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ABSTRACT. In this paper we consider the Dirichlet form on the half-space Ri defined by the
jump kernel J(z,y) = |z — y|~9"*B(x,y), where B(z,y) can be degenerate at the boundary.
Unlike our previous works [0l [7] where we imposed critical killing, here we assume that the
killing potential is identically zero. In case o € (1,2) we first show that the corresponding
Hunt process has finite lifetime and dies at the boundary. Then, as our main contribution, we
prove the boundary Harnack principle and establish sharp two-sided Green function estimates.
Our results cover the case of the censored a-stable process, a € (1,2), in the half-space studied
in [2].
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1. INTRODUCTION

Let RY = {z = (T,24) : x4 > 0} be the upper half-space in the d-dimensional Euclidean
space R%. In this paper we study the Dirichlet form (€, F) on L?(R%,dz) defined by

E(u,v) = - (u(z) = u(y))(v(z) = v(y))J (z,y) dy dz, (1.1)
2 ]Rd ]Rd

where F is the closure of C°(R%) under & = & + (-,-) 128 dr)- OUr main assumption is

on the jump kernel J(z,y): We assume that J(z,y) = |z — y| ¥ *B(x,y), a € (0,2), where
(x,y) — B(z,y) is a symmetric function satisfying certain Hoélder-type and scaling conditions,
and most importantly, is comparable to the function

- A 8 Y, B Vg Az — Ps
Bea) = (ZRB A1) (P 00)™ g (14 B Al =
|z —y| |z — 9| Ta ANya Nz —y|

x {log (1+ ( k] )]54. (1.2)

xaV yq) Nz —yl
Here (1, B2, B3, B4 are non-negative parameters such that g > 0 if f3 > 0, and By > 0 if
B4 > 0. Here and below, a A b := min{a, b}, a V b := max{a,b}. The precise assumptions on
B(x,y) are given in Section 2. Although we allow that B(x,y) = 1, our focus is on the case
when 3 V B2 > 0. In such a case, the function B(z,y) vanishes at the boundary of Rﬁlr, and
we call the corresponding Dirichlet form degenerate at the boundary. We refer to B(z,y) as
the boundary part of the jump kernel J(x,y). This setting was introduced in [0, Section 5].
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The Hunt process associated with the Dirichlet form (£, F) will be denoted by Y = (Y, P,)
and its lifetime by (.

Our motivation to study the form and the corresponding process Y comes from two
sources.

Firstly, note that in case J(z,y) = |v — y|=¢"® (i.e. B(z,y) = 1), the process Y is the
censored a-stable process in the half-space R% which was introduced and studied in [2] (also
for a more general state space than R%). Two main results of [2] can be roughly described as
follows: (1) There is a dichotomy between cases a € (1,2) and « € (0,1]. In the former case
the process Y has finite lifetime ( and approaches the boundary of the state space at ¢, while
in the latter, Y is conservative and will never approach the boundary; (2) In case when the
state space D is a C1! open set and a € (1,2), the boundary Harnack principle holds with the
exact decay rate dp(z)*! (here dp(x) denotes the distance of the point z to the boundary of
D). Shortly after, in case of a bounded C'! open set and a € (1,2), sharp two-sided Green
function estimates were established in [3].

Secondly, a Dirichlet form related to was introduced in [6] and further studied in [7].
We considered the form (€%, F*) where

E(u,v) = E(u,v) +/ u(z)v(z)k(z)dr, (1.3)

d
RY

and F* = F N L*(R%, k(z)dz). The killing function is given by x(z) = C(a, p, B)z;*, where
C(a,p,B) is a semi-explicit strictly positive and finite constant depending on «, B and a
parameter p € ((« — 1)4,a + f1). The investigation of the form (1.3) was initiated in [0]
and completed in [7] with two main results: Sharp two-sided Green function estimates for
all admissible values of the parameters involved in B(z,y), cf. [7, Theorem 1.1], and full
identification of the parameters for which the boundary Harnack principle holds true, cf. 7,
Theorem 1.2 and Theorem 1.3]. In proving those results, the strict positivity of the killing
function was used in an essential way in several places. This includes the proof of finite
lifetime, Carleson estimate, and the decay of the Green function at the boundary.

The goal of this paper is to extend the main results of [7] to the Dirichlet form (which
has no killing) in case a@ € (1,2). Due to the fact that lim,_1), C(a,p,B) = 0, this can
be considered as a limiting case of the setting in [7]. Theorem below can be viewed as a
generalization of the corresponding result in [2] in case of the state space ]Ri and a € (1,2),
to jump kernels degenerate at the boundary, while Theorem is related to the main result
of [3].

The following two theorems are the main contribution of this paper. For a,b > 0 let
Dg(a,b) == {x = (T,74) e RY: |7 —w| < a,0 < 24 < b}. Assumptions (A1)-(A4) are given
in Section

Theorem 1.1. Suppose that o € (1,2) and that B satisfies (A1)-(A4). There exists C > 1
such that for all v > 0, w € R, and any non-negative function f in Ri which s harmonic
in Dg(2r,2r) with respect to Y and vanishes continuously on B((w,0),2r) NORY, we have

@) W) e Datry2,e)2). (1.4)
5 Y5

Let G(z,y), =,y € Ri, denote the Green function of the process Y (see Section |§| for the
existence of the Green function).
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Theorem 1.2. Suppose that o € (1,2) and d > (o + 1 + B2) N 2. Assume that B satisfies
(A1)-(A4). Then there exists C > 1 such that for all x,y € RY,

) Ty a—1 Y a—1 1
C Al Al)  ———— < G(zy)
_ _ _ d—a
|z —y| |z —y lz —yl

a—1 a—1
1
(J( Td /\1) ( Yd /\1) — (1.5)
lz —yl |z — 9| |z — y|d-=

Note that in both results we have assumed that o € (1,2). The case a € (0, 1] is qualitatively
different and new methods are needed to analyze it. We leave this case for future research.

Now we explain the content of the paper, our strategy of proving the results and differences
to the methods used in [2] and [6], [7].

In Section [2| we precisely introduce the setup and assumptions on the boundary function
B(z,y), and recall some of the relevant results from [0].

The goal of Section [3|is to prove that in case a € (1,2), the process Y has finite lifetime and
is therefore transient. The proof is new and relies on a Hardy-type inequality, see Proposition

. This inequality implies that F # F, where F is the closure of C® (Ri) under & =
E+ () L2(RY d)- This implies that Y is a (proper) subprocess of ¥ — the Hunt process

associated with (€, F), hence the lifetime of Y is finite. A consequence of finite lifetime is
Corollary which has two parts: The first one shows that the process Y approaches the
boundary at the lifetime, while the second part replaces [0, Lemma 4.1] in the standard proof
of the Carleson inequality, see Theorem [5.6]

Section [4] is devoted to proving Dynkin’s formula for some non-compactly supported and
non-smooth functions. Let

LEf(@) = pov. [ (1) = F@) () dy (1.6)

d
RY

be the operator corresponding to the form (&, F), defined for all f : ]Ri — R for which the
principal value integral makes sense. It is straightforward to see that Lgxg‘_l = 0, which can
be understood as z + x5 ' being harmonic in the analytic sense. See Lemma [3.1| below. In
order to use probabilistic methods, it is crucial to show that this function is harmonic in the
probabilistic sense. The proofs of [2 Lemmas 3.3 and 5.1] rely on using the isotropic stable
process and its part process in R‘i. Since these two processes are of no help to us in the
present setting, we use instead Dynkin’s formula for barriers, cf. Proposition 4.6, The proof
of this formula is a slight modification of the arguments in [6, Section 9].

Section [5] is devoted to the proof of Theorem We first argue that the proofs of some
results from [6] in the case p > a — 1 are easily modified to the case p = o — 1. Then we show
that for any function f as in the statement of Theorem it holds that

f(z) - IP)I<}/;—DE(T/2,T/2> € D(1, 1))
F@) "~ Py(Yep oy € D(1,1))

Since xg‘_l satisfies the conditions in Theorem , the assertion of Theorem is valid.
In the first part of Section [] we present the proof of Theorem [I.2l The proof uses some
results from [7], scaling and the boundary Harnack principle. In the second part we give sharp
estimates of the Green potential of =) for v > —a. Again, we argue that, using the boundary
Harnack principle, proofs of some lower bounds of the killed Green function obtained in [7] for
p > « — 1 are valid without any change for the case p = a — 1. Having these Green function
estimates one can apply results from [I] to get the estimates of the Green potentials.

z,y € Dg(r/2,r/2).



4 PANKI KIM RENMING SONG AND ZORAN VONDRACEK

We end the introduction with an explanation of the connection between the process Y and
the process Y* associated with the Dirichlet form (€%, F*). This connection is analogous to
the one between the censored stable process and the killed stable process, cf. [2 Theorem 2.1].
Namely, the process Y can be obtained from Y* through either the Ikeda-Nagasawa-Watanabe
piecing together procedure, or through the Feynman-Kac transform via exp fg k(Y )dt. The
case B =1 and k(z) = C(a/2, o, B)z;* corresponds exactly to the isotropic a-stable process
killed upon exiting R%.

Throughout this paper, the positive constants 5y, 52, 03, B4, 0 , 79, N Will remain the same.
We will use the following convention: Lower case letters ¢,¢;, i = 1,2,... are used to denote
constants in the proofs and the labeling of these constants starts anew in each proof. The
notation ¢; = ¢;(a,b,c¢,...),i=0,1,2,... indicates constants depending on a, b, ¢, . ... We will
not specify the dependency on d. We will use “:=” to denote a definition, which is read as “is
defined to be”. For any x € R? and r > 0, we use B(x,r) to denote the open ball of radius r
centered at x.

2. SETUP AND PRELIMINARY

In this section we precisely describe the setup and recall some preliminary results from
earlier works.

Let d>1,a € (0,2), j(lr—y|) = |z —y|* % and J(z,y) = j(|z — y|)B(z,y). We first give
the assumptions on the boundary function B(z,y).

(A1) B(z,y) = B(y,z) for all z,y € R%.
(A2) If a > 1, there exist # > o — 1 and C' > 0 such that

‘x_y‘)e
B(x,z)— B(xz,y)| < C .
1B( ) (z,9)] ($d/\yd

(A3) There exist C' > 1 and parameters [, 52, O3, B4 > 0, with 51 > 0 if G3 > 0, and S > 0
if 54 > 0, such that

C™'B(x,y) < B(z,y) < CB(z,y),  z,y€Ry, (2.1)
where B(z,y) is defined in (T.2).

(A4) For all z,y € RY and a > 0, B(az,ay) = B(z,y). In case d > 2, for all z,y € R% and
e R, Bl + (3,0),y + (Z,0)) = Bz, y).

For examples of functions B satisfying (A1)-(A4), see [6, [7]. Assumption (A3) implies
that B(x,y) is bounded. Note that (A4) implies that x — B(x,x) is a constant on R?.
Without loss of generality, we will assume that B(z,z) = 1.

We observe that if 54 > 0, then, for any ¢ € (0, 32), there exists ¢. > 0 such that

(log 2)7/843517@7/33,0(:67 y) < Bﬁlﬂ2ﬁ3,ﬁ4 (LE, Z/) < CEBﬁl:ﬁ2*€,53,0 (LC, y)' (2'2)

Throughout the paper we always assume that

J(z,y) = j(lz — y|)B(z,y) on RL x RY with B satisfying (A1) — (A4) and B(z,z) = 1.

Let Ri ={z = (z,24) : x4 > 0}. Define

)= [ [ o) —u@)ola) o) o) dydo
=5 o L )~ w0 0l) e )
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By Fatou’s lemma, (£,C%(R?)) and (£, C=(R})) are closable in L*(R? , dz)(= L*(R', dz)).

Let F be the closure of C°(R%) under & = &€ + (-, ')L?(Ri,dm) and let F be the closure of

cx (Ei) under & =& + (-, ) 2(rd ar)- Then (€, F) and (€, F) are regular Dirichlet forms.
Let ((Y;)e>o0, (Pm)zeki\N) be the Hunt process associated with (€, F) whose lifetime is .

By [6, Proposition 3.2], the exceptional set N can be taken to be the empty set. We add a
cemetery point 9 to the state space RY and define Y; = 9 for ¢ > (. Let ((Y¢)s0, (Ps) e \No)
_ N TR
be the Hunt process associated with (€, F) where N is an exceptional set. Let (&, Fra ) be
the part form of (£, F) on R?. i.e., the form corresponding to the process Y killed at the exit
time 7ga = inf{t >0: Y, ¢ RL}. It follows from [4, Theorem 4.4.3(i)] that (E,fRi) is a
regular Dirichlet form on L?(R%, dz) and that C2°(R%) is its core. Hence ‘TRi = F implying
that Y killed upon exiting Ri is equal to Y. Thus we conclude that Y is a subprocess of Y,
that the exceptional set Ny can be taken to be a subset of aRi, and that the lifetime of Y
can be identified with TR -

Suppose that for all = € RY it holds that P,(rge = 00) = 1. Then (V;,P;,z € RY)
(Y4, P,z € RY) implying that F = ‘T:Ri = F.

For any r > 0, define a process ") by Y;(T) := rY,—a;. By the proof of [0, Lemma 5.1], YV
has the following scaling property.

Lemma 2.1. (Y P, ,.) has the same law as (Y,P,).

4

For any open subset V of R% and for > 0, we define 7V := {rz : € V} and 7y = inf{t >
0:Y; ¢ V}. A consequence of Lemma [2.1}is that

E,..7v = r*E,m, reV. (2.3)

Definition 2.2. A non-negative Borel function defined on R? is said to be harmonic in an
open set V C Ri with respect to Y if for every bounded open set U C U C V,

fx) =E; [f(Yr,)] for all x € U. (2.4)

A non-negative Borel function f defined on Ri is said to be reqular harmonic in an open set
V CcRY if
flz) =E,[f(Yn )] for all x € V.

The following result is taken form [6, [7].

Theorem 2.3 (Harnack inequality, [6, Theorem 1.1] & [7, Theorem 1.4]). (a) There exists
a constant Cy > 0 such that for any r > 0, any B(xg,r) C R‘i and any non-negative
function f in R‘fr which is harmonic in B(xg,r) with respect to Y, we have

flx) < Cif(y), for all z,y € B(xo,7/2).

(b) There exists a constant Cy > 0 such that for any L > 0, any r > 0, any x1,x9 € Ri
with |x1 — x3| < Lr and B(zy,r) U B(x2,7) C RL and any non-negative function f in
RY which is harmonic in B(x1,7) U B(xs,r) with respect to Y, we have

flaa) < Co(L + 1) Hotdtaf(g),
3. HARDY INEQUALITY AND THE FINITE LIFETIME

For a given B, we define C(«, p, B) for a € (0,2) and p € (—1,a + 1) by

Clewp, B) = /Rdl (Jaf? + 1)(d+a>/2 /o . _d)fls;iz_p_ )B((l = 5)U, 1), seq) dsdii, (3.1)
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where e; = (0,1). In case d = 1, C(a, p, B) is defined by
L(s? —1)(1 — s2P71)
C(Oé,p,B) :/0 (1—8)1+a B(l,S) dS,
but we will only give the statement of the result for d > 2. The statement in the d = 1 case
is similar and simpler.

We first note that p — C(a,p, B) is strictly increasing for p € ((« — 1)4, a0 + (1) (see [0,
Lemma 5.4 and Remark 5.5]) and limy,- 5, C(a, p, B) = co. Moreover,

€ (07 OO) fOI‘pG ((Oé— 1)+,Oé—|—51);
0 forp=0,a—1; (3.2)
€ (—00,0) forpe (a—1,00U(0,a—1).

C(a,p, B)

Let
CZ2(REL;RY) = {f : RY — R : there exists u € CZ(R?) such that u = f on R%}
be the space of functions on R% that are restrictions of C?(R?) functions. Clearly, if f €
C?(R%;RY) then f € CZ(RL) N L*(RY).
For € > 0, let

Bogw= [ U @), R, 3.3)
so that

LEf(@) =pv. [ (F(6) = F(a) (o 9) dy =l LE . F(z), (3.4

R
which is defined for all functions f : RY — R for which the principal value integral makes
sense. We have shown in [6, Proposition 3.4] that this is the case when f € C?(R%;R%).

For p € R, let g,(x) = 28, x € RY.
Lemma 3.1. Forp € (—1,a+ 1), it holds that

LBg,(z) = Cla,p,B)al*, z€RL. (3.5)
In particular,
LBg, 1(x) =0, xeRL (3.6)
Moreover, there exists C = é(mp, B) > 0 such that
L g,(2)| < anga for allz € RY and ¢ € (0,24/2). (3.7)

Proof. The equality is proved in [0 Lemma 5.4] for p € ((a — 1), + f1). It is easy to
see that the proof in fact works for p € (=1, + ;). We now follow the proof in [6, Lemma
5.4] to show ({3.7)).
Fix © = (6, zq4) € RY and € € (0,24/2]. By the change of variables y = x4z, and by using
(A4), we have
2h—1

LBg,.(z) = xp_a/ =
@I ¢ Ri,\5|2+\zd—l|2>(€/:vd)2 |<Z7 Zd) - ed’d+a
=271 (e).

Using the change of variables z = |z4 — 1|u, we get

11(5) =

B<ed7 (/Zva Zd)) dzddz

p
z;—1

~12 —(d+a)/2
1
(fal” +1) 2q — 1[1+e

B(eg, (|zq — 1w, zq))dzq du
/Ri,zd—u?|a|2+|zd—1|2><e/md>2 (e (Jza = 1t 20)) d=
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= /d (Jaf? + 1)~ 21, (e, @) da,
R -1

where
1-(e/aa) (TP +1)Y2 oo 41 g )
L(e,u) = / +/ —4———B(eq, (|za — 1|U, z4) ) dzq.
0 LHe/ra a1z ) |2a — 1
Fix @ and let ¢ = (¢/74)(|u|> + 1)71/2 < 1/2. By the same argument as that in the proof of
[6, Lemma 5.4], we have that Ir(e,w) = Is(e,u) + Iaa(e, u) where

N 1—eg (Sp _ 1) + (Sa—l—p _ Sa—l) _
I (e,u) = /0 1= ) B(((1—s)u,1), seq) ds,

_ T s 1P _ go-l _
Is(e, 1) := /1_600 WB((O — s5)u, 1), seq) ds,

and there exists a constant ¢, > 0 independent of 7 € R4~! such that

ot (2, 70)| g/o G _é)ils;jzp UB(((1= )i 1) sea)ds < 1 < 0. (3.8)

Moreover, by [2, p.121] and the fact that ¢y < 1/2,

< 6263_0‘ < ¢y.

ﬁ Saflfp _ Safl N
/1 WB((l — S)U, 1), Sed)dS

e
Therefore,
du

su Li(e)] <e - — ey < 0.
86(0,35/2]’ 1( )’ o 3Ad1 (|u|2 + 1)(‘“‘0‘)/2 4

We now show that the following Hardy inequality holds when a # 1.

Proposition 3.2. Suppose o« # 1. Then there exists C = C(a) € (0,00) such that for all
ue F,

u(r)?

E(u,u) > C’/ dx. (3.9)

(07
R Ty

d
4
Proof. Since F is the closure of C2°(R%) under &, it suffices to prove (3.9) for u € C>°(R%).

Fix u € C*(R%), choose ap € («—1,0)U (0, — 1) and let v(z) = u(z)/g,(x). Recall from

" that C(Oé,p, B) S (_0070)
Using the elementary identity (ab — cd)? = a*b(b — d) + ¢*d(d — b) + bd(a — ¢)? and the
symmetry of J, we have that, for all € > 0,

/Rd R |z—y|> ((W)gp(y) — v(2)gp(2))* (2, y) dy d
L PPBDE0) 5 o 0(0) (0 9) dy

Jr/Rd RY Jo—yl> 9p(2) 9 (y) (v(y) — v(2))?J (2, y) dy dx

>-2 f
R

v(x)?gp(x) (/Rd e (9(v) = gp()) I (z,9) dy) dx

d
+
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w@)? 5
:—2/ 18 g, (x)dz.
supp(u) gp( )

Let ap :=dist(R? supp(u))/2 > 0. By (3.7), the functions { ue) LBegp( )i e € (0,a0)} are
uniformly bounded on supp(u). Thus, by the bounded convergence theorem, (3.2) and (3.5)),

1
E(u,u) = lim = (v(y)gp(y) — v(x)gp(a:))QJ(x,y) dy dx
elo 2 R xRE |z—y|>e
2 2 2
> —lim uz) L5 _g,(v)dx = c/ u@) o %dr = c/ u(? dz,
el0 supp(u) gp(x) ' Ri gp(x> Ri Ly
where ¢ = —C'(a, p, B) € (0, 00). O

Recall that ( is the lifetime of Y. Using the above Hardy inequality, we now show that ( is
finite when o > 1.

Proposition 3.3. Suppose o > 1. Then F # F and P,({ < o00) =1 for all z € RY.

Proof. Take a u € CS"(@i) such that u > 1 on B(0,1) "R%, then u ¢ F. In fact, if u € F,
then by Proposition |3.2]

2
oo > E(u,u) Zc/ u(:i) dch/ |z|"“dx = oo,
R Tq B(0,1)NRY

which gives a contradiction.

The fact that F # F implies that there is a point z, € R? such that PxO(C < o0) > 0.
Then by the scaling property of ¥ in Lemma [2.1] we have that IP’ (( <o00) =P, (¢ <o0)>0
for all x € R‘i. Now, by the same argument as in the proof of [2 Proposition 4.2], we have
that P,(¢ < co) =1 for all z € RL. O

The fact that the lifetime of Y is finite has two important consequences.

Corollary 3.4.  (a) For allz € R%, P,(Y;_ € OR%) =
(b) There exists a constant ng > 2 such that for all x € Ri, P, (TB(Lnoxd) = C) > 1/2.

Proof. Using Lemma [2.1] we see that
Po (TBnza) = ) = P (TB((6,1),n) =(), zeR].

The sequence of events ({Tp (@1, = (})n>1 is increasing in n and

Uzozl{TB((ﬁ,l),n) = C} = {C < OO} (3.10)

Thus, by Proposition we have
nh_{go P, 1)(73((0 D) = () = L3GRY (¢ <o) =1. (3.11)
Moreover, since there is no killing inside R%, it holds that {TB (@1)m) =6 } C{Y;- € OR%} for

each n > 1. Thus it follows from and - ) that P,y (Ye- E OR%) = 1. The claim (a)
now follows by scaling.

To see (b), note that by there exists a ng > 2 such that P, (TB(@,D
Therefore,

¢) >1/2.

mno)

Pa: (TB(a;,noxd) = C) = P(al) (TB((671)7TLO) = C) > 1/2, T € Ri
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4. DYNKIN’S FORMULA FOR BARRIERS

In this section we always assume that o > 1.
Recall that for a,b > 0 and w € R4},

Dgla,b) = {r = (T,24) € R?: |T —w| < a,0 < x4 < b}.

Without loss of generality, we will mostly deal with the case w = 0. We will write D(a,b) for
Dg(a,b) and U(r) = Dy(5, 5). Further we use U for U(1). For any a > 0, set D(a) := {x
(T,2q4) € R 2g > a} and U,(r) :={y € U(r) : dyy > a}. We write U, for U,(1).

Let v € C2°(R?) be a non-negative smooth radial function such that v(y) = 0 for |y| > 1
and [, v(y)dy = 1. For b > 10 and k > 1, set vi(y) = b"v(b*y). Next we define g, :=
vk * (g1p-»)) for a bounded, compactly supported function g vanishing on R?\ Ri. Since
b™" < 5% we have gy € C>°(R%) and hence LBgj is defined everywhere. Also note that
vg *x g € C(RL; RY) and thus L5 (vg # g) is well defined (cf. [6, Subsection 3.2]).

Let (ag)r>1 be a decreasing sequence of positive numbers such that limy_, ax = 0 and

ap > 2 KB4/ (Ltact381/2) 5 ok

Lemma 4.1. Let R, M > 1 and g : R — [0, M] be a bounded, compactly supported function
vanishing on RY\ RL. For any z € U(R), it holds that

lim LB (v, * g — gr)(2) = 0. (4.1)
k—o0

Moreover, there exists C' > 0 independent of R,M > 1 and g such that for all k > 2 and
z €U, (R),
0 < LE(vy, % g — gi)(2) < OM(2/3)H5/240 0 (4.2)

Proof. Let z € U,, (R). We first estimate the difference
; Uy * - — (Vg *xg)(2) — gr(z
LS(Uk*g—gk)(z) = lim (( k g)(y) gk(y>) ggak 9)( ) gk( ))B
e—0 RE,|y—z|>e€ |y — Z|
Note that for k& > 2, u € B(0,b%) and y € RY with y4 > 37", it holds that y4 — ug >
37% —10* > 57%. Therefore

(y,2) dy.

1-— 1D(5*k)(y — u) =0. (43)
Since vy, is supported in B(0,b7%), for all k > 2 and z € R? with z4 > a; > 27F,

/d(l —1pi-k)(z —u))g(z — w)vr(u)du = 0.
R
Thus (v * g — gr)(2) = 0. Due to the same reason we have that for z € U, (R),

/ (o * 9)(y) — gx(y)) — ((vi * 9)(2) — gx(2))
Ri,|yfz|>e

|y — Z‘dJra

1—1p5-x)(y —u)gly — u
-/ / () LW Z I =) g
R‘i,|y—z|>e,yd§3*k Rd ’y Z|

B
<M | wv(u) du/ Lﬁ dy
R4 Rd g <3—k [y — 2|77

B1/2

1

<caM S ( Ll ) dy
ya <3~k ly — 2|4t \ |y — 2|

B(y,z)dy

td—Q

—k\B1/2+1 =
< CQM(?) ) /0 (t2 + Czd2)(d+a+51/2)/2 di
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gd—2

(82 4 1)(d+atpi/2)/

— CSM(B_k)ﬁI/2+1Z;1*a*BI/2 /OO
0

2ds

< ¢y M(2/3)RBr /20 5
In the third line we used that 0 < g < M, in the fourth the fact that (together with (2.2)))
B B3 B1/2
A \ Ny —
(yd Zd/\1> log(1+(yd za) Ny Z|> §0< Yd /\1> 7
ly — 2| Yya N za Ny — 2| ly — 2|

in the fifth integration in polar coordinates in R%"!, in the sixth the change of variables
t = ¢"/?2;s, and in the last line the fact that Q*k(ﬁl/ﬂl)z;l_a_wlﬂ < 1 which follows from
zq > a;, and the choice of a,. Note also that it is clear from the second line that the first line
is non-negative. Thus by letting e — 0 we get for z € U,, (R),

0 < LE(vg % g — gi)(2) < caM(2/3)M0/2H0 00

Now take z € U(R). Then there exists ko > 1 such that z € U,, (R) for all k > ko, and it
follows from above that

lim Lg('uk xg—gr)(z)=0.
k—o0

O
Lemma 4.2. Assume that R,M > 1 and g : RE — [0, M] is a function which is C? on
D(R,R). For anyk >2, 2 € U, (R) and |u| < b7*,

p.v. /R 9y _|yu)__z|giz — U>B(y, 2) dy (4.4)

d
+

is well defined. Moreover, for z € U,, (R),

L0 0)(:) = [ ontw) (p [ gy dy> du,  (45)

: y — 2|4t

and there exists C(z) = C(z,9, M, R) > 0 such that |LB(vy % g)(2)] < C(2) for all k > 2.
Proof. Let z € U, (R) and |u| < b™*. Let G(y, z,u) := (g(y —u) — g(z — u))|y — 2| 7*~*. For
0 <e<n< z4/10, consider

/ Gy, 2 w)B(y, =) dy — / Gy, 2 w)B(y, =) dy
Rfl,_,e<|yfz\

Ri < |yiz‘

= / G(y,Z,U)B(y, Z) dy
REe<|y—z|<n

-/ Gyt | GeuBs) - vy

e<|y—z|<n

= IT+1I.
Since g is C? on D(R,R) and y — u,z —u € D(R, R), we see that

1| < / lg(y —u) —g(z —u) = Vg(z — u)1(y—u)—(z—w<1) - (¥ — 2)| dy
N e<|(y—u)—(z—u)|<n |(y - U’) - (Z - u)|d+a
<c¢  sup \829(10) ly — z|_d_°”r2 dy = CQ(z)(n2_a — 62_0“) )

weB(2,24/5) e<|ly—z|<n
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Further, by using the mean value theorem in the first line and (A2) in the second, we get

By, 2) — 1]

1] < sup  [Vg(w)] g TE—

weB(z,24/5) e<|y—z|<n ’Z/

0
—d—a -z

<al@ [ e (B
e<|y—z|<n Ya I\ Zd

< 0403(3)259/ |y . Z|—d—a+6 dy — 05(2)(n0—a+1 o 69_a+1) '
e<ly—z|<n

The estimates for I and I imply that the principal value integral in (4.4)) is well defined.
Let z € U, (R). For € < z4/10 and |u| < b=*, we have

/ Gy, 2, u)Bly, 2) dy
RY Jy—z|>e

</ G,z w)Bly. )y + | [ Gy, = u)B(y. ) dy
RY,|y—2[>24/10 R% e<|y—z|<zq/10
= [IT+1V.
Estimating g by M, we get that
II1 <2M ly — 2|7y < crzy® = cs(2) .

ly—2]>24/10

The integral in IV is estimated in [ and I with n = z,4/10, so we have
IV < c3(2)(24/10)27 + ¢5(2)(24/10)77T = ¢o(2) .
Thus we have that

< c1o(2) . (4.6)

gy —u) —g(z—u
/ w—u) dia )B(y,Z) dy
Ri,|y—z\>6 |y - Z|

Hence we can use the dominated convergence theorem to conclude that

(v * 9)(y) — (v * 9)(2) o

L5 (v % g)(2) = lim Y, 2) dy
)( ) €0 Ri,|y—z\>e ‘y - Z|d+a ( )
= lim v (u) / 9y —w) = giz — U)B(y, z) dy du
e—0 lu|<b—F R4, |y—z|>e |y - Z| “
. 9y —u) —g(z —u)
= v (u) hm/ B(y,z)dy | du,
/U<b_k (6%0 Ri7\y—z|>e |y - z|d+o¢
which is (4.5). The last statement follows from ({4.6]) . a

We note also that if ¢ is continuous in D(R, R), then limy_,(vx * g)(2) = g(z) for all
z € D(R,R). Let hyg(z) = 281pr r)(z) and h,o(z) = gp(z) = 2f, for x € R%. We also let
hp(2) = Dy (2).
Lemma 4.3. Letp € [a — 1,a+ [31) and set
ay, = Q—k(p+1+%51)/(a+1+%,31) v 2—k(2+51)/(1+a+%ﬂ1—p).
There ezists a constant C = C(R) > 0 such that for any k > 1 and z € U,, (R),
4

L8000 b)) - L) < (3) (4.7)
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In particular, the functions z — |LE (v * hy, g)(2) — LBh, r(2)| are all bounded by the constant
Con U(R), and for any z € U(R), limy_u0 | LE(vy, % hy g)(2) — LEh, g(2)| = 0.

Proof. First note that a; > 27% since the first term in its definition is larger than 27%. Fix
z € U, (r). By using Lemma [4.2| with g = h,, g in the second line below we see that

Lo (ve * by r) (2)

_ vl v hp,R(y — U) — hp,R(Z — u) B y
_/Rd K ( )(p '/Ri [y — 2| dre B(y, )dy)d

_ / ) (p / iy = 4) = by = ) = (yn(y) = b)) g Z>dy> "

‘y _ Z|d+a

+ Lghp,R<Z).
Set b =10 Vv 24®P=2-%3_ Now we write, for u € B(0,b7%),
/ hp,R(y - u) B hp,R(Z - u) — (hp,R(y) - hp,R<z))B(
Rd

|y _ z|d+o¢

y, z)dy

+

_|_ /
/;(R+bk’R+bk)\U(R)»yd>5k D(R+bik7R+b7k)7yd<5ik

+/ —i—/ =1+ I+ 1I1+1V.
U(R),yg>5"% |ly—z[>27124 U(R),ya>5"%,B(z,24/2)

We deal with I first. For u € B(0,b7%),
I e / —|—/ = Il + IQ.
D(R+b=% R4+b=F)\D(R—b—* , R—b=*) y;>5=%  J D(R—b=* R—b=F)\U(R),yg>5"*
Obviously, we have |I;] < ¢;(R)b7*.
Let Ay := (D(R—=b"F, R—b"")\U(R)) N {y: ya > 5"*}. Then, we have
(Ya — ua)” — yg — ((2a — ua)” — 2q)
|[ | - ’/ ’y_zyd+a B(y,Z)dy|
| 24) - Jo ((za = wa + 0ya = )" = (74 + 0(ga — 2)" ")) 9
Ak ly — z|4te
< CQ(R)b_k23k(p_2)* < p2 Me=2)—+3)
where in the first inequality we use the mean value theorem inside the integral in the numer-

ator.
For 11, we have

By, z)dy|

p p bfkp
[11] < 03/ %B(% z)dy.
D(R+b=k ,R4+b=F),yg<5-F |y - Z|
Similarly as in the proof of Lemma we first estimate
yh + bk
g T 07"

—B(y,z)dy
/ D(R4b—*, Rb—F) yd<5 kly — 2|9

< ”WHO U0 dd
&) i Z|d+a+ﬁ Yaay

d—2
< csh™ k(p+1+3 61)/ t . dt
0 (t2—|—CZ§)(d+a+5’Bl)/2
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d—2
_ 15y —1-a—1 o s
= cgh MPHITR 5 0 o / FIPRTREN
0 (82 + 1)( +a+561)/
1
< cr(2/5) 0

For the remaining part, we use a similar argument:

Zq
/ By, 2)dy
D(R+b=k R+b=F) y <5k ly — 2|

5k ,31/2
< ~
8% /Rd 1/ |y ‘d+a+ B81 dyddy

-2
< p5 k(1+ B1) dt
CoZ 0 (t2 + ez )(d+a+ B1)/2

B R T h s ds
10~¢q d 0 <82+1)(d+a+%ﬂ1)/2

Cl—a-1
< eqn (/BRI BTN ¢ o (g )RR

Thus
1] < er((2/3) 0435 4 (4/5)M0300) 2
Let By :=U(R)N{ys > 5%} N{y: |y — 2| > 27 24}. Then, we have
/ (Ya — ua)” — yg — ((2a — ua)’ — 24
By,

Il =
111 ly — z|d+a

>B(y, z)dy

— — O(yg — z5))P~ — 0(yg — P=1) df
/ Yd — 2d) fo Zqg — Uq + <‘yyd Zz‘d)ja (2a + 0(ya — 24))P") B(y, 2)dy
By -

< ey ab— o2 / vy

dta1%Y
U(R) Jy—2|>2-124 |Y — 2]TT

1 1
< 15(4/5)" 27 (257 Vlog — ><c16<4/5) 2z Vlog ),

where in the first inequality we use mean value theorem inside the integral in the numera-
tor and the fact the derivative of the integrand is bounded above by ¢(57% — p=%)=(P=2)- <
c23k(P=2)—

Let F(’yd, Zd,s ud) = p(p — 1) fol ((Zd — U4 + G(yd — Zd))p_2 — (Zd + Q(yd — Zd))p_Q) (1 — 0)d6
For 6 € [0,1], uw € B(0,b7%) and y € B(z, %zd), 2g — Ug + 0(yq — zq) and zq + 0(yg — zq) are
both comparable with z;. Thus, for IV, we have for large k,

_ p_ P _ _ p _ P
V] = / (s — ) — b ~ G — vl = %) gy, z)dy‘
U(R),ya>5—",B(2,2"124) ly — 2|
p(p — 1) (ya — 2a)*F (Ya, 24, ua
B / ( ) )d+a< >B(y, z)dy
(R),yq>5—"%,B(2,2= 1 z4) ]y - Z|

_ 1 1—-
< cpbR b 3/ ———————dy = 152 < e (4/5)Fh T,
a B(z,271z4 |y - Z|d+a_2 I

where in the first inequality we used the mean value theorem inside the integral in the numer-
ator.

Combining the estimates for I, I1, II1] and IV, we arrive at the desired assertion. O
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Lemma 4.4. (a) There exists Cy > 0 such that for every R > 1 and z € U(R),

0> LEhe_1 r(2) > —Ci2i(|log za|* v 1) / y[ 7 (1 + 151 (log [y])*) dy .

ly>R
(b) Let a« —1 < p < a+ py. There exist ro € (0,1/2] and Cy > 0 and C3 > 0 such that for
every z € D(3,19),
Cy2h™ < LBh,(2) < O35

Proof. (a) Let z € U(R). Then by (3.6, we see that
a—1

Ya
LBho_1r(2) = —/ Bz y) dy,
D(R,R)enR¢ |y — 2|4t

which is negative. Further, if y € D(R, R) and z € U(R) = D(R/2, R/2), then |y| > R > |z|,
ly — z| > zq and |y — z| < |y|. Thus it follows from [6, Lemma 5.2] that

|a—1

ly
LEho-rnl)] < [ By dy
D(R,R)*nRY ly — z|dte

<a / I~ Bz, y) dy
YR [y|>R,|y—z[>2q

< cp2" (|log 4™ v 1) /|>R [yl ™71+ Ly (log [y) ™) dy -
Y=

(b) Let z € U. Then by using Lemma
p
Lghy(z) = Clo,p, B)zf " — / %B(z,y) dy .
D(1,1)enR ly — z|dte

Since the second term is non-negative, by removing it we obtain the upper bound. In the
same way as before (this uses p < a + ),

p
/ %B(z, y) dy| < 22| log 24 .
D(1,1)enR% ly — 2|

Thus, for any z € U,
LBhy(2) > Cla,p, B)zb™" — ¢327 | log 24| .
Since p — a < f; and C(a,p,B) > 0, we can find o € (0,1/2] such that the function
t — C(a, p,B))t=* — c3tP1|log t|? is positive and bounded away from zero for all t € (0, 7).
This concludes the proof of the lower bound. 4
In the remainder of this paper, rq always stands for the constant in the lemma above.

Lemma 4.5. There exists a constant C' > 0 such that

E,7v < Ca5t, z€U. (4.8)

Proof. Choose ¢ € (o — 1,) and let n(z) := ho_1(z) — hy(z), x € RL. For x ¢ D(1,1),
n(x) = 0, while if z € D(1,1) we have n(z) = 25" — 2% > 0. By Lemma , for all z € U(ro)
we have that LPh, 1(z) <0 and LPh,(x) > c¢;297. Thus we can find r; € (0, 7o) such that

LEn(x) = LBhe 1 (%) — LBhy(z) < —c2%® < —1, x e U(r). (4.9)
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Let gr = v * (Mlp-+). It follows from Lemmas and 4.3 applied to h, and h,_; that
LBg, — LBn on U and the sequence of functions |Lagk — La7]| is bounded by some constant
¢ > 0. In particular,

— Ligi(z) > —Lin(z) = > 1—¢y,  z€U(r),r<r. (4.10)
It follows from [6, Lemma 3.6] that for all ¢ > 0,

t
Em [gk(Y;/\TUak(T))] - gk(x) = Em/ 1s<‘rUak(T)L§gk<Y:9) dS, HAS U(T),T S 1.
0

As k — oo, the left-hand side converges to E;[1n(Yirr,,,)] — n(z). For the right-hand side we
can use Fatou’s lemma (justified because of (4.10] - ) to conclude that for z € U(r) with r < rq,

t

t
lim sup EJC/ 18<TU%<,-) LBgp(Yy) ds < Ex/ 15<TU(T)L§77(YS) ds < —E.(t A Tuey) -
0 0

k—o0
Thus we get that E;[1n(Yiar,,)] —n(z) < —E.(t A 7v(), and by letting ¢ — oo,
—T](l’) < Ex[n(YTU(TQ] - 77<I> < _EZTU(T) ) ZAS U(T)a r<ri.
Thus we get E,7() < n(z) < 25" By using that U(ry) = r1U and ([2.3), for any z € U,
11, a1

—Q —Q a—
E.7v =r{ “E,omu < 1] (rlxd) =r;

We have proved the claim of the lemma with C = r;*. a

Proposition 4.6. Letp € [a—1,a+ 1), R>1 andr < R. For every x € U(r) it holds that
U (r)
Bl (Vo)) = hpne) + B [ Ly (Yo} ds. (a.11)
0

Proof. Set g; := vi*(hprlpi-+)). Let v € U(r), r < R. Thereis ky > 1 such that x € U,, ()
for all k > ko. Note that since gy € C>°(R%), it follows from [6, Lemma 3.6] that for all ¢ > 0,

t
Ea 04 (Vi )] = 90(0) + o [ Luc, o LEgu(Y) ds.
0

Clearly, limy_, o TUa, (r) = TU(r)- Since g — hpr as k — 0o, we get that the left-hand side
above converges to E; [y r(Yiary,,, )]-
On the other hand, by combining Lemmas and , we see that for every z € U(r) with
r <R,
lim | Lgi(2) = Lohyr(2)| = 0

and |L5gy(z) — LEh, r(2)] is bounded. Thus, we can use the bounded convergence theorem
and get

t t
lim E, / Lycny, o LEoi(Y:) ds = E, / Locry LEhy (Y2) ds.
0

k—o0

Therefore,
t/\TU(r) 5
Belh (Yo ) = byn) + Eo [ LEhyn(Yo)ds.
0

By letting t — oo we get that the left-hand side above converges to E.[hy, r(Yz,,,)]-

When p = o — 1, by Lemma (a), LBh, r(z) < 0. Thus we can use use the monotone
convergence theorem and obtain (4.11]).
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When p € (a—1,a+f1), by Lemma (b) and scaling LBh, r(z) > 0 on on D(R/2,m0R) D

D(r/2,119/2). Thus, we can use the monotone convergence theorem and get

t/\TU(r) TU(r)
lim E, / Ly,en(r/2.0m0/2) Ly r(Ys) ds = B, / Ly,en(r/2rro/2) Lol r(Ys) ds.
0 0

t—o00

On the other hand, since

p
Lghyr(2) = Cla,p, B)z ™ — / %B(?J, z)dy, z€ D(R,R),
D(R,R) ly — 2|

we know that LEh, r(z) is bounded on U(r)\ D(r/2,rry/2). Thus, using Lemma |4.5/ and the
bounded convergence theorem, we get

t/\TU('r) TU(r)
lim Ex/ Ly, et (m\D(r/2,r0/2) Lo by, r(Ys) ds = Em/ Ly, et (m\D(r/2,0r0/2) Lo Py, r(Y5) ds.
0 0

t—o00

Combining these, we obtain (4.11]) for p € (o — 1, + 1) too. a

5. BOUNDARY HARNACK PRINCIPLE

In this section we always assume that o > 1. The next two results are applications of
Proposition [4.6]

Lemma 5.1. For all r > 0 it holds that
Eilha-1,00(Yry))] = ha-1,00(2), for allz € U(r). (5.1)
In particular, the function ha—1 () = ga—1(x) = 257" is harmonic in RL with respect to Y.

Proof. Fix r > 0 and z € U(r). Let R > 1V r. By Proposition [4.6]

TU(r)
Ex[ha—l,R(YTU(r))] = xg_l + EI/ Lshtx—LR(YS) ds. (5~2)
0
By the monotone convergence theorem,
]%l—r};o ]Ea:[hafl,R(Y:rU(T))] = Eaz[hozfl,oo(YTU(r))]'
Using Lemmas (a) and [1.5] we see that

TU(r)
0> Ex/ LBhe 1. r(Ys)ds
0

> —c1(r)EeTu@ / !y\fﬁrdfl(l + 11 (log \y!)ﬂ‘"’) dy

ly|>R
> —eo(r) / B Ty o ) ) .
y|>R

Thus
TU (r)

lim E, / L5he 1 r(Ys)ds = 0.
0

R—o0

The proof is now complete. O

Recall that o in the constant in Lemma [4.4](b).
Lemma 5.2. There exists C' > 0 such that
E. () < CPy (Ynmo) € D(1, 1)) for all x € U(ry).
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Proof. Choose a p € (a — 1, ). By Propostion [1.6] for every z € U(ro),

TU(rg)
Eo[hy(Ye,. )] = hy(z) +E1/ L5h,(Y,) ds .
0

TU(rg)

Thus, using Lemma (b) and that h, is bounded by 1 and supported on D(1,1), we get

P, <Y e D, 1)) > B, [hy(Y,

TU (g TU(rg)

TU (rq)
)] > E, / " LBh,(Y,) ds > B (ry)-
0
O

Since fD(l D y5 ! y|~?*P1 dy = 400, by the same argument as that leading to [6l, (5.10)],
we also have that there exists an 7 € (0, 1) small enough so that for all € (0,7,] and R > 1,

TU(r)
EI/ (Y;fd)ﬂl| log Y;fd|ﬁ3 dt <E, [ha—l(Y;'U(r))] < Ex[ha_laR(K—U(r))] , T E U(’I“) . (53)
0

Using ([2.3]), (5.3]), Proposition and Lemma (a), repeating the proof of [0, Lemma
5.7], we get the following upper bound.

Lemma 5.3. There exists a constant C' > 0 such that for all x € U,
TU
E, / (Y5 log Y| dt < Ca~. (5.4)
0
Using the above lemma, [6, Lemma 5.2(b)] and the scaling propetry of Y, the proof of the

next lemma is the same as that of [0, Lemma 6.1)], we omit the proof.

Lemma 5.4. There exists C' > 0 such that for all0 < 4r < R <1 and w € D(r,r),
,raJrBl wg—l
Ra+ﬁ1 roz—l :

]P)w (K—B(w,r)ﬁRi

€ Aw, R, 4) mRi) <C

Recall that rq in the constant in Lemma [4.4](b).
Lemma 5.5. There exists C' > 0 such that for any x € U(2_4r0),

P, (Y e D1, 1)) < CP, (YTU(TO) e D(1/2,1)\ D(1/2,3/4)) .

TU (rg
Proof. Let V = U(ry) and
Hy:={Y,, € D(1,1)}, H,:={Y,, € D(1/2,1)\ D(1/2,3/4)}.

Choose a p € (o — 1,a) and let k(z) = C(a, p, B)x;*. Let Y* be the subprocess of Y with
killing potential  so that the corresponding Dirichlet form is £(u,v) + [pa u(z)v(x)r(z)dz.
+

Either by repeating the proof of [6, (5.17)] or using [0, Theorem 1.3], we get that
P, (Y2 € D(ro/4,1)\ D(ro/4,3/4)) = crwh, w € U(ry/2).

Thus,

P, (Hy) > Py, (Y € D(1/2,1)\ D(1/2,3/4)) > cywl), w € U(ry/2). (5.5)
For ¢ > 1, set

ro/l 11 | |
So = S1, S; = §0(§ — % ; P) and Jz = D(Si, 271737'0) \ D(Si, 271747“0).
Note that ry/(20) < s; < r9/(16). Define for i > 1,
P.(H. ~ -
di = sup ( 2) Jl = D(Sifl, 271737’0), T — Tji. (56)

zeJ; PZ(HI) ’
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Repeating the argument leading to [5, (6.29)], we get that for z € J; and i > 2,
P,(H,) < ( sup dk>IP’Z(H1) +P. (Y, € D(1,1)\UiZt i) . (5.7)

1<k<i—1
Recall that ng in the constant in Corollary (b). For i > 2, define 0,9 = 0,0;; = inf{t >
0:|Y; — Yo > no2 " %ro} and 041 = 04 + 041 © 0s,,, for m > 1. By Corollary 3.4/ (b), we
have that

Py(Yo,, € J1) <1 —=Pu(0i1 =) <1 —Pu(TBuwmews =) <271, w e J;. (5.8)

For the purpose of further estimates, we now choose a positive integer I such that [ > o + Bi.
Next we choose iy > 2 large enough so that ng27"*1 < 1/(2000:%) for all i > 4. Now we
assume i > ig. Using ((5.8) and the strong Markov property we have that for z € J;,

P.(7; > 0i4i) < Po(Yo,, € J;, 1 < k < 1i)
—E, [IPY%  (Yous € J) Yoy €T Yo, € Tl <k < li— 2]
<P, (Yai’k e T 1<k<li— 1) ol < o7l (5.9)

Note that if z € J; and y € D(1,1) \ [J; U (UL Je)], then |y — 2| > (sicr — si) A (274 —
2713rg) = 19/(400:?). Furthermore, since 27 "?ng < 1/(400i?) (recall that i > i), if Y, (w) €
D(1, 1)\Ui_! Jy and 7;(w) < 0y45(w), then 7;(w) = 0y 4(w) for some k = k(w) < li. Dependence
of k on w will be omitted in the next few lines. Hence on {Y;, € D(1, 1)\ U;_\ J, 7 < oyp}
with Yy = 2z € J;, we have |Y,,, — Y5, | = Y5, — Yo| > 558 for some 1 < & < li. Thus for
some 1 < k < i, Z?:o Yy, — Yo, .| > 70(4004*)~" which implies for some 1 < j < k < [i,
Yo, — Yo | = 1(k400:%) " > ro(li)~1(400:*)~" . Thus, we have

{Y,, € D(1,1) \ UZ;lle, 7, < 001}
C U {|Y,,, — Yo, 1| > 10/(8001i%),Y,, . € D(1,1),Y,,, , € J;}.

Now, using Lemma [5.4| (with r = 27 2?ngrq and R = 70/(8000i*)) (noting that 4 - 27" 1ny <
1/(4001i%) for all i > 4y), and repeating the argument leading to [5], (6.34)], we get that for
z € Ji,

P. (Y- € DO, D)\ Uiy, 7 < oi) < lisup Py, (Yo, , — w| > 1r0(8006°) 1, Y,,, € D(1,1))

weJ;

, - (/80013 * T
<l su;j) Py (4> Yy, , — w| > 79(8000i%) 1) < eqali s :
weJj

By this and (5.9), we have for z € J;, i > iy,

800733\ @™
Z) . (5.10)

]PZ (}/7_Z c D(]_’ 1) \ UZ_:IIJ]C) S 2_” + C2li ( 2i+3

By our choice of I, we have
9i+3

- (8001i° o +B81 1+ a+B1 143(atB1) (9—(a+B1)) —(a+B1))* —1yi
li | = = 100 A iretfglastad ) (g=leth) > (o7l > (27 (5.11)

Thus combining (5.11]) with (5.10]), and then using (5.5)), we get that for z € J;, i > iy,

P.(Y;, € D(1,1)\ Uy Ji) 800K\ T _
. c
P.(H,) 9i+3 =™

< c;;li?ip ( ji3latB)g(p—a—pr)i (5‘12)
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By this and (5.7)), for z € J;, i > ig,for all i > i

P.(H,) P.(Y,, € D(1,1) \ Ui_} Jp)
< sup di+ - = < sup dy+tCa——r.
P.(Hy) — 1gkglz‘)_1 : P.(Hy) - 1§k£_1 B9 (atpi-pi

This implies that for all + > 1

j1+3(atpr)

L jH3(a+p) ©_ ;1+3(atp)
di < sup dp+cy ———— < sup dpt+cy —— =: (5 < 00.
C T <k<ig_1 ; 20+pri=p)i = |y — 2(a+p1—p)i
Since U(27 %) C UL, Jg, the proof is now complete. 0

Using Corollary (b), we can prove the following Carleson estimate.

Theorem 5.6 (Carleson estimate). There exists a constant C > 0 such that for any w € OR%,
r > 0, and any non-negative function f in Ri that is harmonic in R‘i N B(w,r) with respect
toY and vanishes continuously on OR% N B(w,r), we have

flz) < Cf(x) for all z € RL N B(w,r/2), (5.13)
where T € RE N B(w,r) with T4 > r/4.

Proof. Recall that ng in the constant in Corollary (b). By using By(z) = B(x,nozq)
instead of By(z) = B(x,z4/2) in the proof of [0 Theorem1.2] and applying our Corollary
(b), the proof of the theorem is almost identical to that of [0, Theorem1.2]. We omit the
details. O

Proof of Theorem 1.1} Recall that 7y in the constant in Lemmal[4.4[b). By scaling, it suffices
to deal with the case r = 1. Moreover, by Theorem (b), it sufﬁces to prove for x,y €
Dg(278rg,278rp). Since f is harmonic in D (2, 2) and vanishes continuously on B(w,2)NIRY,
it is regular harmonic in Dg(7/4,7/4) and vanishes continuously on B(w,7/4) N ORE (see
[5, Lemma 5.1] and its proof). Throughout the remainder of this proof, we assume that
x € Dg(278ry,27%ry). Without loss of generality we take w = 0.
Define zy = (7,1/(16)) and V = U(r). By the Harnack inequality and Lemma [5.5, we
have
f(@) = Eo[f (Yo, )] 2 B[ f (Y ); Yo, € D(1/2,1)\ D(1/2,3/4)]
> cof(20)Pr(Yr, € D(1/2,1)\ D(1/2,3/4)) > ¢1f(20)P,(Yr, € D(1,1)). (5.14)

Set wy = (0,277). Then, using [6, Proposition 3.11 (a)], we also have [6, (6.13)-(6.14)], that
is,

fuze [ ) Sy (515)

and
JE (2, y) < e3J% (wp,y), forany z€ U andy € RZ\ D(1,1). (5.16)

Combining ([5.16]) with (5.15) we now have
B (Vo )iV € DU =B, [ [ o430 )
RI\D(1,1)

S@&w/ T% (w0, y) f(y)dy < caf (wo)Eary. (5.17)
4\D(1,1)
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On the other hand, by the Harnack inequality (Theorem [2.3]) and Carleson’s estimate (The-
orem [5.6)), we have
E. [f(Yz);Yr, € D(1L,1)] < o5 f(20)Ps (Yo, € D(1,1)). (5.18)
Combining (5.17) and ([5.18]), and using the Harnack inequality, we get
f@) =Eo [f(Yr,);Yr, € DL D]+ By [f(Yr, ); Yoy, ¢ D(1,1)]
< co f(wo) Bty + ¢5f(w0)Py (Yo, € D(1,1)) < cof(w0) (Bomv + Py (Yr, € D(1,1))) .

This with (5.15) and Lemma implies that f(x) < f(x¢)P, (Yr, € D(1,1)). For any y €
D(278rg,27%ry), we have the same estimate with f(y) instead of f(z), where yo = (7, 1/(16)).
By the Harnack inequality, we have f(xo) =< f(yo). Thus,

f(z) _ P, (Y, € D(1,1))
fly) Py (Yn, € D(1,1))
We now apply this with g,—; (which is harmonic by Lemma[5.1]) to conclude that
5t PV, €D(LY) _ [0
vy P, (Y, € D(1,1)) f()

O

We now show that any non-negative function which is regular harmonic near a portion
of boundary vanishes continuously on that portion of boundary, cf. [2, Remark 6.2] and [3]
Lemma 3.2]. Thus, the above boundary Harnack principle also holds for regular harmonic
functions.

Lemma 5.7. There exists a constant C' > 0 such that for every bounded function f : Ri —
[0, 00) which is reqular harmonic in U = D(1/2,1/2), it holds that

f@) < Cllfllwzg™, =€ D27,27).

Proof. Let f : R? — [0,00) be a bounded function which is regular harmonic in U =
D(1/2,1/2). Then for every x € D(27°,275),

f(@) = Eof(Yey), Ve, € DL D]+ B[ f(Ye), Ve, & D(1,1)]. (5.19)
In the first term we use f(Y7,) < ||f|l« and then apply Theorem [1.1] to get
E[f(Yr,), Yoy € D(1,1)] < [flloPo(Yr, € D(1,1)) < 1| flloozg ™ (5.20)

Now we estimate the second term. For z € U and w € R% \ D(1,1), we have |w — z| < |w].
Thus, by using [0, Lemma 5.2(a)],

[ Bl =l
\D(1,1)

1

smm@qm%%an/v))
1.1
(]_ + 1|’w|21(10g |UJ|)BB)

|w | d+a+p1 dw.

s@wmﬁm%aw/
R4\D(1,1)

Hence, by using the Lévy system formula and Lemma 5.3} for z € D(27°,27?),
By [f(Yeoy); Yo, ¢ D(1,1)]

_]E/ / VI (Vs =) dz dt
Rd\Dll
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<l |

RI\D(1,1)
< ca flloomg ™" (5.21)

The claim of the lemma follows by using ((5.20)) and (5.21]) in (5.19). O

(1 + 1|w|21(log |w|)63)
|w|d+a+51

Proposition 5.8. There exists C' > 0 such that for every f : R — [0,00) which is regular
harmonic in U = D(1/2,1/2), it holds that

a—1
d

flx) <C (f(w)) 257w,z e D(27%,2779).
In particular, f vanishes continuously {x = (z,0) € ORL : |7] < 273},
Proof. For any k € N define
Je(@) = Eo[f (Yo, ) A K] = Eo[(f AR)(Yr,)].

Then f;, is regular harmonic in U and bounded in RY. By Lemma, fi(@) < el fAK|loox§
Thus f; vanishes continuously at the boundary. By the boundary Harnack principle, Theorem
[[.1] there is C' > 0 such that for every k € N

a—1
J{kéx)) < C’mi_l, r,w e D(273,27%).
By letting £ — oo we get that
f(z) g 3 o
Flw) = wci T r,w e D(273,27%).
d

6. ESTIMATES ON GREEN FUNCTIONS AND POTENTIAL

6.1. Green function estimates. By following [7, Section2] we see that there exists a sym-
metric function G(x,y), z,y € R? such that for all Borel functions f : R? — [0, 00) we have
that

¢
B [ 100 d= [ Gla) s i

Moreover, since Y is transient, G(z, y) is not identically infinite, and as in [7, Proposition 2.2],
we can conclude that G(-,-) is lower-semicontinuous in each variable and finite outside the
diagonal. Further, for every € R%, G(z,-) is harmonic with respect to Y in R% \ {z} and
regular harmonic in R% \ B(z, €) for every € > 0. The function G enjoys the following scaling
property (proved as in |7, Proposition 2.4]): For all z,y € RY, z # y,

z Y a—d

G(z,y :G( , >:c—y . 6.1

=N ) oy

Choose a p € (a — 1,a) and let x(z) = C(a,p,B)x;*. Let Y* be the subprocess of Y

with killing potential x so that the corresponding Dirichlet form is E%(u,v) = &E(u,v) +

Jra u(@)v(z)k(z)de. Let G(z,y) and G*(z,y) be the Green functions of Y and Y respectively.
+

Then G(z,y) > G"(x,y). Now the following result follows immediately from [7, Proposition
4.1].
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Proposition 6.1. For any C; > 0, there exists a constant Cy > 0 such that for all x,y € ]Ri
satisfying |x — y| < Cy(xq A ya), it holds that

G(w,y) = Colw —y[~

From now on we assume d > (a+ 1 + f2) A2. In [7), Section 4.2], the killing function plays
no role. Repeating the argument leading to [0, Proposition 4.6, we get

Proposition 6.2. There exists a constant C' > 0 such that for all z,y € ]Ri satisfying
|z —y| < x4 Aya, it holds that

G(z,y) < Clo -y~

Using Proposition[5.8, we can combine Proposition [6.2] with Theorem [5.6]to get the following
result, which is key for us to get sharp two-sided Green functions estimates.

Proposition 6.3. There exists a constant C' > 0 such that for all x,y € ]Ri,
G(z,y) < Cla -y~ (6.2)

Proof. It follows from Proposition [6.2] that there exists ¢; > 0 such that G(x,y) < ¢; for all
z,y € R with |z — y| = 1 and 24 A yg > 1. By Theorem , for any ¢y > 0, there exists
cs > 0 such that G(z,y) < ¢; for all z,y € RY with |z — y| = 1 and x4 A yq > c2. Now by
Theorem , we see that there exists ¢4 > 0 such that G(z,y) < ¢4 for all z,y € Ri with
|z — y| = 1. Therefore, by (6.1)), we have

G(z,y) < Clo —y|™*, 2,y €RL.

Now we prove the two-sided Green function estimates.
Proof of Theorem [1.2] The scaling property and the invariance property of the half space
under scaling imply that in order to prove Theorem we only need to show that for all
z,y € RY satisfying |z — y| = 1,

CH g AD (g AD < Gla,y) < C(xg AD (g A (6.3)

By scaling, Theorem , and Propositions and , we only need to show for zgAyy <
273 and |[x —y| = 1.

We now assume that |x —y| = 1 and let 2y = (7,27%) and yo = (y,27%). We first note
that Proposition together with scaling, clearly implies that for all z € R, y — G(z,y)
vanishes at the boundary of R%.

Suppose that 14 > 273. Then, by Theorem , and Propositions and , we have
G(xo,y) < ¢ > 0. Thus by Theorem [L.1]

G(x,y) < G(zo,y)(wa/27%) =< 257 (6.4)
Suppose that 14 < 273. Then by Theorem and ((6.4)
G(z,y) = Gz, y0)(ya/27)* " = a7y ™" (6.5)

(6.4) and (6.5) imply that (6.3]) hold for z4 Ays < 272 and |z —y| = 1. O
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6.2. Estimates on Potentials. Recall that we have assumed d > (o + 1 + f2) A 2. Let

GBw-R)INRY (z,y) be the Green function of the process Y killed upon exiting B(w, R) N R%,
w € IR

For any a > 0, let B} := B(0,a) NR?%. Using Theorem [1.2/and the formula
G (y,2) = Gy, 2) — By [G(Y:,...2)]

TBiQ» Y
the proof of next result is standard. For example, see |7, Lemma 5.1]

Lemma 6.4. For any € € (0,1) and M > 1, there exists a constant C > 0 such that for all
y,2 € B _ with |y — z| < M(ya A zq).

GP(y,2) = Cly — 2|~
By Theorems and we have for any r > 0 and x € Ri with z4 < r/2,
P.(Yr, ., € Dz(r,4r) \ Dz(r,3r)) > cx®t.

Using this and Lemma [6.4] the proofs of next two lemmas are identical to those of [7, Lemmas
5.2 and 5.3].

Lemma 6.5. For every e € (0,1/4) and M, N > 1, there exists a constant C<0 such that for
all z, 2 € B _ with vy < z4 satisfying xq/N < |z — z| < Mz, it holds that

GBT(x, z) > Oz o — 2|7

Lemma 6.6. For every e € (0,1/4) and M > 40/¢, there exists a constant C > 0 such that
for all z,z € By __ with x4 < z4 satisfying |v — z| > Mz, it holds that

G (2, 2) > Cat 120 o — 2|4 F2,
Combining the above results with scaling, we get

Theorem 6.7. For any € € (0,1/4), there exists a constant C > 0 such that for all w € 8]1%‘1,
R >0 and z,y € B(w, (1 —&)R) NRYL, it holds that

a—1 a—1
GB@RINEL (1 0y > ¢ ( Td_ . 1) ( Ya__ . 1) ;d.
|z =yl |z —y| |z — y|t

Proposition 6.8. For any w € R, any Borel set D satisfying Dz(R/2,R/2) C D C
Dg(R, R) and any x = (0, x4) with x4 < R/10,

. R Hlzg ! v > -1,
E, / vy di = / G (2, )y dy = { 29V log(R/za), 7= —1, (6.6)
0 b 9t —a <y < -1,

where the comparison constant is independent of w € R, D, R and x.

Proof. Let D be a Borel set satisfying D(R/2,R/2) C D C D(R, R). By Theorems [1.2| and
[6.7, we have that for all z € D

/@WWM@S/G@w%@
D

D

T4 Ty L ydy
p(r.R) \|T =Yl [z — | |z — yl|i
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and for z = (0, 24) with 24 < R/10

/ GP(z,y)y] dy > / ngB;zm (z,y)dy > C2/ y;GBE/z (z,y) dy
B;W D(R/5,R/5)
a—1 a—1 —yd
2/ ( Td_ A 1) ( LN 1) YD (6.8)
D(R/5,R/5) |z —y |z =y |z —yl

We now apply [I, Lemma 3.3 and Theorem 3.4] and their proofs to and and get
(6.6) O

Corollary 6.9. For all z € R%,

¢ 00 >—1lorv<—a
E, det:/ Gz, y)yldy = 7= =T
A ( t ) Ri ( y)yd y xs—i-'y’ —a < "}/ < _1

In particular, for all x € R%, E,[(] = cc.

Proof. When v > —a, the result follows by letting R — oo in Proposition [6.8 If v < —a,
by Theorems 1.2 u for all zeRE

za "7 wa " yldy
G(.I, y)iy:iydy > Cl/ < ) ( ) 5 d—o
R Ds(zawa/2) \|1T = Y| |z =y |z =y

y+a—1
a ye o dy a1
=2y 1/ ﬂm Z CQI’}I d/ yd7+ dy =
Ds(zawa/2) 1Y~ Y Dy (24:4/2)
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