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Abstract

Let WP be a killed Brownian motion in a domain D  R? and S an independent
subordinator with Laplace exponent ¢. The process Y'? defined by Y;D = Wg is called
a subordinate killed Brownian motion. It is a Hunt process with infinitesimal generator
—¢(—Alp), where A|p is the Dirichlet Laplacian. In this paper we study the potential
theory of Y under a weak scaling condition on the derivative of ¢. We first show that
non-negative harmonic functions of Y satisfy the scale invariant Harnack inequality.
Subsequently we prove two types of scale invariant boundary Harnack principles with
explicit decay rates for non-negative harmonic functions of Y. The first boundary
Harnack principle deals with a C"! domain D and non-negative functions which are
harmonic near the boundary of D, while the second one is for a more general domain D
and non-negative functions which are harmonic near the boundary of an interior open
subset of D. The obtained decay rates are not the same, reflecting different boundary
and interior behaviors of YP.
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1 Introduction

Let W = (W, P,) be a Brownian motion in R? d > 1, and let S = (S;);>0 be an independent
subordinator with Laplace exponent ¢. The process X = (X;,P,) defined by X, = Wg,, t >
0, is called a subordinate Brownian motion. It is an isotropic Lévy process with characteristic
exponent W(¢) = o(I¢[2).

In recent years, isotropic, and more generally, symmetric, Lévy processes have been
intensively studied and many important results have been obtained. In particular, under
certain weak scaling conditions on the characteristic exponent W (or the Laplace exponent
¢), it was shown that non-negative harmonic functions with respect to these Lévy processes
satisfy the scale invariant Harnack inequality (HI) and the scale invariant boundary Harnack
principle (BHP), see e.g. [4, 19, 20, 21, 24, 25, 26, 28, 30].
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If D is an open subset of RY, we can kill the process X upon exiting D and obtain a
process X known as a killed subordinate Brownian motion. Functions that are harmonic in
an open subset of D with respect to X are defined only on D, but by extending them to be
identically zero on R?\ D, the HI and BHP follow directly from those for X. In particular,
the BHP for XP? is in fact a special case of the BHP for X in D.

By reversing the order of subordination and killing, one obtains a process different from
XD Assume from now on that D is a domain (i.e., connected open set) in R?, and let WP =
(WP P,) be the Brownian motion W killed upon exiting D. The process Y = (V,” P,)
defined by Y,” = W&, ¢ > 0, is called a subordinate killed Brownian motion. It is a symmetric
Hunt process (see, for instance, [35, Propositions 2.2 and 2.3]) with infinitesimal generator
—¢(—A|p), where A|p is the Dirichlet Laplacian. This process is very natural and useful. For
example, it was used in [11] as a tool to obtain two-sided estimates of the eigenvalues of the
generator of XP. Despite its usefulness, the potential theory of subordinate killed Brownian
motions has been studied only sporadically, see e.g. [17, 33, 16] for stable subordinators, and
[34, 36] for more general subordinators. In particular, [36] contains versions of HI and BHP
(with respect to the subordinate killed Brownian motion in a bounded Lipschitz domain D)
which are very weak in the sense that the results are proved only for non-negative functions
which are harmonic in all of D. Those results are easy consequences of the fact that there
is a one-to-one correspondence between non-negative harmonic functions (in all of D) with
respect to WP and those with respect to Y. Additionally, some aspects of potential theory
of subordinate killed Brownian motions in unbounded domains were recently studied in [29].

In the PDE literature, the operator —(—A|p)*/2, a € (0,2), which is the generator of
the subordinate killed Brownian motion via an «/2-stable subordinator, also goes under the
name of spectral fractional Laplacian, see [2] and the references therein. This operator has
been of interest to quite a few people in the PDE circle. For instance, a version of HI was
also shown in [37].

The main goal of this paper is to show that the scale invariant BHP for non-negative
functions harmonic (with respect to Y?) near the boundary of D is valid for a large class
of subordinate killed Brownian motions Y when D is a bounded C*!' domain, or a C*!
domain with compact complement or a domain consisting of all the points above the graph
of a bounded globally C!! function. We also prove the scale invariant BHP for non-negative
functions harmonic (with respect to Y?) near the boundary of a O open set strictly
contained in D. In the latter case D need not have smooth boundary, but still has to satisfy
certain geometric conditions.

We start by listing our assumptions on the underlying subordinator, or more precisely
on the corresponding Laplace exponent. Recall that the Laplace exponent of a subordinator
is a Bernstein function vanishing at the origin, i.e., it has the representation

(X)) = bA +/ (1 —e™) p(dt), (1.1)

(0,00)

with b > 0 and g a measure on (0, 00) satisfying f(O,oo)<1 At) pu(dt) < oo, which is called
the Lévy measure of S. A Bernstein function ¢ is called a complete Bernstein function if its
Lévy measure has a completely monotone density. A Bernstein function ¢ is called a special
Bernstein function if the function A — A/@(\) is also a Bernstein function. It is well known
that any complete Bernstein function is a special Bernstein function. For this and other



properties of special and complete Bernstein functions, see [31]. The potential measure of
the subordinator S is defined by U(A fo (S; € A)dt.
In this the paper we will always assume the followmg three conditions:

(A1) The potential measure U of S has a decreasing density w.

(A2) The Lévy measure of S is infinite and has a decreasing density u that satisfies

p(r) <cu(r+1), r>1. (1.2)

(A3) There exist constants ¢ > 0 and 6 € (0, 1] such that

SO _

ot™® forall t>1 and A>1.
(N~ - -

For some of the results in dimension d = 2 we will need the following additional assump-
tion:

(A4) If d = 2, there exist ¢/ > 0 and &’ € (0,2) such that

¢/<)‘t) 1 4—0'
g =7

forall t>1 and A>1. (1.3)

Assumptions (A1)-(A4) were introduced in [20] and were also used in [21, 29]. Assump-
tion (A1) implies that ¢ is a special Bernstein function, cf. [31, Theorem 11.3]. It follows
from [26, Lemma 2.1] that (1.2) holds if ¢ is a complete Bernstein function. It immediately
follows from (A3) that b = 0 in (1.1). It is easy to check that if ¢ is a complete Bern-
stein function satisfying the following weak scaling condition: There exist ay,as > 0 and
91,02 € (0, 1) satisfying

a A7 o(t) < p(M) < ad2¢(t),  A>1,t>1,

then (A1)-(A4) (as well as (A7) below) are satisfied (see [21, p. 4386]). One of the reasons
for adopting the more general setup above is to cover the case of geometric stable (see
examples (5) and (6) below) and iterated geometric stable subordinators.

The following assumption is a necessary and sufficient condition for the transience of X,
cf. [36, (5.46)]. It is always satisfied when d > 3, hence imposes an additional restriction
only in case d < 2.

(A5) We assume that
/\——1

20y

When D is unbounded, we need the following extra condition. Condition (1.4) below
is used to control the large jumps of Y2, The reason that we assume d > 3 in the next
assumption is that sharp two-sided Dirichlet heat kernel estimates for C'! domains with
compact complement, which are used in Theorem 4.4, are only available for d > 3, see [42].

d)\ < 0.



(A6) If D is unbounded, then we assume that d > 3 and that there exist 5,07 > 0 such that

M
M >oit™? forallt>1and A >0. (1.4)

f(A)

In the last section of the paper we will need an additional assumption used in [21]. This
assumption will not be used explicitly in the current paper, but will be used implicitly when
citing results from [21].

(A7) If the constant § in (A3) satisfies 0 < < 1/2, then we assume that there exist oy > 0
and v € [d, 1) such that

$M) > oot forallt>1and A > 1. (1.5)

20y

The following well-known examples of subordinators satisfy (A1)—(A3). Note that in all
of the examples the Bernstein function ¢ is complete, cf. [31], so (A1)-(A2) are satisfied.
The parameter ¢ from (A3) is written for future reference.

(1) Stable subordinator: ¢(A) =\, 0 < a <1, withd =1— a.
(2) Sum of two stable subordinators: ¢(A\) =M\ +X*, 0< B <a <1, withd=1— a.

(3) Stable with logarithmic correction: ¢(\) = X*(log(1+\))?, 0<a<1,0<B<1—q,
with 6 =1 — a — € for every € > 0.

(4) Stable with logarithmic correction: ¢(A\) = A\*(log(1 +A))?, 0 <a <1,0< 3 < a,
with d =1 — a.

(5) Geometric stable subordinator: ¢(A) =log(1l + A%), 0 < a < 1, with § = 1.
(6) Gamma subordinator: ¢(\) =log(1+ A), with 6 = 1.

(7) Relativistic stable subordinator: ¢(\) = (A +m'/*)* —m, 0 < a < 1 and m > 0, with
d=1—o.

It is easy to see that (A4) and (A7) also hold for all examples. Condition (A5) is true
when o < d/2 in examples (1), (2) and (5), a + 8 < d/2 in (3), a — f < d/2 in (4), and
d > 2 in (6) and (7). By using [36, Sections 5.2.2 and 5.2.3] one checks that (1.4) is satisfied
for examples (1)-(5), but not for examples (6) and (7) since the corresponding Lévy density
has exponential decay. Thus for examples (6) and (7) we can only cover the case when D is
bounded.

By using the tables at the end of [31] one can come up with a lot of explicit examples of
complete Bernstein functions such that conditions (A1)—(A7) are true.

Let D C R? be an open set and let Q € 0D. We say that D is C1! near Q if there exist a
localization radius R > 0, a C™!-function ¢ = g : R — R satisfying ¢(0) = 0, Vip(0) =
(0,...,0), Vel <A, |Vo(2) = Ve(w)| £ Alz—w]|, and an orthonormal coordinate system
CSg with its origin at ) such that

B(Q,R)ND ={y = (y,ya) € B0, R) in CSq : ya > ¢(y)},
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where § := (y1,...,ya—1). The pair (R, A) will be called the C™!' characteristics of D at Q.
Recall that an open set D C R? is said to be a (uniform) C™! open set with characteristics
(R, A) if it is C1! with characteristics (R, A) near every boundary point @Q € dD. For future
reference, given A > 0, we define

k=r(A) =1+ (14+AN)>HV2 (1.6)

For any Borel set B C D, let 75 = 735 = inf{t > 0: Y;? ¢ B} be the exit time of Y
from B.

Definition 1.1 A real-valued function f defined on D is said to be harmonic in an open
set V C D with respect to Y'? if for every openset U C U C V,

E. [[f(YD)|]] <oco and f(z) =E, [f(Y2)] for all z € U. (1.7)

A non-negative function f defined on D is said to be reqular harmonic in an open set V' C D
if
flx) =E, [f(YD)] for all z € V.

For any open set U C R? and z € R?, we use dy(z) to denote the distance between x
and the boundary oU.

The main result of this paper is the following scale invariant boundary Harnack inequality:.

Theorem 1.2 Suppose that (A1)—(A6) hold and d > 3 — 20, where 0 is the constant in
(A3). Let D be a bounded C*' domain, or a CY' domain with compact complement or a
domain consisting of all the points above the graph of a bounded globally C'* function. Let
(R, A) be the C*' characteristics of D. There exists a constant C' = C(d, A, R,¢) > 0 such
that for any r € (0, R], @ € 0D, and any non-negative function f in D which is harmonic
in D N B(Q,r) with respect to Y and vanishes continuously on 0D N B(Q,r), we have

f@) W)
5@ = 5oy

In particular, we see from the theorem above that if a non-negative function which is
harmonic with respect to Y” vanishes near the boundary, then its rate of decay is propor-
tional to the distance to the boundary (regardless of the particular subordinator as long as
(A1)-(A6) hold). This shows that near the boundary of D, Y? behaves like the killed
Brownian motion W7P.

We note that the condition d > 3 — 2§ comes from the method of proof (see the proof
of Lemma 6.1), and is always satisfied when d > 3. It implies that d > 2 and imposes an
additional restriction only when d = 2.

We remark that Theorem 1.2 is new even in the case of a stable subordinator. Recently,
a BHP for a general discontinuous Feller process in metric measure space has been proved
in [4, 29] under some comparability assumptions on the jumping kernel (see [4, Assumption
C] and [29, C1(zg,r0)]) and a Urysohn-type property of the domain of the generator of the
process (see [4, Assumption D] and [29, B1(zg,70)]). However, neither [4, Theorem 3.4]
nor [29, Corollary 4.2] can be applied to subordinate killed Brownian motions because [4,
Assumption C] and [29, C1(zg, r9)] do not hold. Moreover, one can observe from (6.33) below

for all z,y € DN B(Q,r/2). (1.8)
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that the approximate factorization of non-negative functions harmonic for the subordinate
killed Brownian motion should be different from those in [4, (3.3)] and [29, Theorem 4.1].

The proof of Theorem 1.2 is probabilistic and is based on the “box method”, which was
originally proposed in [1]. This method has been extended and used for many discontinuous
processes (for example, see [3, 5, 23, 8, 27]). It is not surprising that our method is similar to
that for the censored stable process in [5] — both the censored process and the subordinate
killed Brownian motion are intrinsically defined as processes living in a domain D (hence
no information outside D is available). As a consequence, some of the domain monotonicity
properties are not valid. Despite the fact that the general road map has been traced before,
the proof of Theorem 1.2 is still technically quite challenging. Some of the necessary technical
results such as Green function and jumping kernel estimates for Y were developed in [25].
These estimates are improved and complemented in Section 4. In order to prove Theorem
1.2, we establish a Carleson estimate in Section 5 by following the ideas from [5, 18, 8, 27].
Another key step to prove Theorem 1.2 is obtaining the correct explicit estimate on the exit
distribution (see (6.1) and (6.24)). Unlike previous papers, we do not use testing functions.
Instead of using Dynkin’s formula and applying to testing functions, we utilize relations
among the killed subordinate Brownian motion, the subordinate killed Brownian motion
and its killed processes, and estimates of the Green function and jumping kernels for these
processes.

Theorem 1.2 is a result about the boundary behavior of non-negative functions on D
that are harmonic (with respect to Y'”) near a portion of the boundary of D and vanish
continuously at that part of the boundary. The corresponding decay rate is a reflection of
the fact that, near the boundary, the subordinate killed Brownian motion Y” behaves like
Brownian motion. One can also study the decay rate of non-negative functions in D which
are (regular) harmonic near a portion of the boundary, strictly contained in D, of an open
set £ C D and vanish in an appropriate sense. Intuitively, since the behavior of Y in the
interior of D is similar to that of the killed subordinate Brownian motion X, one would
expect the decay rate to be the same as the decay rate of functions harmonic with respect
to XP. This is confirmed in the second main result of this paper below. Furthermore, since
such a result concerns only the interior of D, the smoothness of the boundary of D is no
longer necessary. Still, some geometric conditions for D are needed. These conditions are
related to the heat kernel p” (¢, z,y) of the killed Brownian motion WP and its tail function
t—= P (t<Th).

We will say that a decreasing function f : (0, 00) — (0, 00) satisfies the doubling property
if, for every T > 0, there exists a constant ¢ > 0 such that f(¢) < c¢f(2t) for all ¢ € (0,T7.

(B1) The function ¢ + P, (¢t < 7)5) satisfies the doubling property (with a doubling constant
independent of z € D).

(B2) There exist constants ¢ > 1 and M > 1 such that for all t <1 and 2,y € D,

]2
Pt < TP, (t < 1) /2=

le—y|?

<pPta,y) < ePu(t < TP, (t < ) )t~ e mi . (1.9)

If D is either a bounded Lipschitz domain or an unbounded domain consisting of all the
points above the graph of a globally Lipschitz function, then (B1) and (B2) are satisfied, cf.
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39, (0.36) and (0.25)]. It is also easy to show that a C'! domain with compact complement
also satisfies (B1) and (B2).

Theorem 1.3 Suppose that (A1)-(A5) and (A7) hold. Let D C R? be a domain satisfying
(B1) and (B2). There ezists a constant b = b(¢,d) > 2 such that, for every open set E C D
and every Q € OE N D such that E is C' near Q with characteristics (6p(Q) A 1,A), the
following holds: There exists a constant C = C(0p(Q) A1, A, ¢,d) > 0 such that for every
r < (0p(Q)A1)/(b+2) and every non-negative function f on D which is reqular harmonic
in EN B(Q,r) with respect to YP and vanishes on E°N B(Q,r), we have

f(x) fy
5(0p(x)-2)-1/2 < C</5(5E(y)_2)_1/2 ;

where K is the constant defined in (1.6).

r,y € ENB(Q,2 %),

Again, Theorem 1.3 is new even in the case of a stable subordinator. The method of proof
of Theorem 1.3 is quite different from that of Theorem 1.2. It relies on a comparison of the
Green functions of subprocesses of Y and X for small interior subsets of D, and on some
already available potential-theoretic results for X obtained in [21]. To be more precise, let
U C D be a C*! set with diameter comparable to its distance to 9D, and let YV and XV
denote processes Y? and X killed upon exiting U respectively. We show that the Dirichlet
form of YU is equal to the Dirichlet form of a non-local Feynman-Kac-type transform
of XY, and that the corresponding conditional gauge is bounded from below, cf. Lemmas
7.4 and 7.8. This immediately implies comparability of the Green functions. The proof of
Theorem 1.3 now mainly uses the corresponding result for the process X and properties of
the jumping kernel of Y?.

Finally, one of the ingredients in the proof of Theorem 1.2 is the scale invariant HI.
We will show in Theorem 3.1 that when (A1)-(A3) and (B1)-(B2) hold, there exists a
constant C' > 0 such that for any r € (0, 1] and B(xg,r) C D and any function f which is
non-negative in D and harmonic in B(zg,r) with respect to Y, we have

fz) < Cf(y) for all z,y € B(xo,7/2).

The proof of the HI is modeled after the powerful method developed in [20].

Organization of the paper: In the next section we collect several results concerning
subordinators satisfying (A1)-(A3), the subordinate killed Brownian motion Y and its
relation with the killed subordinate Brownian motion X”. In Section 3 we prove the scale
invariant HI for YP. As preparation for the subsequent sections, in Section 4 we give sharp
two-sided estimates on the jumping kernel and Green function of Y2. The Carleson estimate,
an important ingredient in proving the BHP, is obtained in Section 5. We continue in Section
6 with the proof of the BHP in C''! domains with explicit decay rate. The proof of Theorem
1.3 is given in Section 7. This last section can be read independently of Sections 4-6 and
uses only Lemmas 3.2, 3.4 and Proposition 3.5.

Notation: We will use the following conventions in this paper. Capital letters C, C;, 1 =
1,2,... will denote the constants in the statements of results and the labeling of these
constants starts anew in each result. Lower case letters ¢, ¢;,i = 1,2,... are used to denote
the constants in the proofs and the labeling of these constants starts anew in each proof.
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¢; = ¢i(a,b,ye,...), i = 0,1,2,... denote constants depending on a,b,c,.... Dependence
of constants on the constants in (A1)—(AT7) and (B1)—(B2) is implicit and will not be
mentioned explicitly. For any two positive functions f and ¢, f < ¢ means that there is
a positive constant ¢ > 1 so that ¢ 1 g < f < c¢g on their common domain of definition.
We will use “:=” to denote a definition, which is read as “is defined to be”. For a,b € R,
a Ab:=min{a,b} and a V b := max{a,b}. For any x € R% r > 0 and 0 < r; < ry, we use
B(z,r) to denote the open ball of radius r centered at x and use A(x,ry,r5) to denote the
annulus {y € R?: 7, < |y — 2| < ry}. For aset V in R |V| denotes the Lebesgue measure
of V in R4

2 Preliminaries

In this section we collect several results concerning subordinators satisfying (A1)—(A3), the
subordinate killed Brownian motion Y? and its relation with killed subordinate Brownian
motion X7

Let ¢ be a Bernstein function and let S be a subordinator with Laplace exponent ¢.
Throughout this section, we always assume that (A1)—-(A3) are in force. The potential
density u(t) of S satisfies the following two estimates:

A

-1
and, for every M > 0 there exists ¢; = ¢1(M) > 0 such that
¢t

For the upper estimate see [20, Lemma A.1], and for the lower one see [20, Proposition 3.4].
The density pu(t) of the Lévy measure of S satisfies the following two estimates:

pt) < (1—2eH 2, t>0, (2.3)
and, for every M > 0 there exists co = co(M) > 0 such that
p(t) > et 2@ (), 0<t< M. (2.4)

For the upper estimate see [20, Lemma A.1], and for the lower one see [20, Proposition 3.3].
From the last two inequalities it follows that u(t) satisfies the doubling property near zero:
For every M > 0 there exists c3 = c3(M) > 0 such that

p(t) < esp(2t), 0<t< M. (2.5)
We will often use the next lemma, cf. [29, Lemma 2.1].

Lemma 2.1 (a) For every Bernstein function ¢,

1/\)\§M§1\//\, forallt >0,A>0. (2.6)

(1)



(b) If ¢ is a special Bernstein function, then for any a € [0,2], A — A2 YN i am increasing

p(A)®
function. Furthermore, for any v > 2, limy_,o )\7% =0.

(c) If ¢ is a special Bernstein function, then for every d > 2, v>2, A >0, b€ (0,1] and
a € [1,00), it holds that
bSO S a0
at T N G(A-2)2 = dtrg(12)2 = pdtrtl Mdtrg(A-2)2

for all t € [bA, a)].
(2.7)

Let W be a Brownian motion in R? with transition density

eyl

t>0 RY .
4t )7 > 7x7y€

p(t,z,y) = (47rt)_g exp (

Let D C R? be a domain and WP? the Brownian motion W killed upon exiting D. We denote
by p”(t,z,y) the transition density of WP and by (PP);>o the corresponding semigroup.
By the strong Markov property, p” (¢, z,y) is given by the formula

pD(t,x,y) =p(t,z,y) — E.[p(t — 70, Wy, y), 70 < t], t>0,z,y€D. (2.8)

Suppose that W is independent of the subordinator S. Recall that X; = W, is the
subordinate Brownian motion and (X[);>o is the subprocess of X killed upon exiting D.
Then X has a transition density given by

qwxww—AWMaawM&ed@.

When X is transient, it admits a Green function G¥(z,y) given by

G¥(x,y) = /OOO q(t, @, y)dt = /Ooop(t, z,y)u(t)dt .

When d > 3, the Green function GX (x,y) enjoys the following estimate, cf. [20, Proposition
4.5] and [29, (2.16)]: For every M > 0 there exists ¢(M) > 1 such that

¢ (lx —y|™?)
|z — y|2p(|x — y|=2)%’

When d = 2, under the extra assumptions (A4)—(Ab5), the Green function estimate above is
also valid, cf. [20, Proposition 4.5] and [29, (2.16)]. The transition semigroup of X will be
denoted by (Qf)i=0. Let V;P = W{ be the subordinate killed Brownian motion in D with
lifetime denoted by ¢. The transition semigroup (RP);>¢ of Y admits a transition density
given by

GX(z,y) < c(M) for all z,y € D, |z —y| < M. (2.9)

rP(t,x,y) = /000 pP(s,z,y)P(S, € ds). (2.10)

The subordinate killed Brownian motion Y” is a transient process, hence admits a Green
function

G (e y) = /OOO PPt 2, y) dt — /OoopD(t,x,y)u(t) dt (2.11)
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and clearly G¥" (x,y) < GX(x,y), z,y € D.
Let JYD(m, y) be the jumping density of Y2 given by

T (2, y) = / Pt yult) de (2.12)

and let JX(xz,y) = j%X(|z — y|) be the Lévy density of X given by
Mz =a) = [ ot dr (213)
0

Clearly JYD(:v,y) < i*(Jx — y|), ¥,y € D. Furthermore, similarly as in (2.9) (cf. [20,
Proposition 4.2]), either when d > 3 or when d = 2 and (A4) holds, there exists ¢(M) > 1
such that

Pl =2 Fle 0] =2
o EE ) < ey <c0n TN oo <r. @y

We recall now some properties of Y” connected to its relationship with X . It is shown
in [35] that YP can be realized as XP? killed at a terminal time, and consequently, cf. [35,
Proposition 3.1], the semigroup (R?”);> is subordinate to the semigroup (QF )¢ in the sense
that RP f(z) < QP f(z) for all Borel f : D — [0,00), all t > 0 and all z € D. Furthermore,
it follows from [38] that if U C D is Lipschitz, then

P, (X2 € dU) = 0. (2.15)

Here 7y denotes the first exit time of the process X from U. For simplicity, we will
sometimes use the same notation for the exit time from U for other processes when it will
be clear from the context which process we have in mind. Since Y” can be realized as XP
killed at a terminal time, it follows immediately from (2.15) that we also have

P,(Y,? € oU) = 0. (2.16)

Again, by using that Y can be realized as X? killed at a terminal time, it follows from [35,
Corollary 4.2(i)] that
P,(Y” eD)=1 forallze D, (2.17)

i.e., the process Y dies inside D almost surely (and not at the boundary 9D).
For any open set U C D, let Y2V be the subprocess of Y'? killed upon exiting U. Define

PVt x,y) = rP(t 2, y) — B [rP(t — TU,}/;g,y) Ty <t] t>0, z,yelU. (2.18)

Then, by the strong Markov property, r?V(¢,z,y) is the transition density of YU, Let
Gy (z,y) = o rPY(t,x,y)dt denote the Green function of Y2V, Since rPV(t z,y) <
rP(t, z,y) for all t > 0, we clearly have that GY;" (z,y) < G (z,y) for all z,y € U.

Let again U C D be an open set, WY the Brownian motion W killed upon exiting U, and
VY := W{ the corresponding subordinate killed Brownian motion with its Green function

denoted by G¥(x,y), z,y € U. Similar to the fact that the semigroup (RP);>¢ of Y7 is
subordinate to the semigroup (QP);>o of X?, we also have that the semigroup of YV is
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subordinate to the semigroup of YU, In fact, this follows directly from [35, Proposition
3.1] by considering Y'? as the underlying process. After integrating over time, it follows that

G (x,y) < GY(x,y) forall z,y € U. (2.19)
Note that

2
pP(t 2, w) < p(t,z/2,y/2) = (47t) "% exp (_‘xmi/‘ ) ’

for all z,w, |z — w| > |z — y|/2. Hence by the continuity of (x,y) + p”(¢,z,y) and the
dominated convergence theorem, we see from (2.10) that (z,y) — r”(¢,z,y) is continuous
on D x D. Consequently, (RP):>¢ satisfies the strong Feller property.

Recall that for an open set D C R? a point € 9D is said to be regular for D¢ with
respect to Brownian motion if P,(7)) = 0) = 1, where 7)) := inf{t > 0 : W; ¢ D} is the
first exit time of D for W. It is well known that, if all points on 9D are regular for D¢ with
respect to Brownian motion, then W is a Feller process on D (see [13, (7) in Theorem 2.4]).
By Phillips’ theorem (see [31, Proposition 13.1]), in this case Y is also a Feller process, i.e.,
(RP)>0 is a strongly continuous contraction semigroup on (Co(D), | - ||s). Thus Y2 enjoys
both the Feller and strong Feller property.

Lemma 2.2 Suppose that D C R? is a domain. Let K be a compact set and G be an open
set with K C G C G C D. Then for any € > 0, there is tg > 0 such that

sup P, (73 < tg) < e. (2.20)
zeK

In particular, Py(18 < t) — 0 uniformly on K ast — 0.

Proof. In the case when all points on 0D are regular for D¢ with respect to Brownian
motion, Y is a Feller process and this lemma follows from [12, Lemma 2]. In the general
case, we can take an open set U C D with all points on OU being regular for U¢ such that
G Cc U. Let Té/U be the first time the process YV exits G. Then TgU < TgD. Combining
this with [12, Lemma 2] we immediately get the conclusion of the lemma. O

Proposition 2.3 Suppose that (A5) holds, D C R? is a domain and that U is an open set
with U C D. Then for each t > 0, (z,y) — rPY(t,z,y) is continuous on U x U, and for
each y € U, x+— Gy (x,y) is continuous on U \ {y}.

Proof. Note that for all g > 0,

sup  rP(tz,y) < sup gt x,y) < sup/ sup p(s,z)P(S; € ds)
(0

lz—y|>B,t>0 lz—y|>8,t>0 t>0 ,00) |z|>8
< sup/ sup p(s,z)P(S; € ds) = sup p(s,z) < oo. (2.21)
t>0 (0,00) >0,|z|=p $>0,|z|=8

Using Lemma 2.2, the strong Feller property of (RP);>o and (2.21), one can follow the
proof of [13, Theorem 2.4] line by line and show that, for each ¢ > 0, (z,y) — E,[rP(t —
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T, Y,2,y) : 7y < t] is continuous on U x U. Thus, by (2.18) and the already proven fact that
(z,y) = rP(t,2,y) is continuous, we see that (¢, z,y) — 7Y (z,y) is continuous on U x U.

Fix y # xo € U and consider « € B(xy,e) C D\ B(y,¢). Then, since |x —y| > |zo—y|/2,
we have r?V(t, z,y) < q(t,z,y) < q(t,20/2,y/2). Moreover, t — q(t,z0/2,y/2) € L*(0,00)
because X is transient. Therefore, by applying the dominated convergence theorem to
GY (z,y) = [ rPU(t, 2, y)dt, we conclude that z — GY" (z,y) is continuous on B(wzy, ) C
D\ B(y,e). O

3 Harnack inequality

The goal of this section is to prove the following scale invariant HI for non-negative functions
harmonic with respect to Y when the domain D satisfies (B1) and (B2).

Theorem 3.1 (Harnack inequality) Assume that (A1)—(A3) hold and that D C R? is
a domain satisfying (B1)—(B2). There exists a constant C > 0 such that for any r € (0, 1]
and B(xo,r) C D and any function f which is non-negative in D and harmonic in B(xg,r)
with respect to Y, we have

flz) < Cfy), for all x,y € B(xg,r/2).

As already mentioned in the introduction, the proof is modeled after the proof of the HI
in [20]. In the remaining part of this section we assume that the assumptions (A1)—(A3)
hold true.

Lemma 3.2 Let D be a domain in R? satisfying (B2) and b > 0 a constant. There exists
C > 0 depending on b such that

pP(tw,y) > C e M e <b(Ep(w) Adp(y)) AL (3.1)

Proof. If v/t < bip(z), then P.(t < 7)) > P,(t < ngx b141/2)

¢ = ¢(b) > 0 independent of z and t. Now the conclusion of this lemma follows immediately
from (B2). O

) > ¢ for some constant

Remark 3.3 By using a simple chaining argument, the conclusion of this lemma is actually
true under the following alternative (and seemingly weaker) assumption: There exist A\; €
[1,00) and A2 € (0, 1] such that for all » < 1 and x,y € D with dp(z) A dp(y) > r there
exists a length parameterized rectifiable curve [ connecting x to y with the length || of [ less
than or equal to Aj|z — y| and dp(I(u)) > Aer for u € [0, |{]]. Since in the proofs of Lemmas
3.4 and 3.6-3.7, and Propositions 3.9-3.10, only (3.1) is used, we can replace (B2) in these
results by the alternative assumption above.

Lemma 3.4 Let D be a domain satisfying (B2) and 9 > 0 a constant. There exists a
constant C' = C(eg) € (0,1) such that for every xy € D and r < 1/2 satisfying B(zo, (1 +
€0)r) C D, we have

CIX(x,y) < T (x,y) < J¥(x,y),  a,y € Blay,r). (3.2)
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Proof. The second inequality in (3.2) is obvious, so we will only prove the first inequality. It
follows from Lemma 3.2 (with b = 2/&y) that there exist ¢y, co > 0 such that for any ¢ < 4r?

PPtz y) > et Y2l

Thus for z,y € B(xg,r),

T (2,y) 2/

0

lz—y/?

lz—y|?
p%uawmwﬁZuwwﬂmy/ PPt 2, y)dt
0

lz—y/? )
> eyp(le —yl?) / - Pem 2l g > eqlw — y| 7 (Jo — y| )
0
Z C4JX(ZL‘,y),

where in the second inequality of the second line we used (2.4), and in the last inequality we
used (2.14).
O

Proposition 3.5 Let D be a domain satisfying (B1)—(B2). For every ¢y € (0,1], there
exists a constant C' > 1 depending on the constants from (B1)—(B2) and ey such that for
all zo € D and all r < 1 satisfying B(xo, (1 + o)) C D, it holds that

TV (z2,21) < CTV(2,35), 1,20 € Blzo,r), z€ D\ Bz, (1+¢e0)r). (3.3)

Proof. Suppose that r,eq < 1, B(zo, (14¢¢)r) C D and z1, x5 € B(xg,r). Then for t < r?,
we have

P,,(t < 7)) >P,,(t < Tgmtw)) >

for some constant ¢; = ¢;(gg) > 0 independent of x5 and ¢. By combining with (B2) we see
that there exists ¢y > 1 such that for z € D and ¢ < e2r?,

2
lz—z1|

pD(t, z,11) < P, (t < T]‘;V)t’dﬂe’ g

[|z—x |2
PP(t,2,22) > ¢ Pt < T )2
Now suppose that z € D\ B(xg, (1 4 €g)r) so that
1 1 .
1+€0|Z—$0|§|Z—$z’|§ 1+m |2 — 2o, i=1,2.
Then
2,.2 2,2

lz—ay?

gqr eqr
/ pP(t, 2, x1)pu(t)dt < 02/ P.(t < 1) )t~ 2™ Tont pu(t)dt
0 0

M|z

2\d/2—1 1oM e t W —d/2 M=zl 2
= co(16 M) PZ(W <TH )t Y%e o u(t/(16M7))dt.
0
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Using the doubling property of ¢ — P,(t < 71/) ((B1)) and the doubling property (2.5) of
1(t) near the origin, we get that there exists ¢3 > 1 such that

2,.2

egr 16M? ]
/ pP(t, z, 21 ) u(t)dt < C3/ pP(t, 2, xo) pu(t)dt. (3.4)
0 0

Using the parabolic Harnack principle (see, for instance, [14, Theorem 5.4]), we get that
there exists ¢4 > 1 such that

00 o (n+1)edr?
/ pD(t,z,xl),u(t)dt = Z/ pD(t7Z,J,‘1)ILL(t>dt

g n—1 Y negr?
(n+1)edr? 5 r2
ce [ e B g
n—1 Jnedr?
(n+3) £2r2
=y Z/ PP (t, 2z, o) u(t — OT)dt.
n—1 (n+ )507"2

If t < 1, then by (2.5) we have u(t — e2r?/2) < u(t/2) < csu(t) with ¢5 > 1. If t > 1, then
p(t —edr?/2) < u(t —1/2). By (1.2), there exists ¢g > 1 such that u(s) < cgu(s + 1/2) for
all s > 1/2. Hence, pu(t —1/2) < cou(t). With ¢; = ¢5V cg, we conclude that u(t —er?/2) <
crp(t) for all £ > 3r?/2. Hence,

607'
/ P(t, 2, o) pu(t)dt < 04072/ P(t, 2, mq)p(t)dt
edr? 80r2
< 08/ pP(t, 2, wo) pu(t)dt . (3.5)
(3e2r?)/2

Combining (3.4) and (3.5), we get that there exists ¢g > 1 such that

/ pP(t, z, 2 )p(t)dt < 09/ pP(t, 2, 2o p(t)dt

0 0

which finishes the proof. O
Lemma 3.6 Suppose d > 2. Let D be a domain in R? satisfying (B2). In the case d = 2,

we also assume that (A4) and (A5) hold. There exist a € (0,1/3) and C > 0 such that for
every xo € D and every r € (0,1) satisfying B(xg,r) C D,

! a2
G hnry (@) 2 Cla - y\‘d”%f_—;fz))z, z,y € B(wg,ar). (3.6)

Proof. It follows from Lemma 3.2 that there exist ¢, co > 0 such that

PPtz y) > et~ Y2l s () Ap(y) AL > VI
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Note that for a € (0,1), (1 —a)/2a > 1 if and only if a < 1/3. Choose a € (0,1/3) and let
x,y € B(zo,ar) with r € (0,1) satisfying B(zo,7) C D. Then ép(x),0p(y) > (1 — a)r and
|z —y| < 2ar. Thus ép(x) Adp(y) > ((1 —a)/2a)|x — y|. Therefore, by (2.2),

5 |z —y|?
GY (z,y) 2/ pP(t,x, y)u(t)dt
0

|lz—y|?
> cru(lr — y| )/ 2 emezle—yl/t gy

&l =y
e 2 (3.7)

For simplicity, let B = B(z,r). For y € B(xg,ar), we have

> csle —

1—a
Yoo =l = Vo) —wol = ly —wol 2 r —ar = ——e—y| = |z —y|.

By the above inequalities, [20, Proposition 4.5] and Lemma 2.1(b), we have

D l—a 1-—a
G (Y,y) < G (Yy) <G ( 5T o y>

—a 21 _a "(2)z —y])2
< a(fGtol) At S

2 2 A((2lr —g))2)?
T Y ()
S 4( 2& | y|) | | (|£B y|—2)2
O S (e )
- 4(1—a) = e e (39)

When d > 3, choose a € (0,1/3) small enough so that c; — ¢4 (127—‘La)d_2 > 5e-. Then, by
(3.9), for z,y € B(xg,ar) we have

Chrom (:9) =G (2, y) - EG’”(TB,)
B
When d = 2, by (3.8), for x,y € B(xg,ar), we have
GYe o (29) > s T (ORI i = S CR)

cs Yl —yl™?) O(|lz —yl72)*

where

W(N) = v;fggg, 2> 0.

15



Since the ¢’ in (A4) is in (0,26), we can choose € > 0 small enough so that 2§ — ¢’ — 2 > 0.
By [20, Lemma 3.2(ii)], there exists ¢. > 0 such that

$(As)
¢(A)

Choose a < % small enough so that

26-6'—2
ala( 2\ 1
cso’ \1—a 2
where ¢’ is the constant in (A4). Then, by (A4) and (3.11), we have

( V()=o) 2yt? ((22)" e = l™) 6l — yI 2

<5 forall A>1 and s>1. (3.11)

o Wl o=y ()7 ke - 2)

26—06"—2¢
cal 5 f 2a 1
<—— < -. 3.12
_030’0E (1—@) — 2 (3:12)
The lemma for d = 2 now follows from (3.10) and (3.12). O

Lemma 3.7 Suppose d > 2. Let D be a domain in R? satisfying (B2). When d = 2, we
also assume that (A4) and (A5) hold. There exists C > 0 such that for every xo € D and
every r € (0,1) with B(xo,r) C D,

D

EZT};( ) > Co(r2)', x & B(xg,ar/2),

zo,r

where a € (0,1/3) is the constant from Lemma 3.6.

Proof. Using Lemmas 2.1 and 3.6, this is proved exactly in the same way as [20, Proposition
5.2]. O

For all z € D and r > 0 with B(z,r) C D, and all non-negative functions f, we define

Eo[f (VP ()] = f(2)

YD
ExTB(x,r)

(U f) () =

Then Example 5.4, Remark 5.5 and Proposition 5.6 from [20] are valid for Y. Thus, with
YD
n(z) =E:Tp,

Usn(y) =—1 forany y € B(z,r) and s <71 — |y — x|, (3.13)
and, for any function h: D — [0, 00) which is harmonic in a bounded open set U C D,
(Ush)(z) =0 for all = € U. (3.14)

If f(xg) < f(z) for all z € R? then (U,.f)(xo) > 0. Thus we have the following type of
maximum principle.
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Proposition 3.8 (Maximum principle) Assume that there exist xo € D and r > 0 such
that (U f)(xo) < 0. Then

f(wo) > inf f(z). (3.15)

zeD

The next three results are also valid when d = 2 if we further assume that (A4) and
(A5) hold. Since we will only need these results for d > 3, we state them for d > 3 without
the extra assumptions. From now until the proof of Theorem 3.1, we will assume that d > 3.

By using GY" (z,y) < G¥(z,y) and the estimate (2.9) (with M = 2) one gets that there
exists ¢; > 0 such that for every xy € D and every r € (0, 1) with B(xg,r) C D, we have

Eﬂg(io,ﬂ < C1¢(7“_2)_1 , x € B(xg,1). (3.16)
Let -
g(r) == CQTdQ—:z(Y_Q))Q o g(r) = a2 (7)), r>0, (3.17)

where ¢ is the constant ¢(2) from (2.9) and c3 is the constant ¢(2) from (2.14). Then for all
x,y € D with |z —y| < 2,

G () <GX(ay) <gllz—y), T (zy) <5z —yl) < iz —yl).

In particular, for any domain D, any zq € R?, any s € (0, 1) with B(zo,s) C D,

G () <g(lz—y)) <y (g) , r€B <x0,§> , yEB (:L‘, %)c (3.18)

Proposition 3.9 Suppose d > 3. Let D be a domain in R? satisfying (B2). There ezists a
constant C' > 0 such that for all r € (0,1) and all xy € D satisfying B(xo,r) C D,

g (r? _
Ggao,r) (z,y) < Cr 22((70_2))1@,1,75@0” , 1 € B(wg,ar/4),y € A(zo,2 'ar,r), (3.19)

where a € (0,1/3) is the constant from Lemma 3.6 and b = a/2.

Proof. We follow the proof of [20, Proposition 5.7]. Let z € B(zo,2 %ar) and y €
A(zg, 27 ar,r) and define functions

n( ) =E 7—B(xg r) and h( ) GY B(zo,r) (ZE,Z)
It follows from (3.18) that h(z) < g(27*ar) for z € B(x,27%ar)¢. Note that h is harmonic
with respect to Y2 in B(zg,7) \ {z} .
Choose s < (r — |y — xo|) A (273ar). Then for y € A(xg, 27 ar,r) C B(x,27%ar)¢, we can
use the Lévy system formula, (2.16) and (3.14) to get

L{(h/\g(2 ar) h/\g(2 Yar) — h)(y)
/B . / L o) (5 0)(h(=) A (2 ar)) — h(z)) dv dz

S - / / GE o (.0) 7" (2, 0)(h(2) A g(2ar)) — h(2)) dv d
EyTB(,¢) / B@2-1ar) JB(y,s)
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]E TYD / B(z,2— 4a7")/ (y,9) ys) y7 >J <Z,v)h(2) dvdz.

Y B(ys)
Note that |z —v| > |z —y| — |z —z| — |y —v| > 27%ar for z € B(x,27%ar) and v € B(y, s).
Thus —JY " (z,0) > —j(]z —v|) > —j(2*4ar). Hence

U (h A g(27%ar) — h)(

j(2- D D
ar) (/ GY B(zo,r) (l’, Z) dZ) ’ (/ G}B?(y,s) (y> U) d?])
yTB (y,5) B(z,2=%ar) B(y,s)

2 ar)
/ B(zor)(x Z>d ) E T (ys)
B(zo,r)

- IE T}S/D
(y,s)
—d—2 T7d72¢/(r72>
o2

where in the last inequality we have used (3.16) and the fact that ¢’ is decreasing.
Similarly, by Lemma 3.7, we see that there is a constant ¢, > 0 such that

—d—2 T_d_2¢/(7’_2)

— —j(2 7 ar)n(z) > —¢; (27 4ar) (3.20)

g(27%ar) < ¢y (27%ar) n(z), forall z€ B(x,2 tar).

o(r=2)
Setting ¢ := (1 V ¢2) (27%ar)"*"> + 1, we obtain that
) = (e gtz tar) 2 e ) — gty 2 0
for all z € B(xg,2 tar). Therefore, the function
—d—2 4/ ().—2
w() = e 00— () A g2 tar)

¢(r=?)
is non-negative in B(zg, 2 ar), vanishes on B(xq,7)¢ and, by (3.13) and (3.20),

—d Q(b/( —2) d-9 T_d_ng'(T_Q)

¢(r=2) ¢(r=?)

In Proposition 2.3, we have shown that the function x — Gg?xoyr)(a:,y) is continuous

Usw(y) < —03 + ¢ (27%ar) <0 for y€ A(xg,2 ar,r).

on B(zg,7) \ {y}. Since all excessive functions are lower semi-continuous in our setting,
n is lower semi-continuous, while h(:) A g(27%ar) is continuous, implying that w is lower
semi-continuous.

If it would hold that inf,cpw(y) < 0, then by lower semi-continuity of w on B(z, )
there would exist yo € A(zg,2 ar,r) such that w(yy) = inf,cp u(y). But then Usw(yy) > 0,
by Proposition 3.8, which is not true. Therefore inf,cp w(y) > 0.

Finally, since h < g(27%ar) on A(xg,2 ar,r), it follows that

VD T’_d_2¢,(7“_2) .
G Bzo,r) (x,y) < C4W77(y) for all y € A(xg,2 ar,r).
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Proposition 3.10 Suppose d > 3. Let D be a domain in R satisfying (B2). Then for
every gg € (0,1], there exist constants C > 0 and b € (0,1) such that for any r € (0,1) and
any xg € D satisfying B(xo, (1 +€o)r) C D,

(x,y) > Cr—%- QZI((T?E?J }3/10 ns TE B(xo,br),y € B(xo,7), (3.21)

where a € (0,1/3) is the constant from Lemma 3.6.

GY.

Zo,r)

Proof. We follow the proof of [20, Proposition 5.8]. It follows from Lemma 3.6 that

|z — o] "2/ (|Jz — v|?)

YD
G B (@, v) > a1 o7 = o[22 for x,v € B(xg,ar). (3.22)
By Proposition 3.9 we know that there exists a constant ¢, > 0 such that
—d—2¢/(,’=—2) YD ar ar
GB(aco r) (l’ ’U) < CQWEUTB(xQ,T) for z € B(l’o, I), (NS A(l‘o, 7,7’) . (323)

We have seen in (3.16) that there is a constant ¢z > 0 such that

for v e B(w,r). (3.24)

E TB(:UO r) S

¢(r=?)

1/(d—2)
b < min {i (—2;2163) ,%, 60}

and fix it. Then cyc; < 4 (4b)~%*? and so by Lemma 2.1(ii) we have

T gyt O i) ) )
o 2 G S 2 sy

Now, by (3.22) and (3.24), for all x € B(x¢,br) and v € B(x,br) we get

Take

IN

CoC3

r—d z(b/(r—z) o
CQWEUT§($O7T) < %G B(zo,r) (IE, 'U) . (325)

For the rest of the proof, we fix x € B(zy, br) and define a function

h(v) = GY (z,v) A (CQMEU 5" > :
(@o.r) (& o) (w0,

Let y € A(zo, %, r) and take s < (r — |y — zo|) A % . Note that, by (3.25),
h(v) < 1GB(xO »(z,v) for ve B(z,br).
Therefore, the Lévy system formula, (2.16) and (3.14) yield
U y) =Us (h = Gy (2.2)) )
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1 N ) )
Eyg. // Gt (4:0)9" (2,0) (R(=) = Gy (. 2)) dvd
E TB B(y,s)" J B(y.s)
G (05 0) Y (2,0) Gl oy (0, 2) dv 3.26
2 TB /xbr /B(ys Blys) y v) (Z v) B(xo,r)(ﬂﬁ z)dvdz ( )

Note that in the second equality we have used that h(y) = Géfxo’r)(:ﬁ, y), which follows from
(3.23).

It follows from Lemma 3.4 and (2.14) that there exist positive constants ¢y, ¢5 such that
for z € B(x,br) C B(zo,r) and v € B(y, s) C B(xo,7),

T (z,0) > e d ¥ (2,0) > es(2r) 2 ((2r) 7). (3.27)
Now it follows from (3.26) and (3.27) that

cs(2r) "2/ ((2r)72) Y yD
Ush < — Gp B(ao) (T 2 dz | E,7p s
) ([, Ghtunte22dz) B

D
2 Tg(y 9
D

< a2 @) ) [ Gl ds

B(x,br)
—d— _ D
= —o5(2r) T (2r) ) BT )

By Lemma 3.7 and the facts that A —

¢(A) is increasing and ¢’ is decreasing we arrive at

T—d—2¢/<r—2> - _C7r—d—2¢/(r—2) .
o ((br)?) ~ o(r=2)

Define w(v) = h(v) — GJEng(zO’T) and
g =

(Ush)(y) < —ce

27 2c37 2 o(r=2)
For y € A(xo, %, ) we have by (3.13) and the inequality above,
fd72¢/<7072> rfdegb/(TfQ)
—g——————> < - :
(Usw)(y) < —cr sy TS Sy <0
On the other hand, by (3.22) and (3.24), for all v € B(wo, %),
c () D
’UJ(’U) Z (é VAN CQ) WE T (z0 7’) OE Tlg (zo,r)

P LA G
= (263 A 2) WI&, Baor) 2 0.

Similarly as in Proposition 3.9, by using Proposition 3.8 we finally obtain

w(y) >0 for all y € B(zo,7).
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Corollary 3.11 Suppose d > 3. Let D be a domain in R? satisfying (B2). For every
g0 € (0,1], there exist constants C' > 1 and by, by € (0,1/3) satisfying 2by < by such that for
all r € (0,1) and all zy satisfying that B(xq, (1 4 e¢)r) C D,

e 2Z((r ))Ey Thanr) < Chann () < C170 22((: Q;Ey Thes)

for all x € B(xo,byr) and all y € A(xg, bar, 7).

For any open set U C D, let
KPY(z,2) = / G (@) (y,2)dy, zeUzeUND
U

be the Poisson kernel of Y2 on U.

Proof of Theorem 3.1: We will first assume that d > 3. Without loss of generality (by
considering (1 —¢gg)r instead of r if necessary), we may assume that B(xg, (1+¢o)r) C D for
some small g9 € (0,1). Let by,by € (0,1/3) be as in Corollary 3.11. We will first show that
there exists a constant ¢ > 0, independent of zy and r, such that for all x1, 2o € B(xo,bi7)

and z € B(xo,r)c ND,
KD,B(Q?O,T) (:Uly Z) S CKDrB(x07T) (',E27 Z) . (328)

Note that
KD,B(wo,T‘) (xb Z)
D D D D
= / G}B?(zo,r) (1'1, y)JY (yv Z) dy + / G}B?(:L‘o,r) (1'1, y)JY (yv Z) dy
B(zo,b2r) A(zo,bor,r)
=L+1.

In order to estimate I we use Corollary 3.11 to get

T,fd72¢/(7ﬂ72)
¢(r=?)

D D xo,r
< C% /A( )G}B/(xo,r)(x%y)‘]y (ya Z) dy < CIKD Beo, )(.CL' Z)
x0,bar,T

IQ S C1 / E TB(JJO r) JYD (y7 )dy
A(zo,bar,r)

To estimate I; we argue as follows: First, since z € B(xo,7)¢ C B(xg, 2bo1)¢, it follows from
Proposition 3.5 (with g, = 1) that for y € B(zo, byr), J¥ (w0, 2) < JY (y,z). Hence, by
(3.16), Lemma 2.1(a) and Lemma 3.7,

L < e (@, 2) / ( b)Géémm,y)dyScQJYD<xo,z>Em§<Zo,r>
x0,02T

es Y (0, 2)d(r2) 71 < et ¥ (@, 2)((bar) ~2)
5T 0, By = 67 (002) [ G
B(zo,bar)

c5JYD(x0,z)/ Gg
B(zo,bar)

IN

D

(z0,b2r) (xza y) dy

IA

D

(xov'r) (‘1.27 y) dy

IN
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< 06/ Gg(ico,r)(ﬂ?my)JYD(yvz) dy < cgKP PN (1, 2) .
B(J;o,bgr)

Together with the previous display, this proves (3.28). Now, let f be a non-negative function
in D which is harmonic with respect to Y in B(zg,r). Then, by the Lévy system formula
and (2.16)

f(a:):/B( )CKD’B(xU’T)(x,z)f(z)dz, x € B(xg,T).

Hence for x1, 29 € B(xg,bi7) we have

flar) = /B( . KPP0 (g4, 2) f(2) dz < 06/ CKPPED (39, 2) f(2) dz = cof (w2)

B(zo,r)

For x1,xs € B(xg,7/2), the inequality follows by a standard chain argument.
Now we assume that d < 2. We will prove this case by reducing it to the high dimensional

case. Let D = D x R? and let Y? be the subordinate killed Brownian motion in D C R4+2.
For any function h defined in D, we define a function

R(e.y) = h(x), weD.yeR:

One can easily check by using the definitions that if £ is harmonic in U C D with respect to
YD, then h is harmonic in U x R? with respect to Y2. Now the theorem for d < 2 follows
from the case for d > 3. O

4 Jumping kernel and Green function estimates

In this section we will always assume that (A1)—(A6) hold. We further assume that d >

2 and that D C R? is either a bounded C'! domain, or a C'' domain with compact

complement or a domain consisting of all the points above the graph of a bounded globally

CY! function. We will use (R, A) to denote the C'1! characteristics of D in all three cases.
We first recall the following result from [29].

Proposition 4.1 ([29, Theorem 3.1]) Suppose that d > 2. For every M > 0, there exists
a constant C' = C(M) > 1 such that for all x,y € D with |x — y| < M,

o () (25 0) vty
<G (e.y) < O < on(z) 1) ( only) . 1) )

|z -y |z =y |z — yl* ol —y|72)*

We choose a C'l-function ¢ : R — R satisfying ¢(0) = 0, Vp(0) = (0,...,0),
IVello <A, [Ve(y) —Ve(w)| < Aly—w|, and an orthonormal coordlnate system C'S, with
its origin at z € D such that

B(z,R)ND ={y = (¥,yq) € B(0O,R) in CS, : yq > ¢(v)}.

22



Define p,(z) := x4 — ¢(T), where (Z,x4) are the coordinates of x in C'S,. Note that for
every z € 0D and z € B(z, R) N D, we have

(148272 p.(x) < 6p(x) < pule). (4.1)
We define for r1, 75 > 0,
D.(ri,re) ={ye D :r >p.(y) >0, |yl <r}.

Recall that x = (1+(1+A)2?)~Y2. Tt is well known (see, for instance [32, Lemma 2.2]) that
there exists L = L(R, A, d) > 0 such that for every z € D and r < kR, one can find a C1:!
domain V. (r) with characteristics (rR/L,AL/r) such that D,(r/2,r/2) C V,(r) C D,(r,7).
In this and the following two sections, given a C*! domain D, V. (r) always refers to the C1!
domain above.

It is easy to see that for every z € 9D and r < kR,

V.(r) C D,(r,r) C DN B(z,1/K). (4.2)
In fact, for all y € D,(r,r),
yl* = 191 + [yal* < r* + (lya — @] + [e@)? < (1 + (1 +A)*)r. (4.3)

By the fact that r='V,(r) is a C"! domain with characteristics (R/L, AL), we have the
following short-time estimates (cf. [41]): There exist positive constants ¢y, ca such that for
any t € (0,4x7%] and any z,y € r 1V, (r),

- 57'7 T 5"'7 ' - 2
p" 1Vz<r)(t,x,y) > (—1%/(%)@) A 1) <—1‘f/(¥)(y) A 1) t%% exp (_—02|xt yl ) )

Thus by the scaling property p¥=()(t,z,y) = r=%p" V=) (r=2¢ =12+~ 1y), we have for any
€ (0,4x7%r?] and any z,y € V.(r),

Sy () Sv. () . colz — yl?
V.(r) > DVeR2) nq ) [ 2200T) ) pd/2 ] A 4.4
p Ntz y) > o ( NG A Vi A exp ; (4.4)

We will use the following bound below: By the change of variables s = c|z — y|?/t, for
every ¢ > 0 and a € R, and any open set U, we have

(i () s
c r—=y Tr—Y S S
= (!iUE;! 5 1) (|iU—(;| " 1) oyl [ e s (45)

Proposition 4.2 There exists a constant C = C(R,A) > 1 such that for all z € 0D,
r< k'R and x,y € V,(r),

G () > O (5vz<r)(1’) N 1) <5Vz(r)(y) N 1) He—yl™) (4.6)

lz — | |z — 9 |z — Y| 2¢(|x — y|72)?

23



Proof. Note that, by (4.2), we see that for z,y € V,(r), |t — y| < 2k~'r. Thus, by (4.4),

) S v —y/?
GV () > 01/0 ( vzi/)%(x) N 1> ( vz(\/)g(y) A 1) +4/2 oxpy (_M) u(t) dt.

Using the fact that u is decreasing and (2.2), we now have

Vz(r)
G (2,y)

I (@) ) () ol — y?
S R Ov.(n)(¥) M) (L M) (-2 Ci) o
> enullo =) [ (2 o exp (A

¢ (Jz—y|™?) o=y’ <5vz(r)(90) )
Zcﬂx—mwx—y\—z)?/o vi M

Sy (r -yl
><( w(ﬂy)A1>tdmem)(_ﬁii_ﬂL)(ﬁ_ (4.7)
NG t

By combining this with (4.5) we arrive at

G ) > <5vz(r)($) A 1) (5\/2(7«)(9) A 1) ¢ (lx —y|™?)

|z —y |z — y| |z — y| 2o (|l — y[~2)?

We now consider estimates for J¥". We first recall

Proposition 4.3 ([29, Proposition 3.5]) For every M > 0, there exists a constant C' =
C(M,R,A\) > 1 such that such that for all x,y € D with |v —y| < M,

oot () ) () 1) ¥l — y)

|z —y [z -yl |z — y|**?

D dp() dp(y) ¢'(lz —yl™)
< JY < — A1 1 .
_J (f,y)_C(’$_y’A )(\x—y\/\ ’x_y’d+2

Propositions 4.1 and 4.3 imply global two-sided estimates on G¥” and J¥" for bounded
D, but only give “local” two-sided estimates for unbounded D. Now we assume d > 3 and
give global two-sided estimates for J¥" for our two types of unbounded C'*! domains. The
proof of the next theorem is very similar to that of [29, Theorem 3.2], where two-sided global
estimates were proved for Gy,

Theorem 4.4 Suppose that d > 3 and that (A1)—(A3) and (A6) hold true.
(1) Let D C R® be a domain consisting of all the points above the graph of a bounded globally
CYY function. There exists a constant Cy = Cy(R,A) > 1 such that for all x,y € D,

(X4(5D@>A1)(5D@)Al)“ﬂx_yP)<JW7%y)

|z —y| |z —yl |z —y|i=2 —
2
g(h(éD@)Al)(aD@)Al)qu ?2_
|z —y| lz —yl |z —y|¢-
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(2) Let D C R be a C' domain with compact complement. There exists a constant Cy =
Co(R,\) > 1 such that for all z,y € D,

it (2 ) (22 ) M=) ¢ e

ERIY! [z —y| Al [z —y

Op() Op(y) pllz —yl?)
< —— A1 — ANl ——.
<o () (i) e
Proof. Using [29, (3.4)] and [29, (3.10)—(3.13)] instead of [29, (3.14)—(3.19)] the proof of (1)

is similar to (2). Thus, we give the proof of (2) only.
Upper bound: Using (1.4) and the fact p is decreasing, we have from [29, (3.14)] that

T (2,y) = /OOOPD(t,fL',y)u(t) dt

< e /OOO (\(Z_’(ﬁ A 1) (\5/1;(/\1:)1 A 1> t 42 exp (—M) (t) dt
< e~ ulle— o) | o (S22 ) (S22 ) iy (—cg'x;y'Q) it

+01u(|x—y|2)/:y2(f/€(;\g)l 1) (\/¥< >1/\1) =42t

Together with [29, (3.16)-(3.17)] we obtain the upper bound.
Lower bound: Since p is decreasing, by [29, (3.15)],

otz [ (B 1) (320 ) gy ()
s cate o) [ (226D ) (520 1) gy (Y

Combining this and [29, (3.18)] we arrive at

o> o (22 ) (22 ) =),

|z —y| A1 |z —y| A1 |z — y|d-2

5 Carleson estimate in C''! domain

In this section we will always assume that d > 2 and that (A1)-(A6) hold true. Before
we discuss the Carleson estimate in C*! domains, we first present two preliminary results.
Recall that ( is the life time of Y7,

Lemma 5.1 Suppose that D is an open set in R?. Let xo € R?, and r < r4 be two positive
numbers such that D N B(xg,7m1) # 0. Suppose f is a non-negative function in D that is
harmonic in D N B(xg, o) with respect to Y2 and vanishes continuously on 0D N B(xg,12).
Then f is reqular harmonic in D N B(xg,r1) with respect to Y, i.e.,

f(z) =E, [f(YD )] for all x € DN B(xg,71) . (5.1)

TDNB(zq,r1)
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Proof. Forn > 1, let B, = {y € DN B(xo,r1) : dp(y) > 1/n}. Then for large n, B, is a
non-empty open subset of DN B(xg,r;) whose closure is contained in D N B(xg,r2). Since f
is harmonic in D N B(zg,72) with respect to Y?, for € D N B(zg, 1) and n large enough
so that z € B,,, we have

f@) =E. [£(v5)]
=E, [f(YTgn); 7B, < TDQB(QCOM)} +E, [f(Yf;n), B, = TDOB(zg,rl)] .

Hence

@) -E 2, ]|
<E, [f(Yf;n); TB, < TDﬂB(xo,m)] +E, [f(YD >); TB, < TDOB(zo,rl)} . (5.2)

TDNB(xq,r1

It follows from (2.17) that NS>, {78, < TpAB(,r)} = ¥ almost surely under each P,. If
7B, < Tpayv for all n > 1, then Yclz € 0D, which is impossible. Thus,

nh_>no10 E, [f(YD ); TR, < TDmB(xo,m)] =0.

TDNB(z(,r1)

For the first term in (5.2), note that 5D(Yf;n) < 1/non {7, < TpAB(zo,m)}- Since f vanishes

continuously on (0D) N B(xg, ), an easy compactness argument yields that there is ng > 1
so that f is bounded in (D N B(xzg,71)) \ By,- Hence by the bounded convergence theorem
we have

lim E, [f(YTgn), TB, < TDmB(xwl)] =0.

n—oo

This proves the lemma. U

Lemma 5.2 For any z,y € R? and any open set V, we have

oy (y) ( viz) 1) < 26y (x).

|z — y|

Proof. If |z — y| < dy(x),

50 (v) ( oy (z) A 1) — bu(a) v (y) < 5V(x)5v($|l"'_|§|_y| < 2%y ().
O

For the remainder of this section we will assume that D C R? is either a bounded C*!
domain, or a C*! domain with compact complement or a domain consisting of all the points
above the graph of a bounded globally C*! function. Let (R, A) be the C™! characteristics
of D. Without loss of generality we assume that R < 1. Recall x = (1 + (1 + A)?)~1/2
p-(z) = x4 — ¢.(T) and V,(r) is a CY' domain with characteristic (rR/L, AL/r) such that
D.(r/2,r/2) C V,(r) C D,(r,r) where L = L(R,A,d) > 0.
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Lemma 5.3 There exists a constant 6, = 6,(R, ) > 0 such that for all Q € 0D and x € D
with pg(x) < R/2,
P, (r(z) = () > 0.,
D

where T(2) 1= Thop(apo () = it > 01 Y;” € DN B(z,2pq(x))}-

Proof. By [15, Theorem 4.5.4(1)],

P, (r(x) = ¢) = B,(Y" € D B(x, 2po(x)) = / &Y (. y)e"” (y)dy,

DAB(x,2p0 («))

where £¥" is the density of the killing measure of Y2 given by

£ (2) :/ (1— PP1(2)) p(t)dt, ze€D.
0
Since D is a C1! domain, we have (see the proof of [29, Lemma 5.7])

K (y) > ao@p(y)™),  y e DN B(x,2p0(x)). (5.3)

Thus, using (5.3) and Proposition 4.1,

P, (r(x) = ) = / G ()R (y)dy
DnB(z,2pq(x))

op(x) ) (5D(y) ) ¢ (lz —yl7*)o(0p(y)?)
IO A1) (222 A4 d
= /DQB@,Q,,QW (\x ") =) o= a2 — g 22
¢ (lz —yl7*)o(0p(y)?)
d
=0 /B(z,pQ(x)/2) [z =y 2o(|lz — y|2)?

o ¢ |z —y|™?)
2 es0(po(@) )/B(z,pQ(x)/z) |z — y|*2o(|z — y|_2)2dy

pq(x)/2
> ab(po() ) / (1/6(t2)Ydt > o5

O
For a > 0, let
a if D is either a bounded C'!' domain, or a domain consisting
a; = of all the points above the graph of a bounded globally C'! function,
aAl if Dis a CY' domain with compact complement.
(5.4)

Note that for every a € (0,1] and b > 0, we have

a a 1
<

< .
(ab) A1 = (ab) Aa — bAL
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Thus for every a € (0,1] and b, ¢ > 0,

1 c c c
<a'= and AN<a'=Al<a Y (=A1). 5.5
(Cbb)l - bl ((lb)l - b1 - (bl ) ( )

Note that, if D is unbounded, by using (A6), we have
p((r+ 1% > p(dr® +4) > u(8r?) > 08 Pu(r?), r>1. (5.6)

Theorem 5.4 (Carleson estimate) There exists a constant C = C(R,A) > 0 such that
for every @ € 0D, 0 < r < R/2, and every non-negative function f in D that is harmonic
in D N B(Q,r) with respect to Y and vanishes continuously on 0D N B(Q,r), we have

f(x) <Cf(xo)  forxze DN BQr/2), (5.7)
where xo € D N B(Q,r) with pg(zo) =1/2.

Proof. In this proof, the constants d,,v,v, 51,n and ¢;’s are always independent of 7.
Without loss of the generality, we assume that diam(D) < 1 if D is bounded. Using the
assumption that D is CY! and r < R/2, by Theorem 3.1 and a standard chain argument, it
suffices to prove (5.7) for z € D N B(Q, kr/(24)) and T, = 0 in C'S,,.

Let
k(r) = 100,

Then k£ is decreasing and there exists ¢ > 1 such that

k(r) < ck(2r), ¥re(0,3)if D is bounded, (5.8)
k(r) < ck(2r), Vr e (0,00)if D is unbounded.

In fact, by (2.3) and (2.4), we have

k(2r) = 2_d+2,u(4r2)r_d+2 > 002_d¢’(4_1r_2)r_d_2
> o2 % (rHr 2 > o271 — 2 k().

If D is unbounded, then (5.9) follows from (A6).
Note that, as a consequence of (5.8), there is a v > 2 such that

k(ar) < cpa " 2k(r), Vr € (0,3) and a€(0,1). (5.10)
Choose 0 < v < v~ !, For any x € DN B(Q, kr/(12)), define
Do(x) = D B(r,2pg(x),  Bix) = Bla, ' pg(a)?)

and
By = B(wo, kpo(x0)/3),  Bs = B(xo,26pq(x0)/3)-

Since x € B(Q, kr/(12)), we have pg(z) < r/(12). By the choice of v < 1/2, we have that
Dy(xz) C By(x). By Lemma 5.3, there exists d, = 0,(R, A) > 0 such that

P (Thyw =€) = 0., € DNB(Q.kr/(12)). (5.11)
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By Theorem 3.1 and a chain argument, there exists ; > 0 such that

f(a) < (po(x)/r)™" f(zo), =€ DNBQ kr/(12))). (5.12)

Since f is regular harmonic in Dy(x) with respect to Y2, by Lemma 5.1, for every = €
DN B(Q, kr/(12))),

f(@) =B [f(YP(TDo@)); Y (Do) € Bu(w)]

+ E, [f (YD(TDO(I))) ) YD(TDO(HC)) ¢ By (513)] . (5'13)
We first show that there exists 7 > 0 such that for all z € DNB(Q, kr/(12)) with pg(x) < nr,
Eo [f (Y (Tpo(@)); Y " (Tpo() & Bi(x)] < f(x0). (5.14)

Let 79 := 272, then, since y < 1 — v~ (so v > (1 —~)71), we have 1y < 4~ Thus for
pQ(.T) < 7o', .
2pq(x) <177 po(x)" = 2po().
Thus if x € DN B(Q, kr/(12)) with pg(z) < nor, then |z —y| < 2|z — y| for z € Dy(x),
y ¢ Bi(x). Moreover, by the triangle inequality, |z —y| < |z — z| + |z —y| < 1+ |z — y|.
Thus by (2.3), (2.4), (5 6), Proposition 4.3 and Theorem 4.4, we have that for z € Dy(z),
D
F) T (z.y)dy
D\Bl(af)

A/D\Bl()ﬂy)(%m)( b 01) k(- i

<D\Bl< ))mB(N)f (y)<|z-(y)| 1>(|fl’_(y)| ) (1= — vl)dy

DmBHy <|§D )(%M) k(lz = yl)dy

= (D\Bl( ))mmf (y)( |x—;|;z “) (Gf_D;&m 1) K(le = yl/2)dy
o 0 () (g 1) ke =yl = 1y
SCQ/D\BMf(y)(!w—yll )Emyl )<|¢”—y|>

< 025D(Z')/ £l ~ o) ) Y. (5.15)
D\Bl(x |»’U—y|1 [z =yl

By Proposition 4.1,

G (2,2) < e ( op(2) 1) < on(2) 1) ¢'(Jz — 2 7) .,z € Dy(x).

|z — 2| |z — 2| "2¢(|lr — 2[72)?

S—

(

+

Thus, using Lemma 5.2, we get
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< G (x,2)0p(2)dz

Do()
Op() ¢ (Jo — 2|2
<cs /Do (|$ | A 1> |z — z|d+2¢(|z — Z|_2)25D<2)d2
¢'(Jz — 27?) pale)
< 2c3pq(x) /B(x 2oy 1T — 2726 ([x — Z|_2>2dz < C4¢(pQ(ac)—2)' (5.16)

Therefore, by (5.15), (5.16) and the fact that Dg(x) C By (z),
Eo [f (VP (TDo@)); Y (7o) ¢ Ba(x)]
"D (x) D
/ / TUYP ) fy) dydt
D\31

<em [ 5D<YD>dt] R e (e ) LR

D\Bi (z) lz =yl \|z -yl

o Pal®) fly) ([ dpy) o
= @)D </(D\Bl<x>m§ S (2 ) ke = b

fy) <6D(y) >k B d>
+/<D\Bl<x>>m33 Tyl \m—ygp M) Flle—yhdy

_ . Pelz)
— 6—¢(pQ(x)—2)([1+[2)' (5.17)

On the other hand, for z € By and y ¢ Bs, we have |z —y| < |z — 20| + |20 — y| <
rpq(0)/3 + |zo =yl < 2fzo —yl| and |z —y| <z —wo| + xo —y[ <1+ [z0 —yl- By (5.6),
(5.8), Proposition 4.3 and Theorem 4.4, we have that for z € By,

/D\B F) "7 (2,y)dy

= fn 70 (255 01) (25 1) = e

sor [ (22 ) (22 ) kst
> 087“/D ) ( ony) 1) k(2o — y)dy. (5.18)

\Bs lzo —yl1 \|zo — ¥

Thus, by Lemma 3.7 we have
f(xl)) > IIEﬂco [f(YD(TB2)); YD(TB2) ¢ B3]

=k ( / L) dy) it
2 il | </D\33 e (e A1) ks = )

r f() op(y) B
- C9¢<r_2) /17\33 |zo — vl (|£L’0 -yl " 1) k(lzo —yl) dy . (5.19)
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Suppose now that |y — x| > r'"7pg(x)? and x € B(Q, kr/(12)). Then
ly — @l <y —a|+7r <|y—a[+1po(x) |y — 2| <27 po(x) "y — 2.
Thus, using (5.5) and (5.10), we get for |z — y| < 2,
k(lz —y)) ( on(y) . 1)

[z =yl \lz—yh
k(2 (po(x)/r)"|zo — yl) Ip(y)
= @ oo(@)/rV w0 — ) (( (oa@)/r)leo — o1 " 1)
< 012V(pQ(£L‘)/T)7V’Yk(|$O - y‘) ( 5D(y) A 1) . (520)

\xo—y|1 |x0—y|1

Now, using (5.6) together with |y — 2| < |y — x| + 1 and (5.19)—(5.20),

k(|lzo — yl) ( op(y)

h<e | (pala) /)™
DN{2>|y—z|>r1=7pg(z)7INBS |9€0 - y|1 |9Uo - y|1

+610/D k(lzo — yl) ( 9p(y) /\1) Fy) dy

N{|ly—=|>2}NBS |zo — Yy lzo — Y|

< e (gt v [ B (B0 1) g0y

D\Bs |x0—y|1 |:(:0—y|1

A 1) 1) dy

) ((pole)/r) ™ +1) £(z0)
D)

1
< Cr1

< 2¢5 c11(po(2)/7) (o), (5.21)

where the second to last inequality is due to (5.19).
If y € Bs(z), then dp(y) < cior and |y — x| > |20 — Q| — |z — Q| — |y — xo| > Kpg(z0)/6.

By Theorem 3.1, there exists ¢;3 > 0 such that f(y) < c¢i3f (o) for all y € Bs(x). Thus by
(2.3),

I, < 014f(330)7"/ M dy

(D\B1(z))NBs (Jz —y[r)?
k(lx —
< cuf(zo 7’/ O—y‘l dy
y—z|>kpq(x0)/6 ’33 - 3/’1)

< caf(wo)r / |2]72k(]2]) dz—l—/ k(|z]) d
1>|z|>kpq (zo 1<z

" (
(1) ( 6

= cufoor </|| o 1)
(o ( )
(o (

< cif(xo)r

(
(z0)/
(z0)/
1 I a—2
/ /(s
rr/(12) s
e (b/ 8_2
< c16.f (2o)r r)” 2/ (3 )

(12)*(x ds + 1) < errflao)rto(r ). (5.22)



Combining (5.17), (5.21) and (5.22), we obtain
]Er[f(YD(TDo(x))); YD(TDo(x)) g_f Bl(x)]

< ewfa0) (22 () ryn ALy PR o))

#lpa(a)?) r T Glpa(@)?)
et ) (<2 ey 20T
= af (@) (0 (Pa@) /1) ™ S s o))

< cisf(20) ((p(2) /1) + (po(x)/r)) . (5.23)

Since 1 — yv > 0, choose now 7 € (0,79) so that

C18 (Ul_w + 77) < 1.

Then for z € DN B(Q, kr/(12)) with pg(z) < nr, we have by (5.23),

E, [f(YD(TDo(x))); YD(TDo(z)) ¢ Bl(x)] < cis (o) (77177'} + 77) < f(wo).

This completes the proof of (5.14).

We now prove the Carleson estimate (5.7) for x € D N B(Q, xr/(24)) by a method of
contradiction. Without loss of generality, we may assume that f(zo) = 1. Suppose that
there exists ;1 € D N B(Q, kr/(24)) such that f(z;) > K > "1 v (1 + 6. '), where K is
a constant to be specified later. By (5.12) and the assumption f(z;) > K > n=% we have
(po(z1)/r)™ > f(x1) > K > n~P, and hence pg(z1) < nr. By (5.13) and (5.14),

K < f(z1) < Eo, [f(YP(70000)): Y (TDoen)) € Bila1)] +1,

and hence

E., [f(YV Y7 € Bi(x1)| > f(z) —1>

TDg(z1)”’ " TDg (1)

1
1+5*f($1)~

In the last inequality of the display above we used the assumption that f(z;) > K > 144§, %
If K > (24/k)%/7, then (pg(z1)/r)? < k/(24). Thus By (x1) C B(Q,xr/(12)). We now get
from (5.11) that

E:m [f(YD(TDo(m)))? YD(TDo(m)) € Bl(xl)]

= Eﬂﬁl [f(YD(TDo(wl)))? YD(TDo(wl)) € Bl<x1) N D]

<P, (YP(Tpy(er)) € D) sup f<(1-46,) sup f.
Bi(z1) Bi(z1)

Therefore, supp, () f > f(21)/(1 = 82), i.e., there exists z, € D N B(Q, xr/(12)) such that

1
K.
152

1
|1 — 2| <71 77pg(21)” and  f(an) > /)2

Similarly, if 7 € DN B(Q, kr/(12)) with f(z) > K/(1 —62)*! for k > 2, then there exists
i1 € D such that
1

o) > g K- (524)

_ 1
|z — 2| <7 77pg(ax)” and f(x4a) > &2
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From (5.12) and (5.24) it follows that pg(zy)/r < (1 — §2)*=V/ABLK=151 for every k > 1.
Therefore by this and (5.24),

k—1 [es)
RT _
e — Q < for — QI+ |rjer — 2] < ﬂJFZ?”l Tpo(z;)
j=1 j=1

BT 1NNy s\ G /By e /Br e T /8 1
§24+7" > (1-62) K70t = o+ K Ty

J=1
Choose
K =™ v (L 67 V(24/m) (1= (1= 82)7/%) 7

so that K=7/81 (1 — (1 —62)7/A1)=1 < k/(24). Hence 1, € DN B(Q, rr/(12)) for every k > 1.
Since limy_,o f(xx) = 0o by (5.24), this contradicts the fact that f is bounded on B(Q,r/2).
This contradiction shows that f(z) < K for every x € D N B(Q, kr/(24)). This completes
the proof of the theorem. O

6 Boundary Harnack principle in C*! domain

We continue assuming that d > 2, (A1)-(A6) hold true, and that D C R? is either a
bounded C'!' domain, or a C'!' domain with compact complement or a domain consisting
of all the points above the graph of a bounded globally C*! function. Let (R, A) be the
OY! characteristics of D. Without loss of generality we assume that R < 1. Recall kK =
(1+ (1 + A)?)~Y2 and V,(r) is a C*' domain with characteristic (rR/L,AL/r) such that
D.(r/2,r/2) C V.(r) C D,(r,r) where L = L(R,A,d) > 0.

Lemma 6.1 Suppose that d > 3 — 2§ where 0 is the constant in (A3). There exists C =
C(R,\) > 0 such that for every r < k" 'R/2, Q € D and x € Dg(r/4,1/4),

P, (YP(rv,) € Dg(2r,2r)) < C % (6.1)

Proof. Without loss of generality, we assume @ = 0. Note that Vy(r) C Dy(r,r) C
DN B(0,r/k). By using the Lévy system formula and (2.16) we get

TV (
P (12 (o) € Do(2r20)) =5, [ [ I (YD, 2)dzdl
Do (2r,2r)\Vo(r)

/ r) T,y / JY (y7Z>dZdy
Vo(r Do (2r,2r)\Vo(r)

G (2, )] (y, 2)dydz. (6.2)

IA

/[)0(27",27“)\\/0(7‘) Vo(r)

Recall that g and j are defined in (3.17). By Lemma 2.1, Propositions 4.1 and 4.3, for
z € Do(2r,2r) \ Vo(r),

/ G (2, y) T (y, 2)dy
Vo(r)
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=¢ /VW (|w —y " 1) (|ch—(y@3| " 1) = j/fl(ﬁ¢_<|i|f;|—2>2
<|z—y| )(%“) %d‘”
Cl%gq —A /V()(T)ﬂ{:vz§2|zy|} o) (IZD—(yZ)\ : 1) <\ZD—<ZZ)I : 1) iy =~ =y

T /Vo(r)ﬁ{|$—2|>2:r—y} (&D__(l’;’ " 1) (\ZD—( 2\ " 1) (\iD—(Z)! ) (i = 3)illy = 2)dy
— ey(I + 1), (6.3)

By Lemma 5.2, for z € Dy(2r,2r) \ Vo(r),

) Op(z .
r< a2 ) | i(ly = 2Dy (6.4)
|z — 2| Vo(r)n{la—2I<2la—y[}

Since

) O (r) ()3 d—1 ¢I( ) _2
/ iy — 2Dy < e / 128 ) g0 < oG (2)72),
Vo(r)n{|z—z|<2|z—y|} 3y () (2) s

combining this with (6.4) we get

Sp()0p(2)¢ (| — 2| ?) (6.5)

15 e un (2)7) |z — 2|4 Ho(|r — 2[72)2

On the other hand, when |z — z| > 2|z — y|, we have
1
R e e L (6.6)

implying )
g\y—z\ <l|x—z| <2ly — z|. (6.7)

90(2) 5 < op(z) 1) < 99p(@)n(2) (6.8)

Ty =2 |z — 9| ly — z|?

Thus using (6.8) first, and then Lemma 2.1(c) with (6.7),

Sy =22,

Z|d+4

IT < e58p(2)dp(2) / -
Vo(r)n{|z—2|>2la—y|} ly —

Ny — »]-2
(b (’y | l‘_2)2¢(’y _ 2’72)2612

— s0p(2)0n(2) / gz —y))

Vo(r)n{|lz—z|>2|z—y|} ly — 2|"o(|ly —
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¢/(|$_Z|_2) _9\9
< b0l it o e o el = (69

Let a := |z — z|. By the triangle inequality,

/ olz — yNlly — 21"2)dy
Vo(r)n{|z—z|>2|z—y[}

< / glle —y)é(lz — 2| — e =yl Az — y|2)2dy
Vo(r)n{|z—z|>2|z—y[}

1

K °r ¢/ —2 B 3
< 07/0 %qﬂa—ﬂ 2AT2)2dy. (6.10)
Note that
k1 ¢/ —2 3 B
| el Aty
R G . e -
< / ﬁwa—m Pyt | A AR
B a/2 (]5/(7"_2) 00 (}5/(7"_2)
< ¢(4a 2)2/0 Wdy+ P dy
a/2 1 / 0
_o-1 —2)2 -1 —b(r—2))
—ototia [ (g ) v [ oty
= 21¢(4a2)2m =+ 271¢(4CL72) S Cg¢<|l’ — 2‘72). (611)
Therefore

! L2
11 < ndp(a)inle) i e =l )

< cubu () ) LRI ) (6.12)

Now for z € Dy(r/4,r/4), we have c;1r < |x — 2| < (14 & 1)r for z € Do(2r,2r) \ Vo(r).
Thus putting (6.2), (6.3), (6.5) and (6.12) together, and using Lemma 2.1, we see that

P, (Y"(ryy(m)) € Do(2r,2r))

oy Op(2)d(|z — 27?)
< 120(7) /Do(2r,2r)\Vo(r) A R
dp(x)¢'(r?)

c 5072_25 z)dz. 6.13
= pdiig(r-2)2 /Do(2r,2r)\V0(r) #Houin(2)7)0n(2) (6.13)

By the co-area formula,

2k~ Ly 2k~ 1p
/ P(Ovy(r) (2) %)dp(2)dz < 014/ / so(t )t 2dsdt
Do(2r,2r)\Vo(r) 0 0
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—1

2k~ 'r
= 1577 / o(t~2)t2dt. (6.14)
0

Since d > 3 — 20, we choose € € (0,(d — 3 4 20)/2) so that d — 3 + 20 — 2 > 0. Using [20,
Lemma 3.2] with this £ > 0, we have

2k~ 1r r 2%~y
72924t < =242t -2 42 d¢
/0 o(t%) _/ch() +¢<r>[

<o) [ (“ A it 4 g(r=2) (o

1 O+e
<Cl6¢ ( td72dt + 7"d1>
0

0

Combining (6.13)7(6.15), we conclude that

P (Vo) € Du(2r:21)) < cneners S Co)tnt-ioo2)
o))

= 613015017—
rip(r=2)
O

Proof of Theorem 1.2. In this proof, the constants 1 and ¢; are always independent of r.

Note that, since D is a C*! domain and r < R, by Theorem 3.1 and a standard chain
argument, it suffices to prove (1.8) for z,y € D N B(Q,2 "xr). Throughout the remainder
of the proof we assume that € DN B(Q,2 "kr).

Let Q. be the point Q, € 9D so that |x — Q.| = dp(z) and let zp := Qp + (v — Q) /|z —
Q.]. We choose a C' function ¢ : R¥1 — R satisfying ©(0) = 0, V(0) = (0,...,0),
IVl <A, [Ve(y) — Ve(2)] < Aly — Z], and an orthonormal coordinate system C'S with
its origin at (), such that

B(Qz, R) N D ={y = (y,54) € B0, R) in CS : ya > ¢(y)}-
In the coordinate system C'S we have ¥ = 0 and zo = (0,7/8). For any by, by > 0, we define
D(bl,bz) = {y = (g, yd) inCS:0< Yd — gO(g) < 272:"{?7”[)1, ’g| < 27257"()2} .

By (4.2), we have that D(2,2) € DN B(Q.,7/2) C DN B(Q,r). Thus, since f is
harmonic in D N B(Q,r) and vanishes continuously in 0D N B(Q,r), by Lemma 5.1, f is
regular harmonic in D(2,2) and vanishes continuously in 0D N D(2,2).

Recall that V(1) := Vo, (272kr) is a CY! domain with C*! characteristics (rR/L, AL/r)
such that D(1/2,1/2) c V(1) ¢ D(1,1), where L = L(R,A,d) > 0. There exists €
(0, (2(1 + A))~2) such that the cone

C(x,2 %r,n) = {y = (¥,y4) € B(z,2 %r) in CS : yq > 24, 7| < n(yqg — x4)}
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C D(27%,27?). (6.16)
Moreover, for x € D N B(Q,2 "xkr),
C(x,27%r,n) \ B(x,6p(x)) D C(x,2 %kr,n) \ Clx, 2" "kr,n). (6.17)

By Lemma 2.1, (5.6) and Proposition 4.3, we have that for z € V (1),

/ T (z,)dy
D(3,1)\D(2,1)
) ) (ly — 2|72
y (2202 p ) (219 1) AL
_ _ — o |d+2
D(3,1)\D(2,1) |z =y |z =y ly — 2|
) ) '(ly|~2
y (202 ) (0 1) 2010,
D(3,)\D(2,1) Y| Y| Y|

/ —2
D(3,)\D(2,1) Y| |y| @+

> 015D(Z)T/ LMI72)0@

D(3,1)\D(2,1) Y2 |y|*t?

> c20p(2)r|D(3,1) \ D(2,1) %¢;(;H ) > c30p(2)r 3¢ (r?). (6.18)

We have used Lemma 2.1(a) in the first inequality of the last line.
Since G";Z) > GV by (2.19), we have by Proposition 4.2,

TV (1) b
E, / 5o (YD)t — / GYD (. 2)0p(2)dz
0 V(1)

> GV (x,2)0p(z)dz
V(1)

zec [ (A0 (B2 ) o= e @19

Note that there exists ¢5 € (0,1] such that ¢s|lz — z| < dy)(z2) for z € C(z,27%kr,n). In fact,
since n € (0,(2(1 4+ A))~?) and

v — 2 = (1217 + (24 — 2a))* < L+ 0)* (20 — wa), 2 € C(x,27%r,7),
we have that for 2z € C(z,2 %kr, n),
Ovy(2) = 0p(2) = (1 4+ A%) 72 (2 — 9(2)) > (1 4+ A*) 72 (20 — AJ2])
> (14 A7 (zg = An(za — 2a)) = (14 A*)72(1 = An) (20 — 4)
> 27 1+ A2 2y — wg) > 271+ A TEA 4 pH) T2z — 2. (6.20)

Thus by (6.16), (6.17) and (6.20),

[ (2200 (5200 )
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Vo ] =2
> e /c(x’2_6mnm) ( 5D(x) A 1> ¢ (‘ZL’ Z’ ) )25\/(1)(Z)d2 (621)

|z — 2] |z — 2|"¢(|lz — 2|7

We claim that for z € C(z,2 %kr,n),

< o) 1) Sy (2) > cebp(z). (6.22)

|z = 2|

If 2 € C(x,27%r,n) \ B(x,dp(x)/2), then |z — 2| > dp(z)/2, so by (6.20),
( op() A 1) dvy(z) > 7 ( o) A 1> | — 2] > esép(x).

7] v — 2]

If z € C(x,27%r,n) N B(x,0p(x)/2) then |z — 2| < dp(x)/2 and dyy(z) = dp(z) > dp(z) —
|z — z| > dp(x)/2. Thus,

< op(x) A 1) 5\/(1)(2) > 5V(1)(Z) > ~6p(z).

|z = 2|

We have proved (6.22).
Combining (6.19), (6.21) and (6.22), we get

TV (1)
E, / 5o (VD) dt
0

¢'(|z —217?)
2 cacscaln(2) /C() 7= 225 (e — 272
2= 6r (b/ -2 3
> co0p(z) /0 %ds > c100p(2) /o (r2). (6.23)

We have used Lemma 2.1(a) in the last inequality. Thus (6.18) and (6.23) imply

TV (1) b
P.(¥P(rvw) € DED\DE D) =B, [ [ I (Y2, y)dydt
0 D(3,)\D(2,1)
TV (1)
> 037’3¢’(7’2)Ex/ Sp(YP)dt > cyir 3¢ (r=2)dp(x) /o (r~2). (6.24)

0

Now, by the Harnack inequality and (6.24), we have

Fl@) = Eo [F(YP(rv)] 2 Es [F(¥P(rva): Y2, € D(3.1)\ D(2,1)]
5p ()¢ (r2)
Po(r?)

Recall that @ is defined in (5.4). By Lemma 2.1, (2.3), (2.4), (5.6), Proposition 4.3 and
Theorem 4.4, we have that for z € V (1),

Z Clgf(l’o)]Pz (YD(Tv(1)> € D(S, ].) \ D(Z, 1)) Z Cllclgf(l’()> (625)

/ F)" (5, 9)dy
D\D(2,2)
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- /D\D(2 2) (|Z - y|1 : 1) (|Z —yh ) |SZ—_|?‘§| Q)dy
- /D\D(22) ( v ) ( )

o 1 dnly <ry\>
“5D”/D\D(22f”ry|l(ry| “) a2 (6.26)

Since
E. [f YP(rva)); YP(rvqy) ¢ D(2,2)] = IEI/O Y /Rd\D22)f(y)JYD(Y;D7y)dydt,

by (6.26), we have

E. [f (YP(rvw)); YP(rvay) € D(2,2)]
- o D 1 (dp(y) u(lyl?)
~E, /0 Sp (YD)t o ( /\1) dy. (6.27)

|yl [y|*=
By Proposition 4.1, for z,z € V(1),

6702 g (S8 1) (820, 1) et

|z — 2] |z — 2| z — 2[2(|lz — 2| 72)*

RI\D(2,2)

Thus, using Lemma 5.2,

V(1) D D
E, / 5p (VD) dl = / 5p(2)GY i (2, 2)dz < / 5n(2)GY” (@, 2)dz
0 V(1) V(1)

<ea [ o0lo) (B ) (PG M) =i = b
oot [ (B p) e

vy \|z — 2| |z = 2|"2¢(|lz — 2[2)?

< 2150 (1) / ¢ (|lx — 2172

Bey/2) |2 = 2|"20(lw — 2|72)

5dz < c1uép(x)/o(r=2). (6.28)

Combining (6.23), (6.27) and (6.28), we obtain

E. [f (YP(rv)); YP(rvy) ¢ D(2,2)]
_ Op(z) 1 (dp(y) 1(lyl?)
=307 foron iy (B ) (6:29)

On the other hand, by Theorems 3.1, 5.4 and Lemma 6.1, we have

E. [f (VP (rvw)) : YV (rv) € D(2,2)]
< ¢35 f($0)]Px (YD(Tv(l)) € D(2, 2))

< C16f(£0)%- (6.30)
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Combining (6.25), (6.29), (6.30), we get

flx) =E, [f(Y"( TV(I ); YP(rvy) € D(2,2)] + B [f(YP(rv)); Y7 (1vqy) ¢ D(2,2)]
) o/ (r 1 fw) (plw) L\ sl
< andol (7% )t o /Rd\m,m ) ( " 1) w2 ¢ ) (6.51)
and
fl) = 35@) + 5 (@)
> CE £V (vi) Y2, € D3\ D)
+ %E:v Y P(rva)); YP(rvay) € D(2,2)]

> c10p(x) (L? F(o0) + —— /R fluw) <5D(w> A 1) /rgfj’?dw) (6.32)

d(r=2) Jrapeoy lwh \ |wh

Therefore,

F(2) = 6p(z) (Mf(mo)—i— L /R UC) <5D(w)/\1> ‘rgrj@dw). (6.33)

r3p(r=2) o(r=2) d\D(2,2) [wy lwly

Since (6.33) holds for all x € D N B(Q,2 "xr), we conclude that for every x,y € D N
B(Q,2 k),

f(x) S C19 6D(x)7

f(y) p(y)

which proves the theorem. O

7 Boundary Harnack principle in the interior of D

In this section we assume that d > 2, D is a domain in R? and that (A1)-(A2) hold.

Recall that, for an openset U C D, XY (respectively, YP'V) is the process X (respectively,
YP) killed upon exiting U. One of the goals of this section is to show that when U is
relatively compact subset of D, the process YU can be thought of as a non-local Feynman-
Kac transform of XV. Moreover, if U is a certain C*! domain, the conditional gauge function
related to this transform is bounded between two positive constants which will imply that
the Green functions of XV and YPV are comparable. We will prove a uniform version of
this result in the sense that the comparability constants are independent of the set U as long
as its diameter is small and not larger than a multiple of its distance to the boundary.

Let (£X7,D(EX")) be the Dirichlet form of XU. Then, cf. [31, Section 13.4],

(1. 1) = / | 1@ P,f(x)) do pu(s)ds (7.1)
DEX") = {fe LXU,dx): EX(f, f) < oo}. (7.2)
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Note that in computing P,f, we extend the function f to R? by setting f(z) = 0 for
z € R\ U. Furthermore, for f € D(EX"),

XN ) = / / )2 JX (2, y)dydx + / F(2)2k (2)dx, (7.3)
where J¥ is defined in (2.13) and
= [ S
The Dirichlet form (€Y7, D(EY")) of Y is given by
&)= [ [ 1@ - P2 @) den(s)ds
and D(EY") = {f € L3(D,dx) : EY"(f, f) < co}. Moreover, for f € D(EY"),

// 2IY" (2, y dydx+/ F2)?kY"” (z)dz,

where J¥"” is defined in (2.12) and
) = [ PP .
0
Hence, it follows that the Dirichlet form (Y77, D(EY"")) of YPU is equal to

e = [ [ @  f (@) da pu(s)ds (7.4
DEY"YY = {f e LXU,dx): 5YDU(f f) < oo} (7.5)

Moreover, for f € D(EY""),

YDU(f f) = // JY (x, ydydx+/f (/[)\UJYD(x,y)dy) d
+/ F2)*kY” (z)da
_ / / V2TV (2, y)dyda + / F2)2RE" (@) da, (7.6)

R (@) = 1Y (@) + / 7 (. y)dy.
D\U

where

We first need the following simple result.
Lemma 7.1 Forz,y € D,

TX(z,y) — I (2,y) < 7 0n(y)). (7.7)
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Proof. By (2.8), (2.12) and (2.13), we have that
JX<x>y) _JYD(may) - / El‘[p(t_TD7WTD’y)7TD <t]#(t) dt
0

_ &, [ / Dt — 7o, W y)pt)

™D

Since for every s < t and z € 9D,

o0
|z—y|?

(4m(t — 5))~2e™ 3= pu(t)dt

/ Tt — s s pu()de =

3

5D(y)2

(4m(t — 5))~Y2e 307 p(t)dt

y2
B / (4mu) =255+ 5)du
0
/

8

& 5pw)?

(4mu) =2~ "0 p(u)du = 5% (0p(y)),

IN

the claim of the lemma follows. O

Lemma 7.2 Let U be a relatively compact open subset of D. Then D(EX") = D(EY™").

Proof. Let f € L*(U,dr). Using Fubini’s theorem in the third line, Lemma 7.7 and
L*(U,dx) C L*(U,dx) in the last line, we get

/0 ) / F(@)(PP f(2) — Pof(2))| de u(s)ds
< / N / (@) / (0(s, 2, 9) — (5,2, y))F ()| dy pu(s)ds
[ [ @iz ( / " s 2,) —pD<s,x,y>>u<s>ds) dz dy
- / / @I () — T (2, y)) de dy
< ¥(dist(U,0D)) / / @)1 ()| dzdy < oo

Together with (7.1)—(7.2) and (7.4)-(7.5), this immediately implies the claim. O

We now give some other expressions for X and ). First, it is easy to see that
@ = [ 0= Rl dr
(0,00)
Further,

@) = /(Om)u—a ottt + | . /(Om)p (1,0, y)p(t)dtdy
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Let

Clearly, qu(x) > 0 and
QU(x) = / / Ex[p(t_TDvwaay)at > TD]dy,u(ﬂ dt

o JuU

- / Eﬂ?/ p(t — 7D, WTD? y):u(t) dt dy
U ™D

= /(JX(x,y) — I (@, y))dy .
U

For x,y € D, x # vy, let
JYD (l',y) JYD (1’7 y) — JX<x7y)

P ey T e

and F(z,x) = 0. We also define F'(z,0) = 0, where 0 denotes the cemetery point (this is
where all killed processes end up). Then —1 < F(x,y) < 0. Note that

/ Fla,y) 7% (2, y)dy = —qu(x)
U

The next lemma shows that the absolute value of F' can be bounded by 1/2 on balls of
small radius sufficiently away from the boundary of D.

Lemma 7.3 Assume that (A1)-(A4) hold. There exists b = b(¢p,d) > 2 such that for all
xo € D and all r € (0,1/b) satisfying B(xo, (b+ 1)r) C D, we have that

sup  |F(z,y)| <
z,y€B(zo,r)

N | —

Proof. First note that if B(xzg, (b + 1)r) C D, then for every y € B(xzg,r) it holds that
dp(y) > br. Hence by (7.7), for x,y € B(xo,r), J*(z,y) — JY? (z,y) < 3%(br). Therefore

Py = @D o) ) o)

J
JE(x,y) ~ (e —yl) T X Er)

43



By [21, Proposition 2.6], there exists ¢; = ¢1(¢, d) such that

/ . ! 7“_2
cl_l(br(dﬁ) S]X(r)gcl%, O<r<l1. (7.8)
Hence for b > 2 and r € (0,1) such that br < 1,
M d+2 /72 9
) d+2 2 ¢)(b T )
F <2t _ce2(2) 22 1 2 7.9
| (x,y)| >0 ¢/((22;;:—22) >0 b ¢'(2_27‘_2) ( )

If d > 3, we use the fact that A\ — A\?¢/(\) is increasing, cf. Lemma 2.1(b), to conclude that

for b > 2, ;
h—2p—2 2¢/ h—2p—2 92 -2
i< () ey <a(l)

Now choose b > 2 such that ¢ := ¢(2/b)472 < 1/2.
When d = 2 we use (7.9) and (A4) to get

1 2 4-¢'
F A==

where ¢’ and ¢’ are the constants from (A4). Again, we choose b > 2 such that the last
expression is smaller than 1/2. a

Let b > 2 be the constant from Lemma 7.3. For r < 1/b, let U C D be such that
diam(U) < r and dist(U,0D) > (b + 2)r. Then there exists a ball B(zg,r) such that
U C B(xg,r) and B(xg, (b+ 1)r) C D. By Lemma 7.3 we see that

|F(z,y)| <1/2 for all z,y € U. (7.10)

Hence we can define the non-local multiplicative functional

t
KV == exp < S log(1+ F(XT, XY)) / / AL Xszy)dyds—/ qu(XsU)ds>
0

0<s<t
= exp ( ) log(1+ F(ng_,Xg))) .
0<s<t

Let
T/ f(z) = B [K[ f(X])].

By [9, (4.5) and Theorem 4.8], (T );>0 is a strongly continuous semigroup on L*(U, dx) with
the associated quadratic form (Q, D(EX")) where

of. 1) = (1. 1) - /U /U @) F @) F ()T () dy d.
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Lemma 7.4 Assume that (A1)-(A4) hold. Forr < 1/b, letU C D be such that diam(U) <
r and dist(U,0D) > (b+ 2)r. Then

(Q,D(EX)) = (", D).

Proof. Note that
of. f) = / / V2T () — )T (2,9)) dy do + / F () (@) da
_ / / @) F () F (2, 9) % (2, ) dy da

= // JY (x, y)dydm—l—/f /UF(xyy)JX(x,y)dydx
+/f(a:) K
= // JY (z, y)dydx—i—/f dx—i—/f

= &7
It was shown in Lemma 7.2 that D(X") = D(EY""), which finishes the proof. O

For z,y e U, v # y, let
u(w,y) = EY[K L]

be the conditional gauge function for K. Here EY denotes the expectation with respect

to the conditional probability PY defined via Doob’s h-transform with respect to the Green

function G7; (-, y) starting from z € D. Since F' < 0, we have log(1+ F) < 0, hence K% < 1.
U

Therefore, u¥(x,y) < 1. Define
VY(z,y) = u"(a,9)G (2,y), zyeU.

It follows from [6, Lemma 3.9] that VY (z,y) is the Green function for the semigroup (7} );>o.
Combining this with Lemma 7.4 we can conclude that VY is equal to the Green function
GED of YPU. Therefore,

Gy (a,y) = Y (2, y)Gi (z,y), =,y €U (7.11)

Our next goal is to show that for O open sets U, the conditional gauge function uY is
bounded below by a strictly positive constant uniform in the diameter of U. Together with

the above equality this proves that the Green function of Y2V is comparable to that of XY.

Assume that the Bernstein function ¢ satisfies (A1)-(A5) and (A7), and without loss
of generality we assume ¢(1) = 1. For r > 0 define
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Then ¢" is a Bernstein function with potential density u" and Lévy density u" given by

u"(t) = r’o(r~Hu(r’t), () =r*p(r ) u(r’t), t>0,

cf. [28, (2.7), (2.8)]. In particular, ¢" satisfies (A1). Further, if 0 < r < 1, then for A > 1
we have that \r=2 > 1, and thus for t > 1,

(YO0 _ g ) _
() (A) @' (Ar2) —
Hence, (A3) holds for ¢" with the same constants. Similarly, one can see that ¢" satisfies
(A4) and (AT) with the same constants. It is immediate that ¢" also satisfies (A5). It
remains to check (A2). Suppose first that ¢ > 1 is such that r*t < 1 (so that r*(t + 1) < 2).

Then by using (2.4) and (2.3) in the first inequality and the fact that ¢’ is decreasing in the
last, we get

ot ?.

prt+1) p(r?(t+1)) S r2t+1)7h)  ri? S G
Z 5

pr(t) p(ret) T riE1? @)
If t > 1 and r?t > 1, then by (A2), we get

Pt +1) _ p(r?(t +1)) > p(rPt+1) > 9.

pr(t) p(r?t) plr2t)

Thus ¢" also satisfies (A2) with the constant independent of a.

Let S™ = (S])i>0 be a subordinator with Laplace exponent ¢" independent of the Brow-
nian motion W. Let X" = (X} )0 be defined by X; = Wgr. Then X" is an isotropic Lévy
process with characteristic exponent ¢"(|£]?) = ¢(|€]?r=2)/d(r~2), € € R?, which shows that
X" is identical in law to the process {r™' X, s—2) }i>0.

Let V C R? be a bounded C*! open set such that 0 € V. For r € (0,1], let V" = {rx :
x € V} be the scaled version of V. Denote by Gi¥ (respectively Gir,) the Green function of
V' with respect to the process X" (respectively the Green function of V" with respect to the
process X ). Then by scaling,

G (x,y) = rp(r )Gy (x/r,y/r), z,yeE V. (7.12)

For any open set U C RY, we let

gﬂmy%:<1A G ) > @Yo =9l oy )

VO 0u(@) )¢ (u(y)=2) ) |z —yl™2em (v —y|72)*

and gy (7,y) = giy(,y).

Proposition 7.5 Suppose that (A1)-(A5) and (A7) hold. Let V C R? be a bounded C*!
open set with characteristics (R,\) such that 0 € OV and diam(V') < 1. There ezists a
constant C = C(R, A, ¢,d) > 1 such that for every r € (0,1],

C_lg\/r(‘r7y) S Gér(l’,y) S Cgvr(xay)a x,y € V.

The dependence of ¢ on ¢ is only through the constants in assumptions (A1)-(A5) and
(A7).
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Proof. Let r € (0,1]. By [21, Theorem 1.2] applied to the process X", there exists a
constant ¢ = ¢(diam(V'), R, A, ¢", d) such that

g (z,y) < GY () < cgip(z,y), myeV. (7.14)

Moreover, although not explicitly mentioned, the dependence of ¢ on ¢" is only through
the constants in (A1)-(A5) and (A7) for ¢". But as shown above, those constants are
independent of r € (0,1]. Since diam(V) < 1, we conclude that ¢ = ¢(R, A, ¢,d) where
dependence of ¢ on ¢ is only through the constants in (A1)-(A5) and (A7) for ¢.

By a straightforward computation we get that

gi-(x/r,y/r) = rié(r gy (z,y), zyecV’. (7.15)
The claim of the proposition now follows by combining (7.12), (7.14) and (7.15). O

We note that the assumption in Proposition 7.5 that 0 € 9V is irrelevant. For any z € 0V
we could use the scaling V" = {r(z — 2z) + z; x € V'} and obtain the same result.

Lemma 7.6 Suppose that (A1)-(A5) and (A7) hold. Let R >0 and A > 0. There exists
C = C(R,A,¢,d) > 0 such that for every r € (0,1] and every C™' open set U C D with
characteristics (rR, A/r) and diam(U) < r satisfying dist(U,0D) > r,

X X
[ GOt W) ()| ¥ w)dedw < €, forallay €U (7.16)
X

Proof. Since dist(U,0D) > r, we have by Lemma 7.1 that
|F(z,w)|J* (2,w) < 5%(r) for all z,w € U. (7.17)
Let V" = U and define V = r='V" = {r~'z; € V"}. Then V is a C"! open set with

characteristics (R, A) and diam(V') < 1. By Proposition 7.5 there exists ¢; = ¢1(R, A, ¢, d) >
0 such that

cl_lgU(xvy> S G)U((x>y) S ClgU(xay)a T,y eU. (718)
Next note that
X E X E X
//G X )dZdw— (T[j() Z/(TU)‘
G GU(xay)

By using (7.18) and [7, Lemma 7.1] we get that
¢ (lz —yl™)
Y| 2 e(|le —y|=2)>?

2r
< tdotoo(e) " [0 e

E.(75) = /UGX(x y) dy < 2c;10(0y(x 1/2/ |$_

= 2eacd)olnta) 2 [ a (o)
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= 2cic(d)p(6u(x) ) Pe((2r) %)/
< ep(bu(x) ) Pe(r )2
d)
O

where co = (R, A, ¢,d) > 0.
(

If 6(]z — yI2) < 3(5y (2)-2)26(5, (y)~2)"2, then
EE() _ o ol ol(e) ) (o () )2
G)U(( Y) = 024 ¢ (lz—y|~2)
6y (2)=2)1/2¢(5y (y) ~2)1/2|z—y|4+2¢(|lz—y|~2)
9 —2\—1 d—2 P(|lz — y\_2)
= aal )l =y T g = )
o((2r)2)

IN

2 ~2y-1(9,.yd~2

st e G @)
< 2722 R (r2)

In the third line we have used Lemma 2.1(b) (with a = 1).

Suppose now that ¢(|z — y|72) > ¢(6p(x)72)Y2¢(0y(y)~2)/2. By using the obvious
inequality ¢(0y(2)2)"2 < ¢(r=2)~/2 and Lemma 2.1(b) again (this time with a = 2), we
get

E. (7 )Ey ()
G (z,y)

. 4 - —2\2
Cgcl(b('f’iQ)iz'x - y|d72 |x ¢y,i|f(lxy|_;y)| )

< 222 R (r )L (7.19)

IA

Using the inequalities (7.8) and (7.17), and applying (7.19), we conclude that

X( X(
/ / Gpr 9;; fyw y)\F(z,w)UX(z,w)dzdw < 24220 20 (7)1 X (1) < O

with a constant C' = C(R, A, ¢, d). O

Lemma 7.7 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and A > 0. Then
for every r € (0,1/b) and every CY' open set U C D with characteristics (rR,\/r) and
diam(U) < r satisfying dist(U,0D) > (b+ 2)r, we have

B Y |F(XZ XD <C,
0<5§TI)J(

where C' is the constant from Lemma 7.6 and b > 2 the constant from Lemma 7.35.

Proof. By [9, Proposition 3.3] we have

F(X
B, S F(XU,XY)| = / / £ Gﬁ‘j ( WY) X (X, ) dw ds
0<s<ti U
X( X
= //G szU(w, )|F(z,w)|JX(z,w)dzdw.
:L‘7
The claim is now a consequence of Lemma 7.6. a
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Lemma 7.8 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and A > 0. There exists
C = C(R,\,¢,d) € (0,1) such that for every r € (0,1/b) and every CY* open set U C D
with characteristics (rR,A/r) and diam(U) < r satisfying dist(U,0D) > (b+ 2)r, we have

C<u¥(z,y) <1, z,ycl.

Proof. The upper bound is clear. By (7.10), F' > —1/2 on U x U. By using Jensen’s
inequality in the first inequality, the fact that log(1 +¢) >t for ¢t € [—1/2,0) in the second,
and Lemma 7.7 in the third, we have

uY(x,y) > exp{ EY Z log (1+ F(XL, X))

O<s§‘rU

> exp{ B Y F(XLXY) | p = exp{-C}.

O<s§7’é{

Combining this lemma with (7.11) we arrive at

Proposition 7.9 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and A > 0. There
ezists C = C(R, A, ¢,d) € (0,1) such that for every r € (0,1/b) and every C™' open set
U C D with characteristics (rR,A/r) and diam(U) < r satisfying dist(U,0D) > (b + 2)r,
we have

D
CGy(z,y) <Gy (x,y) <Gy(z,y), zyeU.
A similar method was used to establish comparability of the Green functions of some
one-dimensional processes in [40)].

Proof of Theorem 1.3: Let R = 6p(Q) A 1. Choose a Ch!-function ¢ : R — R
satisfying ¢(0) = 0, Vip(0) = (0,...,0), [Vl < A, [Vp(§) — Vip(w)| < Alg — @], and an
orthonormal coordinate system C'Sg with its origin at () such that

B(Q R)NE ={y = (y,y4) € B0, R) in CSq : ya > ¢(y)} -

Define pg(x) = x4 — ¢(Z), where (Z,z4) are the coordinates in C'Sg. Recall that x =
(14 (14 A)?)~Y/2. For r > 0, define the box

Folr) = {y € 0 < paly) < xr/2,|5] < rr/2},
so that diam(Eqg(r)) < r. There exists L = L(R, A, d) such that for every » < xR one can find
a Cb' domain Vg (r) with characteristics (rR/L, AL/r) such that Eq(r/2) C Vg(r) C Eg(r)
(see [32, Lemma 2.2]). Furthermore, B(Q, k*r/4) N E C Eg(r/2) and Eg(r) C B(Q,r)NE

(see (4.2)). Since r < (6p(Q) A1)/(b+2), we conclude that dist(Vy(r),0D) > (b+2)r. Now
it follows from Proposition 7.9 (with (R/L,AL) instead of (R, A)) that

D
Co Gg/(Q(r)(xv y) S GS\;Q(T) (23, y) S Gi/(Q(r) (l’, y) ; T,y € VQ(T) ) (720)

49



where ¢y = ¢o(dp(Q) A 1, A, ¢, d) is independent of r.
Let B = B(Q,2r). Then Vy(r) C B C D and dist(B,9D) > br/2. Recall that by Lemma
3.4 there exists a constant ¢; = ¢1(b) € (0,1) such that for every r < (6p(Q) A1)/(b+ 2),

a JX (w,y) < IV (w,y) < J¥(w,y), w,y € B. (7.21)

Let f be regular harmonic in EN B(Q,r) with respect to Y? and vanish on E°N B(Q, r).
Then for z € Vy(r),
f(@) =Ba[f(YV) )Yy o € BI+E[f(YD Vi) €D\ Bl = fi(x) + falx). (7.22)

Tvg(r)/7 " TVg(r) ) T TG ()

We first estimate fi(z). By using (7.20) and (7.21) we get
fe) = Gl e, w0)" () () dyduo
B\Vq(r) /Vo(r)

= [ el @i dyde
B\Vq(r) JVg(r)

= Em[f(XTV

Vo (r)

€ B] =: h(x),
where the comparison constants in the second line depend only on dp(Q) A 1, A, ¢,d. Since

the function h is regular harmonic in B(Q, k*r/4) N E with respect to X and vanishes on
B(Q, k*r/4) N E¢, we can use the factorization from [21, Lemma 5.4] to conclude that

) = Eelrqmmnel [ X Quho)dy, @€ B@Qwr/S)
B(Q,k?r/8)c

(with the comparison constants depending on ¢, d). Hence,

fl(w) = Em[Tg(Q,HQTM)OE] /( 8) JX(Qv y)h(y> dy> LS B(Q7 H2T/8) : (723)
B(Q,x2r/8)¢

In order to estimate fy(z) we use Proposition 3.5 in the second line below to conclude
that

YD
Vo (r)
fol) = E, /0 @0 dyds
YD
Vo) yD
= E, / AW @ dys
0 D\B

- Byl [ L7 @y (7.24)

(where the comparison constants depend on the constants from (B1) and (B2)). Now, by
Proposition 7.5 and (7.20) we have that for z € B(Q, k'r/(32)),

Eo[ri ) = 0(r2) 7 20(8, 2 (@) = ¢(r72) 72057 (@) 2, (7.25)
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Eo[75(0 w2 jayng] < E:v[ﬁ)/;(r)]
< () 26,2 (1)) T = oo (r ) T 20 (057 () T, (7.26)

and

Eo[m5(0m2r ) > EalTia vy ]
> 03¢(7”72)71/2¢(527—22,{2VQ(T) (€))7 = e3p(r™) 20657 () 72 (7.27)

By combining (7.22)-(7.27), we get that for z € B(Q, k'r/(32)),

f(@) = o(65%(x)) Pp(r=2) 12 (/B( - JX(Q,y)h(y) dy + )77 (Q,y) dy) .

D\B

This approximate factorization of the regular harmonic function f immediately implies the
claim. O
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