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Chapter 1

Introduction

This thesis deals with two major topics in numerical linear algebra: the singular value
decomposition (SVD) and the eigenvalue problem. Both represent a standard tool for
numerical solutions of problems which appear in many applications in various fields
of natural sciences. The singular values and eigenvalues are connected, and they are
usually considered to be two aspects of the same problem. The singular value decom-
position of a rectangular matrix A € R™*", where without loss of generality m > n,
is a decomposition obtained by orthogonal transformation which produces a diagonal
matrix:

A=UxVT,

where
UeR™™ UTU=1, VeR” VIV=I XeR™" ¥=dag(n,...,o).

The diagonal elements of X, o; > 0 are called singular values.
There are several natural parallels between singular values and eigenvalues:

e for the singular value o; of the matrix A, o? is an eigenvalue of the matrices AT A
and AAT

e for the singular value o; of the matrix A, +o; are eigenvalues of the matrix
0 AT
A 0

e for the eigenvalue \; of the symmetric matrix A, |\;| is a singular value of A.

With the accelerating speed of computers, we can now solve eigenvalue and singular
value problems of very large dimension. Thus our algorithms need to be efficient with
large matrices. On the other hand, computers do not use real arithmetic, they use
floating point arithmetic, and they do not produce exact solutions. Because of that our
algorithms need to be efficient in modern architectures and accurate in floating point
arithmetic.

In this work two new algorithms are proposed: one for finding the singular value
decomposition, and one for solving the partial eigenvalue problem of a symmetric posi-
tive definite matrix. They are both designed to be efficient, and numerical analysis for
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both algorithms confirms that they are also accurate. In addition to the algorithms, a
new perturbation result for singular value approximations obtained from subspaces is
presented, which measures relative error in singular values by means of angles of ap-
propriate subspaces. This result gives us new insight into approximate solutions of the
singular value decomposition.

The work is organized as follows. In §2 we analyze the singular value decomposition,
which includes basic definitions and properties, applications, perturbation theory and
most important existing methods for computing the SVD. This chapter serves as an
introduction for the new bidiagonalization algorithm presented in §3. The new bidiag-
onalization algorithm was proposed by Barlow in [2]|, and it constitutes the first step
in computing the singular value decomposition. In §3 an elegant proof of numerical
stability of the bidiagonalization algorithm is presented, obtained independently from
the results in [2]. Further, it is shown that despite of possible loss of orthogonality of
columns in the computed matrix U, the bidiagonalization algorithm can be used as a
tool for solving several problems in numerical linear algebra with high accuracy. The
efficiency of the algorithm is also considered. The new bidiagonalization algorithm has
fewer floating point operations than other standard algorithms, but in the original ver-
sion the usage of the hierarchical structure of memory was not optimized. Hence, the
new algorithm, executed on a computer, was slower than the algorithm implemented in
LAPACK [1], and it required modification to optimize the time spent on transfer be-
tween different types of computer memory. This was the reason for developing the block
version of the bidiagonalization algorithm, which is proven to be numerically stable. The
parallel version of the algorithm was also considered, since the new bidiagonalization is
more suitable for parallel computing than the standard algorithms. Extensive testing
was performed for all versions of the bidiagonalization algorithm, the tests showed that

on our computers the block and parallel versions of the new algorithm were faster than
the algorithms in LAPACK [1] and ScaLAPACK |[7].

In §4, we deal with the symmetric eigenvalue problem, and analyzes some aspects
of the problem, such as: basic definitions and properties, applications, perturbation
theory and most important existing subspace methods for solving the partial eigenvalue
problem. Again, this chapter serves as an introduction for the new subspace method
described in §5, which is called multispace. Multispace is a combination of multigrid
approach and of two very well known subspace methods: inverse iteration and the
block Lanczos method. Inverse iteration is known to stagnate when eigenvalues are not
conveniently distributed, and the new multigrid approach is designed to speed up the
convergence. A convergence rate for multispace is also presented, proving that the whole
process converges to an invariant subspace. The numerical examples are presented at
the end of this chapter.

86 presents the new perturbation results for singular value approximations.

At last, we have introduce some notation. First of all, we will consider real matrices
A e R™™ or A € R"™, and without loss of generality we will assume that m > n.
If m < n then we can take AT, where 7 denotes the transposed matrix. The matrices
will be denoted by capital Latin letters, the vectors by small letters, the subspaces by
calligraphic letters, and in most cases Greek letters will be used to denote scalar values



such as parameters and angles.
Let € R™ be an n dimensional vector, then we denote = = [x;], or

€

Ln

which means that the i-th component of x is equal to x;. Next, let A € R"™*" be an
m X n matrix, then we denote A = [a;}], or

@113 - Aip

A:

Am1 = Qmnp

where a;; is the element in the position (7,7). Sometimes, we will also use MATLAB
notation:

x(i) = ay,
o
w(@:g) = | 1|,
| i
A7) = ag,
_aik T Qi
A(i: gk ) = | S
| i @je

A(L k) = A(l:m k1),
A(i:g,:) = A(i:j,1:n).

The matrices I and 0y denote k X k identity and zero matrix, respectively.
The scalar product used in the work is the standard scalar product in R"

n
(wy) = «"y=> wy, or
i=1
(,y)a = Ay, for a symmetric positive definite matrix A.
We also use the Euclidean vector norm
|zl = VaTe,

and two matrix norms

|Alle = max ||Az||s = \/spr(ATA),

[[#]l2=1

|Allr = +/trace(ATA) =
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where for B € R™"
spr(B) = max{|A| : A is an eigenvalue of B},

denotes spectral radius, and
n
trace(B) = Z bii.-
i=1

Since we are dealing with finite precision arithmetic, the computed quantities in
numerical analysis are denoted by ~, and the exact quantities by ~. Hence, we denote
quantity x computed in finite precision arithmetic by Z, and Z presents an exact, some-
times only theoretical entity, which is obtained in exact arithmetic in some phase of the
computation. The unit roundoff error of a computer is denoted by «.



Chapter 2

The Singular Value Decomposition

2.1 Definitions and Properties

The singular value decomposition (SVD) of a real matrix A € R™*™ is a very powerful
computation tool for solving many problems in numerical linear algebra. From the
theoretical point of view, it is also used in numerical analysis as a decomposition that
reveals important information about the matrix and the problem it is involved with.
The singular value decomposition was discovered independently by Beltrami in 1873
|4] and Jordan in 1874 |54] during their research on bilinear forms. Since then, many
mathematicians have been working on discovering its properties, both in exact and
finite precision arithmetic, and developing algorithms for its computation. The SVD
decomposition is described in the following theorem.

Theorem 2.1.1 (Singular Value Decomposition (SVD), [35, p. 71]). If A €
R™*™ 4s a real m x n matriz, then there exist orthogonal matrices

U=luy,...,uy) €R™™ and V =]vy,...,0,] € R

such that
UTAV =% = diag(ay, . ..,0,) € R™", p =min{m,n}, (2.1)

where oy > 09 > -+ > 0, > 0.

Proof. From the definition of matrix 2 norm, there exists v; € R™ with ||v1]|2 = 1, such
that ||A||s = |[|Avy]|2. Let uy € R™ be a vector with ||ui||o = 1, which satisfies

Avy = oquq, where o7 = || A|2. (2.2)

Since any orthonormal set of vectors can be extended to an orthonormal basis, it is
possible to find Vi, € R™ (™Y and U, € R™ (™Y g0 that

V, = [ U1 ‘/1,2 } € R™™ and U, = [ Uy ULQ ] e Rmxm
are orthogonal. Ul AV has the following structure:

ouluy ulTAVLg ] B [ o wl ] -

T _ —

5
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where w; = VngTul and Ay = UEQAVLQ. Since

2
o]z 5
w1 9 w1

= (o7 +wiw))? +w] A Ayw; > (07 + wiw,)?

2
I (of +wiw) = [lAuf3 =
2

we have ||4;]|2 > 0% + w¥w;. From the definition of oy in (2.2) it follows that
of = [l = Al > of +wywi,

and this implies that w; = 0, and

T | 01 0
vravi-[7 0]

The rest of the proof is done by applying the same technique to A,, and (2.1) follows
from the induction argument. O]

Remark 2.1.2. For every A € R™*", Theorem 2.1.1 implies that (see [89, pp. 30-31])

0 0] m-r

T n—r

UTAV — {& o} r

where r = rank(A), and ¥, = diag(oy,...,0,), with o1 > 09 > -+ > 0, > 0.

Remark 2.1.3. For m > n and every matric A € R™" with rank(A) = r < n,
Theorem 2.1.1 implies that the matriz A can be factorized as

A=UxVT, (2.3)

or for the partition
U=[U U] V

T m—-r T n—r

where Uy € R™" and V; € R™7, as

I
=
>

A= =) o] (2.4)

i=1

There are many notions connected with SVD, and the most important of them are
as follows:

e The factorization described in equation (2.4) is the abbreviated SVD and the
right equation represents the SVD expansion.

e The nonnegative values o; are the singular values of A.
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e The set! of all singular values of A is denoted by o(A) = {oy,...,0,}, where
p = min{m, n}.
e The vectors u; are the left singular vectors.
e The vectors v; are the right singular vectors.

Besides these basic notions, there are many matrix properties which are based on the
SVD. Before expressing their definitions we should note that by comparing columns in
equations AV = XV and ATU = XV it follows that

Av; = o,

ATy, = o, } i=1,...,p=min{m,n}.

Three important characteristics of a matrix A are immediately available from the
singular value decomposition of A.

Corollary 2.1.4 ([35, p. 72]). If the SVD of A € R™" is given by Theorem 2.1.1,
and if we define r by

01> 20, >0 = =0,=0, p = min{m,n},
then
e rank(A) =r
e null(A) = span{v,,1,...,v,}
e range(A) = span{uy, ..., u,}

A further important property of the singular value decomposition is that there exists
a connection between the singular values and the eigenvalues.

Definition 2.1.5 (|35, pp. 332—-333|). The eigenvalues of a square matriz A € R™"
are n roots of its characteristic polynomial p(\) = det(A — A). The set® of these
roots is called the spectrum and is denoted by

AMA) ={A1,.. ., )
If X € M(A) then a nonzero vector x € R"™, which satisfies
Ax = Mz

s called an etgenvector.

!Since the singular values can be multiple, o(A) is in fact a multiset. It can also be regarded as an
element of the quotient space R” /s , where S, is the symmetric group on the finite set {1,...,p}.

2 Again, since the eigenvalues can be multiple, A(A) is in fact a multiset. It can also be regarded as
an element o the quotient space C"/g, , where S,, is the symmetric group on the finite set {1,...,n}.
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It can be easily verified that, for a matrix A € R™ " of rank r < min{m,n},
matrices ATA € R™" and AAT € R™*™ are symmetric and positive semidefinite. The
relationship between the singular value decomposition of the matrix A, and the spectral
decomposition of the above two matrices is shown in the following theorem.

Theorem 2.1.6. If A € R™ ", then the following holds:

[
VITATAV = diag(o?,...,02,0,...,0), o, >0y>--->0,.>0

) T
n—r
that is, the squares of singular values of the matriz A are the eigenvalues of the

matriz ATA, and n —r of them are zeros. The columns of the matriz V are the
corresponding eigenvectors.

UTAATU = diag(o?,...,0%,0,...,0), o1 >0y>--->0,>0

) T
m-—r
that is, the squares of singular values of the matriz A are the eigenvalues of the
matriz AAT, and m — r of them are zeros. The columns of the matriz U are the

corresponding eigenvectors.
There is another way to associate singular values with eigenvalues.

Theorem 2.1.7 ([35, p. 427]). Let A € R™", m > n, then the Jordan—Wielandt

matric .
0 A (m~+n)x (m+n)
{ oA ] R
is a symmetric matriz with eigenvalues equal to {oy,...,0p, —01,...,—0,,0,...,0},

where in the case when m > n, zero has multiplicity m —n. Moreover, if A =UXV7T is
the singular value decomposition of A with U = [Uy U], Uy € R™™ and U, € R™*(m=n),

then .
0 A

= Qdi e Oy =01, =0, 0, 0)QT,

4| Qaen s 000

m—n

where Q € RUtMx(m4n) s 4 orthogonal matriz, defined by

Q_L{V Voo
\/§ U1 _Ul \/§U2 ‘

Singular values are important for the characterization of unitarily invariant norms.

Definition 2.1.8. A norm || - || on C™*™ is unitarily invariant if it satisfies
U AV = [[A]l

for all unitary matrices U and V.
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Let A = UXV7T be the singular value decomposition of A € R™*", Since U and V
are real orthogonal matrices, and hence unitary,

Al = 1],
for every unitarily invariant norm || - |. Thus || A|| is a function ® of the singular values
of A, with certain properties. The properties of the matrix norm suggest the following

definition.

Definition 2.1.9. A function ® : R” — R is a symmetric gauge function if it
satisfies the following conditions.

1. 2 #0= ®(x) >0, forx € R™.
2. ®(px) = |p|®(x), for x € R" and p € R.
3. D(x+y) < O(x) + D(y), for z,y € R™

4. For any permutation matriz P and for x € R" we have ®(Pz) = &(x).

5. ®(|z|) = ®(x), for x € R".
If ® is a symmetric gauge function and if || - ||¢ is defined by
|Alle = ®(01,...,0,), p =min{m,n}, (2.5)
where o4,...,0, are the singular values of A, then the following theorem will describe
the relationship between || - ||¢ and unitarily invariant norms.

Theorem 2.1.10 (von Neumann [89, p. 78]). Let ® be a symmetric gauge function
on R?, where p = min{m,n}, and let || - ||o be defined by (2.5). Then || -||o is a unitarily
invariant norm on C™*". Conversely, if ||-|| is a unitarily invariant norm on C™*", then
there is a symmetric gauge function ® on RP such that || Al = ||A||le for all A € C™ ™,

The most important matrix norms ||-||2 and || - || 7 are unitarily invariant norms, and

the immediate consequence of Theorem 2.1.6 and Theorem 2.1.10 is that they can be
characterized in terms of the singular values in the following way:

|Allr = +/trace(ATA) = Za?, p = min{m,n} (2.6)
|Alls = +/spr(ATA) = o;. (2.7)

The SVD also indicates how near the given matrix is to the closest matrix of lower
rank.
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Theorem 2.1.11 ([35, p. 73]). Let the SVD of A € R™™ be given by Theorem 2.1.1.
If k <r =rank(A) and

k
A = g o]
i=1

then, for every unitarily invariant norm || - ||,

min_ [|A = B = [|A — A,

rank(B)<k
and specially

min ||[A—Blla = |[|A— Akl2 = k41,
rank(B)<k

min ||A—B|r =
rank(B)<k

Theorem 2.1.11 says that the smallest singular value of A is the 2 norm distance of
A to the set of all rank-deficient matrices. The drawback of Theorem 2.1.11 is that Ay,
which is the best rank k approximation to the matrix A, generally differs from A in all
its elements. In some applications it is necessary to find a best rank k£ approximation
to A that leaves some columns of A fixed. Let us assume that the fixed columns are at
the beginning of the matrix A, and let

A= [ Al AQ ], (28)

where A; has ¢ columns. Then, we are considering the following problem: find a matrix
Ay.o such that rank([ A; Ags ]) <k, and

min IMA Ay ] —=[ A Ball[ =1 &n Az ] =[] A1 A2 lll, (2.9)
rank([ Ay By ])<k

for unitarily invariant matrix norm || -||. Let us denote by Hy the operator that maps A
onto Ay from Theorem 2.1.11, with the convention that if k is greater than the number of
columns of A, then Hy, is the identity. The following theorem solves the given problem.

Theorem 2.1.12 ([32, pp. 319-321]). Let A € R™*" be partitioned as in (2.8) where
Ay has € columns, and let p = rank(A;). Let P denote the orthogonal projection onto
the column space of A and P+ the orthogonal projection onto its orthogonal complement.
If p < k then the matriz

Ago = PAy + Hk—p(PLAZ)

satisfies (2.9).

There are many important properties of the singular values of an m x n matrix. First
of them claims that the singular values satisfy the following “minimax” characterization.
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Theorem 2.1.13 ([35, p. 428]). If A € R™*", then

o) = _nax rsnin . y'Ar = max mig |Az|ls k=1,..., min{m,n}.
CR™, TCR™ €S, ye . CR"™ Te
dim(S)=k |z|l2=1, ||y|l2=1 dim(S)=k ||z|]2=1
dim(7)=k

Some other properties follow from the previous theorem.

Corollary 2.1.14 (Interlacing Property [35, p. 428]). Let A=[a --- a, | €
R™ ™ be a column partitioning with m > n. If A, = [ a1 -+ ay | then for k =
1,...,n —1 the following interlacing property holds:

UZ(A) 2 01<Ak) 2 0i+n—k(A)7 L= ]-7 ) k)

2.2 Applications of the SVD

What follows is a list of problems in numerical linear algebra that may be solved by
means of the singular value decomposition.

2.2.1 Computing the Inverse of a Nonsingular Square Matrix

A square matrix A € R™" is nonsingular if and only if o; # 0,7 =1,...,n. Then from
equation (2.3) it follows that its inverse is given by

Al =vyyT, Y =diag(oy?t, ..., 0.,

rYn

where A=! € R™ " is such that AA™' = A~1A = 1.

2.2.2 Computing the Pseudo—Inverse of a Matrix

We can extend the concept of inverse to singular and even rectangular matrices. Such
a pseudo-inverse must satisfy weaker conditions than the standard inverse. One way to
define pseudo—inverse is the following. For the rectangular matrix A € R™*" matrix
X € R™™ ig its pseudo—inverse if and only if X satisfies the Moore-Penrose conditions
[79]:

1. AXA=A
2. XAX = X
3. (AX)T = AX
1. (XA)T = XA

The exact form of the pseudo-inverse will be defined by means of the SVD.
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Theorem 2.2.1 ([35, p. 243]). Let A € R"™", then there exists a unique matric
X € R™™ which satisfies the Moore—Penrose conditions. This matriz is of the form

¥t o Y, 0
T + T _ + T
A—V[ 0 O}U’ whereA—U{O O}V

is the singular value decomposition of the matriz A, defined in Theorem 2.1.1.

The pseudo—inverse is the unique minimal Frobenius norm solution of the problem

min ||AX — I,||F.
XGRnXm

From the Moore-Penrose conditions it follows that AA" and ATA are orthogonal pro-
jections onto range(A) and range(A”), respectively:

AAT=UL, ATA=WnVT

2.2.3 The Condition Number of a Matrix

The condition number of a matrix A € R™*" in 2 norm is given by
ra(A) = | All2]| A"l

From the observations above and Theorem 2.1.1 we can conclude that

Ko(A) = o

On

2.2.4 Solving the Orthogonal Procrustes Problem

The solution of the orthogonal Procrustes problem satisfies:

min AQ — Bl|F, 2.10
oD, IAQ = Bllr (2.10)

where A, B € R™" and m > n. By the orthogonality of the matrix ), the problem
(2.10) transforms into

min || AQ — B||% = min(trace(A” A) + trace(B' B) — 2 trace(QT AT B)),

and is equivalent to the problem of maximizing trace(Q? AT B). The maximizing @) can
be found by calculating the SVD of ATB, [35, p. 582|. If

UT(ATB)V = ¥ = diag(oy, . .., 0,)

is the SVD of the matrix AT B and we define the orthogonal matrix Z by Z = VI QTU,
then

trace(Q” AT B) = trace(QTULVT) = trace(Z%) = Z 2107 < ZUZ"
i=1 i=1
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The upper bound is attained by setting @ = UV for then Z = I,,.
In the unbalanced case (see [27]), when Q € R™** B € R™** and n > k, the problem

i AQ - B 2.11
et 14Q = Blir, (2.11)

can also be solved by means of singular value decomposition. If we take the QR factor-

ization of A
R
A_P[O],

where P = P, P, | € R™ is orthogonal, P, € R™*" and R € R™"  we obtain an
equivalent problem

i RQ — PI'B||p,
gern i r gy, 179~ P Bllr

with the square matrix R. Thus we can assume that the matrix A is square without

loss of generality. By using Lagrange multipliers, the minimization problem (2.11) can
be reduced to the secular equation

F(L)=QIQ.—1=0, (2.12)
where (), is a solution of the normal equation
ATAQ + QL = AT B, (2.13)

and L = [(;] € R™F* is the symmetric matrix of Lagrangian multipliers. Let A =
UXVT be the singular value decomposition of A, with ¥ = diag(oy,...,0,), and let
L = WAWT be the spectral decomposition of the fixed symmetric matrix L, with
A = diag()\y, ..., A\g), then there is a unique solution of (2.13) if the eigenvalues A; of L
satisfy

N+ o7 #£0, i=1,...,n, j=1,... k.

Now, for Q = VTQW and B = UTBW we obtain equivalent minimization form

min YQ — B||p,
QER"Xk, QTQ:[k || Q ||F

with its normal equation equal to
Y2Q + QA = LB,
which can be easily solved. Its solution is of the form

= _ . _ O'il;‘j
QL =qj], with ¢; = TN,

<

and then

k 2

02bgibs;
FL:FLl, ith FLz: s/stVs)
(1) = [Pl with P =3 Gt )
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2.2.5 Finding the Intersection of Null Spaces

Let A € R™™ and B € RP*" be given, and consider the problem of finding an or-
thonormal basis for null(A) Nnull(B). One way of solving the problem is to exploit the
following theorem.

Theorem 2.2.2 ([35, p. 583]). Suppose A € R™*" and let {z1,...,zs} be an orthonor-
mal basis for null(A). Define Z = [z1,...,zs] and let {wy,...,w;} be an orthonormal
basis for null(BZ) where B € RP*™. If W = [wy,...,wy], then the columns of ZW
form an orthonormal basis for null(A) Nnull(B).

The SVD is used to compute the orthonormal basis {y;} of null(A) Nnull(B) in the
following way:

e Compute the SVD UL AV, = diag(o;), r = rank(A)

e C=BVy(,r+1:n) from Corollary 2.1.4

e Compute the SVD ULCVy = diag(y;), q = rank(C)

o Y =Vu(t,r+1:n)Ve(,g+1:n—r1) from Corollary 2.1.4
where Y = [y1, ..., Yn—r—q|-

2.2.6 Finding Angles Between Subspaces
Let X and ) be subspaces of R™ whose dimensions satisfy
p=dim(X) > dim(Y) = ¢ > 1.

The principle angles 60y,...,0, € [0,7/2] between X and ) are defined [35, p. 584]
recursively by
cos(f) = maxmaxz’y = 2]y,

zeX yeY
subject to:
[zlla = [lyll2 =1
2Tx; =0 i=1,...,k—1
yTy; =0 i=1,...,k—1
The vectors {z1,...,2,} and {y1,...,y,} are called the principal vectors between the

subspaces X and ), and the principal angles defined as above satisfy 0 < 6; < ... <
0, < m/2. If p=q then

dist(X,Y) = || Py — Py|l2 = y/1 — cos(6,)? = sin(6,), (2.14)

is the distance between equidimensional subspaces, where Py and Py are orthogonal
projections onto X and ). In that case the angle Z(X,)) can be defined as [90]

Z(X,Y) = arcsin(dist(X,))) =6,
= max/(z,Y) = maxmin Z(z,y)
= max Z(y,X) = maxmin Z(z,y). (2.15)

yey yey zeX
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Moreover

, . zTy
L(x,Y) min L(z,y) min arccos (||:7c||2||y||2> , (2.16)
and all vectors x and y are taken to be different from zero. For more information on
angles between subspaces, see [36] and [90].

If the columns of X € R™*P and Y € R™*? define orthonormal bases for X and Y
respectively |35, p. 585|, then

max max 2’y = max max u’ (XY )v.
zeX  yey u€ERP  veRY
lzll2=1 |jyl2=1 l[ulla=1 [[v]2=1
From the minimax characterization of the singular values in Theorem 2.1.13, it follows
that if
UN(XTY)V = diag(oy, ... ,04), with o1 >03>--- >0, (2.17)

is the SVD of XY, then we may define x, v, and 6 by

[z ... z,] = XU, (2.18)
(e w) = YV, (219)
cos(Oy) = o, kE=1,...,q. (2.20)

2.2.7 Finding the Intersection of Subspaces

The same procedure can be used to compute an orthogonal basis for range(A)Nrange(B)
where A € R™*? and B € R™*4,

Theorem 2.2.3 ([35, p. 586]). Let cos(by) for k =1,...,¢, U = [ w1 -+ uy|
and V=1 vy --- v, ] be defined by (2.17)-(2.20). If the index s is defined by 1 =
cos(fy) = -+ = cos(fs) > cos(bs41), then we have

range(A) Nrange(B) = span{uy, ..., us} = span{vy,...,vs}.

2.2.8 Solving the Linear Least Squares Problem

Let A € R™™ and b € R™ be given, and consider a problem of finding vector x € R"
such that it minimizes the following functional

min || Az — bl|o.

Tz€R™

In case the matrix A is rank deficient, we are searching for the minimizer x with minimal
2 norm. Then, its solution can be found by using the SVD of the matrix A.

Theorem 2.2.4 ([35, p. 242]). Suppose A = ULVT is the SVD of A € R™™ with
r =rank(A). If U = [uy,...,up| and V = [v1,...,v,] are column partitionings and
b€ R™, then

s

ul'b
Trs = E V;
0'4

i=1
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minimizes ||Ax — b||o and has the smallest 2 norm of all minimizers. Moreover

m

ris = llAzcs —bll3 = ) (u]'b)".

i=r+1

In fact, x5 = ATh and rpg = ||(I — AA")b||5. All solution of the linear least squares
problem are given by
Trs = s + Vay, ye R,

where V5 is null basis matrix for A.

2.2.9 Solving the Linear Total Least Squares Problem

Let A € R™" and B € R™* be given, and we want to solve the following total least
squares (TLS) problem (see [51| and [34])
min \D-1E R]-T|r, (2.21)
range(B+R)Crange(A+E)
where E € R™" R € R™%* and the matrices D = diag(d,,...,d,,) and T =
diag(ty,...,tn4x) are nonsingular weight matrices. If [Ey Rp] solves (2.21), then any

X € R™* that satisfies
(A+ Ep)X = B+ Ry

is said to be a TLS solution.

Theorem 2.2.5 ([35, p. 577]). Let A, B, D, and T be as above and assume m > n+k.
Let
C=D[A BT=[C, Cy]
n k
have the SVD given by UTCV = diag(oy,...,0n4k) = % where U, V, and ¥ are parti-
tioned as follows:

U=[U U], vz[‘tﬂ 512}7;
n ]{5 Z/l 152 )
o Zl 0 n
== % 5]
n k

If 0,(C1) > 0py1, then the matriz [Ey Ry defined by
D[ Ey Ro |T = —Us¥y[ Vi, Vi |
solves (2.21). If Ty = diag(ty,...,t,) and Ty = diag(t,y1, - .-, taik) then the matriz
Xrps = —TiVisViy Ty !

exists and is the unique solution to (A + Eg)X = B + Ry.
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Remark 2.2.6 ([35, pp. 578-579|). If 0, = 0,41 then the TLS problem may still
have a solution, although it may not be unique. In this case, it may be desirable to single
out a “minimal norm” solution.

Many problems in physics, biology, chemistry, informatics and other fields of science
can be reduced to a linear algebra problem. This is the reason why the singular value
decomposition is widely used as a tool for solving such problems. In the rest of this
section several examples will be presented, which illustrate application of the SVD in
other sciences.

2.2.10 Integral Equations and the Truncated Singular Value
Decomposition

Many physical, geological or medical measurements can be modelled by a Fredholm
integral equation. We will be focused on the Fredholm integral equation of the first kind.

Definition 2.2.7 ([62, pp. 62—63]). Let A = [a,b] C R be a segment in R and let
C(A) denotes the Banach space of continuous real functions on A, with the norm defined
by

|z|| = max{|z(t)] : t € A}.

Let k : A" x A — R be a continuous function, where A’ is a segment not necessarily
equal to A. Then, for every x € C(A), the function t — k(s,t)x(t) is Riemann
integrable and the function

y(s) = /b k(s,t)z(t)dt, se A (2.22)

is continuous on A'. FEquation (2.22) represents the Fredholm integral equation of
the first kind.

Equation (2.22) also defines a mapping K : C(A) — C(A') such that x — y, and
it can be substituted by the equation

y= Kuz. (2.23)

The operator K s referred to as the Fredholm integral operator, and the function k
as the kernel of the Fredholm integral operator K.

The most usual problem concerning the Fredholm integral operator is finding the
function z € C(A) for given y € C(A'), such that (2.22) holds (see [92]).

The Fredholm integral operators have several important properties, which are pre-
sented in the following theorems and definitions.

Theorem 2.2.8 ([62, p. 65]). If k: A’ x A — R is a continuous function, then the
operator K

y= Kz
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is a continuous linear operator from the Banach space C(A) to the Banach space C(A’).
The norm of the operator K 1is given by

K| = .
I ALCLLL

Definition 2.2.9 ([62, p. 200]). Let X and Y be normed spaces. Linear operator
K : X — Y is compact if it maps a unit ball from the space X into a relative compact
set in the space Y. The relative compact set is a set where every sequence has a Cauchy
subsequence.

Definition 2.2.10 ([62, p. 226]). The space C(A) is unitary with the scalar product
defined by

(@) = [ a0t
The Hilbert space La(A) is the completion of the space C(A).

Theorem 2.2.11 (|62, p. 226]). If the kernel k of the operator (2.22) is continuous
on A" x A, then the operator K in (2.23) is a compact operator from the unitary space
C(A) to the Banach space C(A’).

Since the unitary space C(A) is dense in the Hilbert space Lo(A), and since the
continuous operator K is defined on the unitary space C(A), the operator K can be
expanded by continuity to the continuous operator K : Ly(A) — C(A'). Since K is a
compact operator, K is also a compact operator. So, the operator defined by (2.22) is
a compact operator from Lo(A) to C(A’).

Corollary 2.2.12 ([62, p. 227]). If the kernel k of the operator (2.22) is continuous
on A" x A, then the operator K in (2.23) is compact from the Hilbert space Lo(A) to
the unitary space C(A’).

Theorem 2.2.13 (|62, p. 212]). Let X and Y be Hilbert spaces and let K : X — Y

be a compact operator with infinite range. Then, there exist orthonormal sequences {e;}

in X, and {f;} in'Y, and a sequence of real numbers {o;} where
o,>0,>---20;>--->0, lim o; = 0,

1—00

such that every x € X can be expressed as
T = xo+ Z(x, ei)e;, where  Kxg =0,
i=1

and

i=1

FEquation (2.24) is the Schmidt representation of the operator K. The scalars
o; > 0 are referred to as singular values of the operator K.
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The presented results show that the Fredholm integral operator is compact and that
its singular values tend to zero. Hence, solving the Fredholm integral equation represents
an ill-posed problem, and the solution is extremely sensitive to measurement noise of
the input parameters.

A numerical procedure for solving the Fredholm integral equation is described in [83]
and [84]. The equation (2.22) is usually used in physics to model instrument distortion in
measuring an unknown function z(¢). The first step in the discretization of the Fredholm
integral equation would be replacement of the equation (2.22) by a system of equations

b

where K;(t) = K(s;,t) are well known response functions of the instruments, y; = y(s;)
are measured values, corresponding to a discrete mesh s, so, ..., s, of collocation points,
and &; are random, zero-mean measuring errors. The next step is discretization of the
integral by means of numerical integration, where the error of the discretization should
be smaller than the measuring errors. Thus the initial infinite dimensional problem
(2.22) is transformed into the finite dimensional problem

y=Kz+¢, (2.25)

where 7 = [y;] € R™ is the vector of measurements, K € R™*" is a known matrix with
m > n, and £ € R" is an unknown vector whose components are either discrete point
estimates of z(t) on some mesh t, %, ..., t,, or the unknown coefficient in an expansion
of z(t) in terms of some set of basis functions. The vector £ € R™ is a vector of random
measuring errors satisfying

E@E) =0, E(&") =5,

where E is the expectation operator, 0 € R™ is the zero vector and S? € R™ ™ igs the
positive definite variance-covariance matrix for £&. In most problems the measurement
errors are assumed to be are statistically independent, so

S? = diag(s3,...,s2),

’r m

where s2,...,s2 are known standard deviations of the error.

’r m

Remark 2.2.14. It should be noted that the discretization of an ill-posed Fredholm
integral equation of the first kind yields an ill-conditioned linear system. In general,
the higher the dimensions of the discretization matriz, the closer the finite-dimensional
problem to the ill-posed continuous problem and, consequently, the more ill conditioned
the algebraic problem becomes [37]. That means that singular values of the matriz K
decay rapidly, and that its condition number is large. The smallest singular values are
usually of the same order as the roundoff error. The computation of the solution as
T = K1y is extremely unstable, and computed T is useless.

For example, for the computation of the particle size distribution in photon corre-
lation spectroscopy [31], a Fredholm integral equation of the first kind has to be solved,
where

k(s t) =e "
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When the Fredholm integral operator is discretized, the obtained singular values distri-
butions are shown in Figure 2.1.

_ m=‘100, S| aré eqwdﬁnt
107 L ___ m=500, s, are equidistant
m=50, s=s,_, +max(floor(e?),1)

singular values o.

Figure 2.1: Singular values distribution of the discretized Fredholm integral operator.

As we can see from Figure 2.1, increasing the number of collocation points improves
the situation just a little bit, nevertheless the problem remains ill-posed. The singular
values decay so fast that they drop below the machine epsilon of the single precision
somewhere around the 20-th singular value.

Usually, it is assumed that the errors are samples from a multivariate normal distri-
bution:

¢~ N(0,52).
It is advantageous to scale (2.25) with the matrix S~! as in [83]. Let
b=5S"1y, A=S"'K, n=8"'¢
Then by [83], (2.25) is transformed to
b=Az+n, 1~ N(0,1L,), (2.26)

where I,,, € R™*™ ig the identity matrix. If Z is an approximation of Z, then its residual
7 = b — Az should be an approximation of n = b — Az. Thus, an approximation Z is
acceptable only if 7 is a plausible sample from the N (0, I,,,) distribution. Further, by
[83] it follows that
1o — Az()3 ~ x*(m),
where x*(m) denotes the Chi-squared distribution with m degrees of freedom, and hence
E(||b — Az||3) = m, Var(||b — Az|j3) = 2m.

There are several ways to solve the problem (2.26). In [84] Rust proposed the fol-
lowing criteria for an approximation Z to be accepted as a good approximation
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1. The elements of 7 should be distributed like N(0, 1).
2. The elements of 7 should comprise a white noise time—series.

3. The squared norm 777 should lie in some interval [m — kv/2m, m + kv/2m], with
|k| < 2.

Methods used for solving (2.26) are:

Solving the least squares problem

The solution is of the form
= A'b.

The matrix A has always full column rank but it is ill-conditioned, so the compo-
nents of T are very sensitive to small perturbations in the components of b. The
presence of measuring errors leads to the solution approximation which is totaly
unreal. For example, in some physical measurement a very smooth solution is
expected. Instead of this, the computed solution approximation oscillates wildly
around the exact solution. The least squares solution usually does not satisty any
of Rust’s criteria.

Regularization
The most widely used method for stabilizing the wildly oscillating least squares
solution is to introduce a constraint on the solution Z of the form ([84])

1Q(F — %o)||3 < B

Here, 7y is an optional initial approximation of z, () is a matrix representation
of the linear operator for the constraint, and 3? is a constant determining the
strength of the constraint. The approximation ) is obtained by solving

min (||b — AZ,||3 + M| Q2 — o) |13) ,

where the parameter A is a Lagrange multiplier whose value depends on the value
of 3%. The solution is of the form

7y = (ATA+ 22Q7Q) 1 (ATb + A\2QT Q).

The success of the regularization depends on the choice of the value A\. There are
several ways to choose the optimal A\, which satisfy all of Rust’s criteria, see [84].

Truncated singular value decomposition (TSVD)
Another often used method for solving such an ill-posed problem is the truncated

singular value decomposition, which uses a rank p < min{m,n} approxima-
tion. If A = UXVT is the SVD of the matrix A, then by the result of Theorem

2.1.11,
p
Ap = ZO'Z'UZ'U;T,
i=1
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is the best rank p approximation of A. For m > n, let the matrices U € R™*"™,
V e R™™ and ¥ € R™*™ be partitioned as follows

X100 ] »
U=[Uy U, Us] V=[Vi Vo] S=|0 5| nop
p n—p m—n p n—p 0 0 m—n
n—p

where 0, > (o1 and 0,41 < (o for some tolerance (. Then
A, = U V.

Solving the least squares problem leads to minimization of the ||rs.q|/3 = || AZ—b]|3,
where

Irseally = 12V4" T — UYBII; + [122V5' 7 — U3 bll3 + U5 013, (2.27)

which is equivalent to the minimization of the first two terms in (2.27). The
truncated SVD sets o; = 0 fort = p+1,...,n and minimizes only the first term in
(2.27). The same result would be obtained if we solved the least squares problem
for the matrix A,

min [|rysuql|; = min(|[S:Vi°2 — UB]13 + U5 I3 + [[Us I13)-

The important thing is to find a proper tolerance ¢ or rank p so that it represents
a compromise between the residual and the solution norm, keeping them both
relatively small. Finally, the solution of the truncated singular value decomposition

is of the form )
T
u; b
T = E L (U

o
i=1 '

As Rust mentioned in [83], even for the most ill-posed problems, the matrix A is
not rank deficient, so there is no good reason for setting any of the singular values
to zero. This is the reason, why he proposed the next method.

Truncated vector U”b

Rust in [83] suggested that instead of zeroing some of the singular values, one
should zero those components of U7b that consist mostly of the random error. His
idea is to pick a truncated level 7 and require that solution approximation should
satisfy

(UTb)i : T
e £1U"b|; >
(VTE); = o » iE > 1=1,...,n.
0 iU < 7

The success of the proposed method depends again on the choice of the truncated
level 7. The most simple way is to try several values of 7 and choose the optimal
truncated level so that solution approximation satisfies all of Rust’s criteria.
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The Fredholm integral equation appears in many problems such as, for example,
opto—thermal skin measurements [93] and magnetic resonance imaging [55].

Example 2.2.15 (Geophysics). An interesting example of a Fredholm integral equa-
tion can be found in [86] and [87]. It is concerned with gravity surveying. Variations
of the density of subsurface rock give rise to variations of the gravity field at the Earth
surface. Therefore, from measurements of the gravity field at the Farth surface, one can
calculate density variations of subsurface rock. Variations of the vertical component of
the gravity field g(s) along a line s at the surface are related to variations f(t) of the
mass density along a line t (0 <t < 1) at depth d below the surface by the Fredholm
integral equation of the first kind

g(s):/o k(s,t)f(t)dt (2.28)

with the kernel
k(s,t) =

(d? + (s — t)2)3/2"
Dimensional constants, such as the gravity constant, have been omitted. In discrete form,

we can write the relation between measurements g = (g1, ..., gm]? of gravity variations
at m points along a line at the surface and variations of the density f = [f1,..., fa] at
n points along a subsurface line as a linear regression model

g=K[+e

where € is a vector of measurement errors, and the m x n matriz K is a discrete repre-
sentation of the integral operator (2.28).

For the concrete example synthetic measurements of gravity variations g where taken
at m = 15 equally spaced points along the line 0 < s < 1. The m x n matriz K relates
gravity variations at the m = 15 points along the surface to density variations f at
n =m = 15 points at a depth d = 0.25 below the points of the surface measurements.
The standard deviation of the measurement error € is about 0.1,

First, when the problem is solved as f = K™, using the full SVD, the least squares
estimate fsyp oscillates on the scale of the discretization grid. From the model’s point
of view, the solution fsyp does not seem to represent plausible density variations. The
singular values of the matriz K are shown in Figure 2.2

We can see that the singular values are again approaching zero very rapidly, and that
is the reason for the bad solution approximation.

Figures 2.3, 2.4, 2.5, 2.6 and 2.7 present the exact solution (solid line) and solution
approzimations (dashed line) obtained using TSVD with rank r equal to 4, 5, 6, 7 and
8. As we can see, these estimates are reasonable estimates of the actual density
variations. Figures 2.8 and 2./ show that the best estimates are obtained for r = 4 and
r=295.

2.2.11 Other Examples

Example 2.2.16 (Image processing). Storing an image requires a large amount of
computer memory, especially if high resolution is required. There is a lot of redundancy
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Figure 2.2: Singular value distribution of the discretized Fredholm integral operator.
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Figure 2.3: TSVD solution for r = 4.

among this data , and the SVD is used to reduce the amount of data and still to preserve
important information. The idea is very simple: the image data are organized as an
m X n matriz A, and then its best rank k approximation is computed for suitably small
k, as described in Theorem 2.1.11. Thus, instead of storing all mn elements of the
matriz A we have to store only the elements of U(1 : m,1 : k), V(1 : n,1 : k) and
k diagonal elements of (1 : k,1 : k), where A = USVT. So, there is all together
k(m +n + 1) elements to store, and this can be much less then mn if k < min{m,n}.
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Figure 2.4: TSVD solution for r = 5.
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Figure 2.5: TSVD solution for r = 6.

The criteria for choosing the best k requires balancing storage reduction with good image
quality.

For example, let us use the famous clown image which is an example from MATLAB
(Figure 2.8). We need a 200 x 320 matriz for storing this image, consisting of 64000
elements.

If we use the rank 10 SVD approximation, that requires 5210 elements or about 8.14%
of the original storage requirement. The quality of this new picture is not satisfactory
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Figure 2.7: TSVD solution for r = 8.

(Figure 2.9).

The next image 1s produced by a rank 50 approximation, with 26050 elements requir-
ing 40.70% of the original storage amount. The quality of the image is now satisfactory
(Figure 2.10). For more information on application of the SVD in image processing see

[72] and [94].

The same approach can be used for plotting surfaces. For example, suppose we want
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Figure 2.8: Image of the clown: 100%

50 100 150 200 250 300

Figure 2.9: ITmage of the clown: 8.14%

to plot the graph of the following function (Figure 2.11)
1
f(x,y) = ﬁ(aﬁy — 1’ — y2 + 175) (le',y) € [_57 ’5] X [_57 5]

In order to do that, first we have to define a mesh on the square [—5,5] x [=5,5], and
then we have to plot points representing the function values in each mesh node. The
points are then connected in an approzimative surface. We can divide the initial square
in small 0.5 X 0.5 squares, producing all together 21 x 21 = 441 mesh points, denoted by

(@i ¥i), 1,7=20,...,20, x; =-5+4+0.5¢, y; = =5+ 0.55.
These points are further organized in a 21 x 21 matric A = [a;;], where

Q5 = f(ﬁi,yj),
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50 100 150 200 250 300

Figure 2.10: Image of the clown: 40.70%

which is then used for plotting. Thus, we have to store all 441 elements.

Figure 2.11: 3D plot of the function f(z,y) = 55 (2% — 2? — y* + 175): 100%

By computing the SVD of the matriz A, we can note that only the first two singu-
lar values of A are nontrivial. Hence, the matriz A has rank 2, and the only possible
choices for storage reduction are rank 1 and rank 2 approximations. The rank 1 ap-
proximation requires storage of only 43 elements which represents 9.75% of the original
storage requirements. The resulting plot is not very accurate (Figure 2.12).

The rank 2 approximation requires storage of 86 elements which represents 19.50%
of the original storage requirements. The produced plotting is exactly the same as the
original (Figure 2.13).

Example 2.2.17 (Internet traffic modelling). The singular value decomposition is
usually used to extract important information from an abundant amount of data. This is
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Figure 2.12: 3D plot of the function f(z,y) = 55 (2% — 2® — y* + 175): 9.75%

Figure 2.13: 3D plot of the function f(z,y) = 55 (2 — 2% — y* + 175): 19.50%

done in an example taken from [96], where internet traffic was analyzed. The main goal
in [96] was to find patterns of internet traffic trace, such as weekly and daily patterns.
The traffic intensity was observed, and its status was registered every minute in 49
successive days. The collected data was organized in a 49 x 1440 matriz X, where each
row represents one day, and each column is with respect to one minute within a day.

From Figure 2.14 it is clear that there exist weekly patterns, and weekday—weekend
and day—night effects. After performing the SVD on the data matriz X = Z?il ol
the following conclusions can be drawn:

o the oyuyvl component contains the average information of the day and the specific
minute in a day

o the oouyvl component contains the difference between weekend and weekdays and
day—night effect
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Figure 2.14: Original time series of internet traffic intensity.

the Ugu;z,ng component contains information related to some outliers

The analysis of the singular vectors produces the following results:

uy has a weekly pattern and contains information related to the total network traffic

ug also contains a clear weekly effect, and is strongly correlated with the variance
of each day

us shows the special information the outliers might have
vy shows the average daily traffic shape with the day—night effect

vy also shows the day—night effect with the difference between weekdays and the
weekend

vy shows strong variability during the day, and this is probably because of the strong
influence of the outliers

In this example the SVD 1is used to get prediction with use of fewer components.

Example 2.2.18 (Genetics). One of the most interesting problems in modern science
is the decoding of genes. Recently, a huge advance in technology and data analysis has
occurred, which enables us today a better understanding of the connection between genes
and all the features of an organism. One possible approach to this problem is to analyze
the data obtained from microarray experiments. The task is to find the structure of the
gene network (or to reverse—engineer the network), which describes interactions between
genes in a selected biological process and is illustrated in Figure 2.15. Solving this task
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requires a very large amount of erperimental data, which is expensive to obtain. To
overcome the problem of data shortage and computational inefficiency, several genetic
researchers have adopted a linear model and have used the singular value decomposition
to reconstruct the network architecture [95].

The method for such a reconstruction consists of two steps. The first step is the
application of the SVD for constructing a set of feasible solutions that are consistent
with the measured data. The second step is the robust regression which is used for
selection of the most sparse one as the solution. The reason for doing the second step is
that earlier works on gene requlatory networks and bioinformatics databases suggested
that naturally occurring gene networks are sparse, i.e., generally each gene interacts with
only a small percentage of all the genes in the entire genome.

In [95] they considered only systems that are operating near a steady state, so that
the dynamics can be approximated by a linear system of ordinary differential equations:

i(t) = — Nz (t) + iwijxj(t) Fh() + &), i=1,...n (2.29)

Here, x; is the concentration of the i-th mRNA which reflects the expression level of the
gene, \; is the self-degradation rate for the i-th gene, b; is the external stimulus on the
i-th gene, and & represents noise. The matriz element w;; € R describes the type and
strength of the influence of the j-th gene on the i-th gene, with a positive sign indicating
activation, a negative sign indicating repression, and a zero indicating no interaction.

To obtain parameters in the equation (2.29), the authors of [95] used a prescribed
stimulus [by, b, . .., b,|T, and they used a microarray to simultaneously measure the con-
centrations of n different mRNAs, i.e., [x1, 72, ..., 2,7, Repeating this procedure m
times, they obtained m measurements, organized as a matriz X € R™*™:

1 2 m
:'Ul :El .« .. Il
Il {23'2 ce. gpm
2 2 2
X =
1 2 m
wn xn PR xn

The :Bf represents the concentration of the i-th mRNA n the j-th experiment, with
similar notations for X and B. The equation (2.29) can then be rewritten as

X = AX + B, X,X,BeR”™ A= ay] € RV, (2.30)
where noise is neglected and
aij = wij — (52]/\1
The goal of the reverse engineering is to use measured data B, X, and X to deduce A
and hence the connectivity matrizc W = [w;]. First, by transposing equation (2.30), we
obtain ‘
(XT)(AT) = (XT) = (BY), (2.31)
where A is unknown. Because of the high costs of the measurements, typically m < n,
thus (2.31) is an underdetermined linear system. The SVD is used to decompose XT as

XT=uxvT, XT U eR™" X VeRY™,
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in order to obtain (XT)' = (X")T. Let rank(X) = r. Then one particular solution for
A is given by '
Ay = (X — B)XT,

and the general solution is given by the affine space
A=Ay+CVT,  CeR™, (2.32)

where C' = [c;] and ¢;; = 0 for j < r. The family of solutions in equation (2.32)
represents all the possible networks that are consistent with the microarray data.
The second step of the procedure will find the most suitable solution A.

Figure 2.15: Schematic of a nonlinear gene network.

2.3 Perturbation Theory

When the singular value decomposition of a matrix A € R™*™ (m > n) is computed
in finite precision arithmetic, the exact factors U € R™*" ¥ € R™" and V € R"*"
will not be obtained in most cases. Matrices U, & and V will be computed instead.
Numerical analysis of the method, used for computing the SVD, results in a matrix A
such that some or all of the computed matrices U , Y and V are its exact SVD factors.

computed SVD factors
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The relation between the exact and the computed factors is given by perturbation
theory, which compares the matrices A and A. Basically, the perturbation theory will
produce bounds on the errors in computed SVD factors. The error bounds can be
divided in two different categories:

1. singular value error bounds,

2. singular subspace error bounds.

2.3.1 Singular Value Error Bounds

First, let us take a look at additive perturbations of a matrix.

Theorem 2.3.1 (Mirsky—Lidskii-Wielandt [66, p. 23|). Let A € C™*" m > n,
then for any unitarily invariant norm || - ||, we have

1= -S| < lA- Al
Specially, for ¥ = diag(oy,...,0,) and ¥ = diag(éy, ..., 6,), we have

max oy — o] < [|A - Alla,

=1,...,

n

> (oi—6:)2 < [|[A- A p.

=1

Theorem 2.3.1 claims that the absolute backward error norm is the upper bound for
absolute error in singular values. But, the absolute errors are not always the best way
of measuring errors. Backward analysis of a method which computes the SVD of the
matrix A, usually results with a bound

| A~ Allz < mal|All2, or A~ Allr < el Allr,

where 7o and ng are some multiples of machine roundoff . Thus, if we want to look at
the relative singular value error, we are going to obtain

g; — 5-1 o
|—| < 772—1 < makz(A),
g; g;
where ro(A) = ||A]|2]|AT||2 is the condition number. This means that if A is an ill

conditioned matrix, the small singular values might be computed with large relative
error.
The next step would be to look at the relative errors in singular values.

Theorem 2.3.2 ([52, p. 174]). Let A € C™™ for m > n. If range(A) C range(A)
then

920 A - )y, =1,

0

If range( A*) C range(A*) then
720 < A= ayal)s,  i=1,m

0
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When A has full column rank the second range condition in Theorem 2.3.2 is auto-
matically satisfied.

Theorem 2.3.3 ([52, p. 174]). Let A € C™", m > n, and let A have full column
rank, then

O — & .
00 (A A,

(2

Multiplicative perturbations are much more suitable for this case, so the next results

will deal with such perturbations. Let us start with Ostrowsky—type bounds.

Theorem 2.3.4 ([52, p. 190]). Let A € C™", m > n, and let A = SAT, where S
and T" are nonsingular. Then

g;

< a; < oi|S2]| T2
S, = 7 = 7Sl

Theorem 2.3.5 ([52, p. 192]). Let A € C™™, m > n, and let A = SAT, where S
and T are nonsingular. Then

% = %l < {11 = "o, 1T = TTla}.

7

Thus, the relative error in singular values of A is small if S and T are close to unitary
matrices.
There are some other useful error measures for singular values. One of them is

oa—Q
X(aa a) - Q?
Vladl
the so-called x relative distance between real numbers o and &. We define x(0,0) = 0.

The relation between this relative distance and the standard relative error is given in
the following proposition.

Proposition 2.3.6 (|66, pp. 15-16]). Let a,a € R. If 0 < e < 1, then

lae — @ €

o] <e= x(a,a) < — (2.33)
if 0 < e <2, then
~ la —al |a— @ € €2
<e=> <|= 1+— e 2.34
X(a, &) <e max{ ol Tl <3 + + 1 )e (2.34)
Asymptotically, .
lim X(f‘_’;l)‘) — 1,

lal

thus (2.33) and (2.34) are at least asymptotically sharp.
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Theorem 2.3.7 (|64, p. 397]). Let A € C"™*", m > n, and suppose that A= SAT
where S and T are nonsingular. Then,

B 1, .. _ 1, _
max x(o;,0;) < §HS -5 1||2+§||T — T,

1=1,....n

ZXZ(Ui,5i)
=1

If T is unitary then

1 1
< §||5* — S+ §||T* —T7 s

IN

11S172 = S172]le,

max x(o;,5;)
i=1,...,n

< ISP = 18172,

where
S| = (579)"2.

2.3.2 Singular Subspace Error Bounds

When comparing two subspaces X and ) of dimension k, the most natural measure is
the angle matrix ©(X, YY) between these two subspaces, where X and Y are orthonormal
bases for X and ), and

O(X,Y) = arccos(XTYYTX)? with ||sin@(X,Y)|s = [V X||,.

Y, is orthonormal basis of Y+, and Y+ is orthogonal complement of ). From section
2.2 and [90]

| sin©(X,Y)||2 = sin(by) = sin Z(X, ), |sin©(X,Y)|r =

Theorem 2.3.8 (Wedin [67, p. 5]). Let m > n, and let A € C™" and A € C™*"
have the following SVDs

S0 ]y

A= UV =[U U]| 0 X, vl : (2.35)
0 0 L7

B 0 Y e

A =USV'=[U Uy ]| 0 % Vl : (2.36)
0o 0 |- "2

where U,U € C™™ gre unitary, V,V € C™™" are unitary, Uy, U, € C™* V; V, € Ck,
and

21 :diag(ah...,ak), 22 :diag(ak+1,...,an), (237)
> = diag(6y, ... ,5%), Sy = diag(Gpsts - .-, G0), (2.38)
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with 1 < k <n. Let us define the residuals
Rr=AV, —U\%, = (A= A)Vi and Ry = A*Uy — V%, = (A* — AU,
If
d = min {121 min . lo — &k+j"inllink O'Z'} > 0,

then

VIRR]F + 1RL]Z
5 .
The scalar § represents the absolute gap between singular values of ¥; and %,. The

next theorem involves the relative gap, but first we have to define one more error measure
for singular values:

VIO, 0) 2 + || sin©(V;, V)2 <

(0,8) = A2 =4
e e+ laP

and p, is the so-called p relative distance between real numbers o and &. We define
pp(0,0) = 0. The relation between this relative distance and the standard relative error
is given in the following proposition.

for 1 < p < o0,

Proposition 2.3.9 (|66, pp. 10-11]). Let a,a € R. If0 < e < 1, then

lae — @ €

<e= pyla,a) < , 2.39
and | ¥ | y
a—a |la—a 2 Pe
v) < e = < . 2.4
pp(a, @) < e max{ ol 1Al } . (2.40)
Asymptotically,

i 2208 g1,
]

thus (2.39) and (2.40) are at least asymptotically sharp.

Theorem 2.3.10 ([67, p. 7]). Let A € C™™ (m >n), and A = S*AT be two matrices
with SVDs (2.35), (2.36), (2.37) and (2.38), where S and T are nonsingular. Let

a—a

min ¢ min p2(0i, Gp4j), min po(0;,0) ¢, if m>n,
i=1,....k, j=1,...n—k i=1,....k
T2 =
min p2(0i, Grts), otherwise.
i=1,...k, j=1,..n—k

If no > 0, then

VIsin©, D)2 + || sin OV, T4) 2 <
. VIT=S O+ = 5 0F + 10 = TVl + 10 =Tl
o 2
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2.4 Methods for Computing the SVD

2.4.1 Jacobi—-Type Methods

Jacobi-type methods are iterative methods for computing the singular value decompo-
sition of a matrix A = [a;;] € R™*™. They are based on pre- and post-multiplication
with Jacobi rotations. The important measure for the convergence of such methods is

off(A) = Z az;.
i#]
The one—sided Jacobi SVD algorithm

The Jacobi method for spectral decomposition was introduced by Jacobi in 1846

[53|, and many variants of the method have been developed since. The one-sided

Jacobi SVD algorithm applies multiplication with Jacobi rotations only to one

side of the matrix A € R™*" and it is described in [16]. If, for example, m > n,

a QR factorization of the matrix A is performed in order to reduce the matrix

dimension. The Jacobi algorithm is then applied to the n X n upper triangular

factor or to its transpose. The algorithm generates a sequence of matrices A%®) as
follows,

vo — 1 A0 — 4
V(k:-i—l) — V'kv(k) A(k-‘rl) — A(k)‘/kT

where Vj is a plane rotation, acting only on the 7;-th and the ji-th columns. The
rotation acting on the ¢-th and the j-th rows or columns is defined by

(2.41)

1
0
1 : :
O ) i
. . .
Gij(0) =
: 1 : )
—sin(@) - oo oo ocos(f) oo oo oo |7
. . )
0
i 5 I
7 J

Vi is defined as
Vie = Gy (),
and if A® = [agk), o ,a%k)] is a column partition of the matrix A®) then the
iteration of the Jacobi algorithm (2.41) can be described as
(h+1) (b1 } _ [ 4B ® ] . { cos(¢r) —sin(vy)

@i i i Y sin(vy)  cos(v)
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The angle vy is chosen so that

which ensures that

off((AF)T AR = off (A®)TAM) — 2|(a))Ta,, [, k> 0.

1k

One iteration of the one-sided Jacobi SVD algorithm can be visualized as follows.

o o o 0 0 o 1 o o ° °
e o o 0 0 o 1 o o ° °
e o 0o 0 0 o Cyp Sy, | _|® @ . °
e o 0o 0 0 o 1 e e ° °
e © o o 0o o Sy Copy, e o ) )
e o o 0 0 o 1 [ N ) ° °

where ¢, = cos(1y), sy, = sin(i;),  represent elements of the matrix A® that
will be affected by Vj, and e are elements of A*+Y) that are changed, and are
different from the corresponding elements of A®). The two columns denoted by
green bullets will be orthogonal, due to the choice of angle 1.

The pivot indices i, and j, are usually chosen according to row— or column-—
cyclic pivot strategy, or so that \(agf))TayZ)\ is maximal. Actually, the Jacobi SVD
algorithm is equivalent to the symmetric Jacobi algorithm applied to the matrix
AT A. Thus, the sequence A®) converges to a diagonal matrix
klim (AT AW = 22 = diag(o?,...,02),
and with
V = lim (V)T

k—oo

the following factorization is computed
ATA=vy2vT,

where
A = lim A®)

k—o0

has orthogonal columns. This implies that U can be computed as

U=Ax"t  if detX #0.

The one-sided Jacobi algorithm computes singular values with high relative accu-
racy, as it is shown in [16]. Let A be the matrix with unit columns, obtained

as

AW = AB (DY with  D® = diag(||A® (;,1)]]2, ..., [A®(:,n)||2),
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where A®) is a matrix computed in finite precision arithmetic in the k-th step of the
Jacobi algorithm, when the stopping criterion has been satisfied. If the computed
singular values of A®*) are denoted by 61@), t=1,...,n, then the following relation
hold:

where 7 is some multiple of the unit roundoff €.
New fast and accurate Jacobi SVD algorithm has been proposed recently in [24]
and |25].

The Kogbetliantz algorithm
The Kogbetliantz algorithm is a two—sided Jacobi SVD algorithm for square ma-
trices, and it was introduced in [60] and [61]. In [43] a modification of the original
algorithm was proposed. The Kogbetliantz algorithm was applied to the triangu-
lar matrix, after a QR factorization with column pivoting has been applied to the
original matrix. So we will assume that A € R™*" is upper triangular, and that

lai1] > |aga| > -+ > |an,].
The algorithm generates a sequence of matrices A%*) as follows,
U — I, 0 — I, A0 — 4
Ut = g, o™ VD =y v AFD = g ARy T (2.42)

where Uy, and Vj are plane rotations, acting only on the i;-th and the ji-th rows
and columns. Let us define

Ui = Gik,jk(¢k)u Vi = Gimjk (¢k)7

and let us focus only on the rows and the columns, where all the action is going
on. Then the iteration of the Kogbetliantz algorithm (2.42) can be described as

[ a(kgrl) a(kﬂ) ]
273273 LIk _
(k+1) (k+1) | —

Jrik JkJk
cos(dn) sin(dn) | [ eyl ag, | [ cos(r) —sin(dy)
l —sin(¢y) cos(¢r) } . [ ag-lz,)ik aé’ik ] ‘ { sin(yy)  cos(¥)
The angles ¢, and ¢ are chosen so that

(k+1) (k+1)_0
Rjk kR )

which ensures that

off(A¥HDY = off(AM)) — o) |2 k> 0.

ikJk

One iteration of the Kogbetliantz algorithm can be visualized as follows.
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1 e e 0 0 0 o 1
1 e o o 0 0 o 1
Coy Sou e © ¢ ¢ 0o o Copy, =Sy
e o o 0 0 o 1 °
—S¢  Con e o ©o 0 o o S Cyy
1 e o 0o 0 0 o °
where ¢y, = cos(Pr), S, = sin(ey), ¢y, = cos(¢), Sy, = sin(yy), ® represents
elements of the matrix A® that will be affected by Uy and Vi, and e are elements
of A®+D that are changed, and are different from the corresponding elements of
AW,
The pivot indices i; and ji are usually chosen according to row— or column—cyclic
pivot strategy. The sequence A®) converges to a diagonal matrix
klim AWM =% = diag(oy, ..., 0n),
and with
U:ﬁm@MWZ ‘V:ﬁnwwﬁ,
all the SVD factors are computed, and
A=UxV".
2.4.2 Methods Based on Bidiagonalization

An algorithm belonging to this group consists of two steps. The first step uses orthogonal
transformations to reduce the matrix A € R™*", for m > n, to a bidiagonal form:

A=UBVT, UecR™" and B,V € R™",

where U is orthonormal, V' is orthogonal and B is bidiagonal

[ U1 ¢
Yy @3
ST (2.43)
wnfl ¢n
Un |

This process is called bidiagonalization. The second step is the application of a fast
algorithm for computing the singular value decomposition of a bidiagonal matrix (see
subsection 2.4.3).

Several bidiagonalization algorithms appeared in the past, and will be listed here. A
new version of one-sided bidiagonalization will be presented in Chapter 3.
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The Householder bidiagonalization
The Householder bidiagonalization algorithm is based on pre— and post—multi-
plications with Householder reflectors, such that at the end of the process the
following relation is achieved

{?] =U, U AVi Vg, U=U---U,, V=Vi-V,_ o,

where U, and V) are the Householder reflectors, and 0 € R(m=m)*n  Thig bidi-
agonalization is described by Golub and Kahan in [33]. A Householder reflector
H € R"" is defined as

H=1,—vl, lv]|e = \/57

thus

H'=H H*=1,.

Y

For any =,y € R", x # y with ||z|ls = |ly||2, a Householder reflector H can be
found, such that Hx = y. In that case, the vector v is of the form

V2

V=
Iz = yll2

(z —y).

In the bidiagonalization process, Householder reflectors Uy, are chosen to annihilate
elements of the matrix A bellow the main diagonal, and V}, are chosen to annihilate
elements above the superdiagonal. The computation and the application of the
Householder reflectors U and V}, are interlaced: in the k-th step U, will annihilate
all the elements bellow the main diagonal in the k-th column, and Vj, will annihilate
all the elements right to the superdiagonal in the k-th row. The process is shown

bellow.
cee o o0 0
R X oo 0 oo o )
__|eeee Uy eoe0oe0 v o0 e Us o0 Va
A= e0e0ee — e0ee ——— e0e ———— oo ——
EEE) oe0oe0 o0 e o0
R X e0e0 oo o o0
oo Us Uy :|:B:|
oo ——— o] —— 0
) °
o0 °

The elements denoted by e are crucial for the next step of the algorithm. The
column or row of red bullets denotes the vector x, such that the next Householder
reflector H (lower block diagonal part of Uy, or Vj) will depend on it. The House-
holder reflector H will be chosen so that Hz = +||z||e;. The elements denoted
by e are computed values after the application of the Householder reflector.
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The Lawson—Hanson—Chan bidiagonalization

When m > n, an efficient algorithm can be obtained if the QR factorization is
performed before bidiagonalization. The bidiagonalization is then applied to the
triangular square matrix with much smaller dimensions than the original matrix.
This idea was mentioned in [63, p. 119] and analyzed in [11]. Let

A:Q{g], Q € R™™, R e R™™

be the QR factorization of the matrix A € R™*", with ) orthogonal and R upper
triangular. Then, the bidiagonalization of the matrix R will produce

R =UrBVT, Ugr, B, V e R™*",

with Ur and V orthogonal, and B bidiagonal. The final bidiagonalization of the

matrix A is obtained as
a=al gl 0]

U:Q{%R 1:_,1]'

This algorithm involves fewer operations than the Householder bidiagonalization
whenever m > 5n/3, and if U is not accumulated.

and

Both methods, the Householder bidiagonalization and the Lawson-Hanson-Chan
bidiagonalization, can guarantee only small absolute errors in the computed sin-
gular values. If these algorithms are performed in finite precision arithmetic, and
if the singular values of the computed bidiagonal matrix B are denoted by &,
i =1,...,n, then they are the exact singular values of the matrix A+ J0A, and the
following relations hold:

[0A]l2 < nl|All2, and thus
< n[lAll,

max |o; — G|
(2

where 7 is a moderate polynomial of matrix dimensions times the unit roundoff ¢.

The Lanczos bidiagonalization

This algorithm, introduced by Golub and Kahan in [33|, is a generalization of
the symmetric Lanczos algorithm. It is based on a simple recurrence. Let b be a
starting vector, then we define uy, v; and ¢; by

ug = 0, g1 = b, ¢1 = [|b]|2,
and for £k =1,2,... compute

Ypur = Avk_(bkukflv

T
Gr1Vk1 = A up — Ypug,
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where ¢, and 1, are nonnegative, and are chosen so that ||uglle = ||vk|l2 = 1. If
we define

Uk:[ul,...,uk], Vk:[vl,...,vk],
then the above equations can be written as
¢1Veer = b,

Avk UkBk7
AU = ViaBlig,

where B), € R¥** is upper bidiagonal

[ 1 ¢
Yy @3

| Q/Jk—.l O
(7

and By 1 is equal to By, without the last row. Paige showed in [77] that the
matrices U, and Vj are orthogonal, and because of this orthogonality the process
will stop at & < min(m,n) with either ¢ = 0 or 1y = 0. The Lanczos bidiago-
nalization implemented in finite precision arithmetic can produce matrices Uy, and
Vi, which are not numerically orthogonal. Thus, some sort of reorthogonalization
is required.

The Ralha one—sided bidiagonalization

This algorithm is proposed by Ralha in [80], [82] and [81], and its main charac-
teristic is that the Householder reflectors are applied only from one side of the
matrix A. More attention will be devoted to this algorithm here, because the new
bidiagonal algorithm, which will be analyzed in this thesis, is its modification. The
main steps of the algorithm are as follows:

e Triorthogonalization

The matrix is post-multiplied by a sequence of n — 2 Householder reflectors
Vki
AOZA, Ak:Ak,lvk, k:L,n—Q

The Householder reflectors V;, are chosen so that
forV.=V;---V,_» F=A, o=AV is triorthogonal,
which means, that for columns f;, f; of F
fifi=0, li—jl>L

This is equivalent way to say that F'7 F is tridiagonal.
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e A variant of the Gram—Schmidt orthogonalization
The columns of F' are orthogonalized only against adjacent columns, produc-
ing

F=UB,

where U = [uy,...,u,] € R™" is orthogonal and B € R"*" is the required
upper bidiagonal matrix, whose singular values are those of A.

The steps of the Ralha algorithm are shown bellow.

Implicitly:
[ 2 BN BN J [ I J [ N J
P A U S A S R
o000 [ N N J [ 3N J
Explicitly:
AL P, H 2, B, SN =B.

The elements denoted by e will be used in the next step of the algorithm. The
column or row of red bullets denotes the vector zz, such that the next Householder
reflector V}, will depend on it. The Householder reflector V}, will be chosen so that
Viezi = %] zk||2€1, and Vi, = [ I; ‘Z
values of FTF after the application of the Householder reflector. The computed
elements of B are denoted by

} . The elements denoted by e are computed

Finally, the complete algorithm is given in Algorithm 2.4.1.

Algorithm 2.4.1 (The Ralha one—sided bidiagonalization). For A € R™*",
rank(A) = n > 2, this algorithm computes orthonormal U = [uq, ..., u,], bidiago-
nal B and orthogonal V.= V"2 sych that A= UBVT.

Ay =A; VO =T;
{Implicit triorthogonalization}
fork=1:n-2
2L = Akfl(i, k +1: n)TAk,l(:, k),
if z;, # 0 find a Householder transformation Vi, such that Vizp = vieq;
Ak(l, k +1: n) = Ak_l(i, k +1: n)Vk,
_ I, 0 . k) _ 1/ (k-1 .
Vi = { 0 Vk]’ V) = yk-Dy, .
else
Vie=1h—k;
end
end
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{The Gram—-Schmidt orthogonalization}
F = [fla ce e 7fn] = Anf2;

s1 = fi;

Y1 = |Isall2;

uy = s1/91;

fork=2:n

Or = U;;F_lfk;
Sk = fk - (bkukfl;'

Ui = ||skll2;
= Si/Vk;
end

The version of the Gram—Schmidt orthogonalization in this algorithm substitutes
pre-multiplication with a sequence of Householder reflection in the Householder
bidiagonalization. Thus, the second part of the algorithm requires only O(mn)
flops instead of O(n?m). The other important characteristic is that the algorithm
is one-sided. That means that most of the algorithm can be expressed by simple
operations on columns of the transformed matrix, and it can be efficiently imple-
mented on multiprocessor systems with distributed memory. On the other
hand, when the algorithm is implemented in finite precision arithmetic, there is a
possible loss of triorthogonality of the computed matrix F. This means that FTF
can be far from tridiagonal form, and this method may not be numerically back-
ward stable. There is also a possible great loss of orthogonality of the computed
matrix U.

2.4.3 Methods for the Bidiagonal SVD

After bidiagonalization, SVD of the bidiagonal matrix has to be performed to complete
the task of computing the singular value decomposition of a general matrix:

B =UgXVy.
The final singular value decomposition is then achieved by
A= (UUp)X(VVp)!.

There are several methods for computing bidiagonal SVD. They all assume that the
bidiagonal matrix B (2.43) is unreduced. If ¢y+1 = 0 for some k, then
o B1 0 k
B= |: 0 Bg :| n—k
kK n—k

and the original SVD problem is reduced to two smaller problems involving matrices By
and Bs.
Three such methods are listed below in historical order.
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The Golub—Kahan bidiagonal SVD

This method is also described in [33], and is based on the implicit-shift QR steps
applied to the tridiagonal matrix Ty = B By, where By = B:

Ty — I = UR (QR factorization)
Thyi = RU+ NI, k=0,1,...

which will produce a new tridiagonal Ty, with T, = U?T,U, but the matrix
Ty = BgHBkH is never explicitly formed. The shift \; is chosen to improve the
convergence. The steps of the algorithm are following;:

e Compute the eigenvalue \; of

2 2
oo [ ]

that is closer to ¥? + ¢2.

e Compute ¢y, = cos(f1) and sy, = sin(f;) such that

o so T V7 — A _ | #
—86, Co, ¢1¢2 0
and set a Givens rotation V; = Gy 2(61).

e Compute Givens rotations V5,...,V,_1 so that if V® = V;...V, ; then
Tiy1 = (VE)TTL,V® s tridiagonal and V®e; = Vije,. This is done by
“chasing the bulge” in the bidiagonal matrix By:

Bk,l «— BV} =

T —
Big «— U; Bry =

Bz «— B2V =
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T
Byy+— Uy Bys =

Bys «— BpaVs =

T
By «— U3 Bys =

Bi7 «— BrgVy =

T —
Bk,s — U4 Bk,7 -

Big «— BrgVs =

T _
Byio «— U; Brog =

= Bk+1

47
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This step terminates with a new bidiagonal matrix By, which is related to
By, as follows

Biyr = (UL - - UDBR(Vy--- V) = (U(k))TBkV(k).
The whole process converges to a diagonal matrix, thus

k—o0

The Demmel-Kahan bidiagonal SVD

This algorithm is a variation of the Golub—Kahan algorithm, and is called the
implicit zero-shift QR algorithm. Demmel and Kahan noticed in [15] that for
Ar = 0 Golub—Kahan’s implicit-shift QR factorization can be modified in such a
way that in finite precision arithmetic every entry of Bj,1 can be computed from
By, to nearly full machine precision. This implies that, while the Golub-Kahan
algorithm guarantees small absolute error in computed singular values:

0i =il <O@)[Bll2, i=1,...,n,

the Demmel-Kahan algorithm ensures that the computed singular values have
small relative error:

[0i = o <O0(), i=1,....n.

a;
In fact, the new algorithm is a hybrid of the standard QR and the implicit zero-
shift QR. The standard QR is used when the condition number of B is modest.
If the condition number is large, then the implicit zero-shift QR is used instead.
Contrary to the standard Golub-Kahan QR algorithm where the bulge is always
chased downwards, implicit zero-shift QR chooses to chase the bulge up or down,

depending on which direction will speed up the convergence.

Algorithm 2.4.2 (Implicit Zero—Shift QR Algorithm). Let, for k =0,1,...,
By be an n x n bidiagonal matriz with diagonal entries wlk), e ,w,&’“) and super-
diagonal entries gbgk), . ,qbfzk_)l. The following algorithm computes a new bidiagonal
matriz By, with entries ¢§k+1), cee gﬁl) and (b&kﬂ), .
one step of the QR iteration with zero shift:

. ,(bglkjll) corresponding to

oldc = 1;
c=1;
fori=1:n-1
[r,c,s] = rot(zﬂgk) -, (bz(k));
ifi > 1
wﬁ?) =olds - r;
end

W*Y olde, olds) = rot(olde - r, 4, - 5);

)

end
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h=u - c;
oY = . olds;

n—1

G — b oolde:

function [r,c, s] = rot(f,g)
{The function rot() takes f and g as inputs and returns r, and a Givens rotation with ¢ = cos(0)

and s = sin(0) such that
[ ; S].[f]:[r}
-5 c g 0"

Differential qd algorithms
The differential qd algorithm was developed from the Cholesky LR transformations
(similar to QR) by Fernando and Parlett in [29]. The algorithm obtains maximal
relative accuracy for all singular values as the Demmel-Kahan implicit zero-shift
QR, but is at least four times faster. It also allows non-zero shifts for increasing
the convergence.

We will start with zero-shift, and the Cholesky LR algorithm applied to tridiagonal
T = BTB. Let Ty = B{ By, By = B, then for k = 0,1,... T, = ByB{ is also
tridiagonal, and we define its Cholesky factorization as

Thyr = B§+1Bk+1.
It can be shown that there exists an orthogonal matrix () such that

BkT - QBk—H

0 By is the triangular QR factor of B} .

The matrix () may be written as a product of (n — 1) Givens rotations
Q=GGy -Gy

The annihilation of the subdiagonal elements of B} is done as follows

T TRT _
Bk,l%GlBk =

T TRT _
Bk,2 — Gy Bk,l =
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T TRT _
Bk,3 — Gy Bk,2 =

T TRT _ —
By« GiBys = = By

This procedure yields the dgd algorithm by eliminating square roots.

Algorithm 2.4.3 (dqd). Let, for k =0,1,..., By be an n X n bidiagonal matriz
with diagonal entries ¢§’“), e ,wT(lk) and superdiagonal entries ¢gk), cee ¢ %) The

following algorithm computes a new bidiagonal matrix By, with entries w(kﬂ), ey

wflkﬂ and ¢1k+1), ceey d) k+ ) corresponding to one step of the Cholesky LR itera-
tion:

5{“:0-
fori=1:n

k k k k
0’ =" e = (0")

end
d=q}";
fori=1:n-1
q§k+1) —di el k);
(k+1)

e(k:) (qz—i-l/qszrl))

d=d. (g2 /g );

J

H—l
end
D — g
on 't =0;

fori=1:n

¢§k+1): /q(k:+1 ¢(k+1) 62('1«+1);

end

The whole process converges to a diagonal matrix, thus

k—o0
A shift A\ # 0 can be introduced into the qd algorithm, so that

Bl Byi1 = ByBl — M\ L.
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To keep Bjyi real, the shift must satisfy A\, < 0,(By)?, where 0,(By) is the
smallest 81)ngular value of By. All the modifications in the algorithm involve terms
with qzk+1

Algorithm 2.4.4 (dqds). Let, for k =0,1,..., By be an n X n bidiagonal matriz

with diagonal entries ¢§’“’, e 7(11@) and superdiagonal entries ¢§k), e ¢£1k)1 The

following algorithm computes a new bidiagonal matrix Byy1 with entries @D( +1), cee

wy(fﬂ and ¢§’“*”, ey (b(k+ corresponding to one step of the Cholesky LR iteration

with shift:
") _ .

fori=1:n
k k k k
0" = @Py; & =0
end
d - Q1 )\k:

fori=1:n-1
d* D gy ),

et = (a5 /a);
d=d- (/g ) = N
end
qgkﬂ) —d;
(k1) _ 0;
fori=1:n
w§k+1) _ (k+1 ¢(k+1 e@(kﬂ);

end

We should note that, for singular values o,;(By) and o0;(Bj1) of the matrices By
and By, respectively, the following statement holds

0i(Bri1)? = 0(Bi)® — Ar,

so that
lim By, = A,

k—o0
where

A*=%% — N+ A +--)1.

Recently, Dhillon and Parlett developed in [17] a new method for computing eigen-
values of a symmetric tridiagonal matrix, called Multiple Relatively Robust Rep-
resentations (MRRR). Let T € R™™ be a symmetric tridiagonal matrix, and let
T = LODOLg be its factorization, where Ly is unit lower bidiagonal and D is
diagonal. The algorithm is based on the compositions of the form

L.D.L! = L,D,L] — 71,
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where 7 is a suitable chosen shift. Basically, each new factorization LCDCLCT cor-
responds to a cluster of eigenvalues. This new algorithm requires only O(n?)
operations for computing the whole spectral decomposition, and guaranties that
the computed eigenvectors are orthogonal to working accuracy and have small
residual norms with respect to the original matrix 7. This algorithm has been
extended by Grofer and Lang in [39] to the stable computation of the bidiagonal
SVD. In [91] more efficient implementation of the bidiagonal SVD using MRRR
is described. The new algorithm is based on the simultaneous computation of

B
eigenvalues and eigenvectors of the matrices BT B, BB and [ ;T 0 } by using

so-called coupling relations.



Chapter 3

The Barlow One-sided
Bidiagonalization

3.1 The Algorithm

The efficiency of the Ralha bidiagonalization on the one hand, and the numerical insta-
bility of the same algorithm on the other, was the motivation for developing its mod-
ification. The required modification should have retained the same operation count,
but should have improved numerical stability. On the IWASEP 4 workshop held 2002
in Split, Croatia, Barlow proposed a modification of Ralha’s algorithm, which seemed
to satisfy both of the requirements. The changes in the algorithm were minimal, but
subtle, some operations exchanged their places, and one vector was obtained from a
different matrix, thus the number of operations remained the same. The proof of nu-
merical stability of the new algorithm was given by Barlow, Bosner and Drma¢ in [2],
and is rather technical. A much simpler version of the same proof will be presented in
the next section of this thesis.

In contrast to the Ralha bidiagonalization, which is based on the implicit tridiago-
nalization of the matrix AT A, Barlow’s algorithm is based on direct bidiagonalization of
the matrix A, like the Householder bidiagonalization and the Lanczos approach. In the
new algorithm one step of the Gram—-Schmidt orthogonalization and post-multiplication
with one Householder reflector are performed simultaneously.

Once again, if A € R™*" is given, the algorithm finds matrices U € R™*" V|, B €
R™™ such that

A=UBVT, UecR™" and B,V € R™",
where U is orthonormal, V' is orthogonal and B is bidiagonal

R
7702 ¢3

(3.1)
wn—l ¢n
W |

23
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The Barlow bidiagonalization can be described in its simplest form as follows
® A() = A
e Fork=1,2,...,

o uyg is produced from the k-th column of A;_; by orthogonalization against
uk—1 (if £ > 1), and normalization

Up=[ug,...,ux] k=1,...,n
o The Householder reflector V;, is chosen so that
UFAp_1 Vi, = B, ¢ R¥™ By is bidiagonal, (3.2)
and the matrix Aj_; is postmultiplied with V}

Ak:Ak,le k:L,?’L—Q

e End of loop

e 1/ is produced by accumulation of the Householder reflectors

V - V1 e Vn_g, F - An_g == AV (33)

The main difference between Ralha’s and Barlow’s algorithm is that in the Barlow bidi-
agonalization, transformations with the Householder reflectors and the Gram—Schmidt
orthogonalization are interlaced and not separated as in the Ralha bidiagonalization.
The criteria for choosing the Householder reflectors are also different.

If we define

F = [fla-"7fn] = Ao,

then the matrix ' is also implicitly triorthogonal, and FT F is tridiagonal. In case when
the matrix A has full column rank, then from condition (3.2) it follows that

U'F=B, = F=UB, where U = U,,.

Thus
FT'F =B"UTUB=B"B=T,

where 7' is a tridiagonal matrix.

The steps of the Barlow bidiagonalization are visualized in Figure 3.1. The elements
denoted by e will be used in the next step of the algorithm to compute vector zj, such
that the next Householder reflector V;, will depend on it. The Householder reflector Vy
is defined as

1
I P VN 1
Vk—[on]— el (34
[ BN N ]
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and the Householder reflector V;, € R(™=*)*("=k) wi]] be chosen so that Vjz, = %[z 2€1.
The elements denoted by e are computed columns of £’ after application of the House-
holder reflector, and in the next steps they will not be changed. The computed elements
of B are denoted by

The details of the Barlow bidiagonalization are shown in Algorithm 3.1.1.

Algorithm 3.1.1 (The Barlow one—sided bidiagonalization). For A € R™ ",
rank(A) = n > 2, this algorithm computes orthonormal U = [uy, ..., u,], bidiagonal B
having the form (3.1), and orthogonal V such that A =UBV™.

(1) Ag = A;
(2) fl = A( 71); wl = Hf1H2;
(3) w1 = fi/in;
fork=1:n—-2
(4) 2 = Ak_l(i ,k +1: TL)T’LLk,'
(5) [k, vi]=householder(zy);
(6) Ap(:,1: k)= Ap_1(:,1: k);
(7) Ap(:  k+1:n) = A1 k+1:n) — Apa (L k+ 1 n)uguf
(8) ferr = Az k+1); dryr = uf faga 5 (Prg1 = 3)
(9) Skt1 = frr1 — Orrrtn; Vi1 = [|Skpalles
(10) Uks1 = Skt1/Vht1;
end;
(11) fo=Au02(:,n); on= ug—lfn;
(12) sp = fo — OnlUn_1; Yn = Hsn“?;
(13) uy = Sp/Un;
(14) VT = householder product(vy, ..., v, o)
end.

The auxiliary functions householder() and householder product() are defined as
follows

function [y, v]=householder(z)
{The function householder() computes v and v such that, for V=1 —vvT, Vz = ve;.}
(1) n = length(z);
2) 7=zl
ify>0
(3) v = —sign(z(1))y;
(4) (1) = 2(1) — 7
(5) t(2: n) = 2(2: n);
(6) v =v2t/|[t]}2;
else
(7) v=0;
end;
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e 0000
o000 o By
Ao soeee — U ’II} V, is chosen so that ul AV,
|eeeee| Vi 4 UL defines the 1-st row of B.
e 0000
0000
o0 000 By
XEE X —
A sesee — U . V, is chosen so that ul A;V,
' leeeee Y2, 4, LR °e defines the 2-nd row of B.
0000
e 0000
o000 o0 B3
e 0000 / N\
A ::::: 7 u3 ':. V3 is chosen so that ul Ay V3
2 leeoee E)AS E P defines the 3-rd row of B.
e 0000
e 0000
By
TEEE —
o0 000 P
e 0000 — U
A;=|o0eeee ! T ‘. ug and B(4,4) are computed.
0000 = F 4, . e
0000
e 0000 B
XEEE) ———
[ BN BN BN N ) o o0
A ::::: — Us 0:. us, B(4,5) and B(5,5) are
2 ecoooe = F ﬂ Prs computed.
0000 o
e 0000

Figure 3.1: The Barlow one-sided bidiagonalization algorithm

function V7 = householder product(vi,...,v,)

{The function householder product() computes a matriz VT as a product of n Householder reflec-
tors, where VT =V, - Vi, Vi for k = 1,...,n are defined in relation (3.4), and Vi, = I — vpol.
Accumulation of the Householder reflectors are done by block algorithm implemented in the LAPACK
routine sorgbr() [1].}

Remark 3.1.2. This is the first version of the Barlow algorithm, which mostly resembles
the Ralha algorithm. Barlow noticed (see [2]) that computation of ¢ri1 in step (8) as
a scalar product is completely redundant, since in exact arithmetic it is equivalent to
Ok+1 = Y. Still, the numerical analysis in Theorem 3.2.6 is done for this original
version, and in Remark 3.2.7 the same is done for the alternative choice of Q1. It
turns out that both versions give the same error bound, but the second one has less
floating point operations, and thus it ws more favorable.

As we can see the main difference between the Ralha and the Barlow bidiagonaliza-
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tions is the way the vector z; is computed. In the Ralha bidiagonalization it is
2= A1k +1:n) A1 (5 k)
and in Barlow’s modification
2 = A1 (k1 n) .

Although these two bidiagonalizations are mathematically equivalent in exact arith-
metic, numerically they differ. The difference between the computations of the vector
2y is responsible for the Barlow bidiagonalization being numerically stable, as it will be
shown in Theorem 3.2.6.

Algorithm 3.1.1 will not break down in case when non of v is zero. The procedure
how to proceed with the algorithm when ¢ = 0, is described in [2, Section 5|. It
uses Givens rotations to produce a compact bidiagonal factorization, with a bidiagonal
matrix of smaller dimension and with all diagonal elements different from zero. So, from
now on we can assume that Algorithm 3.1.1 will not break down, and that ¢y # 0, for
all k=1,...,n.

3.2 Numerical Stability

The goal of this section is to prove that the Barlow algorithm is backward stable. That
means that the singular values of the matrix A computed in finite precision arithmetic
are exact singular values of a matrix not far away from A. The difference between these
two matrices, measured in || - ||z or || - || matrix norms, is called the backward error.
The backward error is considered to be small if it is smaller than £||A||; or n||Al| 7, where
¢ and 7n are bounded by the machine roundoff € times a moderate polynomial of matrix
dimensions.

In the numerical analysis that will follow we will use the following notation. The
values computed in finite precision arithmetic will be denoted by ~ and occasionally by
-, while exactly computed values will be denoted by ". These exact values will serve only
for analytical purposes, and are never actually computed.

First we will list some auxiliary results concerning the numerical analysis of the
Householder QR factorization, presented by Higham in [47]. These results are necessary
for the analysis of post-multiplication of the matrix A with Householder reflectors.

Lemma 3.2.1 (|47, p. 365]). Let x € R™. Consider the following construction of
7 €R and v € R™ such that Px = ~ve,, where P = I — tvv" is a Householder reflector
with T = 2/(vv):

(Y
s = sign(z(1))]z[l
v o= s
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In floating point arithmetic the computed T and v satisfy (2 : m) =v(2: m) and

7 = 7(1+ Oumyis),
(1) = v()(1+Ony2),

where |0;| < ke + O(e?).

Remark 3.2.2 ([47, p. 366]). If we write the Householder reflectors in the form
I — 09", where ||0]|2 = V2, we can rewrite the results from Lemma 3.2.1 as

b=104060, |60 <O(meld|, forvoeR™, |l = V2. (3.5)
Lemma 3.2.3 ([47, pp. 366-367]). Let b € R™ and consider the computation of
y=Pb=(I—o0")b=0>b—0(0"b), where 0 € R™ satisfies (3.5). The computed j

satisfies

j= (P +6P)b, 10P) < O(m)e,

where P =1 — o97.
Lemma 3.2.4 ([47, pp. 367—368]). Consider the sequence of transformations
Ak+1:PkAk7 ]{321,...,7",

where Ay = A € R™" gnd P, = [ — vkv,{ € R™*™ js a Householder reflector. Assume
that the transformations are performed using computed Householder vectors vy = vy, that
satisfy (3.5). The computed matriz A,,1 satisfies

A =QT(A+0A),

where QT = JST]S,«_l e Pl and 0 A satisfies the normuwise and componentwise bounds

[0A[[r < O(rm)e||Allp,
6A] < O(rm*)eGlAl,  [|IGllr=1.
(In fact, we can take G = m~tee’, where e = [1,1,...,1]T.) In the special case n =1,

so that A = a, we have d,1 = (Q + 0Q)a with |6Q||r < O(rm)e.

Theorem 3.2.5 ([47, p. 368]). Let R € R™ ™ be the computed upper trapezoidal QR
factor of A € R™*" Cm > n) obtained via the Householder QR algorithm. Then there
exists an orthogonal Q) € R™*™ such that

A+6A=QR,
where [|6A||p < O(nm)e||Allp and [0A] < O(nm?)eG|A|, with |G||r = 1. The matriz

Q is given explicitly as Q = (P,P,_1--- P\)T, where P, is the Householder matriz that
corresponds to exact application of the k-th step of the algorithm to Ayg.



3.2. NUMERICAL STABILITY 29

Next, Bjorck and Paige in [6] observed that the modified Gram—Schmidt orthogo-
nalization is mathematically and numerically equivalent to the Householder QR factor-
ization of the augmented matrix

{ E)jf ] € Rmtnxn, (3.6)
The results on the Householder reflectors: Lemma 3.2.1, Remark 3.2.2, Lemma 3.2.3,
Lemma 3.2.4 and Theorem 3.2.5, can now be applied to the augmented matrix (3.6)
and the Gram-Schmidt orthogonalization. This approach will be used in the numerical
analysis of the Barlow bidiagonalization.

The main result on numerical backward stability of the Barlow bidiagonalization is
given in the following theorem.

Theorem 3.2.6. If B is the bidiagonal matriz computed by Algorithm 3.1.1 without
breakdown (all ¥y.’s different from zero), then there exist an (m+n) x (m-+n) orthogonal
matriz P, an orthogonal n x n matriz V', and backward perturbations AA, §A such that

Bl s A4 ¢ AA
RPN (i
where 0 < &€ < O(mn +n?)e. The computed approzimation 1% of the matrix 1% satisfies

IV =V||r < Om?e. Further, there exist an orthonormal U and a perturbation 6 A such
that

< ¢llAllg, (3.7)

A+SA=UBVT, ||64|r < V2£| Al p. (3.8)

Proof. Let us first explore the details of Algorithm 3.1.1 in exact arithmetic. The algo-
rithm consists of application of the Householder reflectors from the right, and the Gram—
Schmidt orthogonalization. We define Householder reflectors Vi,...,V,,_o € R™" in

exact arithmetic as
I, 0O

Vk:|:0 ‘/k:|7 k’Zl,...,TL—Q,
where I is an k x k identity matrix, and V;, € RM=R*x(=k) ig 3 (n — k) x (n — k)
Householder reflector
Vi = L — vpup,
such that
Vizk = yrer.

In the exact arithmetic 7, is equal to ¢x41, as shown in |2]|. From Algorithm 3.1.1, we
can also see that A, = A,_1Vy.
Further the process can be represented as

get B(:,3)

get B(:,1)

~ =
Ao Vi-Vy-Vgoonnn. (3.9)
—_———
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After producing A in the k-th step of the algorithm, the (k£ + 1)-th column of B is
computed. Simultaneously, the k-th row of B is also computed, as shown in Figure
3.1. Since each transformation Ay = A1V} affects only the columns k£ + 1 : n and
the first £ columns are left unchanged, we conclude from the above diagram that the
same matrix B is computed if we apply all V’s first, and then the Gram—Schmidt
orthogonalizations. In other words, if we set F' = A,,_», then we can use fy11 = F(:, k+1)
instead of fry1 = Ag(:,k + 1). Note that this separation of the implicit Householder
tridiagonalization and the Gram—Schmidt computation of U and B is artificial, and is
introduced only for the purposes of the analysis. The fact that these two processes are
interwoven is crucial for the numerical properties of the algorithm.

Everything mentioned above also applies to finite precision arithmetic and the ma-
trices fl(k), V,fork=1,... ,n—2, and F = 121("_2), B. Note that F is never computed
in the Algorithm 3.1.1, and it is only used in the analysis. Thus, the computed matrix
A=2) will be denoted by F instead of F.

The proof of numerical stability of Algorithm 3.1.1 is technical and rather compli-
cated. Thus the proof will be divided into four steps, concerning four important points
in the proof.

Step 1: The Householder transformations
In finite precision arithmetic, the computed matrix F'is obtained as

F=A,_5=0((-((A- V1) - Va) -+ ) -V, a),

where Vk, k=1,...,n—2 are computed Householder reflectors. By Lemma 3.2.4
there exists an exactly orthogonal matrix V' = V...V, 5 such that
F=(A+0,A)V, 101 Al < npl|Allr, nr < O(n?)e, (3.10)
where
- I, O
k |: 0 ‘/;c :| ) ) , )

and V,, € R=Fx(n=k) is an (n — k) x (n — k) exact Householder reflector Vi =
[nfk — QA}k’IA}Z;, such that ngk = ’Aykel.

On the other hand, for £ =1,...,n — 2 we can write

Vi=I-wwv, Vi=I-%v],

‘7 . 0k><1 ‘A/ o 0k><1
k f)k ) k f)k ;

where vy represents the computed Householder vector described in Lemma 3.2.1
and Remark 3.2.2. Further, it follows

with

Vi = T—2E =1 — (V5 + 09) (Vp + 093) " =
= [ — Vi —Vp0Vi — 6V — 0Vp0v) =
\W—/\ ~~ o
= Vk + 5\7k
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where by Remark 3.2.2
I0Vi|lr < O(n)e.

The computed matrix V is obtained as

~ ~ ~ A

V=0V V, )=V V, 5+ 8V,

and by using a result on the matrix product from [47, p. 78] we can bound the
error 0,V with

16Vl < O(n?)e.

Finally, we have

V o= (Vi4+6Vy) - (Vo1 + 6V, o)+ 6,V =

= Vi Voo +[(Vi4+6Vy) - (Vg +06Vyy) = Vi Vo] + 6V =
V46V
where

10V || < O(n?)e.

Step 2: The Gram—Schmidt orthogonalization
Since the computation of B from F = [fi,--., [a] corresponds to the modified
Gram—Schmidt algorithm, we use results from [6] and represent the computation
in equivalent form, as the Householder QR factorization of

[r]=ladalv

Consider the computation of the k—th column of B. An application of the results
on floating point computation from [47| reveals that

dr = A(Ifill2) = | filla = 8¢, where  [6¢1] < O(m)e| fills,

'L~Ll =1l <£> = ’111 —|—(5’111, where le = L, and Héﬁl“Q S O(m)e
(o 1 f1ll2

Furthermore, for £ =1,2,... we have

Gpe1 = A} frr1) = U forr + 0Pkr1s |00kr1] < O(m)el| firall2,

Spr1 = H(frer1 — Grrrtin) = frs1 — Prprly + 08541,

where

165811l O(m)el| fes1ll2,

Orr1 = U fot1, |Prs1| < || fesllo-

IA
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Following an idea of Bjorck and Paige [6], we write this computation as

{ Pr 16k ] _ { Prr1ex } n { Sk s1ek } _

Sk+1 Jer1 — Qry1ts, 08k+1

> 0 > 5¢~5k+1€k
= P P - ,
k{{fkﬂ]—i_ k{ 55k+1 ]}

where e, denotes the k-th column of the identity matrix [,,. Note that ]3,3 = Inin.
Further, the values ¥y 1 = (||Skr1ll2), @rs1 = A(Ska1/Wry1) satisty

Uerr = |8rallz = 0ki1, [00kia] < O(m)el| farallo,

. . . . 5 .

Ugr1 = Ugpg1 + OUpyr, Upr1 = ——— htl |0t || < O(m)e. (3.11)
[|8k41]2

Thus, the computation of the (k + 1)-th column of B can be written as

[ Q;k:-l—lek: +77Zk+1€k+1 } _ [ §Z~5k+1€k + ||§k+1||2€k+1 } B [ 577Z~Jk+1ek+1 } _
0 0 0

— Py {{ Cbisc;llek } P, l 5¢k+6€k+1 }} _
_ 7 OPri1er | £ 0t 1€k _
a0 [ [ ] e [ -

Af Af
= Pen By {{ Jra1 } (5f::11 }} 'H (5f::11 } < O(mel| fisll2-

In case when k = 0 and when the first column of B is computed, we can write
¢ =0, §y = f1, Py = I,,,n. Hence, we can conclude that

HIBG K+ Dl = | fresallz | < O(m)el frgalla-
Putting all columns of B together, we get

[B] _ H@El(ﬁ] [&261*—1/;262] {@%-1%-1%%“2
0 0 ’ 0 B 0

_ {p{ A ]pp{ Af ] BB {fﬁfgf H

2

and using the fact that

AP0 = ([ e ) [Py
|

{ ¢j€j_10+ e } - { O (=l (Diejn +jey) =

{éjej_lg Dye; ] _ [BM) } , foralli £j,j— 1
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we obtain
o] = [ | 2 [ paen | 25,
i 3, V] 3, )

The k—th column of the computed bidiagonal matrix is of the form

. - A
P Pibi| (S0

and the desired form is

o> p T Afy AT|: Afp } 5 _ D P 5 f
PP, - PP - =P - , P=PPFP---P,_P,.
1 2 1|:fk+(5fk:| fk+(5fk 142 1

The first two columns (k = 1,2) are already in the desired form and Afe = Afy,
0fr = 0fr. For k > 3 we write

1

[ P } — (BuPyy - BuBey Py PyPY) (PP "Pk—25[ fkﬁf(];fk } ’
PPy P [fkﬁfgfk} :Pl...Pkg{ﬁkQ{{ﬁJ + {?}H}} =

i 4| k2 } (U_ofr) + Py s {?ﬁkl} =

| —Uk—2

07 [Avofi] . 5 [ARTL
{ fk_+_6k_2fk}+P“[6fJ}‘

{_ 0] n -Ak—?;fk} P {A/@—ka} + P sPrs {Afk}} _

I
>
—
=
b
—
S

>
>

I
o
T
w

>
>

Il
—
=
W~

| fe] | Or—sfk Or—2/k Wy
_ |0 Ay fr 5 | Ao fk 5o | Dsfe| |
B {fk}—i_{&fk}—i_ﬂ{(ssz]+P1P2{53fk]+
o f PPy {?:_—22}]‘;5} L PP, {?J{];k} =

= | Af Aifi| _ | € - -
B {fk} " [3f:}’ where [@fkk} B [_aj:| (@ fi), j=1,....k=2,

and

Al 5 5 [AF Af] 2. . A
{5f:]_lepk_2[5f:}+[511fkk]+zplmpj_l[ Jk}
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Hence,

| — |
o

=l ] [ [l
A3 A I/ 1% A R I

rile ]

where, after suitable reordering of the entries in the sums,

AF AR [Af . . [Af . TAf,
[5F]:[[5f11],[5f22],...,P1...Pk2[5f:],...,Pl...Pn_g[(an”

A1 fs A1 fy Al fs A1 f Al fn
+ [0’0’ [ 513 } ! [ 5114 } ! [51,;‘5 } [51fk ] [ 51 fn ” +

A Ao fy Aa fs Ag fy, Asfy
LB {0’0’0’[62f4]’[6215]""’[@fk]"“’[égfnn N

5 7 Az fs A3 fe Az fi Az fn
+ PP, [0,0,0,0,[53f5 ] ’[631% ] ,...,[53fk],...,[53fn” N

AoAoa A4f6 A4f’7 A4fk A4fn
+ PIPyPs [0’0,070707[54]06 ] 7|:54f7:|,..., |:54fk :| ,...7|:54fn :|:|

+ o+ PPy---Pyg {0,0,0,0,0,0,...,0,0, [A”‘Zf”” .
6n72fn

_l’_

_l_

Taking norms, we obtain

AF n—2 n |:Afk~|2
< O F J <
(471, = omeme £ [ E AT

IN

n—2
O(m)e||Fllr + V2 _llf [ fivz fivs oo fu]ll2<
j=1

< OmENFlle +VES (T [ fa Fra - o ]lat
+|od] [ fire }jjs Sl lle) £
< OmIENFll + VES (I An-ale 25 )l +
18P+ 2 n)e) (3.12)

Step 3: Estimation of the backward error
It remains to estimate the products

Wl fo =14 fr,— 60, fr, forj=1,....n—2 k=j+2_... n

Since |04 fi| < O(m)e| frll2, it remains to estimate the products @ f = ﬂJTfljJrg(:
Gl =1, n—j—1
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In exact arithmetic, u; L fjio,..., fn because the triorthogonalization of F' implies

u; € span{ fi,..., f;} C span{ fji2,..., fa}t. (3.13)

The situation in finite precision arithmetic is different, and relation (3.13) does
not have to hold. This is the key point where the difference between the Ralha
bidiagonalization and the Barlow bidiagonalization plays an important role. While
the Ralha bidiagonalization relies only on relation (3.13), the Barlow bidiagonal-
ization deals more explicitly with the scalar products ﬂ]T fr by using a different
formula for the vectors zq,..., 2, 9.

The computed vector Z; € R"™7 satisfies

5T

Z1o= (@l A j+1n) =al Ajy( 5+ 1:n) + 62,

16zl < O(m)el|Ajr(s,g +1:n)ll2. (3.14)

This estimation follows from numerical analysis of the scalar product and the
matrix—vector product, described in [47, pp. 68-78|, where

1625(0)| < O(m)el| Aji (i + D) alldsllz < O(m)el| Ay (s j+i)lle, i=1,...,n—j.

Let V; = I — 0;07, where 0; € R"7, [|d;]|]2 = v/2, be a Householder reflector such
that )
2V =115l200 ... 0], (3.15)

and let v; = 0; +00; be the computed approximation of 0;, where by Lemma 3.2.1
and Remark 3.2.2
100;(2)] < O(n = 5)elo; (1)1,

and let V; = I — 9,;0;. Note that V] is exactly orthogonal, while V; is numerically
orthogonal. In the algorithm, V; is used to compute

Ajt1im) = (A (g +1:m)V)) =
= AL+ 1)V + B, (3.16)

where E; contains the error from the floating—point application of f/] plus the
difference between V; and Vj;. Using the results from Lemma 3.2.4 we have

1E;llr < O(n = )ell Ay + 12 n)|le. (3.17)
This implies that
W Aj(j+1in) = [|5]00 ... 0] =827V +al B, (3.18)
135 A5 +2:n)lla < (105]12 + la5]l2) Bl e < O(m)el|Ajma Gy j + 1 n)|p.

Recall that we need an estimate of @] f = ﬂ]TAj+g(:,j + ¢+ 1), £ > 1. Therefore,
consider the next ¢ > 1 right-handed Householder (n—1) x (n—1) transformations
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VZ-, f/i, t=74+1,...,7 + . Since we are interested in columns j + 2 ;M, We
consider all these transformations as (n—j—1)x (n—j—1) by writing V' ) _ I@V;,

ng) = I @ V;. Similarly as in (3.16), we obtain
Ajpe(j+2:m) = B((A;G5+2:n)VE) )V, =
= A j+2: n)Vg(‘]+)1 .. \A/'](ng + Ejy, (3.19)
where [|Ejollr < O(tn)e|A;(:,j +2:n)|p.

Now, relations (3.19) and (3.18) imply

ﬂ]TAjJrg(:,j +2:n) = ﬂjrzzl (J+2: ”)Vg(421 V(JZe + i By
= (—52]~TV} +a, Ej)(2:n— J)ngﬂ " vg(+)e +14 Ejg

and we conclude that the following bound holds:

10Z;]l2 + (1 Ejllr + (| Ejell p)[[3]l2 <
O(m)ellA; 1, j +1:n)|r +
+0(n = j)ellAj (g +1:n)l|p +
+O(n)e|| A (-, + 2 m)|p <

O(m + n2)5\|f1n,2(:,j +1:n)|F.

a5 Ajie(s, 5 +2 )2

IAIA

IA

Now, for k=j+ ¢+ 1, ¢ > 1, we can write

|a]Tfk| = |U fiven| = |u AJ+€( jHL+1)] <
< O(m+n2e||An_s|r = O(m +n?)e||F||r. (3.20)
In fact, the whole vector @ [fji2, fits,. ., fa] = ﬂ;‘.ﬁfln_g(:,j + 2 : n) can be

estimated as _
i Anma(d +2 2 n)ll2 < O(m + n)e| Fll

and then by (3.12) it follows

L5 1,

To get relation (3.7), we collect the perturbations from both the Householder
implicit tridiagonalization and the Gram-Schmidt orthogonalization,

o] = [ Ll [5F])

o ST 0 AF ST A_
=P {[A+51A]+[5F}V }V—

< O(mn +n’)e||F|[p < O(mn +n’)(1+np) || Allr.
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Step 4: The final result R R
Finally, by using Py = P(1:n,1:n), Py = P(n+1:n+m,1:n), we have

AA Pul ser  ara A
AR IR

and relation (3.8) follows by Lemma 3.1 from [6, p. 181]. The proof that the
relation (3.8) holds is also given in Theorem 3.18 [2].

Let us consider the CS decomposition [35, p. 77|, [89, pp. 37-40| of the matrix P
p_ { f:’n 1?12
Py Py

} ) Py € R Py € R™™ Py € R™, Pyy € R™™,

then there exist (m +n) x (m + n) orthogonal matrices

Wiu 0 0 Zu 0 0
W = 0 Wy Wy |, and Z = 0 Zoy Zsz |,
0 ng W33 0 ZSQ ZS3

such that Wu, ng, Zu, 222 € R™ ", and

S Wiy 00 C -S 0 Zh 99
[]3 2 }— 0 Wy W S ¢ 0 0 Zy Zz |-
Ao 0 Wiy Wi 0 0 Inoan 0o zL zh

(3.21)

where

C = diag(cy, ..., ), ¢>0,1=1,...,n,
S = diag(sy,...,sn), $,>0,i=1,...,n,
C*+5* = I,

Further, let us define the following matrices:

. . . . . W
Wy =Wu, 7= 2y, W2={ A”],

Wis

where Wl e R™"™ and Zl € R™" are orthogonal matrices, and WQ € R™*™ is an
orthonormal matrix, then from (3.21) it follows that

pll == chZAlT, pl? - WQSZAlT

Finally, we define U = Wng, as the closest orthonormal matrix to 1521 in any
unitarily invariant norm. Since (I +S)(I —S) = C?, we have

A~ A A

U—Py = Wyl = 8)ZF =Wo(I + 8) zF z,ewIw,cZF =
= Wo(I +S)'ZTPL Py,
(U — Pyu)BVT = Wyo(I + 8)'ZT PLAA,
SA = UBVT — A= (U — Py)BVT 464,
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thus
164l < IIWall + S) 2T PRI AAlF + 54l < |AA]F + [5A]F <
V2 AL + AN < VaE]All

A

]

Remark 3.2.7. Barlow in [2] suggested an alternative algorithm for bidiagonalization.
It is almost identical to Algorithm 8.1.1, except in the way the scalar ¢ry1 is computed.
This time it 18

Ory1e1 = Vizp, Vi =1 —vpvy,

which is equivalent to Algorithm 3.1.1 in exact arithmetic, but not in finite precision
arithmetic. Let us denote

Or1 = e A(ViZ)
Spr1 = A(fer1 — Orgrtin)
where f/k =] - ﬁkﬁ}f, Vk =71 — ﬁk@;{ and U, = Uy + 60,. Then it follows

w, = A(ViZ) = Vide + 61wp = Vi(Ap1 (0 k + 1 0) a0y, + 65,) + 6y =
= szzlk_l(:, k+1: n)T(ﬁk + 5’&]{) + chsgk + 01w =
= flk(:, E+1:n)la, — Ela + VkAk_l(:, k+1:n)T o, +
V0% + 6,0y, =
= flk(:,qul )Ty + o1y,

where Lemma 3.2.3 implies the bound on ||61w||2
[0v@ill2 < O(n = k)el|Zlls < O(n — k)el| Agi (b + 1 n)llr < O(n — k)e||F |l r,
from (3.14) in the proof of Theorem 3.2.6 it follows
102412 < O(m)el| A (-, & + 1 0)||p < O(m)el|F|r,
according to (3.11) in the proof of Theorem 3.2.6 we have
[0dk]l2 < O(m)e,

and by (3.17) we can estimate the application of a Householder reflector:

I1Ex|lF < O(n — k)| Agma (b + 1 n)llp < O(n — k)e||F |-
So, finally we can conclude

D1 = fipalik + 6k, |Gt1] < O(m)e||F|p.

On the other hand, for Q/;k-_i_l = fkTHﬁk, like in the proof of Theorem 3.2.6 we can write

Bkt = frr1 — Qrralip + 05411, 108k11ll2 < O(m)el| F|p.
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Further, this influences the following bounds:

5

0 frs1
AF \ 2 .
15511 = otmabetme s S Aucate 2 il et 242 e
F

j=1

< O(m)e||Flle
2

which will not change the final bound in Theorem 3.2.6.

Instead of Householder reflectors we can use the Givens rotations in Algorithm 3.1.1.
Recall that Givens rotation is a plane rotation

- ]
0
1 : :
COS(@) o oo e sI(G) e e aee |
: X )
Gij(0) =
: 1 :
—Sin(@) <o oo oo cOS() oe oee e | g
. . X
0
i : : 1
i j

We can also prove that this variant of one-sided bidiagonalization is numerically stable,
but we need the following auxiliary results.

Lemma 3.2.8 ([47, p. 373]). Let a Givens rotation G, j(¢) be constructed according

to
€Z; €T,

c=cos(p) = ———, s=-sin(¢) = —L—.
\/ 77+ s x? +
The computed ¢ and s satisfy
c=c(1+0y), s§=s(1+0)), (3.22)
where |04], |0)] < 4e + O(g?).

Lemma 3.2.9 ([47, p. 373]). Let x € R™ and consider the computation of y = Gz,
where G, ; is a computed Givens rotation in the (i,j) plane for which ¢ and § satisfy
(3.22). The computed § satisfies

j=(Gij+6Gi))z, 116G 4]l r < 6V2e + O(e?),

where GZJ 1s an exact Givens rotation based on ¢ and s defined in Lemma 3.2.8. All the
rows of G, ; except the i-th and j-th are zero.
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Lemma 3.2.10 ([47, pp. 374-375]). Consider the sequence of transformations
Ak+1:WkA/€7 k:]-a"'ara

where Ay = A € R™" and each Wy, is a product of disjoint Givens rotations. Assume
that the individual Givens rotations are performed using computed sine and cosine values
related to the eract values defining Wiy, by (3.22). Then the computed matriz A,iq
satisfies

A =QT(A+0A),

where QT = WTWT,l e W1 and 6 A satisfies the normuwise and componentwise bounds

[0A[lr < O(r)el|Afl2,
0A] < O(rm)eGlA|,  |Gllr =1.
(In fact we can take G = m~tee?, where e = [1,1,...,1]T.) In the special case n = 1,

so that A = a, we have dr41 = (Q + 0Q)Ta with ||6Q]|r < O(r)e.

Theorem 3.2.11 ([47, p. 375]). Let R € R™™ be the computed upper trapezoidal QR
factor of A € R™™ (m > n) obtained via the Givens QR algorithm, with any standard
choice and ordering of rotations. Then there exists an orthogonal QQ € R™*™ such that

A+6A=QR,
with |6A||r < O(m~+n)e||Al|lr and |6A] < O(m+n)meG|A|, |G|lr = 1. (The matriz Q

is a product of Givens rotations, the k-th of which corresponds to the exact application
of the k-th step of the algorithm to Ag.)

The numerical analysis result on the Givens Barlow bidiagonalization can be found
in the following corollary.

Corollary 3.2.12. If in Algorithm 3.1.1 Householder reflectors are replaced by Givens
rotations, then the results of Theorem 3.2.6 hold for 0 < & < O(mn + n?)e.

Proof. We just have to go through the proof of Theorem 3.2.6, and change the statements
concerning Householder reflectors.

Step 1:
In finite precision arithmetic, the computed matrix F' is obtained as

F = Ay =f(( (A Gr)- Ga) o) - G),

where each ék, k=1,...,ris a product of disjoint computed Givens rotations
and r = O(n). By Lemma 3.2.10 there exists an exactly orthogonal matrix V' =
G; - G,, such that

~

F=(A+6A)V, 1014 F < nel|Allr, nr < O(n)e. (3.23)

Step 2:
Remains unchanged.
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Step 3:
Let V; be the product of n — 7 — 1 nondisjoint exact Givens rotations such that
(3.15) holds. Then by Lemma 3.2.10 equation (3.16) holds with
1Ellr < O(n—j = Vel Ajaj +1:n)|r.

Further, the equation (3.19) also holds, but the matrices \Afé{:l, e ,Vﬂge represent
¢ < r different products of remaining disjoint Givens rotations, which are restricted
to the bottom-right (n —j — 1) x (n — j — 1) block. Thus

1Bsellr < Om)ell ;g +2: )]l
Finally, it follows that

1] Ajre(c,j + 2 n) s < O(m + n)el| Apa(s,j + L n)|[p < O(m + n)el|F|r,

o ]I,

The final result is straightforward.

and
H < O(mn +n?)e|[Fllr < O(mn +n?)(1 + nr) | Allr.

Step 4:
Remains unchanged.

]

The results of numerical analysis stated so far are dealing with the backward error of
Algorithm 3.1.1. That means that we can estimate a perturbation d A of the matrix A,
so that computed matrix B is the exact bidiagonal factor of the matrix A+ JA. Now we
will examine the forward error, which comprises the distance between the singular value
of A and the corresponding singular value of B. We will use a standard perturbation
result from Theorem 2.3.1 to estimate the error.

Corollary 3.2.13. If 0y > -+ > 0, are the singular values of A, then the singular
values 61 > --+ > 0, of B from Theorem 3.2.6 satisfy
|0 — i

max ——— < V/2€.
i | Allr

Proof. If we use the fact that ||6A|, < ||0A||r, and combine it with (3.8) from Theorem
3.2.6 and Theorem 2.3.1, we will obtain the result. [

The computed U is not guaranteed to be numerically orthogonal, as was the case
with the Ralha bidiagonalization. We can prove a similar result as Bjorck and Paige in
[6] for the modified Gram-Schmidt orthogonalization.
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Corollary 3.2.14. If U is computed by Algorithm 3.1.1 in finite precision arithmetic,
and if the matrices A € R™*" and B € R™™ have full rank, then the following estima-
tions hold

U -Ullr < O(mn+n®)ekp(B) = O(mn +n®)erp(A)
|UTU — Il < O(mn+n®)ekp(B) = O(mn +n®)ekp(A),
where kp(A) = ||A||p|| A, and U is orthonormal matriz from Theorem 3.2.6.

Proof. First we will follow the steps of the algorithm for obtaining ;. From [47] we
have

Grr1 = U fror T 0Pk1s  [00k11| < O(m)e|| frsallo

Skr1 = i1 — ng+1l~tk + 5§k+17 ||5§k+1||2 < O)ell frsll2

Uer = Bemalle + 601, [00ni1] < O(m)e| frrall

3 — Oporiiy + 03 5 .

B = 102 “ﬂ/} LS  in, Bikale < O(1)e
k1

which implies
Grorr iy + Vpi1ls1 = fropr + 0Sks1 4+ Vps108ni1 = forr + 0 frrs

with B
10 fesallz < O(L)el| fetall2-
If we define 6F = [6fy,...,0f,], than we can write

UB=F+3F,  |0F|r <O)e||F|r < O)e|Allp,
and by (3.10) it is

UB = (A+6,A)V +4F.
If the matrix B is nonsingular then
U=(A+8A+6FVTYVB™
On the other hand, from (3.8) it follows that
U=(A+06A)VB
Putting all this together we obtain
U—-U=(6A+6FVT —§A)VB™,
with o 3
|U = Ullr < O(mn +n®)erp(B).
The second bound follows immediately by
'O - 1=0"0 -0 =00 -0U)+ (U -U)'U+ (U -0U)" (U -U),
and thus o .
\UTU — I||r < O(mn + n®)erp(B).
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Remark 3.2.15. The result of Corollary 3.2.14 also holds for the alternative choice
Pr+1 = V-

The result of Corollary 3.2.14 shows that if A is ill conditioned, U can be far from
an orthonormal matrix.

Example 3.2.16. Let A € R** be the matriz with o1 = 10*°, 0y = 1, 03 = 107
and o4 = 1072°.  The matriz A is obtained as a product A = UXVT, where ¥ =
diag(oy,09,03,04), and U and V are computed as the QR factors of random matrices.
The MATLAB program was used for the computation. The Barlow algorithm produced
the following result:

[ 5.7114-10° —8.2086 - 10° 0 0
B — 0 5.3389 - 1071 9.5238 - 107! 0
N 0 0 5.1614-1075% 2.2030-10"7 |~
i 0 0 0 2.2629 - 1077
[ 7.6056-10"! —1.3535-10"" —5.4709-10"1 —7.3738-107!
0 - 1.8502-107! —8.1511-1071 —3.2165-10"! 4.6023 - 1071
N 4.8577-1071  7.5365-1072 —5.6628-107!' —8.1180-1073 |’
| 3.8902 - 1071 5.5820-1071  —5.2589-10"" 4.9436 - 107!
[ 1 0 0 0
v - 0 —6.8197-1071 —2.0485-1072 —7.3109-107!
B 0 —3.0515-10"" —9.0048-10~' 3.0988-10"*
| 0 —6.6468-10"" 4.3442-10""  6.0785-107"

The singular values of the matrix B are
Y p = diag(10'°,1.000000036943297, 1.589504011049195-10~¢, 2.240629962266331-107),
which is consistent with Theorem 3.2.6 and Corollary 3.2.13, since
(mn + n®)e||A||r = 1.776356839400251 - 10~*.
On the other hand
|UTU — I||p = 9.975416565064253 - 1071,

which shows that U is far from being orthogonal. It is also consistent with Corollary
3.2.14, since
(mn + n?®)erp(A) = 1.322740457878272 - 10™.

It is still possible to recover a nearby orthonormal basis for some subspace of span{U 1,
as it was shown in Corollary 3.20 in [2]. Let us assume that the singular value de-
composition of the matrix B is obtained in finite precision arithmetic, and that the
decomposition satisfies

B+ 6B =UpSVE, [6Br < g(n)el Bllr. (3.24)
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for some modestly growing function g(n). Note that Ug and Vg are not exactly orthog-
onal, but they are numerically orthogonal:

||U£UB — 12, ||Vg‘~/B —Ilj2 = O(e).

This departure from orthogonality has no qualitative effect on the analysis in the next
corollary, so we will assume that U B = =U 'B and VB = VB are orthogonal.
Next, we define Y = UUp and Y = UUB, and then we take a partition of 2, Y, Y,

and Vg as follows )
i _ k |: 21 ~0 :| ’

n—k 0 EQ
k n—k
V=[Vi 2}, Y=[Vi V2], VB=[Vs1 Vpa]| (3.25)
k. n—k k. n—k k n—k -

where f]l is well conditioned. Here 371 is computed and f/l is the exact orthonormal basis
for a subspace that approximates the left singular subspace associated with the leading
singular values.

Corollary 3.2.17. If U is computed by Algorithm 3.1.1 in finite precision arithmetic,
and if Y and Y are defined as above, then

||§~/1TY1 I||F < O(mn3/2 + n5/2) + g(n )O(mng/2 + n5/2)52/<¢p(A)—. (3.26)

Proof. From the proof of Corollary 3.2.14 and (3.24) we have

UB = (A+8,A)V +0F
UUsSVE —6B) = (A+8A)V +0F
YSVE = (A4+0,A)V +6F + UGB (3.27)
and

UB = (A+6A)V
UUgSVE —6B) = (A+86A)V
YYVE = (A+0A)V + UGB (3.28)
Subtracting (3.28) from (3.27) we obtain
(Y = Y)2VE = (6,A—6A)V +6F + (U —U)éB (3.29)
and by multiplying both sides of (3.29) with Vg ;3! we get

Yy =Yy = (8A = SA)YVVp ST + 6F Ve X7 + (U — U)6BVp, 1 57
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Hence, from proofs of Corollary 3.2.14 and Theorem 3.2.6 it follows

1Y =Yille < [O(n®) + O(mn +n®)e||Allpdy " + O(Lel| Allray " +
+g(n)O(mn + n*)e’kp(A)|| Bllpo " <
< O(mn*?* + n5/2)501 + g(n)O(mn®? + n‘r’/?)s?/ep(A)ﬁ
k

o Ok

The proof of (3.26) follows in the same way as the derivation of the bound on |[U7U 1|z
in the proof of Corollary 3.2.14. O]

So, we can conclude that a reasonable algorithm for computing the bidiagonal SVD
of the matrix B will lead to the construction of a numerically orthogonal basis for the
left singular subspace associated with the leading singular values of A.

In spite of the possible loss of orthogonality of the matrix U, we can still prove the
following proposition.

Proposition 3.2.18. If F' = fi(AV) is obtained from Algorithm 3.1.1, then
1. FTF is almost tridiagonal, with

Gr = F'F —diag(F'F) — diag(F*F, 1) — diag(F" F, 1),
IGrlr < O(mn'/? +n*2)e|| F|3 (3.30)

where diag(FTF) denotes the main diagonal of FTF, diag(FTF, —1) the subdiag-
onal, and diag(FTF,1) the superdiagonal.

2. If F = QR is the QR factorization of F = [fi ... fu] and R = [r;], then R is
almost bidiagonal, with

rigl < O(m+n")eG(F)| Fllr (3.31)
el
G(F) = e 1<j—2

If the QR factorization is performed after column permutation, such that the most
linear independent columns are brought to the first positions, then (;(F) would be
minimized.

Proof. First we will observe the size of fI f; where i < j — 2. From Algorithm 3.1.1
and the proof of Theorem 3.2.6 we can describe a process of computing u;, and use this
information for estimating f f;.

i = ﬂ( > >= S iy =
[18i]2 IEIE

 (fTh. VL 53
_ fz (f; Auz—l);uz—l + :91 + 512“
I fi = (f 1) tizq + 63]]2
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where
S
“T TG
l6alls < O(m)e
165:ls < O(m)el filla

Now we can conclude that

Ji = (f Ui 1)Uz
=\ fi = ()i + 654|200
fJTfl - (fTul 1)fTaz v fi = (fiTﬁi71>ai71 +5§i|’2ij7:Li —ij5§Z- -
—Ifi = (f; Uz—l)ui—1+5si||2ff5ﬁ,~.

By the estimation
1fi = (f im)iims + 05i[l2 < 2+ O(m)e) || filla = Ol fill2,
and relation (3.20) from the proof of Theorem 3.2.6, which reads

|l | ] 1] < O(m+n®)e|| Flg,

1t “fz (fiTﬁi—l)'&i—l + 5§Z||2ﬂz — 05, —

we can give a bound on | f] fi], for i < j —2

AL < 1 aalllfille + O @l L fillz + O(m)ell £z fill2 +
O(m)el fll2lfill2 <
< [O(m+n*)el[Fllr + O(m)ell fill2]ll fill2 <
< O(m+n)el|F|plfill:

Now we can derive the bound in (3.30).

IGelle = D D IfFhIP< Z:Z:OW+W€WNMMHS
1= j = =1
j=il2 LT

< O(m+elFllr |32 3 A3 < Otmn'? + 0¥l F}.
=1 j=1
li—i|>2

Suppose that F' = QR is an exact QR factorization of the matrix F', obtained by The
Gram-Schmidt orthogonalization. Then, r;; = ¢! f; for i < j. We are interested in |r;;]|
for 1 < 7 — 2, to give an estimation on how far the matrix R is from being bidiagonal.
The analysis will be conducted by using mathematical induction. Let us start with the
first row, © = 1. Then for Algorithm 3.1.1 we have

]

Iri;| = gt fj] = s <O(m+nde||Fllp, j=3,...,n
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To get an idea what is happening in other rows, we will perform the same analysis for
the second row, i = 2.

e TR =GR _ TR+ Rl
il = e =N T k. S k=@ Bl =
Il

< O(m+n)llF|F

Jg=4,...,n.
22

As an assumption of induction we will take that

[ fall2 - - Il fell2
”"22.. ’

*Trk

]rkj\:]q,?fj] §O(m+n2)5”FHF k=2 ....i—1, j=k+2,....n

and we will prove that this assumption is valid for £ =i. We have

ol = | S = 1 fi = (i f)aioafs = = (a fa fil _
’ S Ifi = (@5 fi)aio — - — (al )l —
< IfinjI+IqiT_lfj|||f¢||2+---+Iqlejlllfillz<
o T N
< O+ el (ULl o Dl Vil DAY
Tii rog: - Ti—14i-1 Tii Tii
< O(m+n’)e|Flr —”f2”2 lidle 5 _ it n
To9 - [
because T < || fx||2- 0

The scalar (;(F') represents a condition number for producing a bidiagonal matrix
out of the computed matrix F, where FTF is almost tridiagonal. Thus, if the matrix F
has a small condition number, and if we compute the Householder QR factorization of
F and replace U with @, and nontrivial elements of B with corresponding diagonal and
superdiagonal elements of R, then we could make an error comparable to the backward
error of the bidiagonalization. Moreover, the computed matrix Q would be numerically
orthogonal.

3.3 Applications of the One—sided Algorithm

The matrix U = [dy, ..., @i,,] may not be numerically orthogonal in case of the ill condi-
tioned matrix A. As shown in Corollary 3.2.14, in Example 3.2.16 and in [2], U can be
far from orthogonal, it can be even numerically singular. If we want to use computed
matrices U, & and V as SVD factors, then by Theorem 3.2.6 and Corollary 3.2.13 V is
acceptable as a matrix of right singular vectors, and the diagonal of S is acceptable as
singular values. On the other hand, large departure from orthogonality of U cannot be
tolerated, and columns of U may not represent left singular vectors very well. Thus, the
explicit usage of U is not advisable. There are two possibilities how we can circumvent
the problem of nonorthogonality. One way is to apply some sort of reorthogonalization,
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where U is transformed into a numerically orthogonal matrix. This would fix the nu-
merical problem, but on the other hand, the algorithm would be less efficient. The main
advantage of the one—sided bidiagonalization is that it has less floating point operations
than the standard Householder bidiagonalization, and this would be undermined by the
reorthogonalization. The other way is a modification of the problem we want to solve.
It is seldom in practice that the SVD is the final target of the computation. More often,
the SVD is a computational tool used to analyze and solve some other problem.

In this thesis, it will be shown that the possible loss of orthogonality is not always
damaging as it may be expected, if the particular application of the SVD is properly
formulated. Instead of trying to fix the loss of orthogonality, we can try to make it
irrelevant by proper modification of its use in a given situation. This idea is inspired
by the same approach that Bjorck and Paige used in [6] for Q, which is the QR factor
obtained in finite precision arithmetic by the modified Gram—Schmidt orthogonalization.
Q can also be far from being numerically orthogonal. Bjérck and Paige modified the
computation of the matrix—vector product QTy in such a way, that ﬂ(QTy) became
numerically stable. Thus, we can retain good efficiency of the Barlow bidiagonalization
and its potential in parallel computing, and still fix the problem with numerics.

The following subsections will describe several problems in numerical linear algebra
and their modifications, so that they can be accurately solved by Barlow bidiagonaliza-
tion without reorthogonalization (see [8]).

3.3.1 The Symmetric Definite Eigenvalue Problem

Suppose we need to compute the spectral decomposition of a symmetric positive definite
matrix H = AT A, where A is the computed Cholesky factor, or any other full column
rank factor obtained from the application that generates H. Here we note that in
some important applications, for example in finite element computation in structural
mechanics, the numerically most important step is not to assemble H, but to formulate
the problem in terms of A and functions of A. Hence, the spectral decomposition of H
can be obtained from the singular value decomposition of A, as shown in the following
algorithm.

Algorithm 3.3.1. This algorithm finds the spectral decomposition of a symmetric pos-
itive definite matriz H.

1. Factor H as H = AT A, where A is the Cholesky or any other full column rank
factor of A.

2. Compute the singular value matriz ¥ = diag(o;) and the right singular vectors V of

A using bidiagonalization of Algorithm 3.1.1 and some state of the art bidiagonal
SVD.

3. The spectral factorization of H is H=VAVT, A = diag(\;), \; = o2.

(2

The idea of the above algorithm is not new. Its parallelization by one-sided tridiago-
nalization also appears in [44]| and [45] where the final stage is not done by the SVD, but
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by the symmetric tridiagonal spectral decomposition. Nevertheless, this is not wise from
the numerical point of view. Our formulation is numerically correct, as the following
analysis shows.

Theorem 3.3.2. If in Algorithm 3.53.1 the matriz A is given, and H 1is implicitly de-
fined as H = AT A, then Algorithm 3.3.1 is backward stable. If H € R™" is given,

and ||[H; 2 < ln(zéﬁ)ls , where € is the machine roundoff, then Algorithm 3.5.1 will

successfully compute the Cholesky factorization and the overall computation is backward

stable. Here Hy is the matriz (Hy);; = Hi;//HiHj;, 1,7 =1,...,n

Proof. Let A be the computed factor of H. Then ATA = H + 6H, where ||[0H||; <
f(n)e||H||2, and the moderate function f(n) depends on the details of the factorization.
In fact, |0H;| < fi(n)ey/HuH,;, if A is computed by Cholesky factorization, with
fi(n) = O(n) and f(n) = O(n?) [47, pp. 206-207], [13]. If A is the computed Cholesky
factor, then our assumption guarantees that H is numerically definite and that the
Cholesky factorization does not break down. This is a consequence of Theorem 10.7
from [47, pp. 208-209]. If A is given as input, then A=A 6H =0.

If B is a bidiagonal matrix computed by an application of Algorithm 3.1.1 to A, then
by Theorem 3.2.6 there exist orthogonal matrices P, V, perturbations A4, § A such that

{E}ZPT[A 5A} H[ }F

The computed V satisfies |V — V||p < O(n?)e. Note that

B'B = VT(ATA+ AATAA+ 5ATGA + AT6A 4+ GAT AW =

= VT(H +6H + AH)V, where

IAAL + (6413 + 21 A1 Al <
(@n + 2/md)| A3 < E@vin + né)(|H]z + 5H]12) <
Il H|2(2v/n +n&)(1 + f(n)e) <
O(mn? +n2)e|| H||,.
This corresponds to backward stable tridiagonalization of H, where the tridiagonal
matrix is implicitly defined by the bidiagonal B as BT B. It is not recommended to
compute it explicitly. Here we can note that AH is comparable with 0H.

Let Z UB, Vs be the Computed elements of the SVD B & UBEVB Then there exist
orthogonal matrices U B, VB and a backward perturbation §B such that

B+6B=UsSVE (3.33)

and ||6B||r < g(n)e||B||r. Furthermore, |[Up — Ug||r and |Vz — V|| are small. Now
we can put all the elements of the Algorithm 3.3.1 together to obtain

i _ UEO ST AA 5B T Y
o) = LTl e [ e

[0 o] arffO NAT v .
= [O I]P {{A + s A VVg, that is,

22 = (V)T (ATA+ AH)(VVp),

<E||Al|lp, €<O(mn+ne.  (3.32)

IAH]2

VAN VAN VAN VAN
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where A’H has a similar bound as AH, and ﬂ(VVB) is close to VVp. Namely,

IAH|, < [AAIR A+ [|6AlF + 2l All0 Al <
< (€l AllF +119Bll)* + 20l Al Al + 6Bl F) <
< (ElAlle + g(mel Bllr)* + 2| All2(EIlAllF + g(n)e]| Bl r) <
< €+ gn)e(1+€))* +2vn(E + g(n)e(1 + E)IA|3 <
< [E+g(n)e(l +OI2vn + né + ng(n)e(1+ (1 + f(n)e)|H|» <
< O(mn? +nz +n2g(n))e||H|

which implies o A
H+6H+ANH = VV)S2(VV3)T,

and Y2 is the exact diagonal eigenfactor of H + 6H + A’H, where

|6H + A'Hlls < [f(n)e + 2v/n(€ + g(n)e)]||H||» + O(e?) <
< O(mn? +n7 +n2g(n))e||H|s

]

Since Algorithm 3.3.1 computes the eigenvalues as squares of the singular values, the
forward error in the computed eigenvalues of AT A is governed by the condition number
of fl, which is approximately equal to the square root of the condition number of H.
The overall error is described in the following corollary.

Corollary 3.3.3. Let M > - >\, be the approximations of the eigenvalues of H,
computed by Algorithm 3.3.1. Then, using the notation and the assumptions of Theorem
3.3.2, for all i it holds that

A= (1+0)Ni, |oi] < 2V2v/né/ra(H) + O(n®)e||H s + 27(n)e + O(e?), (3.34)

where T(n)e is described bellow, and denotes the bound on relative forward error for
the SVD performed on B. Further, if all eigenvalues are simple with Hv; = \v;, V' =
[V1,.....,v,], VIV = I, then the columns ¥; of the computed V satisfy

O(mn2 +nz +nzg(n))

: . +0(n*) | e+ 0(), (3.35)
ming=i,...n |0-12 - /\J‘
2

sin K(f)“ Ui) ~

where ; are the computed singular values of A. The similar result can be obtained for
the multiple eigenvalues, using the results presented by R.-C. Li in [67].

Proof. First we compare the computed eigenvalues with the eigenvalues of ATA. From
Corollary 3.2.13, it holds that thg singular values ; > --- > 6 of B approximate the
singular values ; > --- > 7, of A with an error bound
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A state of the art SVD of B computes 6; = 0;(1 + 6;), where |6;] < 7(n)e for all 4.
Hence, our computed approximations have the following form

=07 =671+ 0)2(L+m)? = N1 +7) 1 +0)*(L+n)* = N1+ ),
and
l0i] < |73l + 2160:] + 2|mi] + O(e?) < fa(n)el|H |2 + 27(n)e + 2v/2v/néka(A) + O(e?),

where max; |7;| < fo(n)e||H |2, with fo(n) = nfi(n) = O(n?). This follows from the
fact that ATA = H + 0H is the computed Cholesky factorization, from a consequence
of the Ostrowsky theorem 4.3.4, and from Lemma 2.2 and Theorem 2.3 in [69, pp.
963-964|. (If A is given on input, 7; = 0 for all i.)

For the other part of the corollary we use the matrices obtained from the SVD
performed in finite precision arithmetic. We have

V= ﬂ(VAVB) =W +4V, W= VAVBv (3.36)

where V; is equal to V in (3.32) and Vj is defined by (3.33). They both are exact
orthogonal matrices and

16VIr < IVi = Ville + IV = Vallr + O(?) < O(n®)e + O(?).
On the other hand, from the proof of Theorem 3.3.2, we have
H+6H+NH=Ws2WT.

Here ¥ in the proof of Theorem 3.3.2 is replaced by . In order to use the perturbation
theory from [26], we define three orthogonal projections. They are required for error
analysis of eigenvectors, and represent eigenprojections:

P, = vl
Py, = )
~'~T
Py = oot
12:]13

According to Eisenstat and Ipsen [26], we can write

sin £(v;, 0;) = || Py, — P,

QSHPM_P@

o + || Ps; — Ps

). (3.37)

For the first term in (3.37) we obtain the following estimation:

|0H + A'H]|5
52 — Al

[f(n)e +2v/n(€ + g(m)e)]|IH| Lo
i 57 = Ajl

minj=i,....n |0
i#i

Hpvi_pﬁ)

2 = siné(vi,u?i)_

[

()
O(mn2 4+ n? +nzg(n))e
57 = Ajl

IN

+ O(?).
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Furthermore, by relation (3.36) we can compute the second term in (3.37),

(; + 0;) (w; + 060;)T

Py, — Py, = = —u?lu?;r
19113
(1 — [|5]|3) ] + 0007 + 0,007 + 6v;007
19112 ’
thus
1 — Ni T 9] 2
| Ps, — Pall2 < v H2~ O(m)e + O(e?)
l , 1i]]2
1— (1 —||09;]]2)* + O(n?)e )
@)
S T a-fealr O
O(n?)e
< T opme TOE) =0 +0().
The final result is now straightforward. 0

By Corollary 3.3.3 Algorithm 3.3.1 produces computed eigenvalues N = 33 of H
with small relative error, and the accuracy of computed eigenvectors v; depends on the
gap between 62 and the rest of the exact spectrum of H. Let us verify the result of
Corollary 3.3.3 with an example.

Example 3.3.4. We generated a symmetric positive definite matriz H € R*10 qith
fized eigenvalues A\(H) = {1073,1072,1071,1,10, 102,103, 10*,10°,10°} as

H=VAVT,

where V' is a random orthogonal matriz, and A = diag(1072,1072,...,10%,10°). First
we check the condition from Theorem 3.3.2. We have

1-2(n+1)e

|H'|l2 = 1.0012 - 10° < 8.1884 - 10" =
n(n+1)e

)

and the Cholesky factorization will be computed successfully. Next, we execute Algorithm
3.8.1, and we obtain computed A and V', where computed eigenvalues are equal to

9.999999999999998 - 10°
9.999999999999987 - 10*
9.999999999999964 - 103
9.999999999999948 - 102
9.999999999998458 - 10!
9.999999999997730 - 10°
9.999999999960223 - 10~
9.999999998392710 - 102
9.999999990792137 - 1073
9.999999713117659 - 10~*.
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The errors and the error bounds are presented in Figure 3.2 and 3.3. The eigenvalues
are sorted in monincreasing order. From [15], it follows that 7(n) ~ O(n?) for the
bidiagonal SVD algorithm implemented in LAPACK and MATLAB, and this implies
that g(n) =~ O(n?).

We can see in Figure 3.3 that for vs, ...,v19 the error is greater than the bound. It
happened because after computing H= A(VAVT) in finite precision arithmetic, columns
of V' are not the exact eigenvectors oflfl any more. Furthermore, computation of sine
of an angle is numerically sensitive to errors. Nevertheless, shapes of both curves are

similar, and the trend of the bound follows the trend of the computed error.

10"

T T T
—— relative error in eigenvalues
— — error bound

0eEFE--"--"--"-"—-"—"—"—-" - - - - - - - - - - - — = = - - - - — - === — E

Figure 3.2: Relative error in eigenvalues and the bound (3.34), for Example 3.3.4.

3.3.2 Intersection of Null Spaces

Let A € R™*™ and B € RP*" be given, and consider the problem of finding an orthonor-
mal basis for null(A) N null(B). When the SVD is used to compute the orthonormal
bases we obtain the following procedure as a consequence of Corollary 2.1.4 (see Section

2.2 and [35, pp. 583-584])

Algorithm 3.3.5. Given A € R™" and B € RP*", the following algorithm computes
an integer s and a matrix Y = [y1,...,ys] having orthonormal columns which span
null(A) Nnull(B). If the intersection is trivial then s = 0.

Compute the SVD UL AV = diag(o;). Save V4 and set
r = rank(A);
ifr<n
C =BVa(t,r+1:n);
Compute the SVD ULCVy = diag(v;). Save Vo and set
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107

T T T T T
—— angles between computed and exact eigenvectors
— — error bound

Figure 3.3: Sine of the angles between the computed and the exact eigenvectors, and
the bound (3.35), for Example 3.3.4.

q = rank(C);
ifg<n-—r
s=n—r—gq;
Y =Vu(t,r+1:n)Ve(,qg+1:n—r);
else
s =0;
end
else
s=0;
end

As we can see, Algorithm 3.3.5 uses only right singular vectors for computing the
orthonormal basis for null spaces. Matrices U, and Ug are never used, so their departure
from orthogonality is not important. The following theorem shows mixed error stability
of the algorithm.

Theorem 3.3.6. Let A € R™*" and B € RP*", and let Y be computed in finite precision
arithmetic, using Algorithm 3.3.5 and Algorithm 3.1.1 for obtaining the SVD. Then

IY =Yl < (O(n®) + h(n))e,

where Y is a matriz consisting of orthonormal vectors which span close approrimation

of null(A + 6;A) Nnull(B + 6, B), and

[6:AF < (O(mn +n®) + g(n))e||Allr,
16:Bllr < (O(p(n —7) + (n—1)° +n?) + g(n — ) + h(n))e| Bl .
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Figure 3.4: Intersection of null spaces of the operators A and B.

g(n)e is the bound on normuwise backward error obtained in computing the SVD of an
n X n bidiagonal matriz, and h(n)e is the bound on departure from orthogonality of the
computed right singular vectors of the bidiagonal matriz.

Proof. 1f the SVD is computed using Barlow’s bidiagonalization, then by Theorem 3.2.6
in finite precision arithmetic we have the following situation:

A+0,;A= UAEAV},

where Uy € R™ " is orthonormal, 4 € R™" is computed diagonal, V4 € R™" is
orthogonal, and
18: Al < (O(mn +n°) + g(n))e]| Al| -

For the computed matrix V4 we can write
Vi=Va+0Vy, 10Vallr < (O(n?) + h(n))e.
Further, from [47, pp. 76-78] it follows
C =f(BVa(;,r+1:n)) = BVa(:,r +1:n) 4+ 6C,

where
16C|» < (O(n*) + h(n))e|| Bl|r,
and, on the other hand ) o
C+6,C =UcXcVeE,
where Ups € RPx(n=) ig orthonormal, ¢ € R("*("=7) ig computed diagonal, Vo €
RM=7)x(=7) i5 orthogonal, and

16:C1lp < (O(p(n — 1) + (n = 1)°) + g(n —))e|| B| .
For the computed matrix Ve we can write

Vo=Vet Ve,  [dVellr < (O((n—1)%) + hin —1))e.
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Finally, by [47] again we have

Yy = ﬂ(VA( r+1: n)VC( qg+1l:n—r))
Vi, 4+ 1:0)Vo(,q+1:n—7) + Y
Y 40V,

where

~

YV =Va(,r+1:0)Ve(g+1:n—1), |6V < (O(n?) + h(n))e.
If we put all this together, we obtain

C+6C = BVil,r+1:n)40C+6,C =
= (B40CV4(,r+1:0)T +8,0Va(c,r+1:0))Va(,r +1:0) =
= (B+ 5lB)VA(.,7‘ +1:n),
with
101B]lF < (O(p(n = 7) + (n = 7)* +n*) + g(n — ) + h(n))e|| Bl -
This means that
A+60A = UASAV}
(B+0,B)Va(:,r+1:n) = UsSeVE
Y = Y446V
which implies that Y is not very far from the exact solution of the same problem posed
for matrices A + ;A and B 4 6;B. Here should be noted that the last n — r singular
values in ¥4 and the last s = n —r — g singular values in S are probably not equal
to zero. Indeed, A + §; A and C' + 6,C could be nonsingular matrices having n — r and

s very small singular values, respectively. This means that Y represents an intersection
of the subspaces which are very close to null spaces. Il

3.3.3 The Linear Least Squares Problems

Consider now the m x n least squares problem
min ||Az — bl|o.
TzeR™
If A=UXVT is the SVD of A with m x n orthonormal U and n x n orthogonal V,
then by writing
lAz = bllz = ULV 2 = UU b — (I = UU )b = [|SV72 = UMbl + [Ib — U(UT D)3,

we obtain the minimal norm solution x = VXTUTb. Note that mutual orthogonality of
columns of U was important in splitting b (and Az — b), as well as using orthogonal
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range(A) p
Lmin

Figure 3.5: Finding the solution z,,;, of the linear least squares problems, for the matrix
A and the vector b.

invariance of the Euclidean norm. Now, suppose we have computed the SVD, where the
computed U, V', ¥ satisfy

A+6A=TSVT,  [6Alr < Al

Since U is not orthonormal and V is not orthogonal, proper formulation of the solution
procedure cannot be reduced to putting tildes to the matrices in the exact formulas
above. However, the solution vector is computed as & = fl(VE1UTb). To justify this
formula, we need the fact that there exist orthonormal

A

U=U-06U, such that ||[6U]||p < ¢
and orthogonal ) . . 3
V=V =0V, such that [|[6V]r < (.

Then ) R
ﬂ(UTb) = UT(b+ ob), where ||db|2 < (¢ 4+ O(m)e)]|b|2-

Further, o 3 o
AT (UL (b + b)) = (X + 6X)TUT (b + 6b), (3.38)

where 6% is diagonal with |5§~]”| < &%y, for all 4. Finally,

i = VIS +D)TT b+ b)) = V(E+ %) U (b+ 0b) + 6
V(S +62) UL (b + 6b) + 6V (2 + o) UL (b + 6b) + 6z, (3.39)

where
16Z]|2 < OV || [|(E + 62)TTT (b + 6b) || < O(n2)e||(E + )T (b + 6b)]| .

Now, set & = V(24 6)1UT (b4 6b), 62 = 6%+ 0VVTZ, and note that # solves a nearby
problem
min ||(A+ AA)x — (b+ 6b)||2

z€R™
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where A 4+ AA = U(f] + 55])‘7T approximates A equally well as A + § A, because
A+ AA=USVT 4 USVT — USoVT — sUSVT + U8V
and
[AA[p < (O(1)e + OM)C)[|AllF.
On the other hand, ¥ = & + 02, where

1621; < (O(n2)e + O(1)C)||2]l2.

The conclusion is that the backward stable SVD with numerically orthogonal singular
vectors produces a vector close to the exact solution of a nearby problem. Strictly
speaking, this mixed stability is the best we can hope to achieve in the SVD solution to
the least squares problem. Pushing all errors into the backward perturbation of the data
introduces dependence on the size of the condition number. Applications of UT and =t
to b in (3.38) represent backward stable operations. On the other hand, application of
V in (3.39) undermines backward stability. If we assume that V(X + 6Z)TUT is a full
rank decomposition, then further computation in (3.39) will result with

i = VE+)UT+0b+UE +6S)\VIV(E 4 02)TUT (b4 6b) + U + 62)V7T 6]
= V(E+2)T (b + Ab),
where
|Abl2 < O(k(A))el[b]l2-

Note that this is not the case for the least squares solution using QR factorization, which
is a backward stable LS solution, see Theorem 19.3 in [47].

Using SVD with One—sided Bidiagonalization

Consider now the above solution procedure, but with the SVD computed using one-
sided bidiagonalization. Since for the computed bidiagonalization A ~ UBVT we cannot
guarantee that the computed U is numerically orthogonal, the above analysis does not
yield the conclusion we wanted. Recall that certain numerical orthogonality is ensured
in the augmented matrix formulation (see the proof of Theorem 3.2.6) and we therefore
write the least squares problem in the following obviously equivalent form

0 |0
AT b
The augmented bidiagonalization and the SVD read

0] B T Ug 0] 2] T
IR e R L
where B = UpXV{ is the SVD of the bidiagonal B. Using this SVD, we obtain
0 0 B Y T ub o[ PL PL 0
e DL = L Jowr= [ 7] 20
B (V) Ta _ ULPLb
N 0 PLb

min
TER”

[\

2

2
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thus
Az = b]l3 = [|S(V V) x — UL Pbll5 + || Pbll3,

where

Pll P12 X X
P = ., P e RV Py € R,
[ Py P 11 21

and the minimal norm solution is
x=VVgStULPLb.

In exact arithmetic, according to Bjorck and Paige [6], P is of the form

0o U”
P_{U I—UUT]’

so that Pjy =0, Py = U, A = (P,yUp)X(VVp) is the SVD of A and the bidiagonal-
ization is A = P»; BVT. Recall that premultiplication by P expresses (theoretically and
numerically) the modified Gram-Schmidt procedure applied to A, and note that Pjb

is the upper n x 1 part of P [ 2 } Instead of P we have the computed matrix U,

but using it in UTb or for explicit forming of the left singular vector matrix UUp may
introduce unacceptable numerical error. Still, there is a way presented in [6] that allows
us to apply U on b without producing a big error.

Lemma 3.3.7. Let the computed approzimation § = [F1,..., 3" of y = UTb be com-
puted using the formulae

(1) 61 =b 5y
(2) fori=1:n
Cit1 = ﬂ(éi - :Yzaz);
end

where U = (U1, ..., U] is computed as described in Algorithm 3.1.1 and Theorem 3.2.6.
Then there exist perturbations dob, Aob such that

g | _pr| Ao
B

where P is the orthogonal matriz from Theorem 3.2.6, and

Agb
dob

Proof. First, we should note that the procedure presented in Lemma 3.3.7 is the same as
performing a modified Gram—Schmidt orthogonalization of the vector b against vectors
Uy, ..., Uy, but without normalization. Let

< O(mn)el|b||z.

2

U

E:[_[_ei}[_er al' |, B:I—[iei][—ef al ], i=1,...,n,
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as defined in the proof of Theorem 3.2.6, and
%:ﬁzTéz, éi:éi—l_:yi—lﬂi—la izl,...,n, g: [’A)/l,...,’}/n

From the relations

p1O] _ | @be ]_[%he
1 b | | b— (4] b)iy Gy
55 [0 _ [ @bent (iéses | _ [ Arer+saes
2471 b &y — (@5 Co) s G
- 2 =[0] ;_ [ (@b)er+ -+ (inéaen | _ [ 9
Py PP ol | Cn — (T C)ln L

we inductively see that the computation of § above is numerically equivalent to n appli-
cations of Householder reflectors with vectors @;. The statement of Lemma 3.3.7 follows
then from Lemma 3.2.4, for P = P1 P O

Remark 3.3.8. Recall that one of the techniques to obtain an acceptable numerical so-
lution for the discretized Fredholm integral equation in subsection 2.2.10 is truncating
the vector UTbh. Here we used a similar idea. Instead of dealing with the matriz, we
changed the way vector UTb is computed in order to obtain a numerically stable algo-
rithm. In exact arithmetic this is equivalent to ordinary matriz—vector multiplication
with an orthonormal matriz.

Remark 3.3.9. If the procedure defined in Lemma 3.3.7 is performed in exact arith-
metic, then c¢,11 = 0, because c 11 s a result of elimination of all the components of b.
The components are defined in the orthonormal basis U = [uy, ..., u,]. Thus, if U is
not very far from being an orthonormal matriz we can expect ¢,iq to be very small and
negligible. On the other hand, if U is far from being orthonormal, then &,.1 has to be
taken into account. This will be done in the following lemma.

Lemma 3.3.10. Let A, B, V be as in Theorem 3.2.6, and let y be defined as in Lemma
3.3.7. There exist an m X n orthonormal matriz () and perturbations 1A, 61b such that

~

B=QT(A+8AV, = QT (b+61b),

and

101 Al < O(mn +n*)e[|Alp, [|01bll2 < O(mn)e]b]l2.

Proof. Let us define ]%("Jrl) and lf’i("ﬂ) in the same way as ]5Z and lf’l were defined in

Theorem 3.2.6, except that vectors e; are now of dimension n + 1. Hence, pi("ﬂ) is a

(m+n+1) x (m+ n+ 1) Householder reflector for i = 1,...,n, and P, is a computed
(m+n+1) x (m+n+ 1) Householder reflector. First we note that

Pr o Pr P 0 P}
pénﬂ) o p1(n+1) _ 0 1 0 ’ pénﬂ) o p1(n+1) _ 0 1 0

PL 0 PL PL 0 P}
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From the Theorem 3.2.6 and Lemma 3.3.7 it follows that

n [ B . ) AA AA
0 — P7(Ln+1) - Pl(n—f—l) 0 vV, H [ 51 :| < O(mn + n3)5||A||F7
m 0 A+0A
and
n g R R Aob A
0 [ =R P 0 ] H { 50bb ] < O(mn)el[b2.
m 6n-i—l b+ 50b 0 2
Next, we define .
~ Cn+1
un—i—l — ~ 9
[Cnt1ll
An1 = 1 Cngr = [|Engall2,
H(n+1 —€n ~
PT(LJ):[—{ i +1:|[_e;€+1 UZH]-
n+1
The Householder reflector P,E’ﬁ” is chosen so that in exact arithmetic
[ Agb 0
A(n+1) B(n AS(n+1 S(n+1
potVpnth o pt g | = prD g | =
| b+ dob Crt1
Y [ 0 Yy
= 0 - ’%Hrl —1 = /?n-i-l
Cnt1 | Uny 0
On the other hand, we can write
. y At pnt1)  pmtn | APTDD
’7710-&-1 = Pn+l Pn T Pl b+ sty | (340)
(n+1) Agb n+1 (n+1)
where A b= 0 e R"" and 0 b = dgb.

B
The matrix | 0 | remains unchanged by multiplication with ]%Eff{l), so that
0

B B AA
H(n+1 S(n+1) H(n ~(n+1 ~
0| =P" | o | = PtV pintn . plrt) 0 V. (3.41)
0 0 A+ 0A
If we now define P00 = PIH L pirih A 4 — [ AOA € ROHD R0 apd 504D 4 —

0A, then we can combine the last two results (3.40) and (3.41) to obtain
BVT

0 rs/n+1 )
0

A+ A A(n+1)b } _ P(”+1)
0

A—|— 5(n+1)A b+ 5(n+1)b
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where

n+1
n+1

Again, we have to partition the matrix P+ a5 follows

< O(mn)el|b||z-

2

n+1)b
<ottt || Sty

A(n+1 A(n+1
o[855
P21 P22

where

pl(;b-f—l) c R(n—l—l)x(n-ﬁ-l), P("-‘rl) c ]R(n-i—l)xm7 pZ(;H-l) c IRmx(n—I—l)7 p2(;l+1) c IRmxm7

and then
~S(n+1
Pty

A(n—i—l)A A(n+1)b :|
S A

BVT
A+5(n+1)A b+ 5(n+1)b .

0 ’?n-i—l

Again we use Lemma 3.1 from [6] and Step 4 in the proof of Theorem 3.2.6, to
conclude that there exist orthogonal matrices W, € R*Dx(n+1) and 7, € Re+H)x (1)
an orthonormal matrix W, € R™*(+1  and diagonal matrices C' = diag(cy, ..., Cht1)
and S = diag(si, ..., Spt1), such that

02+S2 - In+1,
PtV = wioZy,
Pt = insZT.

Further, let us define an orthonormal matrix Q) = WyZ; € R™ @+ then the
following holds

[A+51A b+51b} Qn+1|:BE)/ Ag :|7
where
[01A 60 ] = Wo(I + ) ZT(PGTHT] A A A0 ] 4 [ gD A gDy |

Finally, we can conclude that

A = Wo(l + S)TZF(PGTITAMD A 4 500+ 4,

A

b = Wo(I + S)TZT (PRI T Ay 4 gy,

where

1: Al

IN

V3| ACD A 4 50D A2 < Omn + n)e]| Al

IN

160l < V2 IACDB]3 + 50+ Db]3 < O(mn)eljb],
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and
AtHA = QU [ " ] 18 Al < Omn + n¥)e] Al
b+6b = QY [ y } , 1616]|2 < O(mn)e|bls.
7n+1
Taking Q = Q"+ (:,1: n) completes the proof. O

Theorem 3.3.11. Let o

i = 1(VVpEULY),
where B is the bidiagonal matriz obtained by the Barlow bidiagonalization, Ug, Vg and
S are computed SVD factors of B ~ UBEVB , and vy is defined in Lemma 3.3.7. If the

bidiagonal SVD is computed by a backward stable algorithm, then there exist orthogonal
matrices Ug and VB, and a backward perturbation 6B such that

Up = Up + 6Us, 16U5||r < h(n)e
Vg = VB + 5‘737 H‘SVB“F < h(n)e
B+ 6B =UsSVE, 168l < g(n)el|Allr,

In this case the vector T satisfies
12 = &[l2 < (h(n) + O(n?))e]| 2|2,
where T denotes the minimal norm solution of the problem

min [[(A + dA)z — (b+ 0b)]|2,

z€R™

where
16A]lF < (g(n) + O(mn +n?))el|Allp,  [16bll2 < (h(n) + O(mn))e||b]|2.

Proof. First, we should note that by Theorem 3.2.6, Lemma 3.2.4 and numerical analysis
of matrix—vector product there exist perturbations AUg, AVp and AV, such that for
any vector z € R" the following relations hold.

A(Upz) = (Ug + AUg)z, with |6Ug|F < (h(n) + O(n*/?))e,
A(Vgz) = (Vg + AVp)z, with |[0Vz]|r < (h(n) + O(n*?))e,
A(Vz) = (V+AV)z, with [|6V]|r < O(n?)e.

Since by Lemma 3.3.10 7 = QT(b + 6,b), we have

2 = A(UL) = (Up + AU)"Q" (b + 6:1b) = UZQ (b + 6b),

8

with
[00]]2 < (h(n) + O(mn))e|[b]|2.
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Next we have
i = A(StzW) = (4 60) UEQT (b + 6b),
where 3 )
0% < e[,
followed by
o= A(VVeE®) = (V+AV) (Vs + AV)(E + 6%) UEQT (b + 6b) =
= VVs(Z 4 0%)ULQ” (b + 0b) + 6z,
In order to complete the proof we have to define
& =VVs(Z+ o) TUEQT (b + ob),
so that
61 = (AVVT + VAVEVEIVT + AVAVEVEVT)E,
62]l2 < (h(n) + O(n?))el|2]l2.

On the other hand we can note that @ is the exact solution of the linear least squares
problem with matrix A and vector b, where

A=A+ 6A=QUg(X+oX)VEIVT, and b=0b+ b
By Lemma 3.3.10 and the assumption of this theorem, we can write

A+ 84+ QSBVT = QUSVIVT,

so that
A+ 6 A+ QOBVT + QUgdSVEVT = QUg(X + osX)VEVT.
Thus
0A = 5 A+QOBVT + QURLVEVT, and
16AIlr < (g(n) + O(mn +n?))e|| Allr,
which ends the proof. Il

To compute the bound on || Z—z||3/||z||2, where x is the exact solution of min,cgn || Az—
b2, we need the perturbation theory for the least squares problem. This is illustrated
in the following example.

Example 3.3.12. Let us define the matriz A € R°*5 and the vector b € R as

2 3 4 -1 6 15

2 3 4 -1 6 13

-5 =5 13 -1 8 10

-7 -8 9 0 2 —4

-6 -6 11 -3 =2 —6

A= 1 2 2 -3 —4 |’ b= -2
6 -4 4 5 =8 3

5 —6 2 8 -4 >

8§ -9 6 10 10% 10000000011

3 -3 4 2 10" | 10000000006
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The vector b is obtained as b = Ax+by, wherex =[ 1 1 1 1 17 isthe exact solution
of the least squares problem with A and b, andby=[1 -1 0 0 0 0 0 0 0 0]7
is such that bTA =10 0 0 0 0], that is by Lrange(A). We compute the solution
Z in finite precision arithmetic, as described in Lemma 3.5.7 and Theorem 3.3.11 and
obtain

1.000000059100661
9.999999743534302 - 10~

T = 9.999999537719037 - 10~ |,
9.999999939451119 - 10~* =1l
9.999999999999998 - 10+

M = 3.556496368936655 - 107°.

For the error bounds we use again the results from [15] and [{7], to produce the esti-
mations g(n) = O(n?) and h(n) =~ O(n?). Theorem 8.5.11 gives the bound on relative
error between the computed solution T and the exact solution T of a nearby problem:

12 = 2|2

B < (h(n) + O(n?))e = ¢, ~ 2.775557561562891 - 10~ '°.
T2

On the other hand, Theorem 19.1 in [47] implies that for n = (n'/2g(n) + O(mn?/? +
n/?))e, ka(An <1 andr =b— Ax

|2 — |2 ra(A)n ( 7|2 )
< 2+ (ko(A)+1)——— ] = 9.
ol = 1=y T AT DiteR) =@

In our case it is
ey A2 7.586838533644896 - 104,

So, if we put all this together we obtain the final bound

|2 — ] 1|2
]I 12

3.556496368936655 - 10° = + ¢y =~ 7.586838533672672 - 107,

3.3.4 The Total Least Squares Problem

Consider the problem

min ~ |D[E r|T||ls, A E€R™" breR™ zeR", (3.42)
b+rerange(A+E)

where D = diag(dy,...,d,,) and T' = diag(ty, ..., t,.+1) are nonsingular. In exact arith-
metic, this problem is solved by the following algorithm (see 35, p. 579]).

Algorithm 3.3.13. Given A € R™" (m > n), b € R™, and nonsingular D =
diag(dy, ... dy) and T = diag(t1, ..., tat1), the following algorithm computes (if possi-
ble) a vector x € R™ such that (A + Epin)r = (b + Tmin), where ||D[ Enin  Tmin |T||F
and ||z|l; = |T(1: n,1:n)" x|y are minimal.
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Compute the SVD UT (D[ A b |T)W = diag(oy,...,0n41). Save W.

Determine p such that o1 > -+- > 0y_p > Oppp1 =+ = Opp1.
Compute a Householder matriz P such that for V. =WP, V(n+1,n—p+1:
n) = 0.

ifVin+1,n+1)#0
fori=1:n
(i) =
end
end

tn+1V(n —+ 1, n + 1) ’

(az,bs)

(a3, bs)

(ala bl)

Figure 3.6: Least squares versus total least squares for n = 1 and 7" = [. Points
(a;,b;) € R* i =1,...,m are fitted by a line b = za through the origin. Then A =
[a1,...,a,]7 € R™Y and b = [by,...,b,]7 € R™ In the least squares problem the
vertical distance between the points and the line is minimized (—), while in the total
least squares problem the perpendicular distance is minimized (—).

Algorithm 3.3.13 uses only the matrix V', and the matrix U is ignored. Again, loss
of orthogonality is not an issue here. We have the following numerical results.

Theorem 3.3.14. Let T be a solution of the problem (3.42) computed in finite precision
arithmetic, using Algorithm 3.3.13 and Algorithm 3.1.1 for computing the SVD. Then
T 1s the exact solution of the problem

min \D[ E r T,
b+db+re range(A+5A+E)

where

D[ 6A 6b]T||lr < [O(mn+1)+n+1)°) +gn+1)+
+O(n2)h(n + 1))e[|C|r,
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and g(n)e is the bound on normwise backward error obtained in computing SVD of
the n x n bidiagonal matriz B, and h(n)e is the normwise bound on departure from
orthogonality of the computed right singular vectors of B.

Proof. Let us define
C=D[A b]T,

so, when the SVD factorization of C' is computed in finite precision arithmetic by Bar-
low’s bidiagonalization, we obtain

C+06,C=USWT, (3.43)
where UTU = I, WTW = I, & = diag(61, ..., 6ns1), and
16C I < (O(m(n +1) + (n +1)%) + g(n + 1))e[|C]|r,
If W is the computed matrix, then from Theorem 3.2.6 it follows that
W =W+ 0W, 10W | < (O((n + 1)) 4 h(n +1))e.
Further, by Lemma 3.2.4
V=0(WP)=(W+W)P, [|6W]|r<O((n+1)2)e, P>=1,

and if we define

then we have

V = V44V, (3.44)
5V = (0W 4 0W)P,
10VIFr = (O((n+1)%) 4 h(n+1))e

We should note that the matrix V = [ 01 Dy ... Upy1 | is also the matrix of right

singular vectors of the matrix C' + §,C, and UP is the matrix of left singular vectors in
that case. To illustrate this claim let 7, o9 = 6,,_1 = 0, = 0,41, then Algorithm 3.3.13
performed in finite precision arithmetic will find a Householder reflector P, whose exact
version P is such that

=

>

I
e 6 6 6 o o o o o
e 6 6 6 o o o o o
e 6 6 6 o o o o o
® 6 6 6 o o o o o
® 6 6 6 o o o o o
S e 06 0 0 0 0 o o
S e o o 0 0 0 o o
S e o6 o o o0 o o o
® 6 6 6 o o o o o
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We can partition the matrix W in the following way
W= W s, W € RI¥0HD),
and we define P as ; .
P= { 0B } ’
where P, € RP+Dx(@+D) jg 3 Householder reflector such that

Won+1n—p+1:n+1D)P,=[0 --- 0 o]

On the other hand, the corresponding partition of S reads

- o 0 ~ L N
XY= . , ¥ =diag(oy,...,0n_p).
[ 0 0n+1[p+1 ] ! g( ! p)
Then, from (3.43) it follows that
Cto,C=0sPWwT =020 0| T = sy,
O O'n+1P2

is a valid singular value decomposition.
For the computed = we have

tniaV(n+1,n41) tniV(n+1,n+1)

where
10;] < 3¢+ O(?).

If we define the vector v, as

(I 4 O)Vp41

Upt1 = — , 3.45
1 T+ 0)oum ] (3.45)

with © = diag(6,,0s,...,0,,0) and 0,,1 being the (n + 1)-th column of V, then we can
easily see that

Upt+1 = @n—i—l + 6671—}—1;

(L 4+ ©)Ups1 — [[(L + O)Tps1 |20+
(L 4+ ©)Tns12 ’

67_)n+1 = (57}n+1 +
where by (3.44)

Bt = B+ 000st, [88salla < (O((n+ 1)) + h(n + 1))e.
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To find a bound on ||§7,,41]|2 we have to perform the following analysis.

(1= [[(1 + ©)Bns1]l2)] + Otnia

I(£ +©)Tns1ll2
L~ (Ons1 + 80n41)" (1 + ©)* (Bu1 + 80ns) _
L+ [[(1 + ©)on |2 -

51—1n+1 = 6vn+1+

L= |I(J +©)lpg1llz =

< _26{)Z+1@n+1 - H&}nJrng -
— (Vg1 + 00011)T (20 + O (Dpy1 + 60p11) <
< O()[|Fina]l2 + O(1)e
_ A (11 = [[(Z + ©)ntall2] + [[Oll2) (L + [|60n41]l2)
vy, < ||ovy, + - - - <
” v -i-1||2 = || v +1||2 1— ||5'Un+1 +@(Un+1 +5vn+1)”2
< OM)[|60n41]l2 + O(1)e,

thus

167412 < (O((n +1)?) + h(n + 1)e.
After this analysis we can conclude that

i) = — tiel [(I + ©)0y11] _ tiel v, _ tiUny1(7)
tn+167’€+1 [(I -+ @)'ﬁn—&—l] tn+1€g+17jn+1 tn+177n+1<77, i 1) .

This means that the computed solution Z is an exact solution for some D[ Ay by |T,
whose the (n + 1)-th right singular vector is equal to 0,41. It remains to determine As
and bs.

Let us define the matrix V = [ 9, ¥y ... ¥, | with
v; = ’lA)Z', izl,...,n
Unt1 = as defined above in (3.45)

This matrix is almost orthogonal, and close to the matrix of right singular vectors V in
the SVD factorization of the matrix C'+doC. The next step is finding a QL factorization
of the matrix V, and this can be done by performing the Gram-Schmidt orthogonal-
ization on the matrix | ¥,11 0, ... U |. Hence, we have to find the elements of an

orthogonal matrix 7 = [21,. .., 2n11] and a lower triangular matrix L such that V = ZL.
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We have:
2n+1 77n+1
Lin+1,n+1) = 1
én - ﬁn - (ﬁzéan—kl)én—l—l
Lin,n) = 1+0()
Lin+1,n) = 0760,
én—l = rﬁn—l - 0(52)2n - (17571577n+1)5n+1
Lin—1,n—1) = 1+0(?
Lin,n—1) = 0(c?)
E(n + 1, n — 1) = ’133:7151_)”4&
5= 0, —0EN)2E — - —0(EH)2, — (07 60ps1)nsn

L(1,1) = 1+0(?)
L(2,1) = 0(<?)

L(n,1) = O(¢?)
Lin+1,1) = {00,

hence
[ 14+ 0(e?) |
- 0
[0 o o B ]=08 o 2 T 1] O(g2)
1+ 0(?)
| 0{00pg1 e o OEOTpy 1

Now consider the matrix C defined as

C=UPSVT =UPS(V+[0 6t )T =C+6,C+UPE { &f}ﬂ } = C+0,C+6,C,

where

1.1l < (O((n + 1)%) + h(n + 1))el|C] .
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On the other hand, we have
C = UPSL™Z" =

| -
A A~ - O A
= UPX| Z" +
1
I L
[ O(e2) 070041 ]
. o) |
+UPY | : Z" =
0(82) ’8;1;61_}714,1
i 0
= UPSZ" +6,C,

where B . .
16:C|r < (O(n2(n+1)%) +nzh(n +1))e||C| ¢

Finally we can write
C+0C=C+6C+6C—6,C=UPSI",

with
0C' = D[ 0A b T,
and )
16CF < [O(m(n+1) + (n +1)°) + g(n + 1) + O(nz)h(n + 1)]e]|C]| .
Here we can conclude that & is the exact solution for C'+ dC, because this matrix has
the (n+ 1)-th right singular vector equal to 0,41, and its singular values are identical to

0iyt=1,...n+ 1. Thus, U,,1 will correspond to the smallest singular value. Finally,
we can write

§A =D '5CT(;,1: n), §b=D15CT '(:,n+1).
O

Remark 3.3.15. In case when p > 0, C'+ 6C has a multiple minimal singular value,
and the computed solution & does not have to be its exact total least squares solution with
minimal || ||» norm, where ||yl = T, 'yll2 and Ty = diag(t,, ..., t,). This means, that
Z(n +1,n—p+1:n) does not have to be equal to 0. By the comment in [35, p. 579]
Algorithm 3.3.13 should produce a solution with such a property in exact arithmetic.
Therefore we will find Y = ZQ as it would be calculated in Algorithm 3.3.13 in exact
arithmetic, such that Y(n+1,n—p+1:n) =0.
First we need to partition the matrix Z as
Z— {ZAH ZA12 ZA13] n
Zy Zyy Zyz | 1
n—p p 1
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From the definition of the Householder reflector Q = I —qq" and Y = ZQ in Algorithm
3.83.13, we can come to the following conclusion:

[ Yoy Yas | = [0 Yas ], whereYos =/ 1 Z22113 + Z3,

0
1 .
q - - Zj
VVas(Yos = Zas) | Zag — Yag
Vi, — 2122224‘213223

V2213 + 235

Now, it is easy to see that Algorithm 3.3.18 applied to the matrix C' + 6C' in exact
arithmetic will produce the solution
Yy, _Tl(lezzTg + 213223)

f — e = = .
tn+1YYQ3 tn—i—l(HZ?2Hg + Z223)

Next we have to estimate how far is this exact solution T from our computed solution T,
where once again

_ TiZy
T=— ——
tnt1223
We have . A . R
s —Zo3 Ty 219 2%y 4+ || Zaa||3T1 213
tni1Zos(|| Zo2ll3 + 22,)
and . . S
ZoallZ A
1z — i, < 23| Zaa 2 + [ Z2ll5 (3.46)

tus1 Zos(| Zool3 + Z3;)

To find a bound on the right side of relation (3.46), we have to find the bound on || Zas||2,
ZQQ = [én,p+1(n + 1), e ,2n(n + 1)]
From the QL decomposition in the proof of Theorem 3.3.1/, it follows that

~

Z=[0 ... Uy Tnp |L7Y,

where L™ is of the form

with O(n) = (O((n+1)?) + h(n + 1))e. Hence

zZiin+1)=0;(n+ 1)+ O(n), i=n—p+1,...,n
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On the other hand, by (3.44) we have

(m+Ln—p+1l:n) = [Uppu(n+1),...,0,(n+1)]
(n+1n—p+1:n) = Vin+ln—p+1:n)—6V(n+1l,n—p+1:n),
16V(in+1,n—p+1:n), < O@).

‘A/,
1%

So, even when the Algorithm 3.3.13 is performed in finite precision arithmetic, V(n +
I,n—p+1:n) is forced to zero, thus
Zyy = —6V(n+1l,n—p+1:n)+[0),...,00)
|Z2ll: < (O@2(n+1)*) + O(p=)h(n + 1))e.

This implies

| Z22 |2 1 Z22]13
tnr1 (|1 222113 + Z35)  tns1Zos([| Za2ll3 + Z35) —
7
< U2 2l o) <
tn+1(Z23 - 0(e?))
(O(pz(n +1)%) + O(p2)h(n +1))e

72
tn+1223

IA

17 — |-

<

Finally, we can be sure that the total least squares solution computed in finite preci-
ston arithmetic will produce the solution which is not very far from the exact solution
with minimal norm of a slightly perturbed problem.

We will illustrate the result of Theorem 3.3.14 in the following example.

Example 3.3.16. We generated a matriz C' € R°*5 with fized singular values as
C=UxV7T,

where U is random orthonormal and V is random orthogonal, and ¥ = diag(5,4,3,2,1).
We take D = Iy and T = I5, so that A = C(:,1:4) and b = C(:,5). From Algorithm
3.3.13, the exact solution of the total least squares with A and b is equal to

8.897274820898000 - 10~
. _T(l 1 4,1:4)V(1:4,5) 1.271784911649302

T(5,5)V (5,5) —2.256435337898306
—1.222585615762902 - 10~

We compute the solution T in finite precision arithmetic using the Barlow bidiagonaliza-
tion, where the condition o; = 0,41 18 replaced by |o; — opy1| < €01, and obtain

8.897274820897999 - 10~
S| 1271784911649303 1E — ||
N ’ [E3IP;

—2.256435337898308
—1.222585615762904 - 10!

= 7.694579786030378 - 10716,
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Again, we use the estimations g(n) ~ O(n?) and h(n) ~ O(n?). Theorem 3.5.14 gives
the backward error bound

D[ 0A 6b [T|r <mn,
where
n = [O(m(n+1)+(n+1)*)+g(n+1)+0(n2)h(n+1)]e||C||r ~ 1.984305870050888-10~ 13,

On the other hand, Theorem 4.4 in [34] implies that in case when o,(DAT}) — 0,1 >0
and n < (o,(DATY) — 0,41)/6, the following forward bound holds

12 —2lls 9o (1 tnt1|[ Dbl ) 1
HxH? T Op — Opt Un(DATl) — Op+1 tn-i—l”DbH? — On+1
5.264733890890990 - 10~ .

Q

3.4 Efficiency

Another important characteristic of an algorithm is its efficiency, and the best way to
evaluate efficiency is through execution time. The execution time of a numerical algo-
rithm depends on two things: floating point operation count and time spent on commu-
nication between different levels of memory. We were concerned with the efficiency of
full singular value decomposition algorithms which include bidiagonalization, and that
means that they compute all of the SVD factors: Y, W and ¥ = diag(oy, ..., 0,) such
that A =YXWT.

Let N be the floating point operation count required to compute the SVD of the
bidiagonal matrix B, then the floating point operation counts for the full SVD algorithms
are presented in the following table (see [2]).

LAPACK sgesvd () routine SVD with Algorithm 3.1.1
without QR! with QR?

4 20 10
8mn2+§n3+NB 6mn2+§n3+NB 5mn2+?n3—|—NB

Table 3.1: Floating point operation count for SVD algorithms with bidiagonalization.

Table 3.1 shows that Algorithm 3.1.1 requires less operations for computing matrices
U, B and V, than the corresponding LAPACK bidiagonalization routine.

Extensive numerical tests were performed to test the efficiency of the SVD algo-
rithms. The computations where performed in the “Advanced Computing Laboratory”
of the Department of Mathematics, University of Zagreb. The laboratory consists of 20
computers, connected in a local 1Gb network. The specifications of the computers are
shown in Table 3.2.

! The Householder algorithm
2The Lawson-Hanson—Chan algorithm
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2 processors | Athlon Mp 1800+
Frequency 1533MHz
L1 Cache 64Kb
L2 Cache 256Kb
RAM 1Gb

Table 3.2: The specifications of the computers in “Advanced Computing Laboratory”.

The computers are working under a Debian GNU /Linux operating system. The tests
were written in FORTRAN 77 programming language and GNU (v0.5.24) compiler with-
out optimization was used to obtain executable files. LAPACK and BLAS routines were
called in those programs, and single precision was used throughout the tests. Matrices
in the tests were generated as product A = UXV7T, where X is a diagonal matrix with
fixed singular values {1,2,...,n}, and U and V are random orthogonal matrices.

The Table 3.3 gives the average execution times for the full SVD algorithms, ex-
pressed in seconds.

m X n t1 tr, P1.L = 100(tL — tl)/tL
100 x 100 0.01 0.01 0.00%
200 x 200 0.14 0.15 6.67%
500 x50 0.01 0.01 0.00%
500 x 100 0.05 0.04 -25.00%
500 x 500 3.87 3.47 -11.53%

1000 x 100 0.14 0.09 -55.56%
1000 x 500 6.19 4.43 -39.73%
1000  x 1000 39.19 36.95 -6.06%
2000 x 200 1.46 0.61 -139.34%
2000 x 1000 55.25 41.63 -32,72
2000 x 2000 | 359.05 | 326,75 -9.89%
3000 x 3000 | 1514.46 | 1300.94 -16.41%

Table 3.3: Average execution times for full SVD algorithms.

The meaning of the headers in Table 3.3 are as follows:

t; — the SVD with Algorithm 3.1.1 for bidiagonalization.
The LAPACK routine sbdsqr () is used for the SVD of
a bidiagonal matrix, which implements the bidiagonal
QR algorithm.

t, — the LAPACK sgesvd() routine.

pi,. — the percentage of time decrease, when the SVD with

Algorithm 3.1.1 is compared to the LAPACK routine.

Despite the fact that the SVD solver with Algorithm 3.1.1 requires fewer floating
point operations, the execution time is longer than the execution time of the LAPACK
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[1] routine sgesvd()[21]. This happens because the LAPACK routine has optimized
fast cache memory usage, while Algorithm 3.1.1 does not. In order to decrease cache
communication time, we will develop a block version of Barlow’s bidiagonalization in
the next section.

3.5 Block Version

First of all, the block version is designed to increase efficiency of the Barlow algorithm,
thus it implements the choice ¢xi1 = 7, which reduces the floating point operation
count. Second, the new block version of Algorithm 3.1.1 improves the usage of fast
cache memory. The main idea is to perform as many operations as possible on the
data that is currently stored in the cache. In order to do that one has to transform the
original algorithm. The first modification of the algorithm is that transformations by
Householder reflectors are aggregated, where WY representation is used for a product of
Householder reflectors [5]. This means that the matrix A is updated after every b steps,
where m x b is the block dimension. Most of the operations in Algorithm 3.1.1 are matrix-
vector operations, coded as BLAS 2 operations [20]. Memory hierarchy is utilized more
efficiently if such algorithms are in terms of matrix-matrix operations, coded as BLAS
3 operations [18], [19], or grouped matrix-vector operations, called BLAS 2.5 operations
[14], [50]. Employing the WY representation of products of Householder transformations
results in more BLAS 3 operations; using the BLAS 2.5 approach of Howell et al. [50]
leads to further improvement. Operations on the same data but performed in different
places in Algorithm 3.1.1, are now performed simultaneously. These operations are:

A — A+w’
or r — ATy . (3.47)
w — Ax

r «— z+ ATy
w — Az

Now we discuss the modifications of Algorithm 3.1.1. As an input to the algorithm
we will take the matrix A € R™*", and partition it into block columns. Let n =b-g+r,
r < b+1, where b is a given block column dimension and g = |[(n —2)/b] is the number
of blocks of dimension m x b. We choose the last two columns to be outside of the block
partition, because the last two steps of the one—sided bidiagonalization (corresponding
to the last two columns) do not involve computation of a Householder reflector. The ¢
blocks will be updated by means of aggregated Householder transformations and BLAS
2.5 transformations related to the first group of transformations in (3.47). The remaining
r =mn—b-g columns will be updated with non-aggregated Householder transformations
and the second group of BLAS 2.5 transformations in (3.47). As each block consists of b
columns, the steps of the algorithm will be organized in two loops: the outer loop going
through g blocks, and the inner loop going through b columns of the block. Thus we
will denote by A;; the matrix A after the first 7 — 1 blocks and the first £ columns in
the j-th block have been updated.

A block partition for ¢ = 4 and b = 4, is visualized in Figure 3.7.
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A(Z ,2b—|—1: 3[)): XXX

Figure 3.7: Block partition of the matrix A.

The main difference between Barlow’s bidiagonalization and its block version is the
way Householder reflectors are computed and applied to the matrix A. In the k-th
step of Algorithm 3.1.1 columns k£ + 1 through n of the matrix A are updated with the
Householder reflector V. After this step, the (k+1)-th column is not changed anymore
and is consequently equal to the (k4 1)-th column of F' defined in (3.3).

In the block version of Barlow’s bidiagonalization, updates with Householder re-
flectors are done block-wise. This means, only when all the columns in one block are
updated and assigned to F' (they will not be modified in the next steps), the rest of
the matrix will then be updated with b Householder reflectors in aggregated form, that
correspond to b steps of Algorithm 3.1.1. Until then, only the current column is up-
dated. Let us assume that we have computed the first (j — 1) blocks of the matrix F
obtaining the matrix A;o, and that we are observing the operations in the j-th step
of the outer loop. Then for kK = 1,...,b only the ((5 — 1)b + k)-th column is updated
by Householder reflectors from the steps 1,...,k — 1 of the same block, obtaining the
matrix A;, and a new Householder reflector V (;_1yy1 is computed. V ;_1y1p will effect
columns ((j —1)b+ k+ 1) through n, but no updates are done. The matrix A;; is equal
to Ajo because the ((j — 1)b + 1)-th column is already updated, only the Householder
reflector V(;_1)p41 is computed. We use the WY form for a product of Householder
reflectors described in [5] to write

Vi—tpt - Vi—tpar1 =1 = Y;(:, 1t k= D)W;(: ,1: k—1)". (3.48)

After the (jb)-th column has been updated, columns jb+ 1 through n are updated with
the product V;_1yp11, ...,V in WY form (3.48). This process is illustrated in Figure
3.8. The (g + 1)-th block is updated with Householder reflectors in the usual way, as it
is done in Algorithm 3.1.1.

This is the same approach as in the LAPACK routine sgebrd() [21], where the rou-
tine slabrd () is called first, followed by the routine sgebd2(). slabrd() performs the
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00000000 00000 OCGOOO OO 00000000 0000 OCOIOGO OO
00000000 00OCOOGCOOGO OO 00000000 0000 OCGOIOO OO
00000000 OCOOGCOEOGOGOGOIOIODO 00000000 00OCOOGOIOGOIONOO
0000|0000 0000|0000 00O 00000000 0000|0000 00O
0000|0000 0000|0000 00O 00000000 000OCG|I0OOFOO OGO
0000|0000 0000|00O0C0OC OO 00000000 000OCGQ|IOOFOO OGO
0000|0000 0000|000OC OO 00000000 000OCGQ|IOOFOIOS OGO
0000|0000 0000|000OC OO 00000000 000OCGQ|IOOFOOS OGO
0000|0000 0000 |0O0OCO OGO 00000000 000OCG|IOOOIOIOS OGO
0000|0000 0000 |0OFOGOG OGO 00000000 000OCG|IOOFOO OGO
0000|0000 0000 |0OFOCGO OGO 00000000 000C0OCGIOOOIOOS OO
A]O_................... — 00000000 0O0OCO OSSOSO OO —_—
0000|0000 00O0CGOGIOCOIOOS OO 00000000 0OCOCOIOOOIOOG OO
0000|0000 000OCG|IOOFOOS OO 00000000 0OCOCOIOOOIOOG OO
00000000 0000 OCGOIOOS OO 00000000 0000 O0OGOCGO OO
00000000 0000 OCGONOO OO 00000000 0000 O0OOCGO|IONOO
00000000 00O0COOCGOIOO OO 00000000 0000 OCOGOGO OO
00000000 0000 OCGOOO OO 00000000 0000 O0OOCGO OO
00000000 00O0COOCGCOOO OO 00000000 0000 OCGOIOGO OO
00000000 0OOCOEOGOOGO OO 00000000 0000 OCGOIOGO OO
0000|0000 0000|0000 00O 00000000 0000|0000 00O
0000|0000 0000|0000 00O 000000000000 |00OCGO OGO
00000000 0000|0000 (000 000000000000 |000OC00O0CO

&
e

0000 000O0OCGOOOO OGOOOOS OISO 000000000 |0OOOGOGO OGOOOOS OGO
0000|0000 OCOOOGOOOGIOGIOGOG OO 00000000 OGCOOONOGIOGOGOSOOOS
0000 |000OCG OGCOOOOGIOOGOSOODO 00000000 OCOOGOOGOOGIOGOGOSOOOS
0000|0000 OCOOOOOOGIOOGOSOODO 00000000 OCOOGOOGOIOGOGOS OIS
0000|0000 OCOOOOOOGOOOGOSOODO 00000000 OCOOOGOOOGOIOGOGOSOGOODO
0000 |0000O OCOOOOOOGOOOGOS OO 0000 000OCG OCOOOOOGOOIOGOS OIS
0000 |/000OCG OCOOOOGOOOGOSOODO 0000 000OCG OCOOOOOGOOOOSONODO
0000|000 OCG OCOOOOGOOOO OO 0000 000OC OCOOOOGOONOOS OO
0000|000 OCG OCOOOOGOOOO OO 0000 000OCG OCOOOOGOOOOSONODO
0000|000 OCG OCOOOOGOOOOONODO 0000 000OCOCOOOOOGOOOOS OO
0000 00O0COCG OCOOOOOOOIOEONOS 0000/000OCG OCOOOOOOOIOEONDO
—_— 0000 00O0COG OCOOOOOOOIOEOOS —_— 0000/000OCG OCOOOOOOOIOEOOS —_—
0000 00OCOO OCOOOOONOOIOEOOS 0000/000OCG OCOOOOONOOIOEOOS
0000 00O0COG OCOOOOONONOIOEOOS 0000/00O0COG OCOOOOONOOIOEODS
0000 000G OCOOOOONONOIOEOOS 00000 0O0COG OCOOOOONOOIOOOS
0000 00OCOG OCOOOOONONOIOEOOS 00000 0O0COG OCOOOOONOO OO
0000 000OCG0OCOOOGO OGOOOOGOGNOO 00000000 |0OOOGOO OGOOOOSOGNOO
0000 000OCG0OOOO OGOOOOS OGO 0000 000OCG|0OOCOGOOO OGOOOOS OGO
0000 |000OCG OGCOOOOGIOOGOSGOOOS 00000000 OCOOOGONOGIOGIOGOGOOOS
0000 |000OCG OGCOOOOOGIOGIOGOG OO 00000000 OCOOOGOGOOGIOGIOGOG OGO
0000 |0000OG OCOOOGOOOGIOOGOS OO 00000000 0OCOGOOGIOOGOSOGOOS
0000 |000OCG OCOOOOOGOONOGOSONODO 00000000 OCOOGOOGIOGIOGOS OIS
0000|0000 0GOSO OGOOGIOGOSOGOOO 00000000 0OCOGCOOGOOGIOGOSOOO
AJ73 AJ’4
o cxxcer) :
matrix .
0000 000OGIOOOOOOGOONLOLO(OOGO
0000 000OCG0OOOOOOGOONLOLO(OOGO entry explanatlon
0000|0000 O0COOOOOOGOONLOLO([OOO
0000|0000 O0COOOOOGOONLOLO([OOO
(XXX X XICR KX R CRR ® theelementsofAj,g, that are not
0000 000G OCOOOOOONONOO|IOOGS . . .
o nrrreerx modified in the described steps
0000 00OCOGO OSSOSO OOLOLO|OOGS
0000 000G OCOOOOOOLOLO|OOGS [ ] ]
pdded bbdbdid bbb bbbt bl the elements updated with
— |s0eseessienssieccsione Householder reflectors V ;_1)p41,
0000 000OCGIOOOOOOGOONLOO(OOGS
(XXX X XICE N XL R R ‘_‘V.battheendofthej_th
X X X X I X IR CR 7]
0000 000OCG|0OOOGOO OGOOLOLO(OOGS
0000 000OCGOOOOO OGOONLOLO(OOGS StepOftheouterloop
0000 000OCGI0OOOOOOGOONLOLO(OOS .
XX RN X IR XTI R Ry ° the elements othhat WIHIlOt
0000 000OCGIOOOOOOGOONLOLO(OOGO . .
coccleccclessslecsaless be modified in the next steps
0000 |/000OCG OCOOOOOGOONLOLO(OOO
0000|0000 OCOOOOGOOLOLO([OOO
Aj+1,0

Figure 3.8: Column update in the j-th block of the matrix A.
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two—sided aggregated Householder transformation over the first g blocks, and sgebd2()
performs the unblocked transformations. The only difference is that in the block version
of Algorithm 3.1.1 the one—sided Householder transformations are performed, and the
dimension of the last block is computed differently.

Aggregated Householder transformations represent only one modification of Algo-
rithm 3.1.1. The other modification is achieved by using the ideas described in [50]. Let
us define the following correspondence:

¢ = (j—1b+k, current /-th column is the k-th column in the j-th block,
¢ — (j,k) the indices with ¢ are replaced by (j, k).

This correspondence is introduced only for notational convenience. Now we will inves-
tigate lines (4), (5) and (7) in Algorithm 3.1.1, but with the index £ replaced by ¢. In
all these statements the vector z; — z; is directly or indirectly used. In line (4) wu,
is multiplied by Ay_1(: , ¢+ 1: n)T — Ajx_1(: , £+ 1: n)” in order to obtain z;;. On
the other hand in line (7) the vector v, — v;, is multiplied by A;;_1(: , £+ 1: n), and
vj i, is realized from z;j through line (5) and the function householder(). From the
definition of the function householder() we have

zig = Ajp_a(c 0+ 1,n)
\/§(Zj,k - ¢Z+161)
HZj,k - <Z5é+1€1||2 ’
V2[A 1 (41 n)2i0 — i Ajp (€4 1)]

Ao (s 041 o (3.49
jk-1( 0+ 1 n)ojk 1 2jk — Gerreal2 349

thus

Ujk

From the previous observations concerning the update of the matrix A;, with House-
holder reflectors, in the ¢-th step (which in the block version will correspond to the j-th
step of the outer loop and the k-th step of the inner loop) columns £+ 1,...,n are not
yet updated. A;;_q should be equal to A;oV;1---V;,_1, hence from (3.48) and (3.49)
it follows

zig = Ajol:, 0+ L,n) uy —
—Wi(l+1:n,1: k=1)Y;(: , 1: k—1)"Afju,  (3.50)
Ajpa( 0+ 1in)vje = Ajo(c .0+ 1:n)vj; —
—A; oY (k= DW(04+1:n, 1k — 1) Toj, =
V2[A0(: 0+ 1)z — de1Ajo(:, €+ 1))
| 2j 6 — Gesren]]2
—A; oY (L k= DW;(04+1:n, 1k —1)Tv;, (3.51)

If we define
Zj(lk) =-W;(l+1:n,1: k=1)Y;(:,1: k— l)TA;‘COW,

as the first phase in the computation of z;j, and

xgl,z =Ajo(:, 0+ 1:n)zy
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as the first phase in the computation of the vector xﬁ =Aj,_1(: , L+ 1: n)vjy, then

)

Zip = 251,3 + Ajo(: 04+ 1:n)Tuy from (3.50)
Ajo(:, 0+1:n)zy from (3.51)

ENE-

will be computed simultaneously and they comprise the first group of BLAS 2.5 transfor-
mations in (3.47). By simultaneous computation we mean that as soon as one component
of z; is computed, xgllz is updated with this new data by the BLAS 1 saxpy operation.
The components of z;; can be partitioned in blocks of dimension ¢, so that BLAS 2
segmv is used in the simultaneous computation instead of BLAS 1 operations. This
would improve the cache memory usage even more.

In the k-th step of the inner loop for the last (g + 1)-th block update with V41 51,
the computation of z441; and 95;21,/& will be done simultaneously. Let again ¢ = gb + k.
First, we have

Apvipa(c,0+1in) = Agpipo(: L+1:n)—
—Ag_,_l’k_g(i ,EZ n)vg+17k_1vg+17k_1(2: n—/{ + 1)T,

= Ajpo(:,0+1:n)— xé?;)l,kflvg+1,k—1(2: n—{¢+1)T

where xé?il,k =Agp15-1(:, 0+ 1: n)vgp1k, and from (3.49) it follows

Ag+1’k,1(l 7£ =+ 1: n)vgﬂ,k =
\/ﬁ[Ag+1,kfl(: A4+ 1:n)zg010 — Gep1Agrrp—1(: £+ 1)]

= . 3.52
||Zg+1,k - ¢£+1€1||2 ( )

Again, if we define

- _

Lor1k = Agrir—1(: 0+ 1 n) 241k

as the first phase in the computation of the vector 37521,@ then

App1p1(00+1in) = Agipo(:  L+1:n)—
—ngkflng’k_l(Z: n—{0+1)7"
Zg+l,k = Ag+l,k‘—1(: ,E + 1, n)Tug

xﬁm = Agirp1( 0+ 1 n)zg00p

comprises the second group of BLAS 2.5 transformations in (3.47).

The reason why these operations are performed simultaneously is that the same parts
of the matrix A are involved, as well as the same parts of the vector z;;. So, when a
particular block of the matrix and the vector is stored in the fast cache memory, all the
operations can be done without transferring blocks from slower memory to cache. This
will save some time spent on memory transfer in Algorithm 3.1.1.

Details of the block algorithm
The following operations are performed on each block j =1,...,¢:
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e Instep k = 1,...,b, only the ¢-th column of A;;_; is updated with aggregated
Householder transformations computed in steps ¢ = 1,...,k — 1 of the inner loop:

Aj,k(: 76) = Aj,k—l(i ,E) = [Aj,OVj,l .. 'Vj,k—1]<: 75) =
= Ajo(:,0) = AjoYi(: 1 k= D)Wk, 1: k—1)T,

where £ = (j—1)b+k. Here V;; = I —v;;v], is the Householder reflector obtained
in the i-th inner loop step within the j- th outer loop step, where v;; = [0, v;,],
Vj; € Rni(jil)bii. We can note that Vjﬂ' = I(jfl)bJri ©® V}',i and ‘/}77; =1 - Uj,ivjj‘:i-
For the aggregated Householder transformations the following statements hold (see
[5])-

ViV = 1-Y(, 1 k=1DW;(:,1: k—1)T,

Aj}kfl = Aj,OVj,l tee ijkfl = Aj,() - Aj’(]}/}(l y 1: k— 1)W]< y 1: k— 1)T,

The term A;oY;(: ,1: k—1) is also occurring in relations (3.50) and (3.51), hence

we define X; = A;,Y;. From the definition of the matrices Y; and W in [5], W},
Y; and X satisfy the following recurrences

W;(:,1) Vi1,
Yi(:,1) = v,
X;(:,1) = AjoY;(:,1) = Ajevia,
( ) k) = [VVJ< Ak — )7 ijk]v (353)
(:,1:k) = [Y;(: 1k —=1), Vji-- Vg qvjy] =
= [V;(:,1:k—=1), vir = Y;(: , 1: k= D)W,(: ,5: k— 1) v 4],
Xi(:,1: k) = AjoY;(:,1: k) =
= [X;(:,1:k—=1), Ajovie — X;(:, 1 k—=1D)W,(: ,1: k— 1)ij7k].

e uy is produced from orthogonalization of A;(: , ¢) against uy_;, and normalization
(a Gram—Schmidt step).

o W;(:,k)=vj;and X;(: ,k) are computed using BLAS 2.5 as follows. The vector

(1)

2, and the vector xﬂ are computed simultaneously, where x; is the first step in

obtaining X;(: , k). First we have to set

A= Wi i Lk = D)X 1 k= D) g, 2l =0,
and then for i = ¢+ 1,...,n we can compute
Ziw(t — 1) = ](,Q(Z—E)JrAjo(:,z‘)TW
o = al)+ Ajols D)zl - 0).

The components of z;; are partitioned in blocks of dimension ¢, and as soon as

one block of z; is computed, xgl,z is updated with this new data. When z;; is
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finished v;;, is chosen in the same way as in Algorithm 3.1.1, and immediately
after that xgz,z and Ig?)]z are computed so that

.Tgi); = Aj,O(: ,g +1: TL)’UJ"k.
®3) (1)

;7 is obtained from z;; and ¢y = +||zj||2 in the same way as v, is obtained
from z;x and ¢y4q1. Finally (see (3.53)),

X;(:,k) :xﬁ :xgglz —X;(:, L k= D)W;(0+1:n, 1k —1)Tv.

o After b steps, the rest of the matrix A,; is updated with V;;---V;,:

Aj+170(2 ,]_Z jb) = Aij(Z ,]_I jb),
Ajo(c,gb+1:n) = Aj(:,jb+1:n) — X;(:,1: b)W;(jb+ 1:n,1: b)T.

For the last (g + 1)-th m x r block we use a similar technique, except that in each step
the whole matrix is updated. The following operations are performed on the last block
of dimension m X r:

e For steps k =1,...,r, the {-th column of Ay, is updated with Vg 5_1:

Ag+1,k(1 ,5) = Ag+1,k71(: ,g) =
= Agrip—2(:,0) — ’Ug-i-l,k—l(l)xg?l,kfl’
where ¢ = gb + k, and

(3) _ ..
Lot1k—1 = Ag+1,k—2(- A n)vg—l-l,k—l;

and is computed in the previous step.

e uy is produced from orthogonalization of A, 4(: ,¢) against uy_1, and normaliza-
tion (a Gram—Schmidt step).

e The update of the rest of the matrix Agyi1,_1(:,¢+ 1: n), and the computations
3 _
gt+1.k —
Namely, Agi15-1(: , €+ 1:n), 2501, and xéﬁm are computed simultaneously in

the following way: :cgljzl’k =0, thenfori=/¢+1,...,n do

of vg41 and z Agp1p-1(: 0+ 1: n)ugyqy, are performed using BLAS 2.5.

Ag+1,k71(: ,i) = Ag+1,k72(: ai) - /Ungl,kfl(Z' —{+ 1)$§?17k_1
zgrik(i—0) = Agpipoi(c i)
1 1 . )
x§421,k = x;lm + Agiar1(: ;1) zgr1n(i — 0)

As soon as the i-th column of A, ;_1 is computed, the proper component of zg41

is computed, and x§1+)1,k is updated with this new data. When z,4; is finished

Vg1, 1s chosen in the same way as in Algorithm 3.1.1, and ‘75521,1@ is computed.
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Now we can state the complete algorithm.

Algorithm 3.5.1 (The block Barlow one-sided bidiagonalization). For A €
R™ ™ rank(A) = n > 2, this algorithm computes orthonormal U, bidiagonal B and
orthogonal V' such that A = UBVT.

Initialize:
the block dimension for aggregated Householder transformations b;
the block dimension for BLAS 2.5 transformations c;

Ag=A;

s1=A10(:,1);

9= 1n—2)/b;

for j=1:¢g

{Update the j-th block of the matriz A with aggregated Householder transformations and the
first group of BLAS 2.5 transformation from (3.47).}
X] = OmXb;' W] = OTLXb;'
for k=1:0
0=(j—1)b+k;
A0, 100 =1) = A ,q(:,1: 0= 1);
ifk>1
Aj’k(l ,€> = Aj’(](l ,g) - Xj(ﬁ ,12 k — 1)WJ(£,1 k — 1)T,'
S = Aj,k(I ) — beug_y;
else
Ajr(:,0) = Aje—a(c, 0);
end;
Yy = ||Sz|’2;
Up = S@/wf;
ifk>1
A= Wi+ 1 n 1 k= D)X, 1k — 1) s
else

Zj(lk) = Om—r)x1;

end;

z;}]z = 0m><17'

fori=(+1:c:n
d=min(c,n —i+1);
guli—Lii—C+d—1) =206~ li—0+d—1)+ Ajo(c i i+d—1)Tuy;
o\ =2l + Ajo(syivitd—1)z(i—Lii—(+d—1);

end;

[es1, Vj ks xgglz] = householder 2(z; ;, xgllz, Ajo(:,0+1));

W](g +1: n, k’) = Vj ks

xﬂ = 375312 — X, k=)W +1:n,1: k— 1) v,

4
XJ( ,k) = .Z'g-’k):,'

end;
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{Update the rest of the matriz A with aggregated Householder transformations from the j-th block.}
A]'Jrl’o(: y 1: jb) = Aj,b(: y 12 jb),

Ajyio0(i,jb+1:n)=Ajp(: ,jb+1:n) — X;W;(5b+ 1:n, 1 )7

sjp1 = Ajiro(:, 70+ 1) = Gjpiause;

end;
r=n— gb;

{Update the last block of the matriz A via the second group of BLAS 2.5 transformation
from (3.47).}
for k=1:r—-1
{=gb+k;
ifk>1
Appr (0,100 —=1) = Agprpa(c,1: 0 —1);
Agi1k(c 50 = Agpa e, 0) — vg+l,k71<1)x$;)+1,k—1;
so = Agr1i(: ) — douy_y;
else
Ajr (o, 1:0) = Agyq a0, 10 0);
end;
Yo = |[sell2;

Uy = SZ/W;

n .
Lor1k = Omx;

fori=/+1:n

ifk>1

Agirr—1(: 1) = Agprip—a(: 1) — Vg1 (i — L+ 1)35521,1@_1;
end;
ifl<n—1

Zgrr k(i =€) = Agia 1 (1) uy;
1 1 . .
ﬂf(g+)1,k = f(gJZM + 2gr1k (i — ) Agran(: ,7);

end;
end;
ifl<n-—1
[Dr41, Vg+1.ks xﬁm] = householder 2(zy41 4, x§217k, A1 (:, 04+ 1));
end ;
end;

an = ugflAngl,T*l(: 771);
Sp = Ag—l—l,r—l(: )n> - anun—l;'

U = [|snll2;
Up = Sn/wn;
VT = householder_product(vy1,...,v5110-2);

The auxiliary function householder 2() is defined as follows.
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function |¢, v, y|=householder 2(z, x,b)
{The function householder 2() computes ¢, v and y such that Vz = ¢e; and y = Bv, where V =
I — T is a Householder reflector, v = Bz and b = Be;.}

n = length(z);

¢ = ||z[l2;

if >0
¢ = —sign(z(1))¢
t(1) = 2(1) — ¢;

t(2: n) = z(2: n);

v=2t/tll2;

w=2x — ¢b;

y = V2w/||t];
else

v =0;
end

Remark 3.5.2. The vector w in the function householder 2() stands for xﬁz
Remark 3.5.3. The choice of the block dimensions b and ¢ depends on the computer
which executes Algorithm 3.5.1. Their sizes are chosen to obtain optimal efficiency. In
LAPACK routines, the function ilaenv() is used to determine the optimal block size
for block algorithms. The section Determining the Block Size for Block Algorithms of
[1] explains how ilaenv () works: “The version of ilaenv() supplied with the package
contains default values that led to good behavior over a reasonable number of the test
machines, but to achieve optimal performance, it may be beneficial to tune ilaenv ()
for the particular machine environment.” Our optimal block dimensions were obtained
through tests.

3.6 Numerical Stability of the Block Version

Algorithm 3.1.1 is numerically backward stable, but what about Algorithm 3.5.17 The
answer to this question is given by Theorem 3.6.4. Before stating a proof of Theorem
3.6.4 we will need results of three technical lemmas. The lemmas are based on the
numerical analysis of basic numerical algorithms given by Higham [47|, and the analysis
of the modified Gram—Schmidt algorithm given by Bjorck and Paige [6]. In our numerical
analysis we will use the following notation once again: tildes (~) will mark computed
quantities, and hats (~) will denote vectors and matrices that correspond to certain
exact relations and exist only as theoretical entities, not actually computed.

Lemma 3.6.1. When Algorithm 3.5.1 is executed in finite precision arithmetic with the
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unit roundoff error € then the computed values are of the following form:

ﬁj,k = ﬁj,k—i_d@j,ka H(S@J’kHQSO(TL—l)S
Wil: 10 k) = W;(:, 1 k) +0W;(:,1: k), [|6W,(:,1: k)|lr < O(Wkn)e
Xi(: k) = AjoYi(: k) +0X;(: k), [10X;(: k)2 < O(kn)el[AjollF,

where ;) define exact Householder reflectors ‘A/j’k7 and VAVj, Y/J and Xj are ezact matrices
that are related to Householder vectors 0jy as described in (3.53). Further, the exact
values can be estimated as

Wi, 1:B)lr < V2V
1 1Bl = 1A0Y5(: .1 k)|lr < 2V2VE|[ Ajollr

Proof. The proof follows the execution of Algorithm 3.5.1.

1. First, we will start with the computation of A;¢(: ,¢ + 1: n)v;; as shown in
Algorithm 3.5.1:

xf’,z = Aj70(2 ,é-'- 1: n)vj,k =
= V2[A0(: €+ 1: n)zk + sign(zx (D)) |2kl 450 (5 €+ D)1/ (I,

where ¢ = (j — 1)b + k. Here we can note that the computation of A;o(: ,¢ +
1: n)v;y is parallel to the computation of v;j (see function householder 2()),
and not performed as an application of the submatrix of A;( on already computed
vj. In our FORTRAN code which implements Algorithm 3.5.1, we used the
routine slarfg2(), a modification of the LAPACK routine slarfg(). The routine
slarfg() generates a Householder vector v;;, and slarfg2() generates both: v;
and Ajo(:,¢ + 1: n)v;,. This routine obtains a slightly different result from
that shown in Algorithm 3.5.1, but the error analysis in both cases is the same.
We will present the analysis of the routine slarfg2(), where operations in exact
arithmetic are performed as follows:

Biw = —sign(Zx(1)|Zxll2
0k(l) = 1
bir2in—0) = (20— 0)/(Zx1) = Bix)
Fk = Bk — Zx(1)/Bin
Ajo(: 0+ 1:n)j = [Ajol L+ 1:0)3% — BinAjo(: 0+ D]/ [Zx(1) = Bix]
computed as
21]2 = fljp(: A+1:n)z
B = (350 = Birdio( 0+ D]/ [Ew(1) = Bia]

and it is obvious that

2 - . Z:u(2:m = 0)|3
Boal = el Mm:w+ﬁﬁ B

Zik(D]+ 1Z5kll2)*
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1Z5kll2 + 126 (1)

1< |1l =
=1l =

< 2.

Then, a Householder reﬂector has the form \7] k= I =710, %0, and the scalar 7;

will be assigned to :v later In floating point arithmetic we have the following
situation, which is stralghtforward.

a)
Bik = Bix(1+01), 01] < O(n —l)e
b)
Ujk(2:n—20) = fl Z{’k(Q: n _~€) =
1(Zk(1) = Bjn)
IYTRUNNR 12,
(14 62)[Z4(1) = Bis(1 + 51)]
101 .
(14+0) (1= 5825 ) =B
= ([ +22)0;,(2:n—0)=0;,(2:n— L)+ 60;,(2: n —0)
(3.54)
where
|A1| §€I, |62| §87
; Bj.k01 _ < ||Zj,k||2~ O(n — ) < O(n — 0)e,
Zin(1) = Bin| ~ 1Ze] + (1256l
which implies that
|As| < O(n—L)el, 100, kll2 < O(n — O)e||tjkll2 < O(n —L)e.  (3.55)
where 00;;(1) = 0.
¢) Finally

Fir = ( (Bix — 211 ))) _ (1+53>(1+54)[Bj7k(1+51) —Zx(1)]

ﬁ]k Bj,k(l + 51)
(1+03)(1404) Bix Biw — Zx(1)
1 + 6,2t i -
L+, ik — Zik(1) Bjk
= (1405)7k (3.56)

where

6] <&, |0 <e, = |85 < O(n— 0. (3.57)
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d) Further we have
20 = A0 0+ 1in)Z0) = Ajo(s 0+ 1 n)Z + 021,
~(1 e ~
1625201 < Ot = Ol AzolleliZiale,

)
2 = 4@ —8(BaA(: 0+ 1) =
= (T4 Ag)[Ajo(:  L+1: n)z]k—i-(%gl
—(I+A4)ﬁjyk(1+5l)A- (:,0+1)] =
= Ajo(: 0+1:n)5, — ﬁJkAJO( 0+1) + 627
where
As| <el, |Au<el, = [82)]]2 < O(n — Ol Ajollr ]| 2]l
f)

121] ( g—l-l n)j ﬁJkAJ0< €+ )+6£§2’2
= ([+ A5) 5 T
(14 06)[Zx(1) = Biw(1 + 61)]
_ Aj,O(: 7f + 1:~n)2j7k — @j,kAj,O(: ,é + 1) + 5;%53]2 _
Zik(1) = Bjn |
= Ajo(c 0+ 10 n)byp + 02, 3:5%)

where
|A5| S E]a |56| S €,

fljyo(: A+1:n)Z, — ﬁAjﬂkAjﬂo(: L+ 1)
Zx(1) = Bin

LO(n — e ~||f~1j,o||F||5j,~i<:||2 <

125k (D] 4 11252

O(n — el Ajo(: , £+ 1: n)bjklla+ O(n — O)el| Ajollr <

O(n —€)6||Aj,0||p. (3.59)

16291, < O(n—0)e

2

ININA

2. Now we turn to the computed columns of the matrix Xj. Let us remind that we
use the aggregated form of Householder transformations, where in exact arithmetic
we have

ViV Vi = (I=vvi ) =vjiavi, q) - (I —=vjiviy) =
= T—W;(:,1:0)Y;(:,1:9)7,
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Vji,...,V;; € R™", Wi(:,1:4),Y;(:,1:4) € R™,

and W; and Y; are computed through a recurrence

M/J( ,1) = Vj,la Y}( ,1) = Vj,ly

Wi(:,104) = [W;(:,1:i—1), v,
Y]( ,12 ’L) = D/J( 711 Z-l), Vj,l---Vj,i_lvj,i].

In our case, it holds
Xj:fijvoffj, Xj:Xj(Z,llb>,Y}: j(ﬁ,llb),

and for £ = (j — )b+ k

A A

M/J(lg,k’) :ngl, VVj(€+1:n,k):f)j7k,
X;(: k) = Ajolc 0+ 1:n)bj — AjoYs(: 1 k= D)W;(04+1:n,1: k —1)T0;,.

J

Because of the choice of v;; and 7;; in slarfg2(), in floating point arithmetic

X;(:, k) is computed through the following steps:

7 = AEY) - AG 1 k= DA+ 1:n,1: k= 1)T0;,)))
Xi(: k) = A7), (3.60)

and only for k = 1, holds that X,(: ,1) = fi(7;,2\)).

First of all, we can find the error estimation for W;(: ,1: k) immediately from
(3.54) and (3.55).

IW;(: 1 k) le < V2VE,  OW,(:,1: k) = [6%1 ... 0%,
Wil 1 k) =W,(:, 1 k) +0W,(:,1: k), |oW;(:,1: k)||lr < O(VEn)e
(3.61)
for k =1,...,b, where 6v;; = [0 09;,]".

For the exact value | X;(: ,1: k)| we know that
16, (: .12 B)le = 1 450%5(: 5 12 B)lle < 2vV2VE| Ao,

where
Yi(: k) =7k Vi1 Vik 10,

X;(:,1: k)= A;oY;(: 10 k).

3. The error analysis for Xj(: ,1: k) will be conducted through mathematical induc-
tion on k.
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a) For k =1, from (3.56), (3.57), (3.58) and (3.59) it follows

X;(:,1) = f(7,587%) =

7,1
= (I +86)(1+05)F51(Aj0(: , 0+ 12 n)iy1 + 028
= 7A'j71f~1j70(2 ,g—f—ll n)@j,l —f—(SX]( s ): Aj,OYj(- s )—f—stj( ,].),

where
|Ag| < el = 16X;(:, Dl < O(n — || Ajpoll .

b) Now, let us assume that for k — 1, k > 1 and ¢ = (j — 1)b + k, we obtain

~§4]2 1 = Ajﬁo(ﬁ 7£I n)@j’k_l -
—AjoY5(: 1k = 2)W(0: n,1e b —2) 0 + 0285,
(3.62)
1655 11l < O((k = Dn)el| Aol - (3.63)

We can get the same result if we took any h € R" ! with ||hl]y < v/2, and
start the computation of :%g-fl,z_l with it. The next step will show that

5?54;3 = Aj,o(I A4+ 1:n)0j, —
_flj,offj(: 1 k—l)ﬁ@-(ﬁ—l—l:n,l: E—1)7 U]k+5x]k7

1621l < Okn)e| Ajol| -

4,2 = (~(3) —A(X;( 1 k= DAW;(0+1:n,1: k= 1)) =

= (I+A)ES) = A, 1 k= DAV(C + 1:n, 1k — 1)T05,))] =

= (T +A)EY) A, 1 k= AW (0+ 1 m, 1k —2)T55,) +
HAW;(0+1:n,k — 1)T@jk))~(‘(- k—1))] =

= (I +A){a0) — (I + Ag)[A(X;(: , 1 k—2)ﬂ(W(€+1: n,1: k—2)75,)) +
HAA(D55-1(2: 0 — £+ 1700 X5 k= 1))} =

= (I + A —8(X;(: 1k — )ﬂ(Wj(len,1:k—2)Tﬁj,k))+
AR (D1 (2: 1 — £+ 1)T@]k)ff (: k—1))+
A (1 k= 2DAW;(0+1:n,1: k —2)70;,)) +
A1 (2: 0 — L4+ 1D)T0,)X;(: k= 1))} (3.64)

where
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5 |A;| <el, |Ag| < e, (3.65)
and
20— X, 1 k= 2B+ 12 n, 1 k= 2)T05)) =
= (I + M) = A(X (1 k= DAV (E+ 1 n, 1k —2)T05,))) =
= (I +D9)a5) 4,
with
|Ag| < el.
The notation fﬁﬁ_l’ . describes the vector which is computed in the same way
as ff)_l, but in this case its computation started with { @?k ] e R+l

instead of v ;1.

b) Now we can apply the induction assumption here and state

- = 0
x§j112—1,k = A_j,(](: ,gi n) [ A :| -

Vs ke

—flmf/j(: 1k — 2)Wj(€: n,1: k—2)" [ @0 ] —i—(%ﬁi_lk =
g,k ’ ’
= Aj,l(l 78—0— 1: n)TA)J,k —
— ALY 1k = 2)W(0+ 1, 1 k= 2) oy + 02,
where
~(4 e
1625 Ml < O((k — D)n)e]| Ajoll -

So
BP0 —AXG (1 k= 280+ 12, 1 k= 2)T05)) =
= Ajo(c 0+ 1:n)0 — AjYi(c 1o k= 2)W(04+1:m, 10 k —2)T0 +
+6,24) (3.66)
with
181252012 < O((k = V)n)el| Azl - (3.67)
¢) Next, we have
ARG 1(2: 0 — €+ D)0, X0k —1)) =
= (I + Do) (@1 (20 n— £+ 1) 055 + 67) (I + Ay Fjpma Togy =
= B2 — 0+ D) 0T 35 + 6l

with
|Avo] <el, |An|<el, [6] <O(n—{),
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~(4 1
12551112 < V2] A 0llr + O(e),
which implies that
1023572112 < O(n — )| Ajo| -

Further, from (3.54), (3.55), (3.60), (3.56), (3.57), (3.62) and (3.63) it follows
that

ARG 1(2: 0 — 4+ D)T0,)X,(:  k—1)) =
= (V1 (2:n =L+ )T + 605 1(2: n— £+ D)) (050 + 60j4) (1 + 65)Tj1 -
-[flm(: A n)j g — ALOY/]'(: 1k — Q)Wj(ﬁ: n,l: k— 2)Tﬁj7k_1 +
+5i§%}271] + 5233"5'?‘12 =
= (Ojp-1(2:n— L+ 1)T 4+ 60j51(2: n— ¢ + DY (0 + 00,2) (1 + 05) -
[AoY5(: k= 1) + 7 1(55’3gk 1)+ 02 x]k =
= Ojgm1(20 0 — 0+ )T 055, 4;0Y5(: b — 1) + 6320, (3.68)

where

165253112 < [O(n) + O((k = D)z Ajoll - (3.69)
d) The last thing we have to check is:

Ag[A(X;(: 1 k= 2AW,;(041:n,1: k —2)T0;,))+
(D51 (2: 1 — L+ D T0) X, (: k= 1))]
= Ng[X;(: 1k =DW;(0+1:n,1: k= 1) 0 4+ O(e)] =

= 5,21, (3.70)

where, from the induction assumption, (3.56), (3.54) and (3.61) it follows
that
16212 < Ok = Del| A o]l - (3.71)

Putting everything together, from (3.64), (3.65), (3.66), (3.67), (3.68), (3.69),
(3.70) and (3.71) we obtain

BL = (U AA(c £ 1 m)iyy

—A V(1 k=)W1, 1 k= 1) 0 +
+01 xjk+(53:v(4)+5x ,2]

= A ( A1) — AjYi(c 1o k= DW(04+1:m,1: k— 1) 70, +
+025). (3.72)

with

16212 < [O(n) + O((k — Dn)lel|Ajollr < O(kn)el| Azl (3.73)
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and from (3.56), (3.57), (3.72) and (3.73) we obtain
X;(: k) = A7) =
= ([ + A12)(1 —+ 65)%j,k[Aj,0(: ,g —+ 1: n)flA]Jyk —
—A V(1 k=)W (04+1:n,1: k—1)T0,, + (5:?:5412]
= 7A'j7k[/~lj70(2 ,g—i— 1: n)@j,k - Aj’gf/vj(i ,12 k — 1) .
Wi(l4+1:n,1: k=170, +0X,(: k) =
= Ajpffj(Z ,k)—f‘(SXJ( ,]{3),
with R R
|A12| S 6]7 - ||5XJ( ,]f)”g S O(kn)8||Aj70||F.
5. Finally, we get the result:
Xi(: 10 k)= X501 k) +6X,(:,1: k) = A;oY;(: 1 k) +0X,(: ,1: k),

where

k
16X5(: 1 k)lle = 4| D 16X5(: D3 < O(k2n)e| Az -
i=1

]

The next Lemma is stated on account of the completeness of the proof. It is a
combination of Step 2 in the proof of Theorem 3.2.6 and Remark 3.2.7.

Lemma 3.6.2. Computed elements of the matriz B from Algorithm 3.5.1 satisfy the
following relations:

[ Prirer + Vri1Chi ] — PP ([ 0 ] n [ Afis })

0 Jr+1 0 fr+1
| < owmer,
5feer ||,
where Py, k = 1,...,n are exact (m +n) x (m + n) Householder reflectors defined in

[6].

Proof. Consider the computation of the k—th column of B. An application of the results
on floating point computation from [47, Chapters 2 and 3| reveals that

fgl = Al(||fill2) = || f1ll2 — 6¢n,
[0y < O(m)el|fill2,

’&1 = ﬂ(é) :al—i—é’&l,

1
A /i
TS
|dialls < O(m)e.
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Furthermore, since the current column of A is updated with at most b Householder
reflectors at once, the following bounds look like the bounds in Remark 3.2.7, multiplied
by b. For k =1,2,... we have ([47, Chapter 19)]):

€Z~5k+1 = €1Tﬂ(‘;§egk) = 1, fk—l—l + 5¢k+17 |5¢k+1| < O(bm)e|| |,

Sir1 = A(fers — Phrrlie) = frrr — Oyl + 08411,
where

[08k11llz < O(bm)e|| F||r,
o1 = Uf frr1, |Ors1] < || F||r-

According to the ideas of Bjorck and Paige [6], we can write this computation as

l P16k ] _ [ ¢3k+1ﬁk ] n l Ok s16n } _

Skt1 Je1 — Oy, 0841

S 0 S 5<£k+16k } }
- B p
" {[ Jra1 } T [ 08k+1 ’

b, = 1m+n—{ie’“}[—e{ af |,

Uk

where e; denotes the kth column of the identity matrix I,,. Note that f’,? = Inin-
Further, the values ¥y1 = fl(||Sks1]]2), Urr1 = H(Skr1/Wrs1) satisfy

Vpp1 = |5k+1l2 — Vg1, |5@Zk+1| < O(m)e||F||F,
Ups1 = Upsr + O0Upgr, Upg1 = Spgr/||Sell2, [[0Urga]l2 < O(m)e.

Thus, the computation of the (k 4 1)-th column of B can be written as

[ &kJrlek +1Zk+1ek+1 } _ [ ng+1ek + [|8kr1ll2€841 } _ [ Mkﬂem }
0 0 0

ul ] [

4 Sdpyrer | 7 0rsre _
R G Rl B R S T
_H 7 A fra A fr1

‘P’f“P’“{[ fkﬂ} [ 5fin H ’H 5frn } Obm)el| Fll-

In case when k& = 0 and when we compute the first column of B, we can write gz~51 =0,
51 = f1, Po = Ln1n. Hence, we can conclude that

2

HIBC k4 Dl = [ feallz | < O(bm)e]| F|lp.
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Lemma 3.6.3. The computed wvector u, and the computed submatriz
Agp10-1(:, 0+ 2: n) from Algorithm 3.5.1 satisfy the following relation:

||ﬂeTf~lg+17T_1(: A+2:n)2 < O(an +bm + bn2)6||A||F.

Proof. As mentioned before, the choice of the vector z;; plays an important role in
backward stability of Algorithm 3.5.1. The computed vector Z;; € R", satisfies the
following relations.
A= AW+ 1 1 k- DA(X(:, 1k — 1)Ta )):
= —W(+1:n,1: k—l)[X'( 1k — )T+ 620 + 6,28 =
= —Wl+1:n1:k—1)X(:,1: k=17 g+52(1)

where ¢ = (j — 1)b + k, and

18281l < OWVE = TIm)el|Ajollr, 18225112 < Otk — DA Aj0ll -
This implies .
10212 < O((k = 1)m + (k — 1)) Az .

Further we have

Zx = AA(A(: 0+1:n)Ta) + 2Y) =
= (T+AR)[Ajo(: 04+ 1:0) 0+ 6,2, —
Wil +1:m 1 k= DX, 1k — 1)TI~L£+5,§](~71]3] =
= [Ajo(:  0+1:n) = X;(:, 1 k= DW(14+1:n,1: k= D) a0, + 6525,
with 3
[Awl <el,  [[0izklla < O(m)e][Ajollr,

SO
102251 ]l2 < O(km + k*)el| Ajollr,

and from Lemma 3.6.1 it follows that

Zin = [Ajo( 04+1:n) = (X0, 1: k—=1) +0X,;(:,1: k—1)) -
(W (0+1:n1: k= DT +0W,(0+1:n,1: k— 1)) iy + 622 =
= Ao 0+1:n) = X;(: 1k =1D)W;(0+1:n,1: k— D7), +
+62; 1, (3.74)
where )
162;4lla < O(K*n + km + k)| A;ollr < O(*n + km)e|| Al p. (3.75)

First, for £ = (j—1)b+k, k=1,...,b, we define the matrices Vj, V;; € R=0x(n=0
as (see proof of Lemma 3.6.1)

~

A o AT > ~ o~ T
Vik =1 —=Tjp0jk0; g,  Vik =1 — Tjk0jk0jy,
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and Q;,Q; € R™" as

O, = Iy 0 1 [ G-z O I-1p4r O
J 0 Vi 0 Vi 0 Via ’

Q.: I ~0 I(j-1)p+2 ~O IG-1)p11 ~0
J 0 V},b 0 ‘/j,2 O V},l 3

where QJ =1~ Wj}A/jT and Qj =1- WjY/jT. The exact Householder reflector V,k =
I — 740500, € RO~ js chosen so that

125512
0
(I = 7005 ) 2 = : : (3.76)
0

Then, for X;, X; € R™® and W;, W; € R™®, from Lemma 3.6.1 it follows that
Ao = ﬂ(Aj,OQ]T) = (A4 — ﬂ(XjoT)) =
= Ajo = [(X;+ 6 X)W + W) + 614, 110] + 024110 =
= Ajo— X;WF + 645000 =Aj0 — Aj oYW + 6Aj410 =
/Ij,OQJT +0A410,
where - -
161 4j1101lF < Ol Ajollr, 1024410l < O)el|Ajollr,

which implies .
164;110/lF < OB*n)el|Ajol| p-

On the other hand, for \A/'M =L V},k, Qj =V, -V and Qj, we can write once
more
Ajﬂ,o = ﬂ(Aj,oQNJT) = ﬂ(;lj,o - ﬂ(XjoT)) =
= Ajo— X;W +64;00 =
= Ajo—X;(:, L E=DW,;(:,1: k=17 = X;(: , k: D)W;(:  k: b)T +
+0Aj410 =
= (Ao —X;(: 1 k=W, 1 k=DTV,p - Vs 4+ 04410,
and
Fo= (- (Ao = X 1 k=W, 1 k= 1)) Vg Vg + 8A5010) -
: A]TH +6Aj420) ) @h g+ 6Agu1, )@ + 6 Agi1, 1 =
= (Ajo— X0, k=)W, 1 k= D)Vi - V3QF - QF +

g r—1
+ Z 0Ait10Qi -+ Qn, T Z5Ag+1»ngT+i+1 @, =
i=j+1 i=1
= (Ao - X, Lk =1)W;(: , 1i k= D))Vyp - VQL - QF + 6, F0),
(3.77)
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where n, = g +r — 1 is the total number of update steps, and

6. F9 e < [O((g = 5) - b° - ) + O((n — gb)n) el All» < O(b - n*)e||Allp. (3.78)

If we put all this together, for \7§ = I @ VJZ e RO=0x(=0) and Q = Ql(f +
l:n,l+1:n), where i =k+1,....b, from (3 77), (3.78), (3.74), (3.75) and (3.76) we
will obtain
~T A . . _ =T . . _
Uy Agrrpa(c 0+ 1in) =10, F(: ,{+1:n)=
= W [(Ajo(: 0+1:n) = X,;(:, 1 k= 1D)W;(0+1:n,1: k;—l) ) -
Vie Vi Vg @) (@) 04+ 1:n) + 6. FV(: £+ 1:m)] =
= (2 = 82 Vir Vil - V@) - QU (: 04 1em) + 832
o (L (0 AL A
- mzj,kuz OV V@) QUG L) 042
where
132j[l2 < O(b - n*)el| Allr,
SO
1642¢]|2 < O(b*n + bm + bn?)e|| A|| .
Because V§ ,ZH, ..,\Afj(fg, Qﬁl,. . ,Q%Z does not have any effect on the /-th coordinate

the 1-st coordinate of Z;;) and they do not mix it with other coordinates, we can
7, y
conclude that

Q?Ag+1’r_1(l ,E‘i‘ 1: n) = [Hé‘],kHQ 0--- 0] + 542}:@

and .
iy Agirra(:, 0+2:m) =642,(2: n— 0T

Finally we obtain the result

Hue g+17“ 1( €+2 n)Hg S O(an+bm+bn2)€HAHF

Now we can finally state the main theorem.

Theorem 3.6.4. IfB is the bidiagonal matriz computed by Algorithm 5.5.1, then there
exist an orthogonal (m + n) X (m 4+ n) matriz P, an orthogonal n X n matriz V and
backward perturbations AA, 6A such that

{g}:ﬁT{AJréA} ‘H } F

where 0 < § < O(b(mn+n?))e. The computed approzimation 1% of the matrix 1% satisfies
|V =V||r < O(n?)e. Further, there exist an orthonormal U and a perturbation §A such
that

< &[|AllF, (3.79)

A+6A=UBV", |6A|r < V2¢|Allr. (3.80)
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Proof. The proof is rather technical and we will divide it into three steps.

1. Step: The Householder transformations
We will set F = fl(AV) = Ay 1,1, £ = (j—1)b+k and r = n— gb, where A,y 1,
is the result of Algorithm 3.5.1 performed in finite precision arithmetic. Thus, in
floating point computation we can use f, = F'(: ,{) instead of

f:lj,k(:,é) forj=1,...9, k=1,...,b, £=1,...,gb
fo= 49+17k(:,€) fork=1,....,r—1, £=gb+1,....,.n—1
Ag—l—l,r—l(: 7”) for £ = n,

because the denoted column will not be modified in successive steps of the algo-
rithm (see Figure 3.8).

In this step of the proof we will analyze the application of Householder reflectors
to the matrix A, in floating point arithmetic. This application is divided into g
steps, where b columns of F' are computed in each step, and in r remaining steps,
where only one column of F'is computed per step. First, we are investigating the
computations performed in one block j € {1,2,...,g}.

Lemma 3.6.1 gives the following error estimation:

Xj(: J1:k) :/le,offj(: 1 k)+5Xj(: J1:k),

where
16X5(: 12 k)|l p = Z 16X,(:,0)l3 < O(kzn)el| Aol r,
and 3 R )
Wi, 10 k) =W;(:,1: k) +oW;(:,1: k),
where

16W,(: ,1: k)||p < O(Vkn)e.

The only thing that remains to be checked is the error in the application of House-
holder reflectors to the matrix A. For X;, X; € R™ and W, W, € R™*®, from
the proof of Lemma 3.6.3 it follows that

/le+1,0 = Aj,oQ;F +6A 410,
where Qj =1- WjYA}T, Xj = Ajjoifj, and
16 A 410l F < OB*n)e|| Ajol p-

Finally, we obtain the result for F' = Ag-‘,—lﬂn-l, where the first g updates are
performed as shown above, and the last » — 1 = n — gb — 1 updates can be
considered in the same framework but with b = 1. Let us denote n, = g+1r — 1
as the total number of update steps. First we note that for j =1,...,¢g

14110l < 1 Az0llr +O(e) < 1 Ajm0llp + O(e) < -+ < [[Azgllr + O(e) <
< [ Allr + O(e).
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The same applies to the rest of the updates

1Fllr < [l Agisallr +O0() < - < [ Agrrallr + O(e) < |Agsrollr +O(e) <
< [lAllr + O(e).

Then, by induction we have

F o= ((+ (AQT 4+ 6A420)Q3 + 0A30) - QL _1 + 0Ags1,-2)Q +0Agi1,-1 =

g r—1
AT AT AT AT AT AT AT
= AQTQY QL+ 0A; 0@t QL+ 04k QL Q=
j=1 k=1

= AV 4§ F
where
10:F|lp < [O(g - b* - n) + O((n — gb)n)lel| Allp < O(bn*)e|| Al .
At the end of this step of the proof, for V = Q?QQT e QZ we can state that

~

F=(A+46A)V, 101 A < nel|Allp,  nr < O(bn?)e,
where 5,4 = §,F - VT,

Step 2: The Gram—Schmidt orthogonalization and estimation of the
backward error

This step is equivalent to Step 2 in the proof of Theorem 3.2.6. Since the com-
putation of B from F = [fi,..., fa] corresponds to the modified Gram-Schmidst
algorithm, we can use the results from |6] and represent the computation in an
equivalent form, as the Householder QR factorization of the augmented matrix

8][4l

By Lemma 3.6.2, the following relations hold

D1 +1; 1€k+1 _ B P 0 A fri1
R R FARE
|57 ]
O frt1

< OFm)e|F|lr.
A —e R
B = m+n—{ k}[—ez iy,

2
where
Uy,

and Gy, = 51/||3k |2 is the exact vector with ||ti||; = 1. Putting all columns of B
together, we get

[B] _ H@lﬁ] [<5261+15262] |:§£n€n—1+1;nen:|:|:
0 0o |’ 0 0

sl AR s AR - Af.
‘[H{ﬁ+wJJy%LyMﬁ}““&ﬂ*[n+mjy
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and by using the fact that
P [ B(:,j) ] _ [ gej_1 + bje; ]

[B%J)},EMMi#$j—L

0 0
we obtain
R P LR LI P
Fili AQ{fﬁfng’p"p"1"'p4p3{fﬁf§f41’
SLL T TN R P |

The k—th column of the computed bidiagonal matrix is of the form

b pp | A
PP, - PP ’
1 kL k—1 |: fk +5fk :|
and the desired form is

5 7 55 | Af }»T{Aﬁ } T
P.B, - PP Ll =P L, P=PB--- PP,
1 241 |: fk + 6fk fk + 5fk 142 1

The first two columns (k = 1,2) are already in the desired form and Afe = Afy,
0fr = dfr. For k > 3 we write

I

~

Bl A L A
[ (’)]Z(Pn n1~~~PkPk1Pk2'--P2P1><P1P2-~P“>{ Ji }

0 fk+(5fk

and then
PO Afe 1 [0 A fi 5 | Do fi 5 p | Dafe| Lo
o[ 3] - [2][3] 0 [35] em 3]

+ Pl pk;_g {?:;;;k} + Py Py l?ﬁk} =

0 Afy

M " {ka}’
where
PAREICAPRe

and with

A k-2
[?ﬁk]:p1"'pk_2[Afk]+{Alfk]‘kzpr“qu[Ajfk]
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- 75 Af}\ Af’j AJCT/\L =
fl é(‘l T fk éfk T fn é.fn

|
ile] Lo ]

where, after suitable reordering of the entries in the sums,

AF AR [Af .. [Af R N
|:6F:|_|:|:5f11:|a|:6f22:|77P1Pk2|:5f::|7gplPn—2|:5fn:|:|+

Objz

n—2
N A‘f‘+2} |:A'fn:|
NP By o, .0, | SR
jz; ! = T |:5jfj+2 5jfn
J

Taking norms, we obtain

n—2

AF .

150 ]| = otmvmelele + VEX 16T [se fa oov £ ]l <
F j=1
n—2 ~
< O(bmvn)e||Fllr+ V2 (18] Agrira(: 5 +2: n)ll2 +

j=1

6wl F(:,J + 2: n)|[p).

It remains to estimate the products @! f, for £ = 3,...,nand i = 1,...,0 — 2,

where ¢ = (j — 1)b+ k, k = 1,...,b. For this estimate, the important role plays
the choice of the vector z;;. From Lemma 3.6.3 it follows that

||ﬂ£TAg+1,T_1(: A+2:n)|2 < O(bzn +bm + bn2)6||A||F.
Then,
L5
oF »

To get the relation (3.79), we collect the perturbations from both implicit tridiag-
onalization and the Gram-Schmidt computation,

2] (]l (5]
o {lu ] L

Step 3: The final result
Finally, using P;; = P(1: n,1: n), Py =P(n+1: n+m,1: n), we have

< O(b(mn +n?)el|[F|[p < O(b(mn +n*))(1 + np) [ Al .

AA ] - P ] 2
{AMA}v:{PﬂB, PhPu + Py Pu =1,
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and relation (3.80) follows by an application of [6, Lemma 3.1]. The proof that
relation (3.80) holds for the non-block version of the algorithm is given in Theorem
3.2.6 and in Theorem 3.18 [2]. The same arguments can be applied to the block
version.

]

In our numerical experiments, the optimal choice for the block dimension b was
mostly 16, so the result of Theorem 3.6.4 is close to the result of Theorem 3.2.6.

Example 3.6.5. Let A = [a;;] be the n x n Kahan matriz as in [2], with

0 — a7l =
0T i1 i

where o + 3% = 1 and o, > 0. For our tests we chose a = sin(1.2) and n =
50,60, ...,200. In this case the matrices are ill-conditioned, whose first n — 1 singular
values gradually decay and are bounded away from zero. On the other hand, the smallest
singular value decays rapidly with n.

We compare the accuracy of Algorithm 3.5.1 with Algorithm 3.1.1 and Ralha’s one—
sided bidiagonalization, by measuring the Wielandt—Hoffman measure

n

> (01(4) = a(B))?

k=1

1Al (3.81)

The singular values o(A) of the matriz A are computed by the MATLAB command
svd(). The results are shown in Figure 3.9.

We can note that Algorithm 3.5.1 sometimes produces the bidiagonal matric B with
slightly less accurate singular values, than Algorithm 3.1.1. Theorem 3.6.4 asserts that
the bound on (3.81) for Algorithm 8.5.1 is b times larger than the corresponding bound
for Algorithm 3.1.1, where b is the block dimension. In our case we took b = 16. If we
compare the computed errors measured by (3.81), we can see that the largest difference
is obtained for n = 180, where the error of Algorithm 3.5.1 is 1.67 times larger than the
error of Algorithm 3.1.1. In this case, the estimation of the error bounds on (3.81) from
Theorem 3.2.6 and Theorem 3.6.4 are :

Algorithm 3.1.1 Algorithm 3.5.1

(n* +n3)e=6.51-10712 | b(n* +n3)e =1.04-1078

Hence, our computed errors satisfy both of the theorems.

Remark 3.6.6. The statements of Corollary 3.2.13, Corollary 3.2.14, Corollary 3.2.17
and Proposition 3.2.18 still hold for Algorithm 3.5.1, only the bounds are multiplied by
the block dimension b.
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Wielandt-Hoffman Error in Kahan Matrices
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"[— The Ralha algorithm

—— Algorithm 3.1.1
— Algorithm 3.5.1
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Figure 3.9: Error in singular values from Example 3.6.5.

3.7 Efficiency of the Block Version

For the block version of Barlow’s one—sided bidiagonalization, extensive testing was
carried out, too. Computations where performed in the same laboratory as before, and
with the same type of matrices.

The block dimension b in the tests was chosen to obtain the best execution time. In
our case it turned out to be b = 16. The influence of the parameter ¢ on the execution
time was negligible. In our tests we took ¢ = 8. Table 3.4 gives average execution times
for full SVD algorithms, expressed in seconds.

m X n 1 to tr D2,L D21
100 x 100 0.01 0.01 0.01 0.00% 0.00%
200 x 200 0.14 0.13 0.15 | 13.33% 7.14%
500 x 50 0.01 *0.01 0.01 | 0.00% | 0.00%
500 x 100 0.05 *0.04 0.04 | 0.00% | 20.00%
500 x 500 3.87 3.40 3.63 | 6.34% | 16.02%

1000 x 100 0.14 *0.09 0.09 | 0.00% | 35.71%
1000 x 500 6.19 *4.04 4.45 | 9.21% | 35.06%
1000 x 1000 39.19 34.55 3743 | 7.69% | 12.96%
2000 x 200 1.46 *0.58 0.60 | 3.33% | 46.30%
2000 x 1000 595.25 *39.22 41.20 | 4.81% | 28.27%
2000 x 2000 | 359.05 324.59 | 336.49 | 3.54% | 12.22%
3000 x 3000 | 1514.46 | 1261.34 | 1318.24 | 4.32% | 17.81%

Table 3.4: Average execution times for full SVD algorithms.
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The meaning of the headers in Table 3.4 are as follows:

t — the SVD with Algorithm 3.1.1 for bidiagonalization.
The LAPACK routine sbdsqr () is used for the
SVD of a bidiagonal matrix, which implements the
bidiagonal QR algorithm.

123 — the SVD with Algorithm 3.5.1 for bidiagonalization.
The LAPACK routine sbdsqr () is used for the
SVD of a bidiagonal matrix, which implements the
bidiagonal QR algorithm.

tr, — the LAPACK sgesvd () routine.

pa,, = 100(t, —t2)/t, — the percentage of time decrease, when the SVD
with Algorithm 3.5.1 is compared to the LAPACK
routine.

pa1 = 100(t; —t2)/t1  — the percentage of time decrease, when the SVD

with Algorithm 3.5.1 is compared to the SVD with
Algorithm 3.1.1.
* — QR factorization is performed before the SVD as it

is in sgesvd ().
We can conclude that the block version of the one-sided bidiagonalization algorithm
did decrease the execution time of Algorithm 3.1.1, as expected. Compared to the SVD
with Algorithm 3.1.1 the most significant time decrease is 46.30% for matrix dimensions
2000 x 200. The SVD routine with Algorithm 3.5.1 produces a code that is not slower
than the LAPACK sgesvd () routine in case when all of the SVD factors are required,
although this varies with the dimensions of the matrix. In many cases we observed
some gains in speed. If the matrix U is not needed then the advantage of the one-sided
bidiagonalization over the LAPACK routine might be lost. That happens because U
is always computed, whether it is needed or not (see |2, Table 1|). When solving the
problems described in Section 3.3 (|8]), our algorithm would be preferable.

3.8 Parallel Version

The parallel bidiagonalization algorithm is performed on several processors simultane-
ously. Each matrix is distributed over the memories of processors, and this distribution
is balanced. This means that the dimensions of the submatrices assigned to each proces-
sor are almost the same. The communication between processors is optimized, because
interprocessor communication is most time consuming.

In our case we used following propositions:

e the processors were organized in linear order,
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e we used ScaLAPACK [7] for the computation,
e we used MPI [38] for interprocessor communication.

The matrix distribution over the process is performed row-wise, because the algo-
rithm is one-sided and column oriented.

1 1
5
1
5 l
2
2
1 6
6
3 l
. 1
8

Figure 3.10: The block distribution of the matrix A

The most important features of the parallel version of the Barlow bidiagonalization
algorithm are the following:

1. The matrix layout is one-dimensional block-cyclic row distribution. Each m x n
matrix is divided in m; x n blocks of continuous rows, where m,; is block row
dimension. Then, the blocks are distributed across the processors in cyclic order,
which guarantees good load balancing (see [7]).

2. The algorithm is performed in the same way as Algorithm 3.1.1 for ¢g11 = Y, with
extra interprocessor communication. Interprocessor communication is required for:

computation of z; as matrix—vector multiplication,

broadcasting Householder vector vy to all processors,

broadcasting ¢g.1,
e computing scalar products.
The rest of the computations consists of BLAS 1 operations (operations with

vectors), as well as computation and application of Householder reflectors, which
need no communication.

The complete parallel algorithm with explanations is listed in Algorithm 3.8.1.

Algorithm 3.8.1 (The parallel Barlow one-sided bidiagonalization). For A €
R™ " rank(A) = n > 2, this algorithm computes in parallel an orthonormal U =
[uy, ..., u,), a bidiagonal B and an orthogonal V such that A= UBVT,
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(1) Distribute ¥ = [ ¢; ... 1, |7 over the processors;

(2) Distribute ® = [ ¢; ... ¢,_1 |7 over the processors;

(3) AQ = A,’

@) fi=A(,1); = |fll2; Parallel dot product;
(5) w1 = f1/¢1; BLAS 1 operation

without communication;
for k=1:n—-2

(6) 2z = Ap_1(: ,k+1:n)Tuy; Parallel matriz-vector product
the resulting vector is stored in
one processor;

(7) [Pk+1,vr] = householder(zy); Computation performed on one
Processor;

(8) Ap(:,1: k) =Ak_1(:,1: k);

(9) Ar(: k+1:n)=Ap 1 k+1:n) — A (0 b+ 1 n)uol;
v broadcasted to all processors,
parallel update;

(10) fk+1 = Ak< ,]{7 + 1),

(11) Broadcast ¢r41 to all processors;

(12) Sg+1 = frr1 — OPrrrUp; BLAS 1 operation
without communication;
(13) Y1 = ||Skll2; Parallel dot product;
(14) upy1 = Sgs1/Vra1; BLAS 1 operation
without communication;
end;
(15) fo=An o(:,n); dp=ul_ f; Parallel dot product;
(16) s, = fr — OnUn_1; BLAS 1 operation
without communication;
(17) Uy = ||8nll2; Parallel dot product;
(18) uy = Sp/Un; BLAS 1 operation

without communication;
(19) VT = householder product(vy,...,v, o) Parallel computation;
end.

3.9 Numerical Stability of the Parallel Version

The parallel version of Barlow’s bidiagonalization algorithm performs the same opera-
tions as the serial non-block version. Preliminary numerical experiments showed that a
parallel block version has a large overhead on our computers, thus it was almost always
slower than the ScaLAPACK routine. The results of Theorem 3.2.6 hold for this version
as well.
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3.10 Efficiency of the Parallel Version

The tests for the parallel version of the Barlow bidiagonalization algorithm were done
over a large variety of matrix dimensions. The computations were performed in the
same laboratory as before and matrices were generated as described in Section 3.4. QR
factorization was not performed before bidiagonalization, because Algorithm 3.8.1 is
suitable for the parallel computing just the way it is. The QR factorization would just
increase the interprocessor communication. The linear layout of the processors may
not always be optimal for the ScaLAPACK routine, so we performed our test with all
possible layouts for the fixed processor number and we chose the best execution time.
Table 3.5 gives the average execution times expressed in seconds for full SVD algorithms
when computed on p processors. In fact, this time represents the worst time on all p
Processors.

m X n P ts | pmxpn ts P3,s 3.p "S.p
1000 x 100 4 0.26 4x1 0.60 | 56.67% | 0.0865 | 0.0375
1000 x 500 4 3.11 4x1 4,95 | 37.17% | 0.3248 | 0.2247
1000 x 1000 4 12.08 4x1 16.66 | 27.49% | 0.7150 | 0.5617

8 9.37 4%2 18.25 | 48.66% | 0.4609 | 0.2564

16 8.08 | 16x1 19.52 | 58.61% | 0.2672 | 0.1198

2000 x 200 4 0.80 4x1 1.65 | 51.51% | 0.1812 | 0.0909
2000 x 1000 4 16.09 4x1 19.25 | 16.42% | 0.6094 | 0.5351
8 11.73 4%2 20.36 | 42.39% | 0.4179 | 0.2529

2000 x 2000 4 98.47 4x1 109.95 | 10.44% | 0.8241 | 0.7651
8 48.98 4%2 66.90 | 26.79% | 0.8284 | 0.6287

16 30.93 | 16x1 58.90 | 47.49% | 0.6559 | 0.3571

4000 x 200 8 1.10 8x1 2.69 | 59.11% — —
4000 x 1000 8 15.66 8x1 21.64 | 27.63% — —
16 11.47 16x1 22.11 | 48.12% — —

4000 x 4000 8| 420.96 sx1 | 448.84 6.21% — —
16 | 178.91 ax4 | 236.47 | 24.34% — —

5000 x 100 8 0.45 8x1 1.76 | 74.43% — —
5000 x 1000 16 12.38 16x1 22.68 | 45.41% — —
5000 x 5000 |16 | 362.16 ax4 | 435.27 | 16.80% — —
8000 x 1000 | 16 16.47 | 16x1 25.10 | 34.38% — —
8000 x 8000 | 16 | 2335.30 ax4 | 2445.79 4.52% — —
10000 x 1000 | 16 18.26 | 16x1 26.20 | 30.31% — —
10000 x 10000 | 16 | 3324.75 ax4 | 3395.03 2.07% — —

Table 3.5: Average execution times for full parallel SVD algorithms.

The meaning of the headers in Table 3.5 are as follows:
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t3 — the parallel SVD with Algorithm 3.8.1.
DPm X Pn — processor layout with the best execution time
of the ScaLAPACK routine.
ts — the ScaLAPACK psgesvd() routine.
pss = 100(ts —t3)/ts — the percentage of time decrease, when the parallel

SVD with Algorithm 3.8.1 is compared to the
ScaLAPACK routine.

nsp = (t2/t3)/p — the efficiency of the parallel SVD with
Algorithm 3.8.1 on p processors.

nsp = (tr/ts)/p — the efficiency of the ScaLAPACK routine on p
Processors.

As we can see from Table 3.5, we accomplished a considerable decrease in execution
time. The SVD with the described parallel version of the one-sided bidiagonalization
algorithm is much faster than the ScaLAPACK routine psgesvd(). Compared to the
ScaLAPACK routine, the most significant time decrease is 74.43% for matrix dimensions
5000 x 100 and for 8 processors.

Another important feature of parallel algorithms is the efficiency. In ideal situa-
tion an algorithm executed on p processors should be p times faster than the same
algorithm executed on only one processor. The efficiency measures departure from the
ideal execution time. Table 3.5 shows the efficiency for both SVD algorithms applied
to matrices with small dimensions. In case of larger dimensions we were not able to
apply the algorithms on a single processor due to memory limitation, and therefore the
efficiency is not computed. We can see that the parallel SVD with Algorithm 3.8.1
has better efficiency than the ScaLAPACK routine psgesvd(). The new algorithm has
also better scalability than the ScaLAPACK routine, which is illustrated in Figure 3.11.
The y axis in Figure 3.11 represents the reduction factor in execution time when the
number of processors is doubled and the matrix dimensions are fixed. The labels on
the z axis denote matrix dimensions and ratios p;/ps, which indicate that the number
of processors is increased from p; to ps. We can conclude that in all observed cases
the parallel SVD algorithm with the one-sided bidiagonalization reduces the execution
time by larger factor than the corresponding ScaLAPACK routine. In ideal situation
this factor should be equal to 2, and in our test we obtained the optimal factors 2.35 for
the SVD algorithm with the one-sided bidiagonalization, and 1.90 for the ScaLAPACK
psgesvd() routine. The both optimal factors were obtained for a 4000 x 4000 matrix,
when going from 8 to 16 processors. We can also observe that the efficiency degrades
more rapidly for the ScaLAPACK routine than for Algorithm 3.8.1 when the number of
processors is increasing.
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Figure 3.11: Reduction in execution time in case when the number of processors is

doubled.



Chapter 4

The Symmetric Eigenvalue Problem

4.1 Definitions and Properties

Many mathematical models originating from physics and engineering reduce to eigen-
value problems, like solving the Helmholtz equation concerning electro-magnetic waves,
determining vibration frequencies in structural mechanics, or partitioning a set of objects
into different groups. The discretization of a differential equation in a physical model,
or matrix interpretation of a problem in graph theory, result with a matrix eigenvalue
problem. Matrices obtained in this way are usually very large and structured. Modern
computers allow us to solve such large problems, with specially designed methods for
large and structured matrices. Most of these methods are iterative, so special attention
must be paid to their accuracy and efficiency.
Let us start with a definition.

Definition 4.1.1. Let A € C"". Scalar N € C is called eigenvalue of A, if there
exists a vector u € C", u # 0, such that

Au = \u.

Vector u is called the eigenvector belonging to the eigenvalue .

We will be mostly concerned with real symmetric matrices, that is

o Ac R™",

o AT = A,
and they possess very convenient properties, regarding eigenvalues and eigenvectors.
Theorem 4.1.2 ([78, p. 7]). All eigenvalues of real symmetric matrices are real.

As a result of Theorem 4.1.2, we may label eigenvalues of a symmetric matrix in

increasing order
A< A< (4.1)

If uy,...,u, are the corresponding eigenvectors, then they are orthogonal.

140
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Theorem 4.1.3 ([78, p. 7]). If \x # \j then ulu; = 0.

Note that Theorem 4.1.3 claims that only the eigenvectors belonging to different
eigenvalues are orthogonal. When an eigenvalue is multiple, then specific subspaces
must be introduced. The null space of A — Al

NMy={zeR": (A— )z =0}

is called the eigenspace belonging to A\, and represents an invariant subspace. The
multiplicity of A is the dimension of V). The consequence of the next theorem is that
all invariant subspaces are spanned by eigenvectors.

Theorem 4.1.4 (The spectral theorem [78, p. 7]). Let A € R™" be a symmetric
matriz, then there exist an orthogonal matrix U = [uq, ..., u,] € R™™ and a diagonal
matriz A = diag(A1, ..., \,) € R™"™ such that

n
A=UAU" =) Nu].
i=1
Scalars M\, ..., \, are eigenvalues of A, and vectors uy,...,u, are orthonormal eigen-

vectors of A.

Matrices that originate from physical models are often symmetric matrices with one
more property.

Definition 4.1.5.

o Symmetric matriv A € R™™" is called positive definite if 7 Az > 0 for all
reR", x#0.

o Symmetric matrizv A € R™" is called positive semidefinite if x* Az > 0 for all
r e R"™

Such matrices have specific eigenvalues:
Corollary 4.1.6.

o All eigenvalues of symmetric positive definite matrices are positive.

o All eigenvalues of symmetric positive semidefinite matrices are nonnegative.
Proof. Let u; € R™ ™ be an eigenvector from Theorem 4.1.4. Then

o 0 <ulAu; =\

o 0 <ulAu; =\
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Recall that, by Theorem 2.1.6 and Theorem 2.1.7, squares of singular values of
a rectangular matrix A correspond to eigenvalues of symmetric positive semidefinite
matrices ATA and AAT, and singular values of A correspond to eigenvalues of the
Jordan—Wielandt matrix up to the sign.

There are many important properties of eigenvalues of a symmetric matrix. First of
them claims that these eigenvalues satisfy the following “minimax” characterization.

Theorem 4.1.7 (Courant—Fischer Minimax Theorem [35, p. 411]). If A € R™"
is symmetric, with eigenvalues ordered as in (4.1), then

M= min max zT Az, k=1,...,n.
SCR” €S
dim(S)=k |[z|2=1

Some other properties follow from the previous theorem.

Corollary 4.1.8 ([35, p. 411]). If A € R™" and A+ E € R™™ are symmeltric
matrices, then

where \i(M), i =1,...,n are eigenvalues of the matriz M, ordered as in (4.1).

Corollary 4.1.9 (Interlacing Property [35, p. 411]). If Ay denotes a k x k prin-
cipal submatriz of a symmetric matric A € R"™ " then for k = 1,...,n the following
interlacing property holds:

Ai(A) < Ni(Ax) < Ain-i(A4), i=1,...k,
where \i(M), i =1,..., are eigenvalues of the matriz M, ordered as in (4.1).

Theorem 4.1.10 (Ky—Fan Minimum Property [49, p. 229]). If A € R™" is
symmetric, with eigenvalues ordered as in (4.1), then for k = 1,...,n the following
equation holds

k
Z A\ = min trace(XTAX).
- XGRnXk
=1 XTx=I,

Moreover,

k
> A= min trace((X"X) (X" AX)).
— XeRnxk

= rank(X)=k

4.2 Applications of Eigenvalues and Eigenvectors

Many problems in physics are approximated by an discretized eigenvalue problem in a
finite dimensional space. This means that the solution approximation is obtained by
finding some subset of eigenvalues and corresponding eigenvectors of a symmetric matrix.
In this subsection several examples will be presented, which illustrate application of
eigenvalues and eigenvectors in other fields of science.
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4.2.1 Propagation of Electro-Magnetic Waves
(Helmholtz Equation)

In this example we will try to determine propagating modes in an optical structure,
which are invariant with respect to one spatial direction. Under certain model sim-
plifications, the problem will be transformed into an eigenvalue problem of a scalar
Helmholtz equation, and then it will be discretized by means of finite elements into a
matrix eigenvalue problem (see [30]).

The propagation of light waves in optic components is described through the Maxwell
equations for nonmagnetic and free of charge media. If we assume that electric and mag-
netic fields have harmonic time dependency, then the time stationary Mazwell equations
are obtained, with the following form

Vxﬁz—iwuﬁ

V x H = (iwe + 0)E
V-eE =0
V-H=0

(4.2)

where E denotes an electric and H a magnetic vector field in a specific position, and
parameter w is the angular frequency. The dielectric number € and the conductivity o of
the medium depend on the spatial position and angular frequency, and the permeability
p is the spatial constant. The elimination of the electric field from (4.2) will produce a
stationary vector wave equation for the magnetic field

—AH —w*uH = Viogé x V x H, (4.3)
where € = € — iw o is the complex dielectric number. The electric field E can be
computed from the second Maxwell equation in (4.2).

Since the dielectric number depends very weakly on the position in the observed

optical structure, the right side of equation (4.3) can be neglected. Then, the vector
Helmholtz equation is obtained

—AH — w?euH =0, (4.4)

which is the basis for the simulation of the most important optical components. The
equation (4.4) holds for each component of the magnetic field. So, there is no difference
among them and it is sufficient to observe only the scalar Helmholtz equation

—AH — w?éuH = 0. (4.5)

Further characteristic of the observed optical components is their invariance in one
spatial direction. This means that the geometry of the structure changes very little or
not at all in one direction (see Figure 4.1). Next, we will choose a coordinate system,
so that this particular direction coincides with the z-coordinate direction. Then the
dielectric number € depends only on coordinates x and y, and angular frequency w. To
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Figure 4.1: A typical structure in optics is a ribbed wave conductor.

determine propagating modes, the magnetic field component H will take the following

appropriate form .
H(z,y,z) = Au(z, y)e‘lkz, (4.6)

where the real part of £ denotes phase velocity, and the imaginary part of k gives
information about damping and amplification in the propagation direction. If we put
(4.6) in the equation (4.5) we will obtain an eigenvalue problem of the scalar Helmholtz
equation

—Au — wéuu = —k*u. (4.7)

The problem (4.7) is usually solved on a bounded two-dimensional subset €2, with an
appropriate boundary condition. We will take the Dirichlet boundary condition © = 0
on 0€2. All together we obtained the following problem: to find functions v # 0 and
numbers A, which are solutions of the eigenvalue problem

—AU({B,y) - f(JT,y)U(QZ',y) = )\U([L’,y), (may) €Q
u(z,y) =0, (z,y) € 09, (4.8)
where f(x,y) = w?é(z,y,w)u and A = —k%. Since the dielectric number € is complex,

the function f accepts complex values, too, so in general the eigenfunctions u and the
eigenvalues A will also be complex.
For the scalar product in L?(2)

(0, 4) = (v, u) 20y = / (@, 9)ulz, y)d(x,y),

we can introduce an equivalent variational formulation of the equation (4.8)

(Vw,Vu) — (w, fu) = Mw, u), Yw € C5°(§2). (4.9)
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Two times differentiable functions v and numbers A\, which are solutions of (4.8), are
also solutions of (4.9), and vice versa. Now we introduce a sesquilinear form

a(w,u) = (Vw, Vu) — (w, fu), (4.10)

so that the variational formulation of the eigenvalue problem reads as follows: u €
H; () \ {0} and X € C are sought, such that

a(w,u) = Mw, u), Yw € H (), (4.11)

because C§°(Q) C Hy(Q) is dense in Hg(2). The solution of the variational problem is
called the weak solution, u is the right eigenfunction and X is the eigenvalue.

The variational problem (4.11) can be associated with an adjoint problem: for A € C,
v e HHQ)\ {0} is sought, such that

a(v,w) = Mo, w), Yw € H (), (4.12)

where v is the left eigenfunction. This will lead to equivalent formulation of the adjoint
problem: for A € C, v € H}(Q) \ {0} is sought, such that

a*(w,v) = Mw,v), Yw € H (), (4.13)

where by
a*(w,v) = a(v,w) = (Vw, Vo) — (w, fv)

an adjoint sesquilinear form is defined. In case when f = f and the function f admits
only real values on €2, the eigenvalue problem is selfadjoint, which implies

a*(w,v) = a(w,v), Yo, w € Hy(9).
For this case the following theorem can be proven.

Theorem 4.2.1. Let Q C R? be bounded and let the function f : Q0 — R be an element
of function space L*(Q). Then there exists an orthonormal basis {u;}32, of L*(S2), such
that the basis functions u; € Hg(Q) satisfy the following relation

a(w,u;) = \j(w,u;), Vw € Hy (%), (4.14)

for all j € N. All eigenfunctions u; are real, and all eigenvalues \; are also real and
ordered as Ay < Ay < -+- — 0.

From now on we will assume that a(w,v) is selfadjoint.

In optics, only a few smallest eigenvalues are of interest, and they are not computed
exactly. The variational problem is used to formulate an approximate problem by means
of finite elements. The domain (2 is divided into finite number of triangles ¢;, as it is done
for the ribbed wave conductor in Figure 4.2. The set of all triangles ¢t = {¢1,...,tn,} is
called triangulation of €. The triangles are disjoint and Q = Uj\;tl t;. The parameter
h denotes the maximal side length of all the triangles from ¢. A point from Q is called
a node if it is a corner of a triangle from ¢. The set off all nodes p = {p1,...,pn,}



146 CHAPTER 4. THE SYMMETRIC EIGENVALUE PROBLEM

Figure 4.2: Triangulation of the domain 2.

where p; = (x;,y;), includes N inner nodes which are not in 9Q2. A function w;(z,y) is
associated with each inner node p;, such that it is linear on each triangle, continuous on
the whole €2 and satisfies

wi(xj,y;) = 6ij, j=1,...,N,.

The support of w;(z,y) consists of all the triangles which have the point p; as a corner.
The space Wy = span{w;}¥, =: W}, is a N-dimensional linear subspace of H}(f2) and
is called the finite element space. It consists of piecewise linear functions, which are
continuous on € and disappear outside §2. Each u;, € W}, has its unique representation

as
up, = E uh wz,

where ug) = up (i, y;)-

Suppose we want to find approximations \;; € R to eigenvalues A; and u;, € W), C
H3(Q) to eigenvectors u;, for j = 1,...,¢. Then we will consider functions u;;, # 0 and
numbers A;, which are solutions of the discrete problem

a(wh,uj,h) = )\M(wh,uj,h% V’U}h € Wh. (415)

Further, we define

N
E u hwz E Ujj Wi, j=1...,q,
i=1

and obtain equations that are equivalent to (4.15)

Z a(wk, wi)uij,h = )\j,h Z(wk, wi>u,~j,h, k= 1, ey N. (416)

=1

Now we define matrices

Ay = [a(wg, w;) k=1, Up = [uijpli=1,...N,
i=1,...,IN :l q

By, = [{wr, wi)]k= e Ay, = diag();, ) 1y
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so that (4.16) can be written in a compact form as a matrix eigenvalue problem
AhUh = BhUhAh. (417)

The matrices A, and B, are sparse, because of the small supports of functions w;. Ay, is
Hermitian and is called the system matriz. By is a Gram matrix of the basis functions
w; and hence it is Hermitian and positive definite. It is called the mass matriz. Since
(4.17) represents a general eigenvalue problem, we will use the Cholesky factorization of
the mass matrix B;, = Rj Ry, and introduce an N x ¢ matrix of unknowns X, = R,U},.
Finally we will obtain an equivalent partial eigenvalue problem

ChXn = XpAn,,  Cn=R*AR, " (4.18)

Now we see that there is justification for taking A;, € R, and X; to be orthonor-
mal. Then, U, = R,Zth, so that Uy BU, = I, and uyp, ..., uqn € Wy generate an
orthonormal vector set, where the scalar product is determined by the matrix B5j,.

Remark 4.2.2. Since the elements of the Gram matriz are obtained as the scalar prod-
ucts (wg, w;), the Gram matriz is usually represented in a factorized form By, = F;'Fy, so
that for the partition F =1 f1 -+ fx ], {wx,w;) = fI fi. The matriz By, is then never
assembled, and the Cholesky factorization is computed through the QR factorization of
Fh, so that Fh = Qth and Bh = R;QZQth = Rth

4.2.2 Vibration Frequencies of a Mass System with Springs

In stability analysis of mechanical structures, the method of concentrated mass is often
used. Behavior of a complex mechanical system is approximated by the behavior of
a system that consists only of the concentrated masses connected with elastic springs.
The problem is to find free oscillation of this system.

Assume that we are observing a system with masses and springs, as described in
Figure 4.3.

Here m; denotes the i-th mass, and k; denotes the stiffness of the j-th spring. Further
we define the following matrices:

my 0 0 0
Lo om0 0
M= 0 0 mg 0 [’
0 0 0 my
K ) ko + k3 + ks —ks —ks
n —kg —k3 ks + kg + ke + k7 —ky ’
0 —kg —ky ky 4 ks + ks

where the matrix K represents the interaction between masses. The i-th row corresponds
to the 7-th mass, and its j-th column corresponds to the relation between the ¢-th and the
j-th mass. On the diagonal, in the position (i,7), there is a sum of the stiffnesses of all
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kz ke ks

/{35 | mo |

Figure 4.3: System of masses that are connected with springs.

springs that are connected to the ¢-th mass. The number —£; is placed in the position
(7,7) if the ¢-th spring connects the i-th and the j-th mass, otherwise K(i,j) = 0.
Finally, we define a vector

I

T2

T3

Ty

where z; represents the vertical shift of the i-th mass from the steady state. From
the law of momentum conservation, the mass position can be described by a system of
differential equations

i=-M"'Kz. (4.19)

If we assume that the solution of the system has the following form
r = 20",

which is the standard procedure when solving a system of linear differential equations,
then from (4.19) we obtain

T = —(ﬁQIOGW = —M 'Kzt

By elimination of the term €** we reduce our problem to the eigenvalue problem for the
matrix M 1K
M 'Kzq = ¢*x.

In this case the eigenvalue is equal to ¢*, which presents the square of the oscillation
frequency. We can also note that the matrix K is symmetric, and that M 'K is not.
This can be improved by noting that the matrix M is diagonal with positive diagonal
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-

1 1
elements, so we can define M2 = diag(m?,...,m?). Premultiplication of the matrix
M~'K with Mz and postmultiplication with M_%, produce a matrix similar to M 'K
which is symmetric and of the form

A=Mz(M'K)YM 2 =M 2KM 2. (4.20)

So, if A and u are the eigenvalue and the corresponding eigenvector of the matrix A
from (4.20), then the solution of the problem (4.19) is equal to

1 .
= M 3uetV™,

4.2.3 Graph Partitioning

Let us consider the following problem: we want to divide a set of objects into groups
which contain objects with similar properties. First, the problem of partitioning the set
of objects will be replaced by a problem of partitioning a set of graph vertices. This will
be done under the condition that weights of edges which connect vertices from different
groups are minimized. Second, the graph partitioning problem will be reduced to an
eigenvalue problem.

So, we will start with some definitions and results taken from [74], which are necessary
for stating the graph problem.

Definition 4.2.3. The graph is an ordered pair G = (V, E), where ) #V = V(Q) is
the set of vertices, E = E(Q) is the set of edges disjoint with V, and each edge e € E
connects two vertices u,v € V which we call the ends of e. The vertices u and v are
then incident, and we can write e = {u,v}.

e The graph G is finite if the sets V and E are finite.

e An edge whose ends coincide is called a loop.

o Two or more edges with the same pair of ends are called multiple edges.
e The graph is simple if it contains no loops and no multiple edges.

o A simple graph in which each pair of vertices is connected by an edge is called a
complete graph.

e Let w be a function w : E(G) — F, where F can be R, RT, Z,,.... The or-
dered pair (G,w) consisting of the graph G and the weight function w is called the
weighted graph.

Let a simple finite weighted graph (G,w) be given, where G = (V. E), ) # V =
{1,2,...,n} is the set of vertices and F is the set of edges {7,j} i,j € V, with weights
w({i,j}) € RT. We want to divide V into two subsets V; and V3, and we call this
procedure bipartitioning. The bipartition of the set V' can be described by the relation

V=Vuls, Vinvy=40.
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Figure 4.4: The bipartition of the graph G.

The question now arises, how to produce a meaningful bipartition so that V; and V%
present groups with some common property?
First, we will need the following definition.

Definition 4.2.4. The adjacency matrix of the graph G is the n x n matriz W = [w;;],
where
o — { w({i, j}), if {i,j} € E,
K 0, otherwise.

The matrix W is a symmetric matrix whose elements are nonnegative real numbers.
Since the graph is simple, diagonal elements of W are equal to 0.

So, let us partition the set V' into two subsets Vi and V5. A dissimilarity between
these two subspaces can be computed as the total weight of all edges which connect sets
Vi and V5. Tt is called the cut of the partition, and it is defined by

cut(Vy, Vo) = Z w;j  for Vi, Vo C V.

1€Vy,jeVa

Next we will generalize the meaning of the weight function: let

n
U)(l) = Z wij,
j=1
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be a sum of weights of edges incident with the vertex i, then w(i) is called the weight
of the vertex v € V, and let

wVi) =Y wi) =cut(Vi, V) = Y wy

i€V 1€VR,jEV

be a sum of weights of all the vertices from Vi, then w(V}) is called the weight of the set
V. CV.

For example, if the set of vertices V = {1,2,3,4,5,6,7} of the graph G from Figure
4.4 is partitioned into the subsets Vi = {1,2,3,4} and Vo = {5,6, 7}, then

cut(Vq,V) = 4
Vi) = w(l) 4+ w(2) +w(3) +w(4) =42
w(Va) = w((b)+w(6)+w(7) =34

The most simple way to partition a graph is by minimization of the cut, and there
exist efficient algorithms which find the partition with the minimal cut. But, in such
partitioning blocks with small number of vertices are very often isolated, and sometimes
this is not satisfactory.

We need some additional conditions on the graph partition to avoid such small blocks.
If we want our subsets to have balanced weights, we have to minimize another objective
function

cut(Vq,V2)  cut(Va, 1)
w(V4) w(Va)

which is called a normalized cut. For the bipartition in Figure 4.4 we have

cuty(Vi, Vo) =

4 4

Unfortunately, the problem of finding the exact minimal normalized cut belongs to
the NP class. This means that this problem is most likely not solvable by a deterministic
algorithm in polynomial time. The execution time of an algorithm that solves the
problem grows exponentially with the size of input set.

Nevertheless, we will show that this problem can be solved approximately by placing
the problem in a real domain.

We start again with the set of vertices V' = {1,2,...,n}. The partition V =1, UV,
can be represented by the vector x = [z;] defined as

;= { Loien i=1

—1, i€V, e

It can be easily shown that for the matrix D = diag(w(1),...,w(n)) the following holds

1
cut(V1,Va) = zle(D—W)x,,
2T(D— W)z
cuty(V1,V2) = %,
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where

1, ieW . w(V1)
Zi = . , 1=1,...,n, q= .
—-q, 1 S ‘/2 w(‘/Q)
Matrix L = D — W is called the Laplace matriz of the graph G and has many
useful properties. The matrix L = [(;;] is a n X n matrix whose each row and column
corresponds to one vertex, so that

n
k=1

—Wsj, 27&]7 {Z,]}GE
0, otherwise.

Eij =

L is a symmetric positive semidefinite matrix, so all its eigenvalues are real and nonneg-
ative. Further
Le =0, for e=[1 ... 1],

which implies that O is the smallest eigenvalue of L, and e is the corresponding eigen-
vector.

Now we can reformulate our problem. We started with two discrete minimization
problems

min cut(Vy, V) = min 27 Lx (4.21)

ViuVe=V z;€{—1,1}
VinVe=0 +Te=0

T

z' Lz
min cuty(V1,V2) = min , 4.22
ViUVa=V (V1. V2) zie{—q1} 2T Dz ( )
Vinva=0 2T De=0

where in case when n is even, the condition z”e = 0 means that >, , z; = 0 and that
subspaces V] and V5 contain the same number of vertices. This is done to avoid a trivial
solution and to balance the number of vertices in subspaces. The condition z? De = 0
means that

0= zw(i) =D wli) =g w(i) =w(Vi) - qu(Va),

ieVy i€Va

which gives the definition of the number q.
The discrete problems (4.21) and (4.22) will be now replaced by continuous mini-
mization problems

thlin ' La (4.23)
x||2=1
:ch:I
2TLz 1 1
i = i D 2LD 2 4.24
zigzl)lerio 2Dz ||1I/I||12H:11 y y ( )
yTD%eZO

where y = D2z, The matrix Ly = D"2LD"2 is called the normalized Laplace matrix

of the graph GG, and is also symmetric positive semidefinite, with the smallest eigenvalue
1

equal to 0 and with the corresponding eigenvalue equal to Dze.
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By the consequence of Theorem 4.1.7, the solution of problem (4.23) is equal to the
minimal eigenvalue of the matrix which is a compression of L to Uy, where Us is an
(n — 1)-dimensional subspace spanned by all eigenvectors of L except e. That means
that the minimum is obtained for uy = [uZ@)], the second smallest eigenvalue of L. This
vector is called the Fiedler vector.

Equivalently, the solution of the problem (4.23) is equal to uyo = [ul(-N’Q)], which
is the second smallest eigenvalue of Ly. This vector is called the normalized Fiedler
vector.

So, as an approximative optimal bipartition we can take

for minimization of cut
— {i:ul? >0}, V= {i:u® <0}
for minimization of cuty

={i: D_%UEN’Q) > 0}, Vo={i: D_%UENQ) < 0}.

4.3 Perturbation Theory

This section is similar to section 2.3. All the perturbation results for the symmet-
ric eigenvalue problem can be generalized to a singular value problem of generalized
matrices. That means that the results in section 2.3 are derived from the results de-
scribed in this section. So, when the spectral decomposition of a symmetric matrix
A € R™" is computed in finite precision arithmetic, instead of exact factors U € R™*"
and A € R™"™, matrices U and A will be computed. Numerical analysis of the method
used for computing eigenvalues and eigenvectors results with a matrix A, such that
computed eigenvectors in U and computed eigenvalues in A are exact for that matrix.
The relation between exact and computed factors is then given by perturbation theory,
which compares the matrices A and A. Basically, the perturbation theory will produce
bounds on the errors in computed eigenvalues and eigenvectors. The error bounds can
be divided in two different categories:

1. eigenvalue error bounds

2. eigenspace error bounds

4.3.1 Eigenvalue Error Bounds

First, let us take a look at additive perturbations of a Hermitian matrix.

Theorem 4.3.1 (Mirsky-Lidskii-Wielandt [66, p. 21]). Let A € C*™*" be a Her-
mitian matriz, and suppose that A € C™" is also Hermitian, and that their eigenvalues
are ordered as in (4.1). Then, for any unitarily invariant norm || - ||, we have

1A= Al < [lA- Al
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Specially, for A = diag(A1, ..., \,) and A = diag(Ay, ..., \,), we have

max A — M| < A=A,

..... n

n

Y =X < A Allr.

=1

Theorem 4.3.1 claims that the norm of backward absolute error is the upper bound
for absolute error in eigenvalues. But, the absolute errors are not always the best way
of measuring errors as we saw in section 2.3. The next step would be to look at relative
errors in eigenvalues.

Theorem 4.3.2 ([52, p. 161]). Let A, A € C™" be Hermitian, and let A also be
positive definite, then

max % < AH(A = A)AH,

Multiplicative perturbations are much more suitable for this case, so the next results
will deal with such perturbations. Let us start again with the Ostrowsky-type bounds.

Theorem 4.3.3 ([52, p. 187]). Let A € C™*™ be Hermitian, and let A= DAD* also
be Hermaitian, where D is nonsingular. Then

| Ail

e < A < A[[D* Do
I(D* D)~z

Theorem 4.3.4 ([52, p. 188]). Let A € C™*™ be Hermitian, and let A= DAD* also
be Hermaitian, where D is nonsingular. Then

I\ — Al .
Nl 7 —

Thus, relative error in singular values of Ais small if D is close to a unitary matrix.
We are also going to give a result for the y relative distance between exact and
computed eigenvalues.

Theorem 4.3.5 ([64, p. 395]). Let A € C**" and A = D*AD be Hermitian matrices,
where D is nonsingular. Then,

< D" =D,

< D" =D
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4.3.2 Eigenspace Error Bounds

We are comparing subspaces again through the angle matrix O(X,Y).

Theorem 4.3.6 (Davis—Kahan [67, p. 4]). Let A € C*" and A € C™" be two
Hermatian matrices with the following spectral decompositions

B . Ay O Uy
A = UNU"=[U, U2]|:0 Ag}{UQ‘}’ (4.25)
P o R B
i = oi-te e[ b 2[4, o
where U,U e C™™ are unitary, Uy, Ul e C™* and
A1 = diag(/\l, cey )\k), AQ = diag(/\k+1, ceey >\n)7 (427)
Ay = diag(A, ..., M\, Ay = diag(Mpsts - - -5 M), (4.28)

with 1 < k <n. Let us define the residual
R - AUl - U1A1 - (A - A)U1
If

0= min |>‘z — 5‘k+j| > 0,
i j=1,....,n—k

then R
| sin ©(Uy, Uh)||r < | 5”F.

The scalar 0 represents the absolute gap between the eigenvalues of A; and As. The
next theorem involves the p relative distance defined in subsection 2.3.2.

Theorem 4.3.7 ([67, p. 6]). Let A € C*", and A = D*AD be two Hermitian
matrices with spectral decomposition (4.25), (4.26), (4.27) and (4.28), where D is non-
singular. Let ng = ) kminl kpg()\i, Aitj) > 0, then

— s J= n—

VI = D) E + (L = DU

HSin@(UhUl)HF <
2

4.4 Subspace Methods for the Partial Eigenvalue
Problem

The task of solving the partial eigenvalue problem for a symmetric matrix A € R™" is
to find U € R™* UTU = I for 1 < k < n and A = diag(\;,, ..., \;,) € RF* such
that

AU = UA, (4.29)
where \; , j = 1,...,k represent some choice of eigenvalues of A. In most cases we will
observe a situation when

)\ij - )\j, (430)

where \; are ordered as in (4.1). This task is equivalent to finding a specific k£ dimensional
invariant subspace which corresponds to the k smallest eigenvalues.
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4.4.1 The Rayleigh—Ritz method

The Rayleigh-Ritz method is a basic method for computing eigenvalue and eigenvector
approximations of a symmetric matrix A, from a given subspace X'. Most of the iterative
subspace methods use this method for obtaining approximations in the current iteration.
The Rayleigh-Ritz method computes eigenvalues and eigenvectors of A’s compression
to the subspace X, and it turns out that they have some optimal properties.

Let the subspace X be represented by an orthonormal basis X = [x1,...,zg]. Then,
the algorithm runs as it is described in |78, Chapter 11].

Algorithm 4.4.1 (The Rayleigh—Ritz method). For a symmetric matriz A € R™",

and for a given orthonormal matriz X = [x1,..., x| this algorithm computes an or-
thonormal matriz Y = [y1,...,yx|, where k < m, such that y., ...,y represent good
approzimations of k eigenvectors of A.

H=XTAX;

Compute k eigenpairs of H which are of interest: Hs; = 6;s; i =1,... k;
fori=1:k

yi:XSi;'
end
Y:[yl e Yk ];
fori=1,...,k

ri = Ayi — 0:yi;
Each interval [0; — ||73|2, 0; + ||rill2] contains an eigenvalue of A;
end

The scalars 6; are called the Ritz values, and the vectors y; are called the Ritz vectors.
The full set {(6;,v:),7 = 1,...,m} is the best set of the eigenpair approximations of A
which can be derived from the m-dimensional subspace X. The following theorems
describe the optimality of the Ritz values and the Ritz vectors.

Theorem 4.4.2 ([78, p. 215]). Let A € R™™ be symmetric, with eigenvalues ordered
as in (4.1), and let X be a k-dimensional subspace. Then

0, = min max 2T Az, i=1,... k,
Scx €S
dim(S)=i ||z]l2=1

where 01 < 0y < -+ < 6.
Theorem 4.4.3 ([78, p. 216]). Let A € R™™™ be symmetric, with eigenvalues ordered

as in (4.1), and let X be a k-dimensional subspace represented by an orthonormal basis

X. Then for H=XTAX
|AX — XH|s < [|[AX — XGlly, VG € RF*F,

Theorem 4.4.4 (|78, p. 219]). Let X be any orthonormal n X k matriz. Associated
with it are H = XTAX and R = AX — XH. There are k of A’s eigenvalues {)\;,,1 =
1,...,k} which can be put in one—one correspondence with the eigenvalues 0; of H in

such a way that
16; — Nj,| < || Rz, 1=1,...,k.
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A tighter bound is stated in the next theorem.

Theorem 4.4.5 ([70, p. 3]). Let A € C™™ be Hermitian and let A have eigenvalues
A <o < \,. Let X be a k-dimensional subspace of C" given as the range of orthonor-
mal X € C™*. Further, let M = X*AX € CF** be the Rayleigh quotient, and let the
residual be defined as

R=AX — XM= (I - XX")AX
We define additive perturbation 6A = RX* + X R*, and change A to A=A—6A. Then
the eigenvalues \y < --- < \, of A satisfy

~ RII?
max [N\ — N\ < ————— il )
i=1,..on mlkn\,uj—yk|
J7

where i, are the eigenvalues of M, vy are the eigenvalues of N = XTAX |, and X is
the orthonormal basis of X*+. Further, \(A) = \(M) U X(N).

4.4.2 Simple Subspace Iteration

Subspace iteration is a straightforward generalization of both the power method and the
inverse iteration |78, Chapter 14|. Let A € R™" and let X C R" be a k-dimensional
subspace. Then we define a new subspace

AX ={Azx:z € X}.
The next step is the definition of the block Krylov subspace
ICo(A, X) = span{X, AX, A%X, ... A"1xY,

which plays an important role in subspace iterations. In practice, X is represented by an
orthonormal basis X = [z7 ...zg]. Let u, be the eigenvector belonging to the eigenvalue
As with the largest absolute value. Since the power method converges to u, for every
starting vector not orthogonal to wu, if [\,| > || for i # s, the basis of A7X should
be orthonormalized in each step of the computation of Krylov subspace. Without the
reorthogonalization all of the columns of the matrix 47X would converge to the same
vector. This way we will obtain a basis for the leading k-dimensional invariant subspace,
consisting of k eigenvectors that belong to k eigenvalues with the largest absolute values.

Algorithm 4.4.6 (Simple subspace iteration). For A € R™™", and for a given

orthonormal matriz Xo = [1:50), o 7x](€0)] this algorithm computes an orthonormal ma-
triv X = [z1,...,2], such that X = span{X} represents a good approrimation of
span{t, k11, -, Upn}-
for j=1,2,...

Yy =AX; y;

Compute QR factorization Y; = X;R;;

Test X for convergence. If the convergence condition is satisfied then stop.
end
X=X
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Another possibility is to use an inverse of the matrix A — A\I, i.e. to solve systems
with the matrix A — AI. Then, subspace iteration can be modified to use (A — \I)~! for
obtaining k eigenvalues closest to A, together with their eigenvectors. This is the most
common way in which this technique is used.

Algorithm 4.4.7 (Inverse subspace iteration). For A € R"*", for a given orthonor-
(0) (0)

mal matriz Xo = [z ,...,z, "], and for X\ € R this algorithm computes an orthonormal
matric X = [x1,...,x1], such that X = span{X} represents a good approximation of
span{u;,, ..., u; }, where u;,,...,u; are eigenvectors belonging to k eigenvalues closest
to A.

for j=1,2,...

Solve X;_1 = (A— N)Y;;
Compute QR factorization Y; = X, R;;
Test X for convergence. If the convergence condition is satisfied then stop.

end

For A = 0 inverse subspace iteration will converge to span{uy, ..., ux}. The following
theorem describes this convergence.

Theorem 4.4.8 ([78, p. 297]). Let A € R™™ be a symmetric matriz with 0 < A\ <
Ay <o <A < Mgyt S0 < N\, and let U(:, 1 : k)T Xy be invertible. Then

NJ
tan 4(Ui,A_jXQ> S ( >\Z > tan 4(u,Xg>,
A1

where
U = span{uy, ..., ug}, Xo = span{Xy}.

From Theorem 4.4.8 it follows that inverse subspace iteration might converge very
slowly if Ay is close to Ag.

4.4.3 The Block Rayleigh Quotient Iteration

The Rayleigh quotient iteration (RQI) is a very well known method for computing an
eigenpair of a symmetric matrix [78]. For a matrix A € R"*"  the Rayleigh quotient
is defined as .
xt Ax
p(r) = ——, where z € R", x # 0,
Tz

or in matrix form
H(X)=(XTX)'XTAX, where X € R™* k < n, X has full column rank.

There were several attempts to generalize RQI into a subspace method, but the most
convenient is the Block Rayleigh Quotient Iteration (BRQI) described in [28].
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Algorithm 4.4.9 (The Block Rayleigh Quotient Iteration). For a symmetric

matriz A € R™ ", and for a given orthonormal matriz X, = [:Ego), e ,x,go)] this algorithm
computes an orthonormal matriz X = [xy,...,xx], such that X = span{X} represents
a good approzimation of span{u;,, ..., w; }, where 1 <iy < iy < --- < iy < n.

for j=1,2,...

Compute the Ritz values ngfl) and the Ritz vectors yz-(jfl), 1=1,...,k
for A and X;_1, so that:

X;-T_lAXj_l = Zj—l(-)j—lZ]T_la @j—l = dla%(ey_l), .1, 9,(;_1)),
Zj1 € R*<F, ZjT_le—l =1, Y11= [?J%Ji ), e ay;(cji )] = X121
fori=1:k
Let m; and n; be given integers, 0 < m; < i, 0 <n; < k —1, define:
Xij—1= [Oégj__nii)7 e axz(i;i)]a Qij—1=1— Xi,j—1ng_1;
Compute w” ™" such that
Qij (A= 07 D™ +w! ™) =0, ()X =0;
end
Compute QR factorization [y? ™" +w ™ . ,y,(j_l) + wl(j_l)] = X;Rj;
Test X; for convergence. If the convergence condition is satisfied then stop.
end

The parameters m; and n; are integers chosen so that Qm_l(A—@fj Uy ) is well-
X
1,7—1
conditioned. In case when m; = n; = 0, the vector yi(j_l) + ng_l) after normalization is

equal to a:gj) updated by a classical RQI iteration. This special case can be written in a

more simple form than Algorithm 4.4.9, as follows.

Algorithm 4.4.10 (The Block Rayleigh Quotient Iteration (Classical)). For a

symmetric matric A € R™"™ and for a given orthonormal matriz Xy = [:1:50), e ,ZL‘](CO)]
this algorithm computes an orthonormal matriz X = [z1, ..., x|, such that X = span{X}
represents a good approzimation of span{u;,, ..., u; }, where 1 <i; < iy < -+ < i < n.
for j=1,2,...

Compute the Ritz values 910_1) and the Ritz vectors y-(j_l), 1=1,...,k
for A and X;_1, so that:

XJ'T—lAXjfl = ijl@jlef_l, O, = di'agngfl), - ’el(cj—l))’

ijl € kak7 Z}llefl = ]7 Y}',l — [ygjfl)7 o 7yl(cjfl)] _ inlzjili
fori=1:%

Solve (A — egj_l)_[)ng) _ yzgg—n;
end

Compute QR factorization [ng), e ,w,(cj)] = X;R;;
Test X for convergence. If the convergence condition is satisfied then stop.

end
X =X,
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BRQI has local quadratic convergence, which is described in the following theorem:.

Theorem 4.4.11 ([28, p. 68]). There exist constants g > 0, p, x < 1, Cy > 0 such
that if dist(U, Xy) < €9, Algorithm 4.4.9 is well defined and the following properties hold
forj=0,1,2, ..,

dim(%;) =k,
dist(U, &;) < p(dist(U, Xj_1))?,
dist(U, X;) < AU 1)

09 =\ < CodistU, X)), i=1,....,k,

where
U =span{uy, ..., u,}, Xy =span{Xy}, A&; =span{X,},

and dist(X,)) is defined in section 2.2.
Moreover, the algorithm converges, that is:

lim dist(U, X;) = 0.

J—00

4.4.4 The Lanczos Method

The Lanczos method was introduced in 1950 as a method for the reduction of a sym-
metric matrix to a tridiagonal form. Twenty years later Paige showed that despite its
sensitivity to roundoff, the simple Lanczos algorithm is an effective tool for computing
some eigenvalues and their eigenvectors.

The Lanczos algorithm is the Rayleigh-Ritz procedure implemented on the sequence
of Krylov subspaces

K;(A, z) = span{z, Az, A%x,... . A 'z}, j=1,2,....

At each step the subspace dimension grows by one, but the costly Rayleigh—-Ritz pro-
cedure is dramatically simplified. Let (); = [g1,...,¢;] be the orthonormal basis for
IC;(A, x) such that g = x/||z||2, then in this basis A’s compression Q] AQ; to K;(A, x),
is represented by a tridiagonal matrix 7}

[ a1 B i
Bi s B
T; = Ba o Tt ;
' e B
i Bi-1 o |

see [78, Chapters 12 and 13]. The algorithm is summarized by two equations,
AQ; — QT =rjel . 15 = g0,

and

1-Q7Q;=0.
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Algorithm 4.4.12 (The Lanczos method). For a symmetric matrizc A € R™", and
for a given vector xq € R™ this algorithm computes approzimations to some eigenvalues
and their eigenvectors.

ro = To; By = ||7“0||2 7é0 qo = 0;

for j=1,2,.
T'J,1
qj 5]’—1,
uj = Ag;;
Ty = Uy Qj—lﬂg—l;
ay = qfﬁ)’
=T;—4q;q
ﬁg = Irsll;

Compute eigenvalues (the Ritz values) p; and eigenvectors s; of T;
and the Ritz vectors v; = Q;s;;

If satisfied stop.
end

The following results describe the convergence of the Lanczos method.

Theorem 4.4.13 (|85, p. 689]). Let A € R™" be a symmetric matriz with eigen-
values A\ < Ay < -+ < A\ < Agy1 < -+ <\, and eigenvectors uq, ..., u,. Let P; be
an eigenprojection associated with \;, i < k, and let xy the be the starting vector for
Algorithm 4.4.12. Let us assume that Pixg # 0, and consider u; = Pixo/|| Pixol|2. Set

An — A .
7221—2)\71_)\1, and KZ_ )\i—)\j’ ZfZ#l’
An = Aip1 J=1
K =1
Then
tan Z(u;, K (A, x <" _tan/ U, T
( ( 0)) |Tm 7,(72)‘ ( 0)

where Ty(x) is a Chebyshev polynomial of the first kind of degree ¢,

Ti(x) = % {(934—@)[—}— (x —Va? — 1)1 . for x| > 1

Corollary 4.4.14 ([85, p. 692]). Let the symmetric matriz A € R™" and a vector
xo € R” satisfy the assumptions of Theorem 4.4.13. Let iy < --- < p,, be the eigenvalues
of Trn, and assume that p;—1 < X\;. Let v; be defined as in Theorem 4.4.13, and let

HA_%,W#L

N1 = 1
Then

2

To—i (%)
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Corollary 4.4.15 ([85, p. 694]). Let \; be the i-th eigenvalue of A with an associated
eigenvector wu;, ||u;|lo = 1. Let u; be the eigenvalues and v; the eigenvectors of T,,, and
d; = minjz; [N — p5), 7 = ||(I — 7)) Amp||2, where w0, is an orthogonal projection on

K (A, zg). Then

2

ro\ 2 r2\ 2 K;
siné(ui,vi) S (1 + d—:g) sin A(UZ,K:m(A, xo)) S (1 + d_?) mtan l(ui,l’g).

When the Lanczos algorithm is executed in floating point arithmetic, the matrix @);
might lose its orthogonality. Nevertheless, the following holds [78, p. 270]:

e Orthogonality among ¢;, ¢ = 1,...,7, is well maintained until one of the Ritz
vectors begins to converge.

e Fach new Lanczos vector g;+; and each “bad Ritz vector” has a significant com-
ponent in the direction of each “good Ritz vector”.

e The emergence of almost duplicate copies of previously converged Ritz pairs is
possible.

4.4.5 Locally Optimal Block Preconditioned Conjugate Gradi-
ent Method

Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) is a
quite fast iterative method for computing invariant subspace of a symmetric matrix,
based on a local optimization of a three-term recurrence. It was introduced by Knyazev
in 2001 [57]. The algorithm combines the preconditioned steepest descent method for the
eigenvalue problem and the three—term recurrence of the preconditioned block Lanczos
algorithm. The unpreconditioned versions of both methods will be described in more
details in Section 5.1.2.

We will start the description of the algorithm by an observation: if A is an eigenvalue
of A, then zero is an eigenvalue of the matrix A — Al with the same eigenvector, and we
will show that it is also an eigenvalue of the matrix T'(A — AI'), where T' is a symmetric
positive definite preconditioner which approximates A~!. T is chosen so that it acceler-
ates the convergence of the method. So, if A is the smallest eigenvalue of A, zero is the
smallest eigenvalue of A—AI. Since A— AI is congruent to T2 (A—)J)T%, Sylvester’s in-
ertia theorem implies that zero is also the smallest eigenvalue of Tz (A— )\I)T%. Further,
T2(A—M)T2 ~ T2[T2(A— X)T2]T"2 = T(A — M) which implies that the smallest
eigenvalue of T(A — AI) is also equal to zero and all other eigenvalues are positive. On
the other hand, if A is the largest eigenvalue of A, then zero is also the largest eigenvalue
of T(A— AI) and all other eigenvalues are negative. In both cases zero is well separated
from the rest of the spectrum of T'(A — AI). The best choice of A is to take the Rayleigh
quotient p(x;) of the current eigenvector approximation z;.

It makes sense to employ the Lanczos method on T(A — p(z;)I) to compute its
extreme singular vectors. The three-term recurrence of the preconditioned Lanczos
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algorithm applied to T'(A — p(z;)I) reads
rj =T(A = plx;))r; — ajo; = Bjawj, (4.31)

where z; is an eigenvector approximation in the j-th step of the Lanczos algorithm (a
Ritz vector). z;41 is obtained by normalization of r;. So, the new approximation can
be obtained from the recurrence of the type

Tjy1 = qw; + 7wy + i, wy = T(A = p(x)])zy, (4.32)

where the parameters «;, 7; and 7; are chosen using an idea of local optimality: select
the parameters that maximize or minimize the Rayleigh quotient

T
_ AT
plajin) = A
Tjr1Tj+1
If p(z;41) is maximized, then we have
T T
- yj+1VVj+1AVVj+1yj+l 433
maxp(‘r]+1) - maX3 T WT Ww. ’ ( . )
jyTi Y1 €RY Y5 Wi Wi+
where
Q;
Y= 1|7 |, Wim=[w = z1]
Vi

We assume that W;,; has full column rank. On the other hand if W, = V1R is
the QR factorization of W, where V., is orthonormal, then (4.33) implies

T pT T
yj+1Rj+1Vj+1AVj+le+lyj+1 o

max p(rj41) = max —m——
vl T
QjsT55Yi Yj+1€ER3 Z/j+1Rj+1Vj+1Vj+1Rj+1yj+1
T T
21 Vi AVinzin
= max (4.34)
3 T .. ’
zjr1€R Zj+12]+1

where 2,11 = Rj11y;+1. By Theorem 4.1.7 (4.34) implies that finding the optimal ;44
is equivalent to finding the maximum eigenvalue of VJTHAVjH, where Vji; is the or-
thonormal basis for span{w;, z;, z;_1}. Thus, the Rayleigh-Ritz method can be applied
to A and span{w;,x;, z;_1}, and x;41 can be chosen as the Ritz vector Vj;12;41 corre-
sponding to the maximum Ritz value. Hereby we described a basis of a preconditioned
Conjugate Gradient method for invariant subspaces.

As the current eigenvector approximation x; and the previous eigenvector approxi-
mation z;_; are getting closer to each other in the process of iterations, W;,; will be
badly conditioned. So, instead of w;, x; and z;_; in the three-term recurrence (4.32),
the recurrence will involve w;, x; and p;, where p; is the implicitly computed difference
between z; and x;_;. Now, we obtain the following recurrences:

Tivr = i+ Trg+ypy,  w; = T(Az; — p(x))x;),

Pj+1 = ayw; +vp5, po =0, (4-35)
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with parameters «;, 7; and 7; chosen using the idea of local optimality. We see that
Dj+1 = Tj41 — T2,
thus
zj+1 € span{w;, z;,p; } = span{w;, z;, x;_1},

therefore (4.35) is equivalent to (4.32), and this defines the main step of the Locally
Optimal Preconditioned Conjugate Gradient method.

In case when an invariant subspace is required, which corresponds to the k largest
eigenvalues, a simple generalization of the described process will produce a block al-
gorithm. A block version of the Locally Optimal Preconditioned Conjugate Gradient

method determines the i-th eigenvector approximation xz(j ) as

0 € span {af ™V, 2, T(A = pe) D2, a7V 2, T(A - p(a) D}

(+1)

where z; is computed as the i-th Ritz vector. Thus

]+1 Z a@ewe]) + 7 e)xﬁj) + 'Vz(e)p(])
where wé =T(A— p(z, ))])xgj), and

(j+1) g+1
D; E Tzexg .

Again, this implies that

29 ¢ span {ng) w29 x’(cj)’pgj)"”,plgj)} _
= span {ng), w,i]),:pgj), N zé),xgj 1)7 o ’iéj—l)}.

Finally, we can write the whole algorithm.

Algorithm 4.4.16 (LOBPCG). For a symmetric matric A € R™" and for a given

orthonormal matriz Xy = [m§°), e ,$,(€0)] this algorithm computes an orthonormal ma-
tric X = [x1,...,2k], such that X = span{X} represents a good approzimation to
span{, g1, .-, Un}.
fori=1:k

pz(‘O) =0;
end
for j=1,2,...

fori=1:k

,O(I(j_l)) _ (x(j—l))TAx(j—l).

57 LA b



4.4. SUBSPACE METHODS FOR THE PARTIAL EIGENVALUE PROBLEM 165

W=D _ D).

Use the Rayleigh—Ritz method for A on the trial subspace
span {ngfl), e ,w,(cjfl), xf*”, e ,ngl),pgjfl), e ,p,(ﬁjfl)};

j k i—1)  (j—1 i—1) (j—1 i—1) (j—1
xz(']) = Ze:(1) az(,jz )wéj )+ Ti(,]e )xéj e %'(,]e )pgj );
j

where x;”" s the i-th Ritz vector corresponding to the i-th largest Ritz value;

oy oen o o
! =i ay wf ™ Y

end

Test X for convergence. If the convergence condition is satisfied then stop.
end
X=X

The following theorem gives a convergence estimate for Algorithm 4.4.16, when an
invariant subspace is required, which corresponds to the £ smallest eigenvalues.

Theorem 4.4.17 ([59, p. 44]). The preconditioner T is assumed to satisfy
So(2'Tz) < 2PA™'z < 6,(2"Tx), Vo cR™ 0<§ <0,

in every iteration step, where K(T'A) = 61/dy. For a fized index i € [1, k], if p(xz(j)) €
[Ae;s Ae,+1) then it holds for the Ritz value p(x(-]+1)) computed by Algorithm 4.4.16, that

]

cither p(z™V) < Ay, (unless (; = i), or p(z¥™V) € [, p(z)).

In the latter case

G+Dy _ () )\
Ao ) =M (T ), Ay NP2 A
A1 — plag ) A1 — pa;”)

where

G(H(TA) Ay Agsy) = 1— (1 _ %) <1 _ A?il) |

4.4.6 The Jacobi—Davidson Method

The Jacobi-Davidson method is an iterative method for computing a few of the extreme
eigenvalues of a symmetric matrix and corresponding eigenvectors. This method is based
on a combination of an old method of Jacobi and of the Davidson method, as described
by Sleijpen and van der Vorst in [88]. The main idea is to expand the trial subspace
and to apply the Rayleigh—Ritz method on that subspace.

Suppose we are given an eigenvector approximation z; in the j-th iteration, and we
want to find a correction to that approximation that is orthogonal to z;. Therefore we
are interested in seeing what happens in the subspace span{z;}*+. The compression of
A to that space is given by

B = (I —zz)A(I — z;2]),

J J
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where z; is a normalized vector. It follows that

A=B+ AZjZ]T + ZJ'ZJTA - Qijij, 6]' = ZJTAZJ‘. (436)

When we want to find an eigenvalue A of A close to 6;, then we need a correction ¢; L z;
to z; such that
A(Zj + tj) = )\(Zj + tj). (437)

After inserting (4.36) into (4.37), and by using the fact that Bz; = 0 we obtain
(B — )\I)tj =Ty + ()\ - Hj - Z]TAtj)Zj, T = AZj — 93'2’]'. (438)

Since the left side of (4.38) and r; have no component in z;, it follows that the factor
for z; must vanish, and hence ¢; should satisfy

(B— AD)t; = —r;. (4.39)

If we replace A by the current approximation 6;, we will obtain the final form of the
correction equation
(B - ij)tj = —Ty, tj 1 Zje (440)

This equation is usually not solved exactly. Its solution approximation is computed
instead, usually by an iterative method. The vector ¢; will be used to expand the trial
subspace.

The algorithm for finding the invariant subspace which corresponds to the k largest
eigenvalues is presented bellow.

Algorithm 4.4.18 (The Jacobi—-Davidson method). For a symmetric matriz A €
R™"  and for a given vector x this algorithm computes an orthonormal matriz X =

[€1,...,2k], such that X = span{X} represents a good approximation of
span{, ki1, .-, Un}-
T =i Y= Avg b = oy

Set X1 =[z1], Y1 =|n], H = XTAX| = [hn];
2 =x1; 01 =hu; =y —012;
until convergence do
for j=1:m-—1
Solve (approximately)

(I = 22] (A= ;1)1 — z2] )t; = —r;  fort; L z;
Orthogonalize t; against X; using modified Gram-Schmidt, to obtain ;41
X =1[X; = ];

Yjr1 = Azjp;
Yinn=1[Y yj1 |;
H XjTijrl

H,. =
j+1 T T
yj+1Xj Tir1Yji+1
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Compute the largest min{k, m} eigenpairs of Hj 1,
let (841, 8j+1) be the eigenpair such that 011 is the largest eigenvalue;
Zjit1 = Xj4155415
Zit1 = Azja;
i+l = Zix1 — Oip12i;
Test for convergence and stop if satisfied;
end
Set Xo = [z, Yi=[5n], Hi=[0nl];
end
X =X;n(,1:k);



Chapter 5

Multispace

In case when a matrix A is symmetric positive definite then all its eigenvalues are posi-
tive, and inverse subspace iteration will produce an approximation to invariant subspace
U, which corresponds to the k£ smallest eigenvalues. On the other hand, in case when
Ak+1 18 close to A, inverse subspace iteration might converge very slowly (see Theorem
4.4.8).

The inverse iterations are usually used to compute an invariant subspace, when good
approximations to eigenvalues are known. In that case sometimes only few iterations are
needed to obtain accurate solution. The only problem arises when the desired subspace
corresponds to the eigenvalues that are not well separated from the rest of the spectrum.
The slow convergence in that case does not mean that all eigenvectors converge slowly.
The eigenvectors, whose eigenvalues are far from the rest of the spectrum will converge
faster. If we have some information about the spectrum, then we should start with a
subspace with larger dimension than desired, which will guarantee faster convergence.
On the other hand, the Lanczos method produces a sequence of Krylov subspaces with
increasing dimensions, and the accuracy of the eigenvector approximations is increasing
with dimension. The inverse iterations are dealing with the subspaces of the same
dimension and the subspaces from the previous iterations are not involved in the current
iteration. The current subspace of the Lanczos method includes all subspaces from the
previous steps, and thus improves eigenvector approximations.

The idea of the multispace method is to speed up the slow convergence of the inverse
subspace iteration by a technique similar to the multigrid method for solving linear
systems. The multigrid method uses a simple iteration method which usually stagnates
after a couple of iterations, and then transfers the whole problem to the smaller di-
mension. This transfer to the smaller dimension improves the convergence of the whole
process.

168
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5.1 The Algorithms

5.1.1 Multigrid Algorithms

Let us first start with a simple description of the multigrid algorithms. Originally, multi-
grid methods were developed for solving boundary value problems defined on certain
spatial domains. Such problems were discretized over a set of nodes in the domain,
which were organized in a grid. The resulting discretized problem becomes a problem
of solving a linear system, whose matrix has a very specific structure, and unknowns
correspond to the solution value in the nodes. The main idea of multigrid is solving this
system on coarser and coarser grids with an iterative method, thus making the dimen-
sion of the problem smaller and smaller. After reaching the coarsest grid, the solution
approximation is interpolated back to the finer grids. It turns out that this principle has
good convergence properties. Such methods can be applied to a wide class of problems,
even to the problems that are not associated with a physical grid. This was the basis
for the development of the algebraic multigrid.

Algorithm 5.1.1 (Multigrid V cycle). Let A = A, A®) ¢ Rwxm p1) = p
bk) € R™  where nq > ng > -+ > n,, and let us denote the restriction operator from
finer to coarser grid by L, n,) € R™ 1" and the interpolation operator from coarser
to finer grid by L, n,,,) € R "+ Let y*®) be the initial approzimation, then the
following algorithm computes the solution of the system AR z*) = pk),

1. Perform p iterations of the iterative method obtaining a new approzimation y*

(k1) —

2. Compute r®) = b®) — AR)y(®) and restrict it to the smaller dimension by r
(k)

I(nk+17nk)r
3. Compute AW = I(nkﬂ,nk)A(k)I(nk, k+1) _

r D on the smaller dimension

nesa) and approzimately solve AFTVel

k+1

4. Interpolate €™ to the original dimension by e® = I, . e® ) and compute

5. Perform p iterations of the iterative method obtaining the final approzimation y*)

Step 3. denotes a recurrent call to the multigrid routine.

As we can see, the iterative method for solving linear systems is first applied to the
original matrix, then again to the restricted matrix with smaller dimension, and so on,
until the smallest dimension is reached. On the smallest dimension the problem is solved
exactly, i.e. with a direct method, and the solution is interpolated back to the larger
dimensions.

The matrix of the discretized system, the restriction and the interpolation operator
depend on three things:

e differential operator of the original problem
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ny —

Uz

ns j

Ny — iterations
ny

Figure 5.1: A multigrid V cycle.

e grid
e discretization of derivations

For example, a discretized Laplace operator on a squared domain will produce a banded
symmetric positive definite matrix. The condition number of this matrix increases with
n, and the Jacobi and the Gauss—Seidel iterations stagnate after a modest number of
iterations. In this case the restriction and the interpolation operator are chosen so that
Ir{myn) = cI(n,m), where cis a constant, and the transfer to a smaller dimension and back
improves the convergence. It eliminates directions in the solution approximation that
caused slow convergence.

The idea of using multigrid for solving an eigenvalue problem is not new. Until
now, many eigensolvers for elliptic eigenvalue problems with multigrid efficiency were
developed, see |76]. According to [76], multigrid eigensolvers can be classified in the
following three categories:

The Rayleigh quotient multigrid minimization (RQMG)
When the eigenvalue problem for a self-adjoint elliptic partial differential oper-
ator is considered, then the discrete matrix eigenproblem can be treated as an
optimization problem for the Rayleigh quotient
2T A

p(l’) - ZL’Tx .

By the Courant—Fischer principle (Theorem 4.1.7) the minimum of p(x) equals to
the smallest eigenvalue of A, and is taken at the corresponding eigenvector. Hence
the iterative minimization of p(x) can serve as an eigensolver.

This minimization can be realized by means of a multigrid procedure. A coor-
dinate relaxation scheme is applied, i.e. for each coordinate direction d¥ (which
is associated with the i-th finite element function on a certain grid level k) the
minimum

. +7d)T A(x + 7d)
dk — (I % ]
Pl 4y dy) = min = T (0 & v )
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is computed, which is at the same time the smallest Ritz value of A in the 2D space
span{x,d¥}. The new iterate is  + vd¥. A multigrid cycle of RQMG consists in
a successive minimization of p(x) for all finite element functions on all grid levels.
It is interesting to note that

Vp(z) =

—(Az = pla)).

For more information see [10], [68] and [71].

Direct multigrid eigensolvers

Direct multigrid eigensolvers and the third class of eigensolvers are related to ap-
proximate variants of inverse iteration and the Rayleigh quotient iteration. Inverse
iterations are usually dealing with almost singular matrices A — X\l when \ is close
to an eigenvalue of A. So, solving a linear system with such a matrix can be quite
difficult. Alternatively, one can solve a non-singular coarse grid correction equa-
tion within the orthogonal complement of the actual eigenvector approximation.
This approach provides the basis for the direct multigrid eigensolver.

The resulting two-grid method maps a given iterate  having the Rayleigh quotient
p(x) to the new eigenvector approximations z’. It is given by

=St Smoothing step

d. = R(A — p(x)])z Coarse grid projection of the residual
alcL = Q.d. Orthogonal projection

ye = (A — p(x) 1)~ tdt Solution of correction equation
=1z — PQ.y. Prolongation and correction

Here, the index ¢ denotes coarse grid quantities. R is a restriction operator,
P is an interpolation operator and (). is the orthogonal projection operator to
the orthogonal complement of the actual eigenvector approximation. For more
information see [9], [41], [42] and [46].

Eigensolvers using multigrid as a linear solver
Another way to avoid solving a near singular linear system in inverse iteration,
is to apply multigrid preconditioning for A in order to determine an approximate
solution of the linear system

Az = p(az® §=0,1,2,.... (5.1)

A scaling constant p(z()) is introduced in order to achieve its stationarity in
eigenvectors.

The multigrid preconditioner B! is an approximate inverse of A, which is assumed
to be a symmetric positive definite operator, such that

11 =B~ Alla <, (5.2)

for a constant v € [0,1), where || - |4 denotes the operator norm induced by A.
The best preconditioners satisfy (5.2) where 7 is bounded away from 1, and is
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independent of the mesh size and of the number of unknowns. The approximate
solution of (5.1) for z = #( and by using B~! as a preconditioner yields a new
iterate 2’ approximating x+%

7' =x— B (Azx — p(x)x). (5.3)

The iteration (5.3) can be considered as the most simple eigensolver embodying
the idea of multigrid as a linear solver. It can be interpreted as a (multigrid)
preconditioned variant of inverse iteration (PINVIT). For more information see
[58] and [75].

Unfortunately, the cubic convergence of the Rayleigh quotient iteration cannot be
transferred to the preconditioned multigrid case. A significant acceleration of (5.3)
can be achieved by using multigrid preconditioners in LOBPCG [59].

The results of all these eigensolvers still represent a point in vector space R", while
on the other hand the solution of an eigenvalue problem is the whole subspace. So, a
better approach would be to combine a multigrid technique on subspaces with decreas-
ing dimensions, rather then grids. This is the foundation of the multispace method,
described in the next subsection.

5.1.2 Multispace Algorithm

Let us assume that A € R™" is a symmetric and positive definite matrix. This is
the only condition imposed on A. The structure of the matrix A and its origin are
not important. In this case, inverse subspace iteration will converge to the & smallest
eigenvalues if we take the shift to be zero, which is according to Ky—Fan minimum
principle (Theorem 4.1.10) equivalent to minimizing trace functional

p(X) = trace((XT X)) H(XTAX)), (5.4)

where X € R™F* has full column rank. The subspace that minimizes p(X) is spanned
by the first k eigenvectors of A. To see that, we denote the orthogonal projection on
the range(X) with 7, where 7 = X XT = X(XTX)"1XT. Then it is easy to see that

p(X) = trace((XTX) ' XTAX) = trace(An) = trace(rA) = trace(rAr),

which follows from the fact that 72 = 7, and trace(AB) = trace(BA) for any matrices A
and B. This implies that, finding the gradient of p will only involve finding the gradient
of 7. Further, if X spans an orthonormal basis for range(X), then we can use it instead

of X, and the expression for p(X) is now simplified. So, from the Ky—Fan minimum
principle and the Cauchy’s interlacing theorem (Corollary 4.1.9) now it follows

k
p(X) = trace(XTAX) = Zm > Z A\ = trace(UT AU),
i=1 i

where y; are eigenvalues of XTAX, and U = [ u; --- wuy | with Au; = M\u,.
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From now on we will use the following notation: for each matrix S € R™* a k-
dimensional subspace spanned by the columns of S will be denoted by S = range{S}.

Now, we want to use the multigrid idea, in its two-grid correction form. Let X, €
R™** be an orthonormal matrix such that X, represents initial approximative subspace.
Further, let W™ € R™™ be an orthonormal matrix which spans an m-dimensional
subspace W™ C R", where k < m < n. Then, the basis of the new algorithm should
be:

1. Perform p steps of inverse iteration, starting with X, in order to obtain X,.

2. Compute A™ = (WmmNT AW m) and restrict X, to the smaller dimension by
Y, = (W(n’m)>TXp.

3. Find an orthonormal basis Y € R™** belonging to the k smallest eigenvalues of
A™ by inverse iteration starting with Y.

4. Transfer Y to the original dimension by X, = wrmy.,

5. Perform p more steps of inverse iteration, starting with X, in order to obtain Xo,.

Step 3. denotes a recurrent call to the multispace routine. Here W™ stands for the
interpolation operator and (W™ for the restriction operator. Now, one question
still remains: how to choose an appropriate subspace W(™? The answer relies on the
equation (5.4).

The first assumption should be that X, = span{X,} C W™™_  So, if we define
7 € R™™ as a trial subspace basis for W™ we can put

Z(1:n,1:k)=X,.

Now we have to find remaining m — k vectors in the basis Z, which we denote by
Pec Rnx(m—k)
Z(1:n,k+1:m)=P.

Once we construct Z we can take QR factorization

Z=Wmm™R  where W(n’m)(l i, 1ik) =X, Z(1:ink+1:m) =P,

and take W™ as the desired orthonormal basis, so that Yy = [ % } . The good choice

for P would be such that W(™™ contains directions in which p would be minimized
even better. This means that we want
min trace(YTA™Y) = min trace((W™™Y)TAW Y « trace(X| AX,),

YeRka7 YERka,
YTy=I, YTy=I,

(5.5)
and we want this trace reduction to be as large as possible. Let us take a better look at
this trace minimization. If we make a partition

_ Y
(nm) _ _ | h
w (X, P], Y {YJ
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where Y; € R¥F and Y, € RO"F)*k then, as in [30]

min trace((Wm™WY)TAW ™YY = min  p(Wm™Y)
Y eERm*k YeRmx*k
YTy=I, rank(Y)=k
= min p(X,Y) + PYs).
Y eRm*k
rank(Y)==k

It turns out that P spans an (m — k)-dimensional search direction P L &, for the
minimization of the functional p, taking X, as starting point. So, we must choose P in
such a way, that it contains directions of rapid functional descent.

In case of the minimization of a functional defined on a vector space, the direction
of its fastest descend is equal to minus functional gradient |3, Lemma 8.6.1|. Thus, the
iterative steepest descent method uses functional gradient as a search direction. Since
we want to minimize the functional p, we will also observe its steepest descend direction
which is constructed in [73] as

G(X) =Vp(X) =2(AX — XHx)(X"X)™", Hy=(X"X)""(XTAX),

where rank(X) = k. The problem is that G(X) € R™* and usually m > k, so we are
still missing more directions in subspace W™ The first step of the steepest descent
method would find Sy, such that

min - p(X,Y; — G(X,)Y2) = p(S1). (5.6)
Y€R2k><k
rank(Y)=k

where minimum is obtained for Y; and Ys, and
S = X,V -G(X,)Ye=X, (Y1 + 2HXPYQ) — AX,-2Y, with
G(X,) = 2(AX, - X, Hx,).
This implies that
Sy Cspan{X,, AX,} = K2(4, X,),

where IC;(A, X,,) = K;(A4, &,) is a block Krylov subspace.
Here we have to be careful of how we construct the matrix S;. The following relations
hold

XY= GG =X, <65 1|51 |

and p(XpYI_G(Xp)Yz)ZﬁQYQ D

where
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So, if [ X, —G(X,) ] has full column rank, then the minimization in (5.6) is equivalent
to finding the k smallest eigenvalues with corresponding eigenvectors of the 2k x 2k
generalized eigenvalue problem

Ay = nBy.
Since, X G(X,) = 0, [ X, —G(X,) ] will have full column rank if G(X,) has full
column rank. Let g, = rank(G(X,)), and let G, € R™*9% be the orthonormal basis for

range(G(Xp)). If g, < k, that means that A}, contains a subspace which is A invariant.
In that case we can take G, as a new search direction, and define

A=[X, -G, |TA[ X, -G, ]¢€ R (k+9p) X (k+gp)

In this way (5.6) is equivalent to finding the k smallest eigenvalues with corresponding
eigenvectors of the matrix A.

If we assume that the (j — 1)-th step of the steepest descent produces S;_;, such
that S;_1 C K;(A, X,), then the j-th step will produce

S; = 8;Y1—G(S;1)Ya = Sjo1-(Yi+2Hs, (S]_1S;-1) " Ya) — AS;1-2(5]_15;-1)"'Ya,

and
S; CKi(A, Xp) + AK;(A, Xp) = K (A, X5).

We can conclude that for Sp = X,

SjCle_H(A,Xp), jZO,,f—l,EZIV%-‘
Again, in case when G(S;_1) is rank deficient, we should choose the orthonormal basis
for range(G(S;-1)) as a new search direction.
Finally, if we chose

P=[AX, A’X, ... AC'X,]eR™(Dk

then WM™ = ICy(A, X,) will contain the solution approximation from ¢ — 1 consecutive
steepest descent steps. So, if we started with X, any orthonormal basis Wm) of Y nm)
will satisfy condition (5.5), and the functional reduction will be satisfactory, because
we chose directions of steepest descent. A concrete implementation of an algorithm
generating W (™™ should detect any rank deficiency in [ X P ], and it should contain
only the columns that span range([ X P ). In case when X, = U is the exact solution,
that is AU = UA, the inverse iteration will not change U = range(U), since A71U =
UA~'. Further, rank([ U P ]) = k and the space W™ will coincide with &; and
A" = A, Hence, we are done and there is no need for further iterations.

Here we can use the block Lanczos algorithm to produce W™ and the matrix A,
The block version of the Lanczos algorithm works the same way as the standard version

except that it starts with an n x k matrix instead of a vector. Hence, for the orthonormal
basis QU) = [Q1, . .., Q;] of K;(A, X), the matrix Tj = (QW)TAQU) € RI*** is banded,
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and has the following form

B, Ay, BT
j—“j = B2 ' ) AZ € Rka
.o,
L Bj—l A]

see |78, Chapter 13|. Here is the block Lanczos algorithm.

Algorithm 5.1.2 (The block Lanczos method). For a symmetric matriz A € R™",
and a given orthonormal matriz Xy € R™F¥, this algorithm computes an orthonormal

basis W for Kim(A, Xo) and T = WTAW.

function [W,T] = block_lanczos(A, Xy, m)

£=r2);
Ry = Xo; Qo=0;
for j=1:/¢

Compute QR factorization R;_; = Q;Bj_1;
R; = AQ; — Q1B y;

Aj:Q?Rj;
Rj=R; — Q;4;
end
W=[Q - QI T=T

end

Since the matrix A in the next multispace level is banded, it makes matrix—vector
multiplication cheap. Instead of solving the problem (5.5) for the matrix A we can
apply again the same procedure described above, by performing several steps of inverse
iteration. Hence, the algorithm switches to subspaces with smaller and smaller dimen-
sion until it reaches the smallest dimension. On the smallest dimension the problem is
solved by a direct method. We take m 40 = {pas - k to be the largest acceptable dimen-
sion of W™ | where 4, = dim(W™™)/dim(X) is the largest dimension increasing
factor.

Now we can derive the whole algorithm.

Algorithm 5.1.3 (Multispace V cycle). For a symmetric positive definite matriz

A e R™™" and a given orthonormal matriz Xo = [91;50), o ,x,go)] this algorithm computes
an orthonormal matric X = [z1,..., x|, such that X = range{X} represents a good
approrimation to span{uy, ..., ug}.

function X = multispace(A, X))

if (n < min{2k, nyin})
FEzactly solve the problem (4.29) by a direct method;
else
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{ = min{ {&—‘ ,Emax}; m=10-k;
X, = inverse_iteration(A, Xo,p);
(W) A(m)] = block lanczos(A, X, m);

Yo=1n(1:k);

Y = multispace(A™), Yp);

X, = whmy,

X,, = inverse_iteration(A, X, p);
end

end

function X = inverse iteration(A, Xy, p)
{Implements the inverse subspace iteration (Algorithm 4.4.7) for the symmetric matriz A and the

starting k-dimensional approzimation Xo. It performs p iterations.}

x5
W(n.m)
Xl(n)
m=n/4
wem c R dim(W™) = m
x" cRe, dim(X™) = k, the i-th inverse iteration

x™ c wem - dim(x™) = k, the i-th inverse iteration

Figure 5.2: Inverse iteration and transfer to the subspace in multispace method

In our preliminary implementation, which is made only to study the convergence
properties, the linear systems in the inverse iteration are solved by the Cholesky factor-
ization. The factorization is computed only once, and applied p times. In the inverse
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iteration implementation there exist many possibilities for improvements, such as: to
employ the sparsity structure of the matrix, use the data from the factorization of the
previous multispace level with larger dimension, or to apply some iterative method for
solving linear systems. The bottleneck of the block Lanczos algorithm are QR factoriza-
tions, which we will try to reduce in the future work. The important thing here is, that
we are still far from an efficient implementation, but we are offering a new approach
to iterative methods for partial eigenvalue problem. When the inverse iteration stag-
nate, we are searching for the new direction in the subspace of larger dimension. The
dimension of the subspace is successively decreasing similarly to the multigrid idea.

Let us take a look at the floating point operation count of the multispace method.
First, let us define the following notations:

Cus(n) = operation count for multispace in dimension n,
Crr(n,p) — operation count for inverse iteration in dimension n, when
p iterations are performed,
Cpr(n,m) = operation count for the block Lanczos method when subspace
transfer is performed from dimension n to dimension m.
Cup(n,m,k) = operation count for matrix product n X m times m x k.
Co(n) = operation count for exact eigensolver in dimension n.

Let us take m = n /29, dim(Xy) = k, and m = ¢ - k, then we have

) Cur 1 5u8) O (3)-

Let s be the total number of multispace levels, that means that n/2°¢ is the smallest
dimension where the problem is solved directly, and n/2% ~ 2k. Than we can obtain

s—1 s—1 s—1
n n n n n n
Curs() =23 Co (77:0) + 32 Con (5w ) + 2 O (g em ) +Co ()

For example, for the concrete implementation in dimension n we can have the following
values:

Cus(n) =2C(n,p) + Cpyr <n,

Matrixz product
operation operation count
n X m times m X k 2nmk

Inverse iteration (2p iterations)

operation operation count
The Cholesky factorization n3/3
solving 2 triangular systems 4pn’k

QR factorizations Spn’k

total n3/3 + 12pn’k

The block Lanczos method )

operation operation count
QR factorizations (- 4nk = 4n3 /24

matrix products £ - (2n%k + 6nk?) = 2n?/27 + 6n?k /21
total 6n% /27 + 6n2k /27
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Dairect eigensolver
operation operation count
solver in dimension n /25 O(k3)

This will result with

1 6\ 1— 5% 8\ 1 — omv
Cus(n) = <§+§) 1_231 n® + <12p+§) 200k 4+ O(k®).

75 l— 3

To keep the balance between convergence and efficiency, we chose ¢ = 2 in most of our
numerical tests. We will observe two cases: p = 2 and p = 5, because p > 5 does not
pay off. Then

p=2
Cus(n) = 1.86 - L nd +27.73 -1 n*k + O(k?)
M ‘ 645 ' 16°
Crr(n,2p) = 0.33n° + 24n’k
p=>5

_ L Ly 3
Cus(n) = 1.86 (1 645)n +66.13 (1 168)nk+0(k)

Crr(n,2p) = 0.33n® + 60n%k

Now we can conclude that if the inverse iteration converges very slowly, than it pays off
to add more floating point operations in order to increase the rate of convergence. But,
does multispace justify these extra expenses? The answer to this question is given in
the next two sections.

5.2 Convergence

The rates of convergence of the multispace method are based on the results of Saad [85].
We start with two-space analysis, where only one transfer to the subspace is performed,
and the problem is solved exactly in the subspace. Multispace can be regarded as a
perturbed two-space method.

For the main result we need the following lemmas.

Lemma 5.2.1. Let my be an orthogonal projection on Xy, which is the starting subspace
in the multispace algorithm. Let us assume that Xy is such that the vectors mou,, mous,
.., moug are independent. Then there exists in Xy a unique vector T; such that

U;r,fl = 5ij7 fOT’j = 1, ceey k. (57)

The vector Z; is the vector of Xy whose orthogonal projection on U = span{uy, ..., ux}
18 exactly u;.
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Proof. See the proof of Lemma 4. in [85, p. 699]. O
Lemma 5.2.2. Let Q = [q1,...,q] € R™* and P = [p1,...,pr] € R™* be two
orthonormal matrices, which span two k dimensional subspaces Q = span{Q} and

P =span{P}. Then
sin Z(Q,P) < \/_ max smé(q“P)

.....

Proof. Let g be such that (see section 2.2 and [90])
sin Z(q, P) = max sin Z(q, P) = sin Z(Q, P),
IS

and let |||l = 1 with ¢ = Zle Bjqj. Then for the orthogonal projection Pp on P we
have
k
sinZ(q,P) = (I —=Pp)dlla= 1> 8;(I = Pp)gjll2 <

j=1

< Z!ﬁJHI (I = Pp)gjlls < max [[(I - Pp qz\lzzlﬁjl <

.....

< max (I — Pp)qi|2 VEk Zﬁz

-----

,,,,,

m
Theorem 5.2.3. Let A € R™ " be a symmetric positive definite matriz with eigen-
values \; < --- < A\, and eigenvectors uy, ..., u,, and let the eigenvalues of Am) —
(Wrm)T AW m) pe denoted by py;. Let Xo € R™* XT'Xy = Iy be a starting ap-
proximation for multispace and U = [uy, ..., ug]. Let m, be an orthogonal projection on
winm) — Ki(A, X,), m=k-L. Let us assume that the vectors mouy, Tousg, ..., ToUy are
independent and A\ < A\gy1. Set

An — A
F W v

and let Ty_1(x) be a Chebyshev polynomial of the first kind of degree £ — 1. Then, for
i=1,...,k

(a) when all of 2p inverse iterations are performed before the transfer to the subspace

1 A\
tan £ (u;, Ko(A, X)) < ‘ tan Z(U, Xp), 5.8
(A X)) < s () ez ), 69

3
NGTINERT
L(ug, Xap) < . tan Z(U, X,), 5.9
s £, X) S ET 0] (A) an £(U, %) (5:9)

where d; = minjz; iin.—1 | N — | if N is of multiplicity n;, and r, = ||(I —
71'[)1471'(”2
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(b) when p inverse iterations are performed before and p after the transfer to the
subspace (as in Algorithm 5.1.3)

)\i p )\k p
tan Z(u;, Ay,) < C tan Z(U, Xp), (5.10)
Akt 1 Akt1

where
2\ 3
\/E<1+—§>

7

[Te—1(vi)

=y

max;=1,.. k

2
k(l-@-d—g)
i)

""" k Tz2_1(7i)

1-— max;—1 Mot

(Lf” tan2 Z(U, Xy)

if the denominator of C' is greater than zero.

Proof. In this proof we use the result on angles between subspaces from Wedin [90]. Let
Z; be the vector from Lemma 5.2.1, and let

n
Zfz‘ = Z OéjUj,
j=1
be its coordinates in the eigenbasis. Since condition (5.7) must be satisfied, it follows
n
Zf'i = U; + Z OéjUj.
j=k+1
(a) The process is following:

inverse iteration ) block Lanczos —92
X, nverse Tteration,  y = A7 xgy DOkIaneis, e (AL X)) = ATPK(A, Xo)

solution on subspace

X2pa

so, in this case it is W™ = K,(A, Xy,). Let us consider an element x €
A™K,(A, Xy) of the form

v =A"PqA)z;, q€Pry,

where P,_; is a set of polynomials of degree not exceeding ¢ — 1. Then

=\, Pg(\)u; + Z ocj)\qu()\j)uj.
j=k+1

Let P; denote the eigenprojection associated with );. Then
(7 =Pzl Xk AP () o _ Z ( Ai )4” 7’ (\j)as
[P |3 AT (N) Ni)o ()
Let ¢ € Py—y be the polynomial for which the right-hand side of (5.11) reaches
its minimum, and let T € A=?PKC,(A, X) be the corresponding vector, such that

T = A?q(A)z;. Let T, € P;_; be a Chebyshev polynomial of the first kind,
then Tj_; satisfies the following conditions |78, p.332]:

(5.11)

j=k+1
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e T, 1(\)/2°% has the smallest infinity norm on [—1,1] of all monic poly-
nomials of degree ¢ — 1, where infinity norm is defined by ||¢|leo,-1,1] =
maXie[-1,1] lg(M)].

o || Ty-1]loo-11] = 1.

e Of all polynomials ¢ of degree < ¢ —1 which satisfy ¢(v) = § for some |y| > 1
the polynomials with the smallest infinity norm on [—1,1] is

i) = %(V)TZI()\)’

and
Jillo o = i
T (9)]
Since the observed properties of the Chebyshev polynomials hold for [—1, 1], and
the polynomials ¢ in (5.11) acts on \; for j = k+1,...,n, we have to map [Axi1, A
onto [—1,1]. We can do that by an affine function f : [Agy1, An] — [—1, 1] defined

by f(x) = ax — b, where
o 2 b — )\k—i-l + >\n
>\n - >\k+17 )‘n - )\k-i—l7

and then we can observe the polynomial 7,_;(aA—b). From the minimum property
of g, and the fact that |T,_1(\)| <1 for A € [—1, 1] it follows that

|0 -P)als _ ¢ (Ai)wwah
j=k+1

1Pz} P IO

( Ai )4p - Tf_l(a)\j—b)a?

a

(5.12)

)‘/C-l—l okt TKZ_I(CL)\Z' — b) -

1 A\
< d O{2 =
= TP (w) (Akﬂ) Z !

j=k+1
(2 )41,”_ ¢
= Ti— Uy )
T7 (i) \ M1 ?
where ) \
! Mo — A
Now we have the following situation:
'y
T - _
(I _ Pz)f Z; Z; U;
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So, we can conclude that
I(Z — P)z|3
1Pz |3
|Z: —willa = tan Z(Z;,u;) = tan Z(z;,U) < tan Z(U, Xp),  (5.13)

tan Z(u;, 7) > tan Z(u;, Ke(A, Xap))

and this proves (5.8).
Proof of (5.9) follows directly from Theorem 3 in [85, p. 694 and from the comment
in (85, p. 703].

Let us assume that the eigenvalue \; is of multiplicity n;, so that ¢ +n; — 1 < k,
and let P, j =1,...,k denote eigenprojections whose range are the Ritz vectors
associated with p;. We also assume that ju,. .., s are all distinct eigenvalues of
A(™  Then we first want to prove the inequality

i+n;—1
Ty — g Pu]- U;
j=i

where u; is any eigenvector associated with \;, and 7, is an orthogonal projection
on W™ = [C,(A, Xy,). The projections P, satisfy the following condition

.
< 2l = mo)uillz (5.14)

2

PMjPMi - (SUP

15

i 5.15
ZPM = T, ( )
t=1

and hence

S

(meA — NI)mpu; = (mpA — N ) Z P, u; = Z(ut — )P, u;.
=1

t=1

Multiplying the two sides by [ — >/~ P, we obtain

J=1
i+n;—1 S i+n;—1
<1 - > PM) (meA = NDmu; =Y (1 — M) (I— > PM) Pu; =
j=t t=1 j=t
= > (= NP (5.16)
tF#i,...i+n;—1

Taking the norms of the two sides of equation (5.16) gives

i+n;—1
‘ (I - Z P,“j) (meA — NI meuy;
j=i

2

= > (= M) Paul3 >

2 t#i,...i+n;—1
> d? Z HPMUZ'H% =
iy idni—1

2

= d ., (5.17)

i+n;—1
Ty — g Puj U;
j=i

2
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where d; = ming4; j4n,—1 |Ni — f1¢|, and the last inequality follows from (5.15). For
the left side of (5.16) we get

2

i+n;—1 i+n;—1
H (I— Z PH].) (meA — N D || < || — Z P, ||7Tg (A — N ||3 =
Jj=i 2
= HW(A— Aif)[uz (I = me)ui]ll3 =
= |Ime(A = NI = mo)(I = me)uill; <
< lme(A = NI = w311 — meyusllz =
= il — mweyuillz- (5.18)

Now (5.14) follows from (5.17) and (5.18). Next, we observe the decomposition

i+n;—1 i+n;—1
(I— Z Pu;-) w; = (I —mo)u; + ( Z Pﬂj>
j=i

where the two vectors in the right side are orthogonal. Thus, from (5.14) it follows

that
itn;—1 itni—1
=i =i
2\ 3
< (1+%) 10 = mule (519

Let y; = ZH"’ P,,u; be a Ritz vector, then

i+n;—1
(-5 )
2

- W[)UZ‘HQ = sin Z(u“K;g(A, X2p>> S tan 4(Ui,ICg(A,X2p)),

[N

2

IN

= | I = muill +
2

2

= sin Z(uy,y;) > sin Z(uy, Xap),

and (5.9) follows from (5.19) and (5.8).
(b) In this case, the process is as follows:
Xo inverse iteration Xp _ A_pXO block Lanczos IC((A,XP) _ A_png(A,Xo)

solution on subspace . inverse iteration —p D
X, Xy = APX,.

From part (a) of this proof it follows

sin £ (ug, &) < (1+%) < A )pta (U, X)
m Z(u;, n ) .
To—1 ()] \ Akt ’
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On the other hand from Theorem 4.4.8 it follows that

_ A\ _
tan Z(u;, A7PA,) < ( ) tan Z(U, &,).

k+1

So we have bounds on sin Z(u;, X,), and we need a bound on tan Z(U, A;). For
that, we will use the result of Lemma 5.2.2, to obtain

. ﬁ(“%)é(&-

sin Z(U, X,) < max

p
tan Z(U, Xp).
A5 | TS o) ) |t

Akt

Further, it follows that

; MO\ sin LU
tané(ui,Apo)S( ) s, )

Met1/) /1 —sin? Z(U,X,)

2\ %
\/E<1+;—§> P
i Ai
maxis, 8 g (52) ¢ tan ZUs X)

IN

]

Remark 5.2.4. The process described in Algorithm 5.1.83 has weaker convergence bound
than the process described in part (a) of Theorem 5.2.3. On the other hand, when
multispace is performed in floating point arithmetic, case (a) can produce a solution
which is far from being orthonormal, due to the Lanczos method. Case (b) will guarantee
numerical orthonormality of the solution. The difference between the convergence of

these two cases turned out to be negligible in many examples, and hence case (b) is
preferable.

It remains only to bound eigenvalue errors.

Corollary 5.2.5. Let the assumptions of Theorem 5.2.3 be satisfied, and let A™ =
(WD T AW m) have eigenvalues py < -+ < pim. Then, fori=1,... k, it holds that
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(a) when all of 2p inverse iterations are performed before the transfer to the subspace

K, A\ ’
0< Z—)\ZS )\n_)\z - ‘ tan £ U,X ) 5.20
<A =) [ () an 2 ) (5.20)
where
i—1
Ki = ()\n — )\8)7
1 (Ai — 1)
and
1+ 5% e\ i
max |u; — N| < (A, — A Vk max . ( k) tan Z(U, X, ,
=1, ..., k| = 1) =1,k \ T () Akg1 ( 0)
(5.21)

(b) when p inverse iterations are performed before, and p after the transfer to the sub-
space (as in Algorithm 5.1.3), we define {vy, ..., v} to be eigenvalues oin,AXgp,
then

: (5.22)

max i — M| < (A — M)VE

i=1,...,

Ao\
C( k) tan Z(U, Xp)

k+1

where C' is defined in Theorem 5.2.3.

Proof. The proof of this corollary is based on Theorem 6 in [85, p. 702|. Let T =
[t1,...,tm] be the eigenvectors of AT and let V = [v1,...,v,] = W™T be the
corresponding Ritz vectors. A theorem from |78, p. 190|, which is a consequence of the
Courant-Fischer Minimax Theorem 4.1.7, states that

pi = e Ay o (W) TAW ey
[ R™ T - R™ (mm) y NT T/ () =
y Lt yjezl ..... i Y it yj€:1 ..... i 4 y)TW y
. w! Aw
= min
wewmm  wlw

Since for case (a) W™ = Ky(A, Xy,) = A PK(A, Xy), any w € W™ can be
represented as w = A~?Pq(A)x where ¢ € P,_1, and x € X,. Let us take

i—1

() = [ - p)Toilaz —b),

s=1

w; = A_Zp%(A)fi = /\;217%(/\1')%; + Z Oéj/\j_qufi(/\j)“jv
j=k+1
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where a, b and T;_; are defined in the proof of Theorem 5.2.3, and Z; is defined in Lemma
5.2.1. Then,

= (A—psl)zs for =z, = A2Pﬁ<A—utI>Tgi(aA—b[)fi e W™ o =1, ... ,i—1,
t=1
t#s
and it implies that
w] vy = 27 (A — psl)v, = 0, s=1,...,i—1,

since (A — poI)v, L W™ Hence

T Aw;
Hi > wTwZ )
and fori=1,....k
T -
0< i — )\z < w; (Aw; )\fwl) —
w; w;
a0 T a0 a0 )” (e 2005 — AN TaA)u)
AP + X a3 TR () a
P (N — M)A PR (N Dt O (N
¢ Tial MSTEO) () Ve 580

By inserting the definition of ¢; we obtain
Sk A T TIA = P TE () = b)
)‘;4[) st;ll()‘z — ps)?T7 ;(a); — b) a
A NP5 O — A)? o= Q2T (a); — b)
< /\n _ )\Z % n s 7 7 J <
< o (55) DR=oF X <

Akt j=h+1

- (/\n_)\i)( i )4pzﬁ()\n—>\s)2 1 i o? =

M)y = ) TE () 4
K2 [\ )4p
= (A= N ’ : T — i3
o= Mg () =l

The proof of (5.20) follows from (5.13).
(5.21) and (5.22) follow from Theorem 3 [65, pp 254|, which claims that

(a) max, i — Ai| < (A — A\y)sin® Z(U, Xsy),

-----

pi— A < (A —N)

-----

Final equations are straightforward consequences of Theorem 5.2.3 and Lemma 5.2.2.
O
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5.3 Numerical Examples

In these examples we are testing the functionality of the multispace approach. We want
to illustrate the convergence of multispace, and to demonstrate the examples where
multispace do speed up the inverse iteration.

Example 5.3.1. Let us first consider the difference between case (a) and case (b) in
Theorem 5.2.3. We will observe a two-space process, where the partial eigenvalue problem
15 solved exactly on the subspace. Moreover, we reorthogonalize the basis returned from
the block Lanczos algorithm, in order to simulate the situation in exact arithmetic. We
will take a symmetric matriz A € R0 to have fized eigenvalues {1,2,...,100}.
Since we are minimizing (5.4), we can note that the minimal value of p(X) is

min p(X)=14+2+3+4+5=15,
XGRnXk
XTXx=I,

for k =5. We performed the following tests:
method ‘ p(Xap)

multispace with 5 inverse iterations before
and 5 inverse iterations after the subspace transfer | 15.00001854142704
multispace with 10 inverse iterations before
subspace transfer 15.00000000041437
10 inverse iterations 15.15549917

From these results we can see that multispace increased the accuracy of inverse iteration,
and that case (a) is more accurate than case (b) when the basis is reorthogonalized. In
floating point arithmetic, without the reorthogonalization of the Lanczos basis, the result
of case (a) was very inaccurate.

Example 5.3.2. In this example A is taken to be the block tridiagonal matriz of order
102/ resulting from discretizing Poisson’s equation with the 5-point operator on an 32 X
32 mesh. We are searching for the 6 smallest eigenvalues, where the eigenvalues are
approximatively equal to

A~ 1.811230970764231 - 1072
o~ 4.519876032840046 - 102
A3 ~ 4.519876032844214 - 1072
A\ A 7.228521094917532 - 1072
s~ 9.007020762483668 - 102
X¢ ~ 9.007020762485157 - 102

Ay~ 1.171566582456000 - 10~

The convergence of the inverse iteration depends on \g/ 7 = 7.688014405125310 - 1071,
and the minimal trace s Z? i = 3.609354565633485 - 10~L. In Table 5.1 we compare
p(X) for the multispace and the inverse iteration, where in each multispace level 2 inverse
iterations are performed before the subspace transfer and 2 after.
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Multispace:
number of V cycles | p(X)
0]24-10!
1| 3.933010161085040 - 101
2 | 3.610192107781051 - 107!
3 | 3.609354751996430 - 10~*
4 | 3.609354565674766 - 10!
Inverse iteration:
number of iterations | p(X)
0/]24-10!
4 | 7.751530085839884 - 10°
8 | 1.413509702629963 - 10°
12 | 8.926254300321311 - 107!
16 | 5.859145267902786 - 10~!
78 | 3.609354565675780 - 107!

Table 5.1: Reduction of p(X).

From the last row in Table 5.1, we can see that the inverse iteration achieved approx-
imatively the same value for p(X) after 78 iterations, as the multispace for 4 V cycles,
with a total of 16 inverse iterations on the first level.

Example 5.3.3. The tests are performed with a matriz A € R0 gych that

A1 = sin (1”—0) Ay = sin (%) A3 = sin (?{—g)
Ay = sin (%) A5 = sin (%) g =1
A7 =2 . As00 = 495

The task was to determine the 5 smallest eigenvalues and corresponding eigenvectors.
On the other hand, there is a possible source of problems for inverse iteration, because

% — 0.95105651629515.
6

We took trace error to be |p(Xap) — S0, Ni|. When multispace results are plotted versus
the number of inverse iterations, this means that a total of 2p inverse iterations are
performed on each level (as in the case of Algorithm 5.1.3). The tests were performed
on the same computers as before, and the results are illustrated in the following figures.

For example from Figure 5.4 we can see that multispace with 4 inverse iterations on
each level achieves the trace error equal to 2.4381 - 1077, while inverse iterations alone
could not achieve that accuracy even after 100 steps. On the time scale, from Figure
5.9 we can see that this trace error was achieved after 0.13 seconds, while 100 inverse
iterations had execution time equal to 0.31 seconds.
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Figure 5.3: Eigenvalue errors versus the number of inverse iterations.
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Figure 5.4: Trace errors versus the number of inverse iterations.
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Figure 5.5: Angles between individual eigenvectors and their approximation, and angles
between subspaces U and X,,, versus the number of inverse iterations.
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Figure 5.6: Residual norms versus the number of inverse iterations.
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Figure 5.7: Execution times
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Figure 5.8: Eigenvalue errors versus time.
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Figure 5.9: Trace errors versus time.
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Figure 5.10: Angles between individual eigenvectors and their approximation, and angles
between subspaces U and A5, versus time.
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Figure 5.11: Residual norms versus time.



Chapter 6

New Bounds on Singular Value
Approximations from Subspaces

In this chapter the new results on singular value approximations from subspaces are
presented. We are considering singular value decomposition of a compression of the
operator to low dimensional subspaces. Our main task is to find bounds on the relative
error between singular values of the compression and the original operator. Since we are
dealing with subspaces, we derive convenient bounds that involve angles between some
specific subspaces, like it was presented by Drma¢ in [22], and by Drma¢ and Hari in
[23] for the eigenvalues of a Hermitian matrix.

6.1 Classical Results

The classical bound on the absolute eigenvalue error of a Hermitian matrix is given by
Kahan in the following theorem [56].

Theorem 6.1.1. Let H be an n x n Hermitian matriz with eigenvalues Ay < --- < )\,
and let X be an n X € matriz of full column rank. If M is any { x { Hermitian matriz,
with eigenvalues 1y < -+ < py, then there are eigenvalues X\;; < --- < X;, of H such
that

max |\ — | < IR R(M)=HX — XM. (6.1)
J

=1,..., V4 J Umin(X> ’

In (6.1) the absolute error in eigenvalues is bounded by the residual norm. The
residual norm represents a measure of deviation of the subspace spanned by the columns
of X from an invariant subspace. In practice, M is the Rayleigh quotient matrix M =
X*HX, where X*X = I,.

The above theorem can be generalized to the singular values of a rectangular m x n
matrix (see Theorem 4.5 in [48]).

Theorem 6.1.2. Let A be an m X n rectangular matriz, where m > n, with singular
values oy > -+ > o0,. Let X be an m x £ orthonormal matriz, and let Y be an n x ¢
orthonormal matriz. If G is any ¢ X { matriz, with singular values v; > --- > 7, then

195
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there are singular values o, > -+ > 0y, of A such that

jmax |oi; — ;] < max{|| Ra(G)llz, [ RL(G)ll2}, (6.2)

where
RRr(G) = AY — XG, R (G)=A"X -YG".

Proof. Let [X X, | represent an unitary basis for C™, and let [Y" Y]] represent an unitary
basis for C™. The representation of A in these two bases can be written as

e 4[5

where

M=X*AY, L=X'AY,, K=X'AY, N=X'AY,.
Further, Rp(G) € C™* and R.(G) € C™, so they can be written as

M-G M*—G*}

Rer(G)=[ X XJ_]{ K I+

1%

| me =1y v
and

= |Rr(G)]]2 < v, H[ M-G L |

2

|, = IRL(G)]l2 < v,

where

v = max{[| Rr(G)llz, | RL(G)]l2}-

The dilatation theorem from [12] states that there exists an (m — ) x (n — ¢) matrix 7T,

such that VoG .
e
with ) .
N-T=-SM-G)P+v(l—-S55)2C(] — P*P)z,
where

S =K[WI—(M-G)"(M-G)z, P=[2—(M-G)(M-G)L,

and C'is an arbitrary contraction, i.e. a matrix satisfying ||C[[o < 1.
Now, if we define the matrix A as

e 5 4)[5)

then the singular values &;, ¢ = 1,...n of A include singular values of G, and by the
Weyl inequalities (Theorem 2.3.1) and (6.3), the following holds

M—-G L }

_max lo; — 0] < ||A—Alls = H{ i N_T

..... n
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The consequence of Theorem 6.1.2 with a tighter bound is stated in the following
corollary.

Corollary 6.1.3. Let A, X, Y, Rr(G) and RL(G) be defined as in Theorem 6.1.2
but with G = M = X*AY. Let us assume that o(M) = {u1,..., e} and o(N) =
{vi, ..., vn_s} satisfy condition o(M) N o(N) = 0, where p; and vy, are the singular
values of M and N = X[ AY| respectively. Then, the following bound holds

max{|| Re(M)|3, | RL(M)]|[5}

max lo; — 6| < . | | (6.4)
ot Gt e g H T

where {71,...,0,} =a(M)Ua(N).

Proof. ;, 1 =1,...,n are the singular values of the matrix A= [ 0 ](3[ }, and from

[70, p. 548], it follows that

L|3, |1 K]|3
max |o; — 6] < max{|| L[5, [ K1[5}

i=1,...,n j:1,,,,,erf}gl£1,“.,n4 |,uj — Vk|

From the proof of Theorem 6.1.2 we can conclude that || Rg(M)||2 = || K||2 and || R (M)]|2
[L1]2- O

Instead of the absolute error bound, we want to derive bound on relative error in
the singular values. This usually involves multiplicative perturbations as we saw in
subsection 2.3.1, so the technique that is used to obtain such a bound is different than
the technique used in Kahan’s theorem. In the next section the new result is presented,
which includes relative error bounds between singular values of a rectangular matrix and
the compression of the matrix to a low dimensional subspaces. The bounds are functions
of angles between suitably chosen subspaces. In section 6.3 more tight quadratic bounds
are introduced, which are again expressed in terms of the angles between the same
subspaces.

6.2 A New Subspace Bound

To find the error bound between the singular values of a rectangular matrix A € C"™*"
and its compression M € R*, first we have to construct an artificial additive perturba-
tion to obtain a matrix A € C"™*" whose singular values include singular values of the
compression. On the other hand, for the relative error bounds we need a multiplicative
perturbation. So, we will find suitable bases for the spaces C™ and C", and we will
express the matrix A as a multiplicative perturbation of A. The singular value error
bounds are then derived by means of the relative perturbation theory, see section 2.3
and [52].

From now on we will consider m X n rectangular matrices, where m > n, and we will
denote R(B) = range(B) for any matrix B. Let X be an ¢-dimensional subspace of C™
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given as the range of orthonormal X € C™** such that X N R(A)* = {0}, and let Y

be an /-dimensional subspace of C" given as the range of orthonormal Y € C"*¢. For
matrices A € C™*" and M € C*** we define two types of residuals as in Theorem 6.1.2

Rr(M) =AY — XM, R, (M)=A"X —YM".
Further, the subspaces of interest in the following theorems will be
W=AX and Z=AX,

and together with ) they will be involved in error bounds. In fact, the bounds are
expressed in terms of angles between these subspaces, where the angle between two
equidimensional subspaces is defined in subsection 2.2.6.

Finally, we can state the main result.

Theorem 6.2.1. Let A € C™*", and let A have the singular values oy > -+ > o, > 0.
Further, let M = X*AY € C™* be the Rayleigh quotient, and let residuals be defined as

Rp=Rp(M) = (I — XX")AY,  Rp=Ry(M)=(I-YY*)A*X.

We define an additive perturbation A = RpY ™+ X R}, and change A to A=A—-65A, so

the singular values of M are the singular values of A. If § = max{£(W, ), £(Z,Y)} <

/2, then A has also full column rank, and its singular values &1 > --- > &, > 0 satisfy
max loi = & — il < 2tanf + tan® 0. (6.5)
1=1,..., n g;

Proof. Without loss of generality we can assume that X C R(A). If this is not the case,
then let us observe the subspace X4 = AATX. X, is the orthogonal projection of X on

R(A), and since X N R(A)*+ = {0}, X4 is of the same dimension as X. Further, by the
Moore—Penrose conditions for the pseudo—inverse |35, p. 243|, we have

A'Xy = AAATX = A*(AATYX = (AATA) X = A" X =W

Alxy, = AAATXY = ATX = Z.
So, from now on we will take X4 instead of X', or we will just assume that X C R(A).

Let X, = [X; 1, X5 ] be an orthonormal basis for X+, where X; | € Cm* (=0 and

X9 € Cm*(m=n) are such that R(X:1) C R(A) and X5 A=0. Let Y, € C*(n=0) he
an orthonormal basis for Y. Then, the matrix A can be written as

M L]y
A=[X X1 X, || K N [Y]
0 0 L

where L = X*AY, € C*"9 K = X; AY € C"9 and N = Xj AY, €
C=0x(=0_On the other hand, for A we have
A = A—(I-XXHAYY" — XX*A(I -YY*) =
= XXAYY* + (I - XX)A(I-YY") =
= XX'AYY" + X, XTAY Y] = XX AYY" + X, | X{ | AY,| V] =

M 07 ¢y
= [X X1, Xou ]| O N {Y}
1

0 0
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M L . ) M 0
So, Aand B= | K N | have the same singular values, and Aand B= | 0 N
0 0 0 0

have also the same singular values. Hence, singular values of M and N are singular
values of A. So far, we have been following standard approach, and Theorem 6.1.2 can
be proved in this way for G = M.

If we prove that M and N are nonsingular, then we can introduce a multiplicative
perturbation

M L M 0 LML
K N|=|0 N N-K T ,
0 0 0 0 n—t
that is,
- B B 0, ML
B=BD, D=I+C, C-= {NlK 0, } (6.6)

Since B and B have full column rank, D must be nonsingular, and from Theorem 2.3.5
it follows

lo; — G|

max T < I DDy = [T~ (I + O (I +O)la = € + €+ CC*s <

N

2[Cll + €15 (6.7)

where [|C|lz = max{||[M~'L]|z, [N7'K]|2}.

So, it remains to check the nonsingularity of M and N, and to compute || M '],
IN7IK]||5. We will start with M = (A*X)*Y. A*X has full column rank since X’ N
R(A)t = {0}, and let A*X = QR be a QR factorization of A*X where Q € C™* is
orthonormal and R € C* is nonsingular. Then M = R*Q*Y, where Q*Y € C** has
singular values equal to ones and cosines of acute principal angles between W and ).
The question remains whether Q*Y has full rank. If Q*Y is singular, then by Wedin
[90] it follows that there exist y € ) such that y LW and w € W such that wl). By
(2.15) and [90], that means that £(y, W) = 7/2, £L(w,)) = 7/2 and

AW,Y) = ijne%é(w,y)zg
v
- I;leajié(y,W) — 57

which contradicts the assumption of the theorem. So, there do not exist y € ) per-
pendicular to YW and w € W perpendicular to ). Q*Y is nonsingular, and hence M is
nonsingular.
Now, for N = (A*X; 1 )*Y,, A*X;  has full column rank since R(X; ) C R(A),
and
(ATX)*A* X, | = X*(AAD X, | = X* X, = 0. (6.

A*R(X;,1) and Z = ATX are subspaces of C*, and dim(A*R(X; 1)) = n—{, dim(Z) =
and ZLA*R(X; ). So, we can conclude that Z = (A*R(X; 1)) and A*R(X;1,)
ZL Let A*X; 1 = QLR be a QR factorization of A*X; |, where @, € Crx(n=0)

| ~ &
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is orthonormal and R, € C"=9*("=9 is nonsingular. Then N = R*Q%Y,, where
QLY € C=0x(=0 hag singular values equal to ones and cosines of acute principal
angles between ZL and Yt.

Let Py, Py, and Pz be orthogonal projections onto the subspaces )V, W and Z
respectively. Then, by Wedin [90] and the assumption of the theorem that £(Z,)) <
/2, it follows

HPZ—Pyngsiné(Z,y) < 1. (69)

On the other hand
sin £(Z5, Y1) = ||Pzr — Pyclla = |(I = Pz) = (I = Py)|l2 = [|Pz — Py|l2 < 1, (6.10)

and £(Z+,Y+) < /2. So, by the same reasoning as before we can conclude that Q% Y,
is nonsingular, and hence N is nonsingular.

For computing ||C||2 we need some more theory on angles between subspaces. By
[90] there exists an orthonormal basis in C" such that with respect to this basis Py and
Py, are represented by

[k [k

Py = Ji : (6.11)

Opn—204k On—204%

where

sin %

Similarly, there exists an orthonormal basis in C” such that with respect to this basis
Py and Pz are represented by

i=[o]tron A= G0 Jteomv sl we o)

Ik/ Ik/

—K —K

Py = &P Pz = (anYe} , (6.12)
i=1 i=1

On 201k On—201 4
where
|1 | coso; o ' ™
Jz_|:0}[1 0]7 Ql_ singbi}[cos@ Sln¢z]7 ¢z€<072>-
From the QR factorization A*X = QR it follows that

ML= (QY)'R*RQY, = (QY)'Q*Y.. (6.13)

Let us observe the following matrix

(PwPy) PwPy. = (Y(QY)'Q)QQY.Y] =Y(QY) QY. Y =Y M 'LYT,
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where Py = YY* Py =Y, Y} and Py = QQ*. Hence, we can conclude that M 'L
and (PyPy) Py Py. = (PyPy)T(Py — Py Py) have the same nontrivial singular values.
From [90] and (6.11) it follows that in a suitably chosen basis (PyPy) Py Py. can be
represented as

Ok
—k
(PwPy) Py Py = E; ,
i=1
L 0n—2€+k
where
E:H tandy[ 0 1]
Finally,
) = _max kwi:K(W,y), (6.14)
MLl = tanu. (6.15)

From the QR factorization A*X; | = @ R, it follows that
NT'K = (QLY1)'RT'RIQ1Y = (Q1Y1) QLY. (6.16)
Now, we consider the matrix
(PziPy ) Pz Py = (Yi(QLY1)'Q)QIQIYY* =Y (Q1IY1)'QIYY* =Y N T'KY™,

where Pz. = Q1 Q%. Again, we can conclude that N7'K and (Pz.Py.) Pz Py =
(I — Pz — Py+ PzPy)"(Py — PzPy) have the same nontrivial singular values. From [90]
and (6.12) it follows that in suitably chosen basis (Pz1 Py1)!Pz1 Py can be represented
as

O
%
(Pz1Py.) Pz Py = P :
i=1
On—20+k/
where
F, = {_1}’5&11@[ 1 0]
Finally,
¢ = max ¢ = £L(Z,Y), (6.17)
INT'K|l, = tan¢. (6.18)
Thus,
|Cl2 = max{||M~ L2, |N " K|s} = max{tan), tan ¢} = tan¥, (6.19)

and we finished the proof. Il
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Corollary 6.2.2. Under the same conditions as in Theorem 6.2.1, but with additional
constraint 0 < /4, the following holds

lo; — & tan? 0

— <tanf+ ——. 6.20
B e = 3T ) (6:20)
Proof. By (6.6) and (6.19) it is ||C||2 < 1, and from Theorem 2.3.7 it follows
|U7; - 51‘ 1 _1 1 > i1 i
G2l < D =D o=l +C —T — 1), <
LS i IC113
< Cl2+ 5 ) ICH = €2 + <
2;; ’ 2(1 = |Cll2)
< tand+ tan? 0
anf + ——.
- 2(1 — tanb)
[

The approximations o; will be close to the exact singular values o; if the angle 6
is small. On the other hand, subspaces close to singular subspaces can produce large
0 and large relative error in singular values. For example, let us observe the following
simple example. The matrix A is defined as

2
A:[a 0}, 0<a<l,
0 «

and the vectors

=== 1]
Viter |1 1]
are very close to the singular vectors corresponding to the singular value 0o = a.. Further,
the singular value approximation is given by
1
1+ a?

Gy =l Ay = (14+a)~1+a,

whose relative error is large:
02 — 0 _
52— 0al 1

02
The space A*X is spanned by the vector
A'r 1 a~! R
e v e )7 L)< o)
and we can conclude that -
L(AX,Y) ~ 5

The bound in Theorem 6.2.1 is illustrated in the following numerical example.

Example 6.2.3. Let A € R0 hape fized singular values {1,2,...,19,100}, and
suppose we are looking for the 5 largest singular values. We use the power method on
A* A, where Yy € R?*° is q random orthonormal matriz and X; = AY;, i =1,2,...,120.
We obtain the results shown in Figure 6.1.
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T
—— max chi rel. error
— — bound on chi rel. error
10° —— max standard rel. error

N bound on standard rel. error

error

Il
0 20 40 60 80 100 120
iterations

Figure 6.1: Relative errors in singular values, and the bounds (6.20) and (6.5).

6.3 Quadratic Residual Bound

As we can see in Example 6.2.3, the error bound given in Theorem 6.2.1 is not very
tight. The next step is to find more accurate bound, involving the same angles and
subspaces. This is done in the following theorem, which is mostly based on the results
from [23].

Let us assume, once more, that the bases for X, X+ and ) are chosen so that

Xy L
A=| K Sy |, (6.21)
0 0
where ¥y, = diag(uq, ..., ue) and Xy = diag(vy,...,v,—) are diagonal matrices with

the singular values of M and N, respectively. Since the last m — n rows of A in (6.21)
are equal to zero, without loss of generality we can assume that A € C"*" is square and
of the form

A= [ “a zLN } . (6.22)

Next we will assume that the singular values of M and N are separated by the interval
(e, B), which means that for py > -+ > pyand v; > -+ > v,y

n <a<f< g,
and we define relative gaps

- py — o n %
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Theorem 6.3.1. Let A, X, Y, and ¢, ¢,0 < w/4 be as in Theorem 6.2.1 and relation
(6.22). Let the singular values of M and N be separated by the interval (o, ). Then

1. for eachi € {1,... L}, if 0; is not a singular value of [ K Xn | and if p(o;, Xn) >
tan? ¢, then

i = o] < min {2tan0 + tan? , max {tan2 ¢, tan® ¢ +
Hi

(tan 1) + tan ¢)?
p(aia EN) — tan? (b}} ’
(6.23)

2
in case when tan®1) + p(tan¢+tan¢)

(04, Xn)—tan? ¢ <1

2. for each i € {1,...,n — U}, if o4y is not a singular value of [ X¥py L | and if
p(0eti, Xar) > tan® ¢, then

|Vi - U€+i|
V;

2
< min {2 tan @ + tan® #, max {tan2 Y, tan® ¢ + (fan¥) + tan 9) 3 }} )
p(0eti, Xar) — tan? 4
(6.24)
(tan 1+tan ¢)2

p(or4i, X0 )—tan? ¢ <l

in case when tan® ¢ +

If we have no information about the distributions of the singular values, then for the

. - Yy 0 .
singular values o; of we can write
0 XN
0i — 0 < min < 2tan 6 + tan® 6, tan? 0 | 1 + 1
gi |~ ’ max{p(c;, Xpr) — tan? ¢, p(o;, X)) —tan? ¢} ) |’

(6.25)

where if o; = p;, for some 1 < j; < £, then the conditions from item 1. have to be

satisfied, and if 6; = vy, for some 1 < k; < n—4¥, then the conditions from item 2. have
to be satisfied.

Proof. Let us observe the Schur factorization of AA* —o?1, for o; which is not a singular
value of [ K Xy |:

Adr—o2p — [+ Ll =0 SyK*+ LSy | _
i KSu + Syl KK*+ %2 — 021
[ (SuK*+ LIy (KK + %2 — 021)71] [ N'(03) 0 _
~ o I 0 KK*+Y%—o2l

I 0
' l(KK* + 3% —o2) Y KXy + XNLY) I] ’
where N'(o;) is the Schur complement
N'(o;) =33, + LL* — 071 — (S K* + LYN)(KK* + Y% — 021) Y K3y + Sy LY.
Then AA* — 21 is congruent to

52, — 021 0 L[ EL = (BM KT+ LSn)(KK® + 5% = o?1) " (K Sy + SxL7) - 0
0 52, — 021 0 KK*
(6.26)
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Since the i-th eigenvalue of AA* — o021 is equal to zero, Sylvester’s inertia theorem
implies that the matrix in (6.26) have zero as the i-th eigenvalue. It further follows that
o? is the i-th eigenvalue of the matrix

Hio)) = %2, 0 LL* — (SyK* + LYN)(KK* + %2, — 02I)"Y(KSy + SyL*) 0
0 ¥z 0 KK*

So, the eigenvalues of H(o;) are now compared to u? and ij. We can write

Sy 0 SALLS) — (K + S LEN)(KK* + 53 — o2 YK + Sy L*S ) 0 Sy 0
H(m:[ SIZN]{I+ M M M 0 N N M Sy EK S [ 6\421\7]7
Let us define the matrix C' as
o - YL Sy — (K + 83, LEN)(KK* + 52, — 021) " (K + SNy L*Ey)) 0 B
0 SV KK
Sy LSy — (KOS + S DS KK Sy + 1 - 0282 L (S K + L*S3,) 0 _
0 Sy KK
_ EE* — (F* + E)(FF* +1-0223°) Y (F+E*) 0
- 0 FF* |’
where by the proof of Theorem 6.2.1
-1
E=%,,L, |E|l2 = tan, (6.27)
-1
F =K, |F|, = tan ¢. (6.28)

So, in case when
ICll2 = max{|| EE" — (F* + E)(FF" + 1 = oyS") " (F + E7) |2, [ FF |2} < 1,
I+ C'is positive definite. Since from the condition of the theorem || FF*||; = tan®? ¢ < 1,

we need to explore the other term in ||C|a:
|EE* — (F*+ E)(FF*+ 1 —0?X32) (F + EY)|2 <
< tan?e) + (tane) + tan @)?||[(FF* + I — o7%37) M2 <
(tan ) + tan ¢)?

< tan®e) + <
. |7 =2 2
min;—=1,.. . n—¢ 0z tan (ZS
J
tan ) + tan ¢)?

p(aia EN) — tan® (b,

under the condition that p(o;, Xn) > tan® ¢. So, in addition if we demand that tan® 1) +
2
% < 1 then ||C]|s < 1 and again I + C' is positive definite. Hence, we can

conclude that

N|=
[SIE

H(o) ~ (I +0C) [ng Z%V}(I+C)5:(I+C)5AA*(I+C).

By Theorem 4.3.4 it follows that

\pi — o < |M?—Uz‘2|
— 2

Hi Fi

tan ¢ + tan ¢)>
< max {tan2 ¢, tan” ¢ + pigiflg]v) —a‘?a?ll Qb} '

<|[ICfl> <
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This proves (6.23).
Relation (6.24) can be proven in the same way, in case when oy; is not a singular
value of [ ¥y L ] and if we factorize

I Y2, + LL* — o2, I 0
* 2 7 O+
AL — oy [(KZMJrENL*)(EZ + LL* — o7 1)t I] [ 0 M (0444)
‘ [I (%2, +LL* — o 1) (S K* + LZN)]
0 I ’

where M'(0y4;) is the Schur complement
M'(0p4:) = KK*+ 3% — 0] — (KXy + S8 L) (33, + LL* — o7, 1) (S K* + LEy).
O

Example 6.3.2. Let, again, A € R%°%2 pe defined as in Example 6.2.3, and suppose

the same iteration are performed as in Example 6.2.3. We obtain the results shown in
Figure 6.2.

0 —— max relative error i
—— max relative error with bound
— — quadratic residual bound

20 I I I I I

0 20 40 60 80 100 120
iterations

100

Figure 6.2: Relative errors in singular values, and the quadratic bound (6.25). The blue
line denotes the maximum relative error for the singular values that satisfy the conditions
of Theorem 6.3.1. The conditions are not met only at the beginning of iterations.

The example confirms that the new quadratic bound for relative errors in singular
values is tight, as it can be expected. After the 100-th iteration we can note that
the bound becomes smaller than the computed relative error. This happens when the
computed relative error reaches the order of machine precision and remains on that level,
while the bound is computed more accurately. In the exact arithmetic the relative error
would continue to decrease.
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Example 6.3.3. In this example we compare the bounds in Theorem 6.3.1 and Corol-
lary 6.1.3. The important difference between these two bounds is that the bound in
Corollary 6.1.3 involves the absolute gap, and the bound in Theorem 6.3.1 involves
the relative gap. So, we generate a matriz A € R>20 with fived singular values
{0.001,0.002, ...,0.015,0.015000001, 0.0151, 0.0152,0.0153,0.0154}, and we search for
the b5 largest singular values whose absolute distance from the remaining singular values
s smaller than the relative distance. The same iteration are performed as in Example
6.2.3, and the results are shown in Figure 6.5.

10°

T T
—— max relative error
—— max relative error with bound
— — quadratic residual bound
— — absolut quadratic residual bound

1
0 10 20 30 40 50 60 70 80 90 100
iterations

Figure 6.3: Relative errors in singular values, and the quadratic bounds (6.25) and (6.4).
The red dashed line denotes the relative error bound obtained from Corollary 6.1.3, for
the singular value approximation with the largest relative error.

Figure 6.3 confirms that the relative error bound is in the most cases better than
the absolute error bound applied to the relative error.

Example 6.3.4. We will perform one more test for our bounds, by using more sophisti-
cated method for computing a few extremal singular values: a Jacobi—Davidson type SVD
method (jdsvd) proposed by Hochstenbach in [48]. We are searching for the 5 largest sin-
gular values of A € R190%2%0 yhose singular values are equal to i*/100, i = 1,...,250.
The relative tolerance of the outer iteration is taken to be equal to 1072, We obtain the
results shown in Figure 6.4.

The jdsvd method computes one pair of left and right singular vectors at the time,
hence we can notice 5 peaks and 5 valleys in Figure 6.4. The peaks represent a starting
point when the initial search directions for a new pair is chosen, and the valleys represent
the iterations when the pair reached maximum accuracy. We can notice that both of the
residual bounds (linear and quadratic) are following the shape of the relative error curve,
but the quadratic bound is more tight when the approximations are more accurate.
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T
max standard rel. error
— — — linear residual bound
quadratic residual bound
o | *  conditions of Theorem 6.3.1 not met]| |

10° b

10751

I I I I I I
0 5 10 15 20 25 30 35

Figure 6.4: Relative errors in singular values, the linear bound and the quadratic bound
for jdsvd.

Here we can also observe the phenomenon of the quadratic bound being smaller than
the actual relative error when the error reaches the order of machine precision.

6.4 Rank Deficient Case

The statements of Theorem 6.2.1 and Theorem 6.3.1 can be easily generalized to the
rank deficient case. We will go through the proof of Theorem 6.2.1 once more, under
the assumption that rank(A) = r < n. In that case we define an orthonormal basis
X, = [X11,Xo,] for X+, where X; | € C™*(=0 and Xy € C™*(m=7) are such that
R(X:11) C R(A) and X;,A=0. Let Y € C*(n=) he an orthonormal basis for Y.
Then, the matrix A can be written as

M L7y
A=[X X1 Xou ]| K N {Y}
0 0 L

where L = X*AY, € C*" 9 K = X7 AY € CU9 and N = Xj AY| €
Cr=0Hx(n—t)

As in case with the full rank matrix, we can conclude that M is nonsingular. But,
N is not square any more, and now we have to prove that rank(/N) = r — ¢. By (6.8),
we have again that

AR(X,1) CR(A") and Z=ATX Cc R(A") = R(AY),

with
dim(A*R(Xy,1))=r—¢, dim(Z)=4¢ and ZLA"R(Xy.),
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so we can conclude that
R(A" ) =Z& A"R(X1,1).

Since C" = R(A*) & N(A), where N (A) is the kernel of A, we have
Z=(A"R(X11) ®N(A)*.

Let S| be the orthonormal basis for N'(A), then from (6.9) and (6.10) it follows that
[ Q. S. ]*Y, is nonsingular, where [ @, S, ]is an orthonormal basis for Z+, and
()1 is an orthonormal basis for A*R(X; ), such that A*X;, | = Q. R, N = R,Q Y,
and R, is nonsingular. The matrix Q%Y is the upper (n — ) x (n — ¢) block of the
(n—4) x (n—¢) matrix [ Q. S, ]*'Y,, and by the interlacing property (Corollary
2.1.14), the following holds

or—e(Q1Y1) > 0pe([ QL S1L Y1) >0.

Thus, Q%Y. and N have full row rank, and NNT = I,_,. Now, we can write

M L M 0 LMoL
K N|=|0 N NE T :
0 0 0 0 n—t

where A and B are similar, and A and B are similar, and

0 ML ] . (6.29)

B=BD, D=I1+C, C:{NTK 0,

Since ||C|la = max{||M L]y, |NTK||2} and ||M~1L||; = tan as in the full rank case,
we have to compute | NTK||,. We also have to prove that D is nonsingular in order to
apply perturbation theory.

First we want to show that D is nonsingular. Let us consider the following matrix

product
M L] M—LN'K L I, 0
" K N | " 0 N NK I1,, ("
\q,_/ . 7 . - 7

g
n

¢ | M L
r—{ K N

L n—¢

n n

The matrix

has full row rank, and its rank is equal to r, since rank(A) = r. This means that this
matrix has r linearly independent columns. Since M is nonsingular, that implies that

its first ¢ columns are linearly independent and that [ L

N } has remaining r — ¢ linearly

0

independent columns. On the other hand, the matrix [ £
NtK I,

] is nonsingular,
which implies that
¢ [ M—LN'K L
r—~{ 0 N
l n—~_
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must have full row rank. Again, this means that this matrix has r linearly independent
columns, and among the last n — ¢ columns, » — ¢ of them are linearly independent.
Hence, the first ¢ columns must be linearly independent, which implies that M — LNTK
is nonsingular.

Now, if we assume that D is singular, then there exist z € C’ and y € C"* such
that

r+ MLy = 0
N'Kz+y = 0.

Extracting y from the second equation, and introducing it to the first equation produces

the following relation
t—M1'LNTKz =0,

that is (M — LNTK)z = 0. This implies that the matrix M — LNTK is singular, which
is a contradiction with the previous analysis. So, D is nonsingular and

lo; — 5

<2[Cll2 + [C]3-

)

Finally, we have to estimate ||C||2. As in the proof of Theorem 6.2.1 (see (6.16)), we
can write

N'K = (Q1Y1)'Q1Y.

The matrices [ @1 S 'Y, and Pz Py = [ Q1 Si ][ Q1 Si 'Y Y] have the
same singular values, as well as the matrices [ @, S, |*Y and Pz.Py=[ Q. S, |
1 QL S PYY*. From [90] and (6.12) it follows that Pz.1 Py: can be represented in a
suitably chosen basis as

Okl

PsiPy. = aryes :

[n72€+k’

where

. — Sil’l ¢z 4
Gi = [ c0s ¢ } cosg;[ 0 1],
and Pz. Py can be represented as

Ok/

Ps.Py= P & ,

where
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Finally, by the interlacing property we can conclude that

QLY. =

QY] =
INTK|, <

where ¢ is defined in (6.17).

1 1 1
o e(Q1 Y1) = Oniol[ QL Si Y1) cos¢’
o1(QLY) <o([ QL S |'YL) =sing,
tan ¢,

This implies that

IC |2 < max{tan, tan ¢},

and we obtained the same result as in Theorem 6.2.1.
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Appendix A

Summary

This thesis is dealing with two major topics in numerical linear algebra: the singular
value decomposition (SVD) and the eigenvalue problem. Two new algorithms are pro-
posed: one for finding the singular value decomposition, and one for solving the partial
eigenvalue problem of a symmetric positive definite matrix. The one-sided bidiago-
nalization algorithm proposed by Barlow is analyzed, and is proven to be numerically
stable. The bidiagonalization constitutes the first step in computing the SVD. Next,
the block version of the one—sided bidiagonalization is proposed, which increases its
efficiency and retains numerical stability. The parallel version of the same algorithm
was also studied and numerical tests show that it is faster than the parallel algorithm
implemented in the ScaLAPACK software package. One-sided bidiagonalization turned
out to be competitive to other standard bidiagonalization algorithms, and there are
several applications where it can be successfully applied. Another algorithm presented
in this thesis is the new subspace method for computing eigenvectors corresponding to
the several smallest eigenvalues of a symmetric positive definite matrix. The name of
the method is multispace, and it is a combination of multigrid approach and of two
very well known subspace methods: inverse iteration and the block Lanczos method.
The new multigrid approach is designed to speed up the convergence of slow converging
inverse iteration. A convergence rate for multispace is also presented, proving that the
whole process converges to an invariant subspace. In addition to the algorithms, a new
perturbation result for singular value approximations from subspaces is presented. The
new result represents a measure for relative errors in singular values expressed by terms
involving angles of appropriate subspaces.
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Appendix B

Sazetak

Ova disertacija bavi se dvjema glavnim temama numericke linearne algebre: dekom-
pozicijom singularnih vrijednosti (SVD) i svojstvenim problemom. Predstavljena su
dva nova algoritma: jedan za racunanje dekompozicije singularnih vrijednosti, i jedan
za rjeSavanje parcijalnog svojstvenog problema za simetri¢nu pozitivno definitnu ma-
tricu. Jednostrana bidijagonalizacija koju je predlozio Barlow analizirana je, i pokazano
je da je ona numericki stabilna. Bidijagonalizacija predstavlja prvi korak u racunanju
SVD-a. Zatim je predlozena blok verzija jednostrane bidijagonalizacije, koja povecava
njenu efikasnost i zadrzava numericku stabilnost. Paralelna verzija istog algoritma je
takoder prouc¢avana, a numericki testovi pokazuju da je ona brza od paralelnog algoritma
implementiranog u softverskom paketu ScaLAPACK. Ispostavilo se da je jednostrana
bidijagonalizacija konkurentna ostalim standardnim bidijagonalizacijskim algoritmima,
i postoji nekoliko primjena u kojima se moze uspjesno primijeniti. Drugi algoritam
opisan u ovoj disertaciji je nova potprostorna metoda za rac¢unanje svojstvenih vektora
koji pripadaju nekolicini najmanjih svojstvenih vrijednosti simetri¢ne pozitivno definitne
matrice. Metoda se zove multispace, i ona je kombinacija multigrid pristupa i dviju do-
bro poznatih potprostornih metoda: inverznih iteracija i blok Lanczos-ove metode. Novi
multigrid pristup je dizajniran tako da ubrza konvergenciju sporo konvergirajuéih in-
verznih iteracija. Brzina konvergencije multispace-a je takoder prezentirana, ¢ime se
dokazuje da cijeli proces konvergira ka invarijantnom potprostoru. Osim algoritama,
prezentiran je i novi perturbacijski rezultat za aproksimacije singularnih vrijednosti iz
potprostora. Novi rezultat predstavlja mjeru relativne greske u singularnim vrijednos-
tima izrazenu pomocu funkcije kuta izmedu pogodno izabranih potprostora.
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