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DIRECT LIMIT OF MATRIX ORDERED SPACES

J.V. Ramani, Anil K. Karn and Sunil Yadav

Agra college and University of Delhi, India

Abstract. In this paper we initiate the study of ordered F-bimodules
as the inductive limit of matrix ordered spaces.

1. Introduction

Choi and Effros [1] characterized operator systems as a particular type
of matrix ordered spaces. Ruan characterizes operator spaces as a particu-
lar type of matrix normed spaces. In both these cases we consider a ma-
tricial structure on a complex vector space. Pointing out at this structure
B.E.Johnson suggested that “the theory of matricially normed spaces might
be simplified if one instead considered normed modules over the infinite ma-
trix algebra” [5, section 4]. In [5] Effros and Ruan verified this hypothesis for
matrix normed spaces. In this paper we take an initiative to work on this hy-
pothesis in the direction of matrix ordered spaces (c.f. [7, 6]). In section 2, we
recall the characterization of non-degenerate F-bimodules, in terms of induc-
tive limit spaces [5]. We extend the above characterization to a ∗-structure.
In section 3, we describe the inductive limit of matrix ordered spaces in terms
of ordered F-bimodules and their related properties.

We begin by recalling some definitions and facts which we need in this
paper.
Matricial notions.
Let V be a complex vector space. Let Mn (V ) denote the set of all n × n
matrices with entries from V . For V = C, we denote Mn(C) by Mn. For
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α = [αij ] ∈Mn and v = [vij ] ∈Mn(V ) we define

αv =




n∑

j=1

αijvjk


 , vα =




n∑

j=1

vijαjk


 .

Then Mn (V ) is a Mn-bimodule for all n ∈ N . In particular Mn(V ) is a
complex vector space for all n ∈ N . For v ∈Mn(V ), w ∈Mm(V ), we define

v ⊕ w =

[
v 0
0 w

]
∈Mn+m(V ).

Next, we consider the family {Mn}. For each n,m ∈ N define σn,n+m :
Mn −→Mn+m given by σn,n+m(α) = α⊕ 0m. Then σn,n+m is a vector space
isomorphism with

σn,n+m(αβ) = σn,n+m(α)σn,n+m(β).

Thus we may “identify” Mn in Mn+m as a subalgebra for every m ∈ N . More
generally, we may identify Mn in the set F of ∞×∞ complex matrices, having
entries zero after first n rows and first n columns. Then F may be considered
as the direct or inductive limit of the family {Mn}. In this sense

F =

∞⋃

n=1

Mn.

Let eij denote the ∞×∞ matrix with 1 at the (i, j)th entry and 0 elsewhere.
Then the collection {eij} is called the set of matrix units in F . We write 1n
for
∑n

i=1 eii.
For i, j, k, l ∈ N , we have eijekl = δjkeil. Note that for any α ∈ F , there

exist complex numbers αij such that

α =
∑

i,j

αijeij ( a finite sum).

Thus F is an algebra.
For α =

∑
i,j αijeij ∈ F , we define α∗ =

∑
i,j ᾱjieij ∈ F . Then α 7−→ α∗

is an involution. In other words, F is a ∗-algebra.

2. Matricial inductive limit of ∗-vector spaces

Let V be a complex vector space. Consider the family {Mn(V )}. For
each n,m ∈ N , define Tn,n+m : Mn(V ) −→ Mn+m(V ) given by Tn,n+m(v) =
v⊕ 0m, 0m ∈ Mm(V ). Then Tn,n+m is an injective homomorphism. Let V be
the inductive limit of the directed family {Mn(V ), Tn,n+m}. We shall call V
the matricial inductive limit or direct limit of V . The following observations
may be obtained from [5]:

1. V is an F-bimodule.
2. V ∼= V ⊗F .
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Definition 2.1. Any F-bimodule W is said to be non-degenerate if for
every v ∈ W there exists a n ∈ N such that 1nv1n = v.

It follows from [5] that

Proposition 2.2. V is non-degenerate.

The matricial inductive limit of a complex vector space V may be char-
acterized in the following sense:

Theorem 2.3. Let W be a non-degenerate F-bimodule. Put W =
e11We11. Then W is a complex vector space and W is its matricial inductive
limit [5].

Corollary 2.4. Mn(W ) ∼= 1nW1n for all n ∈ N .

Remark 2.5. Let V be a complex vector space. Let V be its matricial
inductive limit. Then

(a) V =
⋃∞
n=1Mn(V ) ∼= V ⊗F .

(b) Mn(V ) ∼= V ⊗Mn for all n ∈ N .

Next we consider the matricial inductive (direct) limit of ∗-vector spaces.

Definition 2.6. Let W be an F-bimodule. Then a map ∗ : W −→ W is
called an involution on W if

(1) (v∗)∗ = v
(2) (v + w)∗ = v∗ + w∗

(3) (αv)∗ = v∗α∗, (vα)∗ = α∗v∗ for all v ∈ W , α ∈ F .

In this case W is called a ∗ F-bimodule.

Theorem 2.7. Let V be a ∗ vector space. Let V denote the matricial
inductive limit of V . Then V is a nondegenerate ∗-F-bimodule. Conversely,
let W be a nondegenerate ∗-F-bimodule. Put W = e11We11. Then W is a ∗
vector space and W is the matricial inductive limit of W .

Proof. First, let V be a ∗-vector space and V be the matricial inductive
limit of V . Then by Proposition 2.2, V is a non-degenerate F-bimodule. We
now define a ∗-structure on V . Let v ∈ V . Then we have v =

∑
i,j vij ⊗ eij for

some vij ∈ V . Define v∗ =
∑
i,j v

∗
ji ⊗ eij . Then v 7→ v∗ defines an involution

on V so that V is a nondegenerate ∗-F-bimodule.
Conversely, let W be non-degenerate ∗-F-bimodule. Put W = 1nW1n.

Then by Theorem 2.3, we have W ∼= W ⊗ F and it is routine to verify that
W is a ∗-vector space.

Put Wsa = {w ∈ W| w = w∗}. Then we have

Corollary 2.8. 1nWsa1n ∼= Mn(W )sa for all n ∈ N .

Corollary 2.9. Wsa =
⋃∞
n=1 Mn(W )sa.
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3. Inductive limit of matrix ordered spaces

Definition 3.1 (Matrix ordered space). A matrix ordered space is a ∗
vector space V together with a cone Mn(V )+ in Mn(V )sa for all n ∈ N and
with the following property: if v ∈ Mn(V )+ and γ ∈ Mn,m then γ∗vγ ∈
Mm(V )+ for any n,m ∈ N .

Definition 3.2 (Ordered F-bimodule). Let V be a ∗-F-bimodule. Let
V+ be a bimodule cone in Vsa. That is

1. v1, v2 ∈ V+ ⇒ v1 + v2 ∈ V+.
2. v ∈ V+, α ∈ F ⇒ α∗vα ∈ V+.

Then (V ,V+) will be called an ordered F-bimodule.

Remark 3.3. Let V be non-degenerate. Then Vsa and consequently V+

are both nondegenerate.

Theorem 3.4. Let (V, {Mn(V )+}) be a matrix ordered space. Let V be
the matricial inductive limit of V . Then (V ,V+) is a non-degenerate ordered
F-bimodule, where V+ =

⋃∞
n=1 Mn(V )+. Conversely, let (W ,W+) be a non-

degenerate ordered F-bimodule. Put W = 11W11 and Mn(W )+ = 1nW+1n
for all n ∈ N . Then (W, {Mn(W )+}) is a matrix ordered space with W+ =⋃∞
n=1Mn(W )+.

Proof. We prove only the non-trivial part. Let (W ,W+) be a non-
degenerate ordered F-bimodule. Then W is a non-degenerate ∗ F-bimodule.
Hence by the Theorem 2.7, W is a ∗ vector space and 1nWsa1n ∼= Mn(W )sa
for all n ∈ N . Since W+ ⊆ Wsa, therefore 1nW+1n ⊆ 1nWsa1n for all n ∈ N .
Thus Mn(W )+ ⊆ Mn(W )sa for all n ∈ N . We show that Mn(W )+ is a cone
in Mn(W )sa for all n ∈ N .

(1) Let u, v ∈ Mn(W )+, n ∈ N . Then u = 1nū1n, v = 1nv̄1n for some
ū, v̄ ∈ W+. Then ū+ v̄ ∈ W+ as W+ is a cone. Thus

u+ v = 1n(ū+ v̄)1n ∈ Mn(W )+.

(2) Let α ≥ 0, u ∈ Mn(W )+. Then u = 1nū1n for some ū ∈ W+. Put
αn =

√
α1n. Then

αu = α(1nū1n) = αnūαn = 1n(αnūαn)1n ∈Mn(W )+.

Therefore Mn(W )+ is a cone in Mn(W )sa for every n ∈ N . We now show
(W, {Mn(W )+}) is a matrix ordered space. Let u ∈Mn(W )+ and α ∈Mn,m.
Then, u = 1nū1n for some ū ∈ W+. Note that 1nα = α = α1m so that
α∗1n = α∗ = 1mα

∗. Thus

α∗uα = α∗1nū1nα = 1mα
∗ūα1m ∈Mm(W )+.

Therefore (W, {Mn(W )+}) is a matrix ordered space. By Theorem 2.7 and
its Corollary 2.9, W =

⋃∞
n=1Mn(W ) and Wsa =

⋃∞
n=1Mn(W )sa. We now
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claim W+ =
⋃∞
n=1 Mn(W )+. Mn(W )+ = 1nW+1n ⊆ W+ for all n. There-

fore
⋃∞
n=1 Mn(W )+ ⊆ W+. Let w ∈ W+. ⇒ w ∈ Wsa =

⋃∞
n=1Mn(W )sa.

⇒ w ∈ Mp(W )sa for some p ∈ N . Then 1pw1p = w. Also by defini-
tion 1pw1p ∈ Mp(W )+. Therefore w ∈ Mp(W )+ ⊆ ⋃∞

n=1Mn(W )+. Hence
W+ =

⋃∞
n=1Mn(W )+.

Definition 3.5. Let (V, {Mn(V )+}) be a matrix ordered space. Let V
be the matricial inductive limit of V . Set V+ =

⋃∞
n=1Mn(V )+. Then the

ordered F-bimodule (V ,V+) is called the (matricial) inductive limit or direct
limit of the matrix ordered space (V, {Mn(V )+}).

We recall the following from [1]:

Definition 3.6. Let (V, {Mn(V )+}) be a matrix ordered space. We say
that V + is proper if V + ∩ (−V +) = {0}.

It is shown in [1] that if V + is proper, then so is Mn(V )+ for all n. We
extend this idea to ordered F-bimodules.

Definition 3.7. Let (V ,V+) be an ordered F-bimodule. We say V+ is
proper if V ∩ (−V+) = {0}.

Remark 3.8. If (V ,V+) is the direct limit of (V, {Mn(V )+}) and if V+

is proper then Mn(V )+ is proper for each n ∈ N . In fact if v ∈ Mn(V )+ ∩
(−Mn(V )+), then v ∈ V+ ∩ (−V+) = {0}, implies v = 0.

Hence Mn(V )+ is proper for each n ∈ N .

Theorem 3.9. Let (V ,V+) be the direct limit of (V, {Mn(V )+}). Then
V + is proper if and only if V+ is proper.

Proof. Let V+ be proper. The above remark gives that Mn(V )+ is
proper for each n ∈ N . In particular, V + is proper.

Conversely, let V + be proper. Let v ∈ V+ ∩ (−V+) or ±v ∈ V+. Then

±e1ivei1 ∈ e1iV+ei1 for all i ∈ N (III)

We show e1iV+ei1 ⊆ V +. By definition V + = e11V+e11. Also e11e1i =
e1i, ei1e11 = ei1, e

∗
1i = ei1 so that e1iV+ei1 ⊆ V+, for V+ is a bimodule cone.

It follows that

e11e1iV+ei1e11 ⊆ e11V+e11 = V +.

In other words e1iV+ei1 ⊆ V + for all i ∈ N . From (III), we have ±e1ivei1 ∈
V + for all i ∈ N . Since V + is proper therefore e1ivei1 = 0 for all i ∈ N . Put
e1ivej1 = vij for all i, j ∈ N . Then vii = 0 for all i ∈ N . Since v ∈ V+ ⊆ Vsa,
we have

v∗ij = e1jv
∗ei1 = e1jvei1 = vji

for all i, j ∈ N . Let i 6= j. Then by a similar argument,

(e1i + e1j)(±v)(ei1 + ej1) ∈ V +.
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Also (ei1 + ej1)∗ = e∗i1 + e∗j1 = e1i + e1j . Therefore

e11[(e1i + e1j)(±v)(ei1 + ej1)]e11 ∈ e11V+e11 = V +.

This implies that

±[e1ivei1 + e1ivej1 + e1jvei1 + e1jvej1] ∈ V+.

Thus ±[vij + vji] ∈ V +. Since V + is proper, we get vij + vji = 0. Similarly,
by considering

(e1i − e1j)(±v)(ei1 − ej1) ∈ V +,

we get vij − vji = 0. Therefore vij = 0 for all i, j ∈ N . Now for a v ∈ V there
exists a n ∈ N such that 1nv1n = v. It follows that

v =

(
n∑

i=1

eii

)
v




n∑

j=1

ejj




=

(
n∑

i=1

ei1e1i

)
v




n∑

j=1

ej1e1j




=

n∑

i,j=1

ei1(e1ivej1)e1j

=

n∑

i,j=1

ei1vije1j = 0.

Hence V+ is proper.

Now we consider another notion related to order theory.

Definition 3.10. We say V + is generating if given v ∈ V there are

v0, v1, v2, v3 ∈ V + such that v =
∑3

k=0 i
kvk, where i2 = −1.

Definition 3.11. Let (V ,V+) be an ordered F-bimodule. Then we say
V+ is generating if given v ∈ V there exist v0, v1, v2, v3 ∈ V+ such that v =∑3

k=0 i
kvk, where i2 = −1.

Theorem 3.12. Let (V ,V+) be the direct limit of (V, {Mn(V )+}). Then
V + is generating if and only if V+ is generating.

Proof. First, let V+ be generating. Let v ∈ V . Then v = 11v̄11 for some

v̄ ∈ V . Therefore there exists v̄0, v̄1, v̄2, v̄3 ∈ V+ such that v̄ =
∑3

k=0 i
kv̄k.

Now 11v̄11 =
∑3
k=0 i

k11v̄k11 and Since V + = 11V+11 so that

v = 11v̄11 =

3∑

k=0

ik11v̄k11 =

3∑

k=0

ikwk, w0, w1, w2, w3 ∈ V +

where wk = 11v̄k11. Therefore V + is generating.
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Conversely, let V + be generating. We show that V+ is generating. Let
v ∈ V . Then there exists a n ∈ N such that 1nv1n = v. Put e1rves1 = vrs.
Then

v =

n∑

r,s=1

er1vrse1s, vrs ∈ V.

Since V + is generating there exist v0
rs, v

1
rs, v

2
rs, v

3
rs ∈ V + such that vrs =∑3

k=0 i
kvkrs. For every r, s; 1 ≤ r, s ≤ n, put

u1
rs = v0

rs + v2
rs,

u2
rs = v1

rs + v3
rs.

Then u1
rs, u

2
rs ∈ V + for every r, s = 1, ..., n. Next put

urs = u1
rs + u2

rs,

for all r, s, 1 ≤ r, s ≤ n, and let u1 =
∑n

r,s=1 er1urse1r and u2 =∑n
r,s=1 es1urse1s. Then u1, u2 ∈ V+. Further put

v0 =
1

4
(u1 + u2 + v + v∗)

v1 =
1

4
(u1 + u2 − iv + iv∗)

v2 =
1

4
(u1 + u2 − v − v∗)

v3 =
1

4
(u1 + u2 + iv − iv∗).

Then we have v =
∑3
k=0 i

kvk. We will be done if we can show that vk ∈
V+, k = 0, 1, 2, 3. Since Revrs = v0

rs−v2
rs and Imvrs = v1

rs−v3
rs, 1 ≤ r, s ≤ n,

we have u1
rs ±Revrs ∈ V + and u2

rs ± Imvrs ∈ V + for all r, s = 1, .., n. Thus

b =
1

2
(e11 + e21)(u1

rs +Revrs)(e11 + e12)

+
1

2
(e11 − e21)(u1

rs −Revrs)(e11 − e12) ∈ V+

and

c =
1

2
(e11 − ie21)(u2

rs + Imvrs)(e11 + ie12)

+
1

2
(e11 + ie21)(u2

rs − Imvrs)(e11 − ie12) ∈ V+.

It follows that

a =

n∑

r,s=1

(er1 + en+s,2)(b+ c)(e1r + e2,n+s) ∈M2n(V )+ ⊂ V+.
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Now

a =
1

2
[

n∑

r,s=1

(er1 + en+s,2)[(e11 + e21)(u1
rs +Revrs)(e11 + e12)

+(e11 − e21)(u1
rs −Revrs)(e11 − e12)

+(e11 − ie21)(u2
rs + Imvrs)(e11 + ie12)

+(e11 + ie21)(u2
rs − Imvrs)(e11 − ie12)](e1r + e2,n+s)]

=
1

2
[

n∑

r,s=1

[(er1 + en+s,1)(u1
rs +Revrs)(e1r + e1,n+s)

+(er1 − en+s,1)(u1
rs −Revrs)(e1r − e1,n+s)

+(er1 − ien+s,1)(u2
rs + Imvrs)(e1r + ie1,n+s)

+(er1 + ien+s,1)(u2
rs − Imvrs)(e1r − ie1,n+s)]]

=

n∑

r,s=1

er1(v0
rs + v1

rs + v2
rs + v3

rs)e1r

+
n∑

r,s=1

en+s,1(v0
rs + v1

rs + v2
rs + v3

rs)e1,n+s

+
n∑

r,s=1

er1(v0
rs − v2

rs + i(v1
rs − v3

rs))e1,n+s

+

n∑

r,s=1

en+s,1(v0
rs − v2

rs − i(v1
rs − v3

rs))e1r

=

n∑

r,s=1

er1urse1r +

n∑

r,s=1

en+s,1urse1,n+s

+

n∑

r,s=1

er1vrse1,n+s +

n∑

r,s=1

en+s,1v
∗
rse1r. (II)

Put

α =

n∑

r=1

err +

n∑

s=1

en+s,s, β =

n∑

r=1

err −
n∑

s=1

en+s,s,

γ =

n∑

r=1

err − i

n∑

s=1

en+s,s, δ =

n∑

r=1

err + i

n∑

s=1

en+s,s.

We claim that

v0 =
1

4
(α∗aα), v1 =

1

4
(γ∗aγ)

v2 =
1

4
(β∗aβ), v3 =

1

4
(δ∗aδ).
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We verify only that v0 = 1
4 (α∗aα) and others follow similarly. Now using (II),

we get

α∗aα = (
∑n

k=1 ekk +
∑n

l=1 el,n+l) (
∑n

r,s=1 er1urse1r + en+s,1urse1,n+s

+er1vrse1,n+s + en+s,1v
∗
rse1r)

(∑n
p=1 epp +

∑n
q=1 en+q,q

)

=
∑n

r,s,k,p=1 [ekk(er1urse1r)epp + ekk(en+s,1urse1,n+s)epp

+ekk(er1vrse1,n+s)epp + ekk(en+s,1v
∗
rse1r)epp]

+
∑n
r,s,k,q=1 [ekk(er1urse1r)en+q,q + ekk(en+s,1urse1,n+s)en+q,q

+ekk(er1vrse1,n+s)en+q,q + ekk(en+s,1v
∗
rse1r)en+q,q]

+
∑n
r,s,l,p=1 [el,n+l(er1urse1r)epp + el,n+l(en+s,1urse1,n+s)epp

+el,n+l(er1vrse1,n+s)epp + el,n+l(en+s,1v
∗
rse1r)epp]

+
∑n
r,s,l,q=1 [el,n+l(er1urse1r)en+q,q + el,n+l(en+s,1urse1,n+s)en+q,q

+el,n+l(er1vrse1,n+s)en+q,q + el,n+l(en+s,1v
∗
rse1r)en+q,q]

=
∑n

r,s,k,p=1 δkrδrpek1urse1p +
∑n

r,s,k,q=1 δkrδsqek1vrse1q

+
∑n
r,s,l,p=1 δlsδrpel1v

∗
rse1p +

∑n
r,s,l,q=1 δlsδsqel1urse1q .

That is

(α∗aα) =
∑n
r,s=1 er1urse1r +

∑n
r,s=1 er1vrse1s

+
∑n
r,s=1 es1v

∗
rse1r +

∑n
r,s=1 es1urse1s

= u1 + v + v∗ + u2.

Hence our claim is proved. Therefore V+ is generating.
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