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Abstract

Let WD be a killed Brownian motion in a domain D ⊂ Rd and S an independent
subordinator with Laplace exponent φ. The process Y D defined by Y D

t = WD
St

is called
a subordinate killed Brownian motion. It is a Hunt process with infinitesimal generator
−φ(−∆|D), where ∆|D is the Dirichlet Laplacian. In this paper we study the potential
theory of Y D under a weak scaling condition on the derivative of φ. We first show that
non-negative harmonic functions of Y D satisfy the scale invariant Harnack inequality.
Subsequently we prove two types of scale invariant boundary Harnack principles with
explicit decay rates for non-negative harmonic functions of Y D. The first boundary
Harnack principle deals with a C1,1 domain D and non-negative functions which are
harmonic near the boundary of D, while the second one is for a more general domain D
and non-negative functions which are harmonic near the boundary of an interior open
subset of D. The obtained decay rates are not the same, reflecting different boundary
and interior behaviors of Y D.
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1 Introduction

Let W = (Wt,Px) be a Brownian motion in Rd, d ≥ 1, and let S = (St)t≥0 be an independent
subordinator with Laplace exponent φ. The process X = (Xt,Px) defined by Xt = WSt , t ≥
0, is called a subordinate Brownian motion. It is an isotropic Lévy process with characteristic
exponent Ψ(ξ) = φ(|ξ|2).

In recent years, isotropic, and more generally, symmetric, Lévy processes have been
intensively studied and many important results have been obtained. In particular, under
certain weak scaling conditions on the characteristic exponent Ψ (or the Laplace exponent
φ), it was shown that non-negative harmonic functions with respect to these Lévy processes
satisfy the scale invariant Harnack inequality (HI) and the scale invariant boundary Harnack
principle (BHP), see e.g. [4, 19, 20, 21, 24, 25, 26, 28, 30].
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If D is an open subset of Rd, we can kill the process X upon exiting D and obtain a
process XD known as a killed subordinate Brownian motion. Functions that are harmonic in
an open subset of D with respect to XD are defined only on D, but by extending them to be
identically zero on Rd \D, the HI and BHP follow directly from those for X. In particular,
the BHP for XD is in fact a special case of the BHP for X in D.

By reversing the order of subordination and killing, one obtains a process different from
XD. Assume from now on that D is a domain (i.e., connected open set) in Rd, and let WD =
(WD

t ,Px) be the Brownian motion W killed upon exiting D. The process Y D = (Y D
t ,Px)

defined by Y D
t = WD

St
, t ≥ 0, is called a subordinate killed Brownian motion. It is a symmetric

Hunt process (see, for instance, [35, Propositions 2.2 and 2.3]) with infinitesimal generator
−φ(−∆|D), where ∆|D is the Dirichlet Laplacian. This process is very natural and useful. For
example, it was used in [11] as a tool to obtain two-sided estimates of the eigenvalues of the
generator of XD. Despite its usefulness, the potential theory of subordinate killed Brownian
motions has been studied only sporadically, see e.g. [17, 33, 16] for stable subordinators, and
[34, 36] for more general subordinators. In particular, [36] contains versions of HI and BHP
(with respect to the subordinate killed Brownian motion in a bounded Lipschitz domain D)
which are very weak in the sense that the results are proved only for non-negative functions
which are harmonic in all of D. Those results are easy consequences of the fact that there
is a one-to-one correspondence between non-negative harmonic functions (in all of D) with
respect to WD and those with respect to Y D. Additionally, some aspects of potential theory
of subordinate killed Brownian motions in unbounded domains were recently studied in [29].

In the PDE literature, the operator −(−∆|D)α/2, α ∈ (0, 2), which is the generator of
the subordinate killed Brownian motion via an α/2-stable subordinator, also goes under the
name of spectral fractional Laplacian, see [2] and the references therein. This operator has
been of interest to quite a few people in the PDE circle. For instance, a version of HI was
also shown in [37].

The main goal of this paper is to show that the scale invariant BHP for non-negative
functions harmonic (with respect to Y D) near the boundary of D is valid for a large class
of subordinate killed Brownian motions Y D when D is a bounded C1,1 domain, or a C1,1

domain with compact complement or a domain consisting of all the points above the graph
of a bounded globally C1,1 function. We also prove the scale invariant BHP for non-negative
functions harmonic (with respect to Y D) near the boundary of a C1,1 open set strictly
contained in D. In the latter case D need not have smooth boundary, but still has to satisfy
certain geometric conditions.

We start by listing our assumptions on the underlying subordinator, or more precisely
on the corresponding Laplace exponent. Recall that the Laplace exponent of a subordinator
is a Bernstein function vanishing at the origin, i.e., it has the representation

φ(λ) = bλ+

∫
(0,∞)

(1− e−λt)µ(dt) , (1.1)

with b ≥ 0 and µ a measure on (0,∞) satisfying
∫
(0,∞)

(1 ∧ t)µ(dt) < ∞, which is called

the Lévy measure of S. A Bernstein function φ is called a complete Bernstein function if its
Lévy measure has a completely monotone density. A Bernstein function φ is called a special
Bernstein function if the function λ 7→ λ/φ(λ) is also a Bernstein function. It is well known
that any complete Bernstein function is a special Bernstein function. For this and other
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properties of special and complete Bernstein functions, see [31]. The potential measure of
the subordinator S is defined by U(A) =

∫∞
0

P(St ∈ A) dt.
In this the paper we will always assume the following three conditions:

(A1) The potential measure U of S has a decreasing density u.

(A2) The Lévy measure of S is infinite and has a decreasing density µ that satisfies

µ(r) ≤ cµ(r + 1), r > 1. (1.2)

(A3) There exist constants σ > 0 and δ ∈ (0, 1] such that

φ′(λt)

φ′(λ)
≤ σ t−δ for all t ≥ 1 and λ ≥ 1 .

For some of the results in dimension d = 2 we will need the following additional assump-
tion:

(A4) If d = 2, there exist σ′ > 0 and δ′ ∈ (0, 2δ) such that

φ′(λt)

φ′(λ)
≥ σ′ t−δ

′
for all t ≥ 1 and λ ≥ 1 . (1.3)

Assumptions (A1)-(A4) were introduced in [20] and were also used in [21, 29]. Assump-
tion (A1) implies that φ is a special Bernstein function, cf. [31, Theorem 11.3]. It follows
from [26, Lemma 2.1] that (1.2) holds if φ is a complete Bernstein function. It immediately
follows from (A3) that b = 0 in (1.1). It is easy to check that if φ is a complete Bern-
stein function satisfying the following weak scaling condition: There exist a1, a2 > 0 and
δ1, δ2 ∈ (0, 1) satisfying

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t) , λ ≥ 1, t ≥ 1 ,

then (A1)–(A4) (as well as (A7) below) are satisfied (see [21, p. 4386]). One of the reasons
for adopting the more general setup above is to cover the case of geometric stable (see
examples (5) and (6) below) and iterated geometric stable subordinators.

The following assumption is a necessary and sufficient condition for the transience of X,
cf. [36, (5.46)]. It is always satisfied when d ≥ 3, hence imposes an additional restriction
only in case d ≤ 2.

(A5) We assume that ∫ 1

0

λ
d
2
−1

φ(λ)
dλ <∞.

When D is unbounded, we need the following extra condition. Condition (1.4) below
is used to control the large jumps of Y D. The reason that we assume d ≥ 3 in the next
assumption is that sharp two-sided Dirichlet heat kernel estimates for C1,1 domains with
compact complement, which are used in Theorem 4.4, are only available for d ≥ 3, see [42].
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(A6) If D is unbounded, then we assume that d ≥ 3 and that there exist β, σ1 > 0 such that

µ(λt)

µ(λ)
≥ σ1t

−β for all t ≥ 1 and λ > 0 . (1.4)

In the last section of the paper we will need an additional assumption used in [21]. This
assumption will not be used explicitly in the current paper, but will be used implicitly when
citing results from [21].

(A7) If the constant δ in (A3) satisfies 0 < δ ≤ 1/2, then we assume that there exist σ2 > 0
and γ ∈ [δ, 1) such that

φ(λt)

φ(λ)
≥ σ2t

1−γ for all t ≥ 1 and λ ≥ 1 . (1.5)

The following well-known examples of subordinators satisfy (A1)–(A3). Note that in all
of the examples the Bernstein function φ is complete, cf. [31], so (A1)–(A2) are satisfied.
The parameter δ from (A3) is written for future reference.

(1) Stable subordinator: φ(λ) = λα, 0 < α < 1, with δ = 1− α.

(2) Sum of two stable subordinators: φ(λ) = λβ + λα, 0 < β < α < 1, with δ = 1− α.

(3) Stable with logarithmic correction: φ(λ) = λα(log(1 + λ))β, 0 < α < 1, 0 < β < 1− α,
with δ = 1− α− ε for every ε > 0.

(4) Stable with logarithmic correction: φ(λ) = λα(log(1 + λ))−β, 0 < α < 1, 0 < β < α,
with δ = 1− α.

(5) Geometric stable subordinator: φ(λ) = log(1 + λα), 0 < α < 1, with δ = 1.

(6) Gamma subordinator: φ(λ) = log(1 + λ), with δ = 1.

(7) Relativistic stable subordinator: φ(λ) = (λ + m1/α)α −m, 0 < α < 1 and m > 0, with
δ = 1− α.

It is easy to see that (A4) and (A7) also hold for all examples. Condition (A5) is true
when α < d/2 in examples (1), (2) and (5), α + β < d/2 in (3), α − β < d/2 in (4), and
d > 2 in (6) and (7). By using [36, Sections 5.2.2 and 5.2.3] one checks that (1.4) is satisfied
for examples (1)-(5), but not for examples (6) and (7) since the corresponding Lévy density
has exponential decay. Thus for examples (6) and (7) we can only cover the case when D is
bounded.

By using the tables at the end of [31] one can come up with a lot of explicit examples of
complete Bernstein functions such that conditions (A1)–(A7) are true.

Let D ⊂ Rd be an open set and let Q ∈ ∂D. We say that D is C1,1 near Q if there exist a
localization radius R > 0, a C1,1-function ϕ = ϕQ : Rd−1 → R satisfying ϕ(0) = 0, ∇ϕ(0) =
(0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(z)−∇ϕ(w)| ≤ Λ|z−w|, and an orthonormal coordinate system
CSQ with its origin at Q such that

B(Q,R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CSQ : yd > ϕ(ỹ)} ,
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where ỹ := (y1, . . . , yd−1). The pair (R,Λ) will be called the C1,1 characteristics of D at Q.
Recall that an open set D ⊂ Rd is said to be a (uniform) C1,1 open set with characteristics
(R,Λ) if it is C1,1 with characteristics (R,Λ) near every boundary point Q ∈ ∂D. For future
reference, given Λ > 0, we define

κ = κ(Λ) := (1 + (1 + Λ)2)−1/2. (1.6)

For any Borel set B ⊂ D, let τB = τY
D

B = inf{t > 0 : Y D
t /∈ B} be the exit time of Y D

from B.

Definition 1.1 A real-valued function f defined on D is said to be harmonic in an open
set V ⊂ D with respect to Y D if for every open set U ⊂ U ⊂ V ,

Ex
[∣∣f(Y D

τU
)
∣∣] <∞ and f(x) = Ex

[
f(Y D

τU
)
]

for all x ∈ U. (1.7)

A non-negative function f defined on D is said to be regular harmonic in an open set V ⊂ D
if

f(x) = Ex
[
f(Y D

τV
)
]

for all x ∈ V.

For any open set U ⊂ Rd and x ∈ Rd, we use δU(x) to denote the distance between x
and the boundary ∂U .

The main result of this paper is the following scale invariant boundary Harnack inequality.

Theorem 1.2 Suppose that (A1)–(A6) hold and d > 3 − 2δ, where δ is the constant in
(A3). Let D be a bounded C1,1 domain, or a C1,1 domain with compact complement or a
domain consisting of all the points above the graph of a bounded globally C1,1 function. Let
(R,Λ) be the C1,1 characteristics of D. There exists a constant C = C(d,Λ, R, φ) > 0 such
that for any r ∈ (0, R], Q ∈ ∂D, and any non-negative function f in D which is harmonic
in D ∩B(Q, r) with respect to Y D and vanishes continuously on ∂D ∩B(Q, r), we have

f(x)

δD(x)
≤ C

f(y)

δD(y)
for all x, y ∈ D ∩B(Q, r/2). (1.8)

In particular, we see from the theorem above that if a non-negative function which is
harmonic with respect to Y D vanishes near the boundary, then its rate of decay is propor-
tional to the distance to the boundary (regardless of the particular subordinator as long as
(A1)–(A6) hold). This shows that near the boundary of D, Y D behaves like the killed
Brownian motion WD.

We note that the condition d > 3 − 2δ comes from the method of proof (see the proof
of Lemma 6.1), and is always satisfied when d ≥ 3. It implies that d ≥ 2 and imposes an
additional restriction only when d = 2.

We remark that Theorem 1.2 is new even in the case of a stable subordinator. Recently,
a BHP for a general discontinuous Feller process in metric measure space has been proved
in [4, 29] under some comparability assumptions on the jumping kernel (see [4, Assumption
C] and [29, C1(z0, r0)]) and a Urysohn-type property of the domain of the generator of the
process (see [4, Assumption D] and [29, B1(z0, r0)]). However, neither [4, Theorem 3.4]
nor [29, Corollary 4.2] can be applied to subordinate killed Brownian motions because [4,
Assumption C] and [29, C1(z0, r0)] do not hold. Moreover, one can observe from (6.33) below
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that the approximate factorization of non-negative functions harmonic for the subordinate
killed Brownian motion should be different from those in [4, (3.3)] and [29, Theorem 4.1].

The proof of Theorem 1.2 is probabilistic and is based on the “box method”, which was
originally proposed in [1]. This method has been extended and used for many discontinuous
processes (for example, see [3, 5, 23, 8, 27]). It is not surprising that our method is similar to
that for the censored stable process in [5] – both the censored process and the subordinate
killed Brownian motion are intrinsically defined as processes living in a domain D (hence
no information outside D is available). As a consequence, some of the domain monotonicity
properties are not valid. Despite the fact that the general road map has been traced before,
the proof of Theorem 1.2 is still technically quite challenging. Some of the necessary technical
results such as Green function and jumping kernel estimates for Y D were developed in [25].
These estimates are improved and complemented in Section 4. In order to prove Theorem
1.2, we establish a Carleson estimate in Section 5 by following the ideas from [5, 18, 8, 27].
Another key step to prove Theorem 1.2 is obtaining the correct explicit estimate on the exit
distribution (see (6.1) and (6.24)). Unlike previous papers, we do not use testing functions.
Instead of using Dynkin’s formula and applying to testing functions, we utilize relations
among the killed subordinate Brownian motion, the subordinate killed Brownian motion
and its killed processes, and estimates of the Green function and jumping kernels for these
processes.

Theorem 1.2 is a result about the boundary behavior of non-negative functions on D
that are harmonic (with respect to Y D) near a portion of the boundary of D and vanish
continuously at that part of the boundary. The corresponding decay rate is a reflection of
the fact that, near the boundary, the subordinate killed Brownian motion Y D behaves like
Brownian motion. One can also study the decay rate of non-negative functions in D which
are (regular) harmonic near a portion of the boundary, strictly contained in D, of an open
set E ⊂ D and vanish in an appropriate sense. Intuitively, since the behavior of Y D in the
interior of D is similar to that of the killed subordinate Brownian motion XD, one would
expect the decay rate to be the same as the decay rate of functions harmonic with respect
to XD. This is confirmed in the second main result of this paper below. Furthermore, since
such a result concerns only the interior of D, the smoothness of the boundary of D is no
longer necessary. Still, some geometric conditions for D are needed. These conditions are
related to the heat kernel pD(t, x, y) of the killed Brownian motion WD and its tail function
t 7→ Px(t < τWD ).

We will say that a decreasing function f : (0,∞)→ (0,∞) satisfies the doubling property
if, for every T > 0, there exists a constant c > 0 such that f(t) ≤ cf(2t) for all t ∈ (0, T ].

(B1) The function t 7→ Px(t < τWD ) satisfies the doubling property (with a doubling constant
independent of x ∈ D).

(B2) There exist constants c ≥ 1 and M ≥ 1 such that for all t ≤ 1 and x, y ∈ D,

c−1 Px(t < τWD )Py(t < τWD ) t−d/2e−
M|x−y|2

t

≤ pD(t, x, y) ≤ cPx(t < τWD )Py(t < τWD ) t−d/2e−
|x−y|2
Mt . (1.9)

If D is either a bounded Lipschitz domain or an unbounded domain consisting of all the
points above the graph of a globally Lipschitz function, then (B1) and (B2) are satisfied, cf.
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[39, (0.36) and (0.25)]. It is also easy to show that a C1,1 domain with compact complement
also satisfies (B1) and (B2).

Theorem 1.3 Suppose that (A1)-(A5) and (A7) hold. Let D ⊂ Rd be a domain satisfying
(B1) and (B2). There exists a constant b = b(φ, d) > 2 such that, for every open set E ⊂ D
and every Q ∈ ∂E ∩D such that E is C1,1 near Q with characteristics (δD(Q) ∧ 1,Λ), the
following holds: There exists a constant C = C(δD(Q) ∧ 1,Λ, φ, d) > 0 such that for every
r ≤ (δD(Q) ∧ 1)/(b+ 2) and every non-negative function f on D which is regular harmonic
in E ∩B(Q, r) with respect to Y D and vanishes on Ec ∩B(Q, r), we have

f(x)

φ(δE(x)−2)−1/2
≤ C

f(y)

φ(δE(y)−2)−1/2
, x, y ∈ E ∩B(Q, 2−6κ4r) ,

where κ is the constant defined in (1.6).

Again, Theorem 1.3 is new even in the case of a stable subordinator. The method of proof
of Theorem 1.3 is quite different from that of Theorem 1.2. It relies on a comparison of the
Green functions of subprocesses of Y D and X for small interior subsets of D, and on some
already available potential-theoretic results for X obtained in [21]. To be more precise, let
U ⊂ D be a C1,1 set with diameter comparable to its distance to ∂D, and let Y D,U and XU

denote processes Y D and X killed upon exiting U respectively. We show that the Dirichlet
form of Y D,U is equal to the Dirichlet form of a non-local Feynman-Kac-type transform
of XU , and that the corresponding conditional gauge is bounded from below, cf. Lemmas
7.4 and 7.8. This immediately implies comparability of the Green functions. The proof of
Theorem 1.3 now mainly uses the corresponding result for the process X and properties of
the jumping kernel of Y D.

Finally, one of the ingredients in the proof of Theorem 1.2 is the scale invariant HI.
We will show in Theorem 3.1 that when (A1)–(A3) and (B1)–(B2) hold, there exists a
constant C > 0 such that for any r ∈ (0, 1] and B(x0, r) ⊂ D and any function f which is
non-negative in D and harmonic in B(x0, r) with respect to Y D, we have

f(x) ≤ Cf(y) for all x, y ∈ B(x0, r/2).

The proof of the HI is modeled after the powerful method developed in [20].

Organization of the paper: In the next section we collect several results concerning
subordinators satisfying (A1)–(A3), the subordinate killed Brownian motion Y D and its
relation with the killed subordinate Brownian motion XD. In Section 3 we prove the scale
invariant HI for Y D. As preparation for the subsequent sections, in Section 4 we give sharp
two-sided estimates on the jumping kernel and Green function of Y D. The Carleson estimate,
an important ingredient in proving the BHP, is obtained in Section 5. We continue in Section
6 with the proof of the BHP in C1,1 domains with explicit decay rate. The proof of Theorem
1.3 is given in Section 7. This last section can be read independently of Sections 4–6 and
uses only Lemmas 3.2, 3.4 and Proposition 3.5.

Notation: We will use the following conventions in this paper. Capital letters C,Ci, i =
1, 2, . . . will denote the constants in the statements of results and the labeling of these
constants starts anew in each result. Lower case letters c, ci, i = 1, 2, . . . are used to denote
the constants in the proofs and the labeling of these constants starts anew in each proof.
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ci = ci(a, b, c, . . .), i = 0, 1, 2, . . . denote constants depending on a, b, c, . . .. Dependence
of constants on the constants in (A1)–(A7) and (B1)–(B2) is implicit and will not be
mentioned explicitly. For any two positive functions f and g, f � g means that there is
a positive constant c ≥ 1 so that c−1 g ≤ f ≤ c g on their common domain of definition.
We will use “:=” to denote a definition, which is read as “is defined to be”. For a, b ∈ R,
a ∧ b := min{a, b} and a ∨ b := max{a, b}. For any x ∈ Rd, r > 0 and 0 < r1 < r2, we use
B(x, r) to denote the open ball of radius r centered at x and use A(x, r1, r2) to denote the
annulus {y ∈ Rd : r1 ≤ |y − x| < r2}. For a set V in Rd, |V | denotes the Lebesgue measure
of V in Rd.

2 Preliminaries

In this section we collect several results concerning subordinators satisfying (A1)–(A3), the
subordinate killed Brownian motion Y D and its relation with killed subordinate Brownian
motion XD.

Let φ be a Bernstein function and let S be a subordinator with Laplace exponent φ.
Throughout this section, we always assume that (A1)–(A3) are in force. The potential
density u(t) of S satisfies the following two estimates:

u(t) ≤ (1− 2e−1)−1
φ′(t−1)

t2φ(t−1)2
, t > 0 , (2.1)

and, for every M > 0 there exists c1 = c1(M) > 0 such that

u(t) ≥ c1
φ′(t−1)

t2φ(t−1)2
, 0 < t ≤M . (2.2)

For the upper estimate see [20, Lemma A.1], and for the lower one see [20, Proposition 3.4].
The density µ(t) of the Lévy measure of S satisfies the following two estimates:

µ(t) ≤ (1− 2e−1)−1t−2φ′(t−1) , t > 0 , (2.3)

and, for every M > 0 there exists c2 = c2(M) > 0 such that

µ(t) ≥ c2t
−2φ′(t−1) , 0 < t ≤M . (2.4)

For the upper estimate see [20, Lemma A.1], and for the lower one see [20, Proposition 3.3].
From the last two inequalities it follows that µ(t) satisfies the doubling property near zero:
For every M > 0 there exists c3 = c3(M) > 0 such that

µ(t) ≤ c3µ(2t) , 0 < t ≤M . (2.5)

We will often use the next lemma, cf. [29, Lemma 2.1].

Lemma 2.1 (a) For every Bernstein function φ,

1 ∧ λ ≤ φ(λt)

φ(t)
≤ 1 ∨ λ , for all t > 0, λ > 0 . (2.6)
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(b) If φ is a special Bernstein function, then for any a ∈ [0, 2], λ 7→ λ2 φ
′(λ)

φ(λ)a
is an increasing

function. Furthermore, for any γ > 2, limλ→0 λ
γ φ
′(λ)

φ(λ)2
= 0.

(c) If φ is a special Bernstein function, then for every d ≥ 2, γ ≥ 2, λ > 0, b ∈ (0, 1] and
a ∈ [1,∞), it holds that

b

ad+γ+1

φ′(λ−2)

λd+γφ(λ−2)2
≤ φ′(t−2)

td+γφ(t−2)2
≤ a

bd+γ+1

φ′(λ−2)

λd+γφ(λ−2)2
, for all t ∈ [bλ, aλ] .

(2.7)

Let W be a Brownian motion in Rd with transition density

p(t, x, y) = (4πt)−
d
2 exp

(
−|x− y|

2

4t

)
, t > 0, x, y ∈ Rd .

Let D ⊂ Rd be a domain and WD the Brownian motion W killed upon exiting D. We denote
by pD(t, x, y) the transition density of WD, and by (PD

t )t≥0 the corresponding semigroup.
By the strong Markov property, pD(t, x, y) is given by the formula

pD(t, x, y) = p(t, x, y)− Ex[p(t− τD,WτD , y), τD < t] , t > 0, x, y ∈ D . (2.8)

Suppose that W is independent of the subordinator S. Recall that Xt = WSt is the
subordinate Brownian motion and (XD

t )t≥0 is the subprocess of X killed upon exiting D.
Then X has a transition density given by

q(t, x, y) =

∫ ∞
0

p(s, x, y)P(St ∈ ds) .

When X is transient, it admits a Green function GX(x, y) given by

GX(x, y) =

∫ ∞
0

q(t, x, y) dt =

∫ ∞
0

p(t, x, y)u(t) dt .

When d ≥ 3, the Green function GX(x, y) enjoys the following estimate, cf. [20, Proposition
4.5] and [29, (2.16)]: For every M > 0 there exists c(M) ≥ 1 such that

GX(x, y) ≤ c(M)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
, for all x, y ∈ D, |x− y| ≤M . (2.9)

When d = 2, under the extra assumptions (A4)–(A5), the Green function estimate above is
also valid, cf. [20, Proposition 4.5] and [29, (2.16)]. The transition semigroup of XD will be
denoted by (QD

t )t≥0. Let Y D
t = WD

St
be the subordinate killed Brownian motion in D with

lifetime denoted by ζ. The transition semigroup (RD
t )t≥0 of Y D admits a transition density

given by

rD(t, x, y) =

∫ ∞
0

pD(s, x, y)P(St ∈ ds) . (2.10)

The subordinate killed Brownian motion Y D is a transient process, hence admits a Green
function

GY D(x, y) =

∫ ∞
0

rD(t, x, y) dt =

∫ ∞
0

pD(t, x, y)u(t) dt , (2.11)
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and clearly GY D(x, y) ≤ GX(x, y), x, y ∈ D.

Let JY
D

(x, y) be the jumping density of Y D given by

JY
D

(x, y) =

∫ ∞
0

pD(t, x, y)µ(t) dt , (2.12)

and let JX(x, y) = jX(|x− y|) be the Lévy density of X given by

jX(|x− y|) =

∫ ∞
0

p(t, x, y)µ(t) dt. (2.13)

Clearly JY
D

(x, y) ≤ jX(|x − y|), x, y ∈ D. Furthermore, similarly as in (2.9) (cf. [20,
Proposition 4.2]), either when d ≥ 3 or when d = 2 and (A4) holds, there exists c(M) ≥ 1
such that

c(M)−1
φ′(|x− y|−2)
|x− y|d+2

≤ jX(|x− y|) ≤ c(M)
φ′(|x− y|−2)
|x− y|d+2

, |x− y| ≤M . (2.14)

We recall now some properties of Y D connected to its relationship with XD. It is shown
in [35] that Y D can be realized as XD killed at a terminal time, and consequently, cf. [35,
Proposition 3.1], the semigroup (RD

t )t≥0 is subordinate to the semigroup (QD
t )t≥0 in the sense

that RD
t f(x) ≤ QD

t f(x) for all Borel f : D → [0,∞), all t ≥ 0 and all x ∈ D. Furthermore,
it follows from [38] that if U ⊂ D is Lipschitz, then

Px(XD
τU
∈ ∂U) = 0. (2.15)

Here τU denotes the first exit time of the process XD from U . For simplicity, we will
sometimes use the same notation for the exit time from U for other processes when it will
be clear from the context which process we have in mind. Since Y D can be realized as XD

killed at a terminal time, it follows immediately from (2.15) that we also have

Px(Y D
τU
∈ ∂U) = 0. (2.16)

Again, by using that Y D can be realized as XD killed at a terminal time, it follows from [35,
Corollary 4.2(i)] that

Px(Y D
ζ− ∈ D) = 1 for all x ∈ D , (2.17)

i.e., the process Y D dies inside D almost surely (and not at the boundary ∂D).
For any open set U ⊂ D, let Y D,U be the subprocess of Y D killed upon exiting U . Define

rD,U(t, x, y) = rD(t, x, y)− Ex[rD(t− τU , Y D
τU
, y) : τU < t] t > 0, x, y ∈ U. (2.18)

Then, by the strong Markov property, rD,U(t, x, y) is the transition density of Y D,U . Let

GY D

U (x, y) =
∫∞
0
rD,U(t, x, y)dt denote the Green function of Y D,U . Since rD,U(t, x, y) ≤

rD(t, x, y) for all t ≥ 0, we clearly have that GY D

U (x, y) ≤ GY D(x, y) for all x, y ∈ U .
Let again U ⊂ D be an open set, WU the Brownian motion W killed upon exiting U , and

Y U
t := WU

St
the corresponding subordinate killed Brownian motion with its Green function

denoted by GY U (x, y), x, y ∈ U . Similar to the fact that the semigroup (RD
t )t≥0 of Y D is

subordinate to the semigroup (QD
t )t≥0 of XD, we also have that the semigroup of Y U is

10



subordinate to the semigroup of Y D,U . In fact, this follows directly from [35, Proposition
3.1] by considering Y D as the underlying process. After integrating over time, it follows that

GY U (x, y) ≤ GY D

U (x, y) for all x, y ∈ U . (2.19)

Note that

pD(t, z, w) ≤ p(t, x/2, y/2) = (4πt)−
d
2 exp

(
−|x− y|

2

16t

)
,

for all z, w, |z − w| ≥ |x − y|/2. Hence by the continuity of (x, y) 7→ pD(t, x, y) and the
dominated convergence theorem, we see from (2.10) that (x, y) 7→ rD(t, x, y) is continuous
on D ×D. Consequently, (RD

t )t≥0 satisfies the strong Feller property.
Recall that for an open set D ⊂ Rd, a point x ∈ ∂D is said to be regular for Dc with

respect to Brownian motion if Px(τWD = 0) = 1, where τWD := inf{t > 0 : Wt /∈ D} is the
first exit time of D for W . It is well known that, if all points on ∂D are regular for Dc with
respect to Brownian motion, then WD is a Feller process on D (see [13, (7) in Theorem 2.4]).
By Phillips’ theorem (see [31, Proposition 13.1]), in this case Y D is also a Feller process, i.e.,
(RD

t )t≥0 is a strongly continuous contraction semigroup on (C0(D), ‖ · ‖∞). Thus Y D enjoys
both the Feller and strong Feller property.

Lemma 2.2 Suppose that D ⊂ Rd is a domain. Let K be a compact set and G be an open
set with K ⊂ G ⊂ G ⊂ D. Then for any ε > 0, there is t0 > 0 such that

sup
x∈K

Px(τY
D

G ≤ t0) ≤ ε. (2.20)

In particular, Px(τY
D

G ≤ t)→ 0 uniformly on K as t→ 0.

Proof. In the case when all points on ∂D are regular for Dc with respect to Brownian
motion, Y D is a Feller process and this lemma follows from [12, Lemma 2]. In the general
case, we can take an open set U ⊂ D with all points on ∂U being regular for U c such that
G ⊂ U . Let τY

U

G be the first time the process Y U exits G. Then τY
U

G ≤ τY
D

G . Combining
this with [12, Lemma 2] we immediately get the conclusion of the lemma. 2

Proposition 2.3 Suppose that (A5) holds, D ⊂ Rd is a domain and that U is an open set
with U ⊂ D. Then for each t > 0, (x, y) 7→ rD,U(t, x, y) is continuous on U × U , and for

each y ∈ U , x 7→ GY D

U (x, y) is continuous on U \ {y}.

Proof. Note that for all β > 0,

sup
|x−y|≥β,t>0

rD(t, x, y) ≤ sup
|x−y|≥β,t>0

q(t, x, y) ≤ sup
t>0

∫
(0,∞)

sup
|x|≥β

p(s, x)P(St ∈ ds)

≤ sup
t>0

∫
(0,∞)

sup
s>0,|x|=β

p(s, x)P(St ∈ ds) = sup
s>0,|x|=β

p(s, x) <∞. (2.21)

Using Lemma 2.2, the strong Feller property of (RD
t )t≥0 and (2.21), one can follow the

proof of [13, Theorem 2.4] line by line and show that, for each t > 0, (x, y) → Ex[rD(t −
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τU , Y
D
τU
, y) : τU < t] is continuous on U×U . Thus, by (2.18) and the already proven fact that

(x, y) 7→ rD(t, x, y) is continuous, we see that (t, x, y) 7→ rD,U(x, y) is continuous on U × U .
Fix y 6= x0 ∈ U and consider x ∈ B(x0, ε) ⊂ D \B(y, ε). Then, since |x−y| ≥ |x0−y|/2,

we have rD,U(t, x, y) ≤ q(t, x, y) ≤ q(t, x0/2, y/2). Moreover, t 7→ q(t, x0/2, y/2) ∈ L1(0,∞)
because X is transient. Therefore, by applying the dominated convergence theorem to
GY D

U (x, y) =
∫∞
0
rD,U(t, x, y)dt, we conclude that x 7→ GY D

U (x, y) is continuous on B(x0, ε) ⊂
D \B(y, ε). 2

3 Harnack inequality

The goal of this section is to prove the following scale invariant HI for non-negative functions
harmonic with respect to Y D when the domain D satisfies (B1) and (B2).

Theorem 3.1 (Harnack inequality) Assume that (A1)–(A3) hold and that D ⊂ Rd is
a domain satisfying (B1)–(B2). There exists a constant C > 0 such that for any r ∈ (0, 1]
and B(x0, r) ⊂ D and any function f which is non-negative in D and harmonic in B(x0, r)
with respect to Y D, we have

f(x) ≤ Cf(y), for all x, y ∈ B(x0, r/2).

As already mentioned in the introduction, the proof is modeled after the proof of the HI
in [20]. In the remaining part of this section we assume that the assumptions (A1)–(A3)
hold true.

Lemma 3.2 Let D be a domain in Rd satisfying (B2) and b > 0 a constant. There exists
C > 0 depending on b such that

pD(t, x, y) ≥ Ct−d/2e−M |x−y|
2/t,

√
t ≤ b(δD(x) ∧ δD(y)) ∧ 1. (3.1)

Proof. If
√
t ≤ bδD(x), then Px(t < τWD ) ≥ Px(t < τW

B(x,b−1t1/2)
) ≥ c for some constant

c = c(b) > 0 independent of x and t. Now the conclusion of this lemma follows immediately
from (B2). 2

Remark 3.3 By using a simple chaining argument, the conclusion of this lemma is actually
true under the following alternative (and seemingly weaker) assumption: There exist λ1 ∈
[1,∞) and λ2 ∈ (0, 1] such that for all r ≤ 1 and x, y ∈ D with δD(x) ∧ δD(y) ≥ r there
exists a length parameterized rectifiable curve l connecting x to y with the length |l| of l less
than or equal to λ1|x− y| and δD(l(u)) ≥ λ2r for u ∈ [0, |l|]. Since in the proofs of Lemmas
3.4 and 3.6–3.7, and Propositions 3.9–3.10, only (3.1) is used, we can replace (B2) in these
results by the alternative assumption above.

Lemma 3.4 Let D be a domain satisfying (B2) and ε0 > 0 a constant. There exists a
constant C = C(ε0) ∈ (0, 1) such that for every x0 ∈ D and r ≤ 1/2 satisfying B(x0, (1 +
ε0)r) ⊂ D, we have

CJX(x, y) ≤ JY
D

(x, y) ≤ JX(x, y), x, y ∈ B(x0, r). (3.2)
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Proof. The second inequality in (3.2) is obvious, so we will only prove the first inequality. It
follows from Lemma 3.2 (with b = 2/ε0) that there exist c1, c2 > 0 such that for any t ≤ 4r2,

pD(t, x, y) ≥ c1t
−d/2e−c2|x−y|

2/t.

Thus for x, y ∈ B(x0, r),

JY
D

(x, y) ≥
∫ |x−y|2
0

pD(t, x, y)µ(t)dt ≥ µ(|x− y|2)
∫ |x−y|2
0

pD(t, x, y)dt

≥ c1µ(|x− y|2)
∫ |x−y|2
0

t−d/2e−c2|x−y|
2/tdt ≥ c3|x− y|−d−2φ′(|x− y|−2)

≥ c4J
X(x, y),

where in the second inequality of the second line we used (2.4), and in the last inequality we
used (2.14).

2

Proposition 3.5 Let D be a domain satisfying (B1)–(B2). For every ε0 ∈ (0, 1], there
exists a constant C ≥ 1 depending on the constants from (B1)–(B2) and ε0 such that for
all x0 ∈ D and all r ≤ 1 satisfying B(x0, (1 + ε0)r) ⊂ D, it holds that

JY
D

(z, x1) ≤ CJY
D

(z, x2) , x1, x2 ∈ B(x0, r), z ∈ D \B(x0, (1 + ε0)r) . (3.3)

Proof. Suppose that r, ε0 ≤ 1, B(x0, (1+ε0)r) ⊂ D and x1, x2 ∈ B(x0, r). Then for t < ε20r
2,

we have
Px2(t < τWD ) ≥ Px2(t < τWB(x2,t1/2)

) ≥ c1

for some constant c1 = c1(ε0) > 0 independent of x2 and t. By combining with (B2) we see
that there exists c2 > 1 such that for z ∈ D and t < ε20r

2,

pD(t, z, x1) ≤ c2Pz(t < τWD )t−d/2e−
|z−x1|

2

Mt ,

pD(t, z, x2) ≥ c−12 Pz(t < τWD )t−d/2e−
M|z−x2|

2

t .

Now suppose that z ∈ D \B(x0, (1 + ε0)r) so that

1

1 + ε0
|z − x0| ≤ |z − xi| ≤

(
1 +

1

1 + ε0

)
|z − x0|, i = 1, 2.

Then ∫ ε20r
2

0

pD(t, z, x1)µ(t)dt ≤ c2

∫ ε20r
2

0

Pz(t < τWD )t−d/2e−
|z−x2|

2

16Mt µ(t)dt

= c2(16M2)d/2−1
∫ 16M2ε20r

2

0

Pz(
t

16M2
< τWD )t−d/2e−

M|z−x2|
2

t µ(t/(16M2))dt.
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Using the doubling property of t 7→ Pz(t < τWD ) ((B1)) and the doubling property (2.5) of
µ(t) near the origin, we get that there exists c3 > 1 such that∫ ε20r

2

0

pD(t, z, x1)µ(t)dt ≤ c3

∫ 16M2ε20r
2

0

pD(t, z, x2)µ(t)dt. (3.4)

Using the parabolic Harnack principle (see, for instance, [14, Theorem 5.4]), we get that
there exists c4 > 1 such that∫ ∞

ε20r
2

pD(t, z, x1)µ(t)dt =
∞∑
n=1

∫ (n+1)ε20r
2

nε20r
2

pD(t, z, x1)µ(t)dt

≤ c4

∞∑
n=1

∫ (n+1)ε20r
2

nε20r
2

pD(t+
ε20r

2

2
, z, x2)µ(t)dt

= c4

∞∑
n=1

∫ (n+ 3
2
)ε20r

2

(n+ 1
2
)ε20r

2

pD(t, z, x2)µ(t− ε20r
2

2
)dt .

If t < 1, then by (2.5) we have µ(t − ε20r2/2) ≤ µ(t/2) ≤ c5µ(t) with c5 ≥ 1. If t ≥ 1, then
µ(t − ε20r2/2) ≤ µ(t − 1/2). By (1.2), there exists c6 ≥ 1 such that µ(s) ≤ c6µ(s + 1/2) for
all s > 1/2. Hence, µ(t− 1/2) ≤ c6µ(t). With c7 = c5 ∨ c6, we conclude that µ(t− ε20r2/2) ≤
c7µ(t) for all t ≥ 3r2/2. Hence,∫ ∞

ε20r
2

pD(t, z, x1)µ(t)dt ≤ c4c7

∞∑
n=1

∫ (n+ 3
2
)ε20r

2

(n+ 1
2
)ε20r

2

pD(t, z, x2)µ(t)dt

≤ c8

∫ ∞
(3ε20r

2)/2

pD(t, z, x2)µ(t)dt . (3.5)

Combining (3.4) and (3.5), we get that there exists c9 > 1 such that∫ ∞
0

pD(t, z, x1)µ(t)dt ≤ c9

∫ ∞
0

pD(t, z, x2)µ(t)dt ,

which finishes the proof. 2

Lemma 3.6 Suppose d ≥ 2. Let D be a domain in Rd satisfying (B2). In the case d = 2,
we also assume that (A4) and (A5) hold. There exist a ∈ (0, 1/3) and C > 0 such that for
every x0 ∈ D and every r ∈ (0, 1) satisfying B(x0, r) ⊂ D,

GY D

B(x0,r)
(x, y) ≥ C|x− y|−d−2 φ

′(|x− y|−2)
φ(|x− y|−2)2

, x, y ∈ B(x0, ar) . (3.6)

Proof. It follows from Lemma 3.2 that there exist c1, c2 > 0 such that

pD(t, x, y) ≥ c1t
−d/2e−c2|x−y|

2/t, δD(x) ∧ δD(y) ∧ 1 ≥
√
t.
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Note that for a ∈ (0, 1), (1 − a)/2a > 1 if and only if a < 1/3. Choose a ∈ (0, 1/3) and let
x, y ∈ B(x0, ar) with r ∈ (0, 1) satisfying B(x0, r) ⊂ D. Then δD(x), δD(y) ≥ (1 − a)r and
|x− y| ≤ 2ar. Thus δD(x) ∧ δD(y) ≥ ((1− a)/2a)|x− y|. Therefore, by (2.2),

GY D(x, y) ≥
∫ |x−y|2
0

pD(t, x, y)u(t)dt

≥ c1u(|x− y|2)
∫ |x−y|2
0

t−d/2e−c2|x−y|
2/tdt

≥ c3|x− y|−d−2
φ′(|x− y|−2)
φ(|x− y|−2)2

. (3.7)

For simplicity, let B = B(x0, r). For y ∈ B(x0, ar), we have

|Y D
τB
− y| ≥ |Y D

τB
− x0| − |y − x0| ≥ r − ar ≥ 1− a

2a
|x− y| ≥ |x− y| .

By the above inequalities, [20, Proposition 4.5] and Lemma 2.1(b), we have

GY D(Y D
τB
, y) ≤ GX(Y D

τB
, y) ≤ GX

(
1− a

2a
x,

1− a
2a

y

)
≤ c4

(
1− a

2a
|x− y|

)−d+2

(
1− a

2a
|x− y|)−4

φ′((1−a
2a
|x− y|)−2)

φ((1−a
2a
|x− y|)−2)2

(3.8)

≤ c4

(
1− a

2a
|x− y|

)−d+2

|x− y|−4 φ
′(|x− y|−2)

φ(|x− y|−2)2

= c4

(
2a

1− a

)d−2
|x− y|−d−2 φ

′(|x− y|−2)
φ(|x− y|−2)2

. (3.9)

When d ≥ 3, choose a ∈ (0, 1/3) small enough so that c3 − c4
(

2a
1−a

)d−2 ≥ 1
2c4

. Then, by

(3.9), for x, y ∈ B(x0, ar) we have

GY D

B(x0,r)
(x, y) = GY D(x, y)− ExGY D(Y D

τB
, y)

≥

(
c3 − c4

(
2a

1− a

)d−2)
|x− y|−d−2 φ

′(|x− y|−2)
φ(|x− y|−2)2

≥ 1

2c4
|x− y|−d−2 φ

′(|x− y|−2)
φ(|x− y|−2)2

.

When d = 2, by (3.8), for x, y ∈ B(x0, ar), we have

GY D

B(x0,r)
(x, y) ≥ c3

1− c4
c3

ψ
((

2a
1−a

)2 |x− y|−2)
ψ(|x− y|−2)

 |x− y|−4 φ′(|x− y|−2)
φ(|x− y|−2)2

, (3.10)

where
ψ(λ) = λ2 φ

′(λ)
φ(λ)2

, λ > 0 .
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Since the δ′ in (A4) is in (0, 2δ), we can choose ε > 0 small enough so that 2δ− δ′− 2ε > 0.
By [20, Lemma 3.2(ii)], there exists cε > 0 such that

φ(λs)

φ(λ)
≤ cε s

1−δ+ε for all λ ≥ 1 and s ≥ 1 . (3.11)

Choose a < 1
3

small enough so that

c4
c3

1

σ′
c2ε

(
2a

1− a

)2δ−δ′−2ε

≤ 1

2
,

where σ′ is the constant in (A4). Then, by (A4) and (3.11), we have

c4
c3

ψ
((

2a
1−a

)2 |x− y|−2)
ψ(|x− y|−2)

=
c4
c3

(
2a
1−a

)4 φ′ (( 2a
1−a

)2 |x− y|−2)φ(|x− y|−2)2

φ′(|x− y|−2)φ
((

2a
1−a

)2 |x− y|−2)2
≤c4
c3

1

σ′
c2ε

(
2a

1− a

)2δ−δ′−2ε

≤ 1

2
. (3.12)

The lemma for d = 2 now follows from (3.10) and (3.12). 2

Lemma 3.7 Suppose d ≥ 2. Let D be a domain in Rd satisfying (B2). When d = 2, we
also assume that (A4) and (A5) hold. There exists C > 0 such that for every x0 ∈ D and
every r ∈ (0, 1) with B(x0, r) ⊂ D,

ExτY
D

B(x0,r)
≥ Cφ(r−2)−1 , x ∈ B(x0, ar/2) ,

where a ∈ (0, 1/3) is the constant from Lemma 3.6.

Proof. Using Lemmas 2.1 and 3.6, this is proved exactly in the same way as [20, Proposition
5.2]. 2

For all x ∈ D and r > 0 with B(x, r) ⊂ D, and all non-negative functions f , we define

(Urf)(x) =
Ex[f(Y D(τB(x,r)))]− f(x)

ExτY
D

B(x,r)

.

Then Example 5.4, Remark 5.5 and Proposition 5.6 from [20] are valid for Y D. Thus, with

η(z) := EzτY
D

B(x,r),

Usη(y) = −1 for any y ∈ B(x, r) and s < r − |y − x|, (3.13)

and, for any function h : D → [0,∞) which is harmonic in a bounded open set U ⊂ D,

(Ush)(x) = 0 for all x ∈ U. (3.14)

If f(x0) ≤ f(x) for all x ∈ Rd then (Urf)(x0) ≥ 0. Thus we have the following type of
maximum principle.
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Proposition 3.8 (Maximum principle) Assume that there exist x0 ∈ D and r > 0 such
that (Urf)(x0) < 0. Then

f(x0) > inf
x∈D

f(x) . (3.15)

The next three results are also valid when d = 2 if we further assume that (A4) and
(A5) hold. Since we will only need these results for d ≥ 3, we state them for d ≥ 3 without
the extra assumptions. From now until the proof of Theorem 3.1, we will assume that d ≥ 3.

By using GY D(x, y) ≤ GX(x, y) and the estimate (2.9) (with M = 2) one gets that there
exists c1 > 0 such that for every x0 ∈ D and every r ∈ (0, 1) with B(x0, r) ⊂ D, we have

ExτY
D

B(x0,r)
≤ c1φ(r−2)−1 , x ∈ B(x0, r) . (3.16)

Let

g(r) := c2r
−d−2 φ

′(r−2)

φ(r−2)2
, j(r) := c3r

−d−2φ′(r−2) , r > 0 , (3.17)

where c2 is the constant c(2) from (2.9) and c3 is the constant c(2) from (2.14). Then for all
x, y ∈ D with |x− y| < 2,

GY D(x, y) ≤ GX(x, y) ≤ g(|x− y|) , JY
D

(x, y) ≤ jX(|x− y|) ≤ j(|x− y|) .

In particular, for any domain D, any x0 ∈ Rd, any s ∈ (0, 1) with B(x0, s) ⊂ D,

GY D(x, y) ≤ g(|x− y|) ≤ g
(s

8

)
, x ∈ B

(
x0,

s

2

)
, y ∈ B

(
x,
s

8

)c
. (3.18)

Proposition 3.9 Suppose d ≥ 3. Let D be a domain in Rd satisfying (B2). There exists a
constant C > 0 such that for all r ∈ (0, 1) and all x0 ∈ D satisfying B(x0, r) ⊂ D,

GY D

B(x0,r)
(x, y) ≤ Cr−d−2

φ′(r−2)

φ(r−2)
EyτY

D

B(x0,r)
, x ∈ B(x0, ar/4), y ∈ A(x0, 2

−1ar, r) , (3.19)

where a ∈ (0, 1/3) is the constant from Lemma 3.6 and b = a/2.

Proof. We follow the proof of [20, Proposition 5.7]. Let x ∈ B(x0, 2
−2ar) and y ∈

A(x0, 2
−1ar, r) and define functions

η(z) := EzτY
D

B(x0,r)
and h(z) := GY D

B(x0,r)
(x, z).

It follows from (3.18) that h(z) ≤ g(2−4ar) for z ∈ B(x, 2−4ar)c. Note that h is harmonic
with respect to Y D in B(x0, r) \ {x} .

Choose s < (r− |y− x0|)∧ (2−3ar). Then for y ∈ A(x0, 2
−1ar, r) ⊂ B(x, 2−4ar)c, we can

use the Lévy system formula, (2.16) and (3.14) to get

Us(h ∧ g(2−4ar))(y) = Us(h ∧ g(2−4ar)− h)(y)

=
1

EyτY
D

B(y,s)

∫
B(y,s)

c

∫
B(y,s)

GY D

B(y,s)(y, v)JY
D

(z, v)((h(z) ∧ g(2−4ar))− h(z)) dv dz

=
1

EyτY
D

B(y,s)

∫
B(x,2−4ar)

∫
B(y,s)

GY D

B(y,s)(y, v)JY
D

(z, v)((h(z) ∧ g(2−4ar))− h(z)) dv dz
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≥ − 1

EyτY
D

B(y,s)

∫
B(x,2−4ar)

∫
B(y,s)

GY D

B(y,s)(y, v)JY
D

(z, v)h(z) dv dz.

Note that |z−v| ≥ |x−y|− |x−z|− |y−v| ≥ 2−4ar for z ∈ B(x, 2−4ar) and v ∈ B(y, s).

Thus −JY D(z, v) ≥ −j(|z − v|) ≥ −j(2−4ar). Hence

Us(h ∧ g(2−4ar)− h)(y)

≥ −j(2
−4ar)

EyτY
D

B(y,s)

(∫
B(x,2−4ar)

GY D

B(x0,r)
(x, z) dz

)
·
(∫

B(y,s)

GY D

B(y,s)(y, v) dv

)
≥ −j(2

−4ar)

EyτY
D

B(y,s)

(∫
B(x0,r)

GY D

B(x0,r)
(x, z) dz

)
EyτY

D

B(y,s)

= −j(2−4ar)η(x) ≥ −c1
(
2−4ar

)−d−2 r−d−2φ′(r−2)
φ(r−2)

, (3.20)

where in the last inequality we have used (3.16) and the fact that φ′ is decreasing.
Similarly, by Lemma 3.7, we see that there is a constant c2 > 0 such that

g(2−4ar) ≤ c2
(
2−4ar

)−d−2 r−d−2φ′(r−2)
φ(r−2)

η(z), for all z ∈ B(x0, 2
−1ar) .

Setting c3 := (c1 ∨ c2) (2−4ar)
−d−2

+ 1, we obtain that

c3
r−d−2φ′(r−2)

φ(r−2)
η(z)− (h(z) ∧ g(2−4ar)) ≥ c3

r−d−2φ′(r−2)

φ(r−2)
η(z)− g(2−4ar) ≥ 0

for all z ∈ B(x0, 2
−1ar). Therefore, the function

w(·) := c3
r−d−2φ′(r−2)

φ(r−2)
η(·)− (h(·) ∧ g(2−4ar))

is non-negative in B(x0, 2
−1ar), vanishes on B(x0, r)

c and, by (3.13) and (3.20),

Usw(y) ≤ −c3
r−d−2φ′(r−2)

φ(r−2)
+ c1

(
2−4ar

)−d−2 r−d−2φ′(r−2)
φ(r−2)

< 0 for y ∈ A(x0, 2
−1ar, r) .

In Proposition 2.3, we have shown that the function x → GY D

B(x0,r)
(x, y) is continuous

on B(x0, r) \ {y}. Since all excessive functions are lower semi-continuous in our setting,
η is lower semi-continuous, while h(·) ∧ g(2−4ar) is continuous, implying that w is lower
semi-continuous.

If it would hold that infy∈D w(y) < 0, then by lower semi-continuity of w on B(x0, r)
there would exist y0 ∈ A(x0, 2

−1ar, r) such that w(y0) = infy∈D u(y). But then Usw(y0) ≥ 0,
by Proposition 3.8, which is not true. Therefore infy∈D w(y) ≥ 0.

Finally, since h ≤ g(2−4ar) on A(x0, 2
−1ar, r), it follows that

GY D

B(x0,r)
(x, y) ≤ c4

r−d−2φ′(r−2)

φ(r−2)
η(y) for all y ∈ A(x0, 2

−1ar, r) .

2
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Proposition 3.10 Suppose d ≥ 3. Let D be a domain in Rd satisfying (B2). Then for
every ε0 ∈ (0, 1], there exist constants C > 0 and b ∈ (0, 1) such that for any r ∈ (0, 1) and
any x0 ∈ D satisfying B(x0, (1 + ε0)r) ⊂ D,

GY D

B(x0,r)
(x, y) ≥ Cr−d−2

φ′(r−2)

φ(r−2)
EyτY

D

B(x0,r)
, x ∈ B(x0, br), y ∈ B(x0, r) , (3.21)

where a ∈ (0, 1/3) is the constant from Lemma 3.6.

Proof. We follow the proof of [20, Proposition 5.8]. It follows from Lemma 3.6 that

GY D

B(x0,r)
(x, v) ≥ c1

|x− v|−d−2φ′(|x− v|−2)
φ(|x− v|−2)2

for x, v ∈ B(x0, ar) . (3.22)

By Proposition 3.9 we know that there exists a constant c2 > 0 such that

GY D

B(x0,r)
(x, v) ≤ c2

r−d−2φ′(r−2)

φ(r−2)
EvτY

D

B(x0,r)
for x ∈ B(x0,

ar
4

), v ∈ A(x0,
ar
2
, r) . (3.23)

We have seen in (3.16) that there is a constant c3 > 0 such that

EvτY
D

B(x0,r)
≤ c3
φ(r−2)

for v ∈ B(x0, r) . (3.24)

Take

b ≤ min

{
1
4

(
c1

2c2c3

)1/(d−2)
, a
8
, ε0

}
and fix it. Then c2c3 ≤ c1

2
(4b)−d+2 and so by Lemma 2.1(ii) we have

c2c3
r−d−2φ′(r−2)

φ(r−2)2
≤ c1

2
(4br)−d+2 r

−4φ′(r−2)

φ(r−2)2
≤ c1

2

(4br)−d−2φ′((4b)−2r−2)

φ((4b)−2r−2)2
.

Now, by (3.22) and (3.24), for all x ∈ B(x0, br) and v ∈ B(x, br) we get

c2
r−d−2φ′(r−2)

φ(r−2)
EvτY

D

B(x0,r)
≤ 1

2
GY D

B(x0,r)
(x, v) . (3.25)

For the rest of the proof, we fix x ∈ B(x0, br) and define a function

h(v) = GY D

B(x0,r)
(x, v) ∧

(
c2
r−d−2φ′(r−2)

φ(r−2)
EvτY

D

B(x0,r)

)
.

Let y ∈ A(x0,
ar
2
, r) and take s < (r − |y − x0|) ∧ br

8
. Note that, by (3.25),

h(v) ≤ 1
2
GY D

B(x0,r)
(x, v) for v ∈ B(x, br).

Therefore, the Lévy system formula, (2.16) and (3.14) yield

(Ush)(y) = Us
(
h−GY D

B(x0,r)
(x, ·)

)
(y)
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=
1

EyτY
D

B(y,s)

∫
B(y,s)

c

∫
B(y,s)

GY D

B(y,s)(y, v)JY
D

(z, v)
(
h(z)−GY D

B(x0,r)
(x, z)

)
dv dz

≤ − 1

2EyτY
D

B(y,s)

∫
B(x,br)

∫
B(y,s)

GY D

B(y,s)(y, v)JY
D

(z, v)GY D

B(x0,r)
(x, z) dv dz . (3.26)

Note that in the second equality we have used that h(y) = GY D

B(x0,r)
(x, y), which follows from

(3.23) .
It follows from Lemma 3.4 and (2.14) that there exist positive constants c4, c5 such that

for z ∈ B(x, br) ⊂ B(x0, r) and v ∈ B(y, s) ⊂ B(x0, r),

JY
D

(z, v) ≥ c4J
X(z, v) ≥ c5(2r)

−d−2φ′((2r)−2). (3.27)

Now it follows from (3.26) and (3.27) that

(Ush)(y) ≤ −c5(2r)
−d−2φ′((2r)−2)

2EyτY
D

B(y,s)

(∫
B(x,br)

GY D

B(x0,r)
(x, z) dz

)
EyτY

D

B(y,s)

≤ −c5(2r)−d−2φ′((2r)−2)
∫
B(x,br)

GY D

B(x,br)(x, z) dz

= −c5(2r)−d−2φ′((2r)−2)ExτY
D

B(x,br) .

By Lemma 3.7 and the facts that λ 7→ λ
φ(λ)

is increasing and φ′ is decreasing we arrive at

(Ush)(y) ≤ −c6
r−d−2φ′(r−2)

φ
(
(br)−2

) ≤ −c7 r−d−2φ′(r−2)
φ(r−2)

.

Define w(v) = h(v)− θEvτY
D

B(x0,r)
and

θ = min

{
c7
2
,
c1
2c3

,
c2
2

}
r−d−2φ′(r−2)

φ(r−2)
.

For y ∈ A(x0,
ar
2
, r) we have by (3.13) and the inequality above,

(Usw)(y) ≤ −c7
r−d−2φ′(r−2)

φ(r−2)
+ θ ≤ − c7

2

r−d−2φ′(r−2)

φ(r−2)
< 0 .

On the other hand, by (3.22) and (3.24), for all v ∈ B(x0,
ar
2

),

w(v) ≥
(
c1
c3
∧ c2

) r−d−2φ′(r−2)
φ(r−2)

EvτY
D

B(x0,r)
− θEvτY

D

B(x0,r)

≥
(
c1
2c3
∧ c2

2

) r−d−2φ′(r−2)
φ(r−2)

EvτY
D

B(x0,r)
≥ 0 .

Similarly as in Proposition 3.9, by using Proposition 3.8 we finally obtain

w(y) ≥ 0 for all y ∈ B(x0, r) .

2
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Corollary 3.11 Suppose d ≥ 3. Let D be a domain in Rd satisfying (B2). For every
ε0 ∈ (0, 1], there exist constants C > 1 and b1, b2 ∈ (0, 1/3) satisfying 2b1 < b2 such that for
all r ∈ (0, 1) and all x0 satisfying that B(x0, (1 + ε0)r) ⊂ D,

C−1r−d−2
φ′(r−2)

φ(r−2)
EyτY

D

B(x0,r)
≤ GY D

B(x0,r)
(x, y) ≤ Cr−d−2

φ′(r−2)

φ(r−2)
EyτY

D

B(x0,r)
,

for all x ∈ B(x0, b1r) and all y ∈ A(x0, b2r, r).

For any open set U ⊂ D, let

KD,U(x, z) :=

∫
U

GY D

U (x, y)JY
D

(y, z) dy , x ∈ U, z ∈ U c ∩D

be the Poisson kernel of Y D on U .

Proof of Theorem 3.1: We will first assume that d ≥ 3. Without loss of generality (by
considering (1− ε0)r instead of r if necessary), we may assume that B(x0, (1 + ε0)r) ⊂ D for
some small ε0 ∈ (0, 1). Let b1, b2 ∈ (0, 1/3) be as in Corollary 3.11. We will first show that
there exists a constant c > 0, independent of x0 and r, such that for all x1, x2 ∈ B(x0, b1r)

and z ∈ B(x0, r)
c
∩D,

KD,B(x0,r)(x1, z) ≤ cKD,B(x0,r)(x2, z) . (3.28)

Note that

KD,B(x0,r)(x1, z)

=

∫
B(x0,b2r)

GY D

B(x0,r)
(x1, y)JY

D

(y, z) dy +

∫
A(x0,b2r,r)

GY D

B(x0,r)
(x1, y)JY

D

(y, z) dy

= I1 + I2 .

In order to estimate I2 we use Corollary 3.11 to get

I2 ≤ c1
r−d−2φ′(r−2)

φ(r−2)

∫
A(x0,b2r,r)

EyτY
D

B(x0,r)
JY

D

(y, z) dy

≤ c21

∫
A(x0,b2r,r)

GY D

B(x0,r)
(x2, y)JY

D

(y, z) dy ≤ c21K
D,B(x0,r)(x2, z) .

To estimate I1 we argue as follows: First, since z ∈ B(x0, r)
c ⊂ B(x0, 2b2r)

c, it follows from

Proposition 3.5 (with ε0 = 1) that for y ∈ B(x0, b2r), J
Y D(x0, z) � JY

D
(y, z). Hence, by

(3.16), Lemma 2.1(a) and Lemma 3.7,

I1 ≤ c2J
Y D(x0, z)

∫
B(x0,b2r)

GY D

B(x0,r)
(x1, y) dy ≤ c2J

Y D(x0, z)Ex1τY
D

B(x0,r)

≤ c3J
Y D(x0, z)φ(r−2)−1 ≤ c4J

Y D(x0, z)φ((b2r)
−2)−1

≤ c5J
Y D(x0, z)Ex2τY

D

B(x0,b2r)
= c5J

Y D(x0, z)

∫
B(x0,b2r)

GY D

B(x0,b2r)
(x2, y) dy

≤ c5J
Y D(x0, z)

∫
B(x0,b2r)

GY D

B(x0,r)
(x2, y) dy
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≤ c6

∫
B(x0,b2r)

GY D

B(x0,r)
(x2, y)JY

D

(y, z) dy ≤ c6K
D,B(x0,r)(x2, z) .

Together with the previous display, this proves (3.28). Now, let f be a non-negative function
in D which is harmonic with respect to Y D in B(x0, r). Then, by the Lévy system formula
and (2.16)

f(x) =

∫
B(x0,r)

c
KD,B(x0,r)(x, z)f(z) dz , x ∈ B(x0, r) .

Hence for x1, x2 ∈ B(x0, b1r) we have

f(x1) =

∫
B(x0,r)

c
KD,B(x0,r)(x1, z)f(z) dz ≤ c6

∫
B(x0,r)

c
KD,B(x0,r)(x2, z)f(z) dz = c6f(x2) .

For x1, x2 ∈ B(x0, r/2), the inequality follows by a standard chain argument.
Now we assume that d ≤ 2. We will prove this case by reducing it to the high dimensional

case. Let D̃ = D×R2 and let Ỹ D̃ be the subordinate killed Brownian motion in D̃ ⊂ Rd+2.
For any function h defined in D, we define a function

h̃(x, y) = h(x), x ∈ D, y ∈ R2.

One can easily check by using the definitions that if h is harmonic in U ⊂ D with respect to

Y D, then h̃ is harmonic in U × R2 with respect to Ỹ D̃. Now the theorem for d ≤ 2 follows
from the case for d ≥ 3. 2

4 Jumping kernel and Green function estimates

In this section we will always assume that (A1)–(A6) hold. We further assume that d ≥
2 and that D ⊂ Rd is either a bounded C1,1 domain, or a C1,1 domain with compact
complement or a domain consisting of all the points above the graph of a bounded globally
C1,1 function. We will use (R,Λ) to denote the C1,1 characteristics of D in all three cases.

We first recall the following result from [29].

Proposition 4.1 ([29, Theorem 3.1]) Suppose that d ≥ 2. For every M > 0, there exists
a constant C = C(M) ≥ 1 such that for all x, y ∈ D with |x− y| ≤M ,

C−1
(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2

≤ GY D(x, y) ≤ C

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
.

We choose a C1,1-function ϕ : Rd−1 → R satisfying ϕ(0̃) = 0, ∇ϕ(0̃) = (0, . . . , 0),
‖∇ϕ‖∞ ≤ Λ, |∇ϕ(ỹ)−∇ϕ(w̃)| ≤ Λ|ỹ− w̃|, and an orthonormal coordinate system CSz with
its origin at z ∈ ∂D such that

B(z,R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CSz : yd > ϕ(ỹ)}.
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Define ρz(x) := xd − ϕ(x̃), where (x̃, xd) are the coordinates of x in CSz. Note that for
every z ∈ ∂D and x ∈ B(z, R) ∩D, we have

(1 + Λ2)−1/2 ρz(x) ≤ δD(x) ≤ ρz(x). (4.1)

We define for r1, r2 > 0,

Dz(r1, r2) := {y ∈ D : r1 > ρz(y) > 0, |ỹ| < r2} .

Recall that κ = (1+(1+Λ)2)−1/2. It is well known (see, for instance [32, Lemma 2.2]) that
there exists L = L(R,Λ, d) > 0 such that for every z ∈ ∂D and r ≤ κR, one can find a C1,1

domain Vz(r) with characteristics (rR/L,ΛL/r) such that Dz(r/2, r/2) ⊂ Vz(r) ⊂ Dz(r, r).
In this and the following two sections, given a C1,1 domain D, Vz(r) always refers to the C1,1

domain above.
It is easy to see that for every z ∈ ∂D and r ≤ κR,

Vz(r) ⊂ Dz(r, r) ⊂ D ∩B(z, r/κ). (4.2)

In fact, for all y ∈ Dz(r, r),

|y|2 = |ỹ|2 + |yd|2 < r2 + (|yd − ϕ(ỹ)|+ |ϕ(ỹ)|)2 < (1 + (1 + Λ)2)r2. (4.3)

By the fact that r−1Vz(r) is a C1,1 domain with characteristics (R/L,ΛL), we have the
following short-time estimates (cf. [41]): There exist positive constants c1, c2 such that for
any t ∈ (0, 4κ−2] and any x, y ∈ r−1Vz(r),

pr
−1Vz(r)(t, x, y) ≥ c1

(
δr−1Vz(r)(x)
√
t

∧ 1

)(
δr−1Vz(r)(y)
√
t

∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
.

Thus by the scaling property pVz(r)(t, x, y) = r−dpr
−1Vz(r)(r−2t, r−1x, r−1y), we have for any

t ∈ (0, 4κ−2r2] and any x, y ∈ Vz(r),

pVz(r)(t, x, y) ≥ c1

(
δVz(r)(x)√

t
∧ 1

)(
δVz(r)(y)√

t
∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
. (4.4)

We will use the following bound below: By the change of variables s = c|x − y|2/t, for
every c > 0 and a ∈ R, and any open set U , we have∫ |x−y|2

0

(
δU(x)√

t
∧ 1

)(
δU(y)√

t
∧ 1

)
t−a/2 exp

(
−c|x− y|

2

t

)
dt

=

∫ ∞
c

(√
s/c δU(x)

|x− y|
∧ 1

)(√
s/c δU(y)

|x− y|
∧ 1

)(
c|x− y|2

s

)−a/2
e−s

c|x− y|2

s2
ds

≥ c1−(a/2)
(
δU(x)

|x− y|
∧ 1

)(
δU(y)

|x− y|
∧ 1

)
|x− y|−a+2

∫ ∞
c

sa/2−2e−s ds. (4.5)

Proposition 4.2 There exists a constant C = C(R,Λ) ≥ 1 such that for all z ∈ ∂D,
r ≤ κ−1R and x, y ∈ Vz(r),

GY Vz(r)(x, y) ≥ C

(
δVz(r)(x)

|x− y|
∧ 1

)(
δVz(r)(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
. (4.6)
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Proof. Note that, by (4.2), we see that for x, y ∈ Vz(r), |x− y| < 2κ−1r. Thus, by (4.4),

GY Vz(r)(x, y) ≥ c1

∫ |x−y|2
0

(
δVz(r)(x)√

t
∧ 1

)(
δVz(r)(y)√

t
∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
u(t) dt.

Using the fact that u is decreasing and (2.2), we now have

GY Vz(r)(x, y)

≥ c1u(|x− y|2)
∫ |x−y|2
0

(
δVz(r)(x)√

t
∧ 1

)(
δVz(r)(y)√

t
∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
dt

≥ c3
φ′(|x− y|−2)

|x− y|4φ(|x− y|−2)2

∫ |x−y|2
0

(
δVz(r)(x)√

t
∧ 1

)
×
(
δVz(r)(y)√

t
∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
dt. (4.7)

By combining this with (4.5) we arrive at

GY Vz(r)(x, y) ≥ c4

(
δVz(r)(x)

|x− y|
∧ 1

)(
δVz(r)(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
.

2

We now consider estimates for JY
D

. We first recall

Proposition 4.3 ([29, Proposition 3.5]) For every M > 0, there exists a constant C =
C(M,R,Λ) ≥ 1 such that such that for all x, y ∈ D with |x− y| ≤M ,

C−1
(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)
|x− y|d+2

≤ JY
D

(x, y) ≤ C

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)
|x− y|d+2

.

Propositions 4.1 and 4.3 imply global two-sided estimates on GY D and JY
D

for bounded
D, but only give “local” two-sided estimates for unbounded D. Now we assume d ≥ 3 and
give global two-sided estimates for JY

D
for our two types of unbounded C1,1 domains. The

proof of the next theorem is very similar to that of [29, Theorem 3.2], where two-sided global

estimates were proved for GY D .

Theorem 4.4 Suppose that d ≥ 3 and that (A1)–(A3) and (A6) hold true.
(1) Let D ⊂ Rd be a domain consisting of all the points above the graph of a bounded globally
C1,1 function. There exists a constant C1 = C1(R,Λ) ≥ 1 such that for all x, y ∈ D,

C−11

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
µ(|x− y|2)
|x− y|d−2

≤ JY
D

(x, y)

≤ C1

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
µ(|x− y|2)
|x− y|d−2

.
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(2) Let D ⊂ Rd be a C1,1 domain with compact complement. There exists a constant C2 =
C2(R,Λ) ≥ 1 such that for all x, y ∈ D,

C−12

(
δD(x)

|x− y| ∧ 1
∧ 1

)(
δD(y)

|x− y| ∧ 1
∧ 1

)
µ(|x− y|2)
|x− y|d−2

≤ JY
D

(x, y)

≤ C2

(
δD(x)

|x− y| ∧ 1
∧ 1

)(
δD(y)

|x− y| ∧ 1
∧ 1

)
µ(|x− y|2)
|x− y|d−2

.

Proof. Using [29, (3.4)] and [29, (3.10)–(3.13)] instead of [29, (3.14)–(3.19)] the proof of (1)
is similar to (2). Thus, we give the proof of (2) only.
Upper bound: Using (1.4) and the fact µ is decreasing, we have from [29, (3.14)] that

JY
D

(x, y) =

∫ ∞
0

pD(t, x, y)µ(t) dt

≤ c1

∫ ∞
0

(
δD(x)√
t ∧ 1

∧ 1

)(
δD(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
µ(t) dt

≤ c3|x− y|2βµ(|x− y|2)
∫ |x−y|2
0

(
δD(x)√
t ∧ 1

∧ 1

)(
δD(y)√
t ∧ 1

∧ 1

)
t−β−d/2 exp

(
−c2
|x− y|2

t

)
dt

+ c1µ(|x− y|2)
∫ ∞
|x−y|2

(
δD(x)√
t ∧ 1

∧ 1

)(
δD(y)√
t ∧ 1

∧ 1

)
t−d/2 dt.

Together with [29, (3.16)–(3.17)] we obtain the upper bound.
Lower bound: Since µ is decreasing, by [29, (3.15)],

JY
D

(x, y) ≥ c4

∫ |x−y|2
0

(
δD(x)√
t ∧ 1

∧ 1

)(
δD(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c5|x− y|

2

t

)
µ(t) dt

≥ c4µ(|x− y|2)
∫ |x−y|2
0

(
δD(x)√
t ∧ 1

∧ 1

)(
δD(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c5|x− y|

2

t

)
dt .

Combining this and [29, (3.18)] we arrive at

JY
D

(x, y) ≥ c6

(
δD(x)

|x− y| ∧ 1
∧ 1

)(
δD(y)

|x− y| ∧ 1
∧ 1

)
µ(|x− y|2)
|x− y|d−2

.

2

5 Carleson estimate in C1,1 domain

In this section we will always assume that d ≥ 2 and that (A1)–(A6) hold true. Before
we discuss the Carleson estimate in C1,1 domains, we first present two preliminary results.
Recall that ζ is the life time of Y D.

Lemma 5.1 Suppose that D is an open set in Rd. Let x0 ∈ Rd, and r1 < r2 be two positive
numbers such that D ∩ B(x0, r1) 6= ∅. Suppose f is a non-negative function in D that is
harmonic in D ∩B(x0, r2) with respect to Y D and vanishes continuously on ∂D ∩B(x0, r2).
Then f is regular harmonic in D ∩B(x0, r1) with respect to Y D, i.e.,

f(x) = Ex
[
f(Y D

τD∩B(x0,r1)
)
]

for all x ∈ D ∩B(x0, r1) . (5.1)
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Proof. For n ≥ 1, let Bn = {y ∈ D ∩ B(x0, r1) : δD(y) > 1/n}. Then for large n, Bn is a
non-empty open subset of D∩B(x0, r1) whose closure is contained in D∩B(x0, r2). Since f
is harmonic in D ∩ B(x0, r2) with respect to Y D, for x ∈ D ∩ B(x0, r1) and n large enough
so that x ∈ Bn, we have

f(x) = Ex
[
f
(
Y D
τBn

)]
= Ex

[
f
(
Y D
τBn

)
; τBn < τD∩B(x0,r1)

]
+ Ex

[
f
(
Y D
τBn

)
; τBn = τD∩B(x0,r1)

]
.

Hence ∣∣∣f(x)− Ex
[
f
(
Y D
τD∩B(x0,r1)

)]∣∣∣
≤ Ex

[
f
(
Y D
τBn

)
; τBn < τD∩B(x0,r1)

]
+ Ex

[
f
(
Y D
τD∩B(x0,r1)

)
; τBn < τD∩B(x0,r1)

]
. (5.2)

It follows from (2.17) that ∩∞n=1{τBn < τD∩B(x0,r1)} = ∅ almost surely under each Px. If
τBn < τD∩V for all n ≥ 1, then Y D

ζ− ∈ ∂D, which is impossible. Thus,

lim
n→∞

Ex
[
f
(
Y D
τD∩B(x0,r1)

)
; τBn < τD∩B(x0,r1)

]
= 0 .

For the first term in (5.2), note that δD(Y D
τBn

) ≤ 1/n on {τBn < τD∩B(x0,r1)}. Since f vanishes

continuously on (∂D)∩B(x0, r2), an easy compactness argument yields that there is n0 ≥ 1
so that f is bounded in (D ∩ B(x0, r1)) \ Bn0 . Hence by the bounded convergence theorem
we have

lim
n→∞

Ex
[
f
(
Y D
τBn

)
; τBn < τD∩B(x0,r1)

]
= 0 .

This proves the lemma. 2

Lemma 5.2 For any x, y ∈ Rd and any open set V , we have

δV (y)

(
δV (x)

|x− y|
∧ 1

)
≤ 2δV (x).

Proof. If |x− y| ≤ δV (x),

δV (y)

(
δV (x)

|x− y|
∧ 1

)
= δV (y) ≤ δV (x) + |x− y| ≤ 2δV (x).

If |x− y| > δV (x),

δV (y)

(
δV (x)

|x− y|
∧ 1

)
= δV (x)

δV (y)

|x− y|
≤ δV (x)

δV (x) + |x− y|
|x− y|

≤ 2δV (x).

2

For the remainder of this section we will assume that D ⊂ Rd is either a bounded C1,1

domain, or a C1,1 domain with compact complement or a domain consisting of all the points
above the graph of a bounded globally C1,1 function. Let (R,Λ) be the C1,1 characteristics
of D. Without loss of generality we assume that R ≤ 1. Recall κ = (1 + (1 + Λ)2)−1/2,
ρz(x) = xd − ϕz(x̃) and Vz(r) is a C1,1 domain with characteristic (rR/L,ΛL/r) such that
Dz(r/2, r/2) ⊂ Vz(r) ⊂ Dz(r, r) where L = L(R,Λ, d) > 0.
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Lemma 5.3 There exists a constant δ∗ = δ∗(R,Λ) > 0 such that for all Q ∈ ∂D and x ∈ D
with ρQ(x) < R/2,

Px (τ(x) = ζ) ≥ δ∗ ,

where τ(x) := τY
D

D∩B(x,2ρQ(x)) = inf{t > 0 : Y D
t /∈ D ∩B(x, 2ρQ(x))}.

Proof. By [15, Theorem 4.5.4(1)],

Px (τ(x) = ζ) = Px(Y D
ζ− ∈ D ∩B(x, 2ρQ(x)) =

∫
D∩B(x,2ρQ(x))

GY D(x, y)κY
D

(y)dy,

where κY
D

is the density of the killing measure of Y D given by

κY
D

(x) =

∫ ∞
0

(1− PD
t 1(x))µ(t)dt , x ∈ D .

Since D is a C1,1 domain, we have (see the proof of [29, Lemma 5.7])

κY
D

(y) ≥ c1φ(δD(y)−2), y ∈ D ∩B(x, 2ρQ(x)). (5.3)

Thus, using (5.3) and Proposition 4.1,

Px (τ(x) = ζ) =

∫
D∩B(x,2ρQ(x))

GY D(x, y)κY
D

(y)dy

≥ c1

∫
D∩B(x,2ρQ(x))

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)φ(δD(y)−2)

|x− y|d+2φ(|x− y|−2)2
dy

≥ c2

∫
B(x,ρQ(x)/2)

φ′(|x− y|−2)φ(δD(y)−2)

|x− y|d+2φ(|x− y|−2)2
dy

≥ c3φ(ρQ(x)−2)

∫
B(x,ρQ(x)/2)

φ′(|x− y|−2)
|x− y|d+2φ(|x− y|−2)2

dy

≥ c4φ(ρQ(x)−2)

∫ ρQ(x)/2

0

(1/φ(t−2))′dt ≥ c5.

2

For a ≥ 0, let

a1 =


a if D is either a bounded C1,1 domain, or a domain consisting

of all the points above the graph of a bounded globally C1,1 function,

a ∧ 1 if D is a C1,1 domain with compact complement.

(5.4)

Note that for every a ∈ (0, 1] and b > 0, we have

a

(ab) ∧ 1
≤ a

(ab) ∧ a
≤ 1

b ∧ 1
.
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Thus for every a ∈ (0, 1] and b, c > 0,

1

(ab)1
≤ a−1

1

b1
and

c

(ab)1
∧ 1 ≤ a−1

c

b1
∧ 1 ≤ a−1(

c

b1
∧ 1). (5.5)

Note that, if D is unbounded, by using (A6), we have

µ((r + 1)2) ≥ µ(4r2 + 4) ≥ µ(8r2) ≥ σ18
−βµ(r2), r > 1. (5.6)

Theorem 5.4 (Carleson estimate) There exists a constant C = C(R,Λ) > 0 such that
for every Q ∈ ∂D, 0 < r < R/2, and every non-negative function f in D that is harmonic
in D ∩B(Q, r) with respect to Y D and vanishes continuously on ∂D ∩B(Q, r), we have

f(x) ≤ Cf(x0) for x ∈ D ∩B(Q, r/2), (5.7)

where x0 ∈ D ∩B(Q, r) with ρQ(x0) = r/2.

Proof. In this proof, the constants δ∗, ν, γ, β1, η and ci’s are always independent of r.
Without loss of the generality, we assume that diam(D) ≤ 1 if D is bounded. Using the
assumption that D is C1,1 and r < R/2, by Theorem 3.1 and a standard chain argument, it

suffices to prove (5.7) for x ∈ D ∩B(Q, κr/(24)) and x̃0 = 0̃ in CSQ.
Let

k(r) =
µ(r2)

rd−2
.

Then k is decreasing and there exists c > 1 such that

k(r) ≤ c k(2r), ∀r ∈ (0, 3) if D is bounded, (5.8)

k(r) ≤ c k(2r), ∀r ∈ (0,∞) if D is unbounded. (5.9)

In fact, by (2.3) and (2.4), we have

k(2r) = 2−d+2µ(4r2)r−d+2 ≥ c02
−dφ′(4−1r−2)r−d−2

≥ c02
−dφ′(r−2)r−d−2 ≥ c02

−d(1− 2e−1)k(r).

If D is unbounded, then (5.9) follows from (A6).
Note that, as a consequence of (5.8), there is a ν > 2 such that

k(ar) ≤ c1 a
−ν+2k(r), ∀r ∈ (0, 3) and a ∈ (0, 1). (5.10)

Choose 0 < γ < ν−1. For any x ∈ D ∩B(Q, κr/(12)), define

D0(x) = D ∩B(x, 2ρQ(x)) , B1(x) = B(x, r1−γρQ(x)γ)

and
B2 = B(x0, κρQ(x0)/3) , B3 = B(x0, 2κρQ(x0)/3).

Since x ∈ B(Q, κr/(12)), we have ρQ(x) < r/(12). By the choice of γ < 1/2, we have that
D0(x) ⊂ B1(x). By Lemma 5.3, there exists δ∗ = δ∗(R,Λ) > 0 such that

Px(τY
D

D0(x)
= ζ) ≥ δ∗ , x ∈ D ∩B(Q, κr/(12)) . (5.11)
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By Theorem 3.1 and a chain argument, there exists β1 > 0 such that

f(x) < (ρQ(x)/r)−β1f(x0) , x ∈ D ∩B(Q, κr/(12))) . (5.12)

Since f is regular harmonic in D0(x) with respect to Y D, by Lemma 5.1, for every x ∈
D ∩B(Q, κr/(12))),

f(x) = Ex
[
f
(
Y D(τD0(x))

)
;Y D(τD0(x)) ∈ B1(x)

]
+ Ex

[
f
(
Y D(τD0(x))

)
;Y D(τD0(x)) /∈ B1(x)

]
. (5.13)

We first show that there exists η > 0 such that for all x ∈ D∩B(Q, κr/(12)) with ρQ(x) < ηr,

Ex
[
f
(
Y D(τD0(x))

)
;Y D(τD0(x)) /∈ B1(x)

]
≤ f(x0). (5.14)

Let η0 := 2−2ν , then, since γ < 1− ν−1 (so ν > (1− γ)−1), we have η0 < 4−(1−γ)
−1

. Thus for
ρQ(x) < η0r,

2ρQ(x) ≤ r1−γρQ(x)γ − 2ρQ(x).

Thus if x ∈ D ∩ B(Q, κr/(12)) with ρQ(x) < η0r, then |x − y| ≤ 2|z − y| for z ∈ D0(x),
y /∈ B1(x). Moreover, by the triangle inequality, |x − y| ≤ |x − z| + |z − y| ≤ 1 + |z − y|.
Thus by (2.3), (2.4), (5.6), Proposition 4.3 and Theorem 4.4, we have that for z ∈ D0(x),∫

D\B1(x)

f(y)JY
D

(z, y)dy

�
∫
D\B1(x)

f(y)

(
δD(z)

|z − y|1
∧ 1

)(
δD(y)

|z − y|1
∧ 1

)
k(|z − y|)dy

=

∫
(D\B1(x))∩B(x,2)

f(y)

(
δD(z)

|z − y|1
∧ 1

)(
δD(y)

|z − y|1
∧ 1

)
k(|z − y|)dy

+

∫
D∩B(x,2)c

f(y)

(
δD(z)

|z − y|1
∧ 1

)(
δD(y)

|z − y|1
∧ 1

)
k(|z − y|)dy

≤
∫
(D\B1(x))∩B(x,2)

f(y)

(
δD(z)

(|x− y|/2)1
∧ 1

)(
δD(y)

(|x− y|/2)1
∧ 1

)
k(|x− y|/2)dy

+

∫
D∩B(x,2)c

f(y)

(
δD(z)

(|x− y|/2)1
∧ 1

)(
δD(y)

(|z − y|/2)1
∧ 1

)
k(|x− y| − 1)dy

≤ c2

∫
D\B1(x)

f(y)

(
δD(z)

|x− y|1
∧ 1

)(
δD(y)

|x− y|1
∧ 1

)
k(|x− y|)dy

≤ c2δD(z)

∫
D\B1(x)

f(y)
k(|x− y|)
|x− y|1

(
δD(y)

|x− y|1
∧ 1

)
dy. (5.15)

By Proposition 4.1,

GY D(x, z) ≤ c3

(
δD(x)

|x− z|
∧ 1

)(
δD(z)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
, z ∈ D0(x).

Thus, using Lemma 5.2, we get

Ex
∫ τD0(x)

0

δD(Y D
t )dt =

∫
D0(x)

GY D

D0(x)
(x, z)δD(z)dz
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≤
∫
D0(x)

GY D(x, z)δD(z)dz

≤ c3

∫
D0(x)

(
δD(x)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
δD(z)dz

≤ 2c3ρQ(x)

∫
B(x,2ρQ(x))

φ′(|x− z|−2)
|x− z|d+2φ(|x− z|−2)2

dz ≤ c4
ρQ(x)

φ(ρQ(x)−2)
. (5.16)

Therefore, by (5.15), (5.16) and the fact that D0(x) ⊂ B1(x),

Ex
[
f
(
Y D(τD0(x))

)
;Y D(τD0(x)) /∈ B1(x)

]
= Ex

∫ τD0(x)

0

∫
D\B1(x)

JY
D

(Y D
t , y)f(y) dy dt

≤ c5Ex[
∫ τD0(x)

0

δD(Y D
t )dt]

∫
D\B1(x)

f(y)

|x− y|1

(
δD(y)

|x− y|1
∧ 1

)
k(|x− y|)dy

≤ c6
ρQ(x)

φ(ρQ(x)−2)

(∫
(D\B1(x))∩Bc3

f(y)

|x− y|1

(
δD(y)

|x− y|1
∧ 1

)
k(|x− y|)dy

+

∫
(D\B1(x))∩B3

f(y)

|x− y|1

(
δD(y)

|x− y|1
∧ 1

)
k(|x− y|) dy

)
=: c6

ρQ(x)

φ(ρQ(x)−2)
(I1 + I2) . (5.17)

On the other hand, for z ∈ B2 and y /∈ B3, we have |z − y| ≤ |z − x0| + |x0 − y| ≤
κρQ(x0)/3 + |x0 − y| ≤ 2|x0 − y| and |z − y| ≤ |z − x0| + |x0 − y| ≤ 1 + |x0 − y|. By (5.6),
(5.8), Proposition 4.3 and Theorem 4.4, we have that for z ∈ B2,∫

D\B3

f(y)JY
D

(z, y)dy

�
∫
D\B3

f(y)

(
δD(z)

|z − y|1
∧ 1

)(
δD(y)

|z − y|1
∧ 1

)
k(|z − y|)dy

≥ c7

∫
D\B3

f(y)

(
δD(z)

|x0 − y|1
∧ 1

)(
δD(y)

|x0 − y|1
∧ 1

)
k(|x0 − y|)dy

≥ c8r

∫
D\B3

f(y)

|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
k(|x0 − y|)dy. (5.18)

Thus, by Lemma 3.7 we have

f(x0) ≥ Ex0
[
f(Y D(τB2));Y

D(τB2) /∈ B3

]
= Ex0

∫ τB2

0

(∫
D\B3

JY
D

(Y D
t , y)f(y) dy

)
dt

≥ c8rEx0 [τY
D

B2
]

(∫
D\B3

f(y)

|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
k(|x0 − y|)dy

)
≥ c9

r

φ(r−2)

∫
D\B3

f(y)

|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
k(|x0 − y|) dy . (5.19)
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Suppose now that |y − x| ≥ r1−γρQ(x)γ and x ∈ B(Q, κr/(12)). Then

|y − x0| ≤ |y − x|+ r ≤ |y − x|+ rγρQ(x)−γ|y − x| ≤ 2rγρQ(x)−γ|y − x|.

Thus, using (5.5) and (5.10), we get for |x− y| ≤ 2,

k(|x− y|)
|x− y|1

(
δD(y)

|x− y|1
∧ 1

)
≤ k(2−1(ρQ(x)/r)γ|x0 − y|)

(2−1(ρQ(x)/r)γ|x0 − y|)1

(
δD(y)

(2−1(ρQ(x)/r)γ|x0 − y|)1
∧ 1

)
≤ c12

ν(ρQ(x)/r)−νγ
k(|x0 − y|)
|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
. (5.20)

Now, using (5.6) together with |y − x0| ≤ |y − x|+ 1 and (5.19)–(5.20),

I1 ≤ c10

∫
D∩{2>|y−x|>r1−γρQ(x)γ}∩Bc3

(ρQ(x)/r)−νγ
k(|x0 − y|)
|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
f(y) dy

+ c10

∫
D∩{|y−x|≥2}∩Bc3

k(|x0 − y|)
|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
f(y) dy

≤ c11
(
(ρQ(x)/r)−νγ + 1

) ∫
D\B3

k(|x0 − y|)
|x0 − y|1

(
δD(y)

|x0 − y|1
∧ 1

)
f(y) dy

≤ c−19 c11
φ(r−2)

r

(
(ρQ(x)/r)−νγ + 1

)
f(x0)

≤ 2c−19 c11(ρQ(x)/r)−νγ
φ(r−2)

r
f(x0) , (5.21)

where the second to last inequality is due to (5.19).
If y ∈ B3(x), then δD(y) ≤ c12r and |y − x| ≥ |x0 −Q| − |x−Q| − |y − x0| > κρQ(x0)/6.

By Theorem 3.1, there exists c13 > 0 such that f(y) ≤ c13f(x0) for all y ∈ B3(x). Thus by
(2.3),

I2 ≤ c14f(x0)r

∫
(D\B1(x))∩B3

k(|x− y|)
(|x− y|1)2

dy

≤ c14f(x0)r

∫
|y−x|>κρQ(x0)/6

k(|x− y|)
(|x− y|1)2

dy

≤ c14f(x0)r

(∫
1>|z|>κρQ(x0)/6

|z|−2k(|z|) dz +

∫
1≤|z|

k(|z|) dz

)

≤ c15f(x0)r

(∫
1>|z|>κρQ(x0)/6

φ′(|z|−2)
|z|d+4

dz + 1

)

≤ c16f(x0)r

(∫ 1

κr/(12)

φ′(s−2)

s5
ds+ 1

)
≤ c16f(x0)r

(
(12)2(κr)−2

∫ ∞
κr/(12)

φ′(s−2)

s3
ds+ 1

)
≤ c17f(x0)r

−1φ(r−2). (5.22)
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Combining (5.17), (5.21) and (5.22), we obtain

Ex[f(Y D(τD0(x))); Y
D(τD0(x)) /∈ B1(x)]

≤ c18f(x0)
( ρQ(x)

φ(ρQ(x)−2)
(ρQ(x)/r)−νγ

φ(r−2)

r
+

ρQ(x)

φ(ρQ(x)−2)
r−1φ(r−2)

)
= c18f(x0)

( φ(r−2)

φ(ρQ(x)−2)
(ρQ(x)/r)1−νγ +

φ(r−2)

φ(ρQ(x)−2)
(ρQ(x)/r)

)
≤ c18f(x0)

(
(ρQ(x)/r)1−γν + (ρQ(x)/r)

)
. (5.23)

Since 1− γν > 0, choose now η ∈ (0, η0) so that

c18
(
η1−γν + η

)
≤ 1 .

Then for x ∈ D ∩B(Q, κr/(12)) with ρQ(x) < ηr, we have by (5.23),

Ex
[
f(Y D(τD0(x))); Y

D(τD0(x)) /∈ B1(x)
]
≤ c18 f(x0)

(
η1−γν + η

)
≤ f(x0) .

This completes the proof of (5.14).
We now prove the Carleson estimate (5.7) for x ∈ D ∩ B(Q, κr/(24)) by a method of

contradiction. Without loss of generality, we may assume that f(x0) = 1. Suppose that
there exists x1 ∈ D ∩ B(Q, κr/(24)) such that f(x1) ≥ K > η−β1 ∨ (1 + δ−1∗ ), where K is
a constant to be specified later. By (5.12) and the assumption f(x1) ≥ K > η−β1 , we have
(ρQ(x1)/r)

−β1 > f(x1) ≥ K > η−β1 , and hence ρQ(x1) < ηr. By (5.13) and (5.14),

K ≤ f(x1) ≤ Ex1
[
f(Y D(τD0(x1)));Y

D(τD0(x1)) ∈ B1(x1)
]

+ 1 ,

and hence

Ex1
[
f(Y D

τD0(x1)
);Y D

τD0(x1)
∈ B1(x1)

]
≥ f(x1)− 1 >

1

1 + δ∗
f(x1) .

In the last inequality of the display above we used the assumption that f(x1) ≥ K > 1+δ−1∗ .

If K ≥ (24/κ)β1/γ, then (ρQ(x1)/r)
γ < κ/(24). Thus B1(x1) ⊂ B(Q, κr/(12)). We now get

from (5.11) that

Ex1 [f(Y D(τD0(x1))), Y
D(τD0(x1)) ∈ B1(x1)]

= Ex1 [f(Y D(τD0(x1))), Y
D(τD0(x1)) ∈ B1(x1) ∩D]

≤ Px(Y D(τD0(x1)) ∈ D) sup
B1(x1)

f ≤ (1− δ∗) sup
B1(x1)

f .

Therefore, supB1(x1) f > f(x1)/(1− δ2∗), i.e., there exists x2 ∈ D ∩B(Q, κr/(12)) such that

|x1 − x2| ≤ r1−γρQ(x1)
γ and f(x2) >

1

1− δ2∗
f(x1) ≥

1

1− δ2∗
K .

Similarly, if xk ∈ D∩B(Q, κr/(12)) with f(xk) ≥ K/(1− δ2∗)k−1 for k ≥ 2, then there exists
xk+1 ∈ D such that

|xk − xk+1| ≤ r1−γρQ(xk)
γ and f(xk+1) >

1

1− δ2∗
f(xk) >

1

(1− δ2∗)k
K . (5.24)
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From (5.12) and (5.24) it follows that ρQ(xk)/r ≤ (1 − δ2∗)(k−1)/β1K−1/β1 , for every k ≥ 1.
Therefore by this and (5.24),

|xk −Q| ≤ |x1 −Q|+
k−1∑
j=1

|xj+1 − xj| ≤
κr

24
+
∞∑
j=1

r1−γρQ(xj)
γ

≤ κr

24
+ r1−γ

∞∑
j=1

(1− δ2∗)(j−1)γ/β1K−γ/β1rγ =
κr

24
+ rK−γ/β1

1

1− (1− δ2∗)γ/β1
.

Choose
K = η−β1 ∨ (1 + δ−1∗ ) ∨ [(24/κ)β1/γ(1− (1− δ2∗)γ/β1)−β1/γ]

so that K−γ/β1 (1− (1− δ2∗)γ/β1)−1 ≤ κ/(24). Hence xk ∈ D∩B(Q, κr/(12)) for every k ≥ 1.
Since limk→∞ f(xk) =∞ by (5.24), this contradicts the fact that f is bounded on B(Q, r/2).
This contradiction shows that f(x) < K for every x ∈ D ∩ B(Q, κr/(24)). This completes
the proof of the theorem. 2

6 Boundary Harnack principle in C1,1 domain

We continue assuming that d ≥ 2, (A1)–(A6) hold true, and that D ⊂ Rd is either a
bounded C1,1 domain, or a C1,1 domain with compact complement or a domain consisting
of all the points above the graph of a bounded globally C1,1 function. Let (R,Λ) be the
C1,1 characteristics of D. Without loss of generality we assume that R ≤ 1. Recall κ =
(1 + (1 + Λ)2)−1/2 and Vz(r) is a C1,1 domain with characteristic (rR/L,ΛL/r) such that
Dz(r/2, r/2) ⊂ Vz(r) ⊂ Dz(r, r) where L = L(R,Λ, d) > 0.

Lemma 6.1 Suppose that d > 3 − 2δ where δ is the constant in (A3). There exists C =
C(R,Λ) > 0 such that for every r ≤ κ−1R/2, Q ∈ ∂D and x ∈ DQ(r/4, r/4),

Px
(
Y D(τVQ(r)) ∈ DQ(2r, 2r)

)
≤ C

δD(x)φ′(r−2)

r3φ(r−2)
. (6.1)

Proof. Without loss of generality, we assume Q = 0. Note that V0(r) ⊂ D0(r, r) ⊂
D ∩B(0, r/κ). By using the Lévy system formula and (2.16) we get

Px
(
Y D(τV0(r)) ∈ D0(2r, 2r)

)
= Ex

∫ τV0(r)

0

∫
D0(2r,2r)\V0(r)

JY
D

(Y D
t , z)dzdt

=

∫
V0(r)

GY D

V0(r)
(x, y)

∫
D0(2r,2r)\V0(r)

JY
D

(y, z)dzdy

≤
∫
D0(2r,2r)\V0(r)

∫
V0(r)

GY D(x, y)JY
D

(y, z)dydz. (6.2)

Recall that g and j are defined in (3.17). By Lemma 2.1, Propositions 4.1 and 4.3, for
z ∈ D0(2r, 2r) \ V0(r),∫
V0(r)

GY D(x, y)JY
D

(y, z)dy
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≤ c0

∫
V0(r)

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2

×
(
δD(y)

|z − y|
∧ 1

)(
δD(z)

|z − y|
∧ 1

)
φ′(|y − z|−2)
|y − z|d+2

dy

≤ c1
δD(x)

|x− z|2
g(|x− z|)

∫
V0(r)∩{|x−z|≤2|x−y|}

δD(y)

(
δD(y)

|y − z|
∧ 1

)(
δD(z)

|y − z|
∧ 1

)
j(|y − z|)dy

+ c1

∫
V0(r)∩{|x−z|>2|x−y|}

(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|y − z|
∧ 1

)(
δD(z)

|y − z|
∧ 1

)
g(|x− y|)j(|y − z|)dy

=: c1(I + II). (6.3)

By Lemma 5.2, for z ∈ D0(2r, 2r) \ V0(r),

I ≤ 2
δD(x)δD(z)

|x− z|2
g(|x− z|)

∫
V0(r)∩{|x−z|≤2|x−y|}

j(|y − z|)dy. (6.4)

Since∫
V0(r)∩{|x−z|≤2|x−y|}

j(|y − z|)dy ≤ c2

∫ δV0(r)(z)+3r

δV0(r)(z)

sd−1
φ′(s−2)

sd+2
ds ≤ c3φ(δV0(r)(z)−2),

combining this with (6.4) we get

I ≤ c4φ(δV0(r)(z)−2)
δD(x)δD(z)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

. (6.5)

On the other hand, when |x− z| ≥ 2|x− y|, we have

|y − z| ≥ |x− z| − |x− y| ≥ 1

2
|x− z| ≥ |x− y|, (6.6)

implying
2

3
|y − z| ≤ |x− z| ≤ 2|y − z|. (6.7)

Moreover, by Lemma 5.2,(
δD(x)

|x− y|
∧ 1

)(
δD(y)

|y − z|
∧ 1

)(
δD(z)

|y − z|
∧ 1

)
≤ δD(z)

|y − z|2
δD(y)

(
δD(x)

|x− y|
∧ 1

)
≤ 2

δD(x)δD(z)

|y − z|2
. (6.8)

Thus using (6.8) first, and then Lemma 2.1(c) with (6.7),

II ≤ c5δD(x)δD(z)

∫
V0(r)∩{|x−z|>2|x−y|}

g(|x− y|)φ
′(|y − z|−2)
|y − z|d+4

dz

= c5δD(x)δD(z)

∫
V0(r)∩{|x−z|>2|x−y|}

g(|x− y|) φ′(|y − z|−2)
|y − z|d+4φ(|y − z|−2)2

φ(|y − z|−2)2dz
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≤ c6δD(x)δD(z)
φ′(|x− z|−2)

|x− z|d+4φ(|x− z|−2)2

∫
V0(r)∩{|x−z|>2|x−y|}

g(|x− y|)φ(|y − z|−2)2dy. (6.9)

Let a := |x− z|. By the triangle inequality,∫
V0(r)∩{|x−z|>2|x−y|}

g(|x− y|)φ(|y − z|−2)2dy

≤
∫
V0(r)∩{|x−z|>2|x−y|}

g(|x− y|)φ(||x− z| − |x− y||−2 ∧ |x− y|−2)2dy

≤ c7

∫ κ−1r

0

φ′(r−2)

r3φ(r−2)2
φ(|a− r|−2 ∧ r−2)2dy. (6.10)

Note that ∫ κ−1r

0

φ′(r−2)

r3φ(r−2)2
φ(|a− r|−2 ∧ r−2)2dy

≤
∫ a/2

0

φ′(r−2)

r3φ(r−2)2
φ(|a− r|−2)2dy +

∫ ∞
a/2

φ′(r−2)

r3φ(r−2)2
φ(r−2)2dy

≤ φ(4a−2)2
∫ a/2

0

φ′(r−2)

r3φ(r−2)2
dy +

∫ ∞
a/2

φ′(r−2)

r3
dy

= 2−1φ(4a−2)2
∫ a/2

0

(
1

φ(r−2)

)′
dy + 2−1

∫ ∞
a/2

(−φ(r−2))′dy

= 2−1φ(4a−2)2
1

φ(4a−2)
+ 2−1φ(4a−2) ≤ c8φ(|x− z|−2). (6.11)

Therefore

II ≤ c9δD(x)δD(z)
φ′(|x− z|−2)

|x− z|d+4φ(|x− z|−2)2
φ(|x− z|−2)

≤ c10φ(δV0(r)(z)−2)
δD(x)δD(z)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

. (6.12)

Now for x ∈ D0(r/4, r/4), we have c11r < |x− z| ≤ (1 + κ−1)r for z ∈ D0(2r, 2r) \ V0(r).
Thus putting (6.2), (6.3), (6.5) and (6.12) together, and using Lemma 2.1, we see that

Px
(
Y D(τV0(r)) ∈ D0(2r, 2r)

)
≤ c12δD(x)

∫
D0(2r,2r)\V0(r)

φ(δV0(r)(z)−2)
δD(z)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

dz

≤ c13
δD(x)φ′(r−2)

rd+4φ(r−2)2

∫
D0(2r,2r)\V0(r)

φ(δV0(r)(z)−2)δD(z)dz. (6.13)

By the co-area formula,∫
D0(2r,2r)\V0(r)

φ(δV0(r)(z)−2)δD(z)dz ≤ c14

∫ 2κ−1r

0

∫ 2κ−1r

0

sφ(t−2)td−2dsdt

35



= c15r
2

∫ 2κ−1r

0

φ(t−2)td−2dt. (6.14)

Since d > 3− 2δ, we choose ε ∈ (0, (d− 3 + 2δ)/2) so that d− 3 + 2δ − 2ε > 0. Using [20,
Lemma 3.2] with this ε > 0, we have∫ 2κ−1r

0

φ(t−2)td−2dt ≤
∫ r

0

φ(t−2)td−2dt+ φ(r−2)

∫ 2κ−1r

r

td−2dt

≤φ(r−2)

∫ r

0

φ(t−2)

φ(r−2)
td−2dt+ φ(r−2)

1

d− 1
(2κ−1r)d−1

≤c16φ(r−2)

(∫ r

0

(
t−2

r−2

)1−δ+ε

td−2dt+ rd−1

)

=c16φ(r−2)

(
r2(1−δ+ε)

∫ r

0

td−4+2δ−2εdt+ rd−1
)
≤ c17φ(r−2)rd−1. (6.15)

Combining (6.13)–(6.15), we conclude that

Px
(
Y D(τV0(r)) ∈ D0(2r, 2r)

)
≤ c11c14c16

δD(x)φ′(r−2)

rd+4φ(r−2)2
r2rd−1φ(r−2)

= c13c15c17
δD(x)φ′(r−2)

r3φ(r−2)
.

2

Proof of Theorem 1.2. In this proof, the constants η and ci are always independent of r.
Note that, since D is a C1,1 domain and r < R, by Theorem 3.1 and a standard chain

argument, it suffices to prove (1.8) for x, y ∈ D ∩ B(Q, 2−7κr). Throughout the remainder
of the proof we assume that x ∈ D ∩B(Q, 2−7κr).

Let Qx be the point Qx ∈ ∂D so that |x−Qx| = δD(x) and let x0 := Qx+ r
8
(x−Qx)/|x−

Qx|. We choose a C1,1 function ϕ : Rd−1 → R satisfying ϕ(0̃) = 0, ∇ϕ(0̃) = (0, . . . , 0),
‖∇ϕ‖∞ ≤ Λ, |∇ϕ(ỹ)−∇ϕ(z̃)| ≤ Λ|ỹ − z̃|, and an orthonormal coordinate system CS with
its origin at Qx such that

B(Qx, R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CS : yd > ϕ(ỹ)}.

In the coordinate system CS we have x̃ = 0̃ and x0 = (0̃, r/8). For any b1, b2 > 0, we define

D(b1, b2) :=
{
y = (ỹ, yd) in CS : 0 < yd − ϕ(ỹ) < 2−2κrb1, |ỹ| < 2−2κrb2

}
.

By (4.2), we have that D(2, 2) ⊂ D ∩ B(Qx, r/2) ⊂ D ∩ B(Q, r). Thus, since f is
harmonic in D ∩ B(Q, r) and vanishes continuously in ∂D ∩ B(Q, r), by Lemma 5.1, f is
regular harmonic in D(2, 2) and vanishes continuously in ∂D ∩D(2, 2).

Recall that V (1) := VQx(2
−2κr) is a C1,1 domain with C1,1 characteristics (rR/L,ΛL/r)

such that D(1/2, 1/2) ⊂ V (1) ⊂ D(1, 1), where L = L(R,Λ, d) > 0. There exists η ∈
(0, (2(1 + Λ))−2) such that the cone

C(x, 2−6κr, η) := {y = (ỹ, yd) ∈ B(x, 2−6κr) in CS : yd > xd, |ỹ| < η(yd − xd)}
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⊂ D(2−2, 2−2). (6.16)

Moreover, for x ∈ D ∩B(Q, 2−7κr),

C(x, 2−6κr, η) \B(x, δD(x)) ⊃ C(x, 2−6κr, η) \ C(x, 2−7κr, η). (6.17)

By Lemma 2.1, (5.6) and Proposition 4.3, we have that for z ∈ V (1),∫
D(3,1)\D(2,1)

JY
D

(z, y)dy

�
∫
D(3,1)\D(2,1)

(
δD(z)

|z − y|
∧ 1

)(
δD(y)

|z − y|
∧ 1

)
φ′(|y − z|−2)
|y − z|d+2

dydy

�
∫
D(3,1)\D(2,1)

(
δD(z)

|y|
∧ 1

)(
δD(y)

|y|
∧ 1

)
φ′(|y|−2)
|y|d+2

dy

� δD(z)

∫
D(3,1)\D(2,1)

δD(y)

|y|2
φ′(|y|−2)
|y|d+2

dy

≥ c1δD(z)r

∫
D(3,1)\D(2,1)

1

|y|2
φ′(|y|−2)
|y|d+2

dy

≥ c2δD(z)r|D(3, 1) \D(2, 1)| 1
r2
φ′(r−2)

rd+2
≥ c3δD(z)r−3φ′(r−2). (6.18)

We have used Lemma 2.1(a) in the first inequality of the last line.

Since GY D

V (1) ≥ GY V (1)
by (2.19), we have by Proposition 4.2,

Ex
∫ τV (1)

0

δD(Y D
t )dt =

∫
V (1)

GY D

V (1)(x, z)δD(z)dz

≥
∫
V (1)

GY V (1)

(x, z)δD(z)dz

≥ c4

∫
V (1)

(
δD(x)

|x− z|
∧ 1

)(
δV (1)(z)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
δD(z)dz. (6.19)

Note that there exists c5 ∈ (0, 1] such that c5|x− z| ≤ δV (1)(z) for z ∈ C(x, 2−6κr, η). In fact,
since η ∈ (0, (2(1 + Λ))−2) and

|x− z| = (|z̃|2 + (zd − xd)2)1/2 < (1 + η2)1/2(zd − xd), z ∈ C(x, 2−6κr, η),

we have that for z ∈ C(x, 2−6κr, η),

δV (1)(z) = δD(z) ≥ (1 + Λ2)−1/2(zd − ϕ(z̃)) ≥ (1 + Λ2)−1/2(zd − Λ|z̃|)
≥ (1 + Λ2)−1/2(zd − Λη(zd − xd)) ≥ (1 + Λ2)−1/2(1− Λη)(zd − xd)
≥ 2−1(1 + Λ2)−1/2(zd − xd) ≥ 2−1(1 + Λ2)−1/2(1 + η2)−1/2|x− z|. (6.20)

Thus by (6.16), (6.17) and (6.20),∫
V (1)

(
δD(x)

|x− z|
∧ 1

)(
δV (1)(z)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
δD(z)dz
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≥ c5

∫
C(x,2−6κr,η)

(
δD(x)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
δV (1)(z)dz. (6.21)

We claim that for z ∈ C(x, 2−6κr, η),(
δD(x)

|x− z|
∧ 1

)
δV (1)(z) ≥ c6δD(x). (6.22)

If z ∈ C(x, 2−6κr, η) \B(x, δD(x)/2), then |x− z| ≥ δD(x)/2, so by (6.20),(
δD(x)

|x− z|
∧ 1

)
δV (1)(z) ≥ c7

(
δD(x)

|x− z|
∧ 1

)
|x− z| ≥ c8δD(x).

If z ∈ C(x, 2−6κr, η)∩B(x, δD(x)/2) then |x− z| < δD(x)/2 and δV (1)(z) = δD(z) ≥ δD(x)−
|x− z| > δD(x)/2. Thus,(

δD(x)

|x− z|
∧ 1

)
δV (1)(z) ≥ δV (1)(z) ≥ 1

2
δD(x).

We have proved (6.22).
Combining (6.19), (6.21) and (6.22), we get

Ex
∫ τV (1)

0

δD(Y D
t )dt

≥ c4c5c6δD(x)

∫
C(x,2−6κr,η)

φ′(|x− z|−2)
|x− z|d+2φ(|x− z|−2)2

dz

≥ c9δD(x)

∫ 2−6κr

0

φ′(s−2)

s3φ(s−2)2
ds ≥ c10δD(x)/φ(r−2). (6.23)

We have used Lemma 2.1(a) in the last inequality. Thus (6.18) and (6.23) imply

Px
(
Y D(τV (1)) ∈ D(3, 1) \D(2, 1)

)
= Ex

∫ τV (1)

0

∫
D(3,1)\D(2,1)

JY
D

(Y D
t , y)dydt

≥ c3r
−3φ′(r−2)Ex

∫ τV (1)

0

δD(Y D
t )dt ≥ c11r

−3φ′(r−2)δD(x)/φ(r−2). (6.24)

Now, by the Harnack inequality and (6.24), we have

f(x) = Ex
[
f
(
Y D(τV (1))

)]
≥ Ex

[
f
(
Y D(τV (1))

)
;Y D

τV (1)
∈ D(3, 1) \D(2, 1)

]
≥ c12f(x0)Px

(
Y D(τV (1)) ∈ D(3, 1) \D(2, 1)

)
≥ c11c12f(x0)

δD(x)φ′(r−2)

r3φ(r−2)
. (6.25)

Recall that a1 is defined in (5.4). By Lemma 2.1, (2.3), (2.4), (5.6), Proposition 4.3 and
Theorem 4.4, we have that for z ∈ V (1),∫

D\D(2,2)

f(y)JY
D

(z, y)dy
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�
∫
D\D(2,2)

f(y)

(
δD(z)

|z − y|1
∧ 1

)(
δD(y)

|z − y|1
∧ 1

)
µ(|z − y|2)
|z − y|d−2

dy

�
∫
D\D(2,2)

f(y)

(
δD(z)

|y|1
∧ 1

)(
δD(y)

|y|1
∧ 1

)
µ(|y|2)
|y|d−2

dy

� δD(z)

∫
D\D(2,2)

f(y)
1

|y|1

(
δD(y)

|y|1
∧ 1

)
µ(|y|2)
|y|d−2

dy. (6.26)

Since

Ex
[
f
(
Y D(τV (1))

)
; Y D(τV (1)) /∈ D(2, 2)

]
= Ex

∫ τV (1)

0

∫
Rd\D(2,2)

f(y)JY
D

(Y D
t , y)dydt,

by (6.26), we have

Ex
[
f
(
Y D(τV (1))

)
; Y D(τV (1)) /∈ D(2, 2)

]
� Ex

∫ τV (1)

0

δD(Y D
t )dt

∫
Rd\D(2,2)

f(y)
1

|y|1

(
δD(y)

|y|1
∧ 1

)
µ(|y|2)
|y|d−2

dy. (6.27)

By Proposition 4.1, for x, z ∈ V (1),

GY D(x, z) ≤ c13

(
δD(x)

|x− z|
∧ 1

)(
δD(z)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
.

Thus, using Lemma 5.2,

Ex
∫ τV (1)

0

δD(Y D
t )dt =

∫
V (1)

δD(z)GY D

V (1)(x, z)dz ≤
∫
V (1)

δD(z)GY D(x, z)dz

≤ c13

∫
V (1)

δD(z)

(
δD(x)

|x− z|
∧ 1

)(
δD(z)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
dz

≤ 2c13δD(x)

∫
V (1)

(
δD(z)

|x− z|
∧ 1

)
φ′(|x− z|−2)

|x− z|d+2φ(|x− z|−2)2
dz

≤ 2c13δD(x)

∫
B(x,r/2)

φ′(|x− z|−2)
|x− z|d+2φ(|x− z|−2)2

dz ≤ c14δD(x)/φ(r−2). (6.28)

Combining (6.23), (6.27) and (6.28), we obtain

Ex
[
f
(
Y D(τV (1))

)
; Y D(τV (1)) /∈ D(2, 2)

]
� δD(x)

φ(r−2)

∫
Rd\D(2,2)

f(y)
1

|y|1

(
δD(y)

|y|1
∧ 1

)
µ(|y|2)
|y|d−2

dy. (6.29)

On the other hand, by Theorems 3.1, 5.4 and Lemma 6.1, we have

Ex
[
f
(
Y D(τV (1))

)
; Y D(τV (1)) ∈ D(2, 2)

]
≤ c15 f(x0)Px

(
Y D(τV (1)) ∈ D(2, 2)

)
≤ c16 f(x0)

δD(x)φ′(r−2)

r3φ(r−2)
. (6.30)
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Combining (6.25), (6.29), (6.30), we get

f(x) = Ex
[
f(Y D(τV (1))); Y

D(τV (1)) ∈ D(2, 2)
]

+ Ex
[
f(Y D(τV (1))); Y

D(τV (1)) /∈ D(2, 2)
]

≤ c17δD(x)

(
φ′(r−2)

r3φ(r−2)
f(x0) +

1

φ(r−2)

∫
Rd\D(2,2)

f(w)

|w|1

(
δD(w)

|w|1
∧ 1

)
µ(|w|2)
|w|d−2

dw

)
(6.31)

and

f(x) =
1

2
f(x) +

1

2
f(x)

≥ 1

2
Ex
[
f
(
Y D(τV (1))

)
;Y D

τV (1)
∈ D(3, 1) \D(2, 1)

]
+

1

2
Ex
[
f(Y D(τV (1))); Y

D(τV (1)) /∈ D(2, 2)
]

≥ c18δD(x)

(
φ′(r−2)

r3φ(r−2)
f(x0) +

1

φ(r−2)

∫
Rd\D(2,2)

f(w)

|w|1

(
δD(w)

|w|1
∧ 1

)
µ(|w|2)
|w|d−2

dw

)
. (6.32)

Therefore,

f(x) � δD(x)

(
φ′(r−2)

r3φ(r−2)
f(x0) +

1

φ(r−2)

∫
Rd\D(2,2)

f(w)

|w|1

(
δD(w)

|w|1
∧ 1

)
µ(|w|2)
|w|d−2

dw

)
. (6.33)

Since (6.33) holds for all x ∈ D ∩ B(Q, 2−7κr), we conclude that for every x, y ∈ D ∩
B(Q, 2−7κr),

f(x)

f(y)
≤ c19

δD(x)

δD(y)
,

which proves the theorem. 2

7 Boundary Harnack principle in the interior of D

In this section we assume that d ≥ 2, D is a domain in Rd and that (A1)-(A2) hold.
Recall that, for an open set U ⊂ D, XU (respectively, Y D,U) is the processX (respectively,

Y D) killed upon exiting U . One of the goals of this section is to show that when U is
relatively compact subset of D, the process Y D,U can be thought of as a non-local Feynman-
Kac transform of XU . Moreover, if U is a certain C1,1 domain, the conditional gauge function
related to this transform is bounded between two positive constants which will imply that
the Green functions of XU and Y D,U are comparable. We will prove a uniform version of
this result in the sense that the comparability constants are independent of the set U as long
as its diameter is small and not larger than a multiple of its distance to the boundary.

Let (EXU
,D(EXU

)) be the Dirichlet form of XU . Then, cf. [31, Section 13.4],

EXU

(f, f) =

∫ ∞
0

∫
U

f(x)(f(x)− Psf(x)) dxµ(s)ds , (7.1)

D(EXU

) = {f ∈ L2(U, dx) : EXU

(f, f) <∞} . (7.2)
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Note that in computing Psf , we extend the function f to Rd by setting f(x) = 0 for

x ∈ Rd \ U . Furthermore, for f ∈ D(EXU
),

EXU

(f, f) =
1

2

∫
U

∫
U

(f(x)− f(y))2JX(x, y)dydx+

∫
U

f(x)2κXU (x)dx, (7.3)

where JX is defined in (2.13) and

κXU (x) =

∫
Rd\U

JX(x, y)dy .

The Dirichlet form (EY D ,D(EY D)) of Y D is given by

EY D(f, f) =

∫ ∞
0

∫
D

f(x)(f(x)− PD
s f(x)) dxµ(s)ds

and D(EY D) = {f ∈ L2(D, dx) : EY D(f, f) <∞}. Moreover, for f ∈ D(EY D),

EY D(f, f) =
1

2

∫
D

∫
D

(f(x)− f(y))2JY
D

(x, y)dydx+

∫
D

f(x)2κY
D

(x)dx,

where JY
D

is defined in (2.12) and

κY
D

(x) =

∫ ∞
0

(1− PD
t 1(x))µ(t) dt .

Hence, it follows that the Dirichlet form (EY D,U ,D(EY D,U )) of Y D,U is equal to

EY D,U (f, f) =

∫ ∞
0

∫
U

f(x)(f(x)− PD
s f(x)) dxµ(s)ds , (7.4)

D(EY D,U ) = {f ∈ L2(U, dx) : EY D,U (f, f) <∞} . (7.5)

Moreover, for f ∈ D(EY D,U ),

EY D,U (f, f) =
1

2

∫
U

∫
U

(f(x)− f(y))2JY
D

(x, y)dydx+

∫
U

f(x)2
(∫

D\U
JY

D

(x, y)dy

)
dx

+

∫
D

f(x)2κY
D

(x)dx

=
1

2

∫
U

∫
U

(f(x)− f(y))2JY
D

(x, y)dydx+

∫
D

f(x)2κY
D

U (x)dx, (7.6)

where

κY
D

U (x) = κY
D

(x) +

∫
D\U

JY
D

(x, y)dy .

We first need the following simple result.

Lemma 7.1 For x, y ∈ D,

JX(x, y)− JY D(x, y) ≤ jX(δD(y)) . (7.7)

41



Proof. By (2.8), (2.12) and (2.13), we have that

JX(x, y)− JY D(x, y) =

∫ ∞
0

Ex[p(t− τD,WτD , y), τD < t]µ(t) dt

= Ex
[∫ ∞

τD

p(t− τD,WτD , y)µ(t)dt

]
.

Since for every s < t and z ∈ ∂D,∫ ∞
s

p(t− s, z, y)µ(t)dt =

∫ ∞
s

(4π(t− s))−d/2e−
|z−y|2
4(t−s)µ(t)dt

≤
∫ ∞
s

(4π(t− s))−d/2e−
δD(y)2

4(t−s) µ(t)dt

=

∫ ∞
0

(4πu)−d/2e−
δD(y)2

4u µ(u+ s)du

≤
∫ ∞
0

(4πu)−d/2e−
δD(y)2

4u µ(u)du = jX(δD(y)) ,

the claim of the lemma follows. 2

Lemma 7.2 Let U be a relatively compact open subset of D. Then D(EXU
) = D(EY D,U ).

Proof. Let f ∈ L2(U, dx). Using Fubini’s theorem in the third line, Lemma 7.7 and
L2(U, dx) ⊂ L1(U, dx) in the last line, we get∫ ∞

0

∫
U

∣∣f(x)(PD
s f(x)− Psf(x))

∣∣ dxµ(s)ds

≤
∫ ∞
0

∫
U

|f(x)|
∫
U

(p(s, x, y)− pD(s, x, y))|f(y)| dy µ(s)ds

=

∫
U

∫
U

|f(x)||f(y)|
(∫ ∞

0

(p(s, x, y)− pD(s, x, y))µ(s)ds

)
dx dy

=

∫
U

∫
U

|f(x)||f(y)|(JX(x, y)− JY D(x, y)) dx dy

≤ jX(dist(U, ∂D))

∫
U

∫
U

|f(x)||f(y)| dx dy <∞ .

Together with (7.1)–(7.2) and (7.4)–(7.5), this immediately implies the claim. 2

We now give some other expressions for κXU and κY
D

U . First, it is easy to see that

κXU (x) =

∫
(0,∞)

(1− Pt1U(x))µ(t) dt .

Further,

κY
D

U (x) =

∫
(0,∞)

(1− PD
t 1(x))µ(t)dt+

∫
D\U

∫
(0,∞)

pD(t, x, y)µ(t)dtdy
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=

∫
(0,∞)

(1− PD
t 1(x))µ(t)dt+

∫
(0,∞)

(∫
D\U

pD(t, x, y)dy

)
µ(t)dt

=

∫
(0,∞)

(1− PD
t 1(x))µ(t)dt+

∫
(0,∞)

PD
t 1D\U(x)µ(t)ft

=

∫
(0,∞)

(1− PD
t 1U(x))µ(t)dt .

Let

qU(x) := κY
D

U (x)− κXU (x) =

∫ ∞
0

(Pt1U − PD
t 1U)(x)µ(t) dt

=

∫ ∞
0

(
Px(Wt ∈ U)− Px(WD

t ∈ U)
)
µ(t) dt .

Clearly, qU(x) ≥ 0 and

qU(x) =

∫ ∞
0

∫
U

Ex[p(t− τD,WτD , y), t > τD]dy µ(t) dt

=

∫
U

Ex
∫ ∞
τD

p(t− τD,WτD , y)µ(t) dt dy

=

∫
U

(JX(x, y)− JY D(x, y))dy .

For x, y ∈ D, x 6= y, let

F (x, y) :=
JY

D
(x, y)

JX(x, y)
− 1 =

JY
D

(x, y)− JX(x, y)

JX(x, y)
,

and F (x, x) = 0. We also define F (x, ∂) = 0, where ∂ denotes the cemetery point (this is
where all killed processes end up). Then −1 < F (x, y) ≤ 0. Note that∫

U

F (x, y)JX(x, y)dy = −qU(x) .

The next lemma shows that the absolute value of F can be bounded by 1/2 on balls of
small radius sufficiently away from the boundary of D.

Lemma 7.3 Assume that (A1)-(A4) hold. There exists b = b(φ, d) > 2 such that for all
x0 ∈ D and all r ∈ (0, 1/b) satisfying B(x0, (b+ 1)r) ⊂ D, we have that

sup
x,y∈B(x0,r)

|F (x, y)| ≤ 1

2
.

Proof. First note that if B(x0, (b + 1)r) ⊂ D, then for every y ∈ B(x0, r) it holds that

δD(y) > br. Hence by (7.7), for x, y ∈ B(x0, r), J
X(x, y)− JY D(x, y) ≤ jX(br). Therefore

|F (x, y)| = JX(x, y)− JY D(x, y)

JX(x, y)
≤ jX(br)

jX(|x− y|)
≤ jX(br)

jX(2r)
.
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By [21, Proposition 2.6], there exists c1 = c1(φ, d) such that

c−11

φ′(r−2)

rd+2
≤ jX(r) ≤ c1

φ′(r−2)

rd+2
, 0 < r < 1 . (7.8)

Hence for b > 2 and r ∈ (0, 1) such that br < 1,

|F (x, y)| ≤ c21

φ′(b−2r−2)
(br)d+2

φ′(2−2r−2)
(2r)d+2

≤ c21

(
2

b

)d+2
φ′(b−2r−2)

φ′(2−2r−2)
. (7.9)

If d ≥ 3, we use the fact that λ 7→ λ2φ′(λ) is increasing, cf. Lemma 2.1(b), to conclude that
for b ≥ 2,

|F (x, y)| ≤ c21

(
2

b

)d−2
(b−2r−2)2φ′(b−2r−2)

(2−2r−2)2φ′(2−2r−2)
≤ c21

(
2

b

)d−2
.

Now choose b > 2 such that c := c21(2/b)
d−2 ≤ 1/2.

When d = 2 we use (7.9) and (A4) to get

|F (x, y)| ≤ c21
1

σ′

(
2

b

)4−δ′

,

where σ′ and δ′ are the constants from (A4). Again, we choose b > 2 such that the last
expression is smaller than 1/2. 2

Let b > 2 be the constant from Lemma 7.3. For r < 1/b, let U ⊂ D be such that
diam(U) ≤ r and dist(U, ∂D) ≥ (b + 2)r. Then there exists a ball B(x0, r) such that
U ⊂ B(x0, r) and B(x0, (b+ 1)r) ⊂ D. By Lemma 7.3 we see that

|F (x, y)| ≤ 1/2 for all x, y ∈ U. (7.10)

Hence we can define the non-local multiplicative functional

KU
t := exp

(∑
0<s≤t

log(1 + F (XU
s−, X

U
s ))−

∫ t

0

∫
U

F (XU
s , y)JX(XU

s , y)dy ds−
∫ t

0

qU(XU
s )ds

)

= exp

(∑
0<s≤t

log(1 + F (XU
s−, X

U
s ))

)
.

Let
TUt f(x) := Ex[KU

t f(XU
t )] .

By [9, (4.5) and Theorem 4.8], (TUt )t≥0 is a strongly continuous semigroup on L2(U, dx) with

the associated quadratic form (Q,D(EXU
)) where

Q(f, f) = EXU

(f, f)−
∫
U

∫
U

f(x)f(y)F (x, y)JX(x, y) dy dx .
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Lemma 7.4 Assume that (A1)-(A4) hold. For r < 1/b, let U ⊂ D be such that diam(U) ≤
r and dist(U, ∂D) ≥ (b+ 2)r. Then

(Q,D(EXU

)) = (EY D,U ,D(EY D,U )) .

Proof. Note that

Q(f, f) =

∫
U

∫
U

(f(x)− f(y))2(JY
D

(x, y)− F (x, y)JX(x, y)) dy dx+

∫
U

f(x)2κXU (x) dx

−
∫
U

∫
U

f(x)f(y)F (x, y)JX(x, y) dy dx

=

∫
U

∫
U

(f(x)− f(y))2JY
D

(x, y) dy dx+

∫
U

f(x)2
∫
U

F (x, y)JX(x, y) dy dx

+

∫
U

f(x)2κXU (x) dx

=

∫
U

∫
U

(f(x)− f(y))2JY
D

(x, y) dy dx+

∫
U

f(x)2q(x) dx+

∫
U

f(x)2κXU (x) dx

= EY D,U (f, f) .

It was shown in Lemma 7.2 that D(EXU
) = D(EY D,U ), which finishes the proof. 2

For x, y ∈ U , x 6= y, let
uU(x, y) := Eyx[KU

τXU
]

be the conditional gauge function for KU
t . Here Eyx denotes the expectation with respect

to the conditional probability Pyx defined via Doob’s h-transform with respect to the Green
function GX

U (·, y) starting from x ∈ D. Since F ≤ 0, we have log(1+F ) ≤ 0, hence KU
τXU
≤ 1.

Therefore, uU(x, y) ≤ 1. Define

V U(x, y) = uU(x, y)GX
U (x, y), x, y ∈ U.

It follows from [6, Lemma 3.9] that V U(x, y) is the Green function for the semigroup (TUt )t≥0.
Combining this with Lemma 7.4 we can conclude that V U is equal to the Green function
GY D

U of Y D,U . Therefore,

GY D

U (x, y) = uU(x, y)GX
U (x, y), x, y ∈ U. (7.11)

Our next goal is to show that for C1,1 open sets U , the conditional gauge function uU is
bounded below by a strictly positive constant uniform in the diameter of U . Together with
the above equality this proves that the Green function of Y D,U is comparable to that of XU .

Assume that the Bernstein function φ satisfies (A1)-(A5) and (A7), and without loss
of generality we assume φ(1) = 1. For r > 0 define

φr(λ) :=
φ(λr−2)

φ(r−2)
, λ > 0 .
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Then φr is a Bernstein function with potential density ur and Lévy density µr given by

ur(t) = r2φ(r−2)u(r2t) , µr(t) = r2φ(r−2)−1µ(r2t) , t > 0 ,

cf. [28, (2.7), (2.8)]. In particular, φr satisfies (A1). Further, if 0 < r ≤ 1, then for λ ≥ 1
we have that λr−2 ≥ 1, and thus for t ≥ 1,

(φr)′(λt)

(φr)′(λ)
=
φ′(λtr−2)

φ′(λr−2)
≤ σt−δ .

Hence, (A3) holds for φr with the same constants. Similarly, one can see that φr satisfies
(A4) and (A7) with the same constants. It is immediate that φr also satisfies (A5). It
remains to check (A2). Suppose first that t > 1 is such that r2t ≤ 1 (so that r2(t+ 1) ≤ 2).
Then by using (2.4) and (2.3) in the first inequality and the fact that φ′ is decreasing in the
last, we get

µr(t+ 1)

µr(t)
=
µ(r2(t+ 1))

µ(r2t)
≥ c1

φ′(r−2(t+ 1)−1)

r4(t+ 1)2
r4t2

φ′(r−2t−1)
≥ c1

2
.

If t > 1 and r2t > 1, then by (A2), we get

µt(t+ 1)

µr(t)
=
µ(r2(t+ 1))

µ(r2t)
≥ µ(r2t+ 1)

µ(r2t)
≥ c2.

Thus φr also satisfies (A2) with the constant independent of a.
Let Sr = (Srt )t≥0 be a subordinator with Laplace exponent φr independent of the Brow-

nian motion W . Let Xr = (Xr
t )t≥0 be defined by Xr

t = WSrt
. Then Xr is an isotropic Lévy

process with characteristic exponent φr(|ξ|2) = φ(|ξ|2r−2)/φ(r−2), ξ ∈ Rd, which shows that
Xr is identical in law to the process {r−1Xt/φ(r−2)}t≥0.

Let V ⊂ Rd be a bounded C1,1 open set such that 0 ∈ ∂V . For r ∈ (0, 1], let V r = {rx :
x ∈ V } be the scaled version of V . Denote by GXr

V (respectively GX
V r) the Green function of

V with respect to the process Xr (respectively the Green function of V r with respect to the
process X). Then by scaling,

GX
V r(x, y) = r−dφ(r−2)−1GXr

V (x/r, y/r) , x, y ∈ V r . (7.12)

For any open set U ⊂ Rd, we let

grU(x, y) :=

(
1 ∧ φr(|x− y|−2)√

φr(δU(x)−2)φr(δU(y)−2)

)
(φr)′(|x− y|−2)

|x− y|d+2φr(|x− y|−2)2
, x, y ∈ U , (7.13)

and gU(x, y) := g1U(x, y).

Proposition 7.5 Suppose that (A1)-(A5) and (A7) hold. Let V ⊂ Rd be a bounded C1,1

open set with characteristics (R,Λ) such that 0 ∈ ∂V and diam(V ) ≤ 1. There exists a
constant C = C(R,Λ, φ, d) ≥ 1 such that for every r ∈ (0, 1],

C−1gV r(x, y) ≤ GX
V r(x, y) ≤ CgV r(x, y) , x, y ∈ V r .

The dependence of c on φ is only through the constants in assumptions (A1)-(A5) and
(A7).
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Proof. Let r ∈ (0, 1]. By [21, Theorem 1.2] applied to the process Xr, there exists a
constant c = c(diam(V ), R,Λ, φr, d) such that

c−1grV (x, y) ≤ GXr

V (x, y) ≤ cgrV (x, y) , x, y ∈ V . (7.14)

Moreover, although not explicitly mentioned, the dependence of c on φr is only through
the constants in (A1)-(A5) and (A7) for φr. But as shown above, those constants are
independent of r ∈ (0, 1]. Since diam(V ) ≤ 1, we conclude that c = c(R,Λ, φ, d) where
dependence of c on φ is only through the constants in (A1)-(A5) and (A7) for φ.

By a straightforward computation we get that

grV (x/r, y/r) = rdφ(r−2)gV r(x, y) , x, y ∈ V r . (7.15)

The claim of the proposition now follows by combining (7.12), (7.14) and (7.15). 2

We note that the assumption in Proposition 7.5 that 0 ∈ ∂V is irrelevant. For any z ∈ ∂V
we could use the scaling V r = {r(x− z) + z; x ∈ V } and obtain the same result.

Lemma 7.6 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and Λ > 0. There exists
C = C(R,Λ, φ, d) > 0 such that for every r ∈ (0, 1] and every C1,1 open set U ⊂ D with
characteristics (rR,Λ/r) and diam(U) ≤ r satisfying dist(U, ∂D) ≥ r,∫

U

∫
U

GX
U (x, z)GX

U (w, y)

GX
U (x, y)

|F (z, w)|JX(z, w)dz dw ≤ C , for all x, y ∈ U . (7.16)

Proof. Since dist(U, ∂D) ≥ r, we have by Lemma 7.1 that

|F (z, w)|JX(z, w) ≤ jX(r) for all z, w ∈ U. (7.17)

Let V r = U and define V = r−1V r = {r−1x; x ∈ V r}. Then V is a C1,1 open set with
characteristics (R,Λ) and diam(V ) ≤ 1. By Proposition 7.5 there exists c1 = c1(R,Λ, φ, d) >
0 such that

c−11 gU(x, y) ≤ GX
U (x, y) ≤ c1gU(x, y) , x, y ∈ U . (7.18)

Next note that ∫
U

∫
U

GX
U (x, z)GX

U (w, y)

GX
U (x, y)

dz dw =
Ex(τXU )Ey(τXU )

GX
U (x, y)

.

By using (7.18) and [7, Lemma 7.1] we get that

Ex(τXU ) =

∫
U

GX
U (x, y) dy ≤ 2c1φ(δU(x)−2)−1/2

∫
U

φ′(|x− y|−2)
|x− y|d+2φ(|x− y|−2)3/2

dy

≤ 2c1c(d)φ(δU(x)−2)−1/2
∫ 2r

0

td−1
φ′(t−2)

td+2φ(t−2)3/2
dt

= 2c1c(d)φ(δU(x)−2)−1/2
∫ 2r

0

d
(
φ(t−2)−1/2

)
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= 2c1c(d)φ(δU(x)−2)−1/2φ((2r)−2)−1/2

≤ c2φ(δU(x)−2)−1/2φ(r−2)−1/2 ,

where c2 = c2(R,Λ, φ, d) > 0.
If φ(|x− y|−2) ≤ φ(δU(x)−2)1/2φ(δU(y)−2)1/2, then

Ex(τXU )Ey(τXU )

GX
U (x, y)

≤ c22c1
φ(r−2)−1φ(δU(x)−2)−1/2φ(δU(y)−2)−1/2

φ′(|x−y|−2)

φ(δU (x)−2)1/2φ(δU (y)−2)1/2|x−y|d+2φ(|x−y|−2)

= c22c1φ(r−2)−1|x− y|d−2 φ(|x− y|−2)
(|x− y|−2)2φ′(|x− y|−2)

≤ c22c1φ(r−2)−1(2r)d−2
φ((2r)−2)

(2r)−4φ′((2r)−2)

≤ 2d+2c22c1r
d+2φ′(r−2)−1 .

In the third line we have used Lemma 2.1(b) (with a = 1).
Suppose now that φ(|x − y|−2) > φ(δU(x)−2)1/2φ(δU(y)−2)1/2. By using the obvious

inequality φ(δU(x)−2)−1/2 ≤ φ(r−2)−1/2 and Lemma 2.1(b) again (this time with a = 2), we
get

Ex(τXU )Ey(τXU )

GX
U (x, y)

≤ c22c1φ(r−2)−2|x− y|d−2 |x− y|
4φ(|x− y|−2)2

φ′(|x− y|−2)
≤ 2d+2c22c1r

d+2φ′(r−2)−1 . (7.19)

Using the inequalities (7.8) and (7.17), and applying (7.19), we conclude that∫
U

∫
U

GX
U (x, z)GX

U (w, y)

GX
U (x, y)

|F (z, w)|JX(z, w)dz dw ≤ 2d+2c22c1r
d+2φ′(r−2)−1jX(r) ≤ C

with a constant C = C(R,Λ, φ, d). 2

Lemma 7.7 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and Λ > 0. Then
for every r ∈ (0, 1/b) and every C1,1 open set U ⊂ D with characteristics (rR,Λ/r) and
diam(U) ≤ r satisfying dist(U, ∂D) ≥ (b+ 2)r, we have

Eyx
∑

0<s≤τXU

|F (XU
s−, X

U
s )| ≤ C ,

where C is the constant from Lemma 7.6 and b > 2 the constant from Lemma 7.3.

Proof. By [9, Proposition 3.3] we have

Eyx
∑

0<s≤τXU

|F (XU
s−, X

U
s )| = Ex

∫ τXU

0

∫
U

|F (Xs, w)|GX
U (w, y)

GX
U (x, y)

JX(Xs, w) dw ds

=

∫
U

∫
U

GX
U (x, z)GX

U (w, y)

GX
U (x, y)

|F (z, w)|JX(z, w)dz dw .

The claim is now a consequence of Lemma 7.6. 2
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Lemma 7.8 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and Λ > 0. There exists
C = C(R,Λ, φ, d) ∈ (0, 1) such that for every r ∈ (0, 1/b) and every C1,1 open set U ⊂ D
with characteristics (rR,Λ/r) and diam(U) ≤ r satisfying dist(U, ∂D) ≥ (b+ 2)r, we have

C ≤ uU(x, y) ≤ 1 , x, y ∈ U .

Proof. The upper bound is clear. By (7.10), F ≥ −1/2 on U × U . By using Jensen’s
inequality in the first inequality, the fact that log(1 + t) ≥ t for t ∈ [−1/2, 0) in the second,
and Lemma 7.7 in the third, we have

uU(x, y) ≥ exp

Eyx

 ∑
0<s≤τXU

log
(
1 + F (XU

s−, X
U
s )
)

≥ exp

Eyx

 ∑
0<s≤τXU

F (XU
s−, X

U
s )

 ≥ exp{−C} .

2

Combining this lemma with (7.11) we arrive at

Proposition 7.9 Suppose that (A1)-(A5) and (A7) hold. Let R > 0 and Λ > 0. There
exists C = C(R,Λ, φ, d) ∈ (0, 1) such that for every r ∈ (0, 1/b) and every C1,1 open set
U ⊂ D with characteristics (rR,Λ/r) and diam(U) ≤ r satisfying dist(U, ∂D) ≥ (b + 2)r,
we have

CGX
U (x, y) ≤ GY D

U (x, y) ≤ GX
U (x, y) , x, y ∈ U .

A similar method was used to establish comparability of the Green functions of some
one-dimensional processes in [40].

Proof of Theorem 1.3: Let R = δD(Q) ∧ 1. Choose a C1,1-function ϕ : Rd−1 7→ R
satisfying ϕ(0̃) = 0, ∇ϕ(0̃) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(ỹ)−∇ϕ(w̃)| ≤ Λ|ỹ − w̃|, and an
orthonormal coordinate system CSQ with its origin at Q such that

B(Q,R) ∩ E = {y = (ỹ, yd) ∈ B(0, R) in CSQ : yd > ϕ(ỹ)} .

Define ρQ(x) = xd − ϕ(x̃), where (x̃, xd) are the coordinates in CSQ. Recall that κ =
(1 + (1 + Λ)2)−1/2. For r > 0, define the box

EQ(r) = {y ∈ E : 0 < ρQ(y) < κr/2, |ỹ| < κr/2},

so that diam(EQ(r)) ≤ r. There exists L = L(R,Λ, d) such that for every r ≤ κR one can find
a C1,1 domain VQ(r) with characteristics (rR/L,ΛL/r) such that EQ(r/2) ⊂ VQ(r) ⊂ EQ(r)
(see [32, Lemma 2.2]). Furthermore, B(Q, κ2r/4) ∩ E ⊂ EQ(r/2) and EQ(r) ⊂ B(Q, r) ∩ E
(see (4.2)). Since r < (δD(Q)∧ 1)/(b+ 2), we conclude that dist(VQ(r), ∂D) ≥ (b+ 2)r. Now
it follows from Proposition 7.9 (with (R/L,ΛL) instead of (R,Λ)) that

c0G
X
VQ(r)(x, y) ≤ GY D

VQ(r)(x, y) ≤ GX
VQ(r)(x, y) , x, y ∈ VQ(r) , (7.20)
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where c0 = c0(δD(Q) ∧ 1,Λ, φ, d) is independent of r.
Let B = B(Q, 2r). Then VQ(r) ⊂ B ⊂ D and dist(B, ∂D) ≥ br/2. Recall that by Lemma

3.4 there exists a constant c1 = c1(b) ∈ (0, 1) such that for every r < (δD(Q) ∧ 1)/(b+ 2),

c1J
X(w, y) ≤ JY

D

(w, y) ≤ JX(w, y) , w, y ∈ B . (7.21)

Let f be regular harmonic in E∩B(Q, r) with respect to Y D and vanish on Ec∩B(Q, r).
Then for x ∈ VQ(r),

f(x) = Ex[f(Y D
τVQ(r)

);Y D
τVQ(r)

∈ B] + Ex[f(Y D
τVQ(r))

;Y D
τVQ(r)

∈ D \B] =: f1(x) + f2(x) . (7.22)

We first estimate f1(x). By using (7.20) and (7.21) we get

f1(x) =

∫
B\VQ(r)

∫
VQ(r)

GY D

VQ(r)(x,w)JY
D

(w, y)f(y) dy dw

�
∫
B\VQ(r)

∫
VQ(r)

GX
VQ(r)(x,w)JX(w, y)f(y) dy dw

= Ex[f(XτVQ(r)
);XτVQ(r)

∈ B] =: h(x) ,

where the comparison constants in the second line depend only on δD(Q) ∧ 1,Λ, φ, d. Since
the function h is regular harmonic in B(Q, κ2r/4) ∩ E with respect to X and vanishes on
B(Q, κ2r/4) ∩ Ec, we can use the factorization from [21, Lemma 5.4] to conclude that

h(x) � Ex[τXB(Q,κ2r/4)∩E]

∫
B(Q,κ2r/8)c

JX(Q, y)h(y) dy , x ∈ B(Q, κ2r/8)

(with the comparison constants depending on φ, d). Hence,

f1(x) � Ex[τXB(Q,κ2r/4)∩E]

∫
B(Q,κ2r/8)c

JX(Q, y)h(y) dy , x ∈ B(Q, κ2r/8) . (7.23)

In order to estimate f2(x) we use Proposition 3.5 in the second line below to conclude
that

f2(x) = Ex
∫ τY

D

VQ(r)

0

∫
D\B

f(y)JY
D

(Y D
s , y) dy ds

� Ex
∫ τY

D

VQ(r)

0

∫
D\B

f(y)JY
D

(Q, y) dy ds

= Ex[τY
D

VQ(r)]

∫
D\B

f(y)JY
D

(Q, y) dy (7.24)

(where the comparison constants depend on the constants from (B1) and (B2)). Now, by
Proposition 7.5 and (7.20) we have that for x ∈ B(Q, κ4r/(32)),

Ex[τY
D

VQ(r)] � φ(r−2)−1/2φ(δ−2VQ(r)(x))−1/2 = φ(r−2)−1/2φ(δ−2E (x))−1/2 , (7.25)
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Ex[τXB(Q,κ2r/4)∩E] ≤ Ex[τXVQ(r)]

≤ c2φ(r−2)−1/2φ(δ−2VQ(r)(x))−1/2 = c2φ(r−2)−1/2φ(δ−2E (x))−1/2 , (7.26)

and

Ex[τXB(Q,κ2r/4)∩E] ≥ Ex[τX2−2κ2VQ(r)]

≥ c3φ(r−2)−1/2φ(δ−22−2κ2VQ(r)(x))−1/2 = c3φ(r−2)−1/2φ(δ−2E (x))−1/2 . (7.27)

By combining (7.22)-(7.27), we get that for x ∈ B(Q, κ4r/(32)),

f(x) � φ(δ−2E (x))−1/2φ(r−2)−1/2
(∫

B(κ2r/8)c
JX(Q, y)h(y) dy +

∫
D\B

f(y)JY
D

(Q, y) dy

)
.

This approximate factorization of the regular harmonic function f immediately implies the
claim. 2
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