresponding eigenvectors.

•
UT AAT U = diag(σ2

1, . . . , σ
2
r , 0, . . . , 0︸ ︷︷ ︸

m−r

), σ1 ≥ σ2 ≥ · · · ≥ σr > 0

that is, the squares of singular values of the matrix A are the eigenvalues of the
matrix AAT , and m − r of them are zeros. The columns of the matrix U are the
corresponding eigenvectors.

There is another way to associate singular values with eigenvalues.

Theorem 2.1.7 ([35, p. 427]). Let A ∈ Rm×n, m ≥ n, then the Jordan�Wielandt
matrix [

0 AT

A 0

]
∈ R(m+n)×(m+n)

is a symmetric matrix with eigenvalues equal to {σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0},
where in the case when m > n, zero has multiplicity m− n. Moreover, if A = UΣV T is
the singular value decomposition of A with U = [U1 U2], U1 ∈ Rm×n and U2 ∈ Rm×(m−n),
then [

0 AT

A 0

]
= Q diag(σ1, . . . , σn,−σ1, . . . ,−σn, 0, . . . , 0︸ ︷︷ ︸

m−n

)QT ,

where Q ∈ R(m+n)×(m+n) is an orthogonal matrix, de�ned by

Q =
1√
2

[
V V 0

U1 −U1

√
2U2

]
.

Singular values are important for the characterization of unitarily invariant norms.

De�nition 2.1.8. A norm ‖ · ‖ on Cm×n is unitarily invariant if it satis�es

‖U∗AV ‖ = ‖A‖

for all unitary matrices U and V .
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Let A = UΣV T be the singular value decomposition of A ∈ Rm×n. Since U and V
are real orthogonal matrices, and hence unitary,

‖A‖ = ‖Σ‖,

for every unitarily invariant norm ‖ · ‖. Thus ‖A‖ is a function Φ of the singular values
of A, with certain properties. The properties of the matrix norm suggest the following
de�nition.

De�nition 2.1.9. A function Φ : Rn → R is a symmetric gauge function if it
satis�es the following conditions.

1. x 6= 0 ⇒ Φ(x) > 0, for x ∈ Rn.

2. Φ(ρx) = |ρ|Φ(x), for x ∈ Rn and ρ ∈ R.

3. Φ(x + y) ≤ Φ(x) + Φ(y), for x, y ∈ Rn.

4. For any permutation matrix P and for x ∈ Rn we have Φ(Px) = Φ(x).

5. Φ(|x|) = Φ(x), for x ∈ Rn.

If Φ is a symmetric gauge function and if ‖ · ‖Φ is de�ned by

‖A‖Φ = Φ(σ1, . . . , σp), p = min{m,n}, (2.5)

where σ1,. . . ,σp are the singular values of A, then the following theorem will describe
the relationship between ‖ · ‖Φ and unitarily invariant norms.

Theorem 2.1.10 (von Neumann [89, p. 78]). Let Φ be a symmetric gauge function
on Rp, where p = min{m,n}, and let ‖ · ‖Φ be de�ned by (2.5). Then ‖ · ‖Φ is a unitarily
invariant norm on Cm×n. Conversely, if ‖·‖ is a unitarily invariant norm on Cm×n, then
there is a symmetric gauge function Φ on Rp such that ‖A‖ = ‖A‖Φ for all A ∈ Cm×n.

The most important matrix norms ‖ ·‖2 and ‖ ·‖F are unitarily invariant norms, and
the immediate consequence of Theorem 2.1.6 and Theorem 2.1.10 is that they can be
characterized in terms of the singular values in the following way:

‖A‖F =
√

trace(AT A) =

√√√√
p∑

i=1

σ2
i , p = min{m,n} (2.6)

‖A‖2 =
√

spr(AT A) = σ1. (2.7)

The SVD also indicates how near the given matrix is to the closest matrix of lower
rank.
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Theorem 2.1.11 ([35, p. 73]). Let the SVD of A ∈ Rm×n be given by Theorem 2.1.1.
If k < r = rank(A) and

Ak =
k∑

i=1

σiuiv
T
i

then, for every unitarily invariant norm ‖ · ‖,

min
rank(B)≤k

‖A−B‖ = ‖A− Ak‖,

and specially

min
rank(B)≤k

‖A−B‖2 = ‖A− Ak‖2 = σk+1,

min
rank(B)≤k

‖A−B‖F = ‖A− Ak‖F =

√√√√
r∑

i=k+1

σ2
i .

Theorem 2.1.11 says that the smallest singular value of A is the 2 norm distance of
A to the set of all rank-de�cient matrices. The drawback of Theorem 2.1.11 is that Ak,
which is the best rank k approximation to the matrix A, generally di�ers from A in all
its elements. In some applications it is necessary to �nd a best rank k approximation
to A that leaves some columns of A �xed. Let us assume that the �xed columns are at
the beginning of the matrix A, and let

A = [ A1 A2 ], (2.8)

where A1 has ` columns. Then, we are considering the following problem: �nd a matrix
Ak,2 such that rank([ A1 Ak,2 ]) ≤ k, and

min
rank([ A1 B2 ])≤k

‖[ A1 A2 ]− [ A1 B2 ]‖ = ‖[ A1 A2 ]− [ A1 Ak,2 ]‖, (2.9)

for unitarily invariant matrix norm ‖ · ‖. Let us denote by Hk the operator that maps A
onto Ak from Theorem 2.1.11, with the convention that if k is greater than the number of
columns of A, then Hk is the identity. The following theorem solves the given problem.

Theorem 2.1.12 ([32, pp. 319�321]). Let A ∈ Rm×n be partitioned as in (2.8) where
A1 has ` columns, and let p = rank(A1). Let P denote the orthogonal projection onto
the column space of A and P⊥ the orthogonal projection onto its orthogonal complement.
If p ≤ k then the matrix

Ak,2 = PA2 + Hk−p(P
⊥A2)

satis�es (2.9).

There are many important properties of the singular values of an m×n matrix. First
of them claims that the singular values satisfy the following �minimax� characterization.
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Theorem 2.1.13 ([35, p. 428]). If A ∈ Rm×n, then

σk = max
S⊂Rn, T ⊂Rm

dim(S)=k
dim(T )=k

min
x∈S, y∈T

‖x‖2=1, ‖y‖2=1

yT Ax = max
S⊂Rn

dim(S)=k

min
x∈S

‖x‖2=1

‖Ax‖2 k = 1, . . . , min{m,n}.

Some other properties follow from the previous theorem.

Corollary 2.1.14 (Interlacing Property [35, p. 428]). Let A = [ a1 · · · an ] ∈
Rm×n be a column partitioning with m ≥ n. If Ak = [ a1 · · · ak ] then for k =
1, . . . , n− 1 the following interlacing property holds:

σi(A) ≥ σi(Ak) ≥ σi+n−k(A), i = 1, . . . , k,

2.2 Applications of the SVD
What follows is a list of problems in numerical linear algebra that may be solved by
means of the singular value decomposition.

2.2.1 Computing the Inverse of a Nonsingular Square Matrix
A square matrix A ∈ Rn×n is nonsingular if and only if σi 6= 0, i = 1, . . . , n. Then from
equation (2.3) it follows that its inverse is given by

A−1 = V Σ−1UT , Σ−1 = diag(σ−1
1 , . . . , σ−1

n ),

where A−1 ∈ Rn×n is such that AA−1 = A−1A = I.

2.2.2 Computing the Pseudo�Inverse of a Matrix
We can extend the concept of inverse to singular and even rectangular matrices. Such
a pseudo�inverse must satisfy weaker conditions than the standard inverse. One way to
de�ne pseudo�inverse is the following. For the rectangular matrix A ∈ Rm×n, matrix
X ∈ Rn×m is its pseudo�inverse if and only if X satis�es the Moore�Penrose conditions
[79]:

1. AXA = A

2. XAX = X

3. (AX)T = AX

4. (XA)T = XA

The exact form of the pseudo�inverse will be de�ned by means of the SVD.
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Theorem 2.2.1 ([35, p. 243]). Let A ∈ Rm×n, then there exists a unique matrix
X ∈ Rn×m which satis�es the Moore�Penrose conditions. This matrix is of the form

A† = V

[
Σ−1

+ 0
0 0

]
UT , where A = U

[
Σ+ 0
0 0

]
V T

is the singular value decomposition of the matrix A, de�ned in Theorem 2.1.1.

The pseudo�inverse is the unique minimal Frobenius norm solution of the problem

min
X∈Rn×m

‖AX − Im‖F .

From the Moore�Penrose conditions it follows that AA† and A†A are orthogonal pro-
jections onto range(A) and range(AT ), respectively:

AA† = U1U
T
1 , A†A = V1V

T
1 .

2.2.3 The Condition Number of a Matrix
The condition number of a matrix A ∈ Rm×n in 2 norm is given by

κ2(A) = ‖A‖2‖A†‖2.

From the observations above and Theorem 2.1.1 we can conclude that

κ2(A) =
σ1

σn

.

2.2.4 Solving the Orthogonal Procrustes Problem
The solution of the orthogonal Procrustes problem satis�es:

min
Q∈Rn×n, QT Q=In

‖AQ−B‖F , (2.10)

where A,B ∈ Rm×n and m ≥ n. By the orthogonality of the matrix Q, the problem
(2.10) transforms into

min ‖AQ−B‖2
F = min(trace(AT A) + trace(BT B)− 2 trace(QT AT B)),

and is equivalent to the problem of maximizing trace(QT AT B). The maximizing Q can
be found by calculating the SVD of AT B, [35, p. 582]. If

UT (AT B)V = Σ = diag(σ1, . . . , σn)

is the SVD of the matrix AT B and we de�ne the orthogonal matrix Z by Z = V T QT U ,
then

trace(QT AT B) = trace(QT UΣV T ) = trace(ZΣ) =
n∑

i=1

ziiσi ≤
n∑

i=1

σi.
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The upper bound is attained by setting Q = UV T for then Z = In.
In the unbalanced case (see [27]), when Q ∈ Rn×k, B ∈ Rm×k and n > k, the problem

min
Q∈Rn×k, QT Q=Ik

‖AQ−B‖F , (2.11)

can also be solved by means of singular value decomposition. If we take the QR factor-
ization of A

A = P

[
R
0

]
,

where P = [ P1 P2 ] ∈ Rm×m is orthogonal, P1 ∈ Rm×n, and R ∈ Rn×n, we obtain an
equivalent problem

min
Q∈Rn×k, QT Q=Ik

‖RQ− P T
1 B‖F ,

with the square matrix R. Thus we can assume that the matrix A is square without
loss of generality. By using Lagrange multipliers, the minimization problem (2.11) can
be reduced to the secular equation

F (L) = QT
LQL − I = 0, (2.12)

where QL is a solution of the normal equation

AT AQ + QL = AT B, (2.13)

and L = [`ij] ∈ Rk×k is the symmetric matrix of Lagrangian multipliers. Let A =
UΣV T be the singular value decomposition of A, with Σ = diag(σ1, . . . , σn), and let
L = WΛW T be the spectral decomposition of the �xed symmetric matrix L, with
Λ = diag(λ1, . . . , λk), then there is a unique solution of (2.13) if the eigenvalues λj of L
satisfy

λj + σ2
i 6= 0, i = 1, . . . , n, j = 1, . . . , k.

Now, for Q̄ = V T QW and B̄ = UT BW we obtain equivalent minimization form

min
Q̄∈Rn×k, Q̄T Q̄=Ik

‖ΣQ̄− B̄‖F ,

with its normal equation equal to

Σ2Q̄ + Q̄Λ = ΣB̄,

which can be easily solved. Its solution is of the form

Q̄L = [q̄ij], with q̄ij =
σib̄ij

σ2
i + λj

,

and then

F (L) = [F (L)ij], with F (L)ij =
k∑

s=1

σ2
s b̄sib̄sj

(σ2
s + λi)(σ2

s + λj)
− δij.



14 CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION

2.2.5 Finding the Intersection of Null Spaces
Let A ∈ Rm×n and B ∈ Rp×n be given, and consider the problem of �nding an or-
thonormal basis for null(A)∩ null(B). One way of solving the problem is to exploit the
following theorem.
Theorem 2.2.2 ([35, p. 583]). Suppose A ∈ Rm×n and let {z1, . . . , zs} be an orthonor-
mal basis for null(A). De�ne Z = [z1, . . . , zs] and let {w1, . . . , wt} be an orthonormal
basis for null(BZ) where B ∈ Rp×n. If W = [w1, . . . , wt], then the columns of ZW
form an orthonormal basis for null(A) ∩ null(B).

The SVD is used to compute the orthonormal basis {yi} of null(A) ∩ null(B) in the
following way:

• Compute the SVD UT
AAVA = diag(σi), r = rank(A)

• C = BVA(:, r + 1 : n) from Corollary 2.1.4

• Compute the SVD UT
C CVC = diag(γi), q = rank(C)

• Y = VA(:, r + 1 : n)VC(:, q + 1 : n− r) from Corollary 2.1.4
where Y = [y1, . . . , yn−r−q].

2.2.6 Finding Angles Between Subspaces
Let X and Y be subspaces of Rm whose dimensions satisfy

p = dim(X ) ≥ dim(Y) = q ≥ 1.

The principle angles θ1, . . . , θq ∈ [0, π/2] between X and Y are de�ned [35, p. 584]
recursively by

cos(θk) = max
x∈X

max
y∈Y

xT y = xT
k yk

subject to:
‖x‖2 = ‖y‖2 = 1
xT xi = 0 i = 1, . . . , k − 1
yT yi = 0 i = 1, . . . , k − 1

The vectors {x1, . . . , xq} and {y1, . . . , yq} are called the principal vectors between the
subspaces X and Y , and the principal angles de�ned as above satisfy 0 ≤ θ1 ≤ · · · ≤
θq ≤ π/2. If p = q then

dist(X ,Y) = ‖PX − PY‖2 =
√

1− cos(θp)2 = sin(θp), (2.14)

is the distance between equidimensional subspaces, where PX and PY are orthogonal
projections onto X and Y . In that case the angle ∠(X ,Y) can be de�ned as [90]

∠(X ,Y) = arcsin(dist(X ,Y)) = θp

= max
x∈X

∠(x,Y) = max
x∈X

min
y∈Y

∠(x, y)

= max
y∈Y

∠(y,X ) = max
y∈Y

min
x∈X

∠(x, y). (2.15)
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Moreover
∠(x,Y) = min

y∈Y
∠(x, y) = min

y∈Y
arccos

(
xT y

‖x‖2‖y‖2

)
, (2.16)

and all vectors x and y are taken to be di�erent from zero. For more information on
angles between subspaces, see [36] and [90].

If the columns of X ∈ Rm×p and Y ∈ Rm×q de�ne orthonormal bases for X and Y
respectively [35, p. 585], then

max
x∈X
‖x‖2=1

max
y∈Y
‖y‖2=1

xT y = max
u∈Rp

‖u‖2=1

max
v∈Rq

‖v‖2=1

uT (XT Y )v.

From the minimax characterization of the singular values in Theorem 2.1.13, it follows
that if

UT (XT Y )V = diag(σ1, . . . , σq), with σ1 ≥ σ2 ≥ · · · ≥ σq (2.17)
is the SVD of XT Y , then we may de�ne xk, yk and θk by

[ x1 . . . xq ] = XU, (2.18)
[ y1 . . . yq ] = Y V, (2.19)

cos(θk) = σk, k = 1, . . . , q. (2.20)

2.2.7 Finding the Intersection of Subspaces
The same procedure can be used to compute an orthogonal basis for range(A)∩range(B)
where A ∈ Rm×p and B ∈ Rm×q.

Theorem 2.2.3 ([35, p. 586]). Let cos(θk) for k = 1, . . . , q, U = [ u1 · · · uq ]
and V = [ v1 · · · vq ] be de�ned by (2.17)�(2.20). If the index s is de�ned by 1 =
cos(θ1) = · · · = cos(θs) > cos(θs+1), then we have

range(A) ∩ range(B) = span{u1, . . . , us} = span{v1, . . . , vs}.

2.2.8 Solving the Linear Least Squares Problem
Let A ∈ Rm×n and b ∈ Rm be given, and consider a problem of �nding vector x ∈ Rn

such that it minimizes the following functional

min
x∈Rn

‖Ax− b‖2.

In case the matrix A is rank de�cient, we are searching for the minimizer x with minimal
2 norm. Then, its solution can be found by using the SVD of the matrix A.

Theorem 2.2.4 ([35, p. 242]). Suppose A = UΣV T is the SVD of A ∈ Rm×n with
r = rank(A). If U = [u1, . . . , um] and V = [v1, . . . , vn] are column partitionings and
b ∈ Rm, then

xLS =
r∑

i=1

uT
i b

σi

vi
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minimizes ‖Ax− b‖2 and has the smallest 2 norm of all minimizers. Moreover

r2
LS = ‖AxLS − b‖2

2 =
m∑

i=r+1

(uT
i b)2.

In fact, xLS = A†b and rLS = ‖(I −AA†)b‖2. All solution of the linear least squares
problem are given by

x̂LS = xLS + V2y, y ∈ Rn−r,

where V2 is null basis matrix for A.

2.2.9 Solving the Linear Total Least Squares Problem
Let A ∈ Rm×n and B ∈ Rm×k be given, and we want to solve the following total least
squares (TLS) problem (see [51] and [34])

min
range(B+R)⊆range(A+E)

‖D · [ E R ] · T‖F , (2.21)

where E ∈ Rm×n, R ∈ Rm×k, and the matrices D = diag(d1, . . . , dm) and T =
diag(t1, . . . , tn+k) are nonsingular weight matrices. If [E0 R0] solves (2.21), then any
X ∈ Rn×k that satis�es

(A + E0)X = B + R0

is said to be a TLS solution.

Theorem 2.2.5 ([35, p. 577]). Let A, B, D, and T be as above and assume m ≥ n+k.
Let

C = D[ A B ]T = [ C1 C2 ]
n k

have the SVD given by UT CV = diag(σ1, . . . , σn+k) = Σ where U , V , and Σ are parti-
tioned as follows:

U = [ U1 U2 ] ,
n k

V =

[
V11 V12

V21 V22

]
n
k

n k
,

Σ =

[
Σ1 0
0 Σ2

]
n
k

n k
.

If σn(C1) > σn+1, then the matrix [E0 R0] de�ned by

D[ E0 R0 ]T = −U2Σ2[ V T
12 V T

22 ]

solves (2.21). If T1 = diag(t1, . . . , tn) and T2 = diag(tn+1, . . . , tn+k) then the matrix

XTLS = −T1V12V
−1
22 T−1

2

exists and is the unique solution to (A + E0)X = B + R0.
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Remark 2.2.6 ([35, pp. 578�579]). If σn = σn+1 then the TLS problem may still
have a solution, although it may not be unique. In this case, it may be desirable to single
out a �minimal norm� solution.

Many problems in physics, biology, chemistry, informatics and other �elds of science
can be reduced to a linear algebra problem. This is the reason why the singular value
decomposition is widely used as a tool for solving such problems. In the rest of this
section several examples will be presented, which illustrate application of the SVD in
other sciences.

2.2.10 Integral Equations and the Truncated Singular Value
Decomposition

Many physical, geological or medical measurements can be modelled by a Fredholm
integral equation. We will be focused on the Fredholm integral equation of the �rst kind.

De�nition 2.2.7 ([62, pp. 62�63]). Let ∆ = [a, b] ⊆ R be a segment in R and let
C(∆) denotes the Banach space of continuous real functions on ∆, with the norm de�ned
by

‖x‖ = max{|x(t)| : t ∈ ∆}.
Let k : ∆′ × ∆ −→ R be a continuous function, where ∆′ is a segment not necessarily
equal to ∆. Then, for every x ∈ C(∆), the function t 7−→ k(s, t)x(t) is Riemann
integrable and the function

y(s) =

∫ b

a

k(s, t)x(t)dt, s ∈ ∆′ (2.22)

is continuous on ∆′. Equation (2.22) represents the Fredholm integral equation of
the �rst kind.

Equation (2.22) also de�nes a mapping K : C(∆) −→ C(∆′) such that x 7−→ y, and
it can be substituted by the equation

y = Kx. (2.23)

The operator K is referred to as the Fredholm integral operator, and the function k
as the kernel of the Fredholm integral operator K.

The most usual problem concerning the Fredholm integral operator is �nding the
function x ∈ C(∆) for given y ∈ C(∆′), such that (2.22) holds (see [92]).

The Fredholm integral operators have several important properties, which are pre-
sented in the following theorems and de�nitions.

Theorem 2.2.8 ([62, p. 65]). If k : ∆′ ×∆ −→ R is a continuous function, then the
operator K

y = Kx
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is a continuous linear operator from the Banach space C(∆) to the Banach space C(∆′).
The norm of the operator K is given by

‖K‖ = max
s∈∆′

∫

∆

|k(s, t)|dt.

De�nition 2.2.9 ([62, p. 200]). Let X and Y be normed spaces. Linear operator
K : X −→ Y is compact if it maps a unit ball from the space X into a relative compact
set in the space Y. The relative compact set is a set where every sequence has a Cauchy
subsequence.

De�nition 2.2.10 ([62, p. 226]). The space C(∆) is unitary with the scalar product
de�ned by

〈x, y〉 =

∫

∆

x(t)y(t)dt.

The Hilbert space L2(∆) is the completion of the space C(∆).

Theorem 2.2.11 ([62, p. 226]). If the kernel k of the operator (2.22) is continuous
on ∆′ ×∆, then the operator K in (2.23) is a compact operator from the unitary space
C(∆) to the Banach space C(∆′).

Since the unitary space C(∆) is dense in the Hilbert space L2(∆), and since the
continuous operator K is de�ned on the unitary space C(∆), the operator K can be
expanded by continuity to the continuous operator K̃ : L2(∆) −→ C(∆′). Since K is a
compact operator, K̃ is also a compact operator. So, the operator de�ned by (2.22) is
a compact operator from L2(∆) to C(∆′).

Corollary 2.2.12 ([62, p. 227]). If the kernel k of the operator (2.22) is continuous
on ∆′ × ∆, then the operator K in (2.23) is compact from the Hilbert space L2(∆) to
the unitary space C(∆′).

Theorem 2.2.13 ([62, p. 212]). Let X and Y be Hilbert spaces and let K : X −→ Y
be a compact operator with in�nite range. Then, there exist orthonormal sequences {ei}
in X , and {fi} in Y, and a sequence of real numbers {σi} where

σ1 ≥ σ2 ≥ · · · ≥ σi ≥ · · · > 0, lim
i→∞

σi = 0,

such that every x ∈ X can be expressed as

x = x0 +
∞∑
i=1

〈x, ei〉ei, where Kx0 = 0,

and
Kx =

∞∑
i=1

σi〈x, ei〉fi. (2.24)

Equation (2.24) is the Schmidt representation of the operator K. The scalars
σi > 0 are referred to as singular values of the operator K.
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The presented results show that the Fredholm integral operator is compact and that
its singular values tend to zero. Hence, solving the Fredholm integral equation represents
an ill-posed problem, and the solution is extremely sensitive to measurement noise of
the input parameters.

A numerical procedure for solving the Fredholm integral equation is described in [83]
and [84]. The equation (2.22) is usually used in physics to model instrument distortion in
measuring an unknown function x(t). The �rst step in the discretization of the Fredholm
integral equation would be replacement of the equation (2.22) by a system of equations

yi =

∫ b

a

Ki(t)x(t)dt + ξi, i = 1, . . . , m,

where Ki(t) = K(si, t) are well known response functions of the instruments, yi = y(si)
are measured values, corresponding to a discrete mesh s1, s2, . . . , sm of collocation points,
and ξi are random, zero�mean measuring errors. The next step is discretization of the
integral by means of numerical integration, where the error of the discretization should
be smaller than the measuring errors. Thus the initial in�nite dimensional problem
(2.22) is transformed into the �nite dimensional problem

ȳ = K̄x̄ + ξ, (2.25)

where ȳ = [yi] ∈ Rm is the vector of measurements, K̄ ∈ Rm×n is a known matrix with
m ≥ n, and x̄ ∈ Rn is an unknown vector whose components are either discrete point
estimates of x(t) on some mesh t1, t2, . . . , tn, or the unknown coe�cient in an expansion
of x(t) in terms of some set of basis functions. The vector ξ ∈ Rm is a vector of random
measuring errors satisfying

E(ξ) = 0, E(ξξT ) = S2,

where E is the expectation operator, 0 ∈ Rm is the zero vector and S2 ∈ Rm×m is the
positive de�nite variance-covariance matrix for ξ. In most problems the measurement
errors are assumed to be are statistically independent, so

S2 = diag(s2
1, . . . , s

2
m),

where s2
1, . . . , s

2
m are known standard deviations of the error.

Remark 2.2.14. It should be noted that the discretization of an ill-posed Fredholm
integral equation of the �rst kind yields an ill-conditioned linear system. In general,
the higher the dimensions of the discretization matrix, the closer the �nite-dimensional
problem to the ill-posed continuous problem and, consequently, the more ill conditioned
the algebraic problem becomes [37]. That means that singular values of the matrix K̄
decay rapidly, and that its condition number is large. The smallest singular values are
usually of the same order as the roundo� error. The computation of the solution as
x̄ = K̄†ȳ is extremely unstable, and computed x̄ is useless.

For example, for the computation of the particle size distribution in photon corre-
lation spectroscopy [31], a Fredholm integral equation of the �rst kind has to be solved,
where

k(s, t) = e−st.
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When the Fredholm integral operator is discretized, the obtained singular values distri-
butions are shown in Figure 2.1.
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Figure 2.1: Singular values distribution of the discretized Fredholm integral operator.

As we can see from Figure 2.1, increasing the number of collocation points improves
the situation just a little bit, nevertheless the problem remains ill�posed. The singular
values decay so fast that they drop below the machine epsilon of the single precision
somewhere around the 20-th singular value.

Usually, it is assumed that the errors are samples from a multivariate normal distri-
bution:

ξ ∼ N(0, S2).

It is advantageous to scale (2.25) with the matrix S−1 as in [83]. Let
b = S−1ȳ, A = S−1K̄, η = S−1ξ.

Then by [83], (2.25) is transformed to
b = Ax̄ + η, η ∼ N(0, Im), (2.26)

where Im ∈ Rm×m is the identity matrix. If x̃ is an approximation of x̄, then its residual
r̃ = b − Ax̃ should be an approximation of η = b − Ax̄. Thus, an approximation x̃ is
acceptable only if r̃ is a plausible sample from the N(0, Im) distribution. Further, by
[83] it follows that

‖b− Ax̄‖2
2 ∼ χ2(m),

where χ2(m) denotes the Chi�squared distribution with m degrees of freedom, and hence
E(‖b− Ax̄‖2

2) = m, Var(‖b− Ax̄‖2
2) = 2m.

There are several ways to solve the problem (2.26). In [84] Rust proposed the fol-
lowing criteria for an approximation x̄ to be accepted as a good approximation
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1. The elements of r̃ should be distributed like N(0, 1).

2. The elements of r̃ should comprise a white noise time�series.

3. The squared norm r̃T r̃ should lie in some interval [m− κ
√

2m,m + κ
√

2m], with
|κ| ≤ 2.

Methods used for solving (2.26) are:

Solving the least squares problem
The solution is of the form

x̃ = A†b.

The matrix A has always full column rank but it is ill-conditioned, so the compo-
nents of x̃ are very sensitive to small perturbations in the components of b. The
presence of measuring errors leads to the solution approximation which is totaly
unreal. For example, in some physical measurement a very smooth solution is
expected. Instead of this, the computed solution approximation oscillates wildly
around the exact solution. The least squares solution usually does not satisfy any
of Rust's criteria.

Regularization
The most widely used method for stabilizing the wildly oscillating least squares
solution is to introduce a constraint on the solution x̃ of the form ([84])

‖Q(x̃− x̃0)‖2
2 ≤ β2.

Here, x̃0 is an optional initial approximation of x̄, Q is a matrix representation
of the linear operator for the constraint, and β2 is a constant determining the
strength of the constraint. The approximation x̃λ is obtained by solving

min
(‖b− Ax̃λ‖2

2 + λ‖Q(x̃λ − x̃0)‖2
2

)
,

where the parameter λ is a Lagrange multiplier whose value depends on the value
of β2. The solution is of the form

x̃λ = (AT A + λ2QT Q)−1(AT b + λ2QT Qx̃0).

The success of the regularization depends on the choice of the value λ. There are
several ways to choose the optimal λ, which satisfy all of Rust's criteria, see [84].

Truncated singular value decomposition (TSVD)
Another often used method for solving such an ill�posed problem is the truncated
singular value decomposition, which uses a rank p < min{m,n} approxima-
tion. If A = UΣV T is the SVD of the matrix A, then by the result of Theorem
2.1.11,

Ap =

p∑
i=1

σiuiv
T
i ,
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is the best rank p approximation of A. For m ≥ n, let the matrices U ∈ Rm×m,
V ∈ Rn×n and Σ ∈ Rm×n be partitioned as follows

U =
[

U1 U2 U3

]
p n−p m−n

V =
[

V1 V2

]
p n−p

Σ =




Σ1 0
0 Σ2

0 0




p

n−p

m−n

p n−p

where σp > ζσ1 and σp+1 < ζσ1 for some tolerance ζ. Then

Ap = U1Σ1V
T
1 .

Solving the least squares problem leads to minimization of the ‖rsvd‖2
2 = ‖Ax̄−b‖2

2,
where

‖rsvd‖2
2 = ‖Σ1V

T
1 x̄− UT

1 b‖2
2 + ‖Σ2V

T
2 x̄− UT

2 b‖2
2 + ‖UT

3 b‖2
2, (2.27)

which is equivalent to the minimization of the �rst two terms in (2.27). The
truncated SVD sets σi = 0 for i = p+1, . . . , n and minimizes only the �rst term in
(2.27). The same result would be obtained if we solved the least squares problem
for the matrix Ap

min ‖rtsvd‖2
2 = min(‖Σ1V

T
1 x̃− UT

1 b‖2
2 + ‖UT

2 b‖2
2 + ‖UT

3 b‖2
2).

The important thing is to �nd a proper tolerance ζ or rank p so that it represents
a compromise between the residual and the solution norm, keeping them both
relatively small. Finally, the solution of the truncated singular value decomposition
is of the form

x̃ =

p∑
i=1

uT
i b

σi

vi.

As Rust mentioned in [83], even for the most ill�posed problems, the matrix A is
not rank de�cient, so there is no good reason for setting any of the singular values
to zero. This is the reason, why he proposed the next method.

Truncated vector UT b
Rust in [83] suggested that instead of zeroing some of the singular values, one
should zero those components of UT b that consist mostly of the random error. His
idea is to pick a truncated level τ and require that solution approximation should
satisfy

(V T x̃)i =





(UT b)i

σi

, if |UT b|i > τ

0 , if |UT b|i ≤ τ

i = 1, . . . , n.

The success of the proposed method depends again on the choice of the truncated
level τ . The most simple way is to try several values of τ and choose the optimal
truncated level so that solution approximation satis�es all of Rust's criteria.
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The Fredholm integral equation appears in many problems such as, for example,
opto�thermal skin measurements [93] and magnetic resonance imaging [55].
Example 2.2.15 (Geophysics). An interesting example of a Fredholm integral equa-
tion can be found in [86] and [87]. It is concerned with gravity surveying. Variations
of the density of subsurface rock give rise to variations of the gravity �eld at the Earth
surface. Therefore, from measurements of the gravity �eld at the Earth surface, one can
calculate density variations of subsurface rock. Variations of the vertical component of
the gravity �eld g(s) along a line s at the surface are related to variations f(t) of the
mass density along a line t (0 ≤ t ≤ 1) at depth d below the surface by the Fredholm
integral equation of the �rst kind

g(s) =

∫ 1

0

k(s, t)f(t)dt (2.28)

with the kernel
k(s, t) =

d

(d2 + (s− t)2)3/2
.

Dimensional constants, such as the gravity constant, have been omitted. In discrete form,
we can write the relation between measurements ḡ = [g1, . . . , gm]T of gravity variations
at m points along a line at the surface and variations of the density f̄ = [f1, . . . , fn] at
n points along a subsurface line as a linear regression model

ḡ = K̄f̄ + ε,

where ε is a vector of measurement errors, and the m× n matrix K̄ is a discrete repre-
sentation of the integral operator (2.28).

For the concrete example synthetic measurements of gravity variations g where taken
at m = 15 equally spaced points along the line 0 ≤ s ≤ 1. The m× n matrix K̄ relates
gravity variations at the m = 15 points along the surface to density variations f at
n = m = 15 points at a depth d = 0.25 below the points of the surface measurements.
The standard deviation of the measurement error ε is about 0.1.

First, when the problem is solved as f̄ = K̄−1ḡ, using the full SVD, the least squares
estimate fSV D oscillates on the scale of the discretization grid. From the model's point
of view, the solution fSV D does not seem to represent plausible density variations. The
singular values of the matrix K̄ are shown in Figure 2.2

We can see that the singular values are again approaching zero very rapidly, and that
is the reason for the bad solution approximation.

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 present the exact solution (solid line) and solution
approximations (dashed line) obtained using TSVD with rank r equal to 4, 5, 6, 7 and
8. As we can see, these estimates are reasonable estimates of the actual density
variations. Figures 2.3 and 2.4 show that the best estimates are obtained for r = 4 and
r = 5.

2.2.11 Other Examples
Example 2.2.16 (Image processing). Storing an image requires a large amount of
computer memory, especially if high resolution is required. There is a lot of redundancy
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Figure 2.2: Singular value distribution of the discretized Fredholm integral operator.
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Figure 2.3: TSVD solution for r = 4.

among this data , and the SVD is used to reduce the amount of data and still to preserve
important information. The idea is very simple: the image data are organized as an
m× n matrix A, and then its best rank k approximation is computed for suitably small
k, as described in Theorem 2.1.11. Thus, instead of storing all mn elements of the
matrix A we have to store only the elements of U(1 : m, 1 : k), V (1 : n, 1 : k) and
k diagonal elements of Σ(1 : k, 1 : k), where A = UΣV T . So, there is all together
k(m + n + 1) elements to store, and this can be much less then mn if k ¿ min{m,n}.
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Figure 2.4: TSVD solution for r = 5.
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Figure 2.5: TSVD solution for r = 6.

The criteria for choosing the best k requires balancing storage reduction with good image
quality.

For example, let us use the famous clown image which is an example from MATLAB
(Figure 2.8). We need a 200 × 320 matrix for storing this image, consisting of 64000
elements.

If we use the rank 10 SVD approximation, that requires 5210 elements or about 8.14%
of the original storage requirement. The quality of this new picture is not satisfactory
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Figure 2.6: TSVD solution for r = 7.
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Figure 2.7: TSVD solution for r = 8.

(Figure 2.9).
The next image is produced by a rank 50 approximation, with 26050 elements requir-

ing 40.70% of the original storage amount. The quality of the image is now satisfactory
(Figure 2.10). For more information on application of the SVD in image processing see
[72] and [94].

The same approach can be used for plotting surfaces. For example, suppose we want
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Figure 2.8: Image of the clown: 100%
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Figure 2.9: Image of the clown: 8.14%

to plot the graph of the following function (Figure 2.11)

f(x, y) =
1

250
(x2y − x2 − y2 + 175) (x, y) ∈ [−5, 5]× [−5, 5].

In order to do that, �rst we have to de�ne a mesh on the square [−5, 5] × [−5, 5], and
then we have to plot points representing the function values in each mesh node. The
points are then connected in an approximative surface. We can divide the initial square
in small 0.5× 0.5 squares, producing all together 21× 21 = 441 mesh points, denoted by

(xi, yi), i, j = 0, . . . , 20, xi = −5 + 0.5i, yj = −5 + 0.5j.

These points are further organized in a 21× 21 matrix A = [aij], where

aij = f(xi, yj),
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Figure 2.10: Image of the clown: 40.70%

which is then used for plotting. Thus, we have to store all 441 elements.
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Figure 2.11: 3D plot of the function f(x, y) = 1
250

(x2y − x2 − y2 + 175): 100%

By computing the SVD of the matrix A, we can note that only the �rst two singu-
lar values of A are nontrivial. Hence, the matrix A has rank 2, and the only possible
choices for storage reduction are rank 1 and rank 2 approximations. The rank 1 ap-
proximation requires storage of only 43 elements which represents 9.75% of the original
storage requirements. The resulting plot is not very accurate (Figure 2.12).

The rank 2 approximation requires storage of 86 elements which represents 19.50%
of the original storage requirements. The produced plotting is exactly the same as the
original (Figure 2.13).

Example 2.2.17 (Internet tra�c modelling). The singular value decomposition is
usually used to extract important information from an abundant amount of data. This is
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Figure 2.12: 3D plot of the function f(x, y) = 1
250

(x2y − x2 − y2 + 175): 9.75%
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Figure 2.13: 3D plot of the function f(x, y) = 1
250

(x2y − x2 − y2 + 175): 19.50%

done in an example taken from [96], where internet tra�c was analyzed. The main goal
in [96] was to �nd patterns of internet tra�c trace, such as weekly and daily patterns.
The tra�c intensity was observed, and its status was registered every minute in 49
successive days. The collected data was organized in a 49× 1440 matrix X, where each
row represents one day, and each column is with respect to one minute within a day.

From Figure 2.14 it is clear that there exist weekly patterns, and weekday�weekend
and day�night e�ects. After performing the SVD on the data matrix X =

∑49
i=1 σiuiv

T
i ,

the following conclusions can be drawn:

• the σ1u1v
T
1 component contains the average information of the day and the speci�c

minute in a day

• the σ2u2v
T
2 component contains the di�erence between weekend and weekdays and

day�night e�ect
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Figure 2.14: Original time series of internet tra�c intensity.

• the σ3u3v
T
3 component contains information related to some outliers

The analysis of the singular vectors produces the following results:

• u1 has a weekly pattern and contains information related to the total network tra�c

• u2 also contains a clear weekly e�ect, and is strongly correlated with the variance
of each day

• u3 shows the special information the outliers might have

• v1 shows the average daily tra�c shape with the day�night e�ect

• v2 also shows the day�night e�ect with the di�erence between weekdays and the
weekend

• v3 shows strong variability during the day, and this is probably because of the strong
in�uence of the outliers

In this example the SVD is used to get prediction with use of fewer components.

Example 2.2.18 (Genetics). One of the most interesting problems in modern science
is the decoding of genes. Recently, a huge advance in technology and data analysis has
occurred, which enables us today a better understanding of the connection between genes
and all the features of an organism. One possible approach to this problem is to analyze
the data obtained from microarray experiments. The task is to �nd the structure of the
gene network (or to reverse�engineer the network), which describes interactions between
genes in a selected biological process and is illustrated in Figure 2.15. Solving this task
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requires a very large amount of experimental data, which is expensive to obtain. To
overcome the problem of data shortage and computational ine�ciency, several genetic
researchers have adopted a linear model and have used the singular value decomposition
to reconstruct the network architecture [95].

The method for such a reconstruction consists of two steps. The �rst step is the
application of the SVD for constructing a set of feasible solutions that are consistent
with the measured data. The second step is the robust regression which is used for
selection of the most sparse one as the solution. The reason for doing the second step is
that earlier works on gene regulatory networks and bioinformatics databases suggested
that naturally occurring gene networks are sparse, i.e., generally each gene interacts with
only a small percentage of all the genes in the entire genome.

In [95] they considered only systems that are operating near a steady state, so that
the dynamics can be approximated by a linear system of ordinary di�erential equations:

ẋi(t) = −λixi(t) +
n∑

j=1

wijxj(t) + bi(t) + ξi(t), i = 1, . . . , n. (2.29)

Here, xi is the concentration of the i-th mRNA which re�ects the expression level of the
gene, λi is the self-degradation rate for the i-th gene, bi is the external stimulus on the
i-th gene, and ξi represents noise. The matrix element wij ∈ R describes the type and
strength of the in�uence of the j-th gene on the i-th gene, with a positive sign indicating
activation, a negative sign indicating repression, and a zero indicating no interaction.

To obtain parameters in the equation (2.29), the authors of [95] used a prescribed
stimulus [b1, b2, . . . , bn]T , and they used a microarray to simultaneously measure the con-
centrations of n di�erent mRNAs, i.e., [x1, x2, . . . , xn]T . Repeating this procedure m
times, they obtained m measurements, organized as a matrix X ∈ Rn×m:

X =




x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2... ... . . . ...

x1
n x2

n · · · xm
n


 .

The xj
i represents the concentration of the i-th mRNA in the j-th experiment, with

similar notations for Ẋ and B. The equation (2.29) can then be rewritten as
Ẋ = AX + B, X, Ẋ, B ∈ Rn×m, A = [aij] ∈ Rn×n, (2.30)

where noise is neglected and
aij = wij − δijλi.

The goal of the reverse engineering is to use measured data B, X, and Ẋ to deduce A
and hence the connectivity matrix W = [wij]. First, by transposing equation (2.30), we
obtain

(XT )(AT ) = (ẊT )− (BT ), (2.31)
where A is unknown. Because of the high costs of the measurements, typically m ¿ n,
thus (2.31) is an underdetermined linear system. The SVD is used to decompose XT as

XT = UΣV T , XT , U ∈ Rm×n, Σ, V ∈ Rn×n,
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in order to obtain (XT )† = (X†)T . Let rank(X) = r. Then one particular solution for
A is given by

A0 = (Ẋ −B)X†,

and the general solution is given by the a�ne space

A = A0 + CV T , C ∈ Rn×n, (2.32)

where C = [cij] and cij = 0 for j ≤ r. The family of solutions in equation (2.32)
represents all the possible networks that are consistent with the microarray data.

The second step of the procedure will �nd the most suitable solution A.

Figure 2.15: Schematic of a nonlinear gene network.

2.3 Perturbation Theory
When the singular value decomposition of a matrix A ∈ Rm×n (m ≥ n) is computed
in �nite precision arithmetic, the exact factors U ∈ Rm×n, Σ ∈ Rn×n and V ∈ Rn×n

will not be obtained in most cases. Matrices Ũ , Σ̃ and Ṽ will be computed instead.
Numerical analysis of the method, used for computing the SVD, results in a matrix Ã
such that some or all of the computed matrices Ũ , Σ̃ and Ṽ are its exact SVD factors.

A - Ũ , Σ̃, Ṽ

?

Ã = A + δA

©©©©©©©*

computed SVD factors

exac
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The relation between the exact and the computed factors is given by perturbation
theory, which compares the matrices A and Ã. Basically, the perturbation theory will
produce bounds on the errors in computed SVD factors. The error bounds can be
divided in two di�erent categories:

1. singular value error bounds,

2. singular subspace error bounds.

2.3.1 Singular Value Error Bounds
First, let us take a look at additive perturbations of a matrix.
Theorem 2.3.1 (Mirsky�Lidskii-Wielandt [66, p. 23]). Let A ∈ Cm×n, m ≥ n,
then for any unitarily invariant norm ‖ · ‖, we have

‖Σ− Σ̃‖ ≤ ‖A− Ã‖.
Specially, for Σ = diag(σ1, . . . , σn) and Σ̃ = diag(σ̃1, . . . , σ̃n), we have

max
i=1,...,n

|σi − σ̃i| ≤ ‖A− Ã‖2,

√√√√
n∑

i=1

(σi − σ̃i)2 ≤ ‖A− Ã‖F .

Theorem 2.3.1 claims that the absolute backward error norm is the upper bound for
absolute error in singular values. But, the absolute errors are not always the best way
of measuring errors. Backward analysis of a method which computes the SVD of the
matrix A, usually results with a bound

‖Ã− A‖2 ≤ η2‖A‖2, or ‖Ã− A‖F ≤ ηF‖A‖F ,

where η2 and ηF are some multiples of machine roundo� ε. Thus, if we want to look at
the relative singular value error, we are going to obtain

|σi − σ̃i|
σi

≤ η2
σ1

σi

≤ η2κ2(A),

where κ2(A) = ‖A‖2‖A†‖2 is the condition number. This means that if A is an ill
conditioned matrix, the small singular values might be computed with large relative
error.

The next step would be to look at the relative errors in singular values.
Theorem 2.3.2 ([52, p. 174]). Let A ∈ Cm×n for m ≥ n. If range(Ã) ⊂ range(A)
then |σi − σ̃i|

σi

≤ ‖A†(Ã− A)‖2, i = 1, . . . , n.

If range(Ã∗) ⊂ range(A∗) then
|σi − σ̃i|

σi

≤ ‖(Ã− A)A†‖2, i = 1, . . . , n.



34 CHAPTER 2. THE SINGULAR VALUE DECOMPOSITION

When A has full column rank the second range condition in Theorem 2.3.2 is auto-
matically satis�ed.

Theorem 2.3.3 ([52, p. 174]). Let A ∈ Cm×n, m ≥ n, and let A have full column
rank, then

max
i=1,...,n

|σi − σ̃i|
σi

≤ ‖(Ã− A)A†‖2.

Multiplicative perturbations are much more suitable for this case, so the next results
will deal with such perturbations. Let us start with Ostrowsky�type bounds.

Theorem 2.3.4 ([52, p. 190]). Let A ∈ Cm×n, m ≥ n, and let Ã = SAT , where S
and T are nonsingular. Then

σi

‖S−1‖2‖T−1‖2

≤ σ̃i ≤ σi‖S‖2‖T‖2.

Theorem 2.3.5 ([52, p. 192]). Let A ∈ Cm×n, m ≥ n, and let Ã = SAT , where S
and T are nonsingular. Then

max
i=1,...,n

|σi − σ̃i|
σi

≤ max{‖I − SS∗‖2, ‖I − T ∗T‖2}.

Thus, the relative error in singular values of Ã is small if S and T are close to unitary
matrices.

There are some other useful error measures for singular values. One of them is

χ(α, α̃) =
|α− α̃|√
|αα̃| ,

the so-called χ relative distance between real numbers α and α̃. We de�ne χ(0, 0) = 0.
The relation between this relative distance and the standard relative error is given in
the following proposition.

Proposition 2.3.6 ([66, pp. 15�16]). Let α, α̃ ∈ R. If 0 ≤ ε < 1, then

|α− α̃|
|α| ≤ ε ⇒ χ(α, α̃) ≤ ε√

1− ε
, (2.33)

if 0 ≤ ε < 2, then

χ(α, α̃) ≤ ε ⇒ max

{ |α− α̃|
|α| ,

|α− α̃|
|α̃|

}
≤

(
ε

2
+

√
1 +

ε2

4

)
ε. (2.34)

Asymptotically,
lim
α̃→α

χ(α, α̃)
|α−α̃|
|α|

= 1,

thus (2.33) and (2.34) are at least asymptotically sharp.
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Theorem 2.3.7 ([64, p. 397]). Let A ∈ Cm×n, m ≥ n, and suppose that Ã = SAT
where S and T are nonsingular. Then,

max
i=1,...,n

χ(σi, σ̃i) ≤ 1

2
‖S∗ − S−1‖2 +

1

2
‖T ∗ − T−1‖2,

√√√√
n∑

i=1

χ2(σi, σ̃i) ≤ 1

2
‖S∗ − S−1‖F +

1

2
‖T ∗ − T−1‖F .

If T is unitary then
max

i=1,...,n
χ(σi, σ̃i) ≤ ‖|S|1/2 − |S|−1/2‖2,

√√√√
n∑

i=1

χ2(σi, σ̃i) ≤ ‖|S|1/2 − |S|−1/2‖F ,

where
|S| = (S∗S)1/2.

2.3.2 Singular Subspace Error Bounds
When comparing two subspaces X and Y of dimension k, the most natural measure is
the angle matrix Θ(X, Y ) between these two subspaces, where X and Y are orthonormal
bases for X and Y , and

Θ(X, Y ) = arccos(XT Y Y T X)1/2, with ‖ sin Θ(X,Y )‖2 = ‖Y T
⊥ X‖2.

Y⊥ is orthonormal basis of Y⊥, and Y⊥ is orthogonal complement of Y . From section
2.2 and [90]

‖ sin Θ(X, Y )‖2 = sin(θk) = sin ∠(X ,Y), ‖ sin Θ(X, Y )‖F =

√√√√
k∑

i=1

sin2(θi).

Theorem 2.3.8 (Wedin [67, p. 5]). Let m ≥ n, and let A ∈ Cm×n and Ã ∈ Cm×n

have the following SVDs

A = UΣV ∗ = [ U1 U2 ]




Σ1 0
0 Σ2

0 0




[
V ∗

1

V ∗
2

]
, (2.35)

Ã = ŨΣ̃Ṽ ∗ = [ Ũ1 Ũ2 ]




Σ̃1 0

0 Σ̃2

0 0




[
Ṽ ∗

1

Ṽ ∗
2

]
, (2.36)

where U, Ũ ∈ Cm×m are unitary, V, Ṽ ∈ Cn×n are unitary, U1, Ũ1 ∈ Cm×k, V1, Ṽ1 ∈ Cn×k,
and

Σ1 = diag(σ1, . . . , σk), Σ2 = diag(σk+1, . . . , σn), (2.37)
Σ̃1 = diag(σ̃1, . . . , σ̃k), Σ̃2 = diag(σ̃k+1, . . . , σ̃n), (2.38)
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with 1 ≤ k < n. Let us de�ne the residuals

RR = ÃV1 − U1Σ1 = (Ã− A)V1 and RL = Ã∗U1 − V1Σ1 = (Ã∗ − A∗)U1.

If
δ = min

{
min

i=1,...,k, j=1,...,n−k
|σi − σ̃k+j|, min

i=1,...,k
σi

}
> 0,

then √
‖ sin Θ(U1, Ũ1)‖2

F + ‖ sin Θ(V1, Ṽ1)‖2
F ≤

√
‖RR‖2

F + ‖RL‖2
F

δ
.

The scalar δ represents the absolute gap between singular values of Σ1 and Σ̃2. The
next theorem involves the relative gap, but �rst we have to de�ne one more error measure
for singular values:

ρp(α, α̃) =
|α− α̃|

p
√
|α|p + |α̃|p , for 1 ≤ p ≤ ∞,

and ρp is the so-called p relative distance between real numbers α and α̃. We de�ne
ρp(0, 0) = 0. The relation between this relative distance and the standard relative error
is given in the following proposition.
Proposition 2.3.9 ([66, pp. 10�11]). Let α, α̃ ∈ R. If 0 ≤ ε < 1, then

|α− α̃|
|α| ≤ ε ⇒ ρp(α, α̃) ≤ ε

p
√

1 + (1− ε)p
, (2.39)

and
ρp(α, α̃) ≤ ε ⇒ max

{ |α− α̃|
|α| ,

|α− α̃|
|α̃|

}
≤ 21/pε

1− ε
. (2.40)

Asymptotically,
lim
α̃→α

ρp(α, α̃)
|α−α̃|
|α|

= 21/p,

thus (2.39) and (2.40) are at least asymptotically sharp.
Theorem 2.3.10 ([67, p. 7]). Let A ∈ Cm×n (m ≥ n), and Ã = S∗AT be two matrices
with SVDs (2.35), (2.36), (2.37) and (2.38), where S and T are nonsingular. Let

η2 =





min

{
min

i=1,...,k, j=1,...,n−k
ρ2(σi, σ̃k+j), min

i=1,...,k
ρ2(σi, 0)

}
, if m > n,

min
i=1,...,k, j=1,...,n−k

ρ2(σi, σ̃k+j), otherwise.

If η2 > 0, then
√
‖ sin Θ(U1, Ũ1)‖2

F + ‖ sin Θ(V1, Ṽ1)‖2
F ≤

≤
√
‖(I − S∗)U1‖2

F + ‖(I − S−1)U1‖2
F + ‖(I − T ∗)V1‖2

F + ‖(I − T−1)V1‖2
F

η2

.
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2.4 Methods for Computing the SVD
2.4.1 Jacobi�Type Methods
Jacobi�type methods are iterative methods for computing the singular value decompo-
sition of a matrix A = [aij] ∈ Rm×n. They are based on pre- and post-multiplication
with Jacobi rotations. The important measure for the convergence of such methods is

off(A) =
∑

i6=j

a2
ij.

The one�sided Jacobi SVD algorithm
The Jacobi method for spectral decomposition was introduced by Jacobi in 1846
[53], and many variants of the method have been developed since. The one�sided
Jacobi SVD algorithm applies multiplication with Jacobi rotations only to one
side of the matrix A ∈ Rm×n, and it is described in [16]. If, for example, m À n,
a QR factorization of the matrix A is performed in order to reduce the matrix
dimension. The Jacobi algorithm is then applied to the n × n upper triangular
factor or to its transpose. The algorithm generates a sequence of matrices A(k) as
follows,

V (0) = In

V (k+1) = VkV
(k)

A(0) = A
A(k+1) = A(k)V T

k

(2.41)

where Vk is a plane rotation, acting only on the ik-th and the jk-th columns. The
rotation acting on the i-th and the j-th rows or columns is de�ned by

Gi,j(θ) =




1
... ...

. . . ... ... 0

1
... ...

· · · · · · · · · cos(θ) · · · · · · · · · sin(θ) · · · · · · · · ·
... 1

...
... . . . ...
... 1

...
· · · · · · · · · − sin(θ) · · · · · · · · · cos(θ) · · · · · · · · ·

... ... 1

0
... ... . . .
... ... 1




i

j

i j

Vk is de�ned as
Vk = Gik,jk

(ψk),

and if A(k) = [a
(k)
1 , . . . , a

(k)
n ] is a column partition of the matrix A(k), then the

iteration of the Jacobi algorithm (2.41) can be described as
[

a
(k+1)
ik

a
(k+1)
jk

]
=

[
a

(k)
ik

a
(k)
jk

]
·
[

cos(ψk) − sin(ψk)
sin(ψk) cos(ψk)

]
.
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The angle ψk is chosen so that

(a
(k+1)
ik

)T a
(k+1)
jk

= 0,

which ensures that

off((A(k+1))T A(k+1)) = off((A(k))T A(k))− 2|(a(k)
ik

)T ajk
|2, k ≥ 0.

One iteration of the one�sided Jacobi SVD algorithm can be visualized as follows.

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

·

1
1

cψk −sψk

1
sψk

cψk

1

=

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

where cψk
= cos(ψk), sψk

= sin(ψk), • represent elements of the matrix A(k) that
will be a�ected by Vk, and • are elements of A(k+1) that are changed, and are
di�erent from the corresponding elements of A(k). The two columns denoted by
green bullets will be orthogonal, due to the choice of angle ψk.
The pivot indices ik and jk are usually chosen according to row� or column�
cyclic pivot strategy, or so that |(a(k)

ik
)T a

(k)
jk
| is maximal. Actually, the Jacobi SVD

algorithm is equivalent to the symmetric Jacobi algorithm applied to the matrix
AT A. Thus, the sequence A(k) converges to a diagonal matrix

lim
k→∞

(A(k))T A(k) = Σ2 = diag(σ2
1, . . . , σ

2
n),

and with
V = lim

k→∞
(V (k))T ,

the following factorization is computed

AT A = V Σ2V T ,

where
A(∞) = lim

k→∞
A(k)

has orthogonal columns. This implies that U can be computed as

U = A(∞)Σ−1 if det Σ 6= 0.

The one-sided Jacobi algorithm computes singular values with high relative accu-
racy, as it is shown in [16]. Let Ã

(k)
s be the matrix with unit columns, obtained

as

Ã(k)
s = Ã(k)(D̃(k))−1, with D̃(k) = diag(‖Ã(k)(:, 1)‖2, . . . , ‖Ã(k)(:, n)‖2),
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where Ã(k) is a matrix computed in �nite precision arithmetic in the k-th step of the
Jacobi algorithm, when the stopping criterion has been satis�ed. If the computed
singular values of Ã(k) are denoted by σ̃

(k)
i , i = 1, . . . , n, then the following relation

hold:
|σi − σ̃

(k)
i |

σi

≤ η max
j=1,...,k

κ2(Ã
(j)
s ), i = 1, . . . , n,

where η is some multiple of the unit roundo� ε.
New fast and accurate Jacobi SVD algorithm has been proposed recently in [24]
and [25].

The Kogbetliantz algorithm
The Kogbetliantz algorithm is a two�sided Jacobi SVD algorithm for square ma-
trices, and it was introduced in [60] and [61]. In [43] a modi�cation of the original
algorithm was proposed. The Kogbetliantz algorithm was applied to the triangu-
lar matrix, after a QR factorization with column pivoting has been applied to the
original matrix. So we will assume that A ∈ Rn×n is upper triangular, and that

|a11| ≥ |a22| ≥ · · · ≥ |ann|.
The algorithm generates a sequence of matrices A(k) as follows,

U (0) = Im V (0) = In A(0) = A

U (k+1) = UkU
(k) V (k+1) = VkV

(k) A(k+1) = UkA
(k)V T

k (2.42)

where Uk and Vk are plane rotations, acting only on the ik-th and the jk-th rows
and columns. Let us de�ne

Uk = Gik,jk
(φk), Vk = Gik,jk

(ψk),

and let us focus only on the rows and the columns, where all the action is going
on. Then the iteration of the Kogbetliantz algorithm (2.42) can be described as

[
a

(k+1)
ikik

a
(k+1)
ikjk

a
(k+1)
jkik

a
(k+1)
jkjk

]
=

[
cos(φk) sin(φk)

− sin(φk) cos(φk)

]
·
[

a
(k)
ikik

a
(k)
ikjk

a
(k)
jkik

a
(k)
jkjk

]
·
[

cos(ψk) − sin(ψk)
sin(ψk) cos(ψk)

]
.

The angles φk and ψk are chosen so that

a
(k+1)
ikjk

= a
(k+1)
jkik

= 0,

which ensures that

off(A(k+1)) = off(A(k))− |a(k)
ikjk
|2, k ≥ 0.

One iteration of the Kogbetliantz algorithm can be visualized as follows.
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1
1

cφk
sφk

1
−sφk

cφk

1

·

•
•
•
•
•
•

•
•
•
•
•
•

• • • • • •

• • • • • •

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

·

1
1

cψk −sψk

1
sψk

cψk

1

=

•
0

•
•
•
•

•
•
•
0

•
•

• • • • •

• • • • •

•

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

where cφk
= cos(φk), sφk

= sin(φk), cψk
= cos(ψk), sψk

= sin(ψk), • represents
elements of the matrix A(k) that will be a�ected by Uk and Vk, and • are elements
of A(k+1) that are changed, and are di�erent from the corresponding elements of
A(k).
The pivot indices ik and jk are usually chosen according to row� or column�cyclic
pivot strategy. The sequence A(k) converges to a diagonal matrix

lim
k→∞

A(k) = Σ = diag(σ1, . . . , σn),

and with
U = lim

k→∞
(U (k))T , V = lim

k→∞
(V (k))T ,

all the SVD factors are computed, and

A = UΣV T .

2.4.2 Methods Based on Bidiagonalization
An algorithm belonging to this group consists of two steps. The �rst step uses orthogonal
transformations to reduce the matrix A ∈ Rm×n, for m ≥ n, to a bidiagonal form:

A = UBV T , U ∈ Rm×n, and B, V ∈ Rn×n,

where U is orthonormal, V is orthogonal and B is bidiagonal

B =




ψ1 φ2

ψ2 φ3

. . . . . .
ψn−1 φn

ψn




. (2.43)

This process is called bidiagonalization. The second step is the application of a fast
algorithm for computing the singular value decomposition of a bidiagonal matrix (see
subsection 2.4.3).

Several bidiagonalization algorithms appeared in the past, and will be listed here. A
new version of one�sided bidiagonalization will be presented in Chapter 3.
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The Householder bidiagonalization
The Householder bidiagonalization algorithm is based on pre� and post�multi-
plications with Householder re�ectors, such that at the end of the process the
following relation is achieved

[
B
0

]
= Un · · ·U1AV1 · · ·Vn−2, U = U1 · · ·Un, V = V1 · · ·Vn−2,

where Uk and Vk are the Householder re�ectors, and 0 ∈ R(m−n)×n. This bidi-
agonalization is described by Golub and Kahan in [33]. A Householder re�ector
H ∈ Rn×n is de�ned as

H = In − vvT , ‖v‖2 =
√

2,

thus
HT = H, H2 = In.

For any x, y ∈ Rn, x 6= y with ‖x‖2 = ‖y‖2, a Householder re�ector H can be
found, such that Hx = y. In that case, the vector v is of the form

v =

√
2

‖x− y‖2

(x− y).

In the bidiagonalization process, Householder re�ectors Uk are chosen to annihilate
elements of the matrix A bellow the main diagonal, and Vk are chosen to annihilate
elements above the superdiagonal. The computation and the application of the
Householder re�ectors Uk and Vk are interlaced: in the k-th step Uk will annihilate
all the elements bellow the main diagonal in the k-th column, and Vk will annihilate
all the elements right to the superdiagonal in the k-th row. The process is shown
bellow.

••
••
••

••
••
••

••
••
••

••
••
•• • • • •

••
••
•

••
••
•

••
••
• • •

••
••
•

••
••
•

••
••
• • •• • •

••
••

••
••

• •• •

••
••

••
••

• •• •• •

••
•

• •• •• ••

A = U1−−−−−→ V1−−−−−→ U2−−−−−→ V2−−−→

U3−−−−−→ U4−−−−−→ =

[
B
0

]
.

The elements denoted by • are crucial for the next step of the algorithm. The
column or row of red bullets denotes the vector x, such that the next Householder
re�ector H (lower block diagonal part of Uk or Vk) will depend on it. The House-
holder re�ector H will be chosen so that Hx = ±‖x‖2e1. The elements denoted
by • are computed values after the application of the Householder re�ector.
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The Lawson�Hanson�Chan bidiagonalization
When m À n, an e�cient algorithm can be obtained if the QR factorization is
performed before bidiagonalization. The bidiagonalization is then applied to the
triangular square matrix with much smaller dimensions than the original matrix.
This idea was mentioned in [63, p. 119] and analyzed in [11]. Let

A = Q

[
R
0

]
, Q ∈ Rm×m, R ∈ Rn×n

be the QR factorization of the matrix A ∈ Rm×n, with Q orthogonal and R upper
triangular. Then, the bidiagonalization of the matrix R will produce

R = URBV T , UR, B, V ∈ Rn×n,

with UR and V orthogonal, and B bidiagonal. The �nal bidiagonalization of the
matrix A is obtained as

A = Q

[
UR 0
0 Im−n

] [
B
0

]
V T ,

and
U = Q

[
UR 0
0 Im−n

]
.

This algorithm involves fewer operations than the Householder bidiagonalization
whenever m ≥ 5n/3, and if U is not accumulated.
Both methods, the Householder bidiagonalization and the Lawson�Hanson�Chan
bidiagonalization, can guarantee only small absolute errors in the computed sin-
gular values. If these algorithms are performed in �nite precision arithmetic, and
if the singular values of the computed bidiagonal matrix B̃ are denoted by σ̃i,
i = 1, . . . , n, then they are the exact singular values of the matrix A+ δA, and the
following relations hold:

‖δA‖2 ≤ η‖A‖2, and thus
max

i
|σi − σ̃i| ≤ η‖A‖2,

where η is a moderate polynomial of matrix dimensions times the unit roundo� ε.

The Lanczos bidiagonalization
This algorithm, introduced by Golub and Kahan in [33], is a generalization of
the symmetric Lanczos algorithm. It is based on a simple recurrence. Let b be a
starting vector, then we de�ne u0, v1 and φ1 by

u0 = 0, φ1v1 = b, φ1 = ‖b‖2,

and for k = 1, 2, . . . compute

ψkuk = Avk − φkuk−1,

φk+1vk+1 = AT uk − ψkvk,
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where φk and ψk are nonnegative, and are chosen so that ‖uk‖2 = ‖vk‖2 = 1. If
we de�ne

Uk = [u1, . . . , uk], Vk = [v1, . . . , vk],

then the above equations can be written as

φ1Vke1 = b,

AVk = UkBk,

AT U = Vk+1B
T
k+1,k,

where Bk ∈ Rk×k is upper bidiagonal

Bk =




ψ1 φ2

ψ2 φ3

. . . . . .
ψk−1 φk

ψk




,

and Bk,k+1 is equal to Bk+1 without the last row. Paige showed in [77] that the
matrices Uk and Vk are orthogonal, and because of this orthogonality the process
will stop at k ≤ min(m,n) with either φk = 0 or ψk = 0. The Lanczos bidiago-
nalization implemented in �nite precision arithmetic can produce matrices Ũk and
Ṽk which are not numerically orthogonal. Thus, some sort of reorthogonalization
is required.

The Ralha one�sided bidiagonalization
This algorithm is proposed by Ralha in [80], [82] and [81], and its main charac-
teristic is that the Householder re�ectors are applied only from one side of the
matrix A. More attention will be devoted to this algorithm here, because the new
bidiagonal algorithm, which will be analyzed in this thesis, is its modi�cation. The
main steps of the algorithm are as follows:

• Triorthogonalization
The matrix is post-multiplied by a sequence of n − 2 Householder re�ectors
Vk:

A0 = A, Ak = Ak−1Vk, k = 1, . . . , n− 2.

The Householder re�ectors Vk are chosen so that

for V = V1 · · ·Vn−2 F = An−2 = AV is triorthogonal,

which means, that for columns fi, fj of F

fT
i fj = 0, |i− j| > 1.

This is equivalent way to say that F T F is tridiagonal.
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• A variant of the Gram�Schmidt orthogonalization
The columns of F are orthogonalized only against adjacent columns, produc-
ing

F = UB,

where U = [u1, . . . , un] ∈ Rm×n is orthogonal and B ∈ Rn×n is the required
upper bidiagonal matrix, whose singular values are those of A.

The steps of the Ralha algorithm are shown bellow.

• • • •

••
•
••
•
••
•
••
• • •• • • •

•• •• ••
• •• • •• • •• •

• • •• • •• ••
• •• •• ••

Implicitly:

AT A = V1−−−−−→ V2−−−−−→ = F T F ;

Explicitly:

A
V−→ F

u1−−−→ u2−−−→ u3−−−→ u4−−−→ = B .

The elements denoted by • will be used in the next step of the algorithm. The
column or row of red bullets denotes the vector zk, such that the next Householder
re�ector Vk will depend on it. The Householder re�ector Vk will be chosen so that
Vkzk = ±‖zk‖2e1, and Vk =

[
Ik 0
0 Vk

]
. The elements denoted by • are computed

values of F T F after the application of the Householder re�ector. The computed
elements of B are denoted by •.
Finally, the complete algorithm is given in Algorithm 2.4.1.

Algorithm 2.4.1 (The Ralha one�sided bidiagonalization). For A ∈ Rm×n,
rank(A) = n > 2, this algorithm computes orthonormal U = [u1, . . . , un], bidiago-
nal B and orthogonal V = V (n−2) such that A = UBV T .

A0 = A; V (0) = I;
{Implicit triorthogonalization}
for k = 1 : n− 2

zk = Ak−1(:, k + 1 : n)T Ak−1(:, k);
if zk 6= 0 �nd a Householder transformation Vk such that Vkzk = γke1;

Ak(:, k + 1 : n) = Ak−1(:, k + 1 : n)Vk;
Vk =

[
Ik 0
0 Vk

]
; V (k) = V (k−1)Vk;

else
Vk = In−k;

end
end
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{The Gram�Schmidt orthogonalization}
F = [f1, . . . , fn] = An−2;
s1 = f1;
ψ1 = ‖s1‖2;
u1 = s1/ψ1;
for k = 2 : n

φk = uT
k−1fk;

sk = fk − φkuk−1;
ψk = ‖sk‖2;
uk = sk/ψk;

end

The version of the Gram�Schmidt orthogonalization in this algorithm substitutes
pre-multiplication with a sequence of Householder re�ection in the Householder
bidiagonalization. Thus, the second part of the algorithm requires only O(mn)
�ops instead of O(n2m). The other important characteristic is that the algorithm
is one-sided. That means that most of the algorithm can be expressed by simple
operations on columns of the transformed matrix, and it can be e�ciently imple-
mented on multiprocessor systems with distributed memory. On the other
hand, when the algorithm is implemented in �nite precision arithmetic, there is a
possible loss of triorthogonality of the computed matrix F̃ . This means that F̃ T F̃
can be far from tridiagonal form, and this method may not be numerically back-
ward stable. There is also a possible great loss of orthogonality of the computed
matrix Ũ .

2.4.3 Methods for the Bidiagonal SVD
After bidiagonalization, SVD of the bidiagonal matrix has to be performed to complete
the task of computing the singular value decomposition of a general matrix:

B = UBΣV T
B .

The �nal singular value decomposition is then achieved by

A = (UUB)Σ(V VB)T .

There are several methods for computing bidiagonal SVD. They all assume that the
bidiagonal matrix B (2.43) is unreduced. If φk+1 = 0 for some k, then

B =

[
B1 0
0 B2

]
k

n−k

k n−k

and the original SVD problem is reduced to two smaller problems involving matrices B1

and B2.
Three such methods are listed below in historical order.
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The Golub�Kahan bidiagonal SVD
This method is also described in [33], and is based on the implicit-shift QR steps
applied to the tridiagonal matrix T0 = BT

0 B0, where B0 = B:

Tk − λkI = UR (QR factorization)
Tk+1 = RU + λkI, k = 0, 1, . . .

which will produce a new tridiagonal Tk+1 with Tk+1 = UT TkU , but the matrix
Tk+1 = BT

k+1Bk+1 is never explicitly formed. The shift λk is chosen to improve the
convergence. The steps of the algorithm are following:

• Compute the eigenvalue λk of

Tk(n− 1 : n, n− 1 : n) =

[
ψ2

n−1 + φ2
n−1 ψn−1φn

ψn−1φn ψ2
n + φ2

n

]

that is closer to ψ2
n + φ2

n.
• Compute cθ1 = cos(θ1) and sθ1 = sin(θ1) such that

[
cθ1 sθ1

−sθ1 cθ1

]T [
ψ2

1 − λk

ψ1φ2

]
=

[ ∗
0

]

and set a Givens rotation V1 = G1,2(θ1).
• Compute Givens rotations V2, . . . , Vn−1 so that if V (k) = V1 · · ·Vn−1 then

Tk+1 = (V (k))T TkV
(k) is tridiagonal and V (k)e1 = V1e1. This is done by

�chasing the bulge� in the bidiagonal matrix Bk:

Bk,1 ←− BkV1 =

• •
• • •

• •
• •
• •
•

Bk,2 ←− UT
1 Bk,1 =

• • •
• •
• •
• •
• •
•

Bk,3 ←− Bk,2V2 =

• •
• •
• • •

• •
• •
•
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Bk,4 ←− UT
2 Bk,3 =

• •
• • •
• •
• •
• •
•

Bk,5 ←− Bk,4V3 =

• •
• •
• •
• • •

• •
•

Bk,6 ←− UT
3 Bk,5 =

• •
• •
• • •
• •
• •
•

Bk,7 ←− Bk,6V4 =

• •
• •
• •
• •
• • •

•

Bk,8 ←− UT
4 Bk,7 =

• •
• •
• •
• • •
• •
•

Bk,9 ←− Bk,8V5 =

• •
• •
• •
• •
• •
• •

Bk,10 ←− UT
5 Bk,9 =

• •
• •
• •
• •
• •
•

= Bk+1
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This step terminates with a new bidiagonal matrix Bk+1 which is related to
Bk as follows

Bk+1 = (UT
n−1 · · ·UT

1 )Bk(V1 · · ·Vn−1) = (U (k))T BkV
(k).

The whole process converges to a diagonal matrix, thus

lim
k→∞

Bk = Σ.

The Demmel�Kahan bidiagonal SVD
This algorithm is a variation of the Golub�Kahan algorithm, and is called the
implicit zero-shift QR algorithm. Demmel and Kahan noticed in [15] that for
λk = 0 Golub�Kahan's implicit-shift QR factorization can be modi�ed in such a
way that in �nite precision arithmetic every entry of B̃k+1 can be computed from
B̃k to nearly full machine precision. This implies that, while the Golub�Kahan
algorithm guarantees small absolute error in computed singular values:

|σ̃i − σi| ≤ O(ε)‖B‖2, i = 1, . . . , n,

the Demmel�Kahan algorithm ensures that the computed singular values have
small relative error: |σ̃i − σi|

σi

≤ O(ε), i = 1, . . . , n.

In fact, the new algorithm is a hybrid of the standard QR and the implicit zero-
shift QR. The standard QR is used when the condition number of B is modest.
If the condition number is large, then the implicit zero-shift QR is used instead.
Contrary to the standard Golub�Kahan QR algorithm where the bulge is always
chased downwards, implicit zero-shift QR chooses to chase the bulge up or down,
depending on which direction will speed up the convergence.

Algorithm 2.4.2 (Implicit Zero�Shift QR Algorithm). Let, for k = 0, 1, . . .,
Bk be an n × n bidiagonal matrix with diagonal entries ψ

(k)
1 , . . . , ψ

(k)
n and super-

diagonal entries φ
(k)
1 , . . . , φ

(k)
n−1. The following algorithm computes a new bidiagonal

matrix Bk+1 with entries ψ
(k+1)
1 , . . . , ψ

(k+1)
n and φ

(k+1)
1 , . . . , φ

(k+1)
n−1 corresponding to

one step of the QR iteration with zero shift:

oldc = 1;
c = 1;
for i = 1 : n− 1

[r, c, s] = rot(ψ
(k)
i · c, φ(k)

i );
if i > 1

ψ
(k+1)
i−1 = olds · r;

end
[ψ

(k+1)
i , oldc, olds] = rot(oldc · r, ψ(k)

i+1 · s);
end
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h = ψ
(k)
n · c;

φ
(k+1)
n−1 = h · olds;

ψ
(k+1)
n = h · oldc;

function [r, c, s] = rot(f, g)
{The function rot() takes f and g as inputs and returns r, and a Givens rotation with c = cos(θ)
and s = sin(θ) such that [

c s
−s c

]
·
[

f
g

]
=

[
r
0

]
.

}

Di�erential qd algorithms
The di�erential qd algorithm was developed from the Cholesky LR transformations
(similar to QR) by Fernando and Parlett in [29]. The algorithm obtains maximal
relative accuracy for all singular values as the Demmel�Kahan implicit zero-shift
QR, but is at least four times faster. It also allows non-zero shifts for increasing
the convergence.
We will start with zero-shift, and the Cholesky LR algorithm applied to tridiagonal
T = BT B. Let T0 = BT

0 B0, B0 = B, then for k = 0, 1, . . . Tk+1 = BkB
T
k is also

tridiagonal, and we de�ne its Cholesky factorization as

Tk+1 = BT
k+1Bk+1.

It can be shown that there exists an orthogonal matrix Q such that

BT
k = QBk+1

so Bk+1 is the triangular QR factor of BT
k .

The matrix Q may be written as a product of (n− 1) Givens rotations

Q = G1G2 · · ·Gn−1.

The annihilation of the subdiagonal elements of BT
k is done as follows

BT
k,1 ←− GT

1 BT
k =

• •
•
• •
• •
• •

BT
k,2 ←− GT

2 BT
k,1 =

• •
• •
•
• •
• •
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BT
k,3 ←− GT

3 BT
k,2 =

• •
• •
• •
•
• •

BT
k,4 ←− GT

4 BT
k,3 =

• •
• •
• •
• •
•

= Bk+1

This procedure yields the dqd algorithm by eliminating square roots.

Algorithm 2.4.3 (dqd). Let, for k = 0, 1, . . ., Bk be an n× n bidiagonal matrix
with diagonal entries ψ

(k)
1 , . . . , ψ

(k)
n and superdiagonal entries φ

(k)
1 , . . . , φ

(k)
n−1. The

following algorithm computes a new bidiagonal matrix Bk+1 with entries ψ
(k+1)
1 , . . . ,

ψ
(k+1)
n and φ

(k+1)
1 , . . . , φ

(k+1)
n−1 corresponding to one step of the Cholesky LR itera-

tion:

φ
(k)
n = 0;

for i = 1 : n

q
(k)
i = (ψ

(k)
i )2; e

(k)
i = (φ

(k)
i )2;

end
d = q

(k)
1 ;

for i = 1 : n− 1

q
(k+1)
i = d + e

(k)
i ;

e
(k+1)
i = e(k) · (q(k)

i+1/q
(k+1)
i );

d = d · (q(k)
i+1/q

(k+1)
i );

end
q
(k+1)
n = d;

φ
(k+1)
n = 0;

for i = 1 : n

ψ
(k+1)
i =

√
q
(k+1)
i ; φ

(k+1)
i =

√
e
(k+1)
i ;

end

The whole process converges to a diagonal matrix, thus

lim
k→∞

Bk = Σ.

A shift λk 6= 0 can be introduced into the qd algorithm, so that

BT
k+1Bk+1 = BkB

T
k − λkI.
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To keep Bk+1 real, the shift must satisfy λk ≤ σn(Bk)
2, where σn(Bk) is the

smallest singular value of Bk. All the modi�cations in the algorithm involve terms
with q

(k+1)
i .

Algorithm 2.4.4 (dqds). Let, for k = 0, 1, . . ., Bk be an n×n bidiagonal matrix
with diagonal entries ψ

(k)
1 , . . . , ψ

(k)
n and superdiagonal entries φ

(k)
1 , . . . , φ

(k)
n−1. The

following algorithm computes a new bidiagonal matrix Bk+1 with entries ψ
(k+1)
1 , . . . ,

ψ
(k+1)
n and φ

(k+1)
1 , . . . , φ

(k+1)
n−1 corresponding to one step of the Cholesky LR iteration

with shift:

φ
(k)
n = 0;

for i = 1 : n

q
(k)
i = (ψ

(k)
i )2; e

(k)
i = (φ

(k)
i )2;

end
d = q

(k)
1 − λk;

for i = 1 : n− 1

q
(k+1)
i = d + e

(k)
i ;

e
(k+1)
i = e(k) · (q(k)

i+1/q
(k+1)
i );

d = d · (q(k)
i+1/q

(k+1)
i )− λk;

end
q
(k+1)
n = d;

φ
(k+1)
n = 0;

for i = 1 : n

ψ
(k+1)
i =

√
q
(k+1)
i ; φ

(k+1)
i =

√
e
(k+1)
i ;

end

We should note that, for singular values σi(Bk) and σi(Bk+1) of the matrices Bk

and Bk+1 respectively, the following statement holds

σi(Bk+1)
2 = σi(Bk)

2 − λk,

so that
lim
k→∞

Bk = ∆,

where
∆2 = Σ2 − (λ0 + λ1 + · · · )I.

Recently, Dhillon and Parlett developed in [17] a new method for computing eigen-
values of a symmetric tridiagonal matrix, called Multiple Relatively Robust Rep-
resentations (MRRR). Let T ∈ Rn×n be a symmetric tridiagonal matrix, and let
T = L0D0L

T
0 be its factorization, where L0 is unit lower bidiagonal and D is

diagonal. The algorithm is based on the compositions of the form

LcDcL
T
c = LpDpL

T
p − τI,
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where τ is a suitable chosen shift. Basically, each new factorization LcDcL
T
c cor-

responds to a cluster of eigenvalues. This new algorithm requires only O(n2)
operations for computing the whole spectral decomposition, and guaranties that
the computed eigenvectors are orthogonal to working accuracy and have small
residual norms with respect to the original matrix T . This algorithm has been
extended by Groÿer and Lang in [39] to the stable computation of the bidiagonal
SVD. In [91] more e�cient implementation of the bidiagonal SVD using MRRR
is described. The new algorithm is based on the simultaneous computation of
eigenvalues and eigenvectors of the matrices BT B, BBT and

[
0 B

BT 0

]
by using

so-called coupling relations.



Chapter 3

The Barlow One�sided
Bidiagonalization

3.1 The Algorithm
The e�ciency of the Ralha bidiagonalization on the one hand, and the numerical insta-
bility of the same algorithm on the other, was the motivation for developing its mod-
i�cation. The required modi�cation should have retained the same operation count,
but should have improved numerical stability. On the IWASEP 4 workshop held 2002
in Split, Croatia, Barlow proposed a modi�cation of Ralha's algorithm, which seemed
to satisfy both of the requirements. The changes in the algorithm were minimal, but
subtle, some operations exchanged their places, and one vector was obtained from a
di�erent matrix, thus the number of operations remained the same. The proof of nu-
merical stability of the new algorithm was given by Barlow, Bosner and Drma£ in [2],
and is rather technical. A much simpler version of the same proof will be presented in
the next section of this thesis.

In contrast to the Ralha bidiagonalization, which is based on the implicit tridiago-
nalization of the matrix AT A, Barlow's algorithm is based on direct bidiagonalization of
the matrix A, like the Householder bidiagonalization and the Lanczos approach. In the
new algorithm one step of the Gram�Schmidt orthogonalization and post-multiplication
with one Householder re�ector are performed simultaneously.

Once again, if A ∈ Rm×n is given, the algorithm �nds matrices U ∈ Rm×n, V, B ∈
Rn×n, such that

A = UBV T , U ∈ Rm×n, and B, V ∈ Rn×n,

where U is orthonormal, V is orthogonal and B is bidiagonal

B =




ψ1 φ2

ψ2 φ3

. . . . . .
ψn−1 φn

ψn




. (3.1)

53
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The Barlow bidiagonalization can be described in its simplest form as follows

• A0 = A

• For k = 1, 2, . . .,

◦ uk is produced from the k-th column of Ak−1 by orthogonalization against
uk−1 (if k > 1), and normalization

Uk = [u1, . . . , uk] k = 1, . . . , n

◦ The Householder re�ector Vk is chosen so that

UT
k Ak−1Vk = Bk ∈ Rk×n, Bk is bidiagonal, (3.2)

and the matrix Ak−1 is postmultiplied with Vk

Ak = Ak−1Vk k = 1, . . . , n− 2.

• End of loop

• V is produced by accumulation of the Householder re�ectors

V = V1 · · ·Vn−2, F = An−2 = AV. (3.3)

The main di�erence between Ralha's and Barlow's algorithm is that in the Barlow bidi-
agonalization, transformations with the Householder re�ectors and the Gram�Schmidt
orthogonalization are interlaced and not separated as in the Ralha bidiagonalization.
The criteria for choosing the Householder re�ectors are also di�erent.

If we de�ne
F = [f1, . . . , fn] = An−2,

then the matrix F is also implicitly triorthogonal, and F T F is tridiagonal. In case when
the matrix A has full column rank, then from condition (3.2) it follows that

UT F = B, =⇒ F = UB, where U = Un.

Thus
F T F = BT UT UB = BT B = T,

where T is a tridiagonal matrix.
The steps of the Barlow bidiagonalization are visualized in Figure 3.1. The elements

denoted by • will be used in the next step of the algorithm to compute vector zk, such
that the next Householder re�ector Vk will depend on it. The Householder re�ector Vk

is de�ned as

Vk =

[
Ik 0
0 Vk

]
=

1
1 • • •• • •• • •

(3.4)
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and the Householder re�ector Vk ∈ R(n−k)×(n−k) will be chosen so that Vkzk = ±‖zk‖2e1.
The elements denoted by • are computed columns of F after application of the House-
holder re�ector, and in the next steps they will not be changed. The computed elements
of B are denoted by •.

The details of the Barlow bidiagonalization are shown in Algorithm 3.1.1.

Algorithm 3.1.1 (The Barlow one�sided bidiagonalization). For A ∈ Rm×n,
rank(A) = n > 2, this algorithm computes orthonormal U = [u1, . . . , un], bidiagonal B
having the form (3.1), and orthogonal V such that A = UBV T .

(1) A0 = A;
(2) f1 = A( : , 1); ψ1 = ‖f1‖2;
(3) u1 = f1/ψ1;
for k = 1: n− 2

(4) zk = Ak−1( : , k + 1: n)T uk;
(5) [γk, vk]=householder(zk);
(6) Ak( : , 1: k) = Ak−1( : , 1: k);
(7) Ak( : , k + 1: n) = Ak−1( : , k + 1: n)− Ak−1( : , k + 1: n)vkv

T
k ;

(8) fk+1 = Ak( : , k + 1); φk+1 = uT
k fk+1 ; (φk+1 = γk; )

(9) sk+1 = fk+1 − φk+1uk; ψk+1 = ‖sk+1‖2;
(10) uk+1 = sk+1/ψk+1;

end;
(11) fn = An−2( : , n); φn = uT

n−1fn;
(12) sn = fn − φnun−1; ψn = ‖sn‖2;
(13) un = sn/ψn;
(14) V T = householder_product(v1, . . . , vn−2)
end.

The auxiliary functions householder() and householder_product() are de�ned as
follows

function [γ, v]=householder(z)
{The function householder() computes γ and v such that, for V = I − vvT , V z = γe1.}
(1) n = length(z);
(2) γ = ‖z‖2;
if γ > 0
(3) γ = −sign(z(1))γ;
(4) t(1) = z(1)− γ;
(5) t(2 : n) = z(2 : n);
(6) v =

√
2t/‖t‖2;

else
(7) v = 0;

end;
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A =

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

→ u1

V1−→ A1
UT

1−−→

B1︷ ︸︸ ︷
• • V1 is chosen so that uT

1 AV1

de�nes the 1-st row of B.

A1 =

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

→ u2

V2−→ A2
UT

2−−→

B2︷ ︸︸ ︷
• •• •

V2 is chosen so that uT
2 A1V2

de�nes the 2-nd row of B.

A2 =

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

→ u3

V3−→ A3
UT

3−−→

B3︷ ︸︸ ︷
• •• •• •

V3 is chosen so that uT
3 A2V3

de�nes the 3-rd row of B.

A3 =

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

→ u4

= F UT
4−−→

B4︷ ︸︸ ︷
• •• •• •• •

u4 and B(4, 4) are computed.

A3 =

• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •• • • • •

→ u5

= F UT−−→

B︷ ︸︸ ︷
• •• •• •• ••

u5, B(4, 5) and B(5, 5) are
computed.

Figure 3.1: The Barlow one�sided bidiagonalization algorithm

function V T = householder_product(v1, . . . , vn)
{The function householder_product() computes a matrix V T as a product of n Householder re�ec-
tors, where V T = Vn · · ·V1, Vk for k = 1, . . . , n are de�ned in relation (3.4), and Vk = I − vkvT

k .
Accumulation of the Householder re�ectors are done by block algorithm implemented in the LAPACK
routine sorgbr() [1].}

Remark 3.1.2. This is the �rst version of the Barlow algorithm, which mostly resembles
the Ralha algorithm. Barlow noticed (see [2]) that computation of φk+1 in step (8) as
a scalar product is completely redundant, since in exact arithmetic it is equivalent to
φk+1 = γk. Still, the numerical analysis in Theorem 3.2.6 is done for this original
version, and in Remark 3.2.7 the same is done for the alternative choice of φk+1. It
turns out that both versions give the same error bound, but the second one has less
�oating point operations, and thus it is more favorable.

As we can see the main di�erence between the Ralha and the Barlow bidiagonaliza-
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tions is the way the vector zk is computed. In the Ralha bidiagonalization it is

zk = Ak−1(:, k + 1 : n)T Ak−1(:, k)

and in Barlow's modi�cation

zk = Ak−1(:, k + 1 : n)T uk.

Although these two bidiagonalizations are mathematically equivalent in exact arith-
metic, numerically they di�er. The di�erence between the computations of the vector
zk is responsible for the Barlow bidiagonalization being numerically stable, as it will be
shown in Theorem 3.2.6.

Algorithm 3.1.1 will not break down in case when non of ψk is zero. The procedure
how to proceed with the algorithm when ψk = 0, is described in [2, Section 5]. It
uses Givens rotations to produce a compact bidiagonal factorization, with a bidiagonal
matrix of smaller dimension and with all diagonal elements di�erent from zero. So, from
now on we can assume that Algorithm 3.1.1 will not break down, and that ψk 6= 0, for
all k = 1, . . . , n.

3.2 Numerical Stability
The goal of this section is to prove that the Barlow algorithm is backward stable. That
means that the singular values of the matrix A computed in �nite precision arithmetic
are exact singular values of a matrix not far away from A. The di�erence between these
two matrices, measured in ‖ · ‖2 or ‖ · ‖F matrix norms, is called the backward error.
The backward error is considered to be small if it is smaller than ξ‖A‖2 or η‖A‖F , where
ξ and η are bounded by the machine roundo� ε times a moderate polynomial of matrix
dimensions.

In the numerical analysis that will follow we will use the following notation. The
values computed in �nite precision arithmetic will be denoted by ˜ and occasionally by
,̄ while exactly computed values will be denoted by .̂ These exact values will serve only
for analytical purposes, and are never actually computed.

First we will list some auxiliary results concerning the numerical analysis of the
Householder QR factorization, presented by Higham in [47]. These results are necessary
for the analysis of post-multiplication of the matrix A with Householder re�ectors.

Lemma 3.2.1 ([47, p. 365]). Let x ∈ Rm. Consider the following construction of
τ ∈ R and v ∈ Rm such that Px = γe1, where P = I − τvvT is a Householder re�ector
with τ = 2/(vT v):

v = x

s = sign(x(1))‖x‖2

γ = −s

v(1) = v(1) + s

τ =
1

s · v(1)
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In �oating point arithmetic the computed τ̃ and ṽ satisfy ṽ(2 : m) = v(2 : m) and

τ̃ = τ(1 + θ4m+8),

ṽ(1) = v(1)(1 + θm+2),

where |θk| ≤ kε + O(ε2).

Remark 3.2.2 ([47, p. 366]). If we write the Householder re�ectors in the form
I − v̂v̂T , where ‖v̂‖2 =

√
2, we can rewrite the results from Lemma 3.2.1 as

ṽ = v̂ + δv̂, |δv̂| ≤ O(m)ε|v̂|, for v̂ ∈ Rm, ‖v̂‖2 =
√

2. (3.5)

Lemma 3.2.3 ([47, pp. 366�367]). Let b ∈ Rm and consider the computation of
y = P̃ b = (I − ṽṽT )b = b − ṽ(ṽT b), where ṽ ∈ Rm satis�es (3.5). The computed ỹ
satis�es

ỹ = (P̂ + δP̂ )b, ‖δP̂‖F ≤ O(m)ε,

where P̂ = I − v̂v̂T .

Lemma 3.2.4 ([47, pp. 367�368]). Consider the sequence of transformations

Ak+1 = PkAk, k = 1, . . . , r,

where A1 = A ∈ Rm×n and Pk = I − vkv
T
k ∈ Rm×m is a Householder re�ector. Assume

that the transformations are performed using computed Householder vectors ṽk ≈ v̂k that
satisfy (3.5). The computed matrix Ãr+1 satis�es

Ãr+1 = Q̂T (A + δA),

where Q̂T = P̂rP̂r−1 · · · P̂1 and δA satis�es the normwise and componentwise bounds

‖δA‖F ≤ O(rm)ε‖A‖F ,

|δA| ≤ O(rm2)εG|A|, ‖G‖F = 1.

(In fact, we can take G = m−1eeT , where e = [1, 1, . . . , 1]T .) In the special case n = 1,
so that A ≡ a, we have ãr+1 = (Q̂ + δQ̂)a with ‖δQ̂‖F ≤ O(rm)ε.

Theorem 3.2.5 ([47, p. 368]). Let R̃ ∈ Rm×n be the computed upper trapezoidal QR
factor of A ∈ Rm×n (m ≥ n) obtained via the Householder QR algorithm. Then there
exists an orthogonal Q̂ ∈ Rm×m such that

A + δA = Q̂R̃,

where ‖δA‖F ≤ O(nm)ε‖A‖F and |δA| ≤ O(nm2)εG|A|, with ‖G‖F = 1. The matrix
Q̂ is given explicitly as Q̂ = (P̂nP̂n−1 · · · P̂1)

T , where P̂k is the Householder matrix that
corresponds to exact application of the k-th step of the algorithm to Ãk.
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Next, Björck and Paige in [6] observed that the modi�ed Gram�Schmidt orthogo-
nalization is mathematically and numerically equivalent to the Householder QR factor-
ization of the augmented matrix

[
0n

A

]
∈ R(m+n)×n. (3.6)

The results on the Householder re�ectors: Lemma 3.2.1, Remark 3.2.2, Lemma 3.2.3,
Lemma 3.2.4 and Theorem 3.2.5, can now be applied to the augmented matrix (3.6)
and the Gram�Schmidt orthogonalization. This approach will be used in the numerical
analysis of the Barlow bidiagonalization.

The main result on numerical backward stability of the Barlow bidiagonalization is
given in the following theorem.

Theorem 3.2.6. If B̃ is the bidiagonal matrix computed by Algorithm 3.1.1 without
breakdown (all ψk's di�erent from zero), then there exist an (m+n)×(m+n) orthogonal
matrix P̂ , an orthogonal n×n matrix V̂ , and backward perturbations ∆A, δA such that

[
B̃
0

]
= P̂ T

[
∆A

A + δA

]
V̂ ,

∥∥∥∥
[

∆A
δA

]∥∥∥∥
F

≤ ξ‖A‖F , (3.7)

where 0 ≤ ξ ≤ O(mn + n3)ε. The computed approximation Ṽ of the matrix V̂ satis�es
‖Ṽ − V̂ ‖F ≤ O(n2)ε. Further, there exist an orthonormal Û and a perturbation δÂ such
that

A + δÂ = ÛB̃V̂ T , ‖δÂ‖F ≤
√

2ξ‖A‖F . (3.8)

Proof. Let us �rst explore the details of Algorithm 3.1.1 in exact arithmetic. The algo-
rithm consists of application of the Householder re�ectors from the right, and the Gram�
Schmidt orthogonalization. We de�ne Householder re�ectors V1,. . . ,Vn−2 ∈ Rn×n in
exact arithmetic as

Vk =

[
Ik 0
0 Vk

]
, k = 1, . . . , n− 2,

where Ik is an k × k identity matrix, and Vk ∈ R(n−k)×(n−k) is a (n − k) × (n − k)
Householder re�ector

Vk = In−k − vkv
T
k ,

such that
Vkzk = γke1.

In the exact arithmetic γk is equal to φk+1, as shown in [2]. From Algorithm 3.1.1, we
can also see that Ak = Ak−1Vk.

Further the process can be represented as
get B(:,3)︷ ︸︸ ︷

get B(:,1)︷︸︸︷
A0 ·V1︸ ︷︷ ︸
get B(:,2)

·V2 ·V3

︸ ︷︷ ︸
get B(:,4)

· · · · · · (3.9)
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After producing Ak in the k-th step of the algorithm, the (k + 1)-th column of B is
computed. Simultaneously, the k-th row of B is also computed, as shown in Figure
3.1. Since each transformation Ak = Ak−1Vk a�ects only the columns k + 1 : n and
the �rst k columns are left unchanged, we conclude from the above diagram that the
same matrix B is computed if we apply all Vk's �rst, and then the Gram�Schmidt
orthogonalizations. In other words, if we set F = An−2, then we can use fk+1 = F (:, k+1)
instead of fk+1 = Ak(:, k + 1). Note that this separation of the implicit Householder
tridiagonalization and the Gram�Schmidt computation of U and B is arti�cial, and is
introduced only for the purposes of the analysis. The fact that these two processes are
interwoven is crucial for the numerical properties of the algorithm.

Everything mentioned above also applies to �nite precision arithmetic and the ma-
trices Ã(k), Ṽk for k = 1, . . . , n− 2, and F = Ã(n−2), B̃. Note that F is never computed
in the Algorithm 3.1.1, and it is only used in the analysis. Thus, the computed matrix
Ã(n−2) will be denoted by F instead of F̃ .

The proof of numerical stability of Algorithm 3.1.1 is technical and rather compli-
cated. Thus the proof will be divided into four steps, concerning four important points
in the proof.

Step 1: The Householder transformations
In �nite precision arithmetic, the computed matrix F is obtained as

F = Ãn−2 = fl((· · · ((A · Ṽ1) · Ṽ2) · · · ) · Ṽn−2),

where Ṽk, k = 1, . . . , n− 2 are computed Householder re�ectors. By Lemma 3.2.4
there exists an exactly orthogonal matrix V̂ = V̂1 · · · V̂n−2, such that

F = (A + δ1A)V̂ , ‖δ1A‖F ≤ ηF‖A‖F , ηF ≤ O(n2)ε, (3.10)

where
V̂k =

[
Ik 0

0 V̂k

]
, k = 1, . . . , n− 2,

and V̂k ∈ R(n−k)×(n−k) is an (n − k) × (n − k) exact Householder re�ector V̂k =
In−k − v̂kv̂

T
k , such that V̂kz̃k = γ̂ke1.

On the other hand, for k = 1, . . . , n− 2 we can write

Ṽk = I − ṽkṽ
T
k , V̂k = I − v̂kv̂

T
k ,

with
ṽk =

[
0k×1

ṽk

]
, v̂k =

[
0k×1

v̂k

]
,

where ṽk represents the computed Householder vector described in Lemma 3.2.1
and Remark 3.2.2. Further, it follows

Ṽk = I − ṽkṽ
T
k = I − (v̂k + δv̂k)(v̂k + δv̂k)

T =

= I − v̂kv̂
T
k︸ ︷︷ ︸

V̂k

−v̂kδv̂
T
k − δv̂kv̂

T
k − δv̂kδv̂

T
k︸ ︷︷ ︸

δV̂k

=

= V̂k + δV̂k
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where by Remark 3.2.2
‖δV̂k‖F ≤ O(n)ε.

The computed matrix Ṽ is obtained as

Ṽ = fl(Ṽ1 · · · Ṽn−2) = Ṽ1 · · · Ṽn−2 + δ1V̂ ,

and by using a result on the matrix product from [47, p. 78] we can bound the
error δ1V̂ with

‖δ1V̂ ‖F ≤ O(n2)ε.

Finally, we have

Ṽ = (V̂1 + δV̂1) · · · (V̂n−1 + δV̂n−2) + δ1V̂ =

= V̂1 · · · V̂n−2 + [(V̂1 + δV̂1) · · · (V̂n−2 + δV̂n−2)− V̂1 · · · V̂n−2] + δ1V̂ =

= V̂ + δV̂

where
‖δV̂ ‖F ≤ O(n2)ε.

Step 2: The Gram�Schmidt orthogonalization
Since the computation of B̃ from F = [f1, . . . , fn] corresponds to the modi�ed
Gram�Schmidt algorithm, we use results from [6] and represent the computation
in equivalent form, as the Householder QR factorization of

[
0
F

]
=

[
0

A + δ1A

]
V̂ .

Consider the computation of the k�th column of B̃. An application of the results
on �oating point computation from [47] reveals that

ψ̃1 = �(‖f1‖2) = ‖f1‖2 − δψ̃1, where |δψ̃1| ≤ O(m)ε‖f1‖2,

ũ1 = �
(

f1

ψ̃1

)
= û1 + δû1, where û1 =

f1

‖f1‖2

, and ‖δû1‖2 ≤ O(m)ε.

Furthermore, for k = 1, 2, . . . we have

φ̃k+1 = �(ũT
k fk+1) = ûT

k fk+1 + δφ̃k+1, |δφ̃k+1| ≤ O(m)ε‖fk+1‖2,

s̃k+1 = �(fk+1 − φ̃k+1ũk) = fk+1 − φ̂k+1ûk + δs̃k+1,

where

‖δs̃k+1‖2 ≤ O(m)ε‖fk+1‖2,

φ̂k+1 = ûT
k fk+1, |φ̂k+1| ≤ ‖fk+1‖2.
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Following an idea of Björck and Paige [6], we write this computation as
[

φ̃k+1ek

s̃k+1

]
=

[
φ̂k+1ek

fk+1 − φ̂k+1ûk

]
+

[
δφ̃k+1ek

δs̃k+1

]
=

= P̂k

{[
0

fk+1

]
+ P̂k

[
δφ̃k+1ek

δs̃k+1

]}
,

P̂k = Im+n −
[ −ek

ûk

] [ −eT
k ûT

k

]
,

where ek denotes the k-th column of the identity matrix In. Note that P̂ 2
k = Im+n.

Further, the values ψ̃k+1 = �(‖s̃k+1‖2), ũk+1 = �(s̃k+1/ψ̃k+1) satisfy
ψ̃k+1 = ‖s̃k+1‖2 − δψ̃k+1, |δψ̃k+1| ≤ O(m)ε‖fk+1‖2,

ũk+1 = ûk+1 + δûk+1, ûk+1 =
s̃k+1

‖s̃k+1‖2

, ‖δûk+1‖ ≤ O(m)ε. (3.11)

Thus, the computation of the (k + 1)-th column of B̃ can be written as
[

φ̃k+1ek + ψ̃k+1ek+1

0

]
=

[
φ̃k+1ek + ‖s̃k+1‖2ek+1

0

]
−

[
δψ̃k+1ek+1

0

]
=

= P̂k+1

{[
φ̃k+1ek

s̃k+1

]
− P̂k+1

[
δψ̃k+1ek+1

0

]}
=

= P̂k+1

{
P̂k

[
0

fk+1

]
+

[
δφ̃k+1ek

δs̃k+1

]
− P̂k+1

[
δψ̃k+1ek+1

0

]}
=

= P̂k+1P̂k

{[
0

fk+1

]
+

[
∆fk+1

δfk+1

]}
,

∥∥∥∥
[

∆fk+1

δfk+1

]∥∥∥∥
2

≤ O(m)ε‖fk+1‖2.

In case when k = 0 and when the �rst column of B̃ is computed, we can write
φ̃1 = 0, s̃1 = f1, P̂0 = Im+n. Hence, we can conclude that

| ‖B̃(:, k + 1)‖2 − ‖fk+1‖2 | ≤ O(m)ε‖fk+1‖2.

Putting all columns of B̃ together, we get
[

B̃
0

]
=

[[
ψ̃1e1

0

]
,

[
φ̃2e1 + ψ̃2e2

0

]
, . . . ,

[
φ̃nen−1 + ψ̃nen

0

]]
=

=

[
P̂1

[
∆f1

f1 + δf1

]
, P̂2P̂1

[
∆f2

f2 + δf2

]
, . . . , P̂nP̂n−1

[
∆fn

fn + δfn

]]
,

and using the fact that

P̂i

[
B̃(:, j)

0

]
=

(
I −

[ −ei

ûi

] [ −eT
i ûT

i

]) [
φ̃jej−1 + ψ̃jej

0

]
=

=

[
φ̃jej−1 + ψ̃jej

0

]
−

[ −ei

ûi

]
(−eT

i (φ̃jej−1 + ψ̃jej)) =

=

[
φ̃jej−1 + ψ̃jej

0

]
=

[
B̃(:, j)

0

]
, for all i 6= j, j − 1,
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we obtain
[

B̃
0

]
=

[
P̂nP̂n−1 · · · P̂2P̂1

[
∆f1

f1 + δf1

]
, P̂nP̂n−1 · · · P̂2P̂1

[
∆f2

f2 + δf2

]
,

P̂nP̂n−1 · · · P̂3P̂2

[
∆f3

f3 + δf3

]
, P̂nP̂n−1 · · · P̂4P̂3

[
∆f4

f4 + δf4

]
,

· · · , P̂nP̂n−1P̂n−2

[
∆fn−1

fn−1 + δfn−1

]
, P̂nP̂n−1

[
∆fn

fn + δfn

]]
.

The k�th column of the computed bidiagonal matrix is of the form

P̂nP̂n−1 · · · P̂kP̂k−1

[
∆fk

fk + δfk

]
,

and the desired form is

P̂nP̂n−1 · · · P̂2P̂1

[
∆̂fk

fk + δ̂fk

]
= P̂ T

[
∆̂fk

fk + δ̂fk

]
, P̂ = P̂1P̂2 · · · P̂n−1P̂n.

The �rst two columns (k = 1, 2) are already in the desired form and ∆̂fk = ∆fk,
δ̂fk = δfk. For k ≥ 3 we write

[
B̃(:, k)

0

]
= (P̂nP̂n−1 · · · P̂kP̂k−1

I︷ ︸︸ ︷
P̂k−2 · · · P̂2P̂1)(P̂1P̂2 · · · P̂k−2)

[
∆fk

fk + δfk

]
,

then

P̂1P̂2 · · · P̂k−2

[
∆fk

fk + δfk

]
= P̂1 · · · P̂k−3

{
P̂k−2

{[
0
fk

]
+

[
∆fk

δfk

]}}
=

= P̂1 · · · P̂k−3

{[
0
fk

]
+

[
ek−2

−ûk−2

]
(ûT

k−2fk) + P̂k−2

[
∆fk

δfk

]}
=

= P̂1 · · · P̂k−3

{[
0
fk

]
+

[
∆k−2fk

δk−2fk

]
+ P̂k−2

[
∆fk

δfk

]}
=

= P̂1 · · · P̂k−4

{[
0
fk

]
+

[
∆k−3fk

δk−3fk

]
+ P̂k−3

[
∆k−2fk

δk−2fk

]
+ P̂k−3P̂k−2

[
∆fk

δfk

]}
=

=

[
0
fk

]
+

[
∆1fk

δ1fk

]
+ P̂1

[
∆2fk

δ2fk

]
+ P̂1P̂2

[
∆3fk

δ3fk

]
+ · · ·

· · ·+ P̂1 · · · P̂k−3

[
∆k−2fk

δk−2fk

]
+ P̂1 · · · P̂k−2

[
∆fk

δfk

]
=

=

[
0
fk

]
+

[
∆̂fk

δ̂fk

]
, where

[
∆jfk

δjfk

]
=

[
ej

−ûj

]
(ûT

j fk), j = 1, . . . , k − 2,

and
[

∆̂fk

δ̂fk

]
= P̂1 · · · P̂k−2

[
∆fk

δfk

]
+

[
∆1fk

δ1fk

]
+

k−2∑
j=2

P̂1 · · · P̂j−1

[
∆jfk

δjfk

]
.
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Hence,
[

B̃
0

]
= P̂ T

[[
∆̂f1

f1 + δ̂f1

]
, . . . ,

[
∆̂fk

fk + δ̂fk

]
, . . . ,

[
∆̂fn

fn + δ̂fn

]]
=

= P̂ T

{[
0
F

]
+

[
∆F
δF

]}
,

where, after suitable reordering of the entries in the sums,
[

∆F
δF

]
=

[[
∆f1

δf1

]
,

[
∆f2

δf2

]
, . . . , P̂1 · · · P̂k−2

[
∆fk

δfk

]
, . . . , P̂1 · · · P̂n−2

[
∆fn

δfn

]]
+

+
[
0, 0,

[
∆1f3

δ1f3

]
,

[
∆1f4

δ1f4

]
,

[
∆1f5

δ1f5

]
, . . . ,

[
∆1fk

δ1fk

]
, . . . ,

[
∆1fn

δ1fn

]]
+

+ P̂1

[
0, 0, 0,

[
∆2f4

δ2f4

]
,

[
∆2f5

δ2f5

]
, . . . ,

[
∆2fk

δ2fk

]
, . . . ,

[
∆2fn

δ2fn

]]
+

+ P̂1P̂2

[
0, 0, 0, 0,

[
∆3f5

δ3f5

]
,

[
∆3f6

δ3f6

]
, . . . ,

[
∆3fk

δ3fk

]
, . . . ,

[
∆3fn

δ3fn

]]
+

+ P̂1P̂2P̂3

[
0, 0, 0, 0, 0,

[
∆4f6

δ4f6

]
,

[
∆4f7

δ4f7

]
, . . . ,

[
∆4fk

δ4fk

]
, . . . ,

[
∆4fn

δ4fn

]]
+

+ · · · + P̂1P̂2 · · · P̂n−3

[
0, 0, 0, 0, 0, 0, . . . , 0, 0,

[
∆n−2fn

δn−2fn

]]
.

Taking norms, we obtain
∥∥∥∥
[

∆F
δF

]∥∥∥∥
F

≤ O(m)ε‖F‖F +
n−2∑
j=1

√√√√
n∑

k=j+2

∥∥∥∥
[

∆jfk

δjfk

]∥∥∥∥
2

2

≤

≤ O(m)ε‖F‖F +
√

2
n−2∑
j=1

‖ûT
j

[
fj+2 fj+3 . . . fn

] ‖2 ≤

≤ O(m)ε‖F‖F +
√

2
n−2∑
j=1

(‖ũT
j

[
fj+2 fj+3 . . . fn

] ‖2 +

+‖δûT
j

[
fj+2 fj+3 . . . fn

] ‖2) ≤

≤ O(m)ε‖F‖F +
√

2
n−2∑
j=1

(‖ũT
j Ãn−2(:, j + 2 : n)‖2 +

+‖δûj‖2‖F (:, j + 2 : n)‖F ). (3.12)

Step 3: Estimation of the backward error
It remains to estimate the products

ûT
j fk = ũT

j fk − δûT
j fk, for j = 1, . . . , n− 2, k = j + 2, . . . , n.

Since |δûT
j fk| ≤ O(m)ε‖fk‖2, it remains to estimate the products ũT

j fk = ũT
j Ãj+`(:

, j + ` + 1), ` = 1, . . . , n− j − 1.
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In exact arithmetic, uj ⊥ fj+2, . . . , fn because the triorthogonalization of F implies

uj ∈ span{f1, . . . , fj} ⊂ span{fj+2, . . . , fn}⊥. (3.13)

The situation in �nite precision arithmetic is di�erent, and relation (3.13) does
not have to hold. This is the key point where the di�erence between the Ralha
bidiagonalization and the Barlow bidiagonalization plays an important role. While
the Ralha bidiagonalization relies only on relation (3.13), the Barlow bidiagonal-
ization deals more explicitly with the scalar products ũT

j fk by using a di�erent
formula for the vectors z1, . . . , zn−2.
The computed vector z̃j ∈ Rn−j satis�es

z̃T
j = fl(ũT

j Ãj−1(:, j + 1 : n)) = ũT
j Ãj−1(:, j + 1 : n) + δz̃T

j ,

‖δz̃j‖2 ≤ O(m)ε‖Ãj−1(:, j + 1 : n)‖2. (3.14)

This estimation follows from numerical analysis of the scalar product and the
matrix�vector product, described in [47, pp. 68�78], where

|δz̃j(i)| ≤ O(m)ε‖Ãj−1(:, j+i)‖2‖ũj‖2 ≤ O(m)ε‖Ãj−1(:, j+i)‖2, i = 1, . . . , n−j.

Let V̂j = I − v̂j v̂
T
j , where v̂j ∈ Rn−j, ‖v̂j‖2 =

√
2, be a Householder re�ector such

that
z̃T

j V̂j = [‖z̃j‖2 0 0 . . . 0], (3.15)
and let ṽj = v̂j + δv̂j be the computed approximation of v̂j, where by Lemma 3.2.1
and Remark 3.2.2

|δv̂j(i)| ≤ O(n− j)ε|v̂j(i)|,
and let Ṽj = I − ṽj ṽj. Note that V̂j is exactly orthogonal, while Ṽj is numerically
orthogonal. In the algorithm, Ṽj is used to compute

Ãj(:, j + 1 : n) = fl(Ãj−1(:, j + 1 : n)Ṽj) =

= Ãj−1(:, j + 1 : n)V̂j + Ej, (3.16)

where Ej contains the error from the �oating�point application of Ṽj plus the
di�erence between Ṽj and V̂j. Using the results from Lemma 3.2.4 we have

‖Ej‖F ≤ O(n− j)ε‖Ãj−1(:, j + 1 : n)‖F . (3.17)

This implies that

ũT
j Ãj(:, j + 1 : n) = [‖z̃j‖ 0 0 . . . 0]− δz̃T

j V̂j + ũT
j Ej, (3.18)

‖ũT
j Ãj(:, j + 2 : n)‖2 ≤ ‖δz̃j‖2 + ‖ũj‖2‖Ej‖F ≤ O(m)ε‖Ãj−1(:, j + 1 : n)‖F .

Recall that we need an estimate of ũT
j fk = ũT

j Ãj+`(:, j + ` + 1), ` ≥ 1. Therefore,
consider the next ` ≥ 1 right�handed Householder (n− i)×(n− i) transformations
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V̂i, Ṽi, i = j + 1, . . . , j + `. Since we are interested in columns j + 2, . . . , n, we
consider all these transformations as (n−j−1)×(n−j−1) by writing V̂

(j)
i = I⊕V̂i,

Ṽ
(j)
i = I ⊕ Ṽi. Similarly as in (3.16), we obtain

Ãj+`(:, j + 2 : n) = fl(((Ãj(:, j + 2 : n)Ṽ
(j)
j+1) · · · )Ṽ(j)

j+`) =

= Ãj(:, j + 2 : n)V̂
(j)
j+1 · · · V̂(j)

j+` + Ej,`, (3.19)
where ‖Ej,`‖F ≤ O(`n)ε‖Ãj(:, j + 2 : n)‖F .

Now, relations (3.19) and (3.18) imply

ũT
j Ãj+`(:, j + 2 : n) = ũT

j Ãj(:, j + 2 : n)V̂
(j)
j+1 · · · V̂(j)

j+` + ũT
j Ej,` =

= (−δz̃T
j V̂j + ũT

j Ej)(2 : n− j)V̂
(j)
j+1 · · · V̂(j)

j+` + ũT
j Ej,`,

and we conclude that the following bound holds:

‖ũT
j Ãj+`(:, j + 2 : n)‖2 ≤ ‖δz̃j‖2 + (‖Ej‖F + ‖Ej,`‖F )‖ũj‖2 ≤

≤ O(m)ε‖Ãj−1(:, j + 1 : n)‖F +

+O(n− j)ε‖Ãj−1(:, j + 1 : n)‖F +

+O(`n)ε‖Ãj(:, j + 2 : n)‖F ≤
≤ O(m + n2)ε‖Ãn−2(:, j + 1 : n)‖F .

Now, for k = j + ` + 1, ` ≥ 1, we can write

|ũT
j fk| = |ũT

j fj+`+1| = |ũT
j Ãj+`(:, j + ` + 1)| ≤

≤ O(m + n2)ε‖Ãn−2‖F = O(m + n2)ε‖F‖F . (3.20)

In fact, the whole vector ũT
j [fj+2, fj+3, . . . , fn] = ũT

j Ãn−2(:, j + 2 : n) can be
estimated as

‖ũT
j Ãn−2(:, j + 2 : n)‖2 ≤ O(m + n2)ε‖F‖F ,

and then by (3.12) it follows
∥∥∥∥
[

∆F
δF

]∥∥∥∥
F

≤ O(mn + n3)ε‖F‖F ≤ O(mn + n3)(1 + ηF )‖A‖F .

To get relation (3.7), we collect the perturbations from both the Householder
implicit tridiagonalization and the Gram-Schmidt orthogonalization,

[
B̃
0

]
= P̂ T

{[
0
F

]
+

[
∆F
δF

]}
= P̂ T

{[
0

A + δ1A

]
V̂ +

[
∆F
δF

]}

= P̂ T

{[
0

A + δ1A

]
+

[
∆F
δF

]
V̂ T

}
V̂ =

= P̂ T

[
∆A

A + δA

]
V̂ .
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Step 4: The �nal result
Finally, by using P̂11 = P̂ (1 : n, 1 : n), P̂21 = P̂ (n + 1 : n + m, 1 : n), we have

[
∆A

A + δA

]
=

[
P̂11

P̂21

]
B̃V̂ T , P̂ T

11P̂11 + P̂ T
21P̂21 = I,

and relation (3.8) follows by Lemma 3.1 from [6, p. 181]. The proof that the
relation (3.8) holds is also given in Theorem 3.18 [2].
Let us consider the CS decomposition [35, p. 77], [89, pp. 37�40] of the matrix P̂

P̂ =

[
P̂11 P̂12

P̂21 P̂22

]
, P11 ∈ Rn×n, P12 ∈ Rn×m, P21 ∈ Rm×n, P22 ∈ Rm×m,

then there exist (m + n)× (m + n) orthogonal matrices

Ŵ =




Ŵ11 0 0

0 Ŵ22 Ŵ23

0 Ŵ32 Ŵ33


 , and Ẑ =




Ẑ11 0 0

0 Ẑ22 Ẑ23

0 Ẑ32 Ẑ33


 ,

such that Ŵ11, Ŵ22, Ẑ11, Ẑ22 ∈ Rn×n, and
[

P̂11 P̂12

P̂21 P̂22

]
=




Ŵ11 0 0

0 Ŵ22 Ŵ23

0 Ŵ32 Ŵ33







C −S 0
S C 0
0 0 Im−n







ẐT
11 0 0

0 ẐT
22 ẐT

32

0 ẐT
23 ẐT

33


 ,

(3.21)
where

C = diag(c1, . . . , cn), ci ≥ 0, i = 1, . . . , n,

S = diag(s1, . . . , sn), si ≥ 0, i = 1, . . . , n,

C2 + S2 = In.

Further, let us de�ne the following matrices:

Ŵ1 = Ŵ11, Ẑ1 = Ẑ11, Ŵ2 =

[
Ŵ22

Ŵ32

]
,

where Ŵ1 ∈ Rn×n and Ẑ1 ∈ Rn×n are orthogonal matrices, and Ŵ2 ∈ Rm×n is an
orthonormal matrix, then from (3.21) it follows that

P̂11 = Ŵ1CẐT
1 , P̂12 = Ŵ2SẐT

1 .

Finally, we de�ne Û = Ŵ2Ẑ1, as the closest orthonormal matrix to P̂21 in any
unitarily invariant norm. Since (I + S)(I − S) = C2, we have

Û − P̂21 = Ŵ2(I − S)ẐT
1 = Ŵ2(I + S)†ẐT

1 Ẑ1CŴ T
1 Ŵ1CẐT

1 =

= Ŵ2(I + S)†ẐT
1 P̂ T

11P̂11,

(Û − P̂21)B̃V̂ T = Ŵ2(I + S)†ẐT
1 P̂ T

11∆A,

δÂ = ÛB̃V̂ T − A = (Û − P̂21)B̃V̂ T + δA,
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thus

‖δÂ‖F ≤ ‖Ŵ2(I + S)†ẐT
1 P̂ T

11‖2‖∆A‖F + ‖δA‖F ≤ ‖∆A‖F + ‖δA‖F ≤
≤

√
2
√
‖∆A‖2

F + ‖δA‖2
F ≤

√
2ξ‖A‖F .

Remark 3.2.7. Barlow in [2] suggested an alternative algorithm for bidiagonalization.
It is almost identical to Algorithm 3.1.1, except in the way the scalar φk+1 is computed.
This time it is

φk+1e1 = Vkzk, Vk = I − vkv
T
k ,

which is equivalent to Algorithm 3.1.1 in exact arithmetic, but not in �nite precision
arithmetic. Let us denote

φ̄k+1 = eT
1 fl(Ṽkz̃k)

s̄k+1 = fl(fk+1 − φ̄k+1ũk)

where Ṽk = I − ṽkṽ
T
k , V̂k = I − v̂kv̂

T
k and ṽk = v̂k + δv̂k. Then it follows

w̄k = fl(Ṽkz̃k) = V̂kz̃k + δ1w̄k = V̂k(Ãk−1(:, k + 1 : n)T ũk + δz̃k) + δ1w̄k =

= V̂kÃk−1(:, k + 1 : n)T (ûk + δûk) + V̂kδz̃k + δ1w̄k =

= Ãk(:, k + 1 : n)T ûk − ET
k ûk + V̂kÃk−1(:, k + 1 : n)T δûk +

+V̂kδz̃k + δ1w̄k =

= Ãk(:, k + 1 : n)T ûk + δw̄k,

where Lemma 3.2.3 implies the bound on ‖δ1w̄k‖2

‖δ1w̄k‖2 ≤ O(n− k)ε‖z̃k‖2 ≤ O(n− k)ε‖Ãk−1(:, k + 1 : n)‖F ≤ O(n− k)ε‖F‖F ,

from (3.14) in the proof of Theorem 3.2.6 it follows

‖δz̃k‖2 ≤ O(m)ε‖Ãk−1(:, k + 1 : n)‖F ≤ O(m)ε‖F‖F ,

according to (3.11) in the proof of Theorem 3.2.6 we have

‖δûk‖2 ≤ O(m)ε,

and by (3.17) we can estimate the application of a Householder re�ector:

‖Ek‖F ≤ O(n− k)ε‖Ãk−1(:, k + 1 : n)‖F ≤ O(n− k)ε‖F‖F .

So, �nally we can conclude

φ̄k+1 = fT
k+1ûk + δφ̄k+1, |φ̄k+1| ≤ O(m)ε‖F‖F .

On the other hand, for φ̂k+1 = fT
k+1ûk, like in the proof of Theorem 3.2.6 we can write

s̄k+1 = fk+1 − φ̂k+1ûk + δs̄k+1, ‖δs̄k+1‖2 ≤ O(m)ε‖F‖F .
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Further, this in�uences the following bounds:
∥∥∥∥
[

∆fk+1

δfk+1

]∥∥∥∥
2

≤ O(m)ε‖F‖F

∥∥∥∥
[

∆F
δF

]∥∥∥∥
F

≤ O(mn
1
2 )ε‖F‖F +

√
2

n−2∑
j=1

(‖ũT
j Ãn−2(:, j+2 : n)‖2+‖δûj‖2‖F (:, j+2 : n)‖F )

which will not change the �nal bound in Theorem 3.2.6.
Instead of Householder re�ectors we can use the Givens rotations in Algorithm 3.1.1.

Recall that Givens rotation is a plane rotation

Gi,j(φ) =




1
... ...

. . . ... ... 0

1
... ...

· · · · · · · · · cos(φ) · · · · · · · · · sin(φ) · · · · · · · · ·
... 1

...
... . . . ...
... 1

...
· · · · · · · · · − sin(φ) · · · · · · · · · cos(φ) · · · · · · · · ·

... ... 1

0
... ... . . .
... ... 1




i

j

.

i j

We can also prove that this variant of one�sided bidiagonalization is numerically stable,
but we need the following auxiliary results.
Lemma 3.2.8 ([47, p. 373]). Let a Givens rotation Gi,j(φ) be constructed according
to

c = cos(φ) =
xi√

x2
i + x2

j

, s = sin(φ) =
xj√

x2
i + x2

j

.

The computed c̃ and s̃ satisfy
c̃ = c(1 + θ4), s̃ = s(1 + θ′4), (3.22)

where |θ4|, |θ′4| ≤ 4ε + O(ε2).
Lemma 3.2.9 ([47, p. 373]). Let x ∈ Rm and consider the computation of y = G̃i,jx,
where G̃i,j is a computed Givens rotation in the (i, j) plane for which c̃ and s̃ satisfy
(3.22). The computed ỹ satis�es

ỹ = (Ĝi,j + δĜi,j)x, ‖δĜi,j‖F ≤ 6
√

2ε + O(ε2),

where Ĝi,j is an exact Givens rotation based on ĉ and ŝ de�ned in Lemma 3.2.8. All the
rows of δĜi,j except the i-th and j-th are zero.
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Lemma 3.2.10 ([47, pp. 374�375]). Consider the sequence of transformations

Ak+1 = WkAk, k = 1, . . . , r,

where A1 = A ∈ Rm×n and each Wk is a product of disjoint Givens rotations. Assume
that the individual Givens rotations are performed using computed sine and cosine values
related to the exact values de�ning Wk by (3.22). Then the computed matrix Ãr+1

satis�es
Ãr+1 = Q̂T (A + δA),

where Q̂T = ŴrŴr−1 · · · Ŵ1 and δA satis�es the normwise and componentwise bounds

‖δA‖F ≤ O(r)ε‖A‖2,

|δA| ≤ O(rm)εG|A|, ‖G‖F = 1.

(In fact we can take G = m−1eeT , where e = [1, 1, . . . , 1]T .) In the special case n = 1,
so that A = a, we have ãr+1 = (Q̂ + δQ̂)T a with ‖δQ̂‖F ≤ O(r)ε.

Theorem 3.2.11 ([47, p. 375]). Let R̃ ∈ Rm×n be the computed upper trapezoidal QR
factor of A ∈ Rm×n (m ≥ n) obtained via the Givens QR algorithm, with any standard
choice and ordering of rotations. Then there exists an orthogonal Q̂ ∈ Rm×m such that

A + δA = Q̂R̃,

with ‖δA‖F ≤ O(m+n)ε‖A‖F and |δA| ≤ O(m+n)mεG|A|, ‖G‖F = 1. (The matrix Q̂
is a product of Givens rotations, the k-th of which corresponds to the exact application
of the k-th step of the algorithm to Ãk.)

The numerical analysis result on the Givens Barlow bidiagonalization can be found
in the following corollary.

Corollary 3.2.12. If in Algorithm 3.1.1 Householder re�ectors are replaced by Givens
rotations, then the results of Theorem 3.2.6 hold for 0 ≤ ξ ≤ O(mn + n2)ε.

Proof. We just have to go through the proof of Theorem 3.2.6, and change the statements
concerning Householder re�ectors.

Step 1:
In �nite precision arithmetic, the computed matrix F is obtained as

F = Ãn−2 = fl((· · · ((A · G̃1) · G̃2) · · · ) · G̃r),

where each G̃k, k = 1, . . . , r is a product of disjoint computed Givens rotations
and r = O(n). By Lemma 3.2.10 there exists an exactly orthogonal matrix V̂ =
Ĝ1 · · · Ĝr, such that

F = (A + δ1A)V̂ , ‖δ1A‖F ≤ ηF‖A‖F , ηF ≤ O(n)ε. (3.23)

Step 2:
Remains unchanged.
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Step 3:
Let V̂j be the product of n − j − 1 nondisjoint exact Givens rotations such that
(3.15) holds. Then by Lemma 3.2.10 equation (3.16) holds with

‖Ej‖F ≤ O(n− j − 1)ε‖Ãj−1(:, j + 1 : n)‖F .

Further, the equation (3.19) also holds, but the matrices V̂
(j)
j+1, . . . ,V̂

(j)
j+` represent

` ≤ r di�erent products of remaining disjoint Givens rotations, which are restricted
to the bottom-right (n− j − 1)× (n− j − 1) block. Thus

‖Ej,`‖F ≤ O(n)ε‖Ãj(:, j + 2 : n)‖F .

Finally, it follows that

‖ũT
j Ãj+`(:, j + 2 : n)‖2 ≤ O(m + n)ε‖Ãn−2(:, j + 1 : n)‖F ≤ O(m + n)ε‖F‖F ,

and ∥∥∥∥
[

∆F
δF

]∥∥∥∥
F

≤ O(mn + n2)ε‖F‖F ≤ O(mn + n2)(1 + ηF )‖A‖F .

The �nal result is straightforward.

Step 4:
Remains unchanged.

The results of numerical analysis stated so far are dealing with the backward error of
Algorithm 3.1.1. That means that we can estimate a perturbation δA of the matrix A,
so that computed matrix B̃ is the exact bidiagonal factor of the matrix A+δA. Now we
will examine the forward error, which comprises the distance between the singular value
of A and the corresponding singular value of B̃. We will use a standard perturbation
result from Theorem 2.3.1 to estimate the error.

Corollary 3.2.13. If σ1 ≥ · · · ≥ σn are the singular values of A, then the singular
values σ̃1 ≥ · · · ≥ σ̃n of B̃ from Theorem 3.2.6 satisfy

max
i

|σ̃i − σi|
‖A‖F

≤
√

2ξ.

Proof. If we use the fact that ‖δÂ‖2 ≤ ‖δÂ‖F , and combine it with (3.8) from Theorem
3.2.6 and Theorem 2.3.1, we will obtain the result.

The computed Ũ is not guaranteed to be numerically orthogonal, as was the case
with the Ralha bidiagonalization. We can prove a similar result as Björck and Paige in
[6] for the modi�ed Gram�Schmidt orthogonalization.



72 CHAPTER 3. THE BARLOW ONE�SIDED BIDIAGONALIZATION

Corollary 3.2.14. If Ũ is computed by Algorithm 3.1.1 in �nite precision arithmetic,
and if the matrices A ∈ Rm×n and B̃ ∈ Rn×n have full rank, then the following estima-
tions hold

‖Ũ − Û‖F ≤ O(mn + n3)εκF (B̃) = O(mn + n3)εκF (A)

‖ŨT Ũ − I‖F ≤ O(mn + n3)εκF (B̃) = O(mn + n3)εκF (A),

where κF (A) = ‖A‖F‖A†‖F , and Û is orthonormal matrix from Theorem 3.2.6.
Proof. First we will follow the steps of the algorithm for obtaining ũk+1. From [47] we
have

φ̃k+1 = ũT
k fk+1 + δ ˜̃φk+1, |δ ˜̃φk+1| ≤ O(m)ε‖fk+1‖2

s̃k+1 = fk+1 − φ̃k+1ũk + δ ˜̃sk+1, ‖δ ˜̃sk+1‖2 ≤ O(1)ε‖fk+1‖2

ψ̃k+1 = ‖s̃k+1‖2 + δ ˜̃ψk+1, |δ ˜̃ψk+1| ≤ O(m)ε‖fk+1‖2

ũk+1 =
fk+1 − φ̃k+1ũk + δ ˜̃sk+1

ψ̃k+1

+ δũk+1, ‖δũk+1‖2 ≤ O(1)ε

which implies
φ̃k+1ũk + ψ̃k+1ũk+1 = fk+1 + δ ˜̃sk+1 + ψ̃k+1δũk+1 = fk+1 + δf̃k+1,

with
‖δf̃k+1‖2 ≤ O(1)ε‖fk+1‖2.

If we de�ne δF̃ = [δf̃1, . . . , δf̃n], than we can write
ŨB̃ = F + δF̃ , ‖δF̃‖F ≤ O(1)ε‖F‖F ≤ O(1)ε‖A‖F ,

and by (3.10) it is
ŨB̃ = (A + δ1A)V̂ + δF̃ .

If the matrix B̃ is nonsingular then
Ũ = (A + δ1A + δF̃ V̂ T )V̂ B̃−1.

On the other hand, from (3.8) it follows that
Û = (A + δÂ)V̂ B̃−1.

Putting all this together we obtain
Ũ − Û = (δ1A + δF̃ V̂ T − δÂ)V̂ B̃−1,

with
‖Ũ − Û‖F ≤ O(mn + n3)εκF (B̃).

The second bound follows immediately by
ŨT Ũ − I = ŨT Ũ − ÛT Û = ÛT (Ũ − Û) + (Ũ − Û)T Û + (Ũ − Û)T (Ũ − Û),

and thus
‖ŨT Ũ − I‖F ≤ O(mn + n3)εκF (B̃).
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Remark 3.2.15. The result of Corollary 3.2.14 also holds for the alternative choice
φk+1 = γk.

The result of Corollary 3.2.14 shows that if A is ill conditioned, Ũ can be far from
an orthonormal matrix.

Example 3.2.16. Let A ∈ R4×4 be the matrix with σ1 = 1010, σ2 = 1, σ3 = 10−10

and σ4 = 10−20. The matrix A is obtained as a product A = UΣV T , where Σ =
diag(σ1, σ2, σ3, σ4), and U and V are computed as the QR factors of random matrices.
The MATLAB program was used for the computation. The Barlow algorithm produced
the following result:

B̃ =




5.7114 · 109 −8.2086 · 109 0 0
0 5.3389 · 10−1 9.5238 · 10−1 0
0 0 5.1614 · 10−6 2.2030 · 10−7

0 0 0 2.2629 · 10−7


 ,

Ũ =




7.6056 · 10−1 −1.3535 · 10−1 −5.4709 · 10−1 −7.3738 · 10−1

1.8502 · 10−1 −8.1511 · 10−1 −3.2165 · 10−1 4.6023 · 10−1

4.8577 · 10−1 7.5365 · 10−2 −5.6628 · 10−1 −8.1180 · 10−3

3.8902 · 10−1 5.5820 · 10−1 −5.2589 · 10−1 4.9436 · 10−1


 ,

Ṽ =




1 0 0 0
0 −6.8197 · 10−1 −2.0485 · 10−2 −7.3109 · 10−1

0 −3.0515 · 10−1 −9.0048 · 10−1 3.0988 · 10−1

0 −6.6468 · 10−1 4.3442 · 10−1 6.0785 · 10−1


 .

The singular values of the matrix B̃ are

Σ̃B = diag(1010, 1.000000036943297, 1.589504011049195·10−6, 2.240629962266331·10−7),

which is consistent with Theorem 3.2.6 and Corollary 3.2.13, since

(mn + n3)ε‖A‖F = 1.776356839400251 · 10−4.

On the other hand

‖ŨT Ũ − I‖F = 9.975416565064253 · 10−1,

which shows that Ũ is far from being orthogonal. It is also consistent with Corollary
3.2.14, since

(mn + n3)εκF (A) = 1.322740457878272 · 104.

It is still possible to recover a nearby orthonormal basis for some subspace of span{Ũ},
as it was shown in Corollary 3.20 in [2]. Let us assume that the singular value de-
composition of the matrix B̃ is obtained in �nite precision arithmetic, and that the
decomposition satis�es

B̃ + δB̃ = ŨBΣ̃Ṽ T
B , ‖δB̃‖F ≤ g(n)ε‖B‖F , (3.24)
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for some modestly growing function g(n). Note that ŨB and ṼB are not exactly orthog-
onal, but they are numerically orthogonal:

‖ŨT
B ŨB − I‖2, ‖Ṽ T

B ṼB − I‖2 = O(ε).

This departure from orthogonality has no qualitative e�ect on the analysis in the next
corollary, so we will assume that ŨB = ÛB and ṼB = V̂B are orthogonal.

Next, we de�ne Ỹ = Ũ ŨB and Ŷ = Û ŨB, and then we take a partition of Σ̃, Ỹ , Ŷ ,
and ṼB as follows

Σ̃ =
k

n−k

[
Σ̃1 0

0 Σ̃2

]
,

k n−k

Ỹ = [ Ỹ1 Ỹ2 ], Ŷ = [ Ŷ1 Ŷ2 ], ṼB = [ ṼB,1 ṼB,2 ]
k n−k k n−k k n−k

(3.25)

where Σ̃1 is well conditioned. Here Ỹ1 is computed and Ŷ1 is the exact orthonormal basis
for a subspace that approximates the left singular subspace associated with the leading
singular values.

Corollary 3.2.17. If Ũ is computed by Algorithm 3.1.1 in �nite precision arithmetic,
and if Ỹ and Ŷ are de�ned as above, then

‖Ỹ T
1 Ỹ1 − I‖F ≤ O(mn3/2 + n5/2)ε

σ̃1

σ̃k

+ g(n)O(mn3/2 + n5/2)ε2κF (A)
σ̃1

σ̃k

. (3.26)

Proof. From the proof of Corollary 3.2.14 and (3.24) we have

ŨB̃ = (A + δ1A)V̂ + δF̃

Ũ(ŨBΣ̃Ṽ T
B − δB̃) = (A + δ1A)V̂ + δF̃

Ỹ Σ̃Ṽ T
B = (A + δ1A)V̂ + δF̃ + ŨδB̃ (3.27)

and

ÛB̃ = (A + δÂ)V̂

Û(ŨBΣ̃Ṽ T
B − δB̃) = (A + δÂ)V̂

Ŷ Σ̃Ṽ T
B = (A + δÂ)V̂ + ÛδB̃ (3.28)

Subtracting (3.28) from (3.27) we obtain

(Ỹ − Ŷ )Σ̃Ṽ T
B = (δ1A− δÂ)V̂ + δF̃ + (Ũ − Û)δB̃ (3.29)

and by multiplying both sides of (3.29) with ṼB,1Σ̃
−1
1 we get

Ỹ1 − Ŷ1 = (δ1A− δÂ)V̂ ṼB,1Σ̃
−1
1 + δF̃ ṼB,1Σ̃

−1
1 + (Ũ − Û)δB̃ṼB,1Σ̃

−1
1 .
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Hence, from proofs of Corollary 3.2.14 and Theorem 3.2.6 it follows

‖Ỹ1 − Ŷ1‖F ≤ [O(n2) + O(mn + n3)]ε‖A‖F σ̃−1
k + O(1)ε‖A‖F σ̃−1

k +

+g(n)O(mn + n3)ε2κF (A)‖B‖F σ̃−1
k ≤

≤ O(mn3/2 + n5/2)ε
σ̃1

σ̃k

+ g(n)O(mn3/2 + n5/2)ε2κF (A)
σ̃1

σ̃k

The proof of (3.26) follows in the same way as the derivation of the bound on ‖ŨT Ũ−I‖F

in the proof of Corollary 3.2.14.

So, we can conclude that a reasonable algorithm for computing the bidiagonal SVD
of the matrix B̃ will lead to the construction of a numerically orthogonal basis for the
left singular subspace associated with the leading singular values of A.

In spite of the possible loss of orthogonality of the matrix Ũ , we can still prove the
following proposition.

Proposition 3.2.18. If F = �(AV ) is obtained from Algorithm 3.1.1, then

1. F T F is almost tridiagonal, with

GF = F T F − diag(F T F )− diag(F T F,−1)− diag(F T F, 1),

‖GF‖F ≤ O(mn1/2 + n5/2)ε‖F‖2
F (3.30)

where diag(F T F ) denotes the main diagonal of F T F , diag(F T F,−1) the subdiag-
onal, and diag(F T F, 1) the superdiagonal.

2. If F = QR is the QR factorization of F = [f1 . . . fn] and R = [rij], then R is
almost bidiagonal, with

|rij| ≤ O(m + n2)εζi(F )‖F‖F (3.31)

ζi(F ) =
‖f2‖2 · · · ‖fi‖2

r22 · · · rii

, i ≤ j − 2.

If the QR factorization is performed after column permutation, such that the most
linear independent columns are brought to the �rst positions, then ζi(F ) would be
minimized.

Proof. First we will observe the size of fT
i fj where i ≤ j − 2. From Algorithm 3.1.1

and the proof of Theorem 3.2.6 we can describe a process of computing ũi, and use this
information for estimating fT

i fj.

ũi = �
(

s̃i

‖s̃i‖2

)
=

s̃i

‖s̃i‖2

+ δûi =

=
fi − (fT

i ûi−1)ûi−1 + δs̃i

‖fi − (fT
i ûi−1)ûi−1 + δs̃i‖2

+ δûi,
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where

ûi =
s̃i

‖s̃i‖2

‖δûi‖2 ≤ O(m)ε

‖δs̃i‖2 ≤ O(m)ε‖fi‖2

Now we can conclude that

fi = (fT
i ûi−1)ûi−1 + ‖fi − (fT

i ûi−1)ûi−1 + δs̃i‖2ũi − δs̃i −
−‖fi − (fT

i ûi−1)ûi−1 + δs̃i‖2δûi

fT
j fi = (fT

i ûi−1)f
T
j ûi−1 + ‖fi − (fT

i ûi−1)ûi−1 + δs̃i‖2f
T
j ũi − fT

j δs̃i −
−‖fi − (fT

i ûi−1)ûi−1 + δs̃i‖2f
T
j δûi.

By the estimation

‖fi − (fT
i ûi−1)ûi−1 + δs̃i‖2 ≤ (2 + O(m)ε)‖fi‖2 = O(1)‖fi‖2,

and relation (3.20) from the proof of Theorem 3.2.6, which reads

|fT
j ũi|, |fT

j ûi−1| ≤ O(m + n2)ε‖F‖F ,

we can give a bound on |fT
j fi|, for i ≤ j − 2

|fT
j fi| ≤ |fT

j ûi−1|‖fi‖2 + O(1)|fT
j ũi|‖fi‖2 + O(m)ε‖fj‖2‖fi‖2 +

+O(m)ε‖fj‖2‖fi‖2 ≤
≤ [O(m + n2)ε‖F‖F + O(m)ε‖fj‖2]‖fi‖2 ≤
≤ O(m + n2)ε‖F‖F‖fi‖2

Now we can derive the bound in (3.30).

‖GF‖F =

√√√√√
n∑

i=1

n∑
j=1

|j−i|≥2

|fT
i fj|2 ≤

√√√√√
n∑

i=1

n∑
j=1

|j−i|≥2

O(m + n2)2ε2‖F‖2
F‖fi‖2

2 ≤

≤ O(m + n2)ε‖F‖F

√√√√√
n∑

i=1

n∑
j=1

|j−i|≥2

‖fi‖2
2 ≤ O(mn1/2 + n5/2)ε‖F‖2

F .

Suppose that F = QR is an exact QR factorization of the matrix F , obtained by The
Gram�Schmidt orthogonalization. Then, rij = qT

i fj for i ≤ j. We are interested in |rij|
for i ≤ j − 2, to give an estimation on how far the matrix R is from being bidiagonal.
The analysis will be conducted by using mathematical induction. Let us start with the
�rst row, i = 1. Then for Algorithm 3.1.1 we have

|r1j| = |qT
1 fj| = |fT

1 fj|
‖f1‖2

≤ O(m + n2)ε‖F‖F , j = 3, . . . , n.
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To get an idea what is happening in other rows, we will perform the same analysis for
the second row, i = 2.

|r2j| = |qT
2 fj| = |fT

2 fj − (qT
1 f2)q

T
1 fj|

‖f2 − (qT
1 f2)q1‖2

≤ |fT
2 fj|+ |qT

1 f2||qT
1 fj|

‖f2 − (qT
1 f2)q1‖2

≤

≤ O(m + n2)ε‖F‖F
‖f2‖2

r22

, j = 4, . . . , n.

As an assumption of induction we will take that

|rkj| = |qT
k fj| ≤ O(m + n2)ε‖F‖F

‖f2‖2 · · · ‖fk‖2

r22 · · · rkk

, k = 2, . . . , i− 1, j = k + 2, . . . , n,

and we will prove that this assumption is valid for k = i. We have

|rij| = |qT
i fj| =

|fT
i fj − (qT

i−1fi)q
T
i−1fj − · · · − (qT

1 fi)q
T
1 fj|

‖fi − (qT
i−1fi)qi−1 − · · · − (qT

1 fi)q1‖2

≤

≤ |fT
i fj|+ |qT

i−1fj|‖fi‖2 + · · ·+ |qT
1 fj|‖fi‖2

rii

≤

≤ O(m + n2)ε‖F‖F

(‖fi‖2

rii

+
‖f2‖2 · · · ‖fi−1‖2

r22 · · · ri−1,i−1

‖fi‖2

rii

+ · · ·+ ‖fi‖2

rii

)
≤

≤ O(m + n2)ε‖F‖F
‖f2‖2 · · · ‖fi‖2

r22 · · · rii

, j = i + 2, . . . , n,

because rkk ≤ ‖fk‖2.

The scalar ζi(F ) represents a condition number for producing a bidiagonal matrix
out of the computed matrix F , where F T F is almost tridiagonal. Thus, if the matrix F
has a small condition number, and if we compute the Householder QR factorization of
F and replace Ũ with Q̃, and nontrivial elements of B̃ with corresponding diagonal and
superdiagonal elements of R̃, then we could make an error comparable to the backward
error of the bidiagonalization. Moreover, the computed matrix Q̃ would be numerically
orthogonal.

3.3 Applications of the One�sided Algorithm
The matrix Ũ = [ũ1, . . . , ũn] may not be numerically orthogonal in case of the ill condi-
tioned matrix A. As shown in Corollary 3.2.14, in Example 3.2.16 and in [2], Ũ can be
far from orthogonal, it can be even numerically singular. If we want to use computed
matrices Ũ , Σ̃ and Ṽ as SVD factors, then by Theorem 3.2.6 and Corollary 3.2.13 Ṽ is
acceptable as a matrix of right singular vectors, and the diagonal of Σ̃ is acceptable as
singular values. On the other hand, large departure from orthogonality of Ũ cannot be
tolerated, and columns of Ũ may not represent left singular vectors very well. Thus, the
explicit usage of Ũ is not advisable. There are two possibilities how we can circumvent
the problem of nonorthogonality. One way is to apply some sort of reorthogonalization,
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where Ũ is transformed into a numerically orthogonal matrix. This would �x the nu-
merical problem, but on the other hand, the algorithm would be less e�cient. The main
advantage of the one�sided bidiagonalization is that it has less �oating point operations
than the standard Householder bidiagonalization, and this would be undermined by the
reorthogonalization. The other way is a modi�cation of the problem we want to solve.
It is seldom in practice that the SVD is the �nal target of the computation. More often,
the SVD is a computational tool used to analyze and solve some other problem.

In this thesis, it will be shown that the possible loss of orthogonality is not always
damaging as it may be expected, if the particular application of the SVD is properly
formulated. Instead of trying to �x the loss of orthogonality, we can try to make it
irrelevant by proper modi�cation of its use in a given situation. This idea is inspired
by the same approach that Björck and Paige used in [6] for Q̃, which is the QR factor
obtained in �nite precision arithmetic by the modi�ed Gram�Schmidt orthogonalization.
Q̃ can also be far from being numerically orthogonal. Björck and Paige modi�ed the
computation of the matrix�vector product Q̃T y in such a way, that fl(Q̃T y) became
numerically stable. Thus, we can retain good e�ciency of the Barlow bidiagonalization
and its potential in parallel computing, and still �x the problem with numerics.

The following subsections will describe several problems in numerical linear algebra
and their modi�cations, so that they can be accurately solved by Barlow bidiagonaliza-
tion without reorthogonalization (see [8]).

3.3.1 The Symmetric De�nite Eigenvalue Problem
Suppose we need to compute the spectral decomposition of a symmetric positive de�nite
matrix H = AT A, where A is the computed Cholesky factor, or any other full column
rank factor obtained from the application that generates H. Here we note that in
some important applications, for example in �nite element computation in structural
mechanics, the numerically most important step is not to assemble H, but to formulate
the problem in terms of A and functions of A. Hence, the spectral decomposition of H
can be obtained from the singular value decomposition of A, as shown in the following
algorithm.

Algorithm 3.3.1. This algorithm �nds the spectral decomposition of a symmetric pos-
itive de�nite matrix H.

1. Factor H as H = AT A, where A is the Cholesky or any other full column rank
factor of A.

2. Compute the singular value matrix Σ = diag(σi) and the right singular vectors V of
A using bidiagonalization of Algorithm 3.1.1 and some state of the art bidiagonal
SVD.

3. The spectral factorization of H is H = V ΛV T , Λ = diag(λi), λi = σ2
i .

The idea of the above algorithm is not new. Its parallelization by one�sided tridiago-
nalization also appears in [44] and [45] where the �nal stage is not done by the SVD, but
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by the symmetric tridiagonal spectral decomposition. Nevertheless, this is not wise from
the numerical point of view. Our formulation is numerically correct, as the following
analysis shows.
Theorem 3.3.2. If in Algorithm 3.3.1 the matrix A is given, and H is implicitly de-
�ned as H = AT A, then Algorithm 3.3.1 is backward stable. If H ∈ Rn×n is given,
and ‖H−1

s ‖2 < 1−2(n+1)ε
n(n+1)ε

, where ε is the machine roundo�, then Algorithm 3.3.1 will
successfully compute the Cholesky factorization and the overall computation is backward
stable. Here Hs is the matrix (Hs)ij = Hij/

√
HiiHjj, i, j = 1, . . . , n.

Proof. Let Ã be the computed factor of H. Then ÃT Ã = H + δH, where ‖δH‖2 ≤
f(n)ε‖H‖2, and the moderate function f(n) depends on the details of the factorization.
In fact, |δHij| ≤ f1(n)ε

√
HiiHjj, if Ã is computed by Cholesky factorization, with

f1(n) = O(n) and f(n) = O(n2) [47, pp. 206�207], [13]. If Ã is the computed Cholesky
factor, then our assumption guarantees that H is numerically de�nite and that the
Cholesky factorization does not break down. This is a consequence of Theorem 10.7
from [47, pp. 208�209]. If A is given as input, then Ã = A, δH = 0.

If B̃ is a bidiagonal matrix computed by an application of Algorithm 3.1.1 to Ã, then
by Theorem 3.2.6 there exist orthogonal matrices P̂ , V̂ , perturbations ∆Ã, δÃ such that

[
B̃
0

]
= P̂ T

[
∆Ã

Ã + δÃ

]
V̂ ,

∥∥∥∥
[

∆Ã

δÃ

]∥∥∥∥
F

≤ ξ̃‖Ã‖F , ξ̃ ≤ O(mn + n3)ε. (3.32)

The computed Ṽ satis�es ‖Ṽ − V̂ ‖F ≤ O(n2)ε. Note that
B̃T B̃ = V̂ T (ÃT Ã + ∆ÃT ∆Ã + δÃT δÃ + ÃT δÃ + δÃT Ã)V̂ =

= V̂ T (H + δH + ∆H)V̂ , where
‖∆H‖2 ≤ ‖∆Ã‖2

F + ‖δÃ‖2
F + 2‖Ã‖2ξ̃‖Ã‖F ≤

≤ (ξ̃2n + 2
√

nξ̃)‖Ã‖2
2 ≤ ξ̃(2

√
n + nξ̃)(‖H‖2 + ‖δH‖2) ≤

≤ ξ̃‖H‖2(2
√

n + nξ̃)(1 + f(n)ε) ≤
≤ O(mn

3
2 + n

7
2 )ε‖H‖2.

This corresponds to backward stable tridiagonalization of H, where the tridiagonal
matrix is implicitly de�ned by the bidiagonal B̃ as B̃T B̃. It is not recommended to
compute it explicitly. Here we can note that ∆H is comparable with δH.

Let Σ̃, ŨB, ṼB be the computed elements of the SVD B̃ ≈ ŨBΣ̃Ṽ T
B . Then there exist

orthogonal matrices ÛB, V̂B and a backward perturbation δB̃ such that
B̃ + δB̃ = ÛBΣ̃V̂ T

B (3.33)
and ‖δB̃‖F ≤ g(n)ε‖B̃‖F . Furthermore, ‖ŨB − ÛB‖F and ‖ṼB − V̂B‖F are small. Now
we can put all the elements of the Algorithm 3.3.1 together to obtain

[
Σ̃
0

]
=

[
ÛT

B 0
0 I

]
P̂ T

{[
∆Ã

Ã + δÃ

]
+ P̂

[
δB̃
0

]
V̂ T

}
V̂ V̂B =

=

[
ÛT

B 0
0 I

]
P̂ T

{[
0

Ã

]
+

[
∆′Ã
δ′Ã

]}
V̂ V̂B, that is,

Σ̃2 = (V̂ V̂B)T (ÃT Ã + ∆′H)(V̂ V̂B),
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where ∆′H has a similar bound as ∆H, and fl(Ṽ ṼB) is close to V̂ V̂B. Namely,

‖∆′H‖2 ≤ ‖∆′Ã‖2
F + ‖δ′Ã‖2

F + 2‖Ã‖2‖δ′Ã‖F ≤
≤ (ξ̃‖Ã‖F + ‖δB̃‖F )2 + 2‖Ã‖2(ξ̃‖Ã‖F + ‖δB̃‖F ) ≤
≤ (ξ̃‖Ã‖F + g(n)ε‖B̃‖F )2 + 2‖Ã‖2(ξ̃‖Ã‖F + g(n)ε‖B̃‖F ) ≤
≤ [n(ξ̃ + g(n)ε(1 + ξ̃))2 + 2

√
n(ξ̃ + g(n)ε(1 + ξ̃))]‖Ã‖2

2 ≤
≤ [ξ̃ + g(n)ε(1 + ξ̃)][2

√
n + nξ̃ + ng(n)ε(1 + ξ̃)](1 + f(n)ε)‖H‖2 ≤

≤ O(mn
3
2 + n

7
2 + n

1
2 g(n))ε‖H‖2

which implies
H + δH + ∆′H = (V̂ V̂B)Σ̃2(V̂ V̂B)T ,

and Σ̃2 is the exact diagonal eigenfactor of H + δH + ∆′H, where

‖δH + ∆′H‖2 ≤ [f(n)ε + 2
√

n(ξ̃ + g(n)ε)]‖H‖2 + O(ε2) ≤
≤ O(mn

3
2 + n

7
2 + n

1
2 g(n))ε‖H‖2

Since Algorithm 3.3.1 computes the eigenvalues as squares of the singular values, the
forward error in the computed eigenvalues of ÃT Ã is governed by the condition number
of Ã, which is approximately equal to the square root of the condition number of H.
The overall error is described in the following corollary.

Corollary 3.3.3. Let λ̃1 ≥ · · · ≥ λ̃n be the approximations of the eigenvalues of H,
computed by Algorithm 3.3.1. Then, using the notation and the assumptions of Theorem
3.3.2, for all i it holds that

λ̃i = (1 + %i)λi, |%i| ≤ 2
√

2
√

nξ̃
√

κ2(H) + O(n2)ε‖H−1
s ‖2 + 2τ(n)ε + O(ε2), (3.34)

where τ(n)ε is described bellow, and denotes the bound on relative forward error for
the SVD performed on B̃. Further, if all eigenvalues are simple with Hvi = λivi, V =
[v1, .. . . . , vn], V T V = I, then the columns ṽi of the computed Ṽ satisfy

sin ](ṽi, vi) ≤

O(mn

3
2 + n

7
2 + n

1
2 g(n))

minj=1,...,n
j 6=i

|˜̃σ2
i − λj|

+ O(n2)


 ε + O(ε2), (3.35)

where ˜̃σi are the computed singular values of Ã. The similar result can be obtained for
the multiple eigenvalues, using the results presented by R.-C. Li in [67].

Proof. First we compare the computed eigenvalues with the eigenvalues of ÃT Ã. From
Corollary 3.2.13, it holds that the singular values ˆ̃σ1 ≥ · · · ≥ ˆ̃σn of B̃ approximate the
singular values σ̃1 ≥ · · · ≥ σ̃n of Ã with an error bound

max
i
|ˆ̃σi − σ̃i| ≤

√
2
√

nξ̃σ̃1, i.e. ˆ̃σi = σ̃i(1 + ηi), |ηi| ≤
√

2
√

nξ̃
σ̃1

σ̃i

.
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A state of the art SVD of B̃ computes ˜̃σi = ˆ̃σi(1 + θi), where |θi| ≤ τ(n)ε for all i.
Hence, our computed approximations have the following form

λ̃i = ˜̃σ2
i = σ̃2

i (1 + θi)
2(1 + ηi)

2 = λi(1 + τi)(1 + θi)
2(1 + ηi)

2 = λi(1 + %i),

and

|%i| ≤ |τi|+ 2|θi|+ 2|ηi|+ O(ε2) ≤ f2(n)ε‖H−1
s ‖2 + 2τ(n)ε + 2

√
2
√

nξ̃κ2(Ã) + O(ε2),

where maxi |τi| ≤ f2(n)ε‖H−1
s ‖2, with f2(n) = nf1(n) = O(n2). This follows from the

fact that ÃT Ã = H + δH is the computed Cholesky factorization, from a consequence
of the Ostrowsky theorem 4.3.4, and from Lemma 2.2 and Theorem 2.3 in [69, pp.
963�964]. (If A is given on input, τi = 0 for all i.)

For the other part of the corollary we use the matrices obtained from the SVD
performed in �nite precision arithmetic. We have

Ṽ = fl(ṼÃṼB̃) = Ŵ + δṼ , Ŵ = V̂ÃV̂B̃, (3.36)

where V̂Ã is equal to V̂ in (3.32) and V̂B̃ is de�ned by (3.33). They both are exact
orthogonal matrices and

‖δṼ ‖F ≤ ‖ṼÃ − V̂Ã‖F + ‖ṼB̃ − V̂B̃‖F + O(ε2) ≤ O(n2)ε + O(ε2).

On the other hand, from the proof of Theorem 3.3.2, we have

H + δH + ∆′H = Ŵ ˜̃Σ2Ŵ T .

Here Σ̃ in the proof of Theorem 3.3.2 is replaced by ˜̃Σ. In order to use the perturbation
theory from [26], we de�ne three orthogonal projections. They are required for error
analysis of eigenvectors, and represent eigenprojections:

Pvi
= viv

T
i

Pŵi
= ŵiŵ

T
i

Pṽi
=

ṽiṽ
T
i

‖ṽi‖2
2

According to Eisenstat and Ipsen [26], we can write

sin ](vi, ṽi) = ‖Pvi
− Pṽi

‖2 ≤ ‖Pvi
− Pŵi

‖2 + ‖Pŵi
− Pṽi

‖2. (3.37)

For the �rst term in (3.37) we obtain the following estimation:

‖Pvi
− Pŵi

‖2 = sin ](vi, ŵi) ≤ ‖δH + ∆′H‖2

min j=1,...,n
j 6=i

|˜̃σ2
i − λj|

≤ [f(n)ε + 2
√

n(ξ̃ + g(n)ε)]‖H‖
min j=1,...,n

j 6=i
|˜̃σ2

i − λj|
+ O(ε2)

≤ O(mn
3
2 + n

7
2 + n

1
2 g(n))ε

min j=1,...,n
j 6=i

|˜̃σ2
i − λj|

+ O(ε2).
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Furthermore, by relation (3.36) we can compute the second term in (3.37),

Pṽi
− Pŵi

=
(ŵi + δṽi)(ŵi + δṽi)

T

‖ṽi‖2
2

− ŵiŵ
T
i

=
(1− ‖ṽi‖2

2)ŵiŵ
T
i + δṽiŵ

T
i + ŵiδṽ

T
i + δṽiδṽ

T
i

‖ṽi‖T
2

,

thus

‖Pṽi
− Pŵi

‖2 ≤ 1− ‖ṽi‖T
2 + O(n2)ε

‖ṽi‖2

+ O(ε2)

≤ 1− (1− ‖δṽi‖2)
2 + O(n2)ε

(1− ‖δṽi‖2)2
+ O(ε2)

≤ O(n2)ε

1−O(n2)ε
+ O(ε2) = O(n2)ε + O(ε2).

The �nal result is now straightforward.

By Corollary 3.3.3 Algorithm 3.3.1 produces computed eigenvalues λ̃i = ˜̃σ2
i of H

with small relative error, and the accuracy of computed eigenvectors ṽi depends on the
gap between ˜̃σ2

i and the rest of the exact spectrum of H. Let us verify the result of
Corollary 3.3.3 with an example.

Example 3.3.4. We generated a symmetric positive de�nite matrix H ∈ R10×10 with
�xed eigenvalues λ(H) = {10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106} as

H = V ΛV T ,

where V is a random orthogonal matrix, and Λ = diag(10−3, 10−2, . . . , 105, 106). First
we check the condition from Theorem 3.3.2. We have

‖H−1
s ‖2 = 1.0012 · 108 < 8.1884 · 1013 =

1− 2(n + 1)ε

n(n + 1)ε
,

and the Cholesky factorization will be computed successfully. Next, we execute Algorithm
3.3.1, and we obtain computed Λ̃ and Ṽ , where computed eigenvalues are equal to

9.999999999999998 · 105

9.999999999999987 · 104

9.999999999999964 · 103

9.999999999999948 · 102

9.999999999998458 · 101

9.999999999997730 · 100

9.999999999960223 · 10−1

9.999999998392710 · 10−2

9.999999990792137 · 10−3

9.999999713117659 · 10−4.
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The errors and the error bounds are presented in Figure 3.2 and 3.3. The eigenvalues
are sorted in nonincreasing order. From [15], it follows that τ(n) ≈ O(n2) for the
bidiagonal SVD algorithm implemented in LAPACK and MATLAB, and this implies
that g(n) ≈ O(n2).

We can see in Figure 3.3 that for v5, . . . ,v10 the error is greater than the bound. It
happened because after computing H̃ = fl(V ΛV T ) in �nite precision arithmetic, columns
of V are not the exact eigenvectors of H̃ any more. Furthermore, computation of sine
of an angle is numerically sensitive to errors. Nevertheless, shapes of both curves are
similar, and the trend of the bound follows the trend of the computed error.
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Figure 3.2: Relative error in eigenvalues and the bound (3.34), for Example 3.3.4.

3.3.2 Intersection of Null Spaces
Let A ∈ Rm×n and B ∈ Rp×n be given, and consider the problem of �nding an orthonor-
mal basis for null(A) ∩ null(B). When the SVD is used to compute the orthonormal
bases we obtain the following procedure as a consequence of Corollary 2.1.4 (see Section
2.2 and [35, pp. 583�584])

Algorithm 3.3.5. Given A ∈ Rm×n and B ∈ Rp×n, the following algorithm computes
an integer s and a matrix Y = [y1, . . . , ys] having orthonormal columns which span
null(A) ∩ null(B). If the intersection is trivial then s = 0.

Compute the SVD UT
AAVA = diag(σi). Save VA and set

r = rank(A);
if r < n

C = BVA(:, r + 1 : n);
Compute the SVD UT

C CVC = diag(γi). Save VC and set
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Figure 3.3: Sine of the angles between the computed and the exact eigenvectors, and
the bound (3.35), for Example 3.3.4.

q = rank(C);
if q < n− r

s = n− r − q;
Y = VA(:, r + 1 : n)VC(:, q + 1 : n− r);

else
s = 0;

end
else

s = 0;
end

As we can see, Algorithm 3.3.5 uses only right singular vectors for computing the
orthonormal basis for null spaces. Matrices UA and UC are never used, so their departure
from orthogonality is not important. The following theorem shows mixed error stability
of the algorithm.

Theorem 3.3.6. Let A ∈ Rm×n and B ∈ Rp×n, and let Ỹ be computed in �nite precision
arithmetic, using Algorithm 3.3.5 and Algorithm 3.1.1 for obtaining the SVD. Then

‖Ỹ − Ŷ ‖F ≤ (O(n2) + h(n))ε,

where Ŷ is a matrix consisting of orthonormal vectors which span close approximation
of null(A + δ1A) ∩ null(B + δ1B), and

‖δ1A‖F ≤ (O(mn + n3) + g(n))ε‖A‖F ,

‖δ1B‖F ≤ (O(p(n− r) + (n− r)3 + n2) + g(n− r) + h(n))ε‖B‖F .
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Figure 3.4: Intersection of null spaces of the operators A and B.

g(n)ε is the bound on normwise backward error obtained in computing the SVD of an
n× n bidiagonal matrix, and h(n)ε is the bound on departure from orthogonality of the
computed right singular vectors of the bidiagonal matrix.

Proof. If the SVD is computed using Barlow's bidiagonalization, then by Theorem 3.2.6
in �nite precision arithmetic we have the following situation:

A + δ1A = ÛAΣ̃AV̂ T
A ,

where ÛA ∈ Rm×n is orthonormal, Σ̃A ∈ Rn×n is computed diagonal, V̂A ∈ Rn×n is
orthogonal, and

‖δ1A‖F ≤ (O(mn + n3) + g(n))ε‖A‖F .

For the computed matrix ṼA we can write

ṼA = V̂A + δV̂A, ‖δV̂A‖F ≤ (O(n2) + h(n))ε.

Further, from [47, pp. 76�78] it follows

C̃ = fl(BṼA(:, r + 1 : n)) = BV̂A(:, r + 1 : n) + δC,

where
‖δC‖F ≤ (O(n2) + h(n))ε‖B‖F ,

and, on the other hand
C̃ + δ1C = ÛCΣ̃C V̂ T

C ,

where ÛC ∈ Rp×(n−r) is orthonormal, Σ̃C ∈ R(n−r)×(n−r) is computed diagonal, V̂C ∈
R(n−r)×(n−r) is orthogonal, and

‖δ1C‖F ≤ (O(p(n− r) + (n− r)3) + g(n− r))ε‖B‖F .

For the computed matrix ṼC we can write

ṼC = V̂C + δV̂C , ‖δV̂C‖F ≤ (O((n− r)2) + h(n− r))ε.
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Finally, by [47] again we have

Ỹ = fl(ṼA(:, r + 1 : n)ṼC(:, q + 1 : n− r))

= V̂A(:, r + 1 : n)V̂C(:, q + 1 : n− r) + δŶ

= Ŷ + δŶ ,

where

Ŷ = V̂A(:, r + 1 : n)V̂C(:, q + 1 : n− r), ‖δŶ ‖F ≤ (O(n2) + h(n))ε.

If we put all this together, we obtain

C̃ + δ1C = BV̂A(:, r + 1 : n) + δC + δ1C =

= (B + δCV̂A(:, r + 1 : n)T + δ1CV̂A(:, r + 1 : n)T )V̂A(:, r + 1 : n) =

= (B + δ1B)V̂A(:, r + 1 : n),

with
‖δ1B‖F ≤ (O(p(n− r) + (n− r)3 + n2) + g(n− r) + h(n))ε‖B‖F .

This means that

A + δ1A = ÛAΣ̃AV̂ T
A

(B + δ1B)V̂A(:, r + 1 : n) = ÛCΣ̃C V̂ T
C

Ỹ = Ŷ + δY

which implies that Ỹ is not very far from the exact solution of the same problem posed
for matrices A + δ1A and B + δ1B. Here should be noted that the last n − r singular
values in Σ̃A and the last s = n − r − q singular values in Σ̃C are probably not equal
to zero. Indeed, A + δ1A and C̃ + δ1C could be nonsingular matrices having n− r and
s very small singular values, respectively. This means that Ŷ represents an intersection
of the subspaces which are very close to null spaces.

3.3.3 The Linear Least Squares Problems
Consider now the m× n least squares problem

min
x∈Rn

‖Ax− b‖2.

If A = UΣV T is the SVD of A with m× n orthonormal U and n× n orthogonal V ,
then by writing

‖Ax− b‖2
2 = ‖UΣV T x− UUT b− (I − UUT )b‖2

2 = ‖ΣV T x− UT b‖2
2 + ‖b− U(UT b)‖2

2,

we obtain the minimal norm solution x = V Σ†UT b. Note that mutual orthogonality of
columns of U was important in splitting b (and Ax − b), as well as using orthogonal
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Figure 3.5: Finding the solution xmin of the linear least squares problems, for the matrix
A and the vector b.

invariance of the Euclidean norm. Now, suppose we have computed the SVD, where the
computed Ũ , Ṽ , Σ̃ satisfy

A + δA = ŨΣ̃Ṽ T , ‖δA‖F ≤ ζ‖A‖F .

Since Ũ is not orthonormal and Ṽ is not orthogonal, proper formulation of the solution
procedure cannot be reduced to putting tildes to the matrices in the exact formulas
above. However, the solution vector is computed as x̃ = fl(Ṽ Σ̃†ŨT b). To justify this
formula, we need the fact that there exist orthonormal

Û = Ũ − δŨ , such that ‖δŨ‖F ≤ ζ

and orthogonal
V̂ = Ṽ − δṼ , such that ‖δṼ ‖F ≤ ζ.

Then
fl(ŨT b) = ÛT (b + δb), where ‖δb‖2 ≤ (ζ + O(m)ε)‖b‖2.

Further,
fl(Σ̃†(ÛT (b + δb)) = (Σ̃ + δΣ̃)†ÛT (b + δb), (3.38)

where δΣ̃ is diagonal with |δΣ̃ii| ≤ εΣ̃ii for all i. Finally,

x̃ = fl(Ṽ ((Σ̃ + δΣ̃)†ÛT (b + δb))) = Ṽ (Σ̃ + δΣ̃)†ÛT (b + δb) + δx̃

= V̂ (Σ̃ + δΣ̃)†ÛT (b + δb) + δṼ (Σ̃ + δΣ̃)†ÛT (b + δb) + δx̃, (3.39)

where

‖δx̃‖2 ≤ O(n)ε‖Ṽ ‖F‖(Σ̃ + δΣ̃)†ÛT (b + δb)‖F ≤ O(n
3
2 )ε‖(Σ̃ + δΣ̃)†ÛT (b + δb)‖F .

Now, set x̂ = V̂ (Σ̃+ δΣ̃)†ÛT (b+ δb), δx̂ = δx̃+ δṼ V̂ T x̂, and note that x̂ solves a nearby
problem

min
x∈Rn

‖(A + ∆A)x− (b + δb)‖2
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where A + ∆A = Û(Σ̃ + δΣ̃)V̂ T approximates A equally well as A + δA, because
A + ∆A = ŨΣ̃Ṽ T + ÛδΣ̃V̂ T − ŨΣ̃δṼ T − δŨΣ̃Ṽ T + δŨΣ̃δṼ T .

and
‖∆A‖F ≤ (O(1)ε + O(1)ζ)‖A‖F .

On the other hand, x̃ = x̂ + δx̂, where
‖δx̂‖2 ≤ (O(n

3
2 )ε + O(1)ζ)‖x̂‖2.

The conclusion is that the backward stable SVD with numerically orthogonal singular
vectors produces a vector close to the exact solution of a nearby problem. Strictly
speaking, this mixed stability is the best we can hope to achieve in the SVD solution to
the least squares problem. Pushing all errors into the backward perturbation of the data
introduces dependence on the size of the condition number. Applications of ŨT and Σ̃†

to b in (3.38) represent backward stable operations. On the other hand, application of
Ṽ in (3.39) undermines backward stability. If we assume that V̂ (Σ̃ + δΣ̃)†ÛT is a full
rank decomposition, then further computation in (3.39) will result with
x̃ = V̂ (Σ̃ + δΣ̃)†ÛT [b + δb + Û(Σ̃ + δΣ̃)V̂ T δṼ (Σ̃ + δΣ̃)†ÛT (b + δb) + Û(Σ̃ + δΣ̃)V̂ T δx̃]

= V̂ (Σ̃ + δΣ̃)†ÛT (b + ∆b),

where
‖∆b‖2 ≤ O(κ(A))ε‖b‖2.

Note that this is not the case for the least squares solution using QR factorization, which
is a backward stable LS solution, see Theorem 19.3 in [47].

Using SVD with One�sided Bidiagonalization
Consider now the above solution procedure, but with the SVD computed using one�
sided bidiagonalization. Since for the computed bidiagonalization A ≈ ŨB̃Ṽ T we cannot
guarantee that the computed Ũ is numerically orthogonal, the above analysis does not
yield the conclusion we wanted. Recall that certain numerical orthogonality is ensured
in the augmented matrix formulation (see the proof of Theorem 3.2.6) and we therefore
write the least squares problem in the following obviously equivalent form

min
x∈Rn

∥∥∥∥
[

0
A

]
x−

[
0
b

]∥∥∥∥
2

.

The augmented bidiagonalization and the SVD read
[

0
A

]
= P

[
B
0

]
V T = P

[
UB 0
0 I

] [
Σ
0

]
(V VB)T ,

where B = UBΣV T
B is the SVD of the bidiagonal B. Using this SVD, we obtain

∥∥∥∥
[

0
A

]
x−

[
0
b

]∥∥∥∥
2

=

∥∥∥∥
[

Σ
0

]
(V VB)T x−

[
UT

B 0
0 I

] [
P T

11 P T
21

P T
12 P T

22

] [
0
b

]∥∥∥∥
2

=

=

∥∥∥∥
[

Σ(V VB)T x
0

]
−

[
UT

BP T
21b

P T
22b

]∥∥∥∥
2

,
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thus
‖Ax− b‖2

2 = ‖Σ(V VB)T x− UT
BP T

21b‖2
2 + ‖P T

22b‖2
2,

where
P =

[
P11 P12

P21 P22

]
, P11 ∈ Rn×n, P21 ∈ Rm×n,

and the minimal norm solution is

x = V VBΣ†UT
BP T

21b.

In exact arithmetic, according to Björck and Paige [6], P is of the form

P =

[
0 UT

U I − UUT

]
,

so that P11 = 0, P21 = U , A = (P21UB)Σ(V VB) is the SVD of A and the bidiagonal-
ization is A = P21BV T . Recall that premultiplication by P expresses (theoretically and
numerically) the modi�ed Gram�Schmidt procedure applied to A, and note that P T

21b

is the upper n × 1 part of P T

[
0
b

]
. Instead of P21 we have the computed matrix Ũ ,

but using it in ŨT b or for explicit forming of the left singular vector matrix Ũ ŨB may
introduce unacceptable numerical error. Still, there is a way presented in [6] that allows
us to apply Ũ on b without producing a big error.
Lemma 3.3.7. Let the computed approximation ỹ = [γ̃1, . . . , γ̃n]T of y = ŨT b be com-
puted using the formulae
(1) c̃1 = b ;

(2) for i = 1 : n
γ̃i = fl(ũT

i c̃i);
c̃i+1 = fl(c̃i − γ̃iũi);

end
where Ũ = [ũ1, . . . , ũn] is computed as described in Algorithm 3.1.1 and Theorem 3.2.6.
Then there exist perturbations δ0b, ∆0b such that

[
ỹ

c̃n+1

]
= P̂ T

[
∆0b

b + δ0b

]

where P̂ is the orthogonal matrix from Theorem 3.2.6, and
∥∥∥∥
[

∆0b
δ0b

]∥∥∥∥
2

≤ O(mn)ε‖b‖2.

Proof. First, we should note that the procedure presented in Lemma 3.3.7 is the same as
performing a modi�ed Gram�Schmidt orthogonalization of the vector b against vectors
ũ1, . . . , ũn, but without normalization. Let

P̃i = I −
[ −ei

ũi

] [ −eT
i ũT

i

]
, P̂i = I −

[ −ei

ûi

] [ −eT
i ûT

i

]
, i = 1, . . . , n,
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as de�ned in the proof of Theorem 3.2.6, and

γ̂i = ũT
i c̃i, ĉi = c̃i−1 − γ̂i−1ũi−1, i = 1, . . . , n, ŷ = [γ̂1, . . . , γ̂n]T .

From the relations

P̃1

[
0
b

]
=

[
(ũT

1 b)e1

b− (ũT
1 b)ũ1

]
=

[
γ̂1e1

ĉ2

]

P̃2P̃1

[
0
b

]
=

[
(ũT

1 b)e1 + (ũT
2 ĉ2)e2

ĉ2 − (ũT
2 ĉ2)ũ2

]
=

[
γ̂1e1 + γ̂2e2

ĉ3

]

...
P̃n · · · P̃2P̃1

[
0
b

]
=

[
(ũT

1 b)e1 + · · ·+ (ũT
n ĉn)en

ĉn − (ũT
n ĉn)ũn

]
=

[
ŷ

ĉn+1

]

we inductively see that the computation of ỹ above is numerically equivalent to n appli-
cations of Householder re�ectors with vectors ũi. The statement of Lemma 3.3.7 follows
then from Lemma 3.2.4, for P̂ = P̂1 · · · P̂n.

Remark 3.3.8. Recall that one of the techniques to obtain an acceptable numerical so-
lution for the discretized Fredholm integral equation in subsection 2.2.10 is truncating
the vector UT b. Here we used a similar idea. Instead of dealing with the matrix, we
changed the way vector UT b is computed in order to obtain a numerically stable algo-
rithm. In exact arithmetic this is equivalent to ordinary matrix�vector multiplication
with an orthonormal matrix.

Remark 3.3.9. If the procedure de�ned in Lemma 3.3.7 is performed in exact arith-
metic, then cn+1 = 0, because cn+1 is a result of elimination of all the components of b.
The components are de�ned in the orthonormal basis U = [u1, . . . , un]. Thus, if Ũ is
not very far from being an orthonormal matrix we can expect c̃n+1 to be very small and
negligible. On the other hand, if Ũ is far from being orthonormal, then c̃n+1 has to be
taken into account. This will be done in the following lemma.

Lemma 3.3.10. Let A, B̃, V̂ be as in Theorem 3.2.6, and let ỹ be de�ned as in Lemma
3.3.7. There exist an m×n orthonormal matrix Q̂ and perturbations δ1A, δ1b such that

B̃ = Q̂T (A + δ1A)V̂ , ỹ = Q̂T (b + δ1b),

and
‖δ1A‖F ≤ O(mn + n3)ε‖A‖F , ‖δ1b‖2 ≤ O(mn)ε‖b‖2.

Proof. Let us de�ne P̂
(n+1)
i and P̃

(n+1)
i in the same way as P̂i and P̃i were de�ned in

Theorem 3.2.6, except that vectors ei are now of dimension n + 1. Hence, P̂
(n+1)
i is a

(m + n + 1)× (m + n + 1) Householder re�ector for i = 1, . . . , n, and P̃i is a computed
(m + n + 1)× (m + n + 1) Householder re�ector. First we note that

P̂ (n+1)
n · · · P̂ (n+1)

1 =




P̂ T
11 0 P̂ T

21

0 1 0

P̂ T
12 0 P̂ T

22


 , P̃ (n+1)

n · · · P̃ (n+1)
1 =




P̃ T
11 0 P̃ T

21

0 1 0

P̃ T
12 0 P̃ T

22



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From the Theorem 3.2.6 and Lemma 3.3.7 it follows that
n

1

m




B̃
0
0


 = P̂ (n+1)

n · · · P̂ (n+1)
1




∆A
0

A + δA


 V̂ ,

∥∥∥∥
[

∆A
δA

]∥∥∥∥
F

≤ O(mn + n3)ε‖A‖F ,

and
n

1

m




ỹ
0

c̃n+1


 = P̂ (n+1)

n · · · P̂ (n+1)
1




∆0b
0

b + δ0b


 ,

∥∥∥∥
[

∆0b
δ0b

]∥∥∥∥
2

≤ O(mn)ε‖b‖2.

Next, we de�ne
ûn+1 =

c̃n+1

‖c̃n+1‖2

,

γ̂n+1 = ûT
n+1c̃n+1 = ‖c̃n+1‖2,

P̂
(n+1)
n+1 = I −

[ −en+1

ûn+1

]
[ −eT

n+1 ûT
n+1 ].

The Householder re�ector P̂
(n+1)
n+1 is chosen so that in exact arithmetic

P̂
(n+1)
n+1 P̂ (n+1)

n · · · P̂ (n+1)
1




∆0b
0

b + δ0b


 = P̂

(n+1)
n+1




ỹ
0

c̃n+1


 =

=




ỹ
0

c̃n+1


− γ̂n+1




0
−1

ûn+1


 =




ỹ
γ̂n+1

0




On the other hand, we can write



ỹ
γ̂n+1

0


 = P̂

(n+1)
n+1 P̂ (n+1)

n · · · P̂ (n+1)
1

[
∆(n+1)b

b + δ(n+1)b

]
, (3.40)

where ∆(n+1)b =

[
∆0b
0

]
∈ Rn+1 and δ(n+1)b = δ0b.

The matrix




B̃
0
0


 remains unchanged by multiplication with P̂

(n+1)
n+1 , so that




B̃
0
0


 = P̂

(n+1)
n+1




B̃
0
0


 = P̂

(n+1)
n+1 P̂ (n+1)

n · · · P̂ (n+1)
1




∆A
0

A + δA


 V̂ . (3.41)

If we now de�ne P̂ (n+1) = P̂
(n+1)
1 · · · P̂ (n+1)

n+1 , ∆(n+1)A =

[
∆A
0

]
∈ R(n+1)×n and δ(n+1)A =

δA, then we can combine the last two results (3.40) and (3.41) to obtain
[

∆(n+1)A ∆(n+1)b
A + δ(n+1)A b + δ(n+1)b

]
= P̂ (n+1)




B̃V̂ T ỹ
0 γ̂n+1

0 0


 ,
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where
∥∥∥∥
[

∆(n+1)A
δ(n+1)A

]∥∥∥∥
F

≤ O(mn + n3)ε‖A‖F ,

∥∥∥∥
[

∆(n+1)b
δ(n+1)b

]∥∥∥∥
2

≤ O(mn)ε‖b‖2.

Again, we have to partition the matrix P̂ (n+1) as follows

P̂ (n+1) =

[
P̂

(n+1)
11 P̂

(n+1)
12

P̂
(n+1)
21 P̂

(n+1)
22

]
,

where

P̂
(n+1)
11 ∈ R(n+1)×(n+1), P̂

(n+1)
12 ∈ R(n+1)×m, P̂

(n+1)
21 ∈ Rm×(n+1), P̂

(n+1)
22 ∈ Rm×m,

and then [
∆(n+1)A ∆(n+1)b

A + δ(n+1)A b + δ(n+1)b

]
=

[
P̂

(n+1)
11

P̂
(n+1)
21

][
B̃V̂ T ỹ

0 γ̂n+1

]
.

Again we use Lemma 3.1 from [6] and Step 4 in the proof of Theorem 3.2.6, to
conclude that there exist orthogonal matrices W1 ∈ R(n+1)×(n+1) and Z1 ∈ R(n+1)×(n+1),
an orthonormal matrix W2 ∈ Rm×(n+1), and diagonal matrices C = diag(c1, . . . , cn+1)
and S = diag(s1, . . . , sn+1), such that

C2 + S2 = In+1,

P̂
(n+1)
11 = Ŵ1CẐT

1 ,

P̂
(n+1)
12 = Ŵ2SẐT

1 .

Further, let us de�ne an orthonormal matrix Q̂(n+1) = Ŵ2Ẑ1 ∈ Rm×(n+1), then the
following holds

[
A + δ1A b + δ1b

]
= Q̂(n+1)

[
B̃V̂ T ỹ

0 γ̂n+1

]
,

where

[ δ1A δ1b ] = Ŵ2(I + S)†ẐT
1 (P̂

(n+1)
11 )T [ ∆(n+1)A ∆(n+1)b ] + [ δ(n+1)A δ(n+1)b ]

Finally, we can conclude that

δ1A = Ŵ2(I + S)†ẐT
1 (P̂

(n+1)
11 )T ∆(n+1)A + δ(n+1)A,

δ1b = Ŵ2(I + S)†ẐT
1 (P̂

(n+1)
11 )T ∆(n+1)b + δ(n+1)b,

where

‖δ1A‖F ≤
√

2
√
‖∆(n+1)A‖2

F + ‖δ(n+1)A‖2
F ≤ O(mn + n3)ε‖A‖F ,

‖δ1b‖2 ≤
√

2
√
‖∆(n+1)b‖2

2 + ‖δ(n+1)b‖2
2 ≤ O(mn)ε‖b‖2,
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and

A + δ1A = Q̂(n+1)

[
B̃V̂ T

0

]
, ‖δ1A‖F ≤ O(mn + n3)ε‖A‖F ,

b + δ1b = Q̂(n+1)

[
ỹ

γ̂n+1

]
, ‖δ1b‖2 ≤ O(mn)ε‖b‖2.

Taking Q̂ = Q̂(n+1)(:, 1 : n) completes the proof.

Theorem 3.3.11. Let
x̃ = fl(Ṽ ṼBΣ̃†ŨT

B ỹ),

where B̃ is the bidiagonal matrix obtained by the Barlow bidiagonalization, ŨB, ṼB and
Σ̃ are computed SVD factors of B̃ ≈ ŨBΣ̃Ṽ T

B , and ỹ is de�ned in Lemma 3.3.7. If the
bidiagonal SVD is computed by a backward stable algorithm, then there exist orthogonal
matrices ÛB and V̂B, and a backward perturbation δB̃ such that

ŨB = ÛB + δÛB, ‖δÛB‖F ≤ h(n)ε

ṼB = V̂B + δV̂B, ‖δV̂B‖F ≤ h(n)ε

B̃ + δB̃ = ÛBΣ̃V̂ T
B , ‖δB̃‖F ≤ g(n)ε‖A‖F ,

In this case the vector x̃ satis�es

‖x̃− x̂‖2 ≤ (h(n) + O(n2))ε‖x̂‖2,

where x̂ denotes the minimal norm solution of the problem

min
x∈Rn

‖(A + δA)x− (b + δb)‖2,

where

‖δA‖F ≤ (g(n) + O(mn + n3))ε‖A‖F , ‖δb‖2 ≤ (h(n) + O(mn))ε‖b‖2.

Proof. First, we should note that by Theorem 3.2.6, Lemma 3.2.4 and numerical analysis
of matrix�vector product there exist perturbations ∆ÛB, ∆V̂B and ∆V̂ , such that for
any vector z ∈ Rn the following relations hold.

fl(ŨBz) = (ÛB + ∆ÛB)z, with ‖δÛB‖F ≤ (h(n) + O(n3/2))ε,

fl(ṼBz) = (V̂B + ∆V̂B)z, with ‖δV̂B‖F ≤ (h(n) + O(n3/2))ε,

fl(Ṽ z) = (V̂ + ∆V̂ )z, with ‖δV̂ ‖F ≤ O(n2)ε.

Since by Lemma 3.3.10 ỹ = Q̂T (b + δ1b), we have

x̃(1) = fl(ŨT
B ỹ) = (ÛB + ∆ÛB)T Q̂T (b + δ1b) = ÛT

B Q̂T (b + δb),

with
‖δb‖2 ≤ (h(n) + O(mn))ε‖b‖2.
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Next we have
x̃(2) = fl(Σ̃†x̃(1)) = (Σ̃ + δΣ̃)†ÛT

B Q̂T (b + δb),

where
|δΣ̃| ≤ ε|Σ̃|,

followed by
x̃ = fl(Ṽ ṼBx̃(2)) = (V̂ + ∆V̂ )(V̂B + ∆V̂B)(Σ̃ + δΣ̃)†ÛT

B Q̂T (b + δb) =

= V̂ V̂B(Σ̃ + δΣ̃)†ÛT
B Q̂T (b + δb) + δx̂,

In order to complete the proof we have to de�ne
x̂ = V̂ V̂B(Σ̃ + δΣ̃)†ÛT

B Q̂T (b + δb),

so that
δx̂ = (∆V̂ V̂ T + V̂ ∆V̂BV̂ T

B V̂ T + ∆V̂ ∆V̂BV̂ T
B V̂ T )x̂,

‖δx̂‖2 ≤ (h(n) + O(n2))ε‖x̂‖2.

On the other hand we can note that x̂ is the exact solution of the linear least squares
problem with matrix Ā and vector b̄, where

Ā = A + δA = Q̂ÛB(Σ̃ + δΣ̃)V̂ T
B V̂ T , and b̄ = b + δb.

By Lemma 3.3.10 and the assumption of this theorem, we can write
A + δ1A + Q̂δB̃V̂ T = Q̂ÛBΣ̃V̂ T

B V̂ T ,

so that
A + δ1A + Q̂δB̃V̂ T + Q̂ÛBδΣ̃V̂ T

B V̂ T = Q̂ÛB(Σ̃ + δΣ̃)V̂ T
B V̂ T .

Thus
δA = δ1A + Q̂δB̃V̂ T + Q̂ÛBδΣ̃V̂ T

B V̂ T , and
‖δA‖F ≤ (g(n) + O(mn + n3))ε‖A‖F ,

which ends the proof.
To compute the bound on ‖x̃−x‖2/‖x‖2, where x is the exact solution of minx∈Rn ‖Ax−

b‖2, we need the perturbation theory for the least squares problem. This is illustrated
in the following example.
Example 3.3.12. Let us de�ne the matrix A ∈ R10×5 and the vector b ∈ R10 as

A =




2 3 4 −1 6
2 3 4 −1 6

−5 −5 13 −1 8
−7 −8 9 0 2
−6 −6 11 −3 −2

1 2 2 −3 −4
6 −4 4 5 −8
5 −6 2 8 −4
8 −9 6 10 1010

3 −3 4 2 1010




, b =




15
13
10
−4
−6
−2

3
5

10000000011
10000000006




.
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The vector b is obtained as b = Ax+b1, where x = [ 1 1 1 1 1 ]T is the exact solution
of the least squares problem with A and b, and b1 = [ 1 −1 0 0 0 0 0 0 0 0 ]T

is such that bT
1 A = [ 0 0 0 0 0 ], that is b1⊥ range(A). We compute the solution

x̃ in �nite precision arithmetic, as described in Lemma 3.3.7 and Theorem 3.3.11 and
obtain

x̃ =




1.000000059100661
9.999999743534302 · 10−1

9.999999537719037 · 10−1

9.999999939451119 · 10−1

9.999999999999998 · 10−1




,
‖x̃− x‖2

‖x‖2

= 3.556496368936655 · 10−8.

For the error bounds we use again the results from [15] and [47], to produce the esti-
mations g(n) ≈ O(n2) and h(n) ≈ O(n2). Theorem 3.3.11 gives the bound on relative
error between the computed solution x̃ and the exact solution x̂ of a nearby problem:

‖x̃− x̂‖2

‖x̂‖2

≤ (h(n) + O(n2))ε = c1 ≈ 2.775557561562891 · 10−15.

On the other hand, Theorem 19.1 in [47] implies that for η = (n1/2g(n) + O(mn3/2 +
n7/2))ε, κ2(A)η < 1 and r = b− Ax

‖x̂− x‖2

‖x‖2

≤ κ2(A)η

1− κ2(A)η

(
2 + (κ2(A) + 1)

‖r‖2

‖A‖2‖x‖2

)
= c2.

In our case it is
c2 ≈ 7.586838533644896 · 10−4.

So, if we put all this together we obtain the �nal bound

3.556496368936655 · 10−8 =
‖x̃− x‖2

‖x‖2

≤ c1
‖x̂‖2

‖x‖2

+ c2 ≈ 7.586838533672672 · 10−4.

3.3.4 The Total Least Squares Problem
Consider the problem

min
b+r∈range(A+E)

‖D[ E r ]T‖F , A, E ∈ Rm×n, b, r ∈ Rm, x ∈ Rn, (3.42)

where D = diag(d1, . . . , dm) and T = diag(t1, . . . , tn+1) are nonsingular. In exact arith-
metic, this problem is solved by the following algorithm (see [35, p. 579]).

Algorithm 3.3.13. Given A ∈ Rm×n (m ≥ n), b ∈ Rm, and nonsingular D =
diag(d1, . . . , dm) and T = diag(t1, . . . , tn+1), the following algorithm computes (if possi-
ble) a vector x ∈ Rn such that (A + Emin)x = (b + rmin), where ‖D[ Emin rmin ]T‖F

and ‖x‖τ = ‖T (1 : n, 1 : n)−1x‖2 are minimal.
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Compute the SVD UT (D[ A b ]T )W = diag(σ1, . . . , σn+1). Save W.
Determine p such that σ1 ≥ · · · ≥ σn−p > σn−p+1 = · · · = σn+1.
Compute a Householder matrix P such that for V = WP , V (n+1, n−p+1:
n) = 0.

if V (n + 1, n + 1) 6= 0
for i = 1 : n

x(i) = − tiV (i, n + 1)

tn+1V (n + 1, n + 1)
;

end
end

6

-

b

a

©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©

a

a a

(a1, b1)

(a2, b2)

(a3, b3)

b = xa

AA

AA
A

A
AA

Figure 3.6: Least squares versus total least squares for n = 1 and T = I. Points
(ai, bi) ∈ R2, i = 1, . . . , m are �tted by a line b = xa through the origin. Then A =
[a1, . . . , am]T ∈ Rm×1 and b = [b1, . . . , bm]T ∈ Rm. In the least squares problem the
vertical distance between the points and the line is minimized (�), while in the total
least squares problem the perpendicular distance is minimized (�).

Algorithm 3.3.13 uses only the matrix V , and the matrix U is ignored. Again, loss
of orthogonality is not an issue here. We have the following numerical results.

Theorem 3.3.14. Let x̃ be a solution of the problem (3.42) computed in �nite precision
arithmetic, using Algorithm 3.3.13 and Algorithm 3.1.1 for computing the SVD. Then
x̃ is the exact solution of the problem

min
b+δb+r∈ range(A+δA+E)

‖D[ E r ]T‖,

where

‖D[ δA δb ]T‖F ≤ [O(m(n + 1) + (n + 1)3) + g(n + 1) +

+O(n
1
2 )h(n + 1)]ε‖C‖F ,
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and g(n)ε is the bound on normwise backward error obtained in computing SVD of
the n × n bidiagonal matrix B, and h(n)ε is the normwise bound on departure from
orthogonality of the computed right singular vectors of B.

Proof. Let us de�ne
C = D[ A b ]T,

so, when the SVD factorization of C is computed in �nite precision arithmetic by Bar-
low's bidiagonalization, we obtain

C + δ0C = ÛΣ̃Ŵ T , (3.43)

where ÛT Û = I, Ŵ T Ŵ = I, Σ̃ = diag(σ̃1, . . . , σ̃n+1), and

‖δ0C‖F ≤ (O(m(n + 1) + (n + 1)3) + g(n + 1))ε‖C‖F ,

If W̃ is the computed matrix, then from Theorem 3.2.6 it follows that

W̃ = Ŵ + δŴ , ‖δŴ‖F ≤ (O((n + 1)2) + h(n + 1))ε.

Further, by Lemma 3.2.4

Ṽ = fl(W̃ P̃ ) = (W̃ + δW̃ )P̂ , ‖δW̃‖F ≤ O((n + 1)
3
2 )ε, P̂ 2 = I,

and if we de�ne
V̂ = Ŵ P̂ , V̂ T V̂ = I,

then we have

Ṽ = V̂ + δV̂ , (3.44)
δV̂ = (δŴ + δW̃ )P̂ ,

‖δV̂ ‖F = (O((n + 1)2) + h(n + 1))ε

We should note that the matrix V̂ = [ v̂1 v̂2 . . . v̂n+1 ] is also the matrix of right
singular vectors of the matrix C + δ0C, and Û P̂ is the matrix of left singular vectors in
that case. To illustrate this claim let σ̃n−2 = σ̃n−1 = σ̃n = σ̃n+1, then Algorithm 3.3.13
performed in �nite precision arithmetic will �nd a Householder re�ector P̃ , whose exact
version P̂ is such that

W̃ P̂ =

• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • • • • •
• • • • • 0 0 0 •

.
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We can partition the matrix W̃ in the following way

W̃ = [W̃1 W̃2], W̃2 ∈ Rm×(p+1),

and we de�ne P̂ as
P̂ =

[
In−p 0

0 P̂2

]
,

where P̂2 ∈ R(p+1)×(p+1) is a Householder re�ector such that

W̃2(n + 1, n− p + 1 : n + 1)P̂2 = [ 0 · · · 0 • ].

On the other hand, the corresponding partition of Σ̃ reads

Σ̃ =

[
Σ̃1 0
0 σ̃n+1Ip+1

]
, Σ̃1 = diag(σ̃1, . . . , σ̃n−p).

Then, from (3.43) it follows that

C + δ0C = ÛΣ̃P̂ 2Ŵ T = Û

[
Σ̃1 0

0 σ̃n+1P̂2

]
P̂ Ŵ T = Û P̂ Σ̃V̂ T ,

is a valid singular value decomposition.
For the computed x̃ we have

x̃(i) = �
(
− tiṼ (i, n + 1)

tn+1Ṽ (n + 1, n + 1)

)
= − tiṼ (i, n + 1)

tn+1Ṽ (n + 1, n + 1)
(1 + θi),

where
|θi| ≤ 3ε + O(ε2).

If we de�ne the vector v̄n+1 as

v̄n+1 =
(I + Θ)ṽn+1

‖(I + Θ)ṽn+1‖2

, (3.45)

with Θ = diag(θ1, θ2, . . . , θn, 0) and ṽn+1 being the (n + 1)-th column of Ṽ , then we can
easily see that

v̄n+1 = v̂n+1 + δv̄n+1,

δv̄n+1 = δv̂n+1 +
(I + Θ)ṽn+1 − ‖(I + Θ)ṽn+1‖2ṽn+1

‖(I + Θ)ṽn+1‖2

,

where by (3.44)

ṽn+1 = v̂n+1 + δv̂n+1, ‖δv̂n+1‖2 ≤ (O((n + 1)2) + h(n + 1))ε.
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To �nd a bound on ‖δv̄n+1‖2 we have to perform the following analysis.

δv̄n+1 = δv̂n+1 +
[(1− ‖(I + Θ)ṽn+1‖2)I + Θ]ṽn+1

‖(I + Θ)ṽn+1‖2

1− ‖(I + Θ)ṽn+1‖2 =
1− (v̂n+1 + δv̂n+1)

T (I + Θ)2(v̂n+1 + δv̂n+1)

1 + ‖(I + Θ)ṽn+1‖2

≤

≤ −2δv̂T
n+1v̂n+1 − ‖δv̂n+1‖2

2 −
−(v̂n+1 + δv̂n+1)

T (2Θ + Θ2)(v̂n+1 + δv̂n+1) ≤
≤ O(1)‖δv̂n+1‖2 + O(1)ε

‖δv̄n+1‖2 ≤ ‖δv̂n+1‖2 +
(|1− ‖(I + Θ)ṽn+1‖2|+ ‖Θ‖2)(1 + ‖δv̂n+1‖2)

1− ‖δv̂n+1 + Θ(v̂n+1 + δv̂n+1)‖2

≤
≤ O(1)‖δv̂n+1‖2 + O(1)ε,

thus

‖δv̄n+1‖2 ≤ (O((n + 1)2) + h(n + 1))ε.

After this analysis we can conclude that

x̃(i) = − tie
T
i [(I + Θ)ṽn+1]

tn+1eT
n+1[(I + Θ)ṽn+1]

= − tie
T
i v̄n+1

tn+1eT
n+1v̄n+1

= − tiv̄n+1(i)

tn+1v̄n+1(n + 1)
.

This means that the computed solution x̃ is an exact solution for some D[ A2 b2 ]T ,
whose the (n + 1)-th right singular vector is equal to v̄n+1. It remains to determine A2

and b2.
Let us de�ne the matrix V̄ = [ v̄1 v̄2 . . . v̄n+1 ] with

v̄i = v̂i, i = 1, . . . , n

v̄n+1 = as de�ned above in (3.45)

This matrix is almost orthogonal, and close to the matrix of right singular vectors V̂ in
the SVD factorization of the matrix C+δ0C. The next step is �nding a QL factorization
of the matrix V̄ , and this can be done by performing the Gram-Schmidt orthogonal-
ization on the matrix [ v̄n+1 v̄n . . . v̄1 ]. Hence, we have to �nd the elements of an
orthogonal matrix Ẑ = [ẑ1, . . . , ẑn+1] and a lower triangular matrix L̂ such that V̄ = ẐL̂.



100 CHAPTER 3. THE BARLOW ONE�SIDED BIDIAGONALIZATION

We have:

ẑn+1 = v̄n+1

L̂(n + 1, n + 1) = 1

ẑn = v̂n − (v̂T
n δv̄n+1)ẑn+1

L̂(n, n) = 1 + O(ε2)

L̂(n + 1, n) = v̂T
n δv̄n+1

ẑn−1 = v̂n−1 −O(ε2)ẑn − (v̂T
n−1δv̄n+1)ẑn+1

L̂(n− 1, n− 1) = 1 + O(ε2)

L̂(n, n− 1) = O(ε2)

L̂(n + 1, n− 1) = v̂T
n−1δv̄n+1

...
ẑ1 = v̂1 −O(ε2)ẑ2 − · · · −O(ε2)ẑn − (v̂T

1 δv̄n+1)ẑn+1

L̂(1, 1) = 1 + O(ε2)

L̂(2, 1) = O(ε2)
...

L̂(n, 1) = O(ε2)

L̂(n + 1, 1) = v̂T
1 δv̄n+1

hence

[ v̂1 . . . v̂n v̄n+1 ] = [ ẑ1 . . . ẑn v̄n+1 ]




1 + O(ε2)
. . . 0

O(ε2) . . .
1 + O(ε2)

v̂T
1 δv̄n+1 . . . . . . v̂T

n δv̄n+1 1




.

Now consider the matrix C̄ de�ned as

C̄ = Û P̂ Σ̃V̄ T = Û P̂ Σ̃(V̂ +[ 0 δv̄n+1 ])T = C +δ0C + Û P̂ Σ̃

[
0

δv̄T
n+1

]
= C +δ0C +δ1C̄,

where

‖δ1C̄‖F ≤ (O((n + 1)2) + h(n + 1))ε‖C‖F .
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On the other hand, we have
C̄ = Û P̂ Σ̃L̂T ẐT =

= Û P̂ Σ̃




1
. . . 0

0 . . .
1

1




ẐT +

+Û P̂ Σ̃




O(ε2) v̂T
1 δv̄n+1

. . . O(ε2) ...
0 . . . ...

O(ε2) v̂T
n δv̄n+1

0




ẐT =

= Û P̂ Σ̃ẐT + δ2C̄,

where
‖δ2C̄‖F ≤ (O(n

1
2 (n + 1)2) + n

1
2 h(n + 1))ε‖C‖F .

Finally we can write
C + δC = C + δ0C + δ1C̄ − δ2C̄ = Û P̂ Σ̃ẐT ,

with
δC = D[ δA δb ]T,

and
‖δC‖F ≤ [O(m(n + 1) + (n + 1)3) + g(n + 1) + O(n

1
2 )h(n + 1)]ε‖C‖F .

Here we can conclude that x̃ is the exact solution for C + δC, because this matrix has
the (n+1)-th right singular vector equal to v̄n+1, and its singular values are identical to
σ̃i, i = 1, . . . n + 1. Thus, v̄n+1 will correspond to the smallest singular value. Finally,
we can write

δA = D−1δCT−1(:, 1 : n), δb = D−1δCT−1(:, n + 1).

Remark 3.3.15. In case when p > 0, C + δC has a multiple minimal singular value,
and the computed solution x̃ does not have to be its exact total least squares solution with
minimal ‖ ‖τ norm, where ‖y‖τ = ‖T−1

1 y‖2 and T1 = diag(t1, . . . , tn). This means, that
Ẑ(n + 1, n− p + 1 : n) does not have to be equal to 0. By the comment in [35, p. 579]
Algorithm 3.3.13 should produce a solution with such a property in exact arithmetic.
Therefore we will �nd Y = ẐQ as it would be calculated in Algorithm 3.3.13 in exact
arithmetic, such that Y (n + 1, n− p + 1 : n) = 0.

First we need to partition the matrix Ẑ as

Ẑ =

[
Ẑ11 Ẑ12 Ẑ13

Ẑ21 Ẑ22 Ẑ23

]
n
1

n− p p 1
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From the de�nition of the Householder re�ector Q = I − qqT and Y = ẐQ in Algorithm
3.3.13, we can come to the following conclusion:

[
Y22 Y23

]
=

[
0 Y23

]
, where Y23 =

√
‖Ẑ22‖2

2 + Z2
23

q =
1√

Y23(Y23 − Ẑ23)




0

ẐT
22

Ẑ23 − Y23




Y13 =
Ẑ12Ẑ22 + Ẑ13Ẑ23√
‖Ẑ22‖2

2 + Z2
23

Now, it is easy to see that Algorithm 3.3.13 applied to the matrix C + δC in exact
arithmetic will produce the solution

x̄ = − T1Y13

tn+1Y23

= −T1(Ẑ12Ẑ
T
22 + Ẑ13Ẑ23)

tn+1(‖Ẑ22‖2
2 + Ẑ2

23)
.

Next we have to estimate how far is this exact solution x̄ from our computed solution x̃,
where once again

x̃ = − T1Ẑ13

tn+1Ẑ23

.

We have
x̄− x̃ =

−Ẑ23T1Ẑ12Ẑ
T
22 + ‖Ẑ22‖2

2T1Ẑ13

tn+1Ẑ23(‖Ẑ22‖2
2 + Ẑ2

23)
,

and
‖x̄− x̃‖τ ≤ Ẑ23‖Ẑ22‖2 + ‖Ẑ22‖2

2

tn+1Ẑ23(‖Ẑ22‖2
2 + Ẑ2

23)
. (3.46)

To �nd a bound on the right side of relation (3.46), we have to �nd the bound on ‖Ẑ22‖2,
Ẑ22 = [ẑn−p+1(n + 1), . . . , ẑn(n + 1)].

From the QL decomposition in the proof of Theorem 3.3.14, it follows that

Ẑ = [ v̂1 . . . v̂n v̄n+1 ]L̂−1,

where L̂−1 is of the form

L̂−1 =




1 + O(ε2)
. . . 0

O(ε2) . . .
1 + O(ε2)

O(η) . . . . . . O(η) 1




,

with O(η) = (O((n + 1)2) + h(n + 1))ε. Hence

ẑi(n + 1) = v̂i(n + 1) + O(η), i = n− p + 1, . . . , n.
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On the other hand, by (3.44) we have

V̂ (n + 1, n− p + 1 : n) = [v̂n−p+1(n + 1), . . . , v̂n(n + 1)]

V̂ (n + 1, n− p + 1 : n) = Ṽ (n + 1, n− p + 1 : n)− δV̂ (n + 1, n− p + 1 : n),

‖δV̂ (n + 1, n− p + 1 : n)‖2 ≤ O(η).

So, even when the Algorithm 3.3.13 is performed in �nite precision arithmetic, Ṽ (n +
1, n− p + 1 : n) is forced to zero, thus

Ẑ22 = −δV̂ (n + 1, n− p + 1 : n) + [O(η), . . . , O(η)]

‖Ẑ22‖2 ≤ (O(p
1
2 (n + 1)2) + O(p

1
2 )h(n + 1))ε.

This implies

‖x̄− x̃‖τ ≤ ‖Ẑ22‖2

tn+1(‖Ẑ22‖2
2 + Ẑ2

23)
+

‖Ẑ22‖2
2

tn+1Ẑ23(‖Ẑ22‖2
2 + Ẑ2

23)
≤

≤ ‖Ẑ22‖2

tn+1(Ẑ2
23 −O(ε2))

+ O(ε2) ≤

≤ (O(p
1
2 (n + 1)2) + O(p

1
2 )h(n + 1))ε

tn+1Ẑ2
23

.

Finally, we can be sure that the total least squares solution computed in �nite preci-
sion arithmetic will produce the solution which is not very far from the exact solution
with minimal norm of a slightly perturbed problem.

We will illustrate the result of Theorem 3.3.14 in the following example.

Example 3.3.16. We generated a matrix C ∈ R10×5 with �xed singular values as

C = UΣV T ,

where U is random orthonormal and V is random orthogonal, and Σ = diag(5, 4, 3, 2, 1).
We take D = I10 and T = I5, so that A = C(:, 1 : 4) and b = C(:, 5). From Algorithm
3.3.13, the exact solution of the total least squares with A and b is equal to

x = −T (1 : 4, 1 : 4)V (1 : 4, 5)

T (5, 5)V (5, 5)
=




8.897274820898000 · 10−1

1.271784911649302
−2.256435337898306
−1.222585615762902 · 10−1


 .

We compute the solution x̃ in �nite precision arithmetic using the Barlow bidiagonaliza-
tion, where the condition σi = σn+1 is replaced by |σi − σn+1| ≤ εσ1, and obtain

x̃ =




8.897274820897999 · 10−1

1.271784911649303
−2.256435337898308
−1.222585615762904 · 10−1


 ,

‖x̃− x‖2

‖x‖2

= 7.694579786030378 · 10−16.
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Again, we use the estimations g(n) ≈ O(n2) and h(n) ≈ O(n2). Theorem 3.3.14 gives
the backward error bound

‖D[ δA δb ]T‖F ≤ η,

where

η = [O(m(n+1)+(n+1)3)+g(n+1)+O(n
1
2 )h(n+1)]ε‖C‖F ≈ 1.984305870050888·10−13.

On the other hand, Theorem 4.4 in [34] implies that in case when σn(DAT1)−σn+1 > 0
and η ≤ (σn(DAT1)− σn+1)/6, the following forward bound holds

‖x̃− x‖2

‖x‖2

≤ 9ησ1

σn − σn+1

(
1 +

tn+1‖Db‖2

σn(DAT1)− σn+1

)
1

tn+1‖Db‖2 − σn+1

≈ 5.264733890890990 · 10−11.

3.4 E�ciency
Another important characteristic of an algorithm is its e�ciency, and the best way to
evaluate e�ciency is through execution time. The execution time of a numerical algo-
rithm depends on two things: �oating point operation count and time spent on commu-
nication between di�erent levels of memory. We were concerned with the e�ciency of
full singular value decomposition algorithms which include bidiagonalization, and that
means that they compute all of the SVD factors: Y , W and Σ = diag(σ1, . . . , σn) such
that A = Y ΣW T .

Let NB be the �oating point operation count required to compute the SVD of the
bidiagonal matrix B, then the �oating point operation counts for the full SVD algorithms
are presented in the following table (see [2]).

LAPACK sgesvd() routine SVD with Algorithm 3.1.1
without QR1 with QR2

8mn2 +
4

3
n3 + NB 6mn2 +

20

3
n3 + NB 5mn2 +

10

3
n3 + NB

Table 3.1: Floating point operation count for SVD algorithms with bidiagonalization.

Table 3.1 shows that Algorithm 3.1.1 requires less operations for computing matrices
U , B and V , than the corresponding LAPACK bidiagonalization routine.

Extensive numerical tests were performed to test the e�ciency of the SVD algo-
rithms. The computations where performed in the �Advanced Computing Laboratory�
of the Department of Mathematics, University of Zagreb. The laboratory consists of 20
computers, connected in a local 1Gb network. The speci�cations of the computers are
shown in Table 3.2.

1The Householder algorithm
2The Lawson�Hanson�Chan algorithm
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2 processors Athlon Mp 1800+
Frequency 1533MHz
L1 Cache 64Kb
L2 Cache 256Kb
RAM 1Gb

Table 3.2: The speci�cations of the computers in �Advanced Computing Laboratory�.

The computers are working under a Debian GNU/Linux operating system. The tests
were written in FORTRAN 77 programming language and GNU (v0.5.24) compiler with-
out optimization was used to obtain executable �les. LAPACK and BLAS routines were
called in those programs, and single precision was used throughout the tests. Matrices
in the tests were generated as product A = UΣV T , where Σ is a diagonal matrix with
�xed singular values {1, 2, . . . , n}, and U and V are random orthogonal matrices.

The Table 3.3 gives the average execution times for the full SVD algorithms, ex-
pressed in seconds.

m × n t1 tL p1,L = 100(tL − t1)/tL
100 × 100 0.01 0.01 0.00%
200 × 200 0.14 0.15 6.67%
500 × 50 0.01 0.01 0.00%
500 × 100 0.05 0.04 -25.00%
500 × 500 3.87 3.47 -11.53%

1000 × 100 0.14 0.09 -55.56%
1000 × 500 6.19 4.43 -39.73%
1000 × 1000 39.19 36.95 -6.06%
2000 × 200 1.46 0.61 -139.34%
2000 × 1000 55.25 41.63 -32,72
2000 × 2000 359.05 326,75 -9.89%
3000 × 3000 1514.46 1300.94 -16.41%

Table 3.3: Average execution times for full SVD algorithms.

The meaning of the headers in Table 3.3 are as follows:
t1 � the SVD with Algorithm 3.1.1 for bidiagonalization.

The LAPACK routine sbdsqr() is used for the SVD of
a bidiagonal matrix, which implements the bidiagonal
QR algorithm.

tL � the LAPACK sgesvd() routine.
p1,L � the percentage of time decrease, when the SVD with

Algorithm 3.1.1 is compared to the LAPACK routine.
Despite the fact that the SVD solver with Algorithm 3.1.1 requires fewer �oating

point operations, the execution time is longer than the execution time of the LAPACK
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[1] routine sgesvd()[21]. This happens because the LAPACK routine has optimized
fast cache memory usage, while Algorithm 3.1.1 does not. In order to decrease cache
communication time, we will develop a block version of Barlow's bidiagonalization in
the next section.

3.5 Block Version
First of all, the block version is designed to increase e�ciency of the Barlow algorithm,
thus it implements the choice φk+1 = γk which reduces the �oating point operation
count. Second, the new block version of Algorithm 3.1.1 improves the usage of fast
cache memory. The main idea is to perform as many operations as possible on the
data that is currently stored in the cache. In order to do that one has to transform the
original algorithm. The �rst modi�cation of the algorithm is that transformations by
Householder re�ectors are aggregated, where WY representation is used for a product of
Householder re�ectors [5]. This means that the matrix A is updated after every b steps,
where m×b is the block dimension. Most of the operations in Algorithm 3.1.1 are matrix-
vector operations, coded as BLAS 2 operations [20]. Memory hierarchy is utilized more
e�ciently if such algorithms are in terms of matrix-matrix operations, coded as BLAS
3 operations [18], [19], or grouped matrix-vector operations, called BLAS 2.5 operations
[14], [50]. Employing the WY representation of products of Householder transformations
results in more BLAS 3 operations; using the BLAS 2.5 approach of Howell et al. [50]
leads to further improvement. Operations on the same data but performed in di�erent
places in Algorithm 3.1.1, are now performed simultaneously. These operations are:

x ← x + AT y
w ← Ax

or
A ← A + uvT

x ← AT y
w ← Ax

. (3.47)

Now we discuss the modi�cations of Algorithm 3.1.1. As an input to the algorithm
we will take the matrix A ∈ Rm×n, and partition it into block columns. Let n = b ·g+r,
r ≤ b+1, where b is a given block column dimension and g = b(n− 2)/bc is the number
of blocks of dimension m× b. We choose the last two columns to be outside of the block
partition, because the last two steps of the one�sided bidiagonalization (corresponding
to the last two columns) do not involve computation of a Householder re�ector. The g
blocks will be updated by means of aggregated Householder transformations and BLAS
2.5 transformations related to the �rst group of transformations in (3.47). The remaining
r = n− b · g columns will be updated with non-aggregated Householder transformations
and the second group of BLAS 2.5 transformations in (3.47). As each block consists of b
columns, the steps of the algorithm will be organized in two loops: the outer loop going
through g blocks, and the inner loop going through b columns of the block. Thus we
will denote by Aj,k the matrix A after the �rst j − 1 blocks and the �rst k columns in
the j-th block have been updated.

A block partition for g = 4 and b = 4, is visualized in Figure 3.7.
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A =

j=1 j=2 j=3 j=4 j=5
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A( : , 2b + 1: 3b) =

*

Figure 3.7: Block partition of the matrix A.

The main di�erence between Barlow's bidiagonalization and its block version is the
way Householder re�ectors are computed and applied to the matrix A. In the k-th
step of Algorithm 3.1.1 columns k + 1 through n of the matrix A are updated with the
Householder re�ector Vk. After this step, the (k+1)-th column is not changed anymore
and is consequently equal to the (k + 1)-th column of F de�ned in (3.3).

In the block version of Barlow's bidiagonalization, updates with Householder re-
�ectors are done block-wise. This means, only when all the columns in one block are
updated and assigned to F (they will not be modi�ed in the next steps), the rest of
the matrix will then be updated with b Householder re�ectors in aggregated form, that
correspond to b steps of Algorithm 3.1.1. Until then, only the current column is up-
dated. Let us assume that we have computed the �rst (j − 1) blocks of the matrix F
obtaining the matrix Aj,0, and that we are observing the operations in the j-th step
of the outer loop. Then for k = 1, . . . , b only the ((j − 1)b + k)-th column is updated
by Householder re�ectors from the steps 1, . . . , k − 1 of the same block, obtaining the
matrix Aj,k, and a new Householder re�ector V(j−1)b+k is computed. V(j−1)b+k will e�ect
columns ((j− 1)b+k +1) through n, but no updates are done. The matrix Aj,1 is equal
to Aj,0 because the ((j − 1)b + 1)-th column is already updated, only the Householder
re�ector V(j−1)b+1 is computed. We use the WY form for a product of Householder
re�ectors described in [5] to write

V(j−1)b+1 · · ·V(j−1)b+k−1 = I − Yj( : , 1: k − 1)Wj( : , 1: k − 1)T . (3.48)

After the (jb)-th column has been updated, columns jb+1 through n are updated with
the product V(j−1)b+1, . . . ,Vjb in WY form (3.48). This process is illustrated in Figure
3.8. The (g + 1)-th block is updated with Householder re�ectors in the usual way, as it
is done in Algorithm 3.1.1.

This is the same approach as in the LAPACK routine sgebrd() [21], where the rou-
tine slabrd() is called �rst, followed by the routine sgebd2(). slabrd() performs the
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matrix
entry explanation

s the elements of Aj,0, that are not
modi�ed in the described steps

s the elements updated with
Householder re�ectors V(j−1)b+1,
. . . ,Vjb at the end of the j-th
step of the outer loop

s the elements of F that will not
be modi�ed in the next steps

Figure 3.8: Column update in the j-th block of the matrix A.
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two�sided aggregated Householder transformation over the �rst g blocks, and sgebd2()
performs the unblocked transformations. The only di�erence is that in the block version
of Algorithm 3.1.1 the one�sided Householder transformations are performed, and the
dimension of the last block is computed di�erently.

Aggregated Householder transformations represent only one modi�cation of Algo-
rithm 3.1.1. The other modi�cation is achieved by using the ideas described in [50]. Let
us de�ne the following correspondence:

` = (j − 1)b + k, current `-th column is the k-th column in the j-th block,
` ↔ (j, k) the indices with ` are replaced by (j, k).

This correspondence is introduced only for notational convenience. Now we will inves-
tigate lines (4), (5) and (7) in Algorithm 3.1.1, but with the index k replaced by `. In
all these statements the vector z` → zj,k is directly or indirectly used. In line (4) u`

is multiplied by A`−1( : , ` + 1: n)T → Aj,k−1( : , ` + 1: n)T in order to obtain zj,k. On
the other hand in line (7) the vector v` → vj,k is multiplied by Aj,k−1( : , ` + 1: n), and
vj,k is realized from zj,k through line (5) and the function householder(). From the
de�nition of the function householder() we have

zj,k = Aj,k−1( : , ` + 1, n)T u`

vj,k =

√
2(zj,k − φ`+1e1)

‖zj,k − φ`+1e1‖2

, thus

Aj,k−1( : , ` + 1: n)vj,k =

√
2[Aj,k−1( : , ` + 1: n)zj,k − φ`+1Aj,k−1( : , ` + 1)]

‖zj,k − φ`+1e1‖2

(3.49)

From the previous observations concerning the update of the matrix Aj,0 with House-
holder re�ectors, in the `-th step (which in the block version will correspond to the j-th
step of the outer loop and the k-th step of the inner loop) columns ` + 1, . . . , n are not
yet updated. Aj,k−1 should be equal to Aj,0Vj,1 · · ·Vj,k−1, hence from (3.48) and (3.49)
it follows

zj,k = Aj,0( : , ` + 1, n)T u` −
−Wj(` + 1: n, 1: k − 1)Yj( : , 1: k − 1)T AT

j,0u` (3.50)
Aj,k−1( : , ` + 1: n)vj,k = Aj,0( : , ` + 1: n)vj,k −

−Aj,0Yj( : , 1: k − 1)Wj(` + 1: n, 1: k − 1)T vj,k =

=

√
2[Aj,0( : , ` + 1: n)zj,k − φ`+1Aj,0( : , ` + 1)]

‖zj,k − φ`+1e1‖2

−

−Aj,0Yj( : , 1: k − 1)Wj(` + 1: n, 1: k − 1)T vj,k (3.51)

If we de�ne
z

(1)
j,k = −Wj(` + 1: n, 1: k − 1)Yj( : , 1: k − 1)T AT

j,0u`,

as the �rst phase in the computation of zj,k, and

x
(1)
j,k = Aj,0( : , ` + 1: n)zj,k
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as the �rst phase in the computation of the vector x
(4)
j,k = Aj,k−1( : , ` + 1: n)vj,k, then

zj,k = z
(1)
j,k + Aj,0( : , ` + 1: n)T u` from (3.50)

x
(1)
j,k = Aj,0( : , ` + 1: n)zj,k from (3.51)

will be computed simultaneously and they comprise the �rst group of BLAS 2.5 transfor-
mations in (3.47). By simultaneous computation we mean that as soon as one component
of zj,k is computed, x

(1)
j,k is updated with this new data by the BLAS 1 saxpy operation.

The components of zj,k can be partitioned in blocks of dimension c, so that BLAS 2
segmv is used in the simultaneous computation instead of BLAS 1 operations. This
would improve the cache memory usage even more.

In the k-th step of the inner loop for the last (g + 1)-th block update with Vg+1,k−1,
the computation of zg+1,k and x

(1)
g+1,k will be done simultaneously. Let again ` = gb + k.

First, we have
Ag+1,k−1( : , ` + 1: n) = Ag+1,k−2( : , ` + 1: n)−

−Ag+1,k−2( : , ` : n)vg+1,k−1vg+1,k−1(2 : n− ` + 1)T ,

= Ag+1,k−2( : , ` + 1: n)− x
(3)
g+1,k−1vg+1,k−1(2 : n− ` + 1)T

where x
(3)
g+1,k = Ag+1,k−1( : , ` + 1: n)vg+1,k, and from (3.49) it follows

Ag+1,k−1( : , ` + 1: n)vg+1,k =

=

√
2[Ag+1,k−1( : , ` + 1: n)zg+1,k − φ`+1Ag+1,k−1( : , ` + 1)]

‖zg+1,k − φ`+1e1‖2

. (3.52)

Again, if we de�ne
x

(1)
g+1,k = Ag+1,k−1( : , ` + 1: n)zg+1,k

as the �rst phase in the computation of the vector x
(3)
g+1,k, then

Ag+1,k−1( : , ` + 1: n) = Ag+1,k−2( : , ` + 1: n)−
−x

(3)
g+1,k−1vg+1,k−1(2 : n− ` + 1)T

zg+1,k = Ag+1,k−1( : , ` + 1, n)T u`

x
(1)
g+1,k = Ag+1,k−1( : , ` + 1: n)zg+1,k

comprises the second group of BLAS 2.5 transformations in (3.47).
The reason why these operations are performed simultaneously is that the same parts

of the matrix A are involved, as well as the same parts of the vector zj,k. So, when a
particular block of the matrix and the vector is stored in the fast cache memory, all the
operations can be done without transferring blocks from slower memory to cache. This
will save some time spent on memory transfer in Algorithm 3.1.1.
Details of the block algorithm
The following operations are performed on each block j = 1, . . . , g:
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• In step k = 1, . . . , b, only the `-th column of Aj,k−1 is updated with aggregated
Householder transformations computed in steps i = 1, . . . , k− 1 of the inner loop:

Aj,k( : , `) = Aj,k−1( : , `) = [Aj,0Vj,1 · · ·Vj,k−1]( : , `) =

= Aj,0( : , `)− Aj,0Yj( : , 1: k − 1)Wj(k, 1: k − 1)T ,

where ` = (j−1)b+k. Here Vj,i = I−vj,iv
T
j,i is the Householder re�ector obtained

in the i-th inner loop step within the j-th outer loop step, where vj,i = [0, vj,i],
vj,i ∈ Rn−(j−1)b−i. We can note that Vj,i = I(j−1)b+i ⊕ Vj,i and Vj,i = I − vj,iv

T
j,i.

For the aggregated Householder transformations the following statements hold (see
[5]).

Vj,1 · · ·Vj,k−1 = I − Yj( : , 1: k − 1)Wj( : , 1: k − 1)T ,

Aj,k−1 = Aj,0Vj,1 · · ·Vj,k−1 = Aj,0 − Aj,0Yj( : , 1: k − 1)Wj( : , 1: k − 1)T ,

The term Aj,0Yj( : , 1: k− 1) is also occurring in relations (3.50) and (3.51), hence
we de�ne Xj = Aj,0Yj. From the de�nition of the matrices Yj and Wj in [5], Wj,
Yj and Xj satisfy the following recurrences

Wj( : , 1) = vj,1,

Yj( : , 1) = vj,1,

Xj( : , 1) = Aj,0Yj( : , 1) = Aj,0vj,1,

Wj( : , 1: k) = [Wj( : , 1: k − 1), vj,k], (3.53)
Yj( : , 1: k) = [Yj( : , 1: k − 1), Vj,1 · · ·Vj,k−1vj,k] =

= [Yj( : , 1: k − 1), vj,k − Yj( : , 1: k − 1)Wj( : , j : k − 1)Tvj,k],

Xj( : , 1: k) = Aj,0Yj( : , 1: k) =

= [Xj( : , 1: k − 1), Aj,0vj,k −Xj( : , 1: k − 1)Wj( : , 1: k − 1)Tvj,k].

• u` is produced from orthogonalization of Aj,k( : , `) against u`−1, and normalization
(a Gram�Schmidt step).

• Wj( : , k) = vj,k and Xj( : , k) are computed using BLAS 2.5 as follows. The vector
zj,k and the vector x

(1)
j,k are computed simultaneously, where x

(1)
j,k is the �rst step in

obtaining Xj( : , k). First we have to set

z
(1)
j,k = −Wj(` + 1: n, 1: k − 1)Xj( : , 1: k − 1)T u`, x

(1)
j,k = 0,

and then for i = ` + 1, . . . , n we can compute

zj,k(i− `) = z
(1)
j,k (i− `) + Aj,0( : , i)T u`

x
(1)
j,k = x

(1)
j,k + Aj,0( : , i)zj,k(i− `).

The components of zj,k are partitioned in blocks of dimension c, and as soon as
one block of zj,k is computed, x

(1)
j,k is updated with this new data. When zj,k is
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�nished vj,k is chosen in the same way as in Algorithm 3.1.1, and immediately
after that x

(2)
j,k and x

(3)
j,k are computed so that

x
(3)
j,k = Aj,0( : , ` + 1: n)vj,k.

x
(3)
j,k is obtained from x

(1)
j,k and φ`+1 = ±‖zj,k‖2 in the same way as vj,k is obtained

from zj,k and φ`+1. Finally (see (3.53)),

Xj( : , k) = x
(4)
j,k = x

(3)
j,k −Xj( : , 1: k − 1)Wj(` + 1: n, 1: k − 1)T vj,k.

• After b steps, the rest of the matrix Aj,b is updated with Vj,1 · · ·Vj,b:

Aj+1,0( : , 1: jb) = Aj,b( : , 1: jb),

Aj+1,0( : , jb + 1: n) = Aj,b( : , jb + 1: n)−Xj( : , 1: b)Wj(jb + 1: n, 1: b)T .

For the last (g + 1)-th m× r block we use a similar technique, except that in each step
the whole matrix is updated. The following operations are performed on the last block
of dimension m× r:

• For steps k = 1, . . . , r, the `-th column of Ag+1,k−1 is updated with Vg+1,k−1:

Ag+1,k( : , `) = Ag+1,k−1( : , `) =

= Ag+1,k−2( : , `)− vg+1,k−1(1)x
(3)
g+1,k−1,

where ` = gb + k, and

x
(3)
g+1,k−1 = Ag+1,k−2( : , ` : n)vg+1,k−1,

and is computed in the previous step.

• u` is produced from orthogonalization of Ag+1,k( : , `) against u`−1, and normaliza-
tion (a Gram�Schmidt step).

• The update of the rest of the matrix Ag+1,k−1( : , ` + 1: n), and the computations
of vg+1,k and x

(3)
g+1,k = Ag+1,k−1( : , ` + 1: n)vg+1,k are performed using BLAS 2.5.

Namely, Ag+1,k−1( : , ` + 1: n), zg+1,k and x
(1)
g+1,k are computed simultaneously in

the following way: x
(1)
g+1,k = 0, then for i = ` + 1, . . . , n do

Ag+1,k−1( : , i) = Ag+1,k−2( : , i)− vg+1,k−1(i− ` + 1)x
(3)
g+1,k−1

zg+1,k(i− `) = Ag+1,k−1( : , i)T u`

x
(1)
g+1,k = x

(1)
g+1,k + Ag+1,k−1( : , i)zg+1,k(i− `)

As soon as the i-th column of Ag+1,k−1 is computed, the proper component of zg+1,k

is computed, and x
(1)
g+1,k is updated with this new data. When zg+1,k is �nished

vg+1,k is chosen in the same way as in Algorithm 3.1.1, and x
(3)
g+1,k is computed.
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Now we can state the complete algorithm.
Algorithm 3.5.1 (The block Barlow one�sided bidiagonalization). For A ∈
Rm×n, rank(A) = n > 2, this algorithm computes orthonormal U , bidiagonal B and
orthogonal V such that A = UBV T .
Initialize:

the block dimension for aggregated Householder transformations b;
the block dimension for BLAS 2.5 transformations c;

A1,0 = A;
s1 = A1,0( : , 1);
g = b(n− 2)/bc;
for j = 1: g

{Update the j-th block of the matrix A with aggregated Householder transformations and the
�rst group of BLAS 2.5 transformation from (3.47).}
Xj = 0m×b; Wj = 0n×b;
for k = 1: b

` = (j − 1)b + k;
Aj,k( : , 1: `− 1) = Aj,k−1( : , 1: `− 1);
if k > 1

Aj,k( : , `) = Aj,0( : , `)−Xj( : , 1: k − 1)Wj(`, 1: k − 1)T ;
s` = Aj,k( : , `)− φ`u`−1;

else
Aj,k( : , `) = Aj,k−1( : , `);

end;
ψ` = ‖s`‖2;
u` = s`/ψ`;
if k > 1

z
(1)
j,k = −Wj(` + 1: n, 1: k − 1)Xj( : , 1: k − 1)T u`;

else
z

(1)
j,k = 0(n−`)×1;

end;
x

(1)
j,k = 0m×1;
for i = ` + 1: c : n

d = min(c, n− i + 1);
zj,k(i− ` : i− ` + d− 1) = z

(1)
j,k (i− ` : i− ` + d− 1) + Aj,0( : , i : i + d− 1)T u`;

x
(1)
j,k = x

(1)
j,k + Aj,0( : , i : i + d− 1)zj,k(i− ` : i− ` + d− 1);

end;
[φ`+1, vj,k, x

(3)
j,k ] = householder 2(zj,k, x

(1)
j,k , Aj,0( : , ` + 1));

Wj(` + 1: n, k) = vj,k;
x

(4)
j,k = x

(3)
j,k −Xj( : , 1: k − 1)Wj(` + 1: n, 1: k − 1)T vj,k;

Xj( : , k) = x
(4)
j,k ;

end;
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{Update the rest of the matrix A with aggregated Householder transformations from the j-th block.}
Aj+1,0( : , 1: jb) = Aj,b( : , 1: jb);
Aj+1,0( : , jb + 1: n) = Aj,b( : , jb + 1: n)−XjWj(jb + 1: n, : )T ;
sjb+1 = Aj+1,0( : , jb + 1)− φjb+1ujb;

end;
r = n− gb;

{Update the last block of the matrix A via the second group of BLAS 2.5 transformation
from (3.47).}
for k = 1: r − 1

` = gb + k;
if k > 1

Ag+1,k( : , 1: `− 1) = Ag+1,k−1( : , 1: `− 1);
Ag+1,k( : , `) = Ag+1,k−1( : , `)− vg+1,k−1(1)x

(3)
gb+1,k−1;

s` = Ag+1,k( : , `)− φ`u`−1;
else

Ag+1,k( : , 1: `) = Ag+1,k−1( : , 1: `);
end;
ψ` = ‖s`‖2;
u` = s`/ψ`;
x

(1)
g+1,k = 0m×1;
for i = ` + 1: n
if k > 1

Ag+1,k−1( : , i) = Ag+1,k−2( : , i)− vg+1,k−1(i− ` + 1)x
(3)
g+1,k−1;

end;
if ` < n− 1

zg+1,k(i− `) = Ag+1,k−1( : , i)T u`;
x

(1)
g+1,k = x

(1)
g+1,k + zg+1,k(i− `)Ag+1,k−1( : , i);

end;
end;
if ` < n− 1

[φ`+1, vg+1,k, x
(3)
g+1,k] = householder 2(zg+1,k, x

(1)
g+1,k, Ag+1,k−1( : , ` + 1));

end ;
end;
φn = uT

n−1Ag+1,r−1( : , n);
sn = Ag+1,r−1( : , n)− φnun−1;
ψn = ‖sn‖2;
un = sn/ψn;

V T = householder_product(v1,1, . . . , vg+1,n−2);

The auxiliary function householder 2() is de�ned as follows.
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function [φ, v, y]=householder 2(z, x, b)
{The function householder 2() computes φ, v and y such that V z = φe1 and y = Bv, where V =
I − vvT is a Householder re�ector, x = Bz and b = Be1.}

n = length(z);
φ = ‖z‖2;
if φ > 0

φ = −sign(z(1))φ
t(1) = z(1)− φ;
t(2 : n) = z(2 : n);
v =

√
2t/‖t‖2;

w = x− φb;
y =

√
2w/‖t‖2;

else
v = 0;

end

Remark 3.5.2. The vector w in the function householder 2() stands for x
(2)
j,k .

Remark 3.5.3. The choice of the block dimensions b and c depends on the computer
which executes Algorithm 3.5.1. Their sizes are chosen to obtain optimal e�ciency. In
LAPACK routines, the function ilaenv() is used to determine the optimal block size
for block algorithms. The section Determining the Block Size for Block Algorithms of
[1] explains how ilaenv() works: �The version of ilaenv() supplied with the package
contains default values that led to good behavior over a reasonable number of the test
machines, but to achieve optimal performance, it may be bene�cial to tune ilaenv()
for the particular machine environment.� Our optimal block dimensions were obtained
through tests.

3.6 Numerical Stability of the Block Version
Algorithm 3.1.1 is numerically backward stable, but what about Algorithm 3.5.1? The
answer to this question is given by Theorem 3.6.4. Before stating a proof of Theorem
3.6.4 we will need results of three technical lemmas. The lemmas are based on the
numerical analysis of basic numerical algorithms given by Higham [47], and the analysis
of the modi�ed Gram�Schmidt algorithm given by Björck and Paige [6]. In our numerical
analysis we will use the following notation once again: tildes (˜ ) will mark computed
quantities, and hats ( ˆ ) will denote vectors and matrices that correspond to certain
exact relations and exist only as theoretical entities, not actually computed.

Lemma 3.6.1. When Algorithm 3.5.1 is executed in �nite precision arithmetic with the
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unit roundo� error ε then the computed values are of the following form:

ṽj,k = v̂j,k + δv̂j,k, ‖δv̂j,k‖2 ≤ O(n− l)ε

W̃j( : , 1: k) = Ŵj( : , 1: k) + δŴj( : , 1: k), ‖δŴj( : , 1: k)‖F ≤ O(
√

kn)ε

X̃j( : , k) = Ãj,0Ŷj( : , k) + δX̂j( : , k), ‖δX̂j( : , k)‖2 ≤ O(kn)ε‖Ãj,0‖F ,

where v̂j,k de�ne exact Householder re�ectors V̂j,k, and Ŵj, Ŷj and X̂j are exact matrices
that are related to Householder vectors v̂j,k as described in (3.53). Further, the exact
values can be estimated as

‖Ŵj( : , 1: k)‖F ≤
√

2
√

k

‖X̂j( : , 1: k)‖F = ‖Ãj,0Ŷj( : , 1: k)‖F ≤ 2
√

2
√

k‖Ãj,0‖F

Proof. The proof follows the execution of Algorithm 3.5.1.

1. First, we will start with the computation of Aj,0( : , ` + 1: n)vj,k as shown in
Algorithm 3.5.1:

x
(3)
j,k = Aj,0( : , ` + 1: n)vj,k =

=
√

2[Aj,0( : , ` + 1: n)zj,k + sign(zj,k(1))‖zj,k‖2Aj,0( : , ` + 1)]/‖tj,k‖2,

where ` = (j − 1)b + k. Here we can note that the computation of Aj,0( : , ` +
1: n)vj,k is parallel to the computation of vj,k (see function householder 2()),
and not performed as an application of the submatrix of Aj,0 on already computed
vj,k. In our FORTRAN code which implements Algorithm 3.5.1, we used the
routine slarfg2(), a modi�cation of the LAPACK routine slarfg(). The routine
slarfg() generates a Householder vector vj,k, and slarfg2() generates both: vj,k

and Aj,0( : , ` + 1: n)vj,k. This routine obtains a slightly di�erent result from
that shown in Algorithm 3.5.1, but the error analysis in both cases is the same.
We will present the analysis of the routine slarfg2(), where operations in exact
arithmetic are performed as follows:

β̂j,k = −sign(z̃j,k(1))‖z̃j,k‖2

v̂j,k(1) = 1

v̂j,k(2 : n− `) = z̃j,k(2 : n− `)/(z̃j,k(1)− β̂j,k)

τ̂j,k = [β̂j,k − z̃j,k(1)]/β̂j,k

Ãj,0( : , ` + 1: n)v̂j,k = [Ãj,0( : , ` + 1: n)z̃j,k − β̂j,kÃj,0( : , ` + 1)]/[z̃j,k(1)− β̂j,k]

computed as
x̂

(1)
j,k = Ãj,0( : , ` + 1: n)z̃j,k

x̂
(3)
j,k = [x̂

(1)
j,k − β̂j,kÃj,0( : , ` + 1)]/[z̃j,k(1)− β̂j,k]

and it is obvious that

|β̂j,k| = ‖z̃j,k‖2, ‖v̂j,k‖2 =

√
1 +

‖z̃j,k(2 : n− `)‖2
2

(|z̃j,k(1)|+ ‖z̃j,k‖2)2
≤
√

2,
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1 ≤ |τ̂j,k| = ‖z̃j,k‖2 + |z̃j,k(1)|
‖z̃j,k‖2

≤ 2.

Then, a Householder re�ector has the form V̂j,k = I− τ̂j,kv̂j,kv̂
T
j,k, and the scalar τ̂j,k

will be assigned to x̂
(4)
j,k later. In �oating point arithmetic we have the following

situation, which is straightforward.

a)
β̃j,k = β̂j,k(1 + δ1), |δ1| ≤ O(n− `)ε

b)

ṽj,k(2 : n− `) = �
(

z̃j,k(2 : n− `)

�(z̃j,k(1)− β̃j,k)

)
=

= (I + ∆1)
z̃j,k(2 : n− `)

(1 + δ2)[z̃j,k(1)− β̂j,k(1 + δ1)]
=

=
1

(1 + δ2)
(
1− β̂j,kδ1

z̃j,k(1)−β̂j,k

)(I + ∆1)
z̃j,k(2 : n− `)

z̃j,k(1)− β̂j,k

=

= (I + ∆2)v̂j,k(2 : n− `) = v̂j,k(2 : n− `) + δv̂j,k(2 : n− `)

(3.54)

where
|∆1| ≤ εI, |δ2| ≤ ε,

∣∣∣∣∣
β̂j,kδ1

z̃j,k(1)− β̂j,k

∣∣∣∣∣ ≤
‖z̃j,k‖2

|z̃j,k(1)|+ ‖z̃j,k‖2

O(n− `)ε ≤ O(n− `)ε,

which implies that

|∆2| ≤ O(n− `)εI, ‖δv̂j,k‖2 ≤ O(n− `)ε‖v̂j,k‖2 ≤ O(n− `)ε. (3.55)

where δv̂j,k(1) = 0.
c) Finally

τ̃j,k = �
(
�(β̃j,k − z̃j,k(1))

β̃j,k

)
= (1 + δ3)

(1 + δ4)[β̂j,k(1 + δ1)− z̃j,k(1)]

β̂j,k(1 + δ1)
=

=
(1 + δ3)(1 + δ4)

1 + δ1

(
1 + δ1

β̂j,k

β̂j,k − z̃j,k(1)

)
β̂j,k − z̃j,k(1)

β̂j,k

=

= (1 + δ5)τ̂j,k (3.56)

where
|δ3| ≤ ε, |δ4| ≤ ε, =⇒ |δ5| ≤ O(n− `)ε. (3.57)
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d) Further we have

x̃
(1)
j,k = �(Ãj,0( : , ` + 1: n)z̃j,k) = Ãj,0( : , ` + 1: n)z̃j,k + δx̂

(1)
j,k ,

‖δx̂(1)
j,k‖2 ≤ O(n− `)ε‖Ãj,0‖F‖z̃j,k‖2,

e)

x̃
(2)
j,k = �(x̃

(1)
j,k − �(β̃j,kÃj,0( : , ` + 1)) =

= (I + ∆3)[Ãj,0( : , ` + 1: n)z̃j,k + δx̂
(1)
j,k −

−(I + ∆4)β̂j,k(1 + δ1)Ãj,0( : , ` + 1)] =

= Ãj,0( : , ` + 1: n)z̃j,k − β̂j,kÃj,0( : , ` + 1) + δx̂
(2)
j,k

where

|∆3| ≤ εI, |∆4| ≤ εI, =⇒ ‖δx̂(2)
j,k‖2 ≤ O(n− `)ε‖Ãj,0‖F‖z̃j,k‖2.

f)

x̃
(3)
j,k = �

(
x̃

(2)
j,k

�(z̃j,k(1)− β̃j,k)

)
=

= (I + ∆5)
Ãj,0( : , ` + 1: n)z̃j,k − β̂j,kÃj,0( : , ` + 1) + δx̂

(2)
j,k

(1 + δ6)[z̃j,k(1)− β̂j,k(1 + δ1)]
=

=
Ãj,0( : , ` + 1: n)z̃j,k − β̂j,kÃj,0( : , ` + 1)

z̃j,k(1)− β̂j,k

+ δx̂
(3)
j,k =

= Ãj,0( : , ` + 1: n)v̂j,k + δx̂
(3)
j,k , (3.58)

where
|∆5| ≤ εI, |δ6| ≤ ε,

‖δx̂(3)
j,k‖2 ≤ O(n− `)ε

∥∥∥∥∥
Ãj,0( : , ` + 1: n)z̃j,k − β̂j,kÃj,0( : , ` + 1)

z̃j,k(1)− β̂j,k

∥∥∥∥∥
2

+

+O(n− `)ε
‖Ãj,0‖F‖z̃j,k‖2

|z̃j,k(1)|+ ‖z̃j,k‖2

≤

≤ O(n− `)ε‖Ãj,0( : , ` + 1: n)v̂j,k‖2 + O(n− `)ε‖Ãj,0‖F ≤
≤ O(n− `)ε‖Ãj,0‖F . (3.59)

2. Now we turn to the computed columns of the matrix X̃j. Let us remind that we
use the aggregated form of Householder transformations, where in exact arithmetic
we have

Vj,iVj,i−1 · · ·Vj,1 = (I − vj,iv
T
j,i)(I − vj,i−1v

T
j,i−1) · · · (I − vj,1v

T
j,1) =

= I −Wj( : , 1: i)Yj( : , 1: i)T ,
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Vj,1, . . . ,Vj,i ∈ Rn×n, Wj( : , 1: i), Yj( : , 1: i) ∈ Rn×i,

and Wj and Yj are computed through a recurrence

Wj( : , 1) = vj,1, Yj( : , 1) = vj,1,

Wj( : , 1: i) = [Wj( : , 1: i− 1), vj,i],

Yj( : , 1: i) = [Yj( : , 1: i− 1), Vj,1 · · ·Vj,i−1vj,i].

In our case, it holds

X̂j = Ãj,0Ŷj, X̂j = X̂j( : , 1: b), Ŷj = Ŷj( : , 1: b),

and for ` = (j − 1)b + k

Ŵj(1 : `, k) = 0`×1, Ŵj(` + 1: n, k) = v̂j,k,

X̂j( : , k) = Ãj,0( : , ` + 1: n)v̂j,k − Ãj,0Ŷj( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T v̂j,k.

Because of the choice of vj,k and τj,k in slarfg2(), in �oating point arithmetic
X̃j( : , k) is computed through the following steps:

x̃
(4)
j,k = �(x̃

(3)
j,k − �(X̃j( : , 1: k − 1)�(W̃j(` + 1: n, 1: k − 1)T ṽj,k)))

X̃j( : , k) = �(τ̃j,kx̃
(4)
j,k), (3.60)

and only for k = 1, holds that X̃j( : , 1) = �(τ̃j,1x̃
(3)
j,1).

First of all, we can �nd the error estimation for W̃j( : , 1: k) immediately from
(3.54) and (3.55).

‖Ŵj( : , 1: k)‖F ≤
√

2
√

k, δŴj( : , 1: k) = [δv̂j,1 . . . δv̂j,k],

W̃j( : , 1: k) = Ŵj( : , 1: k) + δŴj( : , 1: k), ‖δŴj( : , 1: k)‖F ≤ O(
√

kn)ε
(3.61)

for k = 1, . . . , b, where δv̂j,k = [0 δv̂j,k]
T .

For the exact value ‖X̂j( : , 1: k)‖F we know that

‖X̂j( : , 1: k)‖F = ‖Ãj,0Ŷj( : , 1: k)‖F ≤ 2
√

2
√

k‖Ãj,0‖F ,

where
Ŷj( : , k) = τ̂j,kVj,1 · · ·Vj,k−1v̂j,k,

X̂j( : , 1: k) = Ãj,0Ŷj( : , 1: k).

3. The error analysis for X̃j( : , 1: k) will be conducted through mathematical induc-
tion on k.
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a) For k = 1, from (3.56), (3.57), (3.58) and (3.59) it follows

X̃j( : , 1) = �(τ̃j,1x̃
(3)
j,1) =

= (I + ∆6)(1 + δ5)τ̂j,1(Ãj,0( : , ` + 1: n)v̂j,1 + δx̂
(3)
j,1)

= τ̂j,1Ãj,0( : , ` + 1: n)v̂j,1 + δX̂j( : , 1) = Ãj,0Ŷj( : , 1) + δX̂j( : , 1),

where

|∆6| ≤ εI =⇒ ‖δX̂j( : , 1)‖2 ≤ O(n− `)ε‖Ãj,0‖F .

b) Now, let us assume that for k − 1, k > 1 and ` = (j − 1)b + k, we obtain

x̃
(4)
j,k−1 = Ãj,0( : , ` : n)v̂j,k−1 −

−Ãj,0Ŷj( : , 1: k − 2)Ŵj(` : n, 1: k − 2)T v̂j,k−1 + δx̂
(4)
j,k−1,

(3.62)

‖δx̂(4)
j,k−1‖2 ≤ O((k − 1)n)ε‖Ãj,0‖F . (3.63)

We can get the same result if we took any h ∈ Rn−`+1, with ‖h‖2 ≤
√

2, and
start the computation of x̃

(4)
j,k−1 with it. The next step will show that

x̃
(4)
j,k = Ãj,0( : , ` + 1: n)v̂j,k −

−Ãj,0Ŷj( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T v̂j,k + δx̂
(4)
j,k ,

where
‖δx̂(4)

j,k‖2 ≤ O(kn)ε‖Ãj,0‖F .

4. We have

x̃
(4)
j,k = �(x̃

(3)
j,k − �(X̃j( : , 1: k − 1)�(W̃j(` + 1: n, 1: k − 1)T ṽj,k))) =

= (I + ∆7)[x̃
(3)
j,k − �(X̃j( : , 1: k − 1)�(W̃j(` + 1: n, 1: k − 1)T ṽj,k))] =

= (I + ∆7)[x̃
(3)
j,k − �(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k) +

+�(W̃j(` + 1: n, k − 1)T ṽj,k)X̃j( : , k − 1))] =

= (I + ∆7){x̃(3)
j,k − (I + ∆8)[�(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k)) +

+�(�(ṽj,k−1(2 : n− ` + 1)T ṽj,k)X̃j( : , k − 1))]} =

= (I + ∆7){x̃(3)
j,k − �(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k)) +

+�(�(ṽj,k−1(2 : n− ` + 1)T ṽj,k)X̃j( : , k − 1)) +

+∆8[�(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k)) +

+�(�(ṽj,k−1(2 : n− ` + 1)T ṽj,k)X̃j( : , k − 1))]} (3.64)

where
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a)
|∆7| ≤ εI, |∆8| ≤ εI, (3.65)

and

x̃
(3)
j,k − �(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k)) =

= (I + ∆9)�(x̃
(3)
j,k − �(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k))) =

= (I + ∆9)x̃
(4)
j,k−1,k

with
|∆9| ≤ εI.

The notation x̃
(4)
j,k−1,k describes the vector which is computed in the same way

as x̃
(4)
j,k−1, but in this case its computation started with

[
0

ṽj,k

]
∈ Rn−`+1

instead of ṽj,k−1.
b) Now we can apply the induction assumption here and state

x̃
(4)
j,k−1,k = Ãj,0( : , ` : n)

[
0

v̂j,k

]
−

−Ãj,0Ŷj( : , 1: k − 2)Ŵj(` : n, 1: k − 2)T

[
0

v̂j,k

]
+ δx̂

(4)
j,k−1,k =

= Ãj−1( : , ` + 1: n)v̂j,k −
−Ãj−1Ŷj( : , 1: k − 2)Ŵj(` + 1: n, 1: k − 2)T v̂j,k + δx̂

(4)
j,k−1,k,

where
‖δx̂(4)

j,k−1,k‖2 ≤ O((k − 1)n)ε‖Ãj,0‖F .

So

x̃
(3)
j,k − �(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k)) =

= Ãj,0( : , ` + 1: n)v̂j,k − Ãj,0Ŷj( : , 1: k − 2)Ŵj(` + 1: n, 1: k − 2)T v̂j,k +

+δ1x̂
(4)
j,k (3.66)

with
‖δ1x̂

(4)
j,k‖2 ≤ O((k − 1)n)ε‖Ãj,0‖F . (3.67)

c) Next, we have

�(�(ṽj,k−1(2 : n− ` + 1)T ṽj,k)X̃j( : , k − 1)) =

= (I + ∆10)(ṽj,k−1(2 : n− ` + 1)T ṽj,k + δ7)(I + ∆11)τ̃j,k−1x̃
(4)
j,k−1 =

= ṽj,k−1(2 : n− ` + 1)T ṽj,kτ̃j,k−1x̃
(4)
j,k−1 + δ2x̂

(4)
j,k

with
|∆10| ≤ εI, |∆11| ≤ εI, |δ7| ≤ O(n− `)ε,



122 CHAPTER 3. THE BARLOW ONE�SIDED BIDIAGONALIZATION

‖x̃(4)
j,k−1‖2 ≤

√
2‖Ãj,0‖F + O(ε),

which implies that
‖δ2x̂

(4)
j,k‖2 ≤ O(n− `)ε‖Ãj,0‖F .

Further, from (3.54), (3.55), (3.60), (3.56), (3.57), (3.62) and (3.63) it follows
that

�(�(ṽj,k−1(2 : n− ` + 1)T ṽj,k)X̃j( : , k − 1)) =

= (v̂j,k−1(2 : n− ` + 1)T + δv̂j,k−1(2 : n− ` + 1)T )(v̂j,k + δv̂j,k)(1 + δ5)τ̂j,k−1 ·
·[Ãj,0( : , ` : n)v̂j,k−1 − Ãj,0Ŷj( : , 1: k − 2)Ŵj(` : n, 1: k − 2)T v̂j,k−1 +

+δx̂
(4)
j,k−1] + δ2x̂

(4)
j,k =

= (v̂j,k−1(2 : n− ` + 1)T + δv̂j,k−1(2 : n− ` + 1)T )(v̂j,k + δv̂j,k)(1 + δ5) ·
·[Ãj,0Ŷj( : , k − 1) + τ̂j,k−1δx̂

(4)
j,k−1] + δ2x̂

(4)
j,k =

= v̂j,k−1(2 : n− ` + 1)T v̂j,kÃj,0Ŷj( : , k − 1) + δ3x̂
(4)
j,k , (3.68)

where
‖δ3x̂

(4)
j,k‖2 ≤ [O(n) + O((k − 1)n)]ε‖Ãj,0‖F . (3.69)

d) The last thing we have to check is:

∆8[�(X̃j( : , 1: k − 2)�(W̃j(` + 1: n, 1: k − 2)T ṽj,k))+

+�(�(ṽj,k−1(2 : n− ` + 1)T ṽj,k)X̃j( : , k − 1))] =

= ∆8[X̂j( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T v̂j,k + O(ε)] =

= δ4x̂
(4)
j,k , (3.70)

where, from the induction assumption, (3.56), (3.54) and (3.61) it follows
that

‖δ4x̂
(4)
j,k‖2 ≤ O(k − 1)ε‖Ãj,0‖F . (3.71)

Putting everything together, from (3.64), (3.65), (3.66), (3.67), (3.68), (3.69),
(3.70) and (3.71) we obtain

x̃
(4)
j,k = (I + ∆7)[Ãj,0( : , ` + 1: n)v̂j,k −

−Ãj,0Ŷj( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T v̂j,k +

+δ1x̂
(4)
j,k + δ3x̂

(4)
j,k + δ4x̂

(4)
j,k ] =

= Ãj,0( : , ` + 1: n)v̂j,k − Ãj,0Ŷj( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T v̂j,k +

+δx̂
(4)
j,k , (3.72)

with

‖δx̂(4)
j,k‖2 ≤ [O(n) + O((k − 1)n)]ε‖Ãj,0‖F ≤ O(kn)ε‖Ãj,0‖F , (3.73)
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and from (3.56), (3.57), (3.72) and (3.73) we obtain

X̃j( : , k) = �(τ̃j,kx̃
(4)
j,k) =

= (I + ∆12)(1 + δ5)τ̂j,k[Ãj,0( : , ` + 1: n)v̂j,k −
−Ãj,0Ŷj( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T v̂j,k + δx̂

(4)
j,k ]

= τ̂j,k[Ãj,0( : , ` + 1: n)v̂j,k − Ãj,0Ŷj( : , 1: k − 1) ·
·Ŵj(` + 1: n, 1: k − 1)T v̂j,k] + δX̂j( : , k) =

= Ãj,0Ŷj( : , k) + δX̂j( : , k),

with
|∆12| ≤ εI, =⇒ ‖δX̂j( : , k)‖2 ≤ O(kn)ε‖Ãj,0‖F .

5. Finally, we get the result:

X̃j( : , 1: k) = X̂j( : , 1: k) + δX̂j( : , 1: k) = Ãj,0Ŷj( : , 1: k) + δX̂j( : , 1: k),

where

‖δX̂j( : , 1: k)‖F =

√√√√
k∑

i=1

‖δX̂j( : , i)‖2
2 ≤ O(k

3
2 n)ε‖Ãj,0‖F .

The next Lemma is stated on account of the completeness of the proof. It is a
combination of Step 2 in the proof of Theorem 3.2.6 and Remark 3.2.7.
Lemma 3.6.2. Computed elements of the matrix B̃ from Algorithm 3.5.1 satisfy the
following relations:

[
φ̃k+1ek + ψ̃k+1ek+1

0

]
= P̂k+1P̂k

([
0

fk+1

]
+

[
∆fk+1

δfk+1

])
,

∥∥∥∥
[

∆fk+1

δfk+1

]∥∥∥∥
2

≤ O(bm)ε‖F‖F ,

where P̂k, k = 1, . . . , n are exact (m + n) × (m + n) Householder re�ectors de�ned in
[6].
Proof. Consider the computation of the k�th column of B̃. An application of the results
on �oating point computation from [47, Chapters 2 and 3] reveals that

ψ̃1 = �(‖f1‖2) = ‖f1‖2 − δψ̃1,

|δψ̃1| ≤ O(m)ε‖f1‖2,

ũ1 = �
(

f1

ψ̃1

)
= û1 + δû1,

û1 =
f1

‖f1‖2

,

‖δû1‖2 ≤ O(m)ε.
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Furthermore, since the current column of A is updated with at most b Householder
re�ectors at once, the following bounds look like the bounds in Remark 3.2.7, multiplied
by b. For k = 1, 2, . . . we have ([47, Chapter 19]):

φ̃k+1 = eT
1 �(Ṽkz̃k) = ûT

k fk+1 + δφ̂k+1, |δφ̂k+1| ≤ O(bm)ε‖F‖F ,

s̃k+1 ≡ �(fk+1 − φ̃k+1ũk) = fk+1 − φ̂k+1ûk + δŝk+1,

where

‖δŝk+1‖2 ≤ O(bm)ε‖F‖F ,

φ̂k+1 = ûT
k fk+1, |φ̂k+1| ≤ ‖F‖F .

According to the ideas of Björck and Paige [6], we can write this computation as
[

φ̃k+1ek

s̃k+1

]
=

[
φ̂k+1ek

fk+1 − φ̂k+1ûk

]
+

[
δφ̂k+1ek

δŝk+1

]
=

= P̂k

{[
0

fk+1

]
+ P̂k

[
δφ̂k+1ek

δŝk+1

]}
,

P̂k = Im+n −
[ −ek

ûk

] [ −eT
k ûT

k

]
,

where ek denotes the kth column of the identity matrix In. Note that P̂ 2
k = Im+n.

Further, the values ψ̃k+1 = �(‖s̃k+1‖2), ũk+1 = �(s̃k+1/ψ̃k+1) satisfy

ψ̃k+1 = ‖s̃k+1‖2 − δψ̃k+1, |δψ̃k+1| ≤ O(m)ε‖F‖F ,

ũk+1 = ûk+1 + δûk+1, ûk+1 = s̃k+1/‖s̃k+1‖2, ‖δûk+1‖2 ≤ O(m)ε.

Thus, the computation of the (k + 1)-th column of B̃ can be written as
[

φ̃k+1ek + ψ̃k+1ek+1

0

]
=

[
φ̃k+1ek + ‖s̃k+1‖2ek+1

0

]
−

[
δψ̃k+1ek+1

0

]
=

= P̂k+1

{[
φ̃k+1ek

s̃k+1

]
− P̂k+1

[
δψ̃k+1ek+1

0

]}
=

= P̂k+1

{
P̂k

[
0

fk+1

]
+

[
δφ̂k+1ek

δŝk+1

]
− P̂k+1

[
δψ̃k+1ek+1

0

]}
=

= P̂k+1P̂k

{[
0

fk+1

]
+

[
∆fk+1

δfk+1

]}
,

∥∥∥∥
[

∆fk+1

δfk+1

]∥∥∥∥
2

≤ O(bm)ε‖F‖F .

In case when k = 0 and when we compute the �rst column of B̃, we can write φ̃1 = 0,
s̃1 = f1, P̂0 = Im+n. Hence, we can conclude that

| ‖B̃( : , k + 1)‖2 − ‖fk+1‖2 | ≤ O(bm)ε‖F‖F .
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Lemma 3.6.3. The computed vector ũ` and the computed submatrix
Ãg+1,r−1( : , ` + 2: n) from Algorithm 3.5.1 satisfy the following relation:

‖ũT
` Ãg+1,r−1( : , ` + 2: n)‖2 ≤ O(b2n + bm + bn2)ε‖A‖F .

Proof. As mentioned before, the choice of the vector zj,k plays an important role in
backward stability of Algorithm 3.5.1. The computed vector z̃j,k ∈ Rn−`, satis�es the
following relations.

z̃
(1)
j,k = −�(W̃ (` + 1: n, 1: k − 1)�(X̃( : , 1: k − 1)T ũ`)) =

= −W̃ (` + 1: n, 1: k − 1)[X̃( : , 1: k − 1)T ũ` + δ1ẑ
(1)
j,k ] + δ2ẑ

(1)
j,k =

= −W̃ (` + 1: n, 1: k − 1)X̃( : , 1: k − 1)T ũ` + δẑ
(1)
j,k ,

where ` = (j − 1)b + k, and

‖δ1ẑ
(1)
j,k‖2 ≤ O(

√
k − 1m)ε‖Ãj,0‖F , ‖δ2ẑ

(1)
j,k‖2 ≤ O((k − 1)2)‖Ãj,0‖F .

This implies
‖δẑ(1)

j,k‖2 ≤ O((k − 1)m + (k − 1)2)ε‖Ãj,0‖F .

Further we have

z̃j,k = �(�(Ãj,0( : , ` + 1: n)T ũ`) + z̃
(1)
j,k ) =

= (I + ∆13)[Ãj,0( : , ` + 1: n)T ũ` + δ1ẑj,k −
−W̃j(` + 1: n, 1: k − 1)X̃j( : , 1: k − 1)T ũ` + δẑ

(1)
j,k ] =

= [Ãj,0( : , ` + 1: n)− X̃j( : , 1: k − 1)W̃j(l + 1: n, 1: k − 1)T ]T ũ` + δ2ẑj,k,

with
|∆13| ≤ εI, ‖δ1ẑj,k‖2 ≤ O(m)ε‖Ãj,0‖F ,

so
‖δ2ẑj,k‖2 ≤ O(km + k2)ε‖Ãj,0‖F ,

and from Lemma 3.6.1 it follows that

z̃j,k = [Ãj,0( : , ` + 1: n)− (X̂j( : , 1: k − 1) + δX̂j( : , 1: k − 1)) ·
·(Ŵj(` + 1: n, 1: k − 1)T + δŴj(` + 1: n, 1: k − 1)T )]T ũ` + δ2ẑj,k =

= [Ãj,0( : , ` + 1: n)− X̂j( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T ]T ũ` +

+δẑj,k, (3.74)

where
‖δẑj,k‖2 ≤ O(k2n + km + k2)ε‖Ãj,0‖F ≤ O(k2n + km)ε‖A‖F . (3.75)

First, for ` = (j−1)b+k, k = 1, . . . , b, we de�ne the matrices V̂j,k, Ṽj,k ∈ R(n−`)×(n−`)

as (see proof of Lemma 3.6.1)

V̂j,k = I − τ̂j,kv̂j,kv̂
T
j,k, Ṽj,k = I − τ̃j,kṽj,kṽ

T
j,k,
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and Q̂j, Q̃j ∈ Rn×n as

Q̂j =

[
Ijb 0

0 V̂j,b

]
· · ·

[
I(j−1)b+2 0

0 V̂j,2

] [
I(j−1)b+1 0

0 V̂j,1

]
,

Q̃j =

[
Ijb 0

0 Ṽj,b

]
· · ·

[
I(j−1)b+2 0

0 Ṽj,2

] [
I(j−1)b+1 0

0 Ṽj,1

]
,

where Q̂j = I − ŴjŶ
T
j and Q̃j = I − W̃jỸ

T
j . The exact Householder re�ector V̂j,k =

I − τ̂j,kv̂j,kv̂
T
j,k ∈ R(n−`)×(n−`) is chosen so that

(I − τ̂j,kv̂j,kv̂
T
j,k)z̃j,k =




‖z̃j,k‖2

0
...
0


 . (3.76)

Then, for X̂j, X̃j ∈ Rm×b and Ŵj, W̃j ∈ Rn×b, from Lemma 3.6.1 it follows that
Ãj+1,0 = �(Ãj,0Q̃

T
j ) = �(Ãj,0 − �(X̃jW̃

T
j )) =

= Ãj,0 − [(X̂j + δX̂j)(Ŵ
T
j + δŴ T

j ) + δ1Aj+1,0] + δ2Aj+1,0 =

= Ãj,0 − X̂jŴ
T
j + δAj+1,0 = Ãj,0 − Ãj,0ŶjŴ

T
j + δAj+1,0 =

= Ãj,0Q̂
T
j + δAj+1,0,

where
‖δ1Aj+1,0‖F ≤ O(b2)ε‖Ãj,0‖F , ‖δ2Aj+1,0‖F ≤ O(b)ε‖Ãj,0‖F ,

which implies
‖δAj+1,0‖F ≤ O(b2n)ε‖Ãj,0‖F .

On the other hand, for V̂j,k = I`⊕ V̂j,k, Q̂j = V̂j,b · · · V̂j,1 and Q̃j, we can write once
more

Ãj+1,0 = �(Ãj,0Q̃
T
j ) = �(Ãj,0 − �(X̃jW̃

T
j )) =

= Ãj,0 − X̂jŴ
T
j + δAj+1,0 =

= Ãj,0 − X̂j( : , 1: k − 1)Ŵj( : , 1: k − 1)T − X̂j( : , k : b)Ŵj( : , k : b)T +

+δAj+1,0 =

= [Ãj,0 − X̂j( : , 1: k − 1)Ŵj( : , 1: k − 1)T ]V̂j,k · · · V̂j,b + δAj+1,0,

and
F = ((· · · (((Ãj,0 − X̂j( : , 1: k − 1)Ŵj( : , 1: k − 1)T )V̂j,k · · · V̂j,b + δAj+1,0) ·

·Q̂T
j+1 + δAj+2,0) · · · ) · Q̂T

nu−1 + δAg+1,r−2)Q̂
T
nu

+ δAg+1,r−1 =

= (Ãj,0 − X̂j( : , 1: k − 1)Ŵj( : , 1: k − 1)T )V̂j,k · · · V̂j,bQ̂
T
j+1 · · · Q̂T

nu
+

+

g∑
i=j+1

δAi+1,0Q̂
T
i+1 · · · Q̂T

nu
+

r−1∑
i=1

δAg+1,iQ̂
T
g+i+1 · · · Q̂T

nu
=

= (Ãj,0 − X̂j( : , 1: k − 1)Ŵj( : , 1: k − 1)T )V̂j,k · · · V̂j,bQ̂
T
j+1 · · · Q̂T

nu
+ δ1F

(j),

(3.77)
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where nu = g + r − 1 is the total number of update steps, and

‖δ1F
(j)‖F ≤ [O((g − j) · b2 · n) + O((n− gb)n)]ε‖A‖F ≤ O(b · n2)ε‖A‖F . (3.78)

If we put all this together, for V̂
(`)
j,i = I(i−k) ⊕ V̂j,i ∈ R(n−`)×(n−`) and Q̂

(`)
i = Q̂i(` +

1: n, ` + 1: n), where i = k + 1, . . . , b, from (3.77), (3.78), (3.74), (3.75) and (3.76) we
will obtain

ũT
` Ãg+1,r−1( : , ` + 1: n) = ũT

` F ( : , ` + 1: n) =

= ũT
` [(Ãj,0( : , ` + 1: n)− X̂j( : , 1: k − 1)Ŵj(` + 1: n, 1: k − 1)T ) ·

V̂j,kV̂
(`)
j,k+1 · · · V̂(`)

j,b(Q̂
(`)
j+1)

T · · · (Q̂(`)
nu

)T ( : , ` + 1: n) + δ1F
(j)( : , ` + 1: n)] =

= (z̃T
j,k − δẑT

j,k)V̂j,kV̂
(`)
j,k+1 · · · V̂(`)

j,b(Q̂
(`)
j+1)

T · · · (Q̂(`)
nu

)T ( : , ` + 1: n) + δ3ẑ
T
j,k =

= [‖z̃j,k‖2 0 · · · 0]V̂
(`)
j,k+1 · · · V̂(`)

j,b(Q̂
(`)
j+1)

T · · · (Q̂(`)
nu

)T ( : , ` + 1: n) + δ4ẑ
T
j,k,

where
‖δ3ẑj,k‖2 ≤ O(b · n2)ε‖A‖F ,

so
‖δ4ẑ`‖2 ≤ O(b2n + bm + bn2)ε‖A‖F .

Because V̂
(`)
j,k+1,. . . ,V̂

(`)
j,b , Q̂

(`)
j+1,. . . ,Q̂

(`)
nu does not have any e�ect on the `-th coordinate

(the 1-st coordinate of z̃j,k) and they do not mix it with other coordinates, we can
conclude that

ũT
` Ãg+1,r−1( : , ` + 1: n) = [‖z̃j,k‖2 0 · · · 0] + δ4ẑ

T
j,k,

and
ũT

` Ãg+1,r−1( : , ` + 2: n) = δ4ẑj,k(2 : n− `)T .

Finally we obtain the result

‖ũT
` Ãg+1,r−1( : , ` + 2: n)‖2 ≤ O(b2n + bm + bn2)ε‖A‖F .

Now we can �nally state the main theorem.

Theorem 3.6.4. If B̃ is the bidiagonal matrix computed by Algorithm 3.5.1, then there
exist an orthogonal (m + n) × (m + n) matrix P̂, an orthogonal n × n matrix V̂ and
backward perturbations ∆A, δA such that

[
B̃
0

]
= P̂T

[
∆A

A + δA

]
V̂ ,

∥∥∥∥
[

∆A
δA

]∥∥∥∥
F

≤ ξ‖A‖F , (3.79)

where 0 ≤ ξ ≤ O(b(mn+n3))ε. The computed approximation Ṽ of the matrix V̂ satis�es
‖Ṽ − V̂ ‖F ≤ O(n2)ε. Further, there exist an orthonormal Û and a perturbation δÂ such
that

A + δÂ = ÛB̃V̂ T , ‖δÂ‖F ≤
√

2ξ‖A‖F . (3.80)
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Proof. The proof is rather technical and we will divide it into three steps.
1. Step: The Householder transformations

We will set F = �(AV ) = Ãg+1,r−1, ` = (j−1)b+k and r = n−gb, where Ãg+1,r−1

is the result of Algorithm 3.5.1 performed in �nite precision arithmetic. Thus, in
�oating point computation we can use f` = F ( : , `) instead of

f` =





Ãj,k( : , `) for j = 1, . . . g, k = 1, . . . , b, ` = 1, . . . , gb

Ãg+1,k( : , `) for k = 1, . . . , r − 1, ` = gb + 1, . . . , n− 1

Ãg+1,r−1( : , n) for ` = n,

because the denoted column will not be modi�ed in successive steps of the algo-
rithm (see Figure 3.8).
In this step of the proof we will analyze the application of Householder re�ectors
to the matrix A, in �oating point arithmetic. This application is divided into g
steps, where b columns of F are computed in each step, and in r remaining steps,
where only one column of F is computed per step. First, we are investigating the
computations performed in one block j ∈ {1, 2, . . . , g}.
Lemma 3.6.1 gives the following error estimation:

X̃j( : , 1: k) = Ãj,0Ŷj( : , 1: k) + δX̂j( : , 1: k),

where

‖δX̂j( : , 1: k)‖F =

√√√√
k∑

i=1

‖δX̂j( : , i)‖2
2 ≤ O(k

3
2 n)ε‖Ãj,0‖F ,

and
W̃j( : , 1: k) = Ŵj( : , 1: k) + δŴj( : , 1: k),

where
‖δŴj( : , 1: k)‖F ≤ O(

√
kn)ε.

The only thing that remains to be checked is the error in the application of House-
holder re�ectors to the matrix A. For X̂j, X̃j ∈ Rm×b and Ŵj, W̃j ∈ Rn×b, from
the proof of Lemma 3.6.3 it follows that

Ãj+1,0 = Ãj,0Q̂
T
j + δAj+1,0,

where Q̂j = I − ŴjŶ
T
j , X̂j = Ãj,0Ŷj, and

‖δAj+1,0‖F ≤ O(b2n)ε‖Ãj,0‖F .

Finally, we obtain the result for F = Ãg+1,r−1, where the �rst g updates are
performed as shown above, and the last r − 1 = n − gb − 1 updates can be
considered in the same framework but with b = 1. Let us denote nu = g + r − 1
as the total number of update steps. First we note that for j = 1, . . . , g

‖Ãj+1,0‖F ≤ ‖Ãj,0‖F + O(ε) ≤ ‖Ãj−1,0‖F + O(ε) ≤ · · · ≤ ‖Ã2,0‖F + O(ε) ≤
≤ ‖A‖F + O(ε).
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The same applies to the rest of the updates

‖F‖F ≤ ‖Ãg+1,r−2‖F + O(ε) ≤ · · · ≤ ‖Ãg+1,1‖F + O(ε) ≤ ‖Ãg+1,0‖F + O(ε) ≤
≤ ‖A‖F + O(ε).

Then, by induction we have

F = ((· · · ((AQ̂T
1 + δA2,0)Q̂

T
2 + δA3,0) · · · )Q̂T

nu−1 + δAg+1,r−2)Q̂
T
nu

+ δAg+1,r−1 =

= AQ̂T
1 Q̂T

2 · · · Q̂T
nu

+

g∑
j=1

δAj+1,0Q̂
T
j+1 · · · Q̂T

nu
+

r−1∑

k=1

δAg+1,kQ̂
T
g+k+1 · · · Q̂T

nu
=

= AV̂ + δ1F

where

‖δ1F‖F ≤ [O(g · b2 · n) + O((n− gb)n)]ε‖A‖F ≤ O(bn2)ε‖A‖F .

At the end of this step of the proof, for V̂ = Q̂T
1 Q̂T

2 · · · Q̂T
nu

we can state that

F = (A + δ1A)V̂ , ‖δ1A‖F ≤ ηF‖A‖F , ηF ≤ O(bn2)ε,

where δ1A = δ1F · V̂ T .

Step 2: The Gram�Schmidt orthogonalization and estimation of the
backward error

This step is equivalent to Step 2 in the proof of Theorem 3.2.6. Since the com-
putation of B̃ from F = [f1, . . . , fn] corresponds to the modi�ed Gram�Schmidt
algorithm, we can use the results from [6] and represent the computation in an
equivalent form, as the Householder QR factorization of the augmented matrix

[
0
F

]
=

[
0

A + δ1A

]
V̂ .

By Lemma 3.6.2, the following relations hold
[

φ̃k+1ek + ψ̃k+1ek+1

0

]
= P̂k+1P̂k

{[
0

fk+1

]
+

[
∆fk+1

δfk+1

]}
,

∥∥∥∥
[

∆fk+1

δfk+1

]∥∥∥∥
2

≤ O(bm)ε‖F‖F ,

where
P̂k = Im+n −

[ −ek

ûk

] [ −eT
k ûT

k

]
,

and ûk = s̃k/‖s̃k‖2 is the exact vector with ‖ûk‖2 = 1. Putting all columns of B̃
together, we get

[
B̃
0

]
=

[[
ψ̃1e1

0

]
,

[
φ̃2e1 + ψ̃2e2

0

]
, . . . ,

[
φ̃nen−1 + ψ̃nen

0

]]
=

=

[
P̂1

[
∆f1

f1 + δf1

]
, P̂2P̂1

[
∆f2

f2 + δf2

]
, . . . , P̂nP̂n−1

[
∆fn

fn + δfn

]]
,
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and by using the fact that

P̂i

[
B̃( : , j)

0

]
=

[
φ̃jej−1 + ψ̃jej

0

]
=

[
B̃( : , j)

0

]
, for all i 6= j, j − 1,

we obtain
[

B̃
0

]
=

[
P̂nP̂n−1 · · · P̂2P̂1

[
∆f1

f1 + δf1

]
, P̂nP̂n−1 · · · P̂2P̂1

[
∆f2

f2 + δf2

]
,

P̂nP̂n−1 · · · P̂3P̂2

[
∆f3

f3 + δf3

]
, P̂nP̂n−1 · · · P̂4P̂3

[
∆f4

f4 + δf4

]
,

· · · , P̂nP̂n−1P̂n−2

[
∆fn−1

fn−1 + δfn−1

]
, P̂nP̂n−1

[
∆fn

fn + δfn

]]
.

The k�th column of the computed bidiagonal matrix is of the form

P̂nP̂n−1 · · · P̂kP̂k−1

[
∆fk

fk + δfk

]
,

and the desired form is

P̂nP̂n−1 · · · P̂2P̂1

[
∆̂fk

fk + δ̂fk

]
= P̂T

[
∆̂fk

fk + δ̂fk

]
, P = P̂1P̂2 · · · P̂n−1P̂n.

The �rst two columns (k = 1, 2) are already in the desired form and ∆̂fk = ∆fk,
δ̂fk = δfk. For k ≥ 3 we write

[
B̃( : , k)

0

]
= (P̂nP̂n−1 · · · P̂kP̂k−1

I︷ ︸︸ ︷
P̂k−2 · · · P̂2P̂1)(P̂1P̂2 · · · P̂k−2)

[
∆fk

fk + δfk

]
,

and then

P̂1P̂2 · · · P̂k−2

[
∆fk

fk + δfk

]
=

[
0
fk

]
+

[
∆1fk

δ1fk

]
+ P̂1

[
∆2fk

δ2fk

]
+ P̂1P̂2

[
∆3fk

δ3fk

]
+ · · ·

· · ·+ P̂1 · · · P̂k−3

[
∆k−2fk

δk−2fk

]
+ P̂1 · · · P̂k−2

[
∆fk

δfk

]
=

=

[
0
fk

]
+

[
∆̂fk

δ̂fk

]
,

where [
∆jfk

δjfk

]
=

[
ej

−ûj

]
(ûT

j fk), j = 1, . . . , k − 2,

and with
[

∆̂fk

δ̂fk

]
= P̂1 · · · P̂k−2

[
∆fk

δfk

]
+

[
∆1fk

δ1fk

]
+

k−2∑
j=2

P̂1 · · · P̂j−1

[
∆jfk

δjfk

]
.
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Hence,
[

B̃
0

]
= P̂T

[[
∆̂f1

f1 + δ̂f1

]
, . . . ,

[
∆̂fk

fk + δ̂fk

]
, . . . ,

[
∆̂fn

fn + δ̂fn

]]
=

= P̂T

{[
0
F

]
+

[
∆F
δF

]}
,

where, after suitable reordering of the entries in the sums,
[

∆F
δF

]
=

[[
∆f1

δf1

]
,

[
∆f2

δf2

]
, . . . , P̂1 · · · P̂k−2

[
∆fk

δfk

]
, . . . , P̂1 · · · P̂n−2

[
∆fn

δfn

]]
+

+
n−2∑

j=1

P̂1 · · · P̂j−1


0, . . . , 0︸ ︷︷ ︸

j+1

,

[
∆jfj+2

δjfj+2

]
, . . . ,

[
∆jfn

δjfn

]



Taking norms, we obtain
∥∥∥∥
[

∆F
δF

]∥∥∥∥
F

≤ O(bm
√

n)ε‖F‖F +
√

2
n−2∑
j=1

‖ûT
j

[
fj+2 fj+3 . . . fn

] ‖2 ≤

≤ O(bm
√

n)ε‖F‖F +
√

2
n−2∑
j=1

(‖ũT
j Ãg+1,r−1( : , j + 2: n)‖2 +

+‖δûj‖2‖F ( : , j + 2: n)‖F ).

It remains to estimate the products ũT
i f` for ` = 3, . . . , n and i = 1, . . . , ` − 2,

where ` = (j − 1)b + k, k = 1, . . . , b. For this estimate, the important role plays
the choice of the vector zj,k. From Lemma 3.6.3 it follows that

‖ũT
` Ãg+1,r−1( : , ` + 2: n)‖2 ≤ O(b2n + bm + bn2)ε‖A‖F .

Then,
∥∥∥∥
[

∆F
δF

]∥∥∥∥
F

≤ O(b(mn + n3))ε‖F‖F ≤ O(b(mn + n3))(1 + ηF )‖A‖F .

To get the relation (3.79), we collect the perturbations from both implicit tridiag-
onalization and the Gram-Schmidt computation,

[
B̃
0

]
= P̂T

{[
0
F

]
+

[
∆F
δF

]}
= P̂T

{[
0

A + δ1A

]
V̂ +

[
∆F
δF

]}

= P̂T

{[
0

A + δ1A

]
+

[
∆F
δF

]
V̂ T

}
V̂ .

Step 3: The �nal result
Finally, using P11 = P(1 : n, 1: n), P21 = P(n + 1: n + m, 1: n), we have

[
∆A

A + δA

]
V̂ =

[ P11

P21

]
B̃, PT

11P11 + PT
21P21 = I,
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and relation (3.80) follows by an application of [6, Lemma 3.1]. The proof that
relation (3.80) holds for the non-block version of the algorithm is given in Theorem
3.2.6 and in Theorem 3.18 [2]. The same arguments can be applied to the block
version.

In our numerical experiments, the optimal choice for the block dimension b was
mostly 16, so the result of Theorem 3.6.4 is close to the result of Theorem 3.2.6.

Example 3.6.5. Let A = [aij] be the n× n Kahan matrix as in [2], with

aij =

{
αi−1 i = j

−αj−1β i > j
,

where α2 + β2 = 1 and α, β > 0. For our tests we chose α = sin(1.2) and n =
50, 60, . . . , 200. In this case the matrices are ill-conditioned, whose �rst n − 1 singular
values gradually decay and are bounded away from zero. On the other hand, the smallest
singular value decays rapidly with n.

We compare the accuracy of Algorithm 3.5.1 with Algorithm 3.1.1 and Ralha's one�
sided bidiagonalization, by measuring the Wielandt�Ho�man measure

√√√√
n∑

k=1

(σk(A)− σ(B))2

‖A‖F

. (3.81)

The singular values σk(A) of the matrix A are computed by the MATLAB command
svd(). The results are shown in Figure 3.9.

We can note that Algorithm 3.5.1 sometimes produces the bidiagonal matrix B with
slightly less accurate singular values, than Algorithm 3.1.1. Theorem 3.6.4 asserts that
the bound on (3.81) for Algorithm 3.5.1 is b times larger than the corresponding bound
for Algorithm 3.1.1, where b is the block dimension. In our case we took b = 16. If we
compare the computed errors measured by (3.81), we can see that the largest di�erence
is obtained for n = 180, where the error of Algorithm 3.5.1 is 1.67 times larger than the
error of Algorithm 3.1.1. In this case, the estimation of the error bounds on (3.81) from
Theorem 3.2.6 and Theorem 3.6.4 are :

Algorithm 3.1.1 Algorithm 3.5.1

(n2 + n3)ε = 6.51 · 10−10 b(n2 + n3)ε = 1.04 · 10−8

Hence, our computed errors satisfy both of the theorems.

Remark 3.6.6. The statements of Corollary 3.2.13, Corollary 3.2.14, Corollary 3.2.17
and Proposition 3.2.18 still hold for Algorithm 3.5.1, only the bounds are multiplied by
the block dimension b.
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Figure 3.9: Error in singular values from Example 3.6.5.

3.7 E�ciency of the Block Version
For the block version of Barlow's one�sided bidiagonalization, extensive testing was
carried out, too. Computations where performed in the same laboratory as before, and
with the same type of matrices.

The block dimension b in the tests was chosen to obtain the best execution time. In
our case it turned out to be b = 16. The in�uence of the parameter c on the execution
time was negligible. In our tests we took c = 8. Table 3.4 gives average execution times
for full SVD algorithms, expressed in seconds.

m × n t1 t2 tL p2,L p2,1

100 × 100 0.01 0.01 0.01 0.00% 0.00%
200 × 200 0.14 0.13 0.15 13.33% 7.14%
500 × 50 0.01 ∗0.01 0.01 0.00% 0.00%
500 × 100 0.05 ∗0.04 0.04 0.00% 20.00%
500 × 500 3.87 3.40 3.63 6.34% 16.02%

1000 × 100 0.14 ∗0.09 0.09 0.00% 35.71%
1000 × 500 6.19 ∗4.04 4.45 9.21% 35.06%
1000 × 1000 39.19 34.55 37.43 7.69% 12.96%
2000 × 200 1.46 ∗0.58 0.60 3.33% 46.30%
2000 × 1000 55.25 ∗39.22 41.20 4.81% 28.27%
2000 × 2000 359.05 324.59 336.49 3.54% 12.22%
3000 × 3000 1514.46 1261.34 1318.24 4.32% 17.81%

Table 3.4: Average execution times for full SVD algorithms.
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The meaning of the headers in Table 3.4 are as follows:
t1 � the SVD with Algorithm 3.1.1 for bidiagonalization.

The LAPACK routine sbdsqr() is used for the
SVD of a bidiagonal matrix, which implements the
bidiagonal QR algorithm.

t2 � the SVD with Algorithm 3.5.1 for bidiagonalization.
The LAPACK routine sbdsqr() is used for the
SVD of a bidiagonal matrix, which implements the
bidiagonal QR algorithm.

tL � the LAPACK sgesvd() routine.
p2,L = 100(tL − t2)/tL � the percentage of time decrease, when the SVD

with Algorithm 3.5.1 is compared to the LAPACK
routine.

p2,1 = 100(t1 − t2)/t1 � the percentage of time decrease, when the SVD
with Algorithm 3.5.1 is compared to the SVD with
Algorithm 3.1.1.

∗ � QR factorization is performed before the SVD as it
is in sgesvd().

We can conclude that the block version of the one�sided bidiagonalization algorithm
did decrease the execution time of Algorithm 3.1.1, as expected. Compared to the SVD
with Algorithm 3.1.1 the most signi�cant time decrease is 46.30% for matrix dimensions
2000× 200. The SVD routine with Algorithm 3.5.1 produces a code that is not slower
than the LAPACK sgesvd() routine in case when all of the SVD factors are required,
although this varies with the dimensions of the matrix. In many cases we observed
some gains in speed. If the matrix U is not needed then the advantage of the one�sided
bidiagonalization over the LAPACK routine might be lost. That happens because U
is always computed, whether it is needed or not (see [2, Table 1]). When solving the
problems described in Section 3.3 ([8]), our algorithm would be preferable.

3.8 Parallel Version
The parallel bidiagonalization algorithm is performed on several processors simultane-
ously. Each matrix is distributed over the memories of processors, and this distribution
is balanced. This means that the dimensions of the submatrices assigned to each proces-
sor are almost the same. The communication between processors is optimized, because
interprocessor communication is most time consuming.

In our case we used following propositions:

• the processors were organized in linear order,

1 ←→ 2 ←→ 3 ←→ 4
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• we used ScaLAPACK [7] for the computation,

• we used MPI [38] for interprocessor communication.

The matrix distribution over the process is performed row-wise, because the algo-
rithm is one�sided and column oriented.

A =

1
2
3
4
5
6
7
8

−→

1 1
5
l

2 2
6
l

3 3
7
l

4 4
8

Figure 3.10: The block distribution of the matrix A

The most important features of the parallel version of the Barlow bidiagonalization
algorithm are the following:

1. The matrix layout is one-dimensional block-cyclic row distribution. Each m × n
matrix is divided in mb × n blocks of continuous rows, where mb is block row
dimension. Then, the blocks are distributed across the processors in cyclic order,
which guarantees good load balancing (see [7]).

2. The algorithm is performed in the same way as Algorithm 3.1.1 for φk+1 = γk, with
extra interprocessor communication. Interprocessor communication is required for:

• computation of zk as matrix�vector multiplication,
• broadcasting Householder vector vk to all processors,
• broadcasting φk+1,
• computing scalar products.

The rest of the computations consists of BLAS 1 operations (operations with
vectors), as well as computation and application of Householder re�ectors, which
need no communication.

The complete parallel algorithm with explanations is listed in Algorithm 3.8.1.

Algorithm 3.8.1 (The parallel Barlow one-sided bidiagonalization). For A ∈
Rm×n, rank(A) = n > 2, this algorithm computes in parallel an orthonormal U =
[u1, . . . , un], a bidiagonal B and an orthogonal V such that A = UBV T .
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(1) Distribute Ψ = [ ψ1 . . . ψn ]T over the processors;
(2) Distribute Φ = [ φ1 . . . φn−1 ]T over the processors;
(3) A0 = A;
(4) f1 = A( : , 1); ψ1 = ‖f1‖2; Parallel dot product;
(5) u1 = f1/ψ1; BLAS 1 operation

without communication;
for k = 1: n− 2

(6) zk = Ak−1( : , k + 1: n)T uk; Parallel matrix-vector product
the resulting vector is stored in
one processor;

(7) [φk+1, vk] = householder(zk); Computation performed on one
processor;

(8) Ak( : , 1: k) = Ak−1( : , 1: k);
(9) Ak( : , k + 1: n) = Ak−1( : , k + 1: n)− Ak−1( : , k + 1: n)vkv

T
k ;

vk broadcasted to all processors,
parallel update;

(10) fk+1 = Ak( : , k + 1);
(11) Broadcast φk+1 to all processors;
(12) sk+1 = fk+1 − φk+1uk; BLAS 1 operation

without communication;
(13) ψk+1 = ‖sk+1‖2; Parallel dot product;
(14) uk+1 = sk+1/ψk+1; BLAS 1 operation

without communication;
end;
(15) fn = An−2( : , n); φn = uT

n−1fn; Parallel dot product;
(16) sn = fn − φnun−1; BLAS 1 operation

without communication;
(17) ψn = ‖sn‖2; Parallel dot product;
(18) un = sn/ψn; BLAS 1 operation

without communication;
(19) V T = householder_product(v1, . . . , vn−2) Parallel computation;
end.

3.9 Numerical Stability of the Parallel Version

The parallel version of Barlow's bidiagonalization algorithm performs the same opera-
tions as the serial non-block version. Preliminary numerical experiments showed that a
parallel block version has a large overhead on our computers, thus it was almost always
slower than the ScaLAPACK routine. The results of Theorem 3.2.6 hold for this version
as well.
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3.10 E�ciency of the Parallel Version

The tests for the parallel version of the Barlow bidiagonalization algorithm were done
over a large variety of matrix dimensions. The computations were performed in the
same laboratory as before and matrices were generated as described in Section 3.4. QR
factorization was not performed before bidiagonalization, because Algorithm 3.8.1 is
suitable for the parallel computing just the way it is. The QR factorization would just
increase the interprocessor communication. The linear layout of the processors may
not always be optimal for the ScaLAPACK routine, so we performed our test with all
possible layouts for the �xed processor number and we chose the best execution time.
Table 3.5 gives the average execution times expressed in seconds for full SVD algorithms
when computed on p processors. In fact, this time represents the worst time on all p
processors.

m × n p t3 pm×pn tS p3,S η3,p ηS,p

1000 × 100 4 0.26 4×1 0.60 56.67% 0.0865 0.0375
1000 × 500 4 3.11 4×1 4.95 37.17% 0.3248 0.2247
1000 × 1000 4 12.08 4×1 16.66 27.49% 0.7150 0.5617

8 9.37 4×2 18.25 48.66% 0.4609 0.2564
16 8.08 16×1 19.52 58.61% 0.2672 0.1198

2000 × 200 4 0.80 4×1 1.65 51.51% 0.1812 0.0909
2000 × 1000 4 16.09 4×1 19.25 16.42% 0.6094 0.5351

8 11.73 4×2 20.36 42.39% 0.4179 0.2529
2000 × 2000 4 98.47 4×1 109.95 10.44% 0.8241 0.7651

8 48.98 4×2 66.90 26.79% 0.8284 0.6287
16 30.93 16×1 58.90 47.49% 0.6559 0.3571

4000 × 200 8 1.10 8×1 2.69 59.11% � �
4000 × 1000 8 15.66 8×1 21.64 27.63% � �

16 11.47 16×1 22.11 48.12% � �
4000 × 4000 8 420.96 8×1 448.84 6.21% � �

16 178.91 4×4 236.47 24.34% � �
5000 × 100 8 0.45 8×1 1.76 74.43% � �
5000 × 1000 16 12.38 16×1 22.68 45.41% � �
5000 × 5000 16 362.16 4×4 435.27 16.80% � �
8000 × 1000 16 16.47 16×1 25.10 34.38% � �
8000 × 8000 16 2335.30 4×4 2445.79 4.52% � �

10000 × 1000 16 18.26 16×1 26.20 30.31% � �
10000 × 10000 16 3324.75 4×4 3395.03 2.07% � �

Table 3.5: Average execution times for full parallel SVD algorithms.

The meaning of the headers in Table 3.5 are as follows:
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t3 � the parallel SVD with Algorithm 3.8.1.
pm × pn � processor layout with the best execution time

of the ScaLAPACK routine.
tS � the ScaLAPACK psgesvd() routine.
p3,S = 100(tS − t3)/tS � the percentage of time decrease, when the parallel

SVD with Algorithm 3.8.1 is compared to the
ScaLAPACK routine.

η3,p = (t2/t3)/p � the e�ciency of the parallel SVD with
Algorithm 3.8.1 on p processors.

ηS,p = (tL/tS)/p � the e�ciency of the ScaLAPACK routine on p
processors.

As we can see from Table 3.5, we accomplished a considerable decrease in execution
time. The SVD with the described parallel version of the one�sided bidiagonalization
algorithm is much faster than the ScaLAPACK routine psgesvd(). Compared to the
ScaLAPACK routine, the most signi�cant time decrease is 74.43% for matrix dimensions
5000× 100 and for 8 processors.

Another important feature of parallel algorithms is the e�ciency. In ideal situa-
tion an algorithm executed on p processors should be p times faster than the same
algorithm executed on only one processor. The e�ciency measures departure from the
ideal execution time. Table 3.5 shows the e�ciency for both SVD algorithms applied
to matrices with small dimensions. In case of larger dimensions we were not able to
apply the algorithms on a single processor due to memory limitation, and therefore the
e�ciency is not computed. We can see that the parallel SVD with Algorithm 3.8.1
has better e�ciency than the ScaLAPACK routine psgesvd(). The new algorithm has
also better scalability than the ScaLAPACK routine, which is illustrated in Figure 3.11.
The y axis in Figure 3.11 represents the reduction factor in execution time when the
number of processors is doubled and the matrix dimensions are �xed. The labels on
the x axis denote matrix dimensions and ratios p1/p2, which indicate that the number
of processors is increased from p1 to p2. We can conclude that in all observed cases
the parallel SVD algorithm with the one�sided bidiagonalization reduces the execution
time by larger factor than the corresponding ScaLAPACK routine. In ideal situation
this factor should be equal to 2, and in our test we obtained the optimal factors 2.35 for
the SVD algorithm with the one�sided bidiagonalization, and 1.90 for the ScaLAPACK
psgesvd() routine. The both optimal factors were obtained for a 4000 × 4000 matrix,
when going from 8 to 16 processors. We can also observe that the e�ciency degrades
more rapidly for the ScaLAPACK routine than for Algorithm 3.8.1 when the number of
processors is increasing.
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Figure 3.11: Reduction in execution time in case when the number of processors is
doubled.



Chapter 4

The Symmetric Eigenvalue Problem

4.1 De�nitions and Properties
Many mathematical models originating from physics and engineering reduce to eigen-
value problems, like solving the Helmholtz equation concerning electro-magnetic waves,
determining vibration frequencies in structural mechanics, or partitioning a set of objects
into di�erent groups. The discretization of a di�erential equation in a physical model,
or matrix interpretation of a problem in graph theory, result with a matrix eigenvalue
problem. Matrices obtained in this way are usually very large and structured. Modern
computers allow us to solve such large problems, with specially designed methods for
large and structured matrices. Most of these methods are iterative, so special attention
must be paid to their accuracy and e�ciency.

Let us start with a de�nition.

De�nition 4.1.1. Let A ∈ Cn×n. Scalar λ ∈ C is called eigenvalue of A, if there
exists a vector u ∈ Cn, u 6= 0, such that

Au = λu.

Vector u is called the eigenvector belonging to the eigenvalue λ.

We will be mostly concerned with real symmetric matrices, that is

• A ∈ Rn×n,

• AT = A,

and they possess very convenient properties, regarding eigenvalues and eigenvectors.

Theorem 4.1.2 ([78, p. 7]). All eigenvalues of real symmetric matrices are real.

As a result of Theorem 4.1.2, we may label eigenvalues of a symmetric matrix in
increasing order

λ1 ≤ λ2 ≤ · · · ≤ λn. (4.1)
If u1, . . . , un are the corresponding eigenvectors, then they are orthogonal.

140
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Theorem 4.1.3 ([78, p. 7]). If λk 6= λj then uT
k uj = 0.

Note that Theorem 4.1.3 claims that only the eigenvectors belonging to di�erent
eigenvalues are orthogonal. When an eigenvalue is multiple, then speci�c subspaces
must be introduced. The null space of A− λI

Nλ = {x ∈ Rn : (A− λI)x = 0}

is called the eigenspace belonging to λ, and represents an invariant subspace. The
multiplicity of λ is the dimension of Nλ. The consequence of the next theorem is that
all invariant subspaces are spanned by eigenvectors.

Theorem 4.1.4 (The spectral theorem [78, p. 7]). Let A ∈ Rn×n be a symmetric
matrix, then there exist an orthogonal matrix U = [u1, . . . , un] ∈ Rn×n and a diagonal
matrix Λ = diag(λ1, . . . , λn) ∈ Rn×n such that

A = UΛUT =
n∑

i=1

λiuiu
T
i .

Scalars λ1, . . . , λn are eigenvalues of A, and vectors u1, . . . , un are orthonormal eigen-
vectors of A.

Matrices that originate from physical models are often symmetric matrices with one
more property.

De�nition 4.1.5.

• Symmetric matrix A ∈ Rn×n is called positive de�nite if xT Ax > 0 for all
x ∈ Rn, x 6= 0.

• Symmetric matrix A ∈ Rn×n is called positive semide�nite if xT Ax ≥ 0 for all
x ∈ Rn.

Such matrices have speci�c eigenvalues:

Corollary 4.1.6.

• All eigenvalues of symmetric positive de�nite matrices are positive.

• All eigenvalues of symmetric positive semide�nite matrices are nonnegative.

Proof. Let ui ∈ Rn×n be an eigenvector from Theorem 4.1.4. Then

• 0 < uT
i Aui = λi

• 0 ≤ uT
i Aui = λi
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Recall that, by Theorem 2.1.6 and Theorem 2.1.7, squares of singular values of
a rectangular matrix A correspond to eigenvalues of symmetric positive semide�nite
matrices AT A and AAT , and singular values of A correspond to eigenvalues of the
Jordan�Wielandt matrix up to the sign.

There are many important properties of eigenvalues of a symmetric matrix. First of
them claims that these eigenvalues satisfy the following �minimax� characterization.

Theorem 4.1.7 (Courant�Fischer Minimax Theorem [35, p. 411]). If A ∈ Rn×n

is symmetric, with eigenvalues ordered as in (4.1), then

λk = min
S⊂Rn

dim(S)=k

max
x∈S

‖x‖2=1

xT Ax, k = 1, . . . , n.

Some other properties follow from the previous theorem.

Corollary 4.1.8 ([35, p. 411]). If A ∈ Rn×n and A + E ∈ Rn×n are symmetric
matrices, then

λi(A) + λ1(E) ≤ λi(A + E) ≤ λi(A) + λn(E), i = 1, . . . , n,

where λi(M), i = 1, . . . , n are eigenvalues of the matrix M , ordered as in (4.1).

Corollary 4.1.9 (Interlacing Property [35, p. 411]). If Ak denotes a k × k prin-
cipal submatrix of a symmetric matrix A ∈ Rn×n, then for k = 1, . . . , n the following
interlacing property holds:

λi(A) ≤ λi(Ak) ≤ λi+n−k(A), i = 1, . . . , k,

where λi(M), i = 1, . . . , are eigenvalues of the matrix M , ordered as in (4.1).

Theorem 4.1.10 (Ky�Fan Minimum Property [49, p. 229]). If A ∈ Rn×n is
symmetric, with eigenvalues ordered as in (4.1), then for k = 1, . . . , n the following
equation holds

k∑
i=1

λi = min
X∈Rn×k

XT X=Ik

trace(XT AX).

Moreover,
k∑

i=1

λi = min
X∈Rn×k

rank(X)=k

trace((XT X)−1(XT AX)).

4.2 Applications of Eigenvalues and Eigenvectors
Many problems in physics are approximated by an discretized eigenvalue problem in a
�nite dimensional space. This means that the solution approximation is obtained by
�nding some subset of eigenvalues and corresponding eigenvectors of a symmetric matrix.
In this subsection several examples will be presented, which illustrate application of
eigenvalues and eigenvectors in other �elds of science.
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4.2.1 Propagation of Electro-Magnetic Waves
(Helmholtz Equation)

In this example we will try to determine propagating modes in an optical structure,
which are invariant with respect to one spatial direction. Under certain model sim-
pli�cations, the problem will be transformed into an eigenvalue problem of a scalar
Helmholtz equation, and then it will be discretized by means of �nite elements into a
matrix eigenvalue problem (see [30]).

The propagation of light waves in optic components is described through the Maxwell
equations for nonmagnetic and free of charge media. If we assume that electric and mag-
netic �elds have harmonic time dependency, then the time stationary Maxwell equations
are obtained, with the following form

∇× ~E = −iωµ ~H

∇× ~H = (iωε + σ) ~E

∇ · ε ~E = 0

∇ · ~H = 0

(4.2)

where ~E denotes an electric and ~H a magnetic vector �eld in a speci�c position, and
parameter ω is the angular frequency. The dielectric number ε and the conductivity σ of
the medium depend on the spatial position and angular frequency, and the permeability
µ is the spatial constant. The elimination of the electric �eld from (4.2) will produce a
stationary vector wave equation for the magnetic �eld

−∆ ~H − ω2ε̃µ ~H = ∇ log ε̃×∇× ~H, (4.3)

where ε̃ = ε − iω−1σ is the complex dielectric number. The electric �eld ~E can be
computed from the second Maxwell equation in (4.2).

Since the dielectric number depends very weakly on the position in the observed
optical structure, the right side of equation (4.3) can be neglected. Then, the vector
Helmholtz equation is obtained

−∆ ~H − ω2ε̃µ ~H = 0, (4.4)

which is the basis for the simulation of the most important optical components. The
equation (4.4) holds for each component of the magnetic �eld. So, there is no di�erence
among them and it is su�cient to observe only the scalar Helmholtz equation

−∆H − ω2ε̃µH = 0. (4.5)

Further characteristic of the observed optical components is their invariance in one
spatial direction. This means that the geometry of the structure changes very little or
not at all in one direction (see Figure 4.1). Next, we will choose a coordinate system,
so that this particular direction coincides with the z-coordinate direction. Then the
dielectric number ε̃ depends only on coordinates x and y, and angular frequency ω. To
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Figure 4.1: A typical structure in optics is a ribbed wave conductor.

determine propagating modes, the magnetic �eld component H will take the following
appropriate form

H(x, y, z) = Au(x, y)e−ikz, (4.6)
where the real part of k denotes phase velocity, and the imaginary part of k gives
information about damping and ampli�cation in the propagation direction. If we put
(4.6) in the equation (4.5) we will obtain an eigenvalue problem of the scalar Helmholtz
equation

−∆u− ω2ε̃µu = −k2u. (4.7)
The problem (4.7) is usually solved on a bounded two-dimensional subset Ω, with an
appropriate boundary condition. We will take the Dirichlet boundary condition u = 0
on ∂Ω. All together we obtained the following problem: to �nd functions u 6= 0 and
numbers λ, which are solutions of the eigenvalue problem

−∆u(x, y)− f(x, y)u(x, y) = λu(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂Ω, (4.8)

where f(x, y) = ω2ε̃(x, y, ω)µ and λ = −k2. Since the dielectric number ε̃ is complex,
the function f accepts complex values, too, so in general the eigenfunctions u and the
eigenvalues λ will also be complex.

For the scalar product in L2(Ω)

〈v, u〉 = 〈v, u〉L2(Ω) =

∫

Ω

v(x, y)u(x, y)d(x, y),

we can introduce an equivalent variational formulation of the equation (4.8)

〈∇w,∇u〉 − 〈w, fu〉 = λ〈w, u〉, ∀w ∈ C∞
0 (Ω). (4.9)
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Two times di�erentiable functions u and numbers λ, which are solutions of (4.8), are
also solutions of (4.9), and vice versa. Now we introduce a sesquilinear form

a(w, u) = 〈∇w,∇u〉 − 〈w, fu〉, (4.10)

so that the variational formulation of the eigenvalue problem reads as follows: u ∈
H1

0 (Ω) \ {0} and λ ∈ C are sought, such that

a(w, u) = λ〈w, u〉, ∀w ∈ H1
0 (Ω), (4.11)

because C∞
0 (Ω) ⊂ H1

0 (Ω) is dense in H1
0 (Ω). The solution of the variational problem is

called the weak solution, u is the right eigenfunction and λ is the eigenvalue.
The variational problem (4.11) can be associated with an adjoint problem: for λ ∈ C,

v ∈ H1
0 (Ω) \ {0} is sought, such that

a(v, w) = λ〈v, w〉, ∀w ∈ H1
0 (Ω), (4.12)

where v is the left eigenfunction. This will lead to equivalent formulation of the adjoint
problem: for λ ∈ C, v ∈ H1

0 (Ω) \ {0} is sought, such that

a∗(w, v) = λ〈w, v〉, ∀w ∈ H1
0 (Ω), (4.13)

where by
a∗(w, v) = a(v, w) = 〈∇w,∇v〉 − 〈w, fv〉

an adjoint sesquilinear form is de�ned. In case when f = f and the function f admits
only real values on Ω, the eigenvalue problem is selfadjoint, which implies

a∗(w, v) = a(w, v), ∀v, w ∈ H1
0 (Ω).

For this case the following theorem can be proven.

Theorem 4.2.1. Let Ω ⊂ R2 be bounded and let the function f : Ω → R be an element
of function space L∞(Ω). Then there exists an orthonormal basis {uj}∞j=1 of L2(Ω), such
that the basis functions uj ∈ H1

0 (Ω) satisfy the following relation

a(w, uj) = λj〈w, uj〉, ∀w ∈ H1
0 (Ω), (4.14)

for all j ∈ N. All eigenfunctions uj are real, and all eigenvalues λj are also real and
ordered as λ1 ≤ λ2 ≤ · · · → ∞.

From now on we will assume that a(w, v) is selfadjoint.
In optics, only a few smallest eigenvalues are of interest, and they are not computed

exactly. The variational problem is used to formulate an approximate problem by means
of �nite elements. The domain Ω is divided into �nite number of triangles tj, as it is done
for the ribbed wave conductor in Figure 4.2. The set of all triangles t = {t1, . . . , tNt} is
called triangulation of Ω. The triangles are disjoint and Ω =

⋃Nt

j=1 tj. The parameter
h denotes the maximal side length of all the triangles from t. A point from Ω is called
a node if it is a corner of a triangle from t. The set o� all nodes p = {p1, . . . , pNp}
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Figure 4.2: Triangulation of the domain Ω.

where pi = (xi, yi), includes N inner nodes which are not in ∂Ω. A function wi(x, y) is
associated with each inner node pi, such that it is linear on each triangle, continuous on
the whole Ω and satis�es

wi(xj, yj) = δij, j = 1, . . . , Np.

The support of wi(x, y) consists of all the triangles which have the point pi as a corner.
The space WN = span{wi}N

i=1 =: Wh is a N -dimensional linear subspace of H1
0 (Ω) and

is called the �nite element space. It consists of piecewise linear functions, which are
continuous on Ω and disappear outside Ω. Each uh ∈ Wh has its unique representation
as

uh =
N∑

i=1

u
(i)
h wi,

where u
(i)
h = uh(xi, yi).

Suppose we want to �nd approximations λj,h ∈ R to eigenvalues λj and uj,h ∈ Wh ⊂
H1

0 (Ω) to eigenvectors uj, for j = 1, . . . , q. Then we will consider functions uj,h 6= 0 and
numbers λj,h which are solutions of the discrete problem

a(wh, uj,h) = λj,h〈wh, uj,h〉, ∀wh ∈ Wh. (4.15)
Further, we de�ne

uj,h =
N∑

i=1

u
(i)
j,hwi =

N∑
i=1

uij,hwi, j = 1, . . . , q,

and obtain equations that are equivalent to (4.15)
N∑

i=1

a(wk, wi)uij,h = λj,h

N∑
i=1

〈wk, wi〉uij,h, k = 1, . . . , N. (4.16)

Now we de�ne matrices
Ah = [a(wk, wi)]k=1,...,N

i=1,...,N
, Uh = [uij,h]i=1,...,N

j=1,...,q
,

Bh = [〈wk, wi〉]k=1,...,N
i=1,...,N

, Λh = diag(λj,h)j=1,...,q,
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so that (4.16) can be written in a compact form as a matrix eigenvalue problem

AhUh = BhUhΛh. (4.17)

The matrices Ah and Bh are sparse, because of the small supports of functions wi. Ah is
Hermitian and is called the system matrix. Bh is a Gram matrix of the basis functions
wi and hence it is Hermitian and positive de�nite. It is called the mass matrix. Since
(4.17) represents a general eigenvalue problem, we will use the Cholesky factorization of
the mass matrix Bh = R∗

hRh, and introduce an N × q matrix of unknowns Xh = RhUh.
Finally we will obtain an equivalent partial eigenvalue problem

ChXh = XhΛh, Ch = R−∗
h AhR

−1
h . (4.18)

Now we see that there is justi�cation for taking λj,h ∈ R, and Xh to be orthonor-
mal. Then, Uh = R−1

h Xh, so that U∗
hBhUh = I, and u1,h, . . . , uq,h ∈ Wh generate an

orthonormal vector set, where the scalar product is determined by the matrix Bh.

Remark 4.2.2. Since the elements of the Gram matrix are obtained as the scalar prod-
ucts 〈wk, wi〉, the Gram matrix is usually represented in a factorized form Bh = F ∗

hFh, so
that for the partition F = [ f1 · · · fN ], 〈wk, wi〉 = fT

k fi. The matrix Bh is then never
assembled, and the Cholesky factorization is computed through the QR factorization of
Fh, so that Fh = QhRh and Bh = R∗

hQ
∗
hQhRh = R∗

hRh.

4.2.2 Vibration Frequencies of a Mass System with Springs
In stability analysis of mechanical structures, the method of concentrated mass is often
used. Behavior of a complex mechanical system is approximated by the behavior of
a system that consists only of the concentrated masses connected with elastic springs.
The problem is to �nd free oscillation of this system.

Assume that we are observing a system with masses and springs, as described in
Figure 4.3.

Here mi denotes the i-th mass, and kj denotes the sti�ness of the j-th spring. Further
we de�ne the following matrices:

M =




m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4


 ,

K =




k1 + k2 + k6 −k2 −k6 0
−k2 k2 + k3 + k8 −k3 −k8

−k6 −k3 k3 + k4 + k6 + k7 −k4

0 −k8 −k4 k4 + k5 + k8


 ,

where the matrix K represents the interaction between masses. The i-th row corresponds
to the i-th mass, and its j-th column corresponds to the relation between the i-th and the
j-th mass. On the diagonal, in the position (i, i), there is a sum of the sti�nesses of all
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Figure 4.3: System of masses that are connected with springs.

springs that are connected to the i-th mass. The number −k` is placed in the position
(i, j) if the `-th spring connects the i-th and the j-th mass, otherwise K(i, j) = 0.
Finally, we de�ne a vector

x =




x1

x2

x3

x4


 ,

where xi represents the vertical shift of the i-th mass from the steady state. From
the law of momentum conservation, the mass position can be described by a system of
di�erential equations

ẍ = −M−1Kx. (4.19)
If we assume that the solution of the system has the following form

x = x0e
iφt,

which is the standard procedure when solving a system of linear di�erential equations,
then from (4.19) we obtain

ẍ = −φ2x0e
iφt = −M−1Kx0e

iφt.

By elimination of the term eiφt we reduce our problem to the eigenvalue problem for the
matrix M−1K:

M−1Kx0 = φ2x0.

In this case the eigenvalue is equal to φ2, which presents the square of the oscillation
frequency. We can also note that the matrix K is symmetric, and that M−1K is not.
This can be improved by noting that the matrix M is diagonal with positive diagonal
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elements, so we can de�ne M
1
2 = diag(m

1
2
1 , . . . , m

1
2
4 ). Premultiplication of the matrix

M−1K with M
1
2 and postmultiplication with M− 1

2 , produce a matrix similar to M−1K
which is symmetric and of the form

A = M
1
2 (M−1K)M− 1

2 = M− 1
2 KM− 1

2 . (4.20)

So, if λ and u are the eigenvalue and the corresponding eigenvector of the matrix A
from (4.20), then the solution of the problem (4.19) is equal to

x = M− 1
2 uei

√
λt.

4.2.3 Graph Partitioning
Let us consider the following problem: we want to divide a set of objects into groups
which contain objects with similar properties. First, the problem of partitioning the set
of objects will be replaced by a problem of partitioning a set of graph vertices. This will
be done under the condition that weights of edges which connect vertices from di�erent
groups are minimized. Second, the graph partitioning problem will be reduced to an
eigenvalue problem.

So, we will start with some de�nitions and results taken from [74], which are necessary
for stating the graph problem.

De�nition 4.2.3. The graph is an ordered pair G = (V, E), where ∅ 6= V = V (G) is
the set of vertices, E = E(G) is the set of edges disjoint with V , and each edge e ∈ E
connects two vertices u, v ∈ V which we call the ends of e. The vertices u and v are
then incident, and we can write e = {u, v}.

• The graph G is �nite if the sets V and E are �nite.

• An edge whose ends coincide is called a loop.

• Two or more edges with the same pair of ends are called multiple edges.

• The graph is simple if it contains no loops and no multiple edges.

• A simple graph in which each pair of vertices is connected by an edge is called a
complete graph.

• Let w be a function w : E(G) → F , where F can be R, R+, Zm,. . . . The or-
dered pair (G,w) consisting of the graph G and the weight function w is called the
weighted graph.

Let a simple �nite weighted graph (G, w) be given, where G = (V, E), ∅ 6= V =
{1, 2, . . . , n} is the set of vertices and E is the set of edges {i, j} i, j ∈ V , with weights
w({i, j}) ∈ R+. We want to divide V into two subsets V1 and V2, and we call this
procedure bipartitioning. The bipartition of the set V can be described by the relation

V = V1 ∪ V2, V1 ∩ V2 = ∅.
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Figure 4.4: The bipartition of the graph G.

The question now arises, how to produce a meaningful bipartition so that V1 and V2

present groups with some common property?
First, we will need the following de�nition.

De�nition 4.2.4. The adjacency matrix of the graph G is the n×n matrix W = [wij],
where

wij =

{
w({i, j}), if {i, j} ∈ E,
0, otherwise.

The matrix W is a symmetric matrix whose elements are nonnegative real numbers.
Since the graph is simple, diagonal elements of W are equal to 0.

So, let us partition the set V into two subsets V1 and V2. A dissimilarity between
these two subspaces can be computed as the total weight of all edges which connect sets
V1 and V2. It is called the cut of the partition, and it is de�ned by

cut(V1, V2) =
∑

i∈V1,j∈V2

wij for V1, V2 ⊂ V.

Next we will generalize the meaning of the weight function: let

w(i) =
n∑

j=1

wij,
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be a sum of weights of edges incident with the vertex i, then w(i) is called the weight
of the vertex i ∈ V , and let

w(Vk) =
∑
i∈Vk

w(i) = cut(Vk, V ) =
∑

i∈Vk,j∈V

wij

be a sum of weights of all the vertices from Vk, then w(Vk) is called the weight of the set
Vk ⊆ V .

For example, if the set of vertices V = {1, 2, 3, 4, 5, 6, 7} of the graph G from Figure
4.4 is partitioned into the subsets V1 = {1, 2, 3, 4} and V2 = {5, 6, 7}, then

cut(V1, V2) = 4

w(V1) = w(1) + w(2) + w(3) + w(4) = 42

w(V2) = w(5) + w(6) + w(7) = 34

The most simple way to partition a graph is by minimization of the cut, and there
exist e�cient algorithms which �nd the partition with the minimal cut. But, in such
partitioning blocks with small number of vertices are very often isolated, and sometimes
this is not satisfactory.

We need some additional conditions on the graph partition to avoid such small blocks.
If we want our subsets to have balanced weights, we have to minimize another objective
function

cutN(V1, V2) =
cut(V1, V2)

w(V1)
+

cut(V2, V1)

w(V2)
,

which is called a normalized cut. For the bipartition in Figure 4.4 we have

cutN(V1, V2) =
4

42
+

4

32
= 0.2202.

Unfortunately, the problem of �nding the exact minimal normalized cut belongs to
the NP class. This means that this problem is most likely not solvable by a deterministic
algorithm in polynomial time. The execution time of an algorithm that solves the
problem grows exponentially with the size of input set.

Nevertheless, we will show that this problem can be solved approximately by placing
the problem in a real domain.

We start again with the set of vertices V = {1, 2, . . . , n}. The partition V = V1 ∪ V2

can be represented by the vector x = [xi] de�ned as

xi =

{
1, i ∈ V1

−1, i ∈ V2
, i = 1, . . . , n.

It can be easily shown that for the matrix D = diag(w(1), . . . , w(n)) the following holds

cut(V1, V2) =
1

4
xT (D −W )x, ,

cutN(V1, V2) =
zT (D −W )z

zT Dz
,
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where
zi =

{
1, i ∈ V1

−q, i ∈ V2
, i = 1, . . . , n, q =

w(V1)

w(V2)
.

Matrix L = D − W is called the Laplace matrix of the graph G and has many
useful properties. The matrix L = [`ij] is a n × n matrix whose each row and column
corresponds to one vertex, so that

`ij =





n∑

k=1

wik, i = j

−wij, i 6= j, {i, j} ∈ E
0, otherwise.

L is a symmetric positive semide�nite matrix, so all its eigenvalues are real and nonneg-
ative. Further

Le = 0, for e = [ 1 . . . 1 ]T ,

which implies that 0 is the smallest eigenvalue of L, and e is the corresponding eigen-
vector.

Now we can reformulate our problem. We started with two discrete minimization
problems

min
V1∪V2=V
V1∩V2=∅

cut(V1, V2) = min
xi∈{−1,1}

xT e=0

xT Lx (4.21)

min
V1∪V2=V
V1∩V2=∅

cutN(V1, V2) = min
zi∈{−q,1}
zT De=0

zT Lz

zT Dz
, (4.22)

where in case when n is even, the condition xT e = 0 means that
∑n

i=1 xi = 0 and that
subspaces V1 and V2 contain the same number of vertices. This is done to avoid a trivial
solution and to balance the number of vertices in subspaces. The condition zT De = 0
means that

0 =
n∑

i=1

ziw(i) =
∑
i∈V1

w(i)− q
∑
i∈V2

w(i) = w(V1)− qw(V2),

which gives the de�nition of the number q.
The discrete problems (4.21) and (4.22) will be now replaced by continuous mini-

mization problems

min
‖x‖2=1
xT e=1

xT Lx (4.23)

min
zT De=0

zT Lz

zT Dz
= min

‖y‖2=1

yT D
1
2 e=0

yD− 1
2 LD− 1

2 y (4.24)

where y = D
1
2 z. The matrix LN = D− 1

2 LD− 1
2 is called the normalized Laplace matrix

of the graph G, and is also symmetric positive semide�nite, with the smallest eigenvalue
equal to 0 and with the corresponding eigenvalue equal to D

1
2 e.
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By the consequence of Theorem 4.1.7, the solution of problem (4.23) is equal to the
minimal eigenvalue of the matrix which is a compression of L to U2, where U2 is an
(n − 1)-dimensional subspace spanned by all eigenvectors of L except e. That means
that the minimum is obtained for u2 = [u

(2)
i ], the second smallest eigenvalue of L. This

vector is called the Fiedler vector.
Equivalently, the solution of the problem (4.23) is equal to uN,2 = [u

(N,2)
i ], which

is the second smallest eigenvalue of LN . This vector is called the normalized Fiedler
vector.

So, as an approximative optimal bipartition we can take

for minimization of cut

V1 = {i : u
(2)
i ≥ 0}, V2 = {i : u

(2)
i < 0}

for minimization of cutN

V1 = {i : D− 1
2 u

(N,2)
i ≥ 0}, V2 = {i : D− 1

2 u
(N,2)
i < 0}.

4.3 Perturbation Theory
This section is similar to section 2.3. All the perturbation results for the symmet-
ric eigenvalue problem can be generalized to a singular value problem of generalized
matrices. That means that the results in section 2.3 are derived from the results de-
scribed in this section. So, when the spectral decomposition of a symmetric matrix
A ∈ Rn×n is computed in �nite precision arithmetic, instead of exact factors U ∈ Rn×n

and Λ ∈ Rn×n, matrices Ũ and Λ̃ will be computed. Numerical analysis of the method
used for computing eigenvalues and eigenvectors results with a matrix Ã, such that
computed eigenvectors in Ũ and computed eigenvalues in Λ̃ are exact for that matrix.
The relation between exact and computed factors is then given by perturbation theory,
which compares the matrices A and Ã. Basically, the perturbation theory will produce
bounds on the errors in computed eigenvalues and eigenvectors. The error bounds can
be divided in two di�erent categories:

1. eigenvalue error bounds

2. eigenspace error bounds

4.3.1 Eigenvalue Error Bounds
First, let us take a look at additive perturbations of a Hermitian matrix.

Theorem 4.3.1 (Mirsky�Lidskii-Wielandt [66, p. 21]). Let A ∈ Cn×n be a Her-
mitian matrix, and suppose that Ã ∈ Cn×n is also Hermitian, and that their eigenvalues
are ordered as in (4.1). Then, for any unitarily invariant norm ‖ · ‖, we have

‖Λ− Λ̃‖ ≤ ‖A− Ã‖.
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Specially, for Λ = diag(λ1, . . . , λn) and Λ̃ = diag(λ̃1, . . . , λ̃n), we have

max
i=1,...,n

|λi − λ̃i| ≤ ‖A− Ã‖2,

√√√√
n∑

i=1

(λi − λ̃i)2 ≤ ‖A− Ã‖F .

Theorem 4.3.1 claims that the norm of backward absolute error is the upper bound
for absolute error in eigenvalues. But, the absolute errors are not always the best way
of measuring errors as we saw in section 2.3. The next step would be to look at relative
errors in eigenvalues.

Theorem 4.3.2 ([52, p. 161]). Let A, Ã ∈ Cn×n be Hermitian, and let A also be
positive de�nite, then

max
i=1,...,n

|λi − λ̃i|
|λi| ≤ ‖A− 1

2 (Ã− A)A− 1
2‖2.

Multiplicative perturbations are much more suitable for this case, so the next results
will deal with such perturbations. Let us start again with the Ostrowsky-type bounds.

Theorem 4.3.3 ([52, p. 187]). Let A ∈ Cn×n be Hermitian, and let Ã = DAD∗ also
be Hermitian, where D is nonsingular. Then

|λi|
‖(D∗D)−1‖2

≤ |λ̃i| ≤ |λi|‖D∗D‖2.

Theorem 4.3.4 ([52, p. 188]). Let A ∈ Cn×n be Hermitian, and let Ã = DAD∗ also
be Hermitian, where D is nonsingular. Then

max
i=1,...,n

|λi − λ̃i|
|λi| ≤ ‖I −DD∗‖2.

Thus, relative error in singular values of Ã is small if D is close to a unitary matrix.
We are also going to give a result for the χ relative distance between exact and

computed eigenvalues.

Theorem 4.3.5 ([64, p. 395]). Let A ∈ Cn×n and Ã = D∗AD be Hermitian matrices,
where D is nonsingular. Then,

max
i=1,...,n

χ(λi, λ̃i) ≤ ‖D∗ −D−1‖2,

√√√√
n∑

i=1

χ2(λi, λ̃i) ≤ ‖D∗ −D−1‖F .
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4.3.2 Eigenspace Error Bounds
We are comparing subspaces again through the angle matrix Θ(X,Y ).
Theorem 4.3.6 (Davis�Kahan [67, p. 4]). Let A ∈ Cn×n and Ã ∈ Cn×n be two
Hermitian matrices with the following spectral decompositions

A = UΛU∗ = [ U1 U2 ]

[
Λ1 0
0 Λ2

] [
U∗

1

U∗
2

]
, (4.25)

Ã = Ũ Λ̃Ũ∗ = [ Ũ1 Ũ2 ]

[
Λ̃1 0

0 Λ̃2

] [
Ũ∗

1

Ũ∗
2

]
, (4.26)

where U, Ũ ∈ Cn×n are unitary, U1, Ũ1 ∈ Cn×k and
Λ1 = diag(λ1, . . . , λk), Λ2 = diag(λk+1, . . . , λn), (4.27)
Λ̃1 = diag(λ̃1, . . . , λ̃k), Λ̃2 = diag(λ̃k+1, . . . , λ̃n), (4.28)

with 1 ≤ k < n. Let us de�ne the residual
R = ÃU1 − U1Λ1 = (Ã− A)U1.

If
δ = min

i=1,...,k, j=1,...,n−k
|λi − λ̃k+j| > 0,

then
‖ sin Θ(U1, Ũ1)‖F ≤ ‖R‖F

δ
.

The scalar δ represents the absolute gap between the eigenvalues of Λ1 and Λ̃2. The
next theorem involves the p relative distance de�ned in subsection 2.3.2.
Theorem 4.3.7 ([67, p. 6]). Let A ∈ Cn×n, and Ã = D∗AD be two Hermitian
matrices with spectral decomposition (4.25), (4.26), (4.27) and (4.28), where D is non-
singular. Let η2 = min

i=1,...,k, j=1,...,n−k
ρ2(λi, λ̃k+j) > 0, then

‖ sin Θ(U1, Ũ1)‖F ≤
√
‖(I −D∗)U1‖2

F + ‖(I −D−1)U1‖2
F

η2

.

4.4 Subspace Methods for the Partial Eigenvalue
Problem

The task of solving the partial eigenvalue problem for a symmetric matrix A ∈ Rn×n is
to �nd U ∈ Rn×k, UT U = Ik for 1 ≤ k ¿ n and Λ = diag(λi1 , . . . , λik) ∈ Rk×k, such
that

AU = UΛ, (4.29)
where λij , j = 1, . . . , k represent some choice of eigenvalues of A. In most cases we will
observe a situation when

λij = λj, (4.30)
where λj are ordered as in (4.1). This task is equivalent to �nding a speci�c k dimensional
invariant subspace which corresponds to the k smallest eigenvalues.



156 CHAPTER 4. THE SYMMETRIC EIGENVALUE PROBLEM

4.4.1 The Rayleigh�Ritz method
The Rayleigh�Ritz method is a basic method for computing eigenvalue and eigenvector
approximations of a symmetric matrix A, from a given subspace X . Most of the iterative
subspace methods use this method for obtaining approximations in the current iteration.
The Rayleigh�Ritz method computes eigenvalues and eigenvectors of A's compression
to the subspace X , and it turns out that they have some optimal properties.

Let the subspace X be represented by an orthonormal basis X = [x1, . . . , xk]. Then,
the algorithm runs as it is described in [78, Chapter 11].
Algorithm 4.4.1 (The Rayleigh�Ritz method). For a symmetric matrix A ∈ Rn×n,
and for a given orthonormal matrix X = [x1, . . . , xm] this algorithm computes an or-
thonormal matrix Y = [y1, . . . , yk], where k ≤ m, such that y1, . . . , yk represent good
approximations of k eigenvectors of A.
H = XT AX;
Compute k eigenpairs of H which are of interest: Hsi = θisi i = 1, . . . , k;
for i = 1 : k

yi = Xsi;
end
Y = [ y1 . . . yk ];
for i = 1, . . . , k

ri = Ayi − θiyi;
Each interval [θi − ‖ri‖2, θi + ‖ri‖2] contains an eigenvalue of A;

end
The scalars θi are called the Ritz values, and the vectors yi are called the Ritz vectors.

The full set {(θi, yi), i = 1, . . . , m} is the best set of the eigenpair approximations of A
which can be derived from the m-dimensional subspace X . The following theorems
describe the optimality of the Ritz values and the Ritz vectors.
Theorem 4.4.2 ([78, p. 215]). Let A ∈ Rn×n be symmetric, with eigenvalues ordered
as in (4.1), and let X be a k-dimensional subspace. Then

θi = min
S⊂X

dim(S)=i

max
x∈S

‖x‖2=1

xT Ax, i = 1, . . . , k,

where θ1 ≤ θ2 ≤ · · · ≤ θk.
Theorem 4.4.3 ([78, p. 216]). Let A ∈ Rn×n be symmetric, with eigenvalues ordered
as in (4.1), and let X be a k-dimensional subspace represented by an orthonormal basis
X. Then for H = XT AX

‖AX −XH‖2 ≤ ‖AX −XG‖2, ∀G ∈ Rk×k.

Theorem 4.4.4 ([78, p. 219]). Let X be any orthonormal n × k matrix. Associated
with it are H = XT AX and R = AX −XH. There are k of A's eigenvalues {λji

, i =
1, . . . , k} which can be put in one�one correspondence with the eigenvalues θi of H in
such a way that

|θi − λji
| ≤ ‖R‖2, i = 1, . . . , k.
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A tighter bound is stated in the next theorem.
Theorem 4.4.5 ([70, p. 3]). Let A ∈ Cn×n be Hermitian and let A have eigenvalues
λ1 ≤ · · · ≤ λn. Let X be a k-dimensional subspace of Cn given as the range of orthonor-
mal X ∈ Cn×k. Further, let M = X∗AX ∈ Ck×k be the Rayleigh quotient, and let the
residual be de�ned as

R = AX −XM = (I −XX∗)AX

We de�ne additive perturbation δA = RX∗+XR∗, and change A to Ã = A− δA. Then
the eigenvalues λ̃1 ≤ · · · ≤ λ̃n of Ã satisfy

max
i=1,...,n

|λi − λ̃i| ≤ ‖R‖2
2

min
j,k

|µj − νk| ,

where µj, are the eigenvalues of M , νk are the eigenvalues of N = X∗
⊥AX⊥, and X⊥ is

the orthonormal basis of X⊥. Further, λ(Ã) = λ(M) ∪ λ(N).

4.4.2 Simple Subspace Iteration
Subspace iteration is a straightforward generalization of both the power method and the
inverse iteration [78, Chapter 14]. Let A ∈ Rn×n, and let X ⊂ Rn be a k-dimensional
subspace. Then we de�ne a new subspace

AX = {Ax : x ∈ X}.
The next step is the de�nition of the block Krylov subspace

K`(A,X ) = span{X , AX , A2X , . . . , A`−1X},
which plays an important role in subspace iterations. In practice, X is represented by an
orthonormal basis X = [x1 . . . xk]. Let us be the eigenvector belonging to the eigenvalue
λs with the largest absolute value. Since the power method converges to us for every
starting vector not orthogonal to us if |λs| > |λi| for i 6= s, the basis of AjX should
be orthonormalized in each step of the computation of Krylov subspace. Without the
reorthogonalization all of the columns of the matrix AjX would converge to the same
vector. This way we will obtain a basis for the leading k-dimensional invariant subspace,
consisting of k eigenvectors that belong to k eigenvalues with the largest absolute values.
Algorithm 4.4.6 (Simple subspace iteration). For A ∈ Rn×n, and for a given
orthonormal matrix X0 = [x

(0)
1 , . . . , x

(0)
k ] this algorithm computes an orthonormal ma-

trix X = [x1, . . . , xk], such that X = span{X} represents a good approximation of
span{un−k+1, . . . , un}.
for j = 1, 2, . . .

Yj = AXj−1;
Compute QR factorization Yj = XjRj;
Test Xj for convergence. If the convergence condition is satis�ed then stop.

end
X = Xj
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Another possibility is to use an inverse of the matrix A − λI, i.e. to solve systems
with the matrix A−λI. Then, subspace iteration can be modi�ed to use (A−λI)−1 for
obtaining k eigenvalues closest to λ, together with their eigenvectors. This is the most
common way in which this technique is used.

Algorithm 4.4.7 (Inverse subspace iteration). For A ∈ Rn×n, for a given orthonor-
mal matrix X0 = [x

(0)
1 , . . . , x

(0)
k ], and for λ ∈ R this algorithm computes an orthonormal

matrix X = [x1, . . . , xk], such that X = span{X} represents a good approximation of
span{ui1 , . . . , uik}, where ui1 , . . . , uik are eigenvectors belonging to k eigenvalues closest
to λ.

for j = 1, 2, . . .
Solve Xj−1 = (A− λI)Yj;
Compute QR factorization Yj = XjRj;
Test Xj for convergence. If the convergence condition is satis�ed then stop.

end
X = Xj

For λ = 0 inverse subspace iteration will converge to span{u1, . . . , uk}. The following
theorem describes this convergence.

Theorem 4.4.8 ([78, p. 297]). Let A ∈ Rn×n be a symmetric matrix with 0 < λ1 ≤
λ2 ≤ · · · ≤ λk < λk+1 ≤ · · · ≤ λn, and let U(:, 1 : k)T X0 be invertible. Then

tan ∠(ui, A
−jX0) ≤

(
λi

λk+1

)j

tan ∠(U ,X0),

where
U = span{u1, . . . , uk}, X0 = span{X0}.

From Theorem 4.4.8 it follows that inverse subspace iteration might converge very
slowly if λk+1 is close to λk.

4.4.3 The Block Rayleigh Quotient Iteration
The Rayleigh quotient iteration (RQI) is a very well known method for computing an
eigenpair of a symmetric matrix [78]. For a matrix A ∈ Rn×n, the Rayleigh quotient
is de�ned as

ρ(x) =
xT Ax

xT x
, where x ∈ Rn, x 6= 0,

or in matrix form

H(X) = (XT X)−1XT AX, where X ∈ Rn×k, k < n, X has full column rank.

There were several attempts to generalize RQI into a subspace method, but the most
convenient is the Block Rayleigh Quotient Iteration (BRQI) described in [28].
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Algorithm 4.4.9 (The Block Rayleigh Quotient Iteration). For a symmetric
matrix A ∈ Rn×n, and for a given orthonormal matrix X0 = [x

(0)
1 , . . . , x

(0)
k ] this algorithm

computes an orthonormal matrix X = [x1, . . . , xk], such that X = span{X} represents
a good approximation of span{ui1 , . . . , uik}, where 1 ≤ i1 < i2 < · · · < ik ≤ n.

for j = 1, 2, . . .

Compute the Ritz values θ
(j−1)
i and the Ritz vectors y

(j−1)
i , i = 1, . . . , k

for A and Xj−1, so that:
XT

j−1AXj−1 = Zj−1Θj−1Z
T
j−1, Θj−1 = diag(θ

(j−1)
1 , . . . , θ

(j−1)
k ),

Zj−1 ∈ Rk×k, ZT
j−1Zj−1 = I, Yj−1 = [y

(j−1)
1 , . . . , y

(j−1)
k ] = Xj−1Zj−1.

for i = 1 : k
Let mi and ni be given integers, 0 ≤ mi < i, 0 ≤ ni ≤ k − i, de�ne:

Xi,j−1 = [x
(j−1)
i−mi

, . . . , x
(j−1)
i+ni

], Qi,j−1 = I −Xi,j−1X
T
i,j−1;

Compute w
(j−1)
i such that

Qi,j−1(A− θ
(j−1)
i I)(y

(j−1)
i + w

(j−1)
i ) = 0, (w

(j−1)
i )T Xi,j−1 = 0;

end
Compute QR factorization [y

(j−1)
1 + w

(j−1)
1 , . . . , y

(j−1)
k + w

(j−1)
k ] = XjRj;

Test Xj for convergence. If the convergence condition is satis�ed then stop.
end
X = Xj

The parameters mi and ni are integers chosen so that Qi,j−1(A−θ
(j−1)
i I)∣∣∣∣X⊥

i,j−1

is well-

conditioned. In case when mi = ni = 0, the vector y
(j−1)
i + w

(j−1)
i after normalization is

equal to x
(j)
i updated by a classical RQI iteration. This special case can be written in a

more simple form than Algorithm 4.4.9, as follows.

Algorithm 4.4.10 (The Block Rayleigh Quotient Iteration (Classical)). For a
symmetric matrix A ∈ Rn×n, and for a given orthonormal matrix X0 = [x

(0)
1 , . . . , x

(0)
k ]

this algorithm computes an orthonormal matrix X = [x1, . . . , xk], such that X = span{X}
represents a good approximation of span{ui1 , . . . , uik}, where 1 ≤ i1 < i2 < · · · < ik ≤ n.

for j = 1, 2, . . .

Compute the Ritz values θ
(j−1)
i and the Ritz vectors y

(j−1)
i , i = 1, . . . , k

for A and Xj−1, so that:
XT

j−1AXj−1 = Zj−1Θj−1Z
T
j−1, Θj−1 = diag(θ

(j−1)
1 , . . . , θ

(j−1)
k ),

Zj−1 ∈ Rk×k, ZT
j−1Zj−1 = I, Yj−1 = [y

(j−1)
1 , . . . , y

(j−1)
k ] = Xj−1Zj−1.

for i = 1 : k

Solve (A− θ
(j−1)
i I)w

(j)
i = y

(j−1)
i ;

end
Compute QR factorization [w

(j)
1 , . . . , w

(j)
k ] = XjRj;

Test Xj for convergence. If the convergence condition is satis�ed then stop.
end
X = Xj
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BRQI has local quadratic convergence, which is described in the following theorem.

Theorem 4.4.11 ([28, p. 68]). There exist constants ε0 > 0, ρ, χ < 1, Cθ > 0 such
that if dist(U ,X0) < ε0, Algorithm 4.4.9 is well de�ned and the following properties hold
for j = 0, 1, 2, . . .,

dim(Xj) = k,

dist(U ,Xj) ≤ ρ(dist(U ,Xj−1))
2,

dist(U ,Xj) ≤ χdist(U ,Xj−1),

|θ(j)
i − λi| ≤ Cθ dist(U ,Xj), i = 1, . . . , k,

where
U = span{u1, . . . , uk}, X0 = span{X0}, Xj = span{Xj},

and dist(X ,Y) is de�ned in section 2.2.
Moreover, the algorithm converges, that is:

lim
j→∞

dist(U ,Xj) = 0.

4.4.4 The Lanczos Method
The Lanczos method was introduced in 1950 as a method for the reduction of a sym-
metric matrix to a tridiagonal form. Twenty years later Paige showed that despite its
sensitivity to roundo�, the simple Lanczos algorithm is an e�ective tool for computing
some eigenvalues and their eigenvectors.

The Lanczos algorithm is the Rayleigh�Ritz procedure implemented on the sequence
of Krylov subspaces

Kj(A, x) = span{x,Ax, A2x, . . . , Aj−1x}, j = 1, 2, . . . .

At each step the subspace dimension grows by one, but the costly Rayleigh�Ritz pro-
cedure is dramatically simpli�ed. Let Qj = [q1, . . . , qj] be the orthonormal basis for
Kj(A, x) such that q1 = x/‖x‖2, then in this basis A's compression QT

j AQj to Kj(A, x),
is represented by a tridiagonal matrix Tj

Tj =




α1 β1

β1 α2 β2

β2
. . . . . .
. . . . . . βj−1

βj−1 αj




,

see [78, Chapters 12 and 13]. The algorithm is summarized by two equations,

AQj −QjTj = rje
T
j , rj = qj+1βj,

and
I −QT

j Qj = 0.
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Algorithm 4.4.12 (The Lanczos method). For a symmetric matrix A ∈ Rn×n, and
for a given vector x0 ∈ Rn this algorithm computes approximations to some eigenvalues
and their eigenvectors.
r0 = x0; β0 = ‖r0‖2 6= 0 q0 = 0;
for j = 1, 2, . . .

qj =
rj−1

βj−1

;
uj = Aqj;
rj = uj − qj−1βj−1;
αj = qT

j rj;
rj = rj − qjαj

βj = ‖rj‖2;
Compute eigenvalues (the Ritz values) µi and eigenvectors si of Tj,
and the Ritz vectors vi = Qjsi;
If satis�ed stop.

end
The following results describe the convergence of the Lanczos method.

Theorem 4.4.13 ([85, p. 689]). Let A ∈ Rn×n be a symmetric matrix with eigen-
values λ1 < λ2 < · · · < λk < λk+1 ≤ · · · ≤ λn and eigenvectors u1, . . . , un. Let Pi be
an eigenprojection associated with λi, i ≤ k, and let x0 the be the starting vector for
Algorithm 4.4.12. Let us assume that Pix0 6= 0, and consider ui = Pix0/‖Pix0‖2. Set

γi = 1− 2
λn − λi

λn − λi+1

, and





Ki =
i−1∏
j=1

λn − λj

λi − λj

, if i 6= 1,

K1 = 1.

Then
tan ∠(ui,Km(A, x0)) ≤ Ki

|Tm−i(γi)| tan ∠(ui, x0),

where T`(x) is a Chebyshev polynomial of the �rst kind of degree `,

T`(x) =
1

2

[(
x +

√
x2 − 1

)`

+
(
x−

√
x2 − 1

)`
]

, for |x| > 1.

Corollary 4.4.14 ([85, p. 692]). Let the symmetric matrix A ∈ Rn×n and a vector
x0 ∈ Rn satisfy the assumptions of Theorem 4.4.13. Let µ1 ≤ · · · ≤ µm be the eigenvalues
of Tm, and assume that µi−1 < λi. Let γi be de�ned as in Theorem 4.4.13, and let





Ni =
i−1∏
j=1

λn − µj

λi − µj

, if i 6= 1,

N1 = 1.

Then
0 ≤ µi − λi ≤ (λn − λi)

(
Ni

Tm−i(γi)
tan ∠(ui, x0)

)2

.
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Corollary 4.4.15 ([85, p. 694]). Let λi be the i-th eigenvalue of A with an associated
eigenvector ui, ‖ui‖2 = 1. Let µi be the eigenvalues and vi the eigenvectors of Tm, and
di = minj 6=i |λi − µj|, rm = ‖(I − πm)Aπm‖2, where πm is an orthogonal projection on
Km(A, x0). Then

sin ∠(ui, vi) ≤
(

1 +
r2
m

d2
i

) 1
2

sin ∠(ui,Km(A, x0)) ≤
(

1 +
r2
m

d2
i

) 1
2 Ki

|Tm−i(γi)| tan ∠(ui, x0).

When the Lanczos algorithm is executed in �oating point arithmetic, the matrix Qj

might lose its orthogonality. Nevertheless, the following holds [78, p. 270]:

• Orthogonality among qi, i = 1, . . . , j, is well maintained until one of the Ritz
vectors begins to converge.

• Each new Lanczos vector qj+1 and each �bad Ritz vector� has a signi�cant com-
ponent in the direction of each �good Ritz vector�.

• The emergence of almost duplicate copies of previously converged Ritz pairs is
possible.

4.4.5 Locally Optimal Block Preconditioned Conjugate Gradi-
ent Method

Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) is a
quite fast iterative method for computing invariant subspace of a symmetric matrix,
based on a local optimization of a three�term recurrence. It was introduced by Knyazev
in 2001 [57]. The algorithm combines the preconditioned steepest descent method for the
eigenvalue problem and the three�term recurrence of the preconditioned block Lanczos
algorithm. The unpreconditioned versions of both methods will be described in more
details in Section 5.1.2.

We will start the description of the algorithm by an observation: if λ is an eigenvalue
of A, then zero is an eigenvalue of the matrix A−λI with the same eigenvector, and we
will show that it is also an eigenvalue of the matrix T (A− λI), where T is a symmetric
positive de�nite preconditioner which approximates A−1. T is chosen so that it acceler-
ates the convergence of the method. So, if λ is the smallest eigenvalue of A, zero is the
smallest eigenvalue of A−λI. Since A−λI is congruent to T

1
2 (A−λI)T

1
2 , Sylvester's in-

ertia theorem implies that zero is also the smallest eigenvalue of T
1
2 (A−λI)T

1
2 . Further,

T
1
2 (A− λI)T

1
2 ∼ T

1
2 [T

1
2 (A− λI)T

1
2 ]T− 1

2 = T (A− λI) which implies that the smallest
eigenvalue of T (A− λI) is also equal to zero and all other eigenvalues are positive. On
the other hand, if λ is the largest eigenvalue of A, then zero is also the largest eigenvalue
of T (A−λI) and all other eigenvalues are negative. In both cases zero is well separated
from the rest of the spectrum of T (A−λI). The best choice of λ is to take the Rayleigh
quotient ρ(xj) of the current eigenvector approximation xj.

It makes sense to employ the Lanczos method on T (A − ρ(xj)I) to compute its
extreme singular vectors. The three�term recurrence of the preconditioned Lanczos
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algorithm applied to T (A− ρ(xj)I) reads

rj = T (A− ρ(xj)I)xj − αjxj − βj−1xj−1, (4.31)

where xj is an eigenvector approximation in the j-th step of the Lanczos algorithm (a
Ritz vector). xj+1 is obtained by normalization of rj. So, the new approximation can
be obtained from the recurrence of the type

xj+1 = αjwj + τjxj + γjxj−1, wj = T (A− ρ(xj)I)xj, (4.32)

where the parameters αj, τj and γj are chosen using an idea of local optimality: select
the parameters that maximize or minimize the Rayleigh quotient

ρ(xj+1) =
xT

j+1Axj+1

xT
j+1xj+1

.

If ρ(xj+1) is maximized, then we have

max
αj ,τj ,γj

ρ(xj+1) = max
yj+1∈R3

yT
j+1W

T
j+1AWj+1yj+1

yT
j+1W

T
j+1Wj+1yj+1

, (4.33)

where

yj+1 =




αj

τj

γj


 , Wj+1 = [ wj xj xj−1 ].

We assume that Wj+1 has full column rank. On the other hand if Wj+1 = Vj+1Rj+1 is
the QR factorization of Wj+1, where Vj+1 is orthonormal, then (4.33) implies

max
αj ,τj ,γj

ρ(xj+1) = max
yj+1∈R3

yT
j+1R

T
j+1V

T
j+1AVj+1Rj+1yj+1

yT
j+1R

T
j+1V

T
j+1Vj+1Rj+1yj+1

=

= max
zj+1∈R3

zT
j+1V

T
j+1AVj+1zj+1

zT
j+1zj+1

, (4.34)

where zj+1 = Rj+1yj+1. By Theorem 4.1.7 (4.34) implies that �nding the optimal xj+1

is equivalent to �nding the maximum eigenvalue of V T
j+1AVj+1, where Vj+1 is the or-

thonormal basis for span{wj, xj, xj−1}. Thus, the Rayleigh�Ritz method can be applied
to A and span{wj, xj, xj−1}, and xj+1 can be chosen as the Ritz vector Vj+1zj+1 corre-
sponding to the maximum Ritz value. Hereby we described a basis of a preconditioned
Conjugate Gradient method for invariant subspaces.

As the current eigenvector approximation xj and the previous eigenvector approxi-
mation xj−1 are getting closer to each other in the process of iterations, Wj+1 will be
badly conditioned. So, instead of wj, xj and xj−1 in the three-term recurrence (4.32),
the recurrence will involve wj, xj and pj, where pj is the implicitly computed di�erence
between xj and xj−1. Now, we obtain the following recurrences:

xj+1 = αjwj + τjxj + γjpj, wj = T (Axj − ρ(xj)xj),

pj+1 = αjwj + γjpj, p0 = 0, (4.35)
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with parameters αj, τj and γj chosen using the idea of local optimality. We see that

pj+1 = xj+1 − τjxj,

thus
xj+1 ∈ span{wj, xj, pj} = span{wj, xj, xj−1},

therefore (4.35) is equivalent to (4.32), and this de�nes the main step of the Locally
Optimal Preconditioned Conjugate Gradient method.

In case when an invariant subspace is required, which corresponds to the k largest
eigenvalues, a simple generalization of the described process will produce a block al-
gorithm. A block version of the Locally Optimal Preconditioned Conjugate Gradient
method determines the i-th eigenvector approximation x

(j+1)
i as

x
(j+1)
i ∈ span

{
x

(j−1)
1 , x

(j)
1 , T (A− ρ(x

(j)
1 )I)x

(j)
1 , . . . , x

(j−1)
k , x

(j)
k , T (A− ρ(x

(j)
k )I)x

(j)
k

}
,

where x
(j+1)
i is computed as the i-th Ritz vector. Thus

x
(j+1)
i =

k∑

`=1

α
(j)
i,` w

(j)
` + τ

(j)
i,` x

(j)
` + γ

(j)
i,` p

(j)
` ,

where w
(j)
` = T (A− ρ(x

(j)
` )I)x

(j)
` , and

p
(j+1)
i = x

(j+1)
i −

k∑

`=1

τ
(j)
i,` x

(j)
` .

Again, this implies that

x
(j+1)
i ∈ span

{
w

(j)
1 , . . . , w

(j)
k , x

(j)
1 , . . . , x

(j)
k , p

(j)
1 , . . . , p

(j)
k

}
=

= span
{

w
(j)
1 , . . . , w

(j)
k , x

(j)
1 , . . . , x

(j)
k , x

(j−1)
1 , . . . , x

(j−1)
k

}
.

Finally, we can write the whole algorithm.

Algorithm 4.4.16 (LOBPCG). For a symmetric matrix A ∈ Rn×n, and for a given
orthonormal matrix X0 = [x

(0)
1 , . . . , x

(0)
k ] this algorithm computes an orthonormal ma-

trix X = [x1, . . . , xk], such that X = span{X} represents a good approximation to
span{un−k+1, . . . , un}.
for i = 1 : k

p
(0)
i = 0;

end
for j = 1, 2, . . .
for i = 1 : k

ρ(x
(j−1)
i ) = (x

(j−1)
i )T Ax

(j−1)
i ;

r
(j−1)
i = Ax

(j−1)
i − ρ(x

(j−1)
i )x

(j−1)
i ;
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w
(j−1)
i = Tr

(j−1)
i ;

Use the Rayleigh�Ritz method for A on the trial subspace
span

{
w

(j−1)
1 , . . . , w

(j−1)
k , x

(j−1)
1 , . . . , x

(j−1)
k , p

(j−1)
1 , . . . , p

(j−1)
k

}
;

x
(j)
i =

∑k
`=1 α

(j−1)
i,` w

(j−1)
` + τ

(j−1)
i,` x

(j−1)
` + γ

(j−1)
i,` p

(j−1)
` ,

where x
(j)
i is the i-th Ritz vector corresponding to the i-th largest Ritz value;

p
(j)
i =

∑k
`=1 α

(j−1)
i,` w

(j−1)
` + γ

(j−1)
i,` p

(j−1)
` ;

end
Test Xj for convergence. If the convergence condition is satis�ed then stop.

end
X = Xj

The following theorem gives a convergence estimate for Algorithm 4.4.16, when an
invariant subspace is required, which corresponds to the k smallest eigenvalues.

Theorem 4.4.17 ([59, p. 44]). The preconditioner T is assumed to satisfy

δ0(x
T Tx) ≤ xT A−1x ≤ δ1(x

T Tx), ∀x ∈ Rn, 0 < δ0 ≤ δ1,

in every iteration step, where κ(TA) = δ1/δ0. For a �xed index i ∈ [1, k], if ρ(x
(j)
i ) ∈

[λ`i
, λ`i+1〉 then it holds for the Ritz value ρ(x

(j+1)
i ) computed by Algorithm 4.4.16, that

either ρ(x
(j+1)
i ) < λ`i

(unless `i = i), or ρ(x
(j+1)
i ) ∈ [λ`i

, ρ(x
(j)
i )〉.

In the latter case

ρ(x
(j+1)
i )− λ`i

λ`i+1 − ρ(x
(j+1)
i )

≤ (q(κ(TA), λ`i
, λ`i+1))

2 ρ(x
(j)
i )− λ`i

λ`i+1 − ρ(x
(j)
i )

,

where
q(κ(TA), λ`i

, λ`i+1) = 1−
(

1− κ(TA)− 1

κ(TA) + 1

)(
1− λ`i

λ`i+1

)
.

4.4.6 The Jacobi�Davidson Method
The Jacobi�Davidson method is an iterative method for computing a few of the extreme
eigenvalues of a symmetric matrix and corresponding eigenvectors. This method is based
on a combination of an old method of Jacobi and of the Davidson method, as described
by Sleijpen and van der Vorst in [88]. The main idea is to expand the trial subspace
and to apply the Rayleigh�Ritz method on that subspace.

Suppose we are given an eigenvector approximation zj in the j-th iteration, and we
want to �nd a correction to that approximation that is orthogonal to zj. Therefore we
are interested in seeing what happens in the subspace span{zj}⊥. The compression of
A to that space is given by

B = (I − zjz
T
j )A(I − zjz

T
j ),



166 CHAPTER 4. THE SYMMETRIC EIGENVALUE PROBLEM

where zj is a normalized vector. It follows that

A = B + Azjz
T
j + zjz

T
j A− θjzjz

T
j , θj = zT

j Azj. (4.36)

When we want to �nd an eigenvalue λ of A close to θj, then we need a correction tj ⊥ zj

to zj such that
A(zj + tj) = λ(zj + tj). (4.37)

After inserting (4.36) into (4.37), and by using the fact that Bzj = 0 we obtain

(B − λI)tj = −rj + (λ− θj − zT
j Atj)zj, rj = Azj − θjzj. (4.38)

Since the left side of (4.38) and rj have no component in zj, it follows that the factor
for zj must vanish, and hence tj should satisfy

(B − λI)tj = −rj. (4.39)

If we replace λ by the current approximation θj, we will obtain the �nal form of the
correction equation

(B − θjI)tj = −rj, tj ⊥ zj. (4.40)
This equation is usually not solved exactly. Its solution approximation is computed
instead, usually by an iterative method. The vector tj will be used to expand the trial
subspace.

The algorithm for �nding the invariant subspace which corresponds to the k largest
eigenvalues is presented bellow.

Algorithm 4.4.18 (The Jacobi�Davidson method). For a symmetric matrix A ∈
Rn×n, and for a given vector x this algorithm computes an orthonormal matrix X =
[x1, . . . , xk], such that X = span{X} represents a good approximation of
span{un−k+1, . . . , un}.
x1 = x

‖x‖2 ; y1 = Ax1; h11 = xT
1 y1;

Set X1 = [x1], Y1 = [y1], H1 = XT
1 AX1 = [h11];

z1 = x1; θ1 = h11; r1 = y1 − θ1z1;
until convergence do
for j = 1 : m− 1

Solve (approximately)
(I − zjz

T
j )(A− θjI)(I − zjz

T
j )tj = −rj for tj ⊥ zj;

Orthogonalize tj against Xj using modi�ed Gram�Schmidt, to obtain xj+1

Xj+1 = [ Xj xj+1 ];
yj+1 = Axj+1;
Yj+1 = [ Yj yj+1 ];

Hj+1 =

[
Hj XT

j yj+1

yT
j+1Xj xT

j+1yj+1

]
;
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Compute the largest min{k,m} eigenpairs of Hj+1,
let (θj+1, sj+1) be the eigenpair such that θj+1 is the largest eigenvalue;

zj+1 = Xj+1sj+1;
z̄j+1 = Azj+1;
rj+1 = z̄j+1 − θj+1zj+1;
Test for convergence and stop if satis�ed;

end
Set X1 = [zj+1], Y1 = [z̄j+1], H1 = [θj+1];

end
X = Xj+1(:, 1 : k);



Chapter 5

Multispace

In case when a matrix A is symmetric positive de�nite then all its eigenvalues are posi-
tive, and inverse subspace iteration will produce an approximation to invariant subspace
U , which corresponds to the k smallest eigenvalues. On the other hand, in case when
λk+1 is close to λk inverse subspace iteration might converge very slowly (see Theorem
4.4.8).

The inverse iterations are usually used to compute an invariant subspace, when good
approximations to eigenvalues are known. In that case sometimes only few iterations are
needed to obtain accurate solution. The only problem arises when the desired subspace
corresponds to the eigenvalues that are not well separated from the rest of the spectrum.
The slow convergence in that case does not mean that all eigenvectors converge slowly.
The eigenvectors, whose eigenvalues are far from the rest of the spectrum will converge
faster. If we have some information about the spectrum, then we should start with a
subspace with larger dimension than desired, which will guarantee faster convergence.
On the other hand, the Lanczos method produces a sequence of Krylov subspaces with
increasing dimensions, and the accuracy of the eigenvector approximations is increasing
with dimension. The inverse iterations are dealing with the subspaces of the same
dimension and the subspaces from the previous iterations are not involved in the current
iteration. The current subspace of the Lanczos method includes all subspaces from the
previous steps, and thus improves eigenvector approximations.

The idea of the multispace method is to speed up the slow convergence of the inverse
subspace iteration by a technique similar to the multigrid method for solving linear
systems. The multigrid method uses a simple iteration method which usually stagnates
after a couple of iterations, and then transfers the whole problem to the smaller di-
mension. This transfer to the smaller dimension improves the convergence of the whole
process.

168
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5.1 The Algorithms
5.1.1 Multigrid Algorithms
Let us �rst start with a simple description of the multigrid algorithms. Originally, multi-
grid methods were developed for solving boundary value problems de�ned on certain
spatial domains. Such problems were discretized over a set of nodes in the domain,
which were organized in a grid. The resulting discretized problem becomes a problem
of solving a linear system, whose matrix has a very speci�c structure, and unknowns
correspond to the solution value in the nodes. The main idea of multigrid is solving this
system on coarser and coarser grids with an iterative method, thus making the dimen-
sion of the problem smaller and smaller. After reaching the coarsest grid, the solution
approximation is interpolated back to the �ner grids. It turns out that this principle has
good convergence properties. Such methods can be applied to a wide class of problems,
even to the problems that are not associated with a physical grid. This was the basis
for the development of the algebraic multigrid.

Algorithm 5.1.1 (Multigrid V cycle). Let A(1) = A, A(k) ∈ Rnk×nk , b(1) = b,
b(k) ∈ Rnk , where n1 > n2 > · · · > ns, and let us denote the restriction operator from
�ner to coarser grid by I(nk+1,nk) ∈ Rnk+1×nk and the interpolation operator from coarser
to �ner grid by I(nk,nk+1) ∈ Rnk×nk+1. Let y(k) be the initial approximation, then the
following algorithm computes the solution of the system A(k)x(k) = b(k).

1. Perform p iterations of the iterative method obtaining a new approximation y(k)

2. Compute r(k) = b(k) −A(k)y(k) and restrict it to the smaller dimension by r(k+1) =
I(nk+1,nk)r

(k)

3. Compute A(k+1) = I(nk+1,nk)A
(k)I(nk,nk+1) and approximately solve A(k+1)e(k+1) =

r(k+1) on the smaller dimension

4. Interpolate e(k) to the original dimension by e(k) = I(nk,nk+1)e
(k+1) and compute

y(k) = y(k) + e(k)

5. Perform p iterations of the iterative method obtaining the �nal approximation y(k)

Step 3. denotes a recurrent call to the multigrid routine.

As we can see, the iterative method for solving linear systems is �rst applied to the
original matrix, then again to the restricted matrix with smaller dimension, and so on,
until the smallest dimension is reached. On the smallest dimension the problem is solved
exactly, i.e. with a direct method, and the solution is interpolated back to the larger
dimensions.

The matrix of the discretized system, the restriction and the interpolation operator
depend on three things:

• di�erential operator of the original problem
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Figure 5.1: A multigrid V cycle.

• grid

• discretization of derivations
For example, a discretized Laplace operator on a squared domain will produce a banded
symmetric positive de�nite matrix. The condition number of this matrix increases with
n, and the Jacobi and the Gauss�Seidel iterations stagnate after a modest number of
iterations. In this case the restriction and the interpolation operator are chosen so that
IT
(m,n) = cI(n,m), where c is a constant, and the transfer to a smaller dimension and back
improves the convergence. It eliminates directions in the solution approximation that
caused slow convergence.

The idea of using multigrid for solving an eigenvalue problem is not new. Until
now, many eigensolvers for elliptic eigenvalue problems with multigrid e�ciency were
developed, see [76]. According to [76], multigrid eigensolvers can be classi�ed in the
following three categories:

The Rayleigh quotient multigrid minimization (RQMG)
When the eigenvalue problem for a self-adjoint elliptic partial di�erential oper-
ator is considered, then the discrete matrix eigenproblem can be treated as an
optimization problem for the Rayleigh quotient

ρ(x) =
xT Ax

xT x
.

By the Courant�Fischer principle (Theorem 4.1.7) the minimum of ρ(x) equals to
the smallest eigenvalue of A, and is taken at the corresponding eigenvector. Hence
the iterative minimization of ρ(x) can serve as an eigensolver.
This minimization can be realized by means of a multigrid procedure. A coor-
dinate relaxation scheme is applied, i.e. for each coordinate direction dk

i (which
is associated with the i-th �nite element function on a certain grid level k) the
minimum

ρ(x + γdk
i ) = min

τ∈R
(x + τdk

i )
T A(x + τdk

i )

(x + τdk
i )

T (x + τdk
i )
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is computed, which is at the same time the smallest Ritz value of A in the 2D space
span{x, dk

i }. The new iterate is x + γdk
i . A multigrid cycle of RQMG consists in

a successive minimization of ρ(x) for all �nite element functions on all grid levels.
It is interesting to note that

∇ρ(x) =
2

xT x
(Ax− ρ(x)x).

For more information see [10], [68] and [71].

Direct multigrid eigensolvers
Direct multigrid eigensolvers and the third class of eigensolvers are related to ap-
proximate variants of inverse iteration and the Rayleigh quotient iteration. Inverse
iterations are usually dealing with almost singular matrices A−λI when λ is close
to an eigenvalue of A. So, solving a linear system with such a matrix can be quite
di�cult. Alternatively, one can solve a non-singular coarse grid correction equa-
tion within the orthogonal complement of the actual eigenvector approximation.
This approach provides the basis for the direct multigrid eigensolver.
The resulting two-grid method maps a given iterate x having the Rayleigh quotient
ρ(x) to the new eigenvector approximations x′. It is given by
x̃ = Sx Smoothing step
dc = R(A− ρ(x)I)x̃ Coarse grid projection of the residual
d⊥c = Qcdc Orthogonal projection
yc = (Ac − ρ(x)Ic)

−1d⊥c Solution of correction equation
x′ = x− PQcyc Prolongation and correction

Here, the index c denotes coarse grid quantities. R is a restriction operator,
P is an interpolation operator and Qc is the orthogonal projection operator to
the orthogonal complement of the actual eigenvector approximation. For more
information see [9], [41], [42] and [46].

Eigensolvers using multigrid as a linear solver
Another way to avoid solving a near singular linear system in inverse iteration,
is to apply multigrid preconditioning for A in order to determine an approximate
solution of the linear system

Ax(i+1) = ρ(x(i))x(i), i = 0, 1, 2, . . . . (5.1)

A scaling constant ρ(x(i)) is introduced in order to achieve its stationarity in
eigenvectors.
The multigrid preconditioner B−1 is an approximate inverse of A, which is assumed
to be a symmetric positive de�nite operator, such that

‖I −B−1A‖A ≤ γ, (5.2)

for a constant γ ∈ [0, 1〉, where ‖ · ‖A denotes the operator norm induced by A.
The best preconditioners satisfy (5.2) where γ is bounded away from 1, and is
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independent of the mesh size and of the number of unknowns. The approximate
solution of (5.1) for x = x(i) and by using B−1 as a preconditioner yields a new
iterate x′ approximating x(i+1)

x′ = x−B−1(Ax− ρ(x)x). (5.3)

The iteration (5.3) can be considered as the most simple eigensolver embodying
the idea of multigrid as a linear solver. It can be interpreted as a (multigrid)
preconditioned variant of inverse iteration (PINVIT). For more information see
[58] and [75].
Unfortunately, the cubic convergence of the Rayleigh quotient iteration cannot be
transferred to the preconditioned multigrid case. A signi�cant acceleration of (5.3)
can be achieved by using multigrid preconditioners in LOBPCG [59].

The results of all these eigensolvers still represent a point in vector space Rn, while
on the other hand the solution of an eigenvalue problem is the whole subspace. So, a
better approach would be to combine a multigrid technique on subspaces with decreas-
ing dimensions, rather then grids. This is the foundation of the multispace method,
described in the next subsection.

5.1.2 Multispace Algorithm
Let us assume that A ∈ Rn×n is a symmetric and positive de�nite matrix. This is
the only condition imposed on A. The structure of the matrix A and its origin are
not important. In this case, inverse subspace iteration will converge to the k smallest
eigenvalues if we take the shift to be zero, which is according to Ky�Fan minimum
principle (Theorem 4.1.10) equivalent to minimizing trace functional

ρ(X) = trace((XT X)−1(XT AX)), (5.4)

where X ∈ Rn×k has full column rank. The subspace that minimizes ρ(X) is spanned
by the �rst k eigenvectors of A. To see that, we denote the orthogonal projection on
the range(X) with π, where π = XX† = X(XT X)−1XT . Then it is easy to see that

ρ(X) = trace((XT X)−1XT AX) = trace(Aπ) = trace(πA) = trace(πAπ),

which follows from the fact that π2 = π, and trace(AB) = trace(BA) for any matrices A
and B. This implies that, �nding the gradient of ρ will only involve �nding the gradient
of π. Further, if X̄ spans an orthonormal basis for range(X), then we can use it instead
of X, and the expression for ρ(X̄) is now simpli�ed. So, from the Ky�Fan minimum
principle and the Cauchy's interlacing theorem (Corollary 4.1.9) now it follows

ρ(X̄) = trace(X̄T AX̄) =
k∑

i=1

µi ≥
∑

i

λi = trace(UT AU),

where µi are eigenvalues of X̄T AX̄, and U = [ u1 · · · uk ] with Aui = λiui.



5.1. THE ALGORITHMS 173

From now on we will use the following notation: for each matrix S ∈ Rn×k a k-
dimensional subspace spanned by the columns of S will be denoted by S = range{S}.

Now, we want to use the multigrid idea, in its two-grid correction form. Let X0 ∈
Rn×k be an orthonormal matrix such that X0 represents initial approximative subspace.
Further, let W (n,m) ∈ Rn×m be an orthonormal matrix which spans an m-dimensional
subspace W(n,m) ⊂ Rn, where k ≤ m < n. Then, the basis of the new algorithm should
be:

1. Perform p steps of inverse iteration, starting with X0 in order to obtain Xp.

2. Compute A(m) = (W (n,m))T AW (n,m), and restrict Xp to the smaller dimension by
Y0 = (W (n,m))T Xp.

3. Find an orthonormal basis Y ∈ Rm×k belonging to the k smallest eigenvalues of
A(m), by inverse iteration starting with Y0.

4. Transfer Y to the original dimension by X̄p = W (n,m)Y .

5. Perform p more steps of inverse iteration, starting with X̄p in order to obtain X2p.

Step 3. denotes a recurrent call to the multispace routine. Here W (n,m) stands for the
interpolation operator and (W (n,m))T for the restriction operator. Now, one question
still remains: how to choose an appropriate subspace W(n,m)? The answer relies on the
equation (5.4).

The �rst assumption should be that Xp = span{Xp} ⊂ W (n,m). So, if we de�ne
Z ∈ Rn×m as a trial subspace basis for W(n,m), we can put

Z(1 : n, 1 : k) = Xp.

Now we have to �nd remaining m − k vectors in the basis Z, which we denote by
P ∈ Rn×(m−k)

Z(1 : n, k + 1 : m) = P.

Once we construct Z we can take QR factorization

Z = W (n,m)R, where W (n,m)(1 : n, 1 : k) = Xp, Z(1 : n, k + 1 : m) = P̄ ,

and take W (n,m) as the desired orthonormal basis, so that Y0 =

[
Ik

0

]
. The good choice

for P would be such that W(n,m) contains directions in which ρ would be minimized
even better. This means that we want

min
Y ∈Rm×k,
Y T Y =Ik

trace(Y T A(m)Y ) = min
Y ∈Rm×k,
Y T Y =Ik

trace((W (n,m)Y )T AW (n,m)Y ) ¿ trace(XT
p AXp),

(5.5)
and we want this trace reduction to be as large as possible. Let us take a better look at
this trace minimization. If we make a partition

W (n,m) = [ Xp P̄ ], Y =

[
Y1

Y2

]
,
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where Y1 ∈ Rk×k and Y2 ∈ R(m−k)×k, then, as in [30]

min
Y ∈Rm×k

Y T Y =Ik

trace((W (n,m)Y )T AW (n,m)Y ) = min
Y ∈Rm×k

rank(Y )=k

ρ(W (n,m)Y )

= min
Y ∈Rm×k

rank(Y )=k

ρ(XpY1 + P̄ Y2).

It turns out that P̄ spans an (m − k)-dimensional search direction P ⊥ Xp for the
minimization of the functional ρ, taking Xp as starting point. So, we must choose P in
such a way, that it contains directions of rapid functional descent.

In case of the minimization of a functional de�ned on a vector space, the direction
of its fastest descend is equal to minus functional gradient [3, Lemma 8.6.1]. Thus, the
iterative steepest descent method uses functional gradient as a search direction. Since
we want to minimize the functional ρ, we will also observe its steepest descend direction
which is constructed in [73] as

G(X) = ∇ρ(X) = 2(AX −XHX)(XT X)−1, HX = (XT X)−1(XT AX),

where rank(X) = k. The problem is that G(X) ∈ Rn×k, and usually m ≥ k, so we are
still missing more directions in subspace W(n,m). The �rst step of the steepest descent
method would �nd S1, such that

min
Y ∈R2k×k

rank(Y )=k

ρ(XpY1 −G(Xp)Y2) = ρ(S1). (5.6)

where minimum is obtained for Ȳ1 and Ȳ2, and

S1 = XpȲ1 −G(Xp)Ȳ2 = Xp · (Ȳ1 + 2HXpȲ2)− AXp · 2Ȳ2 with
G(Xp) = 2(AXp −XpHXp).

This implies that
S1 ⊂ span{Xp, AXp} = K2(A, Xp),

where Kj(A,Xp) = Kj(A,Xp) is a block Krylov subspace.
Here we have to be careful of how we construct the matrix S1. The following relations

hold
XpY1 −G(Xp)Y2 = [ Xp −G(Xp) ]

[
Y1

Y2

]
,

and
ρ(XpY1 −G(Xp)Y2) = ρ̃

([
Y1

Y2

])
,

where

ρ̃

([
Y1

Y2

])
= trace




([
Y1

Y2

]T

B̃

[
Y1

Y2

])−1 ([
Y1

Y2

]T

Ã

[
Y1

Y2

])
),

Ã = [ Xp −G(Xp) ]T A[ Xp −G(Xp) ],

B̃ = [ Xp −G(Xp) ]T [ Xp −G(Xp) ].
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So, if [ Xp −G(Xp) ] has full column rank, then the minimization in (5.6) is equivalent
to �nding the k smallest eigenvalues with corresponding eigenvectors of the 2k × 2k
generalized eigenvalue problem

Ãy = µB̃y.

Since, XT
p G(Xp) = 0, [ Xp −G(Xp) ] will have full column rank if G(Xp) has full

column rank. Let gp = rank(G(Xp)), and let Ḡp ∈ Rn×gp be the orthonormal basis for
range(G(Xp)). If gp < k, that means that Xp contains a subspace which is A invariant.
In that case we can take Ḡp as a new search direction, and de�ne

Ā = [ Xp −Ḡp ]T A[ Xp −Ḡp ] ∈ R(k+gp)×(k+gp).

In this way (5.6) is equivalent to �nding the k smallest eigenvalues with corresponding
eigenvectors of the matrix Ā.

If we assume that the (j − 1)-th step of the steepest descent produces Sj−1, such
that Sj−1 ⊂ Kj(A,Xp), then the j-th step will produce

Sj = Sj−1Ȳ1−G(Sj−1)Ȳ2 = Sj−1 ·(Ȳ1+2HSj−1
(ST

j−1Sj−1)
−1Ȳ2)−ASj−1 ·2(ST

j−1Sj−1)
−1Ȳ2,

and
Sj ⊂ Kj(A,Xp) + AKj(A,Xp) = Kj+1(A,Xp).

We can conclude that for S0 = Xp

Sj ⊂ Kj+1(A, Xp), j = 0, . . . , `− 1, ` =
⌈m

k

⌉
.

Again, in case when G(Sj−1) is rank de�cient, we should choose the orthonormal basis
for range(G(Sj−1)) as a new search direction.

Finally, if we chose

P = [ AXp A2Xp · · · A`−1Xp ] ∈ Rn×(`−1)k,

thenW(n,m) = K`(A,Xp) will contain the solution approximation from `−1 consecutive
steepest descent steps. So, if we started with Xp, any orthonormal basis W (n,m) ofW(n,m)

will satisfy condition (5.5), and the functional reduction will be satisfactory, because
we chose directions of steepest descent. A concrete implementation of an algorithm
generating W (n,m) should detect any rank de�ciency in [ X P ], and it should contain
only the columns that span range([ X P ]). In case when X0 = U is the exact solution,
that is AU = UΛ, the inverse iteration will not change U = range(U), since A−1U =
UΛ−1. Further, rank([ U P ]) = k and the space W(n,m) will coincide with X0 and
A(m) = Λ. Hence, we are done and there is no need for further iterations.

Here we can use the block Lanczos algorithm to produce W (n,m) and the matrix A(m).
The block version of the Lanczos algorithm works the same way as the standard version
except that it starts with an n×k matrix instead of a vector. Hence, for the orthonormal
basis Q(j) = [Q1, . . . , Qj] of Kj(A,X0), the matrix Tj = (Q(j))T AQ(j) ∈ Rjk×jk is banded,
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and has the following form

Tj =




A1 BT
1

B1 A2 BT
2

B2
. . . . . .
. . . . . . BT

j−1

Bj−1 Aj




, Ai ∈ Rk×k

see [78, Chapter 13]. Here is the block Lanczos algorithm.

Algorithm 5.1.2 (The block Lanczos method). For a symmetric matrix A ∈ Rn×n,
and a given orthonormal matrix X0 ∈ Rn×k, this algorithm computes an orthonormal
basis W for Kdm

k
e(A,X0) and T = W T AW .

function [W,T ] = block_lanczos(A,X0,m)

` = dm
k
e;

R0 = X0; Q0 = 0;
for j = 1 : `

Compute QR factorization Rj−1 = QjBj−1;
Rj = AQj −Qj−1B

T
j−1;

Aj = QT
j Rj;

Rj = Rj −QjAj

end
W = [ Q1 · · · Q` ], T = T`

end

Since the matrix A(m) in the next multispace level is banded, it makes matrix�vector
multiplication cheap. Instead of solving the problem (5.5) for the matrix A(m), we can
apply again the same procedure described above, by performing several steps of inverse
iteration. Hence, the algorithm switches to subspaces with smaller and smaller dimen-
sion until it reaches the smallest dimension. On the smallest dimension the problem is
solved by a direct method. We take mmax = `max · k to be the largest acceptable dimen-
sion of W(n,m), where `max = dim(W(n,m))/ dim(X ) is the largest dimension increasing
factor.

Now we can derive the whole algorithm.

Algorithm 5.1.3 (Multispace V cycle). For a symmetric positive de�nite matrix
A ∈ Rn×n, and a given orthonormal matrix X0 = [x

(0)
1 , . . . , x

(0)
k ] this algorithm computes

an orthonormal matrix X = [x1, . . . , xk], such that X = range{X} represents a good
approximation to span{u1, . . . , uk}.

function X = multispace(A,X0)

if (n ≤ min{2k, nmin})
Exactly solve the problem (4.29) by a direct method;

else
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` = min{⌈ n
4k

⌉
, `max}; m = ` · k;

Xp = inverse_iteration(A,X0, p);
[W (n,m), A(m)] = block_lanczos(A,Xp,m);
Y0 = Im(:, 1 : k);
Y = multispace(A(m), Y0);
X̄p = W (n,m)Y ;
X2p = inverse_iteration(A, X̄p, p);

end
end

function X = inverse_iteration(A,X0, p)
{Implements the inverse subspace iteration (Algorithm 4.4.7) for the symmetric matrix A and the
starting k-dimensional approximation X0. It performs p iterations.}
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Figure 5.2: Inverse iteration and transfer to the subspace in multispace method

In our preliminary implementation, which is made only to study the convergence
properties, the linear systems in the inverse iteration are solved by the Cholesky factor-
ization. The factorization is computed only once, and applied p times. In the inverse



178 CHAPTER 5. MULTISPACE

iteration implementation there exist many possibilities for improvements, such as: to
employ the sparsity structure of the matrix, use the data from the factorization of the
previous multispace level with larger dimension, or to apply some iterative method for
solving linear systems. The bottleneck of the block Lanczos algorithm are QR factoriza-
tions, which we will try to reduce in the future work. The important thing here is, that
we are still far from an e�cient implementation, but we are o�ering a new approach
to iterative methods for partial eigenvalue problem. When the inverse iteration stag-
nate, we are searching for the new direction in the subspace of larger dimension. The
dimension of the subspace is successively decreasing similarly to the multigrid idea.

Let us take a look at the �oating point operation count of the multispace method.
First, let us de�ne the following notations:
CMS(n) = operation count for multispace in dimension n,
CII(n, p) = operation count for inverse iteration in dimension n, when

p iterations are performed,
CBL(n,m) = operation count for the block Lanczos method when subspace

transfer is performed from dimension n to dimension m.
CMP (n, m, k) = operation count for matrix product n×m times m× k.
C0(n) = operation count for exact eigensolver in dimension n.

Let us take m = n/2q, dim(X0) = k, and m = ` · k, then we have

CMS(n) = 2CII(n, p) + CBL

(
n,

n

2q

)
+ CMP

(
n,

n

2q
, k

)
+ CMS

( n

2q

)
.

Let s be the total number of multispace levels, that means that n/2sq is the smallest
dimension where the problem is solved directly, and n/2sq ≈ 2k. Than we can obtain

CMS(n) = 2
s−1∑
i=0

CII

( n

2iq
, p

)
+

s−1∑
i=0

CBL

( n

2iq
,

n

2(i+1)q

)
+

s−1∑
i=0

CMP

( n

2iq
,

n

2(i+1)q
, k

)
+C0

( n

2sq

)
.

For example, for the concrete implementation in dimension n we can have the following
values:
Matrix product

operation operation count
n×m times m× k 2nmk

Inverse iteration (2p iterations)
operation operation count
The Cholesky factorization n3/3
solving 2 triangular systems 4pn2k
QR factorizations 8pn2k
total n3/3 + 12pn2k

The block Lanczos method
operation operation count
QR factorizations ` · 4n2k = 4n3/2q

matrix products ` · (2n2k + 6nk2) = 2n3/2q + 6n2k/2q

total 6n3/2q + 6n2k/2q
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Direct eigensolver
operation operation count
solver in dimension n/2sq O(k3)

This will result with

CMS(n) =

(
1

3
+

6

2q

)
1− 1

23sq

1− 1
23q

n3 +

(
12p +

8

2q

)
1− 1

22sq

1− 1
22q

n2k + O(k3).

To keep the balance between convergence and e�ciency, we chose q = 2 in most of our
numerical tests. We will observe two cases: p = 2 and p = 5, because p > 5 does not
pay o�. Then

p = 2

CMS(n) = 1.86

(
1− 1

64s

)
n3 + 27.73

(
1− 1

16s

)
n2k + O(k3)

CII(n, 2p) = 0.33n3 + 24n2k

p = 5

CMS(n) = 1.86

(
1− 1

64s

)
n3 + 66.13

(
1− 1

16s

)
n2k + O(k3)

CII(n, 2p) = 0.33n3 + 60n2k

Now we can conclude that if the inverse iteration converges very slowly, than it pays o�
to add more �oating point operations in order to increase the rate of convergence. But,
does multispace justify these extra expenses? The answer to this question is given in
the next two sections.

5.2 Convergence
The rates of convergence of the multispace method are based on the results of Saad [85].
We start with two-space analysis, where only one transfer to the subspace is performed,
and the problem is solved exactly in the subspace. Multispace can be regarded as a
perturbed two-space method.

For the main result we need the following lemmas.

Lemma 5.2.1. Let π0 be an orthogonal projection on X0, which is the starting subspace
in the multispace algorithm. Let us assume that X0 is such that the vectors π0u1, π0u2,
. . . , π0uk are independent. Then there exists in X0 a unique vector x̄i such that

uT
j x̄i = δij, for j = 1, . . . , k. (5.7)

The vector x̄i is the vector of X0 whose orthogonal projection on U = span{u1, . . . , uk}
is exactly ui.
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Proof. See the proof of Lemma 4. in [85, p. 699].
Lemma 5.2.2. Let Q = [q1, . . . , qk] ∈ Rn×k and P = [p1, . . . , pk] ∈ Rn×k be two
orthonormal matrices, which span two k dimensional subspaces Q = span{Q} and
P = span{P}. Then

sin ∠(Q,P) ≤
√

k max
i=1,...,k

sin ∠(qi,P).

Proof. Let q̄ be such that (see section 2.2 and [90])
sin ∠(q̄,P) = max

q∈Q
sin ∠(q,P) = sin ∠(Q,P),

and let ‖q̄‖2 = 1 with q̄ =
∑k

j=1 βjqj. Then for the orthogonal projection PP on P we
have

sin ∠(q̄,P) = ‖(I − PP)q̄‖2 = ‖
k∑

j=1

βj(I − PP)qj‖2 ≤

≤
k∑

j=1

|βj|‖(I − PP)qj‖2 ≤ max
i=1,...,k

‖(I − PP)qi‖2

k∑
j=1

|βj| ≤

≤ max
i=1,...,k

‖(I − PP)qi‖2

√
k

√√√√
k∑

j=1

β2
j =

=
√

k max
i=1,...,k

sin ∠(qi,P).

Theorem 5.2.3. Let A ∈ Rn×n be a symmetric positive de�nite matrix with eigen-
values λ1 ≤ · · · ≤ λn and eigenvectors u1, . . . , un, and let the eigenvalues of A(m) =
(W (n,m))T AW (n,m) be denoted by µj. Let X0 ∈ Rn×k, XT

0 X0 = Ik be a starting ap-
proximation for multispace and U = [u1, . . . , uk]. Let π` be an orthogonal projection on
W(n,m) = K`(A,Xp), m = k · `. Let us assume that the vectors π0u1, π0u2, . . . , π0uk are
independent and λk < λk+1. Set

γi = 1− 2
λn − λi

λn − λk+1

,

and let T`−1(x) be a Chebyshev polynomial of the �rst kind of degree ` − 1. Then, for
i = 1, . . . , k

(a) when all of 2p inverse iterations are performed before the transfer to the subspace

tan ∠(ui,K`(A,X2p)) ≤ 1

|T`−1(γi)|
(

λi

λk+1

)2p

tan ∠(U ,X0), (5.8)

sin ∠(ui, X̄2p) ≤

(
1 +

r2
`

d2
i

) 1
2

|T`−1(γi)|
(

λi

λk+1

)2p

tan ∠(U ,X0), (5.9)

where di = minj 6=i,...,i+ni−1 |λi − µj| if λi is of multiplicity ni, and r` = ‖(I −
π`)Aπ`‖2.
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(b) when p inverse iterations are performed before and p after the transfer to the
subspace (as in Algorithm 5.1.3)

tan ∠(ui,X2p) ≤ C

(
λi

λk+1

)p (
λk

λk+1

)p

tan ∠(U ,X0), (5.10)

where

C =

maxi=1,...,k





√
k

(
1+

r2
`

d2
i

) 1
2

|T`−1(γi)|





√√√√√1−maxi=1,...,k





k

(
1+

r2
`

d2
i

)

T 2
`−1(γi)

(
λi

λk+1

)2p



 tan2 ∠(U ,X0)

,

if the denominator of C is greater than zero.
Proof. In this proof we use the result on angles between subspaces from Wedin [90]. Let
x̄i be the vector from Lemma 5.2.1, and let

x̄i =
n∑

j=1

αjuj,

be its coordinates in the eigenbasis. Since condition (5.7) must be satis�ed, it follows

x̄i = ui +
n∑

j=k+1

αjuj.

(a) The process is following:

X0
inverse iteration−−−−−−−−−→ X2p = A−2pX0

block Lanczos−−−−−−−→ K`(A,X2p) = A−2pK`(A,X0)

solution on subspace−−−−−−−−−−−→ X̄2p,

so, in this case it is W(n,m) = K`(A, X2p). Let us consider an element x ∈
A−2pK`(A,X0) of the form

x = A−2pq(A)x̄i, q ∈ P`−1,

where P`−1 is a set of polynomials of degree not exceeding `− 1. Then

x = λ−2p
i q(λi)ui +

n∑

j=k+1

αjλ
−2p
j q(λj)uj.

Let Pi denote the eigenprojection associated with λi. Then
‖(I − Pi)x‖2

2

‖Pix‖2
2

=

∑n
j=k+1 λ−4p

j q2(λj)α
2
j

λ−4p
i q2(λi)

=
n∑

j=k+1

(
λi

λj

)4p q2(λj)α
2
j

q2(λi)
. (5.11)

Let q̄ ∈ P`−1 be the polynomial for which the right-hand side of (5.11) reaches
its minimum, and let x̄ ∈ A−2pK`(A,X0) be the corresponding vector, such that
x̄ = A−2pq̄(A)x̄i. Let T`−1 ∈ P`−1 be a Chebyshev polynomial of the �rst kind,
then T`−1 satis�es the following conditions [78, p.332]:
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• T`−1(λ)/2`−2 has the smallest in�nity norm on [−1, 1] of all monic poly-
nomials of degree ` − 1, where in�nity norm is de�ned by ‖q‖∞,[−1,1] =
maxλ∈[−1,1] |q(λ)|.

• ‖T`−1‖∞,[−1,1] = 1.
• Of all polynomials q of degree ≤ `−1 which satisfy q(γ) = δ for some |γ| > 1

the polynomials with the smallest in�nity norm on [−1, 1] is

q̂(λ) =
δ

T`−1(γ)
T`−1(λ),

and
‖q̂‖∞,[−1,1] =

|δ|
|T`−1(γ)| .

Since the observed properties of the Chebyshev polynomials hold for [−1, 1], and
the polynomials q in (5.11) acts on λj for j = k+1, . . . , n, we have to map [λk+1, λn]
onto [−1, 1]. We can do that by an a�ne function f : [λk+1, λn] → [−1, 1] de�ned
by f(x) = ax− b, where

a =
2

λn − λk+1

, b =
λk+1 + λn

λn − λk+1

, (5.12)

and then we can observe the polynomial T`−1(aλ−b). From the minimum property
of q̄, and the fact that |T`−1(λ)| ≤ 1 for λ ∈ [−1, 1] it follows that

‖(I − Pi)x̄‖2
2

‖Pix̄‖2
2

=
n∑

j=k+1

(
λi

λj

)4p q̄2(λj)α
2
j

q̄2(λi)
≤

≤
(

λi

λk+1

)4p n∑

j=k+1

T 2
`−1(aλj − b)α2

j

T 2
`−1(aλi − b)

≤

≤ 1

T 2
`−1(γi)

(
λi

λk+1

)4p n∑

j=k+1

α2
j =

=
1

T 2
`−1(γi)

(
λi

λk+1

)4p

‖x̄i − ui‖2
2,

where
γi = aλi − b = 1− 2

λn − λi

λn − λk+1

.

Now we have the following situation:

-¡
¡

¡
¡

¡
¡

¡µ6

-

x̄
(I − Pi)x̄

Pix̄ui

-¢
¢
¢
¢
¢
¢
¢
¢̧6

x̄i x̄i − ui

ui
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So, we can conclude that
‖(I − Pi)x̄‖2

2

‖Pix̄‖2
2

= tan ∠(ui, x̄) ≥ tan ∠(ui,K`(A,X2p))

‖x̄i − ui‖2 = tan ∠(x̄i, ui) = tan ∠(x̄i,U) ≤ tan ∠(U ,X0), (5.13)

and this proves (5.8).
Proof of (5.9) follows directly from Theorem 3 in [85, p. 694] and from the comment
in [85, p. 703].
Let us assume that the eigenvalue λi is of multiplicity ni, so that i + ni − 1 ≤ k,
and let Pµj

, j = 1, . . . , k denote eigenprojections whose range are the Ritz vectors
associated with µj. We also assume that µ1, . . . , µs are all distinct eigenvalues of
A(m). Then we �rst want to prove the inequality

∥∥∥∥∥

(
π` −

i+ni−1∑
j=i

Pµj

)
ui

∥∥∥∥∥
2

≤ r`

di

‖(I − π`)ui‖2, (5.14)

where ui is any eigenvector associated with λi, and π` is an orthogonal projection
on W(n,m) = K`(A,X2p). The projections Pµj

satisfy the following condition

Pµj
Pµi

= δijPµj
,

s∑
t=1

Pµt = π`,
(5.15)

and hence

(π`A− λiI)π`ui = (π`A− λiI)
s∑

t=1

Pµtui =
s∑

t=1

(µt − λi)Pµtui.

Multiplying the two sides by I −∑i+ni−1
j=i Pµj

we obtain
(

I −
i+ni−1∑

j=i

Pµj

)
(π`A− λiI)π`ui =

s∑
t=1

(µt − λi)

(
I −

i+ni−1∑
j=i

Pµj

)
Pµtui =

=
∑

t 6=i,...,i+ni−1

(µt − λi)Pµtui. (5.16)

Taking the norms of the two sides of equation (5.16) gives
∥∥∥∥∥

(
I −

i+ni−1∑
j=i

Pµj

)
(π`A− λiI)π`ui

∥∥∥∥∥

2

2

=
∑

t 6=i,...,i+ni−1

(µt − λi)
2‖Pµtui‖2

2 ≥

≥ d2
i

∑

t 6=i,...,i+ni−1

‖Pµtui‖2
2 =

= d2
i

∥∥∥∥∥

(
π` −

i+ni−1∑
j=i

Pµj

)
ui

∥∥∥∥∥

2

2

, (5.17)
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where di = mint 6=i,...,i+ni−1 |λi−µt|, and the last inequality follows from (5.15). For
the left side of (5.16) we get
∥∥∥∥∥

(
I −

i+ni−1∑
j=i

Pµj

)
(π`A− λiI)π`ui

∥∥∥∥∥

2

2

≤
∥∥∥∥∥I −

i+ni−1∑
j=i

Pµj

∥∥∥∥∥

2

2

‖π`(A− λiI)π`ui‖2
2 =

= ‖π`(A− λiI)[ui − (I − π`)ui]‖2
2 =

= ‖π`(A− λiI)(I − π`)(I − π`)ui‖2
2 ≤

≤ ‖π`(A− λiI)(I − π`)‖2
2‖(I − π`)ui‖2

2 =

= r2
`‖(I − π`)ui‖2

2. (5.18)

Now (5.14) follows from (5.17) and (5.18). Next, we observe the decomposition
(

I −
i+ni−1∑

j=i

Pµj

)
ui = (I − π`)ui +

(
π` −

i+ni−1∑
j=i

Pµj

)
ui,

where the two vectors in the right side are orthogonal. Thus, from (5.14) it follows
that

∥∥∥∥∥

(
I −

i+ni−1∑
j=i

Pµj

)
ui

∥∥∥∥∥
2

=


‖(I − π`)ui‖2

2 +

∥∥∥∥∥

(
π` −

i+ni−1∑
j=i

Pµj

)
ui

∥∥∥∥∥

2

2




1
2

≤

≤
(

1 +
r2
`

d2
i

) 1
2

‖(I − π`)ui‖2. (5.19)

Let yi =
∑i+ni−1

j=i Pµj
ui be a Ritz vector, then

∥∥∥∥∥

(
I −

i+ni−1∑
j=i

Pµj

)
ui

∥∥∥∥∥
2

= sin ∠(ui, yi) ≥ sin ∠(ui, X̄2p),

‖(I − π`)ui‖2 = sin ∠(ui,K`(A,X2p)) ≤ tan ∠(ui,K`(A, X2p)),

and (5.9) follows from (5.19) and (5.8).

(b) In this case, the process is as follows:

X0
inverse iteration−−−−−−−−−→ Xp = A−pX0

block Lanczos−−−−−−−→ K`(A,Xp) = A−pK`(A,X0)

solution on subspace−−−−−−−−−−−→ X̄p
inverse iteration−−−−−−−−−→ X2p = A−pX̄p.

From part (a) of this proof it follows

sin ∠(ui, X̄p) ≤

(
1 +

r2
`

d2
i

) 1
2

|T`−1(γi)|
(

λi

λk+1

)p

tan ∠(U ,X0).
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On the other hand from Theorem 4.4.8 it follows that

tan ∠(ui, A
−pX̄p) ≤

(
λi

λk+1

)p

tan ∠(U , X̄p).

So we have bounds on sin ∠(ui, X̄p), and we need a bound on tan ∠(U ,X0). For
that, we will use the result of Lemma 5.2.2, to obtain

sin ∠(U, X̄p) ≤ max
i=1,...,k



√

k
(
1 +

r2
`

d2
i

) 1
2

|T`−1(γi)|
(

λi

λk+1

)p


 tan ∠(U ,X0).

Further, it follows that

tan ∠(ui, A
−pX̄p) ≤

(
λi

λk+1

)p
sin ∠(U , X̄p)√

1− sin2 ∠(U , X̄p)
≤

≤
(

λi

λk+1

)p
maxi=1,...,k





√
k

(
1+

r2
`

d2
i

) 1
2

|T`−1(γi)|

(
λi

λk+1

)p



 tan ∠(U ,X0)

√√√√√1−maxi=1,...,k





k

(
1+

r2
`

d2
i

)

T 2
`−1(γi)

(
λi

λk+1

)2p



 tan2 ∠(U ,X0)

≤

≤
maxi=1,...,k





√
k

(
1+

r2
`

d2
i

) 1
2

|T`−1(γi)|





√√√√√1−maxi=1,...,k





k

(
1+

r2
`

d2
i

)

T 2
`−1(γi)

(
λi

λk+1

)2p



 tan2 ∠(U ,X0)

·

·
(

λi

λk+1

)p (
λk

λk+1

)p

tan ∠(U ,X0).

Remark 5.2.4. The process described in Algorithm 5.1.3 has weaker convergence bound
than the process described in part (a) of Theorem 5.2.3. On the other hand, when
multispace is performed in �oating point arithmetic, case (a) can produce a solution
which is far from being orthonormal, due to the Lanczos method. Case (b) will guarantee
numerical orthonormality of the solution. The di�erence between the convergence of
these two cases turned out to be negligible in many examples, and hence case (b) is
preferable.

It remains only to bound eigenvalue errors.

Corollary 5.2.5. Let the assumptions of Theorem 5.2.3 be satis�ed, and let A(m) =
(W (n,m))T AW (n,m) have eigenvalues µ1 ≤ · · · ≤ µm. Then, for i = 1, . . . , k, it holds that
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(a) when all of 2p inverse iterations are performed before the transfer to the subspace

0 ≤ µi − λi ≤ (λn − λi)

[
Ki

|T`−i(γi)|
(

λi

λk+1

)2p

tan ∠(U ,X0)

]2

, (5.20)

where

Ki =
i−1∏
s=1

(λn − λs)

(λi − µs)
,

and

max
i=1,...,k

|µi − λi| ≤ (λn − λ1)
√

k max
i=1,...,k


 1 +

r2
`

d2
i

T 2
`−1(γi)




[(
λk

λk+1

)2p

tan ∠(U ,X0)

]2

,

(5.21)

(b) when p inverse iterations are performed before, and p after the transfer to the sub-
space (as in Algorithm 5.1.3), we de�ne {ν1, . . . , νk} to be eigenvalues of XT

2pAX2p,
then

max
i=1,...,k

|νi − λi| ≤ (λn − λ1)
√

k

[
C

(
λk

λk+1

)2p

tan ∠(U ,X0)

]2

, (5.22)

where C is de�ned in Theorem 5.2.3.

Proof. The proof of this corollary is based on Theorem 6 in [85, p. 702]. Let T =
[t1, . . . , tm] be the eigenvectors of A(m) and let V = [v1, . . . , vn] = W (n,m)T be the
corresponding Ritz vectors. A theorem from [78, p. 190], which is a consequence of the
Courant�Fischer Minimax Theorem 4.1.7, states that

µi = min
y∈Rm

y⊥tj , j=1,...,i−1

yT A(m)y

yT y
= min

y∈Rm

y⊥tj , j=1,...,i−1

(W (n,m)y)T AW (n,m)y

(W (n,m)y)T W (n,m)y
=

= min
w∈W(n,m)

w⊥vj , j=1,...,i−1

wT Aw

wT w
.

Since for case (a) W(n,m) = K`(A,X2p) = A−2pK`(A,X0), any w ∈ W(n,m) can be
represented as w = A−2pq(A)x where q ∈ P`−1, and x ∈ X0. Let us take

qi(x) =
i−1∏
s=1

(x− µs)T`−i(ax− b),

wi = A−2pqi(A)x̄i = λ−2p
i qi(λi)ui +

n∑

j=k+1

αjλ
−2p
j qi(λj)uj,
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where a, b and T`−i are de�ned in the proof of Theorem 5.2.3, and x̄i is de�ned in Lemma
5.2.1. Then,

wi = (A−µsI)zs for zs = A−2p

i−1∏
t=1
t 6=s

(A−µtI)T`−i(aA−bI)x̄i ∈ W(n,m), s = 1, . . . , i−1,

and it implies that

wT
i vs = zT

s (A− µsI)vs = 0, s = 1, . . . , i− 1,

since (A− µsI)vs ⊥ W (n,m). Hence

µi ≤ wT
i Awi

wT
i wi

,

and for i = 1, . . . , k

0 ≤ µi − λi ≤ wT
i (Awi − λiwi)

wT
i wi

=

=
(λ−2p

i qi(λi)ui +
∑n

j=k+1 αjλ
−2p
j qi(λj)uj)

T
(∑n

j=k+1 αj(λj − λi)λ
−2p
j qi(λj)uj

)

λ−4p
i q2

i (λi) +
∑n

j=k+1 α2
jλ
−4p
j q2

i (λj)
≤

≤
∑n

j=k+1(λj − λi)α
2
jλ
−4p
j q2

i (λj)

λ−4p
i q2

i (λi)
≤ (λn − λi)

∑n
j=k+1 α2

jλ
−4p
j q2

i (λj)

λ−4p
i q2

i (λi)
.

By inserting the de�nition of qi we obtain

µi − λi ≤ (λn − λi)

∑n
j=k+1 α2

jλ
−4p
j

∏i−1
s=1(λj − µs)

2T 2
`−i(aλj − b)

λ−4p
i

∏i−1
s=1(λi − µs)2T 2

`−i(aλi − b)
≤

≤ (λn − λi)

(
λi

λk+1

)4p i−1∏
s=1

(λn − λs)
2

(λi − µs)2

n∑

j=k+1

α2
jT

2
`−i(aλj − b)

T 2
`−i(aλi − b)

≤

≤ (λn − λi)

(
λi

λk+1

)4p i−1∏
s=1

(λn − λs)
2

(λi − µs)2

1

T 2
`−i(γi)

n∑

j=k+1

α2
j =

= (λn − λi)
K2

i

T 2
`−i(γi)

(
λi

λk+1

)4p

‖x̄i − ui‖2
2

The proof of (5.20) follows from (5.13).
(5.21) and (5.22) follow from Theorem 3 [65, pp 254], which claims that

(a) max
i=1,...,k

|µi − λi| ≤ (λn − λ1) sin2 ∠(U , X̄2p),

(b) max
i=1,...,k

|νi − λi| ≤ (λn − λ1) sin2 ∠(U ,X2p).

Final equations are straightforward consequences of Theorem 5.2.3 and Lemma 5.2.2.
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5.3 Numerical Examples
In these examples we are testing the functionality of the multispace approach. We want
to illustrate the convergence of multispace, and to demonstrate the examples where
multispace do speed up the inverse iteration.

Example 5.3.1. Let us �rst consider the di�erence between case (a) and case (b) in
Theorem 5.2.3. We will observe a two-space process, where the partial eigenvalue problem
is solved exactly on the subspace. Moreover, we reorthogonalize the basis returned from
the block Lanczos algorithm, in order to simulate the situation in exact arithmetic. We
will take a symmetric matrix A ∈ R100×100 to have �xed eigenvalues {1, 2, . . . , 100}.
Since we are minimizing (5.4), we can note that the minimal value of ρ(X) is

min
X∈Rn×k

XT X=Ik

ρ(X) = 1 + 2 + 3 + 4 + 5 = 15,

for k = 5. We performed the following tests:
method ρ(X2p)

multispace with 5 inverse iterations before
and 5 inverse iterations after the subspace transfer 15.00001854142704
multispace with 10 inverse iterations before
subspace transfer 15.00000000041437
10 inverse iterations 15.15549917

From these results we can see that multispace increased the accuracy of inverse iteration,
and that case (a) is more accurate than case (b) when the basis is reorthogonalized. In
�oating point arithmetic, without the reorthogonalization of the Lanczos basis, the result
of case (a) was very inaccurate.

Example 5.3.2. In this example A is taken to be the block tridiagonal matrix of order
1024 resulting from discretizing Poisson's equation with the 5-point operator on an 32×
32 mesh. We are searching for the 6 smallest eigenvalues, where the eigenvalues are
approximatively equal to

λ1 ≈ 1.811230970764231 · 10−2

λ2 ≈ 4.519876032840046 · 10−2

λ3 ≈ 4.519876032844214 · 10−2

λ4 ≈ 7.228521094917532 · 10−2

λ5 ≈ 9.007020762483668 · 10−2

λ6 ≈ 9.007020762485157 · 10−2

λ7 ≈ 1.171566582456000 · 10−1

The convergence of the inverse iteration depends on λ6/λ7 = 7.688014405125310 · 10−1,
and the minimal trace is

∑6
1 λi = 3.609354565633485 · 10−1. In Table 5.1 we compare

ρ(X) for the multispace and the inverse iteration, where in each multispace level 2 inverse
iterations are performed before the subspace transfer and 2 after.
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Multispace:

number of V cycles ρ(X)
0 2.4 · 101

1 3.933010161085040 · 10−1

2 3.610192107781051 · 10−1

3 3.609354751996430 · 10−1

4 3.609354565674766 · 10−1

Inverse iteration:
number of iterations ρ(X)

0 2.4 · 101

4 7.751530085839884 · 100

8 1.413509702629963 · 100

12 8.926254300321311 · 10−1

16 5.859145267902786 · 10−1

78 3.609354565675780 · 10−1

Table 5.1: Reduction of ρ(X).

From the last row in Table 5.1, we can see that the inverse iteration achieved approx-
imatively the same value for ρ(X) after 78 iterations, as the multispace for 4 V cycles,
with a total of 16 inverse iterations on the �rst level.

Example 5.3.3. The tests are performed with a matrix A ∈ R500×500 such that

λ1 = sin
(

π
10

)
λ2 = sin

(
2π
10

)
λ3 = sin

(
3π
10

)
λ4 = sin

(
4π
10

)
λ5 = sin

(
4π
10

)
λ6 = 1

λ7 = 2 . . . λ500 = 495

The task was to determine the 5 smallest eigenvalues and corresponding eigenvectors.
On the other hand, there is a possible source of problems for inverse iteration, because

λ5

λ6

= 0.95105651629515.

We took trace error to be |ρ(X2p)−
∑5

i=1 λi|. When multispace results are plotted versus
the number of inverse iterations, this means that a total of 2p inverse iterations are
performed on each level (as in the case of Algorithm 5.1.3). The tests were performed
on the same computers as before, and the results are illustrated in the following �gures.

For example from Figure 5.4 we can see that multispace with 4 inverse iterations on
each level achieves the trace error equal to 2.4381 · 10−7, while inverse iterations alone
could not achieve that accuracy even after 100 steps. On the time scale, from Figure
5.9 we can see that this trace error was achieved after 0.13 seconds, while 100 inverse
iterations had execution time equal to 0.31 seconds.
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Figure 5.3: Eigenvalue errors versus the number of inverse iterations.
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Figure 5.5: Angles between individual eigenvectors and their approximation, and angles
between subspaces U and X2p, versus the number of inverse iterations.
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Figure 5.6: Residual norms versus the number of inverse iterations.



192 CHAPTER 5. MULTISPACE

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Execution time k=5

number of inverse iterations

se
co

nd
s

inverse iteration  
multispace         
space transfer time

Student Version of MATLAB
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Figure 5.8: Eigenvalue errors versus time.
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Figure 5.9: Trace errors versus time.
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Figure 5.10: Angles between individual eigenvectors and their approximation, and angles
between subspaces U and X2p, versus time.
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Chapter 6

New Bounds on Singular Value
Approximations from Subspaces

In this chapter the new results on singular value approximations from subspaces are
presented. We are considering singular value decomposition of a compression of the
operator to low dimensional subspaces. Our main task is to �nd bounds on the relative
error between singular values of the compression and the original operator. Since we are
dealing with subspaces, we derive convenient bounds that involve angles between some
speci�c subspaces, like it was presented by Drma£ in [22], and by Drma£ and Hari in
[23] for the eigenvalues of a Hermitian matrix.

6.1 Classical Results
The classical bound on the absolute eigenvalue error of a Hermitian matrix is given by
Kahan in the following theorem [56].

Theorem 6.1.1. Let H be an n× n Hermitian matrix with eigenvalues λ1 ≤ · · · ≤ λn

and let X be an n× ` matrix of full column rank. If M is any `× ` Hermitian matrix,
with eigenvalues µ1 ≤ · · · ≤ µ`, then there are eigenvalues λi1 ≤ · · · ≤ λi` of H such
that

max
j=1,...,`

|λij − µj| ≤ ‖R(M)‖2

σmin(X)
, R(M) = HX −XM. (6.1)

In (6.1) the absolute error in eigenvalues is bounded by the residual norm. The
residual norm represents a measure of deviation of the subspace spanned by the columns
of X from an invariant subspace. In practice, M is the Rayleigh quotient matrix M =
X∗HX, where X∗X = I`.

The above theorem can be generalized to the singular values of a rectangular m× n
matrix (see Theorem 4.5 in [48]).

Theorem 6.1.2. Let A be an m × n rectangular matrix, where m ≥ n, with singular
values σ1 ≥ · · · ≥ σn. Let X be an m × ` orthonormal matrix, and let Y be an n × `
orthonormal matrix. If G is any ` × ` matrix, with singular values γ1 ≥ · · · ≥ γ`, then

195
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there are singular values σi1 ≥ · · · ≥ σi` of A such that

max
j=1,...,`

|σij − γj| ≤ max{‖RR(G)‖2, ‖RL(G)‖2}, (6.2)

where
RR(G) = AY −XG, RL(G) = A∗X − Y G∗.

Proof. Let [X X⊥] represent an unitary basis for Cm, and let [Y Y⊥] represent an unitary
basis for Cn. The representation of A in these two bases can be written as

A = [ X X⊥ ]

[
M L
K N

] [
Y ∗

Y ∗
⊥

]
,

where
M = X∗AY, L = X∗AY⊥, K = X∗

⊥AY, N = X∗
⊥AY⊥.

Further, RR(G) ∈ Cm×` and RL(G) ∈ Cn×`, so they can be written as

RR(G) = [ X X⊥ ]

[
M −G

K

]
, RL(G) = [ Y Y⊥ ]

[
M∗ −G∗

L∗

]
,

and ∥∥∥∥
[

M −G
K

]∥∥∥∥
2

= ‖RR(G)‖2 ≤ ν,
∥∥[

M −G L
]∥∥

2
= ‖RL(G)‖2 ≤ ν,

where
ν = max{‖RR(G)‖2, ‖RL(G)‖2}.

The dilatation theorem from [12] states that there exists an (m− `)× (n− `) matrix T ,
such that ∥∥∥∥

[
M −G L

K N − T

]∥∥∥∥
2

≤ ν, (6.3)

with
N − T = −S(M −G)∗P + ν(I − SS∗)

1
2 C(I − P ∗P )

1
2 ,

where

S = K[ν2I − (M −G)∗(M −G)]†
1
2 , P = [ν2I − (M −G)(M −G)∗]†

1
2 L,

and C is an arbitrary contraction, i.e. a matrix satisfying ‖C‖2 ≤ 1.
Now, if we de�ne the matrix Ã as

Ã = [ X X⊥ ]

[
G 0
0 T

] [
Y ∗

Y ∗
⊥

]
,

then the singular values σ̃i, i = 1, . . . n of Ã include singular values of G, and by the
Weyl inequalities (Theorem 2.3.1) and (6.3), the following holds

max
i=1,...,n

|σi − σ̃i| ≤ ‖A− Ã‖2 =

∥∥∥∥
[

M −G L
K N − T

]∥∥∥∥
2

≤ ν.
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The consequence of Theorem 6.1.2 with a tighter bound is stated in the following
corollary.

Corollary 6.1.3. Let A, X, Y , RR(G) and RL(G) be de�ned as in Theorem 6.1.2
but with G = M = X∗AY . Let us assume that σ(M) = {µ1, . . . , µ`} and σ(N) =
{ν1, . . . , νn−`} satisfy condition σ(M) ∩ σ(N) = ∅, where µj and νk are the singular
values of M and N = X∗

⊥AY⊥ respectively. Then, the following bound holds

max
i=1,...,n

|σi − σ̃i| ≤ max{‖RR(M)‖2
2, ‖RL(M)‖2

2}
min

j=1,...,` ,k=1,...,n−`
|µj − νk| , (6.4)

where {σ̃1, . . . , σ̃n} = σ(M) ∪ σ(N).

Proof. σ̃i, i = 1, . . . , n are the singular values of the matrix Ã =

[
M 0
0 N

]
, and from

[70, p. 548], it follows that

max
i=1,...,n

|σi − σ̃i| ≤ max{‖L‖2
2, ‖K‖2

2}
min

j=1,...,` ,k=1,...,n−`
|µj − νk| .

From the proof of Theorem 6.1.2 we can conclude that ‖RR(M)‖2 = ‖K‖2 and ‖RL(M)‖2 =
‖L‖2.

Instead of the absolute error bound, we want to derive bound on relative error in
the singular values. This usually involves multiplicative perturbations as we saw in
subsection 2.3.1, so the technique that is used to obtain such a bound is di�erent than
the technique used in Kahan's theorem. In the next section the new result is presented,
which includes relative error bounds between singular values of a rectangular matrix and
the compression of the matrix to a low dimensional subspaces. The bounds are functions
of angles between suitably chosen subspaces. In section 6.3 more tight quadratic bounds
are introduced, which are again expressed in terms of the angles between the same
subspaces.

6.2 A New Subspace Bound
To �nd the error bound between the singular values of a rectangular matrix A ∈ Cm×n

and its compression M ∈ R`×`, �rst we have to construct an arti�cial additive perturba-
tion to obtain a matrix Ã ∈ Cm×n whose singular values include singular values of the
compression. On the other hand, for the relative error bounds we need a multiplicative
perturbation. So, we will �nd suitable bases for the spaces Cm and Cn, and we will
express the matrix A as a multiplicative perturbation of Ã. The singular value error
bounds are then derived by means of the relative perturbation theory, see section 2.3
and [52].

From now on we will consider m×n rectangular matrices, where m ≥ n, and we will
denote R(B) = range(B) for any matrix B. Let X be an `-dimensional subspace of Cm
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given as the range of orthonormal X ∈ Cm×`, such that X ∩ R(A)⊥ = {0}, and let Y
be an `-dimensional subspace of Cn given as the range of orthonormal Y ∈ Cn×`. For
matrices A ∈ Cm×n and M ∈ C`×` we de�ne two types of residuals as in Theorem 6.1.2

RR(M) = AY −XM, RL(M) = A∗X − Y M∗.

Further, the subspaces of interest in the following theorems will be
W = A∗X and Z = A†X ,

and together with Y they will be involved in error bounds. In fact, the bounds are
expressed in terms of angles between these subspaces, where the angle between two
equidimensional subspaces is de�ned in subsection 2.2.6.

Finally, we can state the main result.
Theorem 6.2.1. Let A ∈ Cm×n, and let A have the singular values σ1 ≥ · · · ≥ σn > 0.
Further, let M = X∗AY ∈ C`×` be the Rayleigh quotient, and let residuals be de�ned as

RR = RR(M) = (I −XX∗)AY, RL = RL(M) = (I − Y Y ∗)A∗X.

We de�ne an additive perturbation δA = RRY ∗+XR∗
L, and change A to Ã = A−δA, so

the singular values of M are the singular values of Ã. If θ = max{](W ,Y),](Z,Y)} <
π/2, then Ã has also full column rank, and its singular values σ̃1 ≥ · · · ≥ σ̃n > 0 satisfy

max
i=1,...,n

|σi − σ̃i|
σ̃i

≤ 2 tan θ + tan2 θ. (6.5)

Proof. Without loss of generality we can assume that X ⊂ R(A). If this is not the case,
then let us observe the subspace XA = AA†X . XA is the orthogonal projection of X on
R(A), and since X ∩R(A)⊥ = {0}, XA is of the same dimension as X . Further, by the
Moore�Penrose conditions for the pseudo�inverse [35, p. 243], we have

A∗XA = A∗AA†X = A∗(AA†)∗X = (AA†A)∗X = A∗X = W
A†XA = A†AA†X = A†X = Z.

So, from now on we will take XA instead of X , or we will just assume that X ⊂ R(A).
Let X⊥ = [X1,⊥, X2,⊥] be an orthonormal basis for X⊥, where X1,⊥ ∈ Cm×(n−`) and

X2,⊥ ∈ Cm×(m−n) are such that R(X1,⊥) ⊂ R(A) and X∗
2,⊥A = 0. Let Y⊥ ∈ Cn×(n−`) be

an orthonormal basis for Y⊥. Then, the matrix A can be written as

A = [ X X1,⊥ X2,⊥ ]




M L
K N
0 0




[
Y ∗

Y ∗
⊥

]
,

where L = X∗AY⊥ ∈ C`×(n−`), K = X∗
1,⊥AY ∈ C(n−`)×` and N = X∗

1,⊥AY⊥ ∈
C(n−`)×(n−`). On the other hand, for Ã we have

Ã = A− (I −XX∗)AY Y ∗ −XX∗A(I − Y Y ∗) =

= XX∗AY Y ∗ + (I −XX∗)A(I − Y Y ∗) =

= XX∗AY Y ∗ + X⊥X∗
⊥AY⊥Y ∗

⊥ = XX∗AY Y ∗ + X1,⊥X∗
1,⊥AY⊥Y ∗

⊥ =

= [ X X1,⊥ X2,⊥ ]




M 0
0 N
0 0




[
Y ∗

Y ∗
⊥

]
.
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So, A and B =




M L
K N
0 0


 have the same singular values, and Ã and B̃ =




M 0
0 N
0 0




have also the same singular values. Hence, singular values of M and N are singular
values of Ã. So far, we have been following standard approach, and Theorem 6.1.2 can
be proved in this way for G = M .

If we prove that M and N are nonsingular, then we can introduce a multiplicative
perturbation 


M L
K N
0 0


 =




M 0
0 N
0 0




[
I` M−1L

N−1K In−`

]
,

that is,
B = B̃D, D = I + C, C =

[
0` M−1L

N−1K 0n−`

]
. (6.6)

Since B and B̃ have full column rank, D must be nonsingular, and from Theorem 2.3.5
it follows

max
i=1,...,n

|σi − σ̃|
σ̃i

≤ ‖I −D∗D‖2 = ‖I − (I + C)∗(I + C)‖2 = ‖C + C∗ + CC∗‖2 ≤
≤ 2‖C‖2 + ‖C‖2

2, (6.7)

where ‖C‖2 = max{‖M−1L‖2, ‖N−1K‖2}.
So, it remains to check the nonsingularity of M and N , and to compute ‖M−1L‖2,

‖N−1K‖2. We will start with M = (A∗X)∗Y . A∗X has full column rank since X ∩
R(A)⊥ = {0}, and let A∗X = QR be a QR factorization of A∗X where Q ∈ Cn×` is
orthonormal and R ∈ C`×` is nonsingular. Then M = R∗Q∗Y , where Q∗Y ∈ C`×` has
singular values equal to ones and cosines of acute principal angles between W and Y .
The question remains whether Q∗Y has full rank. If Q∗Y is singular, then by Wedin
[90] it follows that there exist y ∈ Y such that y⊥W and w ∈ W such that w⊥Y . By
(2.15) and [90], that means that ](y,W) = π/2, ](w,Y) = π/2 and

](W ,Y) = max
w∈W

](w,Y) =
π

2

= max
y∈Y

](y,W) =
π

2
,

which contradicts the assumption of the theorem. So, there do not exist y ∈ Y per-
pendicular to W and w ∈ W perpendicular to Y . Q∗Y is nonsingular, and hence M is
nonsingular.

Now, for N = (A∗X1,⊥)∗Y⊥, A∗X1,⊥ has full column rank since R(X1,⊥) ⊂ R(A),
and

(A†X)∗A∗X1,⊥ = X∗(AA†)∗X1,⊥ = X∗X1,⊥ = 0. (6.8)
A∗R(X1,⊥) and Z = A†X are subspaces of Cn, and dim(A∗R(X1,⊥)) = n−`, dim(Z) = `
and Z⊥A∗R(X1,⊥). So, we can conclude that Z = (A∗R(X1,⊥))⊥ and A∗R(X1,⊥) =
Z⊥. Let A∗X1,⊥ = Q⊥R⊥ be a QR factorization of A∗X1,⊥, where Q⊥ ∈ Cn×(n−`)
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is orthonormal and R⊥ ∈ C(n−`)×(n−`) is nonsingular. Then N = R∗
⊥Q∗

⊥Y⊥, where
Q∗
⊥Y⊥ ∈ C(n−`)×(n−`) has singular values equal to ones and cosines of acute principal

angles between Z⊥ and Y⊥.
Let PY , PW , and PZ be orthogonal projections onto the subspaces Y , W and Z

respectively. Then, by Wedin [90] and the assumption of the theorem that ](Z,Y) <
π/2, it follows

‖PZ − PY‖2 = sin ](Z,Y) < 1. (6.9)
On the other hand

sin ](Z⊥,Y⊥) = ‖PZ⊥ − PY⊥‖2 = ‖(I − PZ)− (I − PY)‖2 = ‖PZ − PY‖2 < 1, (6.10)

and ](Z⊥,Y⊥) < π/2. So, by the same reasoning as before we can conclude that Q∗
⊥Y⊥

is nonsingular, and hence N is nonsingular.
For computing ‖C‖2 we need some more theory on angles between subspaces. By

[90] there exists an orthonormal basis in Cn such that with respect to this basis PY and
PW are represented by

PY =




Ik
`−k⊕
i=1

Ji

0n−2`+k


 , PW =




Ik
`−k⊕
i=1

Pi

0n−2`+k


 , (6.11)

where

Ji =

[
1
0

]
[ 1 0 ], Pi =

[
cos ψi

sin ψi

]
[ cos ψi sin ψi ], ψi ∈

〈
0,

π

2

〉
.

Similarly, there exists an orthonormal basis in Cn such that with respect to this basis
PY and PZ are represented by

PY =




Ik′
`−k′⊕
i=1

Ji

0n−2`+k′


 , PZ =




Ik′
`−k′⊕
i=1

Qi

0n−2`+k′


 , (6.12)

where

Ji =

[
1
0

]
[ 1 0 ], Qi =

[
cos φi

sin φi

]
[ cos φi sin φi ], φi ∈

〈
0,

π

2

〉
.

From the QR factorization A∗X = QR it follows that

M−1L = (Q∗Y )−1R−∗R∗Q∗Y⊥ = (Q∗Y )−1Q∗Y⊥. (6.13)

Let us observe the following matrix

(PWPY)†PWPY⊥ = (Y (Q∗Y )−1Q∗)QQ∗Y⊥Y ∗
⊥ = Y (Q∗Y )−1Q∗Y⊥Y ∗

⊥ = Y M−1LY ∗
⊥,
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where PY = Y Y ∗, PY⊥ = Y⊥Y ∗
⊥ and PW = QQ∗. Hence, we can conclude that M−1L

and (PWPY)†PWPY⊥ = (PWPY)†(PW −PWPY) have the same nontrivial singular values.
From [90] and (6.11) it follows that in a suitably chosen basis (PWPY)†PWPY⊥ can be
represented as

(PWPY)†PWPY⊥ =




0k
`−k⊕
i=1

Ei

0n−2`+k


 ,

where
Ei =

[
1
0

]
tan ψi[ 0 1 ].

Finally,

ψ = max
i=1,...,`−k

ψi = ](W ,Y), (6.14)

‖M−1L‖2 = tan ψ. (6.15)

From the QR factorization A∗X1,⊥ = Q⊥R⊥ it follows that

N−1K = (Q∗
⊥Y⊥)−1R−∗

⊥ R∗
⊥Q∗

⊥Y = (Q∗
⊥Y⊥)−1Q∗

⊥Y. (6.16)

Now, we consider the matrix

(PZ⊥PY⊥)†PZ⊥PY = (Y⊥(Q∗
⊥Y⊥)−1Q∗

⊥)Q⊥Q∗
⊥Y Y ∗ = Y⊥(Q∗

⊥Y⊥)−1Q∗
⊥Y Y ∗ = Y⊥N−1KY ∗,

where PZ⊥ = Q⊥Q∗
⊥. Again, we can conclude that N−1K and (PZ⊥PY⊥)†PZ⊥PY =

(I−PZ −PY +PZPY)†(PY −PZPY) have the same nontrivial singular values. From [90]
and (6.12) it follows that in suitably chosen basis (PZ⊥PY⊥)†PZ⊥PY can be represented
as

(PZ⊥PY⊥)†PZ⊥PY =




0k′
`−k⊕
i=1

Fi

0n−2`+k′


 ,

where
Fi =

[
0
−1

]
tan φi[ 1 0 ].

Finally,

φ = max
i=1,...,`−k′

φi = ](Z,Y), (6.17)

‖N−1K‖2 = tan φ. (6.18)

Thus,

‖C‖2 = max{‖M−1L‖2, ‖N−1K‖2} = max{tan ψ, tan φ} = tan θ, (6.19)

and we �nished the proof.
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Corollary 6.2.2. Under the same conditions as in Theorem 6.2.1, but with additional
constraint θ < π/4, the following holds

max
i=1,...,n

|σi − σ̃i|√
σiσ̃i

≤ tan θ +
tan2 θ

2(1− tan θ)
. (6.20)

Proof. By (6.6) and (6.19) it is ‖C‖2 < 1, and from Theorem 2.3.7 it follows

max
i=1,...,n

|σi − σ̃i|√
σiσ̃i

≤ 1

2
‖D∗ −D−1‖2 =

1

2
‖I + C∗ − I +

∞∑
i=1

(−1)i−1Ci‖2 ≤

≤ ‖C‖2 +
1

2

∞∑
i=2

‖C‖i
2 = ‖C‖2 +

‖C‖2
2

2(1− ‖C‖2)
≤

≤ tan θ +
tan2 θ

2(1− tan θ)
.

The approximations σ̃i will be close to the exact singular values σi if the angle θ
is small. On the other hand, subspaces close to singular subspaces can produce large
θ and large relative error in singular values. For example, let us observe the following
simple example. The matrix A is de�ned as

A =

[
α−2 0
0 α

]
, 0 < α ¿ 1,

and the vectors
x = y =

1√
1 + α2

[
α
1

]
≈

[
0
1

]
,

are very close to the singular vectors corresponding to the singular value σ2 = α. Further,
the singular value approximation is given by

σ̃2 = xT Ay =
1

1 + α2
(1 + α) ≈ 1 + α,

whose relative error is large:
|σ̃2 − σ2|

σ2

≈ α−1.

The space A∗X is spanned by the vector
A∗x
‖A∗x‖2

=
1√

α−2 + α2

[
α−1

α

]
≈

[
1
α2

]
≈

[
1
0

]
,

and we can conclude that
](A∗X ,Y) ≈ π

2
.

The bound in Theorem 6.2.1 is illustrated in the following numerical example.
Example 6.2.3. Let A ∈ R100×20 have �xed singular values {1, 2, . . . , 19, 100}, and
suppose we are looking for the 5 largest singular values. We use the power method on
A∗A, where Y0 ∈ R20×5 is a random orthonormal matrix and Xi = AYi, i = 1, 2, . . . , 120.
We obtain the results shown in Figure 6.1.
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Figure 6.1: Relative errors in singular values, and the bounds (6.20) and (6.5).

6.3 Quadratic Residual Bound
As we can see in Example 6.2.3, the error bound given in Theorem 6.2.1 is not very
tight. The next step is to �nd more accurate bound, involving the same angles and
subspaces. This is done in the following theorem, which is mostly based on the results
from [23].

Let us assume, once more, that the bases for X , X⊥ and Y are chosen so that

A =




ΣM L
K ΣN

0 0


 , (6.21)

where ΣM = diag(µ1, . . . , µ`) and ΣN = diag(ν1, . . . , νn−`) are diagonal matrices with
the singular values of M and N , respectively. Since the last m− n rows of A in (6.21)
are equal to zero, without loss of generality we can assume that A ∈ Cn×n is square and
of the form

A =

[
ΣM L
K ΣN

]
. (6.22)

Next we will assume that the singular values of M and N are separated by the interval
〈α, β〉, which means that for µ1 ≥ · · · ≥ µ` and ν1 ≥ · · · ≥ νn−`

ν1 ≤ α < β ≤ µ`,

and we de�ne relative gaps

ρ(σ`+i, ΣM) = min
j=1,...,`

|µj − σ`+i|
µj

, ρ(σi, ΣN) = min
j=1,...,n−`

|νj − σi|
νj

.
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Theorem 6.3.1. Let A, X , Y, and ψ, φ, θ < π/4 be as in Theorem 6.2.1 and relation
(6.22). Let the singular values of M and N be separated by the interval 〈α, β〉. Then

1. for each i ∈ {1, . . . , `}, if σi is not a singular value of [ K ΣN ] and if ρ(σi, ΣN) >
tan2 φ, then

|µi − σi|
µi

≤ min

{
2 tan θ + tan2 θ, max

{
tan2 φ, tan2 ψ +

(tan ψ + tan φ)2

ρ(σi, ΣN)− tan2 φ

}}
,

(6.23)
in case when tan2 ψ + (tan ψ+tan φ)2

ρ(σi,ΣN )−tan2 φ
< 1;

2. for each i ∈ {1, . . . , n − `}, if σ`+i is not a singular value of [ ΣM L ] and if
ρ(σ`+i, ΣM) > tan2 ψ, then

|νi − σ`+i|
νi

≤ min

{
2 tan θ + tan2 θ, max

{
tan2 ψ, tan2 φ +

(tan ψ + tan φ)2

ρ(σ`+i, ΣM)− tan2 ψ

}}
,

(6.24)
in case when tan2 φ + (tan ψ+tan φ)2

ρ(σ`+i,ΣM )−tan2 ψ
< 1.

If we have no information about the distributions of the singular values, then for the
singular values σ̃i of

[
ΣM 0
0 ΣN

]
we can write

∣∣∣∣
σ̃i − σi

σ̃i

∣∣∣∣ ≤ min
{

2 tan θ + tan2 θ, tan2 θ

(
1 +

4
max{ρ(σi, ΣM )− tan2 ψ, ρ(σi, ΣN )− tan2 φ}

)}
,

(6.25)
where if σ̃i = µji

for some 1 ≤ ji ≤ `, then the conditions from item 1. have to be
satis�ed, and if σ̃i = νki

for some 1 ≤ ki ≤ n− `, then the conditions from item 2. have
to be satis�ed.

Proof. Let us observe the Schur factorization of AA∗−σ2
i I, for σi which is not a singular

value of [ K ΣN ]:

AA∗ − σ2
i I =

[
Σ2

M + LL∗ − σ2
i I ΣMK∗ + LΣN

KΣM + ΣNL∗ KK∗ + Σ2
N − σ2

i I

]
=

=

[
I (ΣMK∗ + LΣN)(KK∗ + Σ2

N − σ2
i I)−1

0 I

] [
N ′(σi) 0

0 KK∗ + Σ2
N − σ2

i I

]
·

·
[

I 0
(KK∗ + Σ2

N − σ2
i I)−1(KΣM + ΣNL∗) I

]
,

where N ′(σi) is the Schur complement

N ′(σi) = Σ2
M + LL∗ − σ2

i I − (ΣMK∗ + LΣN)(KK∗ + Σ2
N − σ2

i I)−1(KΣM + ΣNL∗).

Then AA∗ − σ2
i I is congruent to

[
Σ2

M − σ2
i I 0

0 Σ2
N − σ2

i I

]
+

[
LL∗ − (ΣMK∗ + LΣN )(KK∗ + Σ2

N − σ2
i I)−1(KΣM + ΣNL∗) 0

0 KK∗

]
.

(6.26)
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Since the i-th eigenvalue of AA∗ − σ2
i I is equal to zero, Sylvester's inertia theorem

implies that the matrix in (6.26) have zero as the i-th eigenvalue. It further follows that
σ2

i is the i-th eigenvalue of the matrix

H(σi) =
[

Σ2
M 0
0 Σ2

N

]
+

[
LL∗ − (ΣMK∗ + LΣN )(KK∗ + Σ2

N − σ2
i I)−1(KΣM + ΣNL∗) 0

0 KK∗

]
.

So, the eigenvalues of H(σi) are now compared to µ2
j and ν2

j . We can write

H(σi) =

[
ΣM 0
0 ΣN

] {
I +

[
Σ−1

M
LL∗Σ−1

M
− (K∗ + Σ−1

M
LΣN )(KK∗ + Σ2

N − σ2
i I)−1(K + ΣN L∗Σ−1

M
) 0

0 Σ−1
N

KK∗Σ−1
N

]} [
ΣM 0
0 ΣN

]
,

Let us de�ne the matrix C as
C =

[
Σ−1

M LL∗Σ−1
M − (K∗ + Σ−1

M LΣN )(KK∗ + Σ2
N − σ2

i I)−1(K + ΣNL∗Σ−1
M ) 0

0 Σ−1
N KK∗Σ−1

N

]
=

=

[
Σ−1

M LL∗Σ−1
M − (K∗Σ−1

N + Σ−1
M L)(Σ−1

N KK∗Σ−1
N + I − σ2

i Σ−2
N )−1(Σ−1

N K + L∗Σ−1
M ) 0

0 Σ−1
N KK∗Σ−1

N

]
=

=

[
EE∗ − (F ∗ + E)(FF ∗ + I − σ2

i Σ−2
N )−1(F + E∗) 0

0 FF ∗

]
,

where by the proof of Theorem 6.2.1

E = Σ−1
M L, ‖E‖2 = tan ψ, (6.27)

F = Σ−1
N K, ‖F‖2 = tan φ. (6.28)

So, in case when

‖C‖2 = max{‖EE∗ − (F ∗ + E)(FF ∗ + I − σ2
i Σ

−2
N )−1(F + E∗)‖2, ‖FF ∗‖2} < 1,

I +C is positive de�nite. Since from the condition of the theorem ‖FF ∗‖2 = tan2 φ < 1,
we need to explore the other term in ‖C‖2:

‖EE∗ − (F ∗ + E)(FF ∗ + I − σ2
i Σ

−2
N )−1(F + E∗)‖2 ≤

≤ tan2 ψ + (tan ψ + tan φ)2‖(FF ∗ + I − σ2
i Σ

−2
N )−1‖2 ≤

≤ tan2 ψ +
(tan ψ + tan φ)2

minj=1,...,n−`
|σ2

i−ν2
j |

ν2
j

− tan2 φ
≤

≤ tan2 ψ +
(tan ψ + tan φ)2

ρ(σi, ΣN)− tan2 φ
,

under the condition that ρ(σi, ΣN) > tan2 φ. So, in addition if we demand that tan2 ψ +
(tan ψ+tan φ)2

ρ(σi,ΣN )−tan2 φ
< 1 then ‖C‖2 < 1 and again I + C is positive de�nite. Hence, we can

conclude that

H(σi) ∼ (I + C)
1
2

[
Σ2

M 0
0 Σ2

N

]
(I + C)

1
2 = (I + C)

1
2 ÃÃ∗(I + C)

1
2 .

By Theorem 4.3.4 it follows that
|µi − σi|

µi

≤ |µ2
i − σ2

i |
µ2

i

≤ ‖C‖2 ≤

≤ max

{
tan2 φ, tan2 ψ +

(tan ψ + tan φ)2

ρ(σi, ΣN)− tan2 φ

}
.
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This proves (6.23).
Relation (6.24) can be proven in the same way, in case when σ`+i is not a singular

value of [ ΣM L ] and if we factorize

AA∗ − σ2
`+iI =

[
I 0

(KΣM + ΣNL∗)(Σ2
M + LL∗ − σ2

`+iI)−1 I

] [
Σ2

M + LL∗ − σ2
`+iI 0

0 M ′(σ`+i)

]
·

·
[

I (Σ2
M + LL∗ − σ2

`+iI)−1(ΣMK∗ + LΣN )
0 I

]
,

where M ′(σ`+i) is the Schur complement

M ′(σ`+i) = KK∗ + Σ2
N − σ2

`+iI − (KΣM + ΣNL∗)(Σ2
M + LL∗− σ2

`+iI)−1(ΣMK∗ + LΣN).

Example 6.3.2. Let, again, A ∈ R100×20 be de�ned as in Example 6.2.3, and suppose
the same iteration are performed as in Example 6.2.3. We obtain the results shown in
Figure 6.2.
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Figure 6.2: Relative errors in singular values, and the quadratic bound (6.25). The blue
line denotes the maximum relative error for the singular values that satisfy the conditions
of Theorem 6.3.1. The conditions are not met only at the beginning of iterations.

The example con�rms that the new quadratic bound for relative errors in singular
values is tight, as it can be expected. After the 100-th iteration we can note that
the bound becomes smaller than the computed relative error. This happens when the
computed relative error reaches the order of machine precision and remains on that level,
while the bound is computed more accurately. In the exact arithmetic the relative error
would continue to decrease.
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Example 6.3.3. In this example we compare the bounds in Theorem 6.3.1 and Corol-
lary 6.1.3. The important di�erence between these two bounds is that the bound in
Corollary 6.1.3 involves the absolute gap, and the bound in Theorem 6.3.1 involves
the relative gap. So, we generate a matrix A ∈ R100×20 with �xed singular values
{0.001, 0.002, . . . , 0.015, 0.015000001, 0.0151, 0.0152, 0.0153, 0.0154}, and we search for
the 5 largest singular values whose absolute distance from the remaining singular values
is smaller than the relative distance. The same iteration are performed as in Example
6.2.3, and the results are shown in Figure 6.3.
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Figure 6.3: Relative errors in singular values, and the quadratic bounds (6.25) and (6.4).
The red dashed line denotes the relative error bound obtained from Corollary 6.1.3, for
the singular value approximation with the largest relative error.

Figure 6.3 con�rms that the relative error bound is in the most cases better than
the absolute error bound applied to the relative error.

Example 6.3.4. We will perform one more test for our bounds, by using more sophisti-
cated method for computing a few extremal singular values: a Jacobi�Davidson type SVD
method (jdsvd) proposed by Hochstenbach in [48]. We are searching for the 5 largest sin-
gular values of A ∈ R1000×250, whose singular values are equal to i2/100, i = 1, . . . , 250.
The relative tolerance of the outer iteration is taken to be equal to 10−12. We obtain the
results shown in Figure 6.4.

The jdsvd method computes one pair of left and right singular vectors at the time,
hence we can notice 5 peaks and 5 valleys in Figure 6.4. The peaks represent a starting
point when the initial search directions for a new pair is chosen, and the valleys represent
the iterations when the pair reached maximum accuracy. We can notice that both of the
residual bounds (linear and quadratic) are following the shape of the relative error curve,
but the quadratic bound is more tight when the approximations are more accurate.
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Figure 6.4: Relative errors in singular values, the linear bound and the quadratic bound
for jdsvd.

Here we can also observe the phenomenon of the quadratic bound being smaller than
the actual relative error when the error reaches the order of machine precision.

6.4 Rank De�cient Case
The statements of Theorem 6.2.1 and Theorem 6.3.1 can be easily generalized to the
rank de�cient case. We will go through the proof of Theorem 6.2.1 once more, under
the assumption that rank(A) = r < n. In that case we de�ne an orthonormal basis
X⊥ = [X1,⊥, X2,⊥] for X⊥, where X1,⊥ ∈ Cm×(r−`) and X2,⊥ ∈ Cm×(m−r) are such that
R(X1,⊥) ⊂ R(A) and X∗

2,⊥A = 0. Let Y⊥ ∈ Cn×(n−`) be an orthonormal basis for Y⊥.
Then, the matrix A can be written as

A = [ X X1,⊥ X2,⊥ ]




M L
K N
0 0




[
Y ∗

Y ∗
⊥

]
,

where L = X∗AY⊥ ∈ C`×(n−`), K = X∗
1,⊥AY ∈ C(r−`)×` and N = X∗

1,⊥AY⊥ ∈
C(r−`)×(n−`).

As in case with the full rank matrix, we can conclude that M is nonsingular. But,
N is not square any more, and now we have to prove that rank(N) = r − `. By (6.8),
we have again that

A∗R(X1,⊥) ⊂ R(A∗) and Z = A†X ⊂ R(A†) = R(A∗),

with
dim(A∗R(X1,⊥)) = r − `, dim(Z) = `, and Z⊥A∗R(X1,⊥),
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so we can conclude that
R(A∗) = Z ⊕ A∗R(X1,⊥).

Since Cn = R(A∗)⊕N (A), where N (A) is the kernel of A, we have

Z = (A∗R(X1,⊥)⊕N (A))⊥.

Let S⊥ be the orthonormal basis for N (A), then from (6.9) and (6.10) it follows that
[ Q⊥ S⊥ ]∗Y⊥ is nonsingular, where [ Q⊥ S⊥ ] is an orthonormal basis for Z⊥, and
Q⊥ is an orthonormal basis for A∗R(X1,⊥), such that A∗X1,⊥ = Q⊥R⊥, N = R∗

⊥Q∗
⊥Y⊥

and R⊥ is nonsingular. The matrix Q∗
⊥Y⊥ is the upper (n − r) × (n − `) block of the

(n − `) × (n − `) matrix [ Q⊥ S⊥ ]∗Y⊥, and by the interlacing property (Corollary
2.1.14), the following holds

σr−`(Q
∗
⊥Y⊥) ≥ σn−`([ Q⊥ S⊥ ]∗Y⊥) > 0.

Thus, Q∗
⊥Y⊥ and N have full row rank, and NN † = Ir−`. Now, we can write




M L
K N
0 0


 =




M 0
0 N
0 0




[
I` M−1L

N †K In−`

]
,

where A and B are similar, and Ã and B̃ are similar, and

B = B̃D, D = I + C, C =

[
0` M−1L

N †K 0n−`

]
. (6.29)

Since ‖C‖2 = max{‖M−1L‖2, ‖N †K‖2} and ‖M−1L‖2 = tan ψ as in the full rank case,
we have to compute ‖N †K‖2. We also have to prove that D is nonsingular in order to
apply perturbation theory.

First we want to show that D is nonsingular. Let us consider the following matrix
product

r

{[
M L
K N︸ ︷︷ ︸

n

]
= r

{[
M − LN †K L

0 N︸ ︷︷ ︸
n

][
I` 0

N †K In−`︸ ︷︷ ︸
n

]}
n.

The matrix
`

r−`

[
M L
K N

]

` n−`

has full row rank, and its rank is equal to r, since rank(A) = r. This means that this
matrix has r linearly independent columns. Since M is nonsingular, that implies that
its �rst ` columns are linearly independent and that

[
L
N

]
has remaining r − ` linearly

independent columns. On the other hand, the matrix
[

I` 0
N†K In−`

]
is nonsingular,

which implies that
`

r−`

[
M − LN †K L

0 N

]

` n−`
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must have full row rank. Again, this means that this matrix has r linearly independent
columns, and among the last n − ` columns, r − ` of them are linearly independent.
Hence, the �rst ` columns must be linearly independent, which implies that M −LN †K
is nonsingular.

Now, if we assume that D is singular, then there exist x ∈ C` and y ∈ Cn−` such
that

x + M−1Ly = 0

N †Kx + y = 0.

Extracting y from the second equation, and introducing it to the �rst equation produces
the following relation

x−M−1LN †Kx = 0,

that is (M − LN †K)x = 0. This implies that the matrix M − LN †K is singular, which
is a contradiction with the previous analysis. So, D is nonsingular and

max
i=1,...,n

|σi − σ̃|
σ̃i

≤ 2‖C‖2 + ‖C‖2
2.

Finally, we have to estimate ‖C‖2. As in the proof of Theorem 6.2.1 (see (6.16)), we
can write

N †K = (Q∗
⊥Y⊥)†Q∗

⊥Y.

The matrices [ Q⊥ S⊥ ]∗Y⊥ and PZ⊥PY⊥ = [ Q⊥ S⊥ ][ Q⊥ S⊥ ]∗Y⊥Y ∗
⊥ have the

same singular values, as well as the matrices [ Q⊥ S⊥ ]∗Y and PZ⊥PY = [ Q⊥ S⊥ ]·
·[ Q⊥ S⊥ ]∗Y Y ∗. From [90] and (6.12) it follows that PZ⊥PY⊥ can be represented in a
suitably chosen basis as

PZ⊥PY⊥ =




0k′
`−k⊕
i=1

Gi

In−2`+k′


 ,

where
Gi =

[ − sin φi

cos φi

]
cos φi[ 0 1 ],

and PZ⊥PY can be represented as

PZ⊥PY =




0k′
`−k⊕
i=1

Hi

0n−2`+k′


 ,

where
Hi =

[
sin φi

− cos φi

]
sin φi[ 1 0 ].
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Finally, by the interlacing property we can conclude that

‖(Q∗
⊥Y⊥)†‖2 =

1

σr−`(Q∗
⊥Y⊥)

≤ 1

σn−`([ Q⊥ S⊥ ]∗Y⊥)
=

1

cos φ
,

‖Q∗
⊥Y ‖2 = σ1(Q

∗
⊥Y ) ≤ σ1([ Q⊥ S⊥ ]∗Y⊥) = sin φ,

‖N †K‖2 ≤ tan φ,

where φ is de�ned in (6.17). This implies that

‖C‖2 ≤ max{tan ψ, tan φ},

and we obtained the same result as in Theorem 6.2.1.
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Appendix A

Summary

This thesis is dealing with two major topics in numerical linear algebra: the singular
value decomposition (SVD) and the eigenvalue problem. Two new algorithms are pro-
posed: one for �nding the singular value decomposition, and one for solving the partial
eigenvalue problem of a symmetric positive de�nite matrix. The one�sided bidiago-
nalization algorithm proposed by Barlow is analyzed, and is proven to be numerically
stable. The bidiagonalization constitutes the �rst step in computing the SVD. Next,
the block version of the one�sided bidiagonalization is proposed, which increases its
e�ciency and retains numerical stability. The parallel version of the same algorithm
was also studied and numerical tests show that it is faster than the parallel algorithm
implemented in the ScaLAPACK software package. One�sided bidiagonalization turned
out to be competitive to other standard bidiagonalization algorithms, and there are
several applications where it can be successfully applied. Another algorithm presented
in this thesis is the new subspace method for computing eigenvectors corresponding to
the several smallest eigenvalues of a symmetric positive de�nite matrix. The name of
the method is multispace, and it is a combination of multigrid approach and of two
very well known subspace methods: inverse iteration and the block Lanczos method.
The new multigrid approach is designed to speed up the convergence of slow converging
inverse iteration. A convergence rate for multispace is also presented, proving that the
whole process converges to an invariant subspace. In addition to the algorithms, a new
perturbation result for singular value approximations from subspaces is presented. The
new result represents a measure for relative errors in singular values expressed by terms
involving angles of appropriate subspaces.
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Appendix B

Saºetak

Ova disertacija bavi se dvjema glavnim temama numeri£ke linearne algebre: dekom-
pozicijom singularnih vrijednosti (SVD) i svojstvenim problemom. Predstavljena su
dva nova algoritma: jedan za ra£unanje dekompozicije singularnih vrijednosti, i jedan
za rje²avanje parcijalnog svojstvenog problema za simetri£nu pozitivno de�nitnu ma-
tricu. Jednostrana bidijagonalizacija koju je predloºio Barlow analizirana je, i pokazano
je da je ona numeri£ki stabilna. Bidijagonalizacija predstavlja prvi korak u ra£unanju
SVD-a. Zatim je predloºena blok verzija jednostrane bidijagonalizacije, koja pove£ava
njenu e�kasnost i zadrºava numeri£ku stabilnost. Paralelna verzija istog algoritma je
tako�er prou£avana, a numeri£ki testovi pokazuju da je ona brºa od paralelnog algoritma
implementiranog u softverskom paketu ScaLAPACK. Ispostavilo se da je jednostrana
bidijagonalizacija konkurentna ostalim standardnim bidijagonalizacijskim algoritmima,
i postoji nekoliko primjena u kojima se moºe uspje²no primijeniti. Drugi algoritam
opisan u ovoj disertaciji je nova potprostorna metoda za ra£unanje svojstvenih vektora
koji pripadaju nekolicini najmanjih svojstvenih vrijednosti simetri£ne pozitivno de�nitne
matrice. Metoda se zove multispace, i ona je kombinacija multigrid pristupa i dviju do-
bro poznatih potprostornih metoda: inverznih iteracija i blok Lanczos-ove metode. Novi
multigrid pristup je dizajniran tako da ubrza konvergenciju sporo konvergiraju¢ih in-
verznih iteracija. Brzina konvergencije multispace-a je tako�er prezentirana, £ime se
dokazuje da cijeli proces konvergira ka invarijantnom potprostoru. Osim algoritama,
prezentiran je i novi perturbacijski rezultat za aproksimacije singularnih vrijednosti iz
potprostora. Novi rezultat predstavlja mjeru relativne gre²ke u singularnim vrijednos-
tima izraºenu pomo¢u funkcije kuta izme�u pogodno izabranih potprostora.

221



Appendix C

Curriculum Vitæ

I was born on July 8, 1973 in Zagreb, where I have �nished elementary school. I con-
tinued my education in High School for Mathematics and Informatics in Zagreb, where
I graduated in 1992. The same year I enrolled the studies for engineer of mathematics
at Department of Mathematics, University of Zagreb. In the third year of the studies
I chose courses in applied mathematics, and in the fourth year I won scholarship of
the concern �Agrokor�. In October 1997 I successfully graduated on the topic �Maxwell
Equations�, and started postgraduate studies of mathematics. I work as a teaching as-
sistant at Department of Mathematics, University of Zagreb since February 1998. My
work �eld is numerical linear algebra, and I am involved in the development of numeri-
cal algorithms, numerical analysis and perturbation theory. I am also writing software
and testing parallel algorithms. Next to my scienti�c work, I am engaged in lectures
for undergraduate students, mostly in subjects connected to the numerical mathematics
and computer science. In December 2001 I successfully defended my master thesis on
the topic �Iterative Methods for Solving Linear Systems�. I also attended two summer
schools for postgraduate students: summer school on the subject of �Function analy-
sis, di�erential equations, numerical analysis� held in September 2002 in Budapest, and
summer school on the subject of �Cell biology and mathematical modelling� held in
June 2004 in Hvar. I also participated in 9 conferences in Croatia and abroad, and had
a presentation in 6 of them, as well as in scienti�c meetings and seminars. Some of
my results are published in 3 reviewed articles. Two other articles are in the reviewing
process, and one of them is already accepted for publication.
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