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Abstract

The paper discusses and surveys some aspects of the potential theory of subordinate Brown-
ian motion under the assumption that the Laplace exponent of the corresponding subordinator
is comparable to a regularly varying function at infinity. This extends some results previously
obtained under stronger conditions.
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1 Introduction

An Rd-valued process X = (Xt : t ≥ 0) is called a Lévy process in Rd if it is a right continuous

process with left limits and if, for every s, t ≥ 0, Xt+s −Xs is independent of {Xr, r ∈ [0, s]} and

has the same distribution as Xs − X0. A Lévy process is completely characterized by its Lévy

exponent Φ via

E[exp{i〈ξ,Xt〉}] = exp{−tΦ(ξ)}, t ≥ 0, ξ ∈ Rd.

The Lévy exponent Φ of a Lévy process is given by the Lévy-Khintchine formula

Φ(ξ) = i〈l, ξ〉+
1

2
〈ξ, AξT 〉+

∫
Rd

(
1− ei〈ξ,x〉 − i〈ξ, x〉1{|x|<1}

)
Π(dx), ξ ∈ Rd ,

where l ∈ Rd, A is a nonnegative definite d× d matrix, and Π is a measure on Rd \ {0} satisfying∫
(1 ∧ |x|2) Π(dx) < ∞. A is called the diffusion matrix, Π the Lévy measure, and (l, A,Π) the

generating triplet of the process.

Nowadays Lévy processes are widely used in various fields, such as mathematical finance, actu-

arial mathematics and mathematical physics. However, general Lévy processes are not very easy

to deal with.

A subordinate Brownian motion in Rd is a Lévy process which can be obtained by replacing the

time of Brownian motion in Rd by an independent subordinator (i.e., an increasing Lévy process).
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More precisely, let B = (Bt : t ≥ 0) be a Brownian motion in Rd and S = (St : t ≥ 0) be

a subordinator independent of B. The process X = (Xt : t ≥ 0) defined by Xt = BSt is a

rotationally invariant Lévy process in Rd and is called a subordinate Brownian motion.

The subordinator S used to define the subordinate Brownian motion X can be interpreted as

“operational” time or “intrinsic” time. For this reason, subordinate Brownian motions have been

used in mathematical finance and other applied fields. Subordinate Brownian motions form a very

large class of Lévy processes. Nonetheless, compared with general Lévy processes, subordinate

Brownian motions are much more tractable. If we take the Brownian motion B as given, then

X is completely determined by the subordinator S. Hence, one can deduce properties of X from

properties of the subordinator S. On the analytic level this translates to the following: Let φ denote

the Laplace exponent of the subordinator S, that is, E[exp{−λSt}] = exp{−tφ(λ)}, λ > 0. Then

the characteristic exponent Φ of the subordinate Brownian motion X takes on the very simple form

Φ(x) = φ(|x|2) (our Brownian motion B runs at twice the usual speed). Therefore, properties of

X should follow from properties of the Laplace exponent φ.

The Laplace exponent φ of a subordinator S is a Bernstein function, hence it has a representation

of the form

φ(λ) = bλ+

∫
(0,∞)

(1− e−λt)µ(dt)

where b ≥ 0 and µ is a measure on (0,∞) satisfying
∫

(0,∞)(1 ∧ t)µ(dt) <∞. If µ has a completely

monotone density, the function φ is called a complete Bernstein function. The purpose of this work

is to study the potential theory of subordinate Brownian motion under the assumption that the

Laplace exponent φ of the subordinator is a complete Bernstein function comparable to a regularly

varying functions at infinity. More precisely, we will assume that there exist α ∈ (0, 2) and a

function ` slowly varying at infinity such that

φ(λ) � λα/2`(λ) , λ→∞ .

Here and later, for two functions f and g we write f(λ) � g(λ) as λ→∞ if the quotient f(λ)/g(λ)

stays bounded between two positive constants as λ→∞.

A lot of progress has been made in recent years in the study of the potential theory of subordinate

Brownian motions, see, for instance [13, 14, 25, 26, 27, 31, 35] and [6, Chapter 5]. In particular,

an extensive survey of results obtained before 2007 is given in [6, Chapter 5]. At that time,

the focus was on the potential theory of the process X in the whole of Rd, the results for the

(killed) subordinate Brownian motion in an open subset still being out of reach. In the last few

years significant progress has been made in studying the potential theory of subordinate Brownian

motion killed upon exiting an open subset of Rd. The main results include the boundary Harnack

principle and sharp Green function estimates. For the processes having a continuous component

see [26] (for the one-dimensional case) and [12, 13, 14] (for multi-dimensional case). For purely

discontinuous processes, the boundary Harnack principle was obtained in [25] and sharp Green

function estimates were discussed in the recent preprint [27]. The main assumption in [13, 14, 25]
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and [6, Chapter 5] is that the Laplace exponent of the subordinator is regularly varying at infinity.

The results were established under different assumptions, some of which turned out to be too strong

and some even redundant. Time is now ripe to put some of the recent progress under one unified

setup and to give a survey of some of these results. The survey builds upon the work done in [6,

Chapter 5] and [25] The setup we are going to assume is more general than all these of the previous

papers, so in this sense, most of the results contained in this paper are extensions of the existing

ones.

In Section 2 we first recall some basic facts about subordinators, Bernstein functions and com-

plete Bernstein functions. Then we establish asymptotic behaviors, near the origin, of the potential

density and Lévy density of subordinators.

In Section 3 we establish the asymptotic behaviors, near the origin, of the Green function and

the Lévy density of our subordinate Brownian motion. These results follow from the asymptotic

behaviors, near the origin, of the potential density and Lévy density of the subordinator.

In Section 4 we prove that the Harnack inequality and the boundary Harnack principle hold for

our subordinate Brownian motions.

The materials covered in this paper by no means include all that can be said about the potential

theory of subordinate Brownian motions. One of the omissions is the sharp Green function estimates

of (killed) subordinate Brownian motions in bounded C1,1 open sets obtained in the recent preprint

[27]. The present paper builds up the framework for [27] and can be regarded as a preparation for

[27] in this sense. Another omission is the Dirichlet heat kernel estimates of subordinate Brownian

motions in smooth open sets recently established in [8, 9, 10, 11]. One of the reasons we do not

include these recent results in this paper is that all these heat kernel estimates are for particular

subordinate Brownian motions only and are not yet established in the general case. A third notable

omission is the spectral theory for killed subordinate Brownian motions developed in [17, 18, 19].

Some of these results have been summarized in [34, Section 12.3]. A fourth notable omission is

the potential theory of subordinate killed Brownian motions developed in [21, 22, 37, 38, 40, 41].

Some of these results have been summarized in [6, Section 5.5] and [34, Chapter 13]. In this paper

we concentrate on subordinate Brownian motions without diffusion components and therefore this

paper does not include results from[13, 14, 26]. One of the reasons for this is that subordinate

Brownian motions with diffusion components require a different treatment.

We end this introduction with few words on the notations. For functions f and g we write

f(t) ∼ g(t) as t → 0+ (resp. t → ∞) if the quotient f(t)/g(t) converges to 1 as t → 0+ (resp.

t→∞), and f(t) � g(t) as t→ 0+ (resp. t→∞) if the quotient f(t)/g(t) stays bounded between

two positive constants as t→ 0+ (resp. t→∞).
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2 Subordinators

2.1 Subordinators and Bernstein functions

Let S = (St : t ≥ 0) be a subordinator, that is, an increasing Lévy process taking values in [0,∞)

with S0 = 0. A subordinator S is completely characterized by its Laplace exponent φ via

E[exp(−λSt)] = exp(−tφ(λ)) , λ > 0.

The Laplace exponent φ can be written in the form (cf. [2, p. 72])

φ(λ) = bλ+

∫ ∞
0

(1− e−λt)µ(dt) .

Here b ≥ 0, and µ is a σ-finite measure on (0,∞) satisfying∫ ∞
0

(t ∧ 1)µ(dt) <∞ .

The constant b is called the drift, and µ the Lévy measure of the subordinator S.

A C∞ function φ : (0,∞) → [0,∞) is called a Bernstein function if (−1)nDnφ ≤ 0 for every

positive integer n. Every Bernstein function has a representation (cf. [34, Theorem 3.2])

φ(λ) = a+ bλ+

∫
(0,∞)

(1− e−λt)µ(dt)

where a, b ≥ 0 and µ is a measure on (0,∞) satisfying
∫

(0,∞)(1∧ t)µ(dt) <∞. a is called the killing

coefficient, b the drift and µ the Lévy measure of the Bernstein function. Thus a nonnegative

function φ on (0,∞) is the Laplace exponent of a subordinator if and only if it is a Bernstein

function with φ(0+) = 0.

A Bernstein function φ is called a complete Bernstein function if the Lévy measure µ has a

completely monotone density µ(t), i.e., (−1)nDnµ ≥ 0 for every non-negative integer n. Here and

below, by abuse of notation we will denote the Lévy density by µ(t). Complete Bernstein functions

form a large subclass of Bernstein functions. Most of the familiar Bernstein functions are complete

Bernstein functions. See [34, Chapter 15] for an extensive table of complete Bernstein functions.

Here are some examples of complete Bernstein functions:

(i) φ(λ) = λα/2, α ∈ (0, 2];

(ii) φ(λ) = (λ+m2/α)α/2 −m, α ∈ (0, 2),m ≥ 0;

(iii) φ(λ) = λα/2 + λβ/2, 0 ≤ β < α ∈ (0, 2];

(iv) φ(λ) = λα/2(log(1 + λ))γ/2, α ∈ (0, 2), γ ∈ (0, 2− α);

(v) φ(λ) = λα/2(log(1 + λ))−β/2, 0 ≤ β < α ∈ (0, 2].

4



An example of a Bernstein function which is not a complete Bernstein function is 1− e−λ.

It is known (cf. [34, Proposition 7.1]) that φ is a complete Bernstein function if and only if

the function λ/φ(λ) is a complete Bernstein function. For other properties of complete Bernstein

functions we refer the readers to [34].

The following result, which will play an important role later, says that the Lévy density of a

complete Bernstein function cannot decrease too fast in the following sense.

Lemma 2.1 ([27, Lemma 2.1]) Suppose that φ is a complete Bernstein function with Lévy density

µ. Then there exists C1 > 0 such that µ(t) ≤ C1µ(t+ 1) for every t > 1.

Proof. Since µ is a completely monotone function, by Bernstein’s theorem ([34, Theorem 1.4]),

there exists a measure m on [0,∞) such that µ(t) =
∫

[0,∞) e
−txm(dx). Choose r > 0 such that∫

[0,r] e
−xm(dx) ≥

∫
(r,∞) e

−xm(dx). Then, for any t > 1, we have∫
[0,r]

e−txm(dx) ≥ e−(t−1)r

∫
[0,r]

e−xm(dx)

≥ e−(t−1)r

∫
(r,∞)

e−xm(dx) ≥
∫

(r,∞)
e−txm(dx).

Therefore, for any t > 1,

µ(t+ 1) ≥
∫

[0,r]
e−(t+1)xm(dx) ≥ e−r

∫
[0,r]

e−txm(dx) ≥ 1

2
e−r

∫
[0,∞)

e−txm(dx) =
1

2
e−rµ(t).

2

The potential measure of the subordinator S is defined by

U(A) = E
∫ ∞

0
1{St∈A} dt, A ⊂ [0,∞). (2.1)

Note that U(A) is the expected time the subordinator S spends in the set A. The Laplace transform

of the measure U is given by

LU(λ) =

∫ ∞
0

e−λt dU(t) = E
∫ ∞

0
exp(−λSt) dt =

1

φ(λ)
. (2.2)

We call a subordinator S a complete subordinator if its Laplace exponent φ is a complete

Bernstein function. The following characterization of complete subordinators is due to [41, Remark

2.2] (see also [6, Corollary 5.3]).

Proposition 2.2 Let S be a subordinator with Laplace exponent φ and potential measure U . Then

φ is a complete Bernstein function if and only if

U(dt) = cδ0(dt) + u(t)dt

for some c ≥ 0 and completely monotone function u.
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In case the constant c in the proposition above is equal to zero, we will call u the potential

density of the subordinator S.

An inspection of the argument, given in [6, Chapter 5] or [41] leading to the proposition above

yields the following two results (cf. [6, Corollary 5.4 and Corollary 5.5] or [41, Corollary 2.3 and

Corollary 2.4]).

Corollary 2.3 Suppose that S = (St : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = bλ+

∫ ∞
0

(1− e−λt)µ(dt)

is a complete Bernstein function with b > 0 or µ(0,∞) = ∞. Then the potential measure U of S

has a completely monotone density u.

Proof. By [6, Corollary 5.4] or [41, Corollary 2.3], if the drift of complete subordinator S is zero or

the Lévy measure µ has infinite mass, then the constant c in Proposition 2.2 above is equal to zero

so the potential measure U of S has a density u. The completeness of the density follows directly

from Proposition 2.2. 2

Corollary 2.4 Let S be a complete subordinator with Laplace exponent φ. Suppose that the drift of

S is zero and the Lévy measure µ has infinite mass. Then the potential measure of a subordinator

with Laplace exponent ψ(λ) := λ/φ(λ) has a completely monotone density v given by

v(t) = µ(t,∞).

Proof. Since the drift of S is zero and the Lévy measure µ has infinite mass, by [6, Corollary 5.5]

or [41, Corollary 2.4], we have that

ψ(λ) = a+

∫ ∞
0

(1− e−λt) ν(dt)

where a =
(∫∞

0 tµ(t)dt
)−1

, the Lévy measure ν of ψ has infinite mass and the potential measure

of a possibly killed (i.e., a > 0) subordinator with Laplace exponent ψ has a density v given by

v(t) = µ(t,∞). The completeness of the density follows from [6, Corollary 5.3], which works for

killed subordinator. 2

2.2 Asymptotic behavior of the potential and Lévy densities

From now on we will always assume that S is a complete subordinator without drift and that the

Laplace exponent φ of S satisfies limλ→∞ φ(λ) = ∞ (or equivalently, the Lévy measure of S has

infinite mass). Under this assumption, the potential measure U of S has a completely monotone

density u (cf. Corollary 2.3). The main purpose of this subsection is to determine the asymptotic

behaviors of u and µ near the origin. For this purpose, we will need the following result due to

Zähle (cf. [46, Theorem 7]).
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Proposition 2.5 Suppose that w is a completely monotone function given by

w(t) =

∫ ∞
0

e−stf(s) ds,

where f is a nonnegative decreasing function. Then

f(s) ≤
(
1− e−1

)−1
s−1w(s−1), s > 0.

If, furthermore, there exist δ ∈ (0, 1) and a, s0 > 0 such that

w(λt) ≤ aλ−δw(t), λ ≥ 1, t ≥ 1/s0, (2.3)

then there exists C2 = C2(w, f, a, s0, δ) > 0 such that

f(s) ≥ C2s
−1w(s−1), s ≤ s0.

Proof. Using the assumption that f is a nonnegative decreasing function, we get that, for any

r > 0, we have

w(t) =
1

t

∫ ∞
0

e−sf
(s
t

)
ds

≥ 1

t

∫ r

0
e−sf

(s
t

)
ds ≥ 1

t
f
(r
t

) (
1− e−r

)
.

Thus

f
(r
t

)
≤ tw(t)

1− e−r
, t > 0, r > 0.

In particular, we have

f(s) ≤
(
1− e−1

)−1
s−1w(s−1), s > 0,

and

f
(s
t

)
≤
(
1− e−1

)−1 t

s
w

(
t

s

)
, s > 0, t > 0. (2.4)

On the other hand, for r ∈ (0, 1], we have

tw(t) =

∫ r

0
e−sf

(s
t

)
ds+

∫ ∞
r

e−sf
(s
t

)
ds

≤
∫ r

0
e−sf

(s
t

)
ds+ f

(r
t

)
e−r

≤
(
1− e−1

)−1
t

∫ r

0
e−s

1

s
w

(
t

s

)
ds+ f

(r
t

)
e−r,

where in the last line we used (2.4). Now we assume (2.3), then we get that

w

(
t

s

)
≤ asδw(t), t ≥ 1/s0, s < r.
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Thus, for r ∈ (0, 1], we have,

tw(t) ≤ a
(
1− e−1

)−1
tw(t)

∫ r

0
e−ssδ−1ds+ f

(r
t

)
e−r.

Choosing r ∈ (0, 1] small enough so that

a
(
1− e−1

)−1
∫ r

0
e−ssδ−1ds ≤ 1

2
,

we conclude that for this choice of r, we have

f
(r
t

)
≥ c1tw(t), t ≥ 1/s0

for some constant c1 > 0. Since w is decreasing, we have

f(s) ≥ c1
r

s
w
(r
s

)
≥ c2s

−1w(s−1), s ≤ rs0,

where c2 = c1r. From this we immediately get that there exists c3 > 0 such that

f(s) ≥ c3s
−1w(s−1), s ≤ s0.

2

Corollary 2.6 The potential density u of S satisfies

u(t) ≤ C3t
−1φ(t−1)−1 , t > 0 . (2.5)

Proof. Apply the first part of Proposition 2.5 to the function

w(t) :=

∫ ∞
0

e−stu(s) ds =
1

φ(t)
,

2

We introduce now the main assumption on our Laplace exponent φ of the complete subordinator

S that we will use throughout the rest of the paper. Recall that a function ` : (0,∞) → (0,∞) is

slowly varying at infinity if

lim
t→∞

`(λt)

`(t)
= 1 , for every λ > 0 .

Assumption (H): There exist α ∈ (0, 2) and a function ` : (0,∞)→ (0,∞) which is measurable,

locally bounded and slowly varying at infinity such that

φ(λ) � λα/2`(λ) , λ→∞ . (2.6)
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Remark 2.7 The precise interpretation of (2.6) will be as follows: There exists a positive constant

c > 1 such that

c−1 ≤ φ(λ)

λα/2`(λ)
≤ c for all λ ∈ [1,∞) .

The choice of the interval [1,∞) is, of course, arbitrary. Any interval [a,∞) would do, but with

a different constant. This follows from the assumption that ` is locally bounded. Moreover, by

choosing a > 0 large enough, we could dispense with the local boundedness assumption. Indeed,

by [3, Lemma 1.3.2], every slowly varying function at infinity is locally bounded on [a,∞) for a

large enough.

Although the choice of interval [1,∞) is arbitrary, it will have as a consequence the fact that

all relations of the type f(t) � g(t) as t → ∞ (respectively t → 0+) following from (2.6) will be

interpreted as c̃−1 ≤ f(t)/g(t) ≤ c̃ for t ≥ 1 (respectively 0 < t ≤ 1).

The assumption (2.6) is a very weak assumption on the asymptotic behavior of φ at infinity. All

the examples (in (i), (iii) and (v), we need to take α < 2) above Lemma 2.1 satisfy this assumption.

In fact they satisfy the following stronger assumption

φ(λ) = λα/2`(λ) , (2.7)

where ` is a function slowly varying at infinity. By inspecting the table in [34, Chapter 15], one

can come up with a lot more examples of complete Bernstein functions satisfying this stronger

assumption. In the next example we construct a complete Bernstein function satisfying (2.6), but

not the stronger (2.7).

Example 2.8 Suppose that α ∈ (0, 2). Let F be a function on [0,∞) defined by F (x) = 0 on

0 ≤ x < 1 and

F (x) = 2n , 22(n−1)/α ≤ x < 22n/α, n = 1, 2, . . . .

Then clearly F is non-decreasing and xα/2 ≤ F (x) ≤ 2xα/2 for all x ≥ 1. This implies that for all

t > 0,
tα/2

2
≤ lim inf

x→∞

F (tx)

F (x)
≤ lim sup

x→∞

F (tx)

F (x)
≤ 2tα/2.

If F were regularly varying, the above inequality would imply that the index was α/2, hence the

limit of F (tx)/F (x) as x → ∞ would be equal to ctα/2 for some positive constant c. But this

does not happen because of the following. Take t = 22/α and a subsequence xn = 22n/α. Then

txn = 22(n+1)/α and therefore

F (txn)/F (xn) = 2n+2/2n+1 = 2

which should be equal to ctα/2 = c(22/α)α/2 = 2c, implying c = 1. On the other hand, take

any t ∈ (1, 22/α) and the same subsequence xn = 22n/α. Then txn ∈ [22n/α, 22(n+1)/α) implying
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F (txn) = F (xn). Thus the quotient F (txn)/F (xn) = 1 which should be equal to ctα = tα for all

t ∈ (1, 21/a). Clearly this is impossible, so F is not regularly varying. This also shows that F (x) is

not ∼ to any cxα/2, as x→∞.

Let σ be the measure corresponding to the nondecreasing function F (in the sense that σ(dt) =

F (dt)):

σ :=

∞∑
n=1

2nδ22n/α .

Since
∫

(0,∞)(1 + t)−1 σ(dt) <∞, σ is a Stieltjes measure. Let

g(λ) :=

∫
(0,∞)

1

λ+ t
σ(dt) =

∞∑
n=1

2n

λ+ 22n/α

be the corresponding Stieltjes function. It follows from [3, Theorem 1.7.4] or [45, Lemma 6.2] that

g is not regularly varying at infinity. Moreover, since F (x) � xα/2, x → ∞, it follows from [45,

Lemma 6.3] that g(λ) � λα/2−1, λ → ∞. Therefore, the function f(λ) := 1/g(λ) is a complete

Bernstein function which is not regularly varying at infinity, but satisfies f(λ) � λ1−α/2, λ→∞.

Now we are going to establish the asymptotic behaviors of u and µ under the assumption (H).

First we claim that under the assumption (2.6), there exist δ ∈ (0, 1) and a, s0 > 0 such that

φ(λt) ≥ aλδφ(t), λ ≥ 1, t ≥ 1/s0. (2.8)

Indeed, by Potter’s theorem (cf. [3, Theorem 1.5.6]), for 0 < ε < α/2 there exists t1 such that

`(t)

`(λt)
≤ 2 max

((
t

λt

)ε
,

(
λt

t

)ε)
= 2λε , λ ≥ 1, t ≥ t1 .

Hence,

φ(λt) ≥ c2(λt)α/2`(λt) = c2t
α/2`(t)λα/2

`(λt)

`(t)
≥ c3φ(t)λα/2−ε , λ ≥ 1, t ≥ t1.

By taking δ := α/2− ε ∈ (0, 1), a = c3, and s0 = 1/t1 we arrive at (2.8).

Theorem 2.9 Let S be a complete subordinator with Laplace exponent φ satisfying (H). Then the

potential density u of S satisfies

u(t) � t−1φ(t−1)−1 � tα/2−1

`(t−1)
, t→ 0 + . (2.9)

Proof. Put

w(t) :=

∫ ∞
0

e−stu(s) ds =
1

φ(t)
,

then by (2.8) we have

w(λt) ≤ a−1λ−δw(t), λ ≥ 1, t ≥ 1/s0.
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Applying the second part of Proposition 2.5 we see that there is a constant c > 0 such that

u(t) ≥ ct−1w(t−1),

for small t > 0. Combining this inequality with (2.5) we arrive at (2.9). 2

Theorem 2.10 Let S be a complete subordinator with Laplace exponent φ satisfying (H). Then

the Lévy density µ of S satisfies

µ(t) � t−1φ(t−1) � t−α/2−1`(t−1) , t→ 0 + . (2.10)

Proof. Since φ is a complete Bernstein function, the function ψ(λ) := λ/φ(λ) is also a complete

Bernstein function and satisfies

ψ(λ) � λ1−α/2

`(λ)
, λ→∞,

where α ∈ (0, 2) and ` are the same as in (2.6). It follows from Corollary 2.4 that the potential

measure of a subordinator with Laplace exponent ψ has a complete monotone density v given by

v(t) = µ(t,∞) =

∫ ∞
t

µ(s)ds.

Applying Theorem 2.9 to ψ and v we get

µ(t,∞) = v(t) � t−1ψ(t−1)−1 = φ(t−1) , t→ 0 . (2.11)

By using the elementary inequality 1 − e−cy ≤ c(1 − e−y) valid for all c ≥ 1 and all y > 0, we get

that φ(cλ) ≤ cφ(λ) for all c ≥ 1 and all λ > 0. Hence φ(s−1) = φ(2(2s)−1) ≤ 2φ((2s)−1) for all

s > 0. Therefore, by (2.11), for all s ∈ (0, 1/2)

v(s) ≤ c1φ(s−1) ≤ 2c1φ((2s)−1) ≤ c2v(2s)

for some constants c1, c2 > 0. Since

v(t/2) ≥ v(t/2)− v(t) =

∫ t

t/2
µ(s) ds ≥ (t/2)µ(t) ,

we have for all t ∈ (0, 1),

µ(t) ≤ 2t−1v(t/2) ≤ c2t
−1v(t) ≤ c3t

−1φ(t−1) ,

for some constant c3 > 0.

Using (2.8) we get that for every λ ≥ 1

φ(s−1) = φ(λ(λs)−1) ≥ aλδφ((λs)−1) , s ≤ s0

λ
.
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It follows from (2.11) that there exists a constant c4 > 0 such that

c−1
4 φ(s−1) ≤ v(s) ≤ c4φ(s−1) , s < 1 .

Fix λ := 21/δ((c2
4a
−1) ∨ 1)1/δ ≥ 1. Then for s ≤ (s0 ∧ 1)/λ,

v(λs) ≤ c4φ((λs)−1) ≤ c4a
−1λ−δφ(s−1) ≤ c2

4a
−1λ−δv(s) ≤ 1

2
v(s)

by our choice of λ. Further,

(λ− 1)sµ(s) ≥
∫ λs

s
µ(t) dt = v(s)− v(λs) ≥ v(s)− 1

2
v(s) =

1

2
v(s) .

This implies that for all small t

µ(t) ≥ 1

2(λ− 1)
t−1v(t) = c5t

−1v(t) ≥ c6t
−1φ(t−1)

for some constants c5, c6 > 0. The proof is now complete. 2

3 Subordinate Brownian motion

3.1 Definitions and technical lemma

Let B = (Bt,Px) be a Brownian motion in Rd with transition density p(t, x, y) = p(t, y − x) given

by

p(t, x) = (4πt)−d/2 exp

(
−|x|

2

4t

)
, t > 0, x, y ∈ Rd .

The semigroup (Pt : t ≥ 0) of B is defined by Ptf(x) = Ex[f(Bt)] =
∫
Rd p(t, x, y)f(y) dy, where f is

a nonnegative Borel function on Rd. Recall that if d ≥ 3, the Green functionG(2)(x, y) = G(2)(x−y),

x, y ∈ Rd, of B is well defined and is equal to

G(2)(x) =

∫ ∞
0

p(t, x) dt =
Γ(d/2− 1)

4πd/2
|x|−d+2 .

Let S = (St : t ≥ 0) be a complete subordinator independent of B, with Laplace exponent φ(λ),

Lévy measure µ and potential measure U . In the rest of the paper, we will always assume that S

satisfies (H). Hence limλ→∞ φ(λ) = ∞, and thus S has a completely monotone potential density

u. We define a new process X = (Xt : t ≥ 0) by Xt := B(St). Then X is a Lévy process with

characteristic exponent Φ(x) = φ(|x|2) (see e.g.[33, pp.197–198]) called a subordinate Brownian

motion. The semigroup (Qt : t ≥ 0) of the process X is given by

Qtf(x) = Ex[f(Xt)] = Ex[f(B(St))] =

∫ ∞
0

Psf(x)P(St ∈ ds) .

The semigroup Qt has a density q(t, x, y) = q(t, x− y) given by q(t, x) =
∫∞

0 p(s, x)P(St ∈ ds).
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We will always assume that the subordinate Brownian motion X is transient. According to the

criterion of Chung-Fuchs type (see ([30] or [33, pp. 252–253]), X is transient if and only if for some

small r > 0,
∫
|x|<r

1
Φ(x) dx <∞. Since Φ(x) = φ(|x|2), it follows that X is transient if and only if∫

0+

λd/2−1

φ(λ)
dλ <∞ . (3.1)

This is always true if d ≥ 3, and, depending on the subordinator, may be true for d = 1 or d = 2.

In the case d ≤ 2, if there exists γ ∈ [0, d/2) such that

lim inf
λ→0

φ(λ)

λγ
> 0, (3.2)

then (3.1) holds.

For x ∈ Rd and A Borel subset of Rd, the potential measure of X is given by

G(x,A) = Ex
∫ ∞

0
1{Xt∈A}dt =

∫ ∞
0

Qt1A(x) dt =

∫ ∞
0

∫ ∞
0

Ps1A(x)P(St ∈ ds) dt

=

∫ ∞
0

Ps1A u(s) ds =

∫
A

∫ ∞
0

p(s, x, y)u(s) ds dy ,

where the second line follows from (2.1). If A is bounded, then by the transience of X, G(x,A) <

∞ for every x ∈ Rd. Let G(x, y) denote the density of the potential measure G(x, ·). Clearly,

G(x, y) = G(y − x) where

G(x) =

∫ ∞
0

p(t, x)U(dt) =

∫ ∞
0

p(t, x)u(t) dt . (3.3)

The Lévy measure Π of X is given by (see e.g. [33, pp. 197–198])

Π(A) =

∫
A

∫ ∞
0

p(t, x)µ(dt) dx =

∫
A
J(x) dx , A ⊂ Rd ,

where

J(x) :=

∫ ∞
0

p(t, x)µ(dt) =

∫ ∞
0

p(t, x)µ(t)dt (3.4)

is the Lévy density of X. Define the function j : (0,∞)→ (0,∞) by

j(r) :=

∫ ∞
0

(4π)−d/2t−d/2 exp

(
−r

2

4t

)
µ(dt) , r > 0 , (3.5)

and note that by (3.4), J(x) = j(|x|), x ∈ Rd \ {0}.
Since x 7→ p(t, x) is continuous and radially decreasing, we conclude that both G and J are

continuous on Rd \ {0} and radially decreasing.

The following technical lemma will play a key role in establishing the asymptotic behaviors of

the Green function G and the jumping function J of the subordinate Brownian motion X in the

next subsection.
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Lemma 3.1 Suppose that w : (0,∞) → (0,∞) is a decreasing function, ` : (0,∞) → (0,∞) a

measurable, locally bounded function which is slowly varying at ∞, and β ∈ [0, 2], β > 1− d/2. If

d = 1 or d = 2, we additionally assume that there exist constants c > 0 and γ < d/2 such that

w(t) ≤ ctγ−1 , ∀ t ≥ 1 . (3.6)

Let

I(x) :=

∫ ∞
0

(4πt)−d/2e−
|x|2
4t w(t) dt .

(a) If

w(t) � 1

tβ`(1/t)
, t→ 0 , (3.7)

then

I(x) � 1

|x|d+2β−2 `
(

1
|x|2
) � w(|x|2)

|x|d−2
, |x| → 0 .

(b) If

w(t) ∼ 1

tβ`(1/t)
, t→ 0 , (3.8)

then

I(x) ∼ Γ(d/2 + β − 1)

41−βπd/2
1

|x|d+2β−2`
(

1
|x|2
) , |x| → 0 .

Proof. (a) Let us first note that the assumptions of the lemma guarantee that I(x) <∞ for every

x 6= 0. Now, let ξ ≥ 1/4 to be chosen later. By a change of variable we get∫ ∞
0

(4πt)−d/2e−
|x|2
4t w(t) dt

=
1

4πd/2

(
|x|−d+2

∫ ξ|x|2

0
td/2−2e−tw

(
|x|2

4t

)
dt+ |x|−d+2

∫ ∞
ξ|x|2

td/2−2e−tw

(
|x|2

4t

)
dt

)
=:

1

4πd/2

(
|x|−d+2I1(x) + |x|−d+2I2(x)

)
. (3.9)

We first consider I1(x) for the case d = 1 or d = 2. It follows from the assumptions that there

exists a positive constant c1 such that w(s) ≤ c1s
γ−1 for all s ≥ 1/(4ξ). Thus

I1(x) ≤
∫ ξ|x|2

0
td/2−2e−tc1

(
|x|2

4t

)γ−1

dt ≤ c2|x|2γ−2

∫ ξ|x|2

0
td/2−γ−1 dt = c3|x|d−2 .

It follows that

lim
|x|→0

|x|−d+2I1(x)

(
|x|d−2+2β `

(
1

|x|2

))
= 0 . (3.10)

In the case d ≥ 3, we proceed similarly, using the bound w(s) ≤ w(1/(4ξ)) for s ≥ 1/(4ξ).

14



Now we consider I2(x):

|x|−d+2I2(x) =
1

|x|d−2

∫ ∞
ξ|x|2

td/2−2e−tw

(
|x|2

4t

)
dt

=
4β

|x|d+2β−2 `( 1
|x|2 )

∫ ∞
ξ|x|2

td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

dt .

Using the assumption (3.7), we can see that there is a constant c1 > 1 such that

c−1
1 ≤ w

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

)
< c1 ,

for all t and x satisfying |x|2/(4t) ≤ 1/(4ξ).

Now choose a δ ∈ (0, d/2 − 1 + β) (note that by assumption, d/2 − 1 + β > 0). By Potter’s

theorem (cf. [3, Theorem 1.5.6 (i)]), there exists ρ = ρ(δ) ≥ 1 such that

`( 1
|x|2 )

`( 4t
|x|2 )

≤ 2

((
1/|x|2

4t/|x|2

)δ
∨
(

1/|x|2

4t/|x|2

)−δ)
= 2

(
(4t)δ ∨ (4t)−δ

)
≤ c2(tδ ∨ t−δ) (3.11)

whenever 1
|x|2 > ρ and 4t

|x|2 > ρ. By reversing the roles of 1/|x|2 and 4t/|x|2 we also get that

`( 1
|x|2 )

`( 4t
|x|2 )

≥ c−1
2 (tδ ∧ t−δ) (3.12)

for 1
|x|2 > ρ and 4t

|x|2 > ρ. Now we define ξ := ρ
4 so that for all x 6= 0 with |x|2 ≤ 1

4ξ and t > ξ|x|2

we have that

c−1
1 c−1

2 td/2−2+βe−t(tδ ∧ t−δ) ≤ td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

≤ c1c2 t
d/2−2+βe−t(tδ ∨ t−δ) . (3.13)

Let

c3 := c−1
1 c−1

2

∫ ∞
0

td/2−2+βe−t(tδ ∧ t−δ)dt <∞ ,

c4 := c1c2

∫ ∞
0

td/2−2+βe−t(tδ ∨ t−δ)dt <∞ .

The integrals are finite because of assumption d/2− 2 + β − δ > −1. It follows from (3.13) that

c3 ≤ lim inf
|x|→0

∫ ∞
0

td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

1(ξ|x|2,∞)(t)dt

≤ lim sup
|x|→0

∫ ∞
0

td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

1(ξ|x|2,∞)(t)dt ≤ c4 .
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This means that

|x|−d+2I2(x)

(
|x|d−2β+2 `(

1

|x|2
)

)
= 4β

∫ ∞
ξ|x|2

td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

dt � 1 . (3.14)

Combining (3.10) and (3.14) we have proved the first part of the lemma.

(b) The proof is almost the same with a small difference at the very end. Since ` is slowly varying

at ∞, we have that

lim
|x|→0

`( 1
|x|2 )

`( 4t
|x|2 )

= 1 .

This implies that

lim
|x|→0

td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

1(ξ|x|2,∞)(t) = td/2−2+βe−t1(0,∞)(t) .

By the right-hand side inequality in (3.13), we can apply the dominated convergence theorem to

conclude that

lim
|x|→0

|x|−d+2I2(x)

(
|x|d−2β+2 `(

1

|x|2
)

)
= lim

|x|→0
4β
∫ ∞

0
td/2−2+βe−tw

(
|x|2

4t

)(
|x|2

4t

)β
`

(
4t

|x|2

) `( 1
|x|2 )

`( 4t
|x|2 )

1(ξ|x|2,∞)(t) dt

= 4βΓ(d/2− 1 + β) .

Together with (3.9) and (3.10) this proves the second part of the lemma. 2

3.2 Asymptotic behavior of the Green function and Lévy density

The goal of this subsection is to establish the asymptotic behavior of the Green function G(x) and

Lévy density J(x) of the subordinate process Y under certain assumptions on the Laplace exponent

φ of the subordinator S. We start with the Green function.

Theorem 3.2 Suppose that the Laplace exponent φ is a complete Bernstein function satisfying the

assumption (H) and that α ∈ (0, 2 ∧ d). In the case d ≤ 2, we further assume (3.2). Then

G(x) � 1

|x|dφ(|x|−2)
� 1

|x|d−α`(|x|−2)
, |x| → 0.

Proof. It follows from Theorem 2.9 that the potential density u of S satisfies

u(t) � t−1φ(t−1)−1 � tα/2−1

`(t−1)
, t→ 0 + .
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Using (2.5) and (3.2) we conclude that in case d ≤ 2 there exists c > 0 such that

u(t) ≤ ctγ−1, t ≥ 1 .

We can now apply Lemma 3.1 with w(t) = u(t), β = 1 − α/2 to obtain the required asymptotic

behavior. 2

Remark 3.3 (i) Since α is always assumed to be in (0, 2), the assumption α ∈ (0, 2 ∧ d) in the

theorem above makes a difference only in the case d = 1.

(ii) In case d ≥ 3, the conclusion of the theorem above is proved in [46, Theorem 1 (ii)–(iii)] under

weaker assumptions. The statement of [46, Theorem 1 (ii)] in case d ≤ 2 is incorrect and the proof

has an error.

The asymptotic behavior near the origin of J(x) is contained in the following result.

Theorem 3.4 Suppose that the Laplace exponent φ is a complete Bernstein function satisfying the

assumption (H). Then

J(x) � φ(|x|−2)

|x|d
� `(|x|−2)

|x|d+α
, |x| → 0.

Proof. It follows from Theorem 2.10 that the potential density u of S satisfies

µ(t) � t−1φ(t−1) � t−α/2−1`(t−1) , t→ 0 + .

Since µ(t) is decreasing and integrable at infinity, there exists c > 0 such that

µ(t) ≤ ct−1, t ≥ 1.

We can now apply Lemma 3.1 with w(t) = µ(t), β = 1 + α/2 and γ = 0 to obtain the required

asymptotic behavior. 2

Proposition 3.5 Suppose that the Laplace exponent φ is a complete Bernstein function satisfying

the assumption (H). Then the following assertions hold.

(a) For any K > 0, there exists C4 = C4(K) > 1 such that

j(r) ≤ C4 j(2r), ∀r ∈ (0,K). (3.15)

(b) There exists C5 > 1 such that

j(r) ≤ C5 j(r + 1), ∀r > 1. (3.16)
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Proof. For simplicity we redefine in this proof the function j by dropping the factor (4π)−d/2 from

its definition. This does not effect (3.15) and (3.16). It follows from Lemma 2.1 and Theorem 2.10

that

(a) For any K > 0, there exists c1 = c1(K) > 1 such that

µ(r) ≤ c1 µ(2r), ∀r ∈ (0,K). (3.17)

(b) There exists c2 > 1 such that

µ(r) ≤ c2 µ(r + 1), ∀r > 1. (3.18)

Let 0 < r < K. We have

j(2r) =

∫ ∞
0

t−d/2 exp(−r2/t)µ(t) dt

≥ 1

2

(∫ ∞
K/2

t−d/2 exp(−r2/t)µ(t) dt+

∫ K

0
t−d/2 exp(−r2/t)µ(t) dt

)
=

1

2
(I1 + I2).

Now,

I1 =

∫ ∞
K/2

t−d/2 exp(−r
2

t
)µ(t) dt =

∫ ∞
K/2

t−d/2 exp(−r
2

4t
) exp(−3r2

4t
)µ(t) dt

≥
∫ ∞
K/2

t−d/2 exp(−r
2

4t
) exp(−3r2

2K
)µ(t) dt ≥ e−3K/2

∫ ∞
K/2

t−d/2 exp(−r
2

4t
)µ(t) dt ,

I2 =

∫ K

0
t−d/2 exp(−r

2

t
)µ(t) dt = 4−d/2+1

∫ K/2

0
s−d/2 exp(− r

2

4s
)µ(4s) ds

≥ c−2
1 4−d/2+1

∫ K/2

0
s−d/2 exp(− r

2

4s
)µ(s) ds.

Combining the three displays above we get that j(2r) ≥ c3 j(r) for all r ∈ (0,K).

To prove (3.16) we first note that for all t ≥ 2 and all r ≥ 1 it holds that

(r + 1)2

t
− r2

t− 1
≤ 1 .

This implies that

exp

(
−(r + 1)2

4t

)
≥ e−1/4 exp

(
− r2

4(t− 1)

)
, for all r > 1, t > 2 . (3.19)
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Now we have

j(r + 1) =

∫ ∞
0

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt

≥ 1

2

(∫ 8

0
t−d/2 exp(−(r + 1)2

4t
)µ(t) dt+

∫ ∞
3

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt

)
=

1

2
(I3 + I4).

For I3 note that (r + 1)2 ≤ 4r2 for all r > 1. Thus

I3 =

∫ 8

0
t−d/2 exp(−(r + 1)2

4t
)µ(t) dt ≥

∫ 8

0
t−d/2 exp(−r2/t)µ(t) dt

= 4−d/2+1

∫ 2

0
s−d/2 exp(− r

2

4s
)µ(4s) ds ≥ c−2

1 4−d/2+1

∫ 2

0
s−d/2 exp(− r

2

4s
)µ(s) ds ,

I4 =

∫ ∞
3

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt ≥

∫ ∞
3

t−d/2 exp{−1/4} exp(− r2

4(t− 1)
)µ(t) dt

= e−1/4

∫ ∞
2

(s− 1)−d/2 exp(− r
2

4s
)µ(s+ 1) ds ≥ c−1

1 e−1/4

∫ ∞
2

s−d/2 exp(− r
2

4s
)µ(s) ds .

Combining the three displays above we get that j(r + 1) ≥ c4 j(r) for all r > 1. 2

3.3 Some results on subordinate Brownian motion in R

In this subsection we assume d = 1. We will consider subordinate Brownian motions in R. Let

B = (Bt : t ≥ 0) be a Brownian motion in R, independent of S, with

E
[
eiθ(Bt−B0)

]
= e−tθ

2
, ∀θ ∈ R, t > 0.

The subordinate Brownian motion X = (Xt : t ≥ 0) in R defined by Xt = BSt is a symmetric

Lévy process with the characteristic exponent Φ(θ) = φ(θ2) for all θ ∈ R. In the first part of this

subsection, up to Corollary 3.8, we do not need to assume that φ satisfies the assumption (H).

Let Xt := sup{0 ∨Xs : 0 ≤ s ≤ t} and let L = (Lt : t ≥ 0) be a local time of X −X at 0. L

is also called a local time of the process X reflected at the supremum. Then the right continuous

inverse L−1
t of L is a subordinator and is called the ladder time process of X. The process XL−1

t

is also a subordinator and is called the ladder height process of X. (For the basic properties of

the ladder time and ladder height processes, we refer our readers to [2, Chapter 6].) Let χ be the

Laplace exponent of the ladder height process of X. It follows from [20, Corollary 9.7] that

χ(λ) = exp

(
1

π

∫ ∞
0

log(Φ(λθ))

1 + θ2
dθ

)
= exp

(
1

π

∫ ∞
0

log(φ(λ2θ2))

1 + θ2
dθ

)
, ∀λ > 0. (3.20)

The next result, first proved independently in [27] and [28], tells us that χ is also complete Bernstein

function. The proof presented below is taken from [27].
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Proposition 3.6 Suppose φ, the Laplace exponent of the subordinator S, is a complete Bernstein

function. Then the Laplace exponent χ of the ladder height process of the subordinate Brownian

motion Xt = BSt is also a complete Bernstein function.

Proof. It follows from Theorem [34, Theorem 6.10] that φ has the following representation:

log φ(λ) = γ +

∫ ∞
0

(
t

1 + t2
− 1

λ+ t

)
η(t)dt, (3.21)

where η in a function such that 0 ≤ η(t) ≤ 1 for all t > 0. By (3.21) and (3.20), we have

logχ(λ) =
γ

2
+

1

π

∫ ∞
0

∫ ∞
0

(
t

1 + t2
− 1

λ2θ2 + t

)
η(t)dt

dθ

1 + θ2
.

By using 0 ≤ η(t) ≤ 1, we have

η(t)

∣∣∣∣ t

1 + t2
− 1

λ2θ2 + t

∣∣∣∣ 1

1 + θ2
≤ 1

1 + t2
1

1 + θ2

(
1

λ2θ2 + t
+

λ2θ2t

λ2θ2 + t

)
≤ 1

1 + t2

(
1

λ2θ2 + t
+

λ2t

λ2θ2 + t

)
.

Since ∫ ∞
0

1

λ2θ2 + t
dθ =

1

t

∫ ∞
0

1
λ2θ2

t + 1
dθ =

1

t

√
t

λ

∫ ∞
0

1

γ2 + 1
dγ =

π

2λ
√
t
,

we can use Fubini’s theorem to get

logχ(λ) =
γ

2
+

∫ ∞
0

(
t

2(1 + t2)
− 1

2
√
t(λ+

√
t)

)
η(t)dt (3.22)

=
γ

2
+

∫ ∞
0

(
t

2(1 + t2)
− 1

2(1 + t)

)
η(t)dt+

∫ ∞
0

(
1

2(1 + t)
− 1

2
√
t(λ+

√
t)

)
η(t)dt

= γ1 +

∫ ∞
0

(
s

1 + s2
− 1

λ+ s

)
η(s2)ds.

Applying [34, Theorem 6.10] we get that χ is a complete Bernstein function. 2

The potential measure of the ladder height process of X is denoted by V and its density by v.

We will also use V to denote the renewal function of X: V (t) := V ((0, t)) =
∫ t

0 v(s) ds.

The following result is first proved in [27].

Proposition 3.7 χ is related to φ by the following relation

e−π/2
√
φ(λ2) ≤ χ(λ) ≤ eπ/2

√
φ(λ2) , for all λ > 0 .
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Proof. According to (3.22), we have

logχ(λ) =
γ

2
+

1

2

∫ ∞
0

(
t

1 + t2
− 1√

t(λ+
√
t)

)
η(t)dt .

Together with representation (3.21) we get that for all λ > 0∣∣∣∣logχ(λ)− 1

2
log φ(λ2)

∣∣∣∣ =
1

2

∣∣∣∣∫ ∞
0

(( t

1 + t2
− 1√

t(λ+
√
t)

)
−
( t

1 + t2
− 1

λ2 + t

))
η(t) dt

∣∣∣∣
≤ 1

2

∫ ∞
0

λ(
√
t+ λ)

(λ2 + t)
√
t(λ+

√
t)
dt =

1

2

∫ ∞
0

λ

(λ2 + t)
√
t
dt =

π

2
.

This implies that

−π/2 ≤ logχ(λ)− 1

2
log φ(λ2) ≤ π/2 , for all λ > 0 ,

i.e.,

e−π/2 ≤ χ(λ)φ(λ2)−1/2 ≤ eπ/2 , for all λ > 0 .

2

Combining the above two propositions with Corollary 2.3, we obtain

Corollary 3.8 Suppose φ, the Laplace exponent of the subordinator S, is a complete Bernstein

function satisfying limλ→∞ φ(λ) = ∞. Then the potential measure of the ladder height process of

the subordinate Brownian motion Xt = BSt has a completely monotone density v. In particular, v

and the renewal function V are C∞ functions.

In the remainder of this paper we will always assume that φ satisfies the assumption (H). We

will not explicitly mention this assumption anymore.

Since φ(λ) � λα/2`(λ) as λ→∞, Lemma 3.7 implies that

χ(λ) � λα/2(`(λ2))1/2, t→∞. (3.23)

It follows from (3.23) that limλ→∞ χ(λ)/λ = 0, hence the ladder height process does not have a

drift. Recall that V (t) = V ((0, t)) =
∫ t

0 v(s)ds is the renewal function of the ladder height process

of X. In light of (3.23), we have, as a consequence of Theorem 2.9, the following result.

Proposition 3.9 As t→ 0, we have

V (t) � φ(t−2)−1/2 � tα/2

(`(t−2))1/2

and

v(t) � t−1φ(t−2)−1/2 � tα/2−1

(`(t−2))1/2
.
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Remark 3.10 It follows immediately from the proposition above that there exists a positive con-

stant c > 0 such that V (2t) ≤ cV (t) for all t ∈ (0, 2).

It follows from (3.23) above and [29, Lemma 7.10] that the process X does not creep upwards.

Since X is symmetric, we know that X also does not creep downwards. Thus if, for any a ∈ R, we

define

τa = inf{t > 0 : Xt < a}, σa = inf{t > 0 : Xt ≤ a},

then we have

Px(τa = σa) = 1, x > a. (3.24)

Let G(0,∞)(x, y) be the Green function of X in (0,∞). Then we have the following result.

Proposition 3.11 For any x, y > 0 we have

G(0,∞)(x, y) =

{ ∫ x
0 v(z)v(y + z − x)dz, x ≤ y,∫ x
x−y v(z)v(y + z − x)dz, x > y.

Proof. Let X(0,∞) be the process obtained by killing X upon exiting from (0,∞). By using (3.24)

above and [2, Theorem 20, p. 176] we get that for any nonnegative function on f on (0,∞),

Ex
[∫ ∞

0
f(X

(0,∞)
t ) dt

]
= k

∫ ∞
0

∫ x

0
v(z)f(x+ z − y)v(y)dzdy , (3.25)

where k is the constant depending on the normalization of the local time of the process X reflected

at its supremum. We choose k = 1. Then

Ex
[∫ ∞

0
f(X

(0,∞)
t ) dt

]
=

∫ ∞
0

v(y)

∫ x

0
v(z)f(x+ y − z)dzdy

=

∫ x

0
v(z)

∫ ∞
0

v(y)f(x+ y − z)dydz =

∫ x

0
v(z)

∫ ∞
x−z

v(w + z − x)f(w)dwdz

=

∫ x

0
f(w)

∫ x

x−w
v(z)v(w + z − x)dzdw +

∫ ∞
x

f(w)

∫ x

0
v(z)v(w + z − x)dzdw . (3.26)

On the other hand,

Ex
[∫ ∞

0
f(X

(0,∞)
t ) dt

]
=

∫ ∞
0

G(0,∞)(x,w)f(w) dw

=

∫ x

0
G(0,∞)(x,w)f(w) dw +

∫ ∞
x

G(0,∞)(x,w)f(w) dw . (3.27)

By comparing (3.26) and (3.27) we arrive at our desired conclusion. 2

For any r > 0, let G(0,r) be the Green function of X in (0, r). Then we have the following result.
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Proposition 3.12 For all r > 0 and all x ∈ (0, r)∫ r

0
G(0,r)(x, y) dy ≤ 2V (x)V (r) .

In particular, for any R > 0, there exists C6 = C6(R) > 0 such that for all r ∈ (0, R) and all

x ∈ (0, r), ∫ r

0
G(0,r)(x, y)dy ≤ C6(φ(r−2)φ(x−2))−1/2 � rα/2

(`(r−2))1/2

xα/2

(`(x−2))−1/2
.

Proof. For any x ∈ (0, r), we have∫ r

0
G(0,r)(x, y)dy ≤

∫ r

0
G(0,∞)(x, y)dy

=

∫ x

0

∫ x

x−y
v(z)v(y + z − x)dzdy +

∫ r

x

∫ x

0
v(z)v(y + z − x)dzdy

=

∫ x

0
v(z)

∫ x

x−z
v(y + z − x)dydz +

∫ x

0
v(z)

∫ r

x
v(y + z − x)dydz ≤ 2V (r)V (x).

Now the desired conclusion follows easily from Proposition 3.9. 2

As a consequence of the result above, we immediately get the following.

Corollary 3.13 For all r > 0 and all x ∈ (0, r)∫ r

0
G(0,r)(x, y) dy ≤ 2V (r)

(
V (x) ∧ V (r − x)

)
.

In particular, for any R > 0, there exists C7 = C7(R) > 0 such that for all x ∈ (0, r), and r ∈ (0, R),∫ r

0
G(0,r)(x, y)dy ≤ C7(φ(r−2))−1/2

(
(φ(x−2))−1/2 ∧ (φ((r − x)−2))−1/2

)
� rα/2

(`(r−2))1/2

(
xα/2

(`(x−2))1/2
∧ (r − x)α/2

(`((r − x)−2))1/2

)
.

Proof. The first inequality is a consequence of the identity
∫ r

0 G
(0,r)(x, y)dy =

∫ r
0 G

(0,r)(r−x, y)dy

which is true by symmetry of the process X. The second one now follows exactly as in the proof

of Proposition 3.12. 2

Remark 3.14 With self-explanatory notation, an immediate consequence of the above corollary

is the following estimate∫ r

−r
G(−r,r)(x, y) dy ≤ 2V (2r)

(
V (r + x) ∧ V (r − x)

)
. (3.28)
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4 Harnack inequality and Boundary Harnack principle

¿From now on we will always assume that X is a subordinate Brownian motion in Rd. Recall

that (H) is the standing assumptions on the Laplace exponent φ. We additionally assume that

α ∈ (0, 2 ∧ d) and in the case d ≤ 2, we further assume (3.2). The goal of this section is to show

that the Harnack inequality and the boundary Harnack principle hold for X. The infinitesimal

generator L of the corresponding semigroup is given by

Lf(x) =

∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1{|y|≤1}

)
J(y)dy (4.1)

for f ∈ C2
b (Rd). Moreover, for every f ∈ C2

b (Rd)

f(Xt)− f(X0)−
∫ t

0
Lf(Xs) ds

is a Px-martingale for every x ∈ Rd. We recall the Lévy system formula for X which describes

the jumps of the process X: for any non-negative measurable function f on R+ × Rd × Rd with

f(s, y, y) = 0 for all y ∈ Rd, any stopping time T (with respect to the filtration of X) and any

x ∈ Rd,

Ex

∑
s≤T

f(s,Xs−, Xs)

 = Ex
[∫ T

0

(∫
Rd
f(s,Xs, y)J(Xs, y)dy

)
ds

]
. (4.2)

(See, for example, [15, Proof of Lemma 4.7] and [16, Appendix A].)

4.1 Harnack inequality

It follows from Theorem 3.4 and the 0-version of [3, Propositions 1.5.8 and 1.5.10] that

r−2

∫ r

0
sd+1j(s)ds � `(r−2)

rα
� φ(r−2), r → 0 (4.3)

and ∫ ∞
r

sd−1j(s)ds � `(r−2)

rα
� φ(r−2), r → 0. (4.4)

For any open set D, we use τD to denote the first exit time from D, i.e., τD = inf{t > 0 : Xt /∈
D}.

Lemma 4.1 There exists a constant C8 > 0 such that for every r ∈ (0, 1) and every t > 0,

Px
(

sup
s≤t
|Xs −X0| > r

)
≤ C8φ(r−2)t .
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Proof. It suffices to prove the lemma for x = 0. Let f ∈ C2
b (Rd), 0 ≤ f ≤ 1, f(0) = 0, and f(y) = 1

for all |y| ≥ 1. Let c1 = supy
∑

j,k |(∂2/∂yj∂yk)f(y)|. Then |f(z + y)− f(z)− y · ∇f(z)| ≤ c1
2 |y|

2.

For r ∈ (0, 1), let fr(y) = f(y/r). Then the following estimate is valid:

|fr(z + y)− fr(z)− y · ∇fr(z)1{|y|≤r}| ≤
c1

2

|y|2

r2
1{|y|≤r} + 1{|y|≥r}

≤ c2(1{|y|≤r}
|y|2

r2
+ 1{|y|≥r}) .

By using (4.3) and (4.4), we get the following estimate:

|Lfr(z)| ≤
∫
Rd
|fr(z + y)− fr(z)− y · ∇fr(z)1(|y|≤r)| J(y)dy

≤ c2

∫
Rd

(
1{|y|≤r}

|y|2

r2
+ 1{|y|≥r}

)
J(y)dy

≤ c3φ(r−2) ,

where the constant c3 is independent of r. Further, by the martingale property,

E0fr(X(τB(0,r) ∧ t))− fr(0) = E0

∫ τB(0,r)∧t

0
Lfr(Xs) ds

implying the estimate

E0fr(X(τB(0,r) ∧ t)) ≤ c3φ(r−2)t .

If X exits B(0, r) before time t, then fr(X(τB(0,r) ∧ t)) = 1, so the left hand side is larger than

P0(τB(0,r) ≤ t). 2

Lemma 4.2 For every r ∈ (0, 1), and every x ∈ Rd,

inf
z∈B(x,r/2)

Ez
[
τB(x,r)

]
≥ 1

4C8φ((r/2)−2)
,

where C8 is the constant from Lemma 4.1.

Proof. Let z ∈ B(x, r/2). Then

Pz(τB(x,r) ≤ t) ≤ Pz(τB(z,r/2) ≤ t) ≤ C8φ((r/2)2)t .

Therefore,

Ez
[
τB(x,r)

]
≥ tPz(τB(x,r) ≥ t) ≥ t (1− C8φ((r/2)−2)t) .

Choose t = 1/(2C8φ((r/2)−2)) so that 1− C8φ((r/2)−2)t = 1/2. Then

Ez
[
τB(x,r)

]
≥ 1

2C8φ((r/2)−2)

1

2
=

1

4C8φ((r/2)−2)
.

2
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Lemma 4.3 There exists a constant C9 > 0 such that for every r ∈ (0, 1) and every x ∈ Rd,

sup
z∈B(x,r)

Ez
[
τB(x,r)

]
≤ C9

φ(r−2)
.

Proof. This lemma follows immediately from Theorem 3.2 and the 0-version of [3, Proposition

1.5.8]. An improved version will be given in Proposition 4.9 later on. Here we present a different

proof that does not need the transience of X.

Let r ∈ (0, 1), and let x ∈ Rd. Using the Lévy system formula (4.2), we get

1 ≥ Pz(|X(τB(x,r))− x| > r)

=

∫
B(x,r)

GB(x,r)(z, y)

∫
B(x,r)

c
j(|u− y|) du dy ,

where GB(x,r) denotes the Green function of the process X in B(x, r). Now we estimate the inner

integral. Let y ∈ B(x, r), u ∈ B(x, r)
c
. If u ∈ B(x, 2), then |u− y| ≤ 2|u−x|, while for u /∈ B(x, 2)

we use |u− y| ≤ |u− x|+ 1. Then∫
B(x,r)

c
j(|u− y|) du =

∫
B(x,r)

c∩B(x,2)
j(|u− y|) du+

∫
B(x,r)

c∩B(x,2)c
j(|u− y|) du

≥
∫
B(x,r)

c∩B(x,2)
j(2|u− x|) du+

∫
B(x,r)

c∩B(x,2)c
j(|u− x|+ 1) du

≥
∫
B(x,r)

c∩B(x,2)
c−1j(|u− x|) du+

∫
B(x,r)

c∩B(x,2)c
c−1j(|u− x|) du

=

∫
B(x,r)

c
c−1j(|u− x|) du ,

where in the next to last line we used (3.15) and (3.16). Now, It follows from (4.4) that

1 ≥
∫
B(x,r)

GB(x,r)(z, y) dy

∫
B(x,r)

c
c−1j(|u− x|) du

= Ez
[
τB(x,r)

]
c−1 c1

∫ ∞
r

vd−1j(v) dv

= c2φ(r−2)Ez
[
τB(x,r)

]
which implies the lemma. 2

Lemma 4.4 There exists a constant C10 > 0 such that for every r ∈ (0, 1), every x ∈ Rd, and any

A ⊂ B(x, r)

Py
(
TA < τB(x,3r)

)
≥ C10

|A|
|B(x, r)|

, for all y ∈ B(x, 2r) .
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Proof. Without loss of generality assume that Py(TA < τB(x,3r)) < 1/4. Set τ = τB(x,3r). By

Lemma 4.1, Py(τ ≤ t) ≤ Py(τB(y,r) ≤ t) ≤ c1φ(r−2)t. Choose t0 = 1/(4c1φ(r−2)), so that Py(τ ≤
t0) ≤ 1/4. Further, if z ∈ B(x, 3r) and u ∈ A ⊂ B(x, r), then |u − z| ≤ 4r. Since j is decreasing,

j(|u− z|) ≥ j(4r). Thus,

Py(TA < τ) ≥ Ey
∑

s≤TA∧τ∧t0

1{Xs− 6=Xs,Xs∈A}

= Ey
∫ TA∧τ∧t0

0

∫
A
j(|u−Xs|) du ds

≥ Ey
∫ TA∧τ∧t0

0

∫
A
j(4r) du ds

= j(4r)|A|Ey[TA ∧ τ ∧ t0] ,

where in the second line we used properties of the Lévy system. Next,

Ey[TA ∧ τ ∧ t0] ≥ Ey[t0; TA ≥ τ ≥ t0]

= t0Py(TA ≥ τ ≥ t0)

≥ t0[1− Py(TA < τ)− Py(τ < t0)]

≥ t0
2

=
1

8c1φ(r−2)
.

The last two displays give that

Py(TA < τ) ≥ j(4r)|A| 1

8c1φ(r−2)
=

1

8c1
|A| j(4r)

φ(r−2)
.

The claim now follows immediately from (2.6) and Theorem 3.4. 2

Lemma 4.5 There exist positive constant C11 and C12, such that if r ∈ (0, 1), x ∈ Rd, z ∈ B(x, r),

and H is a bounded nonnegative function with support in B(x, 2r)c, then

EzH(X(τB(x,r))) ≤ C11Ez[τB(x,r)]

∫
H(y)j(|y − x|) dy ,

and

EzH(X(τB(x,r))) ≥ C12Ez[τB(x,r)]

∫
H(y)j(|y − x|) dy .

Proof. Let y ∈ B(x, r) and u ∈ B(x, 2r)c. If u ∈ B(x, 2) we use the estimates

2−1|u− x| ≤ |u− y| ≤ 2|u− x|, (4.5)

while if u /∈ B(x, 2) we use

|u− x| − 1 ≤ |u− y| ≤ |u− x|+ 1. (4.6)
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Let B ⊂ B(x, 2r)c. Then using the Lévy system we get

Ez
[
1B(XτB(x,r)

)
]

= Ez
∫ τB(x,r)

0

∫
B
j(|u−Xs|) du ds .

By use of (3.15), (3.16), (4.5), and (4.6), the inner integral is estimated as follows:∫
B
j(|u−Xs|) du =

∫
B∩B(x,2)

j(|u−Xs|) du+

∫
B∩B(x,2)c

j(|u−Xs|) du

≤
∫
B∩B(x,2)

j(2−1|u− x|) du+

∫
B∩B(x,2)c

j(|u− x| − 1) du

≤
∫
B∩B(x,2)

cj(|u− x|) du+

∫
B∩B(x,2)c

cj(|u− x|) du

= c

∫
B
j(|u− x|) du

Therefore

Ez
[
1B(XτB(x,r)

)
]
≤ Ez

∫ τB(x,r)

0
c

∫
B
j(|u− x|) du

= cEz(τB(x,r))

∫
1B(u)j(|u− x|) du .

Using linearity we get the above inequality when 1B is replaced by a simple function. Approximating

H by simple functions and taking limits we have the first inequality in the statement of the lemma.

The second inequality is proved in the same way. 2

Definition 4.6 Let D be an open subset of Rd. A function u defined on Rd is said to be

(1) harmonic in D with respect to X if

Ex [|u(XτB )|] <∞ and u(x) = Ex [u(XτB )] , x ∈ B,

for every open set B whose closure is a compact subset of D;

(2) regular harmonic in D with respect to X if it is harmonic in D with respect to X and for each

x ∈ D, u(x) = Ex [u(XτD)] .

Now we give the proof of Harnack inequality. The proof below is basically the proof given in

[39] which is an adaptation of the proof given in [1]. However, the proof below corrects some typos

in the proof given in [39].

Theorem 4.7 There exists C13 > 0 such that, for any r ∈ (0, 1/4), x0 ∈ Rd, and any function u

which is nonnegative on Rd and harmonic with respect to X in B(x0, 16r), we have

u(x) ≤ C13u(y), for all x, y ∈ B(x0, r).

28



Proof. Without loss of generality we may assume that u is strictly positive in B(x0, 16r). Indeed,

if u(x) = 0 for some x ∈ B(x0, 16r), then by harmonicity 0 = u(x) = Ex[u(XτB )] For x ∈ B =

B(x, ε) ⊂ B(x0, 16r). This and the fact that the Levy measure of X is supported on all of Rd

and has a density imply that u = 0 a.e. with respect to Lebesgue measure. Moreover, by the

harmonicity, for every y ∈ B(x0, 16r), u(y) = Ey[u(XτB )] = 0 where B = B(y, δ) ⊂ B(x0, 16r).

Therefore, if u(x) = 0 for some x, then u is identically zero in B(x0, 16r) and there is nothing to

prove.

We first assume u is bounded on Rd. Using the harmonicity of u and Lemma 4.4, one can show

that u is bounded from below on B(x0, r) by a positive number. To see this, let ε > 0 be such that

F = {x ∈ B(x0, 3r) \B(x0, 2r) : u(x) > ε} has positive Lebesgue measure. Take a compact subset

K of F so that it has positive Lebesgue measure. Then by Lemma 4.4, for x ∈ B(x0, r), we have

u(x) = Ex
[
u(X(TK ∧ τB(x0,3r)))1{TK∧τB(x0,3r)

<∞}

]
> c ε

|K|
|B(x0, 3r)|

,

for some c > 0. By taking a constant multiple of u we may assume that infB(x0,r) u = 1/2. Choose

z0 ∈ B(x0, r) such that u(z0) ≤ 1. We want to show that u is bounded above in B(x0, r) by a

positive constant independent of u and r ∈ (0, 1/4). We will establish this by contradiction: If

there exists a point x ∈ B(x0, r) with h(u) = K where K is too large, we can obtain a sequence of

points in B(x0, 2r) along which u is unbounded.

Using Lemmas 4.2, 4.3 and 4.5, one can see that there exists c1 > 0 such that if x ∈ Rd, s ∈ (0, 1)

and H is nonnegative bounded function with support in B(x, 2s)c, then for any y, z ∈ B(x, s/2),

EzH(X(τB(x,s))) ≤ c1 EyH(X(τB(x,s))). (4.7)

By Lemma 4.4, there exists c2 > 0 such that if A ⊂ B(x0, 4r) then

Py
(
TA < τB(x0,16r)

)
≥ c2

|A|
|B(x0, 4r)|

, ∀y ∈ B(x0, 8r). (4.8)

Again by Lemma 4.4, there exists c3 > 0 such that if x ∈ Rd, s ∈ (0, 1) and F ⊂ B(x, s/3) with

|F |/|B(x, s/3)| ≥ 1/3, then

Px
(
TF < τB(x,s)

)
≥ c3. (4.9)

Let

η =
c3

3
, ζ = (

1

3
∧ 1

c1
)η. (4.10)

Now suppose there exists x ∈ B(x0, r) with u(x) = K for K > K0 := 2|B(x0,1)|
c2ζ

∨ 2(12)d

c2ζ
. Let s be

chosen so that

|B(x,
s

3
)| = 2|B(x0, 4r)|

c2ζK
< 1. (4.11)

Note that this implies

s = 12

(
2

c2ζ

)1/d

rK−1/d < r. (4.12)
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Let us write Bs for B(x, s), τs for τB(x,s), and similarly for B2s and τ2s. Let A be a compact subset

of

A′ = {y ∈ B(x,
s

3
) : u(y) ≥ ζK}.

It is well know that u(Xt) is right continuous in [0, τB(x0,16r)). Since z0 ∈ B(x0, r) and A′ ⊂
B(x, s3) ⊂ B(x0, 2r), we can apply (4.8) to get

1 ≥ u(z0) ≥ Ez0 [u(X(TA ∧ τB(x0,16r)))1{TA<τB(x0,16r)}]

≥ ζKPz0(TA < τB(x0,16r))

≥ c2ζK
|A|

|B(x0, 4r)|
.

Hence
|A|

|B(x, s3)|
≤ |B(x0, 4r)|
c2ζK|B(x, s3)|

=
1

2
.

This implies that |A′|/|B(x, s/3)| ≤ 1/2. Let F be a compact subset of B(x, s/3) \A′ such that

|F |
|B(x, s3)|

≥ 1

3
. (4.13)

Let H = u · 1Bc2s . We claim that

Ex[u(X(τs));X(τs) /∈ B2s] ≤ ηK.

If not, ExH(X(τs)) > ηK, and by (4.7), for all y ∈ B(x, s/3), we have

u(y) = Eyu(X(τs)) ≥ Ey[u(X(τs));X(τs) /∈ B2s]

≥ c−1
1 ExH(X(τs)) ≥ c−1

1 ηK ≥ ζK,

contradicting (4.13) and the definition of A′.

Let M = supB2s
u. We then have

K = u(x) = Ex[u(X(τs ∧ TF ))]

= Ex[u(X(TF ));TF < τs] + Ex[u(X(τs)); τs < TF , X(τs) ∈ B2s]

+Ex[u(X(τs)); τs < TF , X(τs) /∈ B2s]

≤ ζKPx(TF < τs) +MPx(τs < TF ) + ηK

= ζKPx(TF < τs) +M(1− Px(TF < τs)) + ηK,

or equivalently
M

K
≥ 1− η − ζ

1− Px(TF < τs)
+ ζ.

Using (4.9) and (4.10) we see that there exists β > 0 such that M ≥ K(1 + 2β). Therefore there

exists x′ ∈ B(x, 2s) with u(x′) ≥ K(1 + β).
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Now suppose there exists x1 ∈ B(x0, r) with u(x1) = K1 > K0. Define s1 in terms of K1

analogously to (4.11). Using the above argument (with x1 replacing x and x2 replacing x′), there

exists x2 ∈ B(x1, 2s1) with u(x2) = K2 ≥ (1 + β)K1. We continue and obtain s2 and then x3, K3,

s3, etc. Note that xi+1 ∈ B(xi, 2si) and Ki ≥ (1 + β)i−1K1. In view of (4.12),

∞∑
i=0

|xi+1 − xi| ≤ r + 24

(
2

c2ζ

)1/d

r
∞∑
i=1

K
−1/d
i ≤ r

(
1 + 24

(
2

c2ζ

)1/d

K
−1/d
1

∞∑
i=1

(1 + β)−(i−1)/d

)

≤ r

((
2

c2ζ

)1/d

K
−1/d
1 + 24

(
2

c2ζ

)1/d

K
−1/d
1

∞∑
i=0

(1 + β)−i/d

)
= c4rK

−1/d
1

where c4 := 25( 2
c2ζ

)1/d
∑∞

i=0(1 + β)−i/d. So if K1 > cd4 ∨ K0 then we have a sequence x1, x2, . . .

contained in B(x0, 2r) with u(xi) ≥ (1 + β)i−1K1 → ∞, a contradiction to u being bounded.

Therefore we can not take K1 larger than cd4 ∨K0, and thus supy∈B(x0,r) u(y) ≤ cd4 ∨K0, which is

what we set out to prove.

In the case that u is unbounded, one can follow the simple limit argument in the proof of [39,

Theorem 2.4] to finish the proof. 2

By using the standard chain argument one can derive the following form of Harnack inequality.

Corollary 4.8 For every a ∈ (0, 1), there exists C14 = C14(a) > 0 such that for every r ∈ (0, 1/4),

x0 ∈ Rd, and any function u which is nonnegative on Rd and harmonic with respect to X in

B(x0, r), we have

u(x) ≤ C14u(y), for all x, y ∈ B(x0, ar) .

4.2 Some estimates for the Poisson kernel

Recall that for any open set D in Rd, τD is the first exit time of X from D. We will use GD(x, y)

to denote the Green function of X in D. Using the continuity and the radial decreasing property

of G, we can easily check that GD is continuous in (D ×D) \ {(x, x) : x ∈ D}. We will frequently

use the well-known fact that GD(·, y) is harmonic in D \ {y}, and regular harmonic in D \B(y, ε)

for every ε > 0.

Using the Lévy system for X, we know that for every bounded open subset D, every f ≥ 0 and

all x ∈ D,

Ex [f(XτD); XτD− 6= XτD ] =

∫
D
c

∫
D
GD(x, z)J(z − y)dzf(y)dy. (4.14)

For notational convenience, we define

KD(x, y) :=

∫
D
GD(x, z)J(z − y)dz, (x, y) ∈ D ×Dc

. (4.15)

Thus (4.14) can be simply written as

Ex [f(XτD); XτD− 6= XτD ] =

∫
D
c
KD(x, y)f(y)dy , (4.16)
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revealing KD(x, y) as a density of the exit distribution of X from D. The function KD(x, y) is

called the Poisson kernel of X. Using the continuity of GD and J , one can easily check that KD is

continuous on D ×Dc
.

The following proposition is an improvement of Lemma 4.3. The idea of the proof comes from

[44].

Proposition 4.9 For all r > 0 and all x0 ∈ Rd,

Ex[τB(x0,r)] ≤ 2V (2r)V (r − |x− x0|) , x ∈ B(x0, r) .

In particular, for any R > 0, r ∈ (0, R) and x0 ∈ Rd,

Ex[τB(x0,r)] ≤ C7 (φ(r−2)φ((r − |x− x0|)−2))−1/2

� rα/2

(`(r−2))1/2

(r − |x− x0|)α/2

(`((r − |x− x0|)−2))1/2
, x ∈ B(x0, r) ,

where C7 = C7(R) is the constant form Proposition 3.13.

Proof. Without loss of generality, we may assume that x0 = 0. For x 6= 0, put Zt = Xt·x
|x| . Then

Zt is a Lévy process on R with

E(eiθZt) = E(e
iθ x
|x| ·Xt) = e

−tφ(|θ x
|x| |

2)
= e−tφ(θ2) θ ∈ R.

Thus Zt is of the type of one-dimensional subordinate Brownian motion studied in Section 3.3. It

is easy to see that, if Xt ∈ B(0, r), then |Zt| < r, hence

Ex[τB(0,r)] ≤ E|x|[τ̃ ],

where τ̃ = inf{t > 0 : |Zt| ≥ r}. Now the desired conclusion follows easily from Proposition 3.13

(more precisely, from (3.28)). 2

As a consequence of Lemma 4.2, Proposition 4.9 and (4.15), we get the following result.

Proposition 4.10 There exist C15, C16 > 0 such that for every r ∈ (0, 1) and x0 ∈ Rd,

KB(x0,r)(x, y) ≤ C15 j(|y − x0| − r)
(
φ(r−2)φ((r − |x− x0|)−2)

)−1/2
(4.17)

� j(|y − x0| − r)
rα/2

(`(r−2))1/2

(r − |x− x0|)α/2

(`((r − |x− x0|)−2))1/2
,

for all (x, y) ∈ B(x0, r)×B(x0, r)
c

and

KB(x0,r)(x0, y) ≥ C16
j(|y − x0|)
φ((r/2)−2)

� j(|y − x0|)
rα

`(r−2)
(4.18)

for all y ∈ B(x0, r)
c
.
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Proof. Without loss of generality, we assume x0 = 0. For z ∈ B(0, r) and r < |y| < 2

|y| − r ≤ |y| − |z| ≤ |z − y| ≤ |z|+ |y| ≤ r + |y| ≤ 2|y|,

and for z ∈ B(0, r) and y ∈ B(0, 2)c,

|y| − r ≤ |y| − |z| ≤ |z − y| ≤ |z|+ |y| ≤ r + |y| ≤ |y|+ 1.

Thus by the monotonicity of j, (3.15) and (3.16), there exists a constant c > 0 such that

cj(|y|) ≤ j(|z − y|) ≤ j(|y| − r) , (z, y) ∈ B(0, r)×B(0, r)
c
.

Applying the above inequality, Lemma 4.2 and Proposition 4.9 to (4.15), we have proved the

proposition. 2

Proposition 4.11 For every a ∈ (0, 1), r ∈ (0, 1/4), x0 ∈ Rd and x1, x2 ∈ B(x0, ar),

KB(x0,r)(x1, y) ≤ C14KB(x0,r)(x2, y), y ∈ B(x0, r)
c
,

where C14 = C14(a) is the constant from Corollary 4.8.

Proof. Let a ∈ (0, 1), r ∈ (0, 1/4) and x0 ∈ Rd be fixed. For every Borel set A ⊂ B(x0, r)
c
, the

function x 7→ Px(XτB(x0,r)
∈ A) is harmonic in B(x0, r). By Corollary 4.8 and (4.16), we have for

all x1, x2 ∈ B(x0, ar),∫
A
KB(x0,r)(x1, y) dy = Px1(XτB(x0,r)

∈ A)

≤ C14Px2(XτB(x0,r)
∈ A) =

∫
A
KB(x0,r)(x2, y) dy .

This implies that KB(x0,r)(x1, y) ≤ C14KB(x0,r)(x2, y) for a.e. y ∈ B(x0, r)
c
, and hence by continuity

of KB(x0,r)(x, ·) for every y ∈ B(x0, r)
c
. 2

The next inequalities will be used several times in the remainder of this paper.

Lemma 4.12 There exists C > 0 such that

sα/2

(`(s−2))1/2
≤ C

rα/2

(`(r−2))1/2
, 0 < s < r ≤ 4, (4.19)

s1−α/2

(`(s−2))1/2
≤ C

r1−α/2

(`(r−2))1/2
, 0 < s < r ≤ 4, (4.20)

s1−α/2 (`(s−2)
)1/2 ≤ C r1−α/2 (`(r−2)

)1/2
, 0 < s < r ≤ 4, (4.21)
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∫ ∞
r

(
`(s−2)

)1/2
s1+α/2

ds ≤ C

(
`(r−2)

)1/2
rα/2

, 0 < r ≤ 4, (4.22)

∫ r

0

(
`(s−2)

)1/2
sα/2

ds ≤ C

(
`(r−2)

)1/2
rα/2−1

, 0 < r ≤ 4, (4.23)

∫ ∞
r

`(s−2)

s1+α
ds ≤ C

`(r−2)

rα
, 0 < r ≤ 4, (4.24)∫ r

0

`(s−2)

sα−1
ds ≤ C

`(r−2)

rα−2
, 0 < r ≤ 4, (4.25)

and ∫ r

0

sα−1

`(s−2)
ds ≤ C

rα

`(r−2)
, 0 < r ≤ 4. (4.26)

Proof. The first three inequalities follow easily from [3, Theorem 1.5.3], while the last five from

the 0-version of [3, 1.5.11]. 2

Proposition 4.13 For every a ∈ (0, 1), there exists C17 = C17(a) > 0 such that for every r ∈ (0, 1)

and x0 ∈ Rd,

KB(x0,r)(x, y) ≤ C17
rα/2−d

(`(r−2))1/2

(`((|y − x0| − r)−2))1/2

(|y − x0| − r)α/2
, ∀x ∈ B(x0, ar), y ∈ {r < |x0−y| ≤ 2r} .

Proof. By Proposition 4.11,

KB(x0,r)(x, y) ≤ c1

rd

∫
B(x0,ar)

KB(x0,r)(w, y)dw

for some constant c1 = c1(a) > 0. Thus from Proposition 4.9, (4.17) and Remark 3.10 we have that

KB(x0,r)(x, y) ≤ c1

rd

∫
B(x0,r)

∫
B(x0,r)

GB(x0,r)(w, z)J(z − y)dzdw

=
c1

rd

∫
B(x0,r)

Ez[τB(x0,r)]J(z − y)dz

≤ c2

rd
rα/2

(`(r−2))1/2

∫
B(x0,r)

(r − |z − x0|)α/2

(`((r − |z − x0|)−2))1/2
J(z − y)dz

for some constant c2 = c2(a) > 0. Now applying Theorem 3.4, we get

KB(x0,r)(x, y) ≤ c3r
α/2−d

(`(r−2))1/2

∫
B(x0,r)

(r − |z − x0|)α/2

(`((r − |z − x0|)−2))1/2

`(|z − y|−2)

|z − y|d+α
dz

for some constant c3 = c3(a) > 0. Since r − |z − x0| ≤ |y − z| ≤ 3r ≤ 3, from (4.19) we see that

(r − |z − x0|)α/2

(`((r − |z − x0|)−2))1/2
≤ c4

(|y − z|)α/2

(`(|y − z|−2))1/2
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for some constant c4 > 0. Thus we have

KB(x0,r)(x, y) ≤ c5r
α/2−d

(`(r−2))1/2

∫
B(x0,r)

(`(|z − y|−2))1/2

|z − y|d+α/2
dz

≤ c5r
α/2−d

(`(r−2))1/2

∫
B(y,|y−x0|−r)c

(`(|z − y|−2))1/2

|z − y|d+α/2
dz

≤ c6r
α/2−d

(`(r−2))1/2

∫ ∞
|y−x0|−r

(
`(s−2)

)1/2
s1+α/2

ds

for some constants c5 = c5(a) > 0 and c6 = c6(a) > 0. Using (4.22) in the above equation, we

conclude that

KB(x0,r)(x, y) ≤ c7r
α/2−d

(`(r−2))1/2

(`((|y − x0| − r)−2))1/2

(|y − x0| − r)α/2

for some constant c7 = c7(a) > 0. 2

Remark 4.14 Note that the right-hand side of the estimate can be replaced by V (r)
rdV (|y−x0|−r)

.

4.3 Boundary Harnack principle

The proof of the boundary Harnack principle is basically the proof given in [25], which is adapted

from [4, 42]. The following result is a generalization of [42, Lemma 3.3].

Lemma 4.15 There exists a positive constant C19 > 0 such that for any r ∈ (0, 1) and any open

set D with D ⊂ B(0, r) we have

Px (XτD ∈ B(0, r)c) ≤ C19 r
−α `(r−2)

∫
D
GD(x, y)dy, x ∈ D ∩B(0, r/2).

Proof. We will use C∞c (Rd) to denote the space of infinitely differentiable functions with compact

supports. Recall that L is the L2-generator of X in (4.1) and that G(x, y) and GD(x, y) are the

Green functions of X in Rd and D respectively. We have LG(x, y) = −δx(y) in the weak sense.

Since GD(x, y) = G(x, y)− Ex[G(XτD , y)], we have, by the symmetry of L, for any x ∈ D and any

nonnegative φ ∈ C∞c (Rd),∫
D
GD(x, y)Lφ(y)dy =

∫
Rd
GD(x, y)Lφ(y)dy

=

∫
Rd
G(x, y)Lφ(y)dy −

∫
Rd

Ex[G(XτD , y)]Lφ(y)dy

=

∫
Rd
G(x, y)Lφ(y)dy −

∫ ∞
0

∫
Dc

∫
Rd
G(z, y)Lφ(y)dyPx(XτD ∈ dz)

= −φ(x) +

∫ ∞
0

∫
Dc
φ(z)Px(XτD ∈ dz) = −φ(x) + Ex[φ(XτD)].
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In particular, if φ(x) = 0 for x ∈ D, we have

Ex [φ(XτD)] =

∫
D
GD(x, y)Lφ(y)dy. (4.27)

For fixed a ∈ (0, 1), take a sequence of radial functions φm in C∞c (Rd) such that 0 ≤ φm ≤ 1,

φm(y) =


0, |y| < a
1, 1 ≤ |y| ≤ m+ 1
0, |y| > m+ 2,

and that
∑

i,j |
∂2

∂yi∂yj
φm| is uniformly bounded. Define φm,r(y) = φm(yr ) so that 0 ≤ φm,r ≤ 1,

φm,r(y) =


0, |y| < ar

1, r ≤ |y| ≤ r(m+ 1)

0, |y| > r(m+ 2),

and sup
y∈Rd

∑
i,j

∣∣∣∣ ∂2

∂yi∂yj
φm,r(y)

∣∣∣∣ < c1 r
−2. (4.28)

We claim that there exists a constant c1 = c1(a) > 0 such that for all r ∈ (0, 1),

sup
m≥1

sup
y∈Rd

|Lφm,r(y)| ≤ c1r
−α `(r−2). (4.29)

In fact, by Proposition 3.4 we have∣∣∣∣∫
Rd

(φm,r(x+ y)− φm,r(x)− (∇φm,r(x) · y)1B(0,r)(y))J(y)dy

∣∣∣∣
≤

∣∣∣∣∣
∫
{|y|≤r}

(φm,r(x+ y)− φm,r(x)− (∇φm,r(x) · y)1B(0,r)(y))J(y)dy

∣∣∣∣∣+ 2

∫
{r<|y|}

J(y)dy

≤ c2

r2

∫
{|y|≤r}

|y|2J(y)dy +

∫
{r<|y|}

J(y)dy

≤ c3

r2

∫
{|y|≤r}

1

|y|d+α−2
`(|y|−2)dy + c3

∫
{r<|y|}

1

|y|d+α
`(|y|−2)dy

≤ c4

r2

∫ r

0

`(s−2)

sα−1
ds + c4

∫ ∞
r

`(s−2)

s1+α
ds.

Applying (4.24)-(4.25) to the above equation, we get∣∣∣∣∫
Rd

(φm,r(x+ y)− φm,r(x)− (∇φm,r(x) · y)1B(0,r)(y))J(y)dy

∣∣∣∣ ≤ c5 r
−α `(r−2),

for some constant c4 = c4(d, α, `) > 0. So the claim follows. Let A(x, a, b) := {y ∈ Rd : a ≤
|y − x| < b}. When D ⊂ B(0, r) for some r ∈ (0, 1), we get, by combining (4.27) and (4.29), that

for any x ∈ D ∩B(0, ar),

Px (XτD ∈ B(0, r)c) = lim
m→∞

Px (XτD ∈ A(0, r, (m+ 1)r)) ≤ C r−α `(r−2)

∫
D
GD(x, y)dy.

2
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Lemma 4.16 There exists C20 > 0 such that for any open set D with B(A, κr) ⊂ D ⊂ B(0, r) for

some r ∈ (0, 1) and κ ∈ (0, 1), we have that for every x ∈ D \B(A, κr),∫
D
GD(x, y)dy ≤ C20 r

α κ−d−α/2
1

`((4r)−2)

(
1 +

`((κr2 )−2)

`((4r)−2)

)
Px
(
XτD\B(A,κr)

∈ B(A, κr)
)
.

Proof. Fix a point x ∈ D \ B(A, κr) and let B := B(A, κr2 ). Note that, by the harmonicity of

GD(x, · ) in D \ {x} with respect to X, we have

GD(x,A) ≥
∫
D∩Bc

KB(A, y)GD(x, y)dy ≥
∫
D∩B(A, 3κr

4
)c
KB(A, y)GD(x, y)dy.

Since 3κr
4 ≤ |y − A| ≤ 2r for y ∈ B(A, 3κr

4 )c ∩D and j is a decreasing function, it follows from

(4.18) in Proposition 4.10 and Theorem 3.4 that

GD(x,A) ≥ c1
(κr2 )α

`
(
(κr2 )−2

) ∫
D∩B(A, 3κr

4
)c
GD(x, y)J(y −A)dy

≥ c1 j(2r)
(κr2 )α

`
(
(κr2 )−2

) ∫
D∩B(A, 3κr

4
)c
GD(x, y)dy

≥ c2 κ
α r−d

`((2r)−2)

`((κr2 )−2)

∫
D∩B(A, 3κr

4
)c
GD(x, y)dy,

for some positive constants c1 and c2. On the other hand, applying Theorem 4.7 we get∫
B(A, 3κr

4
)
GD(x, y)dy ≤ c3

∫
B(A, 3κr

4
)
GD(x,A)dy ≤ c4 r

d κdGD(x,A),

for some positive constants c3 and c4. Combining these two estimates we get that∫
D
GD(x, y)dy ≤ c5

(
rdκd + rdκ−α

`((κr2 )−2)

`((2r)−2)

)
GD(x,A) (4.30)

for some constant c5 > 0.

Let Ω = D\B(A, κr2 ). Note that for any z ∈ B(A, κr4 ) and y ∈ Ω, 2−1|y−z| ≤ |y−A| ≤ 2|y−z|.
Thus we get from (4.15) and (3.15) that for z ∈ B(A, κr4 ),

c−1
6 KΩ(x,A) ≤ KΩ(x, z) ≤ c6KΩ(x,A) (4.31)

for some c6 > 1. Using the harmonicity of GD(·, A) in D \ {A} with respect to X, we can split

GD(·, A) into two parts:

GD(x,A) = Ex [GD(XτΩ , A)]

= Ex
[
GD(XτΩ , A) : XτΩ ∈ B(A,

κr

4
)
]

+ Ex
[
GD(XτΩ , A) : XτΩ ∈ {

κr

4
≤ |y −A| ≤ κr

2
}
]

:= I1 + I2.
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Since GD(y,A) ≤ G(y,A), by using (4.31) and Theorem 3.2, we have

I1 ≤ c6KΩ(x,A)

∫
B(A,κr

4
)
GD(y,A)dy ≤ c7KΩ(x,A)

∫
B(A,κr

4
)

1

|y −A|d−α`(|y −A|−2)
dy ,

for some constant c7 > 0. Since |y −A| ≤ 4r ≤ 4, by (4.19),

|y −A|α/2

`(|y −A|−2)
≤ c8

(4r)α/2

`((4r)−2)
(4.32)

for some constant c8 > 0. Thus

I1 ≤ c7 c8KΩ(x,A)

∫
B(A,κr

4
)

1

|y −A|d−α/2
(4r)α/2

`((4r)−2)
dy ≤ c9κ

α/2rα
1

`((4r)−2)
KΩ(x,A)

for some constant c9 > 0. Now using (4.31) again, we get

I1 ≤ c10κ
α/2−drα−d

1

`((4r)−2)

∫
B(A,κr

4
)
KΩ(x, z)dz

= c10κ
α/2−drα−d

1

`((4r)−2)
Px
(
XτΩ ∈ B(A,

κr

4

)
for some constant c10 > 0. On the other hand, again by Theorem 3.2 and (4.32),

I2 =

∫
{κr

4
≤|y−A|≤κr

2
}
GD(y,A)Px(XτΩ ∈ dy)

≤ c11

∫
{κr

4
≤|y−A|≤κr

2
}

1

|y −A|d−α
1

`(|y −A|−2)
Px(XτΩ ∈ dy)

≤ c12κ
α/2−d rα−d

1

`((4r)−2)
Px
(
XτΩ ∈ {

κr

4
≤ |y −A| ≤ κr

2
}
)
,

for some constants c11 > 0 and c12 > 0.

Therefore

GD(x,A) ≤ c13 κ
α/2−d rα−d

1

`((4r)−2)
Px
(
XτΩ ∈ B(A,

κr

2
)
)
.

for some constant c13 > 0. Combining the above with (4.30), we get∫
D
GD(x, y)dy ≤ c14 r

α κ−d−α/2
1

`((4r)−2)

(
1 +

`((κr2 )−2)

`((2r)−2)

)
Px
(
XτD\B(A,κr2 )

∈ B(A,
κr

2
)
)
,

for some constant c14 > 0. It follows immediately that∫
D
GD(x, y)dy ≤ c14 r

α κ−d−α/2
1

`((4r)−2)

(
1 +

`((κr2 )−2)

`((2r)−2)

)
Px
(
XτD\B(A,κr)

∈ B(A, κr)
)
.

2

Combining Lemmas 4.15-4.16 and using the translation invariant property, we have the following
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Lemma 4.17 There exists C21 > 0 such that for any open set D with B(A, κr) ⊂ D ⊂ B(Q, r)

for some r ∈ (0, 1) and κ ∈ (0, 1), we have that for every x ∈ D ∩B(Q, r2),

Px (XτD ∈ B(Q, r)c) ≤ C21 κ
−d−α/2 `(r−2)

`((4r)−2)

(
1 +

`((κr2 )−2)

`((2r)−2)

)
Px
(
XτD\B(A,κr)

∈ B(A, κr)
)
.

Let A(x, a, b) := {y ∈ Rd : a ≤ |y − x| < b}.

Lemma 4.18 Let D be an open set and r ∈ (0, 1/2). For every Q ∈ Rd and any positive function

u vanishing on Dc ∩B(Q, 11
6 r), there is a σ ∈ (10

6 r,
11
6 r) such that for any x ∈ D ∩B(Q, 3

2r),

Ex
[
u(XτD∩B(Q,σ)

);XτD∩B(Q,σ)
∈ B(Q, σ)c

]
≤ C22

rα

`((2r)−2)

∫
B(Q, 10r

6
)c
J(y −Q)u(y)dy (4.33)

for some constant C22 > 0 independent of Q and u.

Proof. Without loss of generality, we may assume that Q = 0. Note that by (4.23)∫ 11
6
r

10
6
r

∫
A(0,σ,2r)

`((|y| − σ)−2)1/2(|y| − σ)−α/2u(y) dy dσ

=

∫
A(0, 10

6
r,2r)

∫ |y|∧ 11
6
r

10
6
r

`((|y| − σ)−2)1/2(|y| − σ)−α/2 dσ u(y) dy

≤
∫
A(0, 10

6
r,2r)

(∫ |y|− 10
6
r

0
`(s−2)1/2s−α/2ds

)
u(y)dy

≤ c1

∫
A(0, 10r

6
,2r)

`

((
|y| − 10r

6

)−2
)1/2(

|y| − 10r

6

)1−α/2
u(y)dy

for some positive constant c1. Using (4.20) and (4.21), we get that there are constants c2 > 0 and

c3 > 0 such that

∫
A(0, 10r

6
,2r)

`

((
|y| − 10r

6

)−2
)1/2(

|y| − 10r

6

)1−α/2
u(y)dy

≤ c3

∫
A(0, 10r

6
,2r)

`(|y|−2)1/2|y|1−α/2u(y)dy

≤ c3
r1−α/2

`((2r)−2)1/2

∫
A(0, 10r

6
,2r)

`(|y|−2)u(y)dy .

Thus, by taking c4 > 6c1c3, we can conclude that there is a σ ∈ (10
6 r,

11
6 r) such that∫

A(0,σ,2r)
`((|y| − σ)−2)1/2 (|y| − σ)−α/2u(y)dy ≤ c4

r−α/2

`((2r)−2)1/2

∫
A(0, 10r

6
,2r)

`(|y|−2)u(y)dy. (4.34)
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Let x ∈ D ∩ B(0, 3
2r). Note that, since X satisfies the hypothesis H in [43], by Theorem 1 in

[43] we have

Ex
[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c

]
= Ex

[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c, τD∩B(0,σ) = τB(0,σ)

]
= Ex

[
u(XτB(0,σ)

);XτB(0,σ)
∈ B(0, σ)c, τD∩B(0,σ) = τB(0,σ)

]
≤ Ex

[
u(XτB(0,σ)

);XτB(0,σ)
∈ B(0, σ)c

]
=

∫
B(0,σ)c

KB(0,σ)(x, y)u(y)dy.

In the first equality above we have used the fact that u vanishes on Dc∩B(0, σ). Since σ < 2r < 1,

from (4.17) in Proposition 4.10, Proposition 4.13 we have

Ex
[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c

]
≤
∫
B(0,σ)c

KB(0,σ)(x, y)u(y)dy

≤ c5

∫
A(0,σ,2r)

σα/2−d

(`(σ−2))1/2

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

+c5

∫
B(0,2r)c

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
u(y)dy

for some constant c5 > 0.

When y ∈ A(0, 2r, 4) we have 1
12 |y| ≤ |y| − σ, while when |y| ≥ 4 we have |y| − σ ≥ |y| − 1.

Since σ − |x| ≤ σ ≤ 2r, we have by (4.19) and the monotonicity of j,

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
≤ c6j

(
|y|
12

)
rα

`((2r)−2)
, y ∈ A(0, 2r, 4)

and

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
≤ c6j(|y| − 1)

rα

`((2r)−2)
, |y| ≥ 4

for some constant c6 > 0. Thus by applying (3.15) and (3.16), we get

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
≤ c7j(|y|)

rα

`((2r)−2)

for some constant c7 > 0. Therefore,∫
B(0,2r)c

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
u(y)dy ≤ c5c7

rα

`((2r)−2)

∫
B(0,2r)c

J(y)u(y) dy .
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On the other hand, by (4.19), (4.34) and Theorem 3.4, we have that∫
A(0,σ,2r)

σα/2−d

(`(σ−2))1/2

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

≤
(

10r

6

)−d σα/2

(`(σ−2))1/2

∫
A(0,σ,2r)

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

≤ c8r
−d (2r)α/2

(`((2r)−2))1/2

r−α/2

(`((2r)−2))1/2

∫
A(0, 10r

6
,2r)

`(|y|−2)u(y)dy

≤ c9
rα

`((2r)−2)

∫
A(0, 10r

6
,2r)

`(|y|−2)|y|−d−αu(y)dy

≤ c10
rα

`((2r)−2)

∫
A(0, 10r

6
,2r)

J(y)u(y)dy

for some positive constants c8, c9 and c10. Hence, by combining the last two displays we arrive at

Ex
[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c

]
≤ c11

rα

`((2r)−2)

∫
B(0, 10r

6
)c
J(y)u(y)dy

for some constant c11 > 0. 2

Lemma 4.19 Let D be an open set and r ∈ (0, 1/2). Assume that B(A, κr) ⊂ D ∩ B(Q, r) for

κ ∈ (0, 1/2]. Suppose that u ≥ 0 is regular harmonic in D ∩B(Q, 2r) with respect to X and u = 0

in Dc ∩B(Q, 2r). If w is a regular harmonic function with respect to X in D ∩B(Q, r) such that

w(x) =

{
u(x), x ∈ B(Q, 3r

2 )c ∪ (Dc ∩B(Q, r)),
0, x ∈ A(Q, r, 3r

2 ),

then

u(A) ≥ w(A) ≥ C23 κ
α `((2r)

−2)

`((κr)−2)
u(x), x ∈ D ∩B(Q,

3

2
r)

for some constant C23 > 0.

Proof. Without loss of generality we may assume Q = 0. Let x ∈ D∩B(0, 3
2r). The left hand side

inequality in the conclusion of the lemma is clear from the fact that u dominates w on (D∩B(0, r))c

and both functions are regular harmonic in D∩B(0, r). Thus we only need to prove the right hand

side inequality. By Lemma 4.18 there exists σ ∈ (10r
6 , 11r

6 ) such that (4.33) holds. Since u is regular

harmonic in D ∩B(0, 2r) with respect to X and equal to zero on Dc ∩B(0, 2r), it follows that

u(x) = Ex
[
u(XτD∩B(0,σ)

); XτD∩B(0,σ)
∈ B(0, σ)c

]
≤ c1

rα

`((2r)−2)

∫
B(0, 10r

6
)c
J(y)u(y)dy (4.35)

for some constant c1 > 0. On the other hand, by (4.18) in Proposition 4.10, we have that

w(A) =

∫
B(0, 3r

2
)c
KD∩B(0,r)(A, y)u(y)dy ≥

∫
B(0, 3r

2
)c
KB(A,κr)(A, y)u(y)dy

≥ c2

∫
B(0, 3r

2
)c
J(A− y)

(κr)α

`((κr)−2)
u(y)dy
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for some constant c2 > 0. Note that |y − A| ≤ 2|y| in A(0, 3r
2 , 4) and that |y − A| ≤ |y| + 1 for

|y| ≥ 4. Hence by the monotonicity of j, (3.15) and (3.16),

w(A) ≥ c3
(κr)α

`((κr)−2)

∫
B(0, 3r

2
)c
J(y)u(y)dy

for some constant c3 > 0. Therefore, by (4.35)

w(A) ≥ c4c
−1
1 κα

`((2r)−2)

`((κr)−2)
u(x) .

2

Definition 4.20 Let κ ∈ (0, 1/2]. We say that an open set D in Rd is κ-fat if there exists R > 0

such that for each Q ∈ ∂D and r ∈ (0, R), D ∩ B(Q, r) contains a ball B(Ar(Q), κr). The pair

(R, κ) is called the characteristics of the κ-fat open set D.

Note that all Lipschitz domain and all non-tangentially accessible domain (see [24] for the

definition) are κ-fat. The boundary of a κ-fat open set can be highly nonrectifiable and, in general,

no regularity of its boundary can be inferred. Bounded κ-fat open set may be disconnected.

Since ` is slowly varying at ∞, we get the Carleson’s estimate from Lemma 4.19.

Corollary 4.21 Suppose that D is a κ-fat open set with the characteristics (R, κ). There exists

a constant C24 depending on the characteristics (R, κ) such that if r ≤ R ∧ 1
2 , Q ∈ ∂D, u ≥ 0 is

regular harmonic in D ∩B(Q, 2r) with respect to X and u = 0 in Dc ∩B(Q, 2r), then

u (Ar(Q)) ≥ C24 u(x) , ∀x ∈ D ∩B(Q,
3

2
r) .

The next theorem is a boundary Harnack principle for (possibly unbounded) κ-fat open set and

it is the main result of this subsection.

Theorem 4.22 Suppose that D is a κ-fat open set with the characteristics (R, κ). There exists a

constant C25 > 1 depending on the characteristics (R, κ) such that if r ≤ R ∧ 1
4 and Q ∈ ∂D, then

for any nonnegative functions u, v in Rd which are regular harmonic in D ∩ B(Q, 2r) with respect

to X and vanish in Dc ∩B(Q, 2r), we have

C−1
25

u(Ar(Q))

v(Ar(Q))
≤ u(x)

v(x)
≤ C25

u(Ar(Q))

v(Ar(Q))
, x ∈ D ∩B(Q,

r

2
) .

Proof. Since ` is slowly varying at ∞ and locally bounded, there exists a constant c > 0 such that

for every r ∈ (0, 1/4),

max

(
`(r−2)

`((κr)−2)
,
`((2r)−2)

`((4r)−2)
,
`((κr2 )−2)

`((4r)−2)
,
`((κr)−2)

`((2r)−2)

)
≤ c . (4.36)
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Fix r ∈ (0, R∧ 1
4) throughout this proof. Without loss of generality we may assume that Q = 0

and u(Ar(0)) = v(Ar(0)). For simplicity, we will write Ar(0) as A in the remainder of this proof.

Define u1 and u2 to be regular harmonic functions in D ∩B(0, r) with respect to X such that

u1(x) =

{
u(x), x ∈ A(0, r, 3r

2 ),
0, x ∈ B(0, 3r

2 )c ∪ (Dc ∩B(0, r))

and

u2(x) =

{
0, x ∈ A(0, r, 3r

2 ),
u(x), x ∈ B(0, 3r

2 )c ∪ (Dc ∩B(0, r)).

and note that u = u1 +u2. If D∩A(0, r, 3r
2 ) = ∅, then u1 = 0 and the inequality (4.40) below holds

trivially. So we assume that D ∩A(0, r, 3r
2 ) is not empty. Then by Lemma 4.19,

u(y) ≤ c1κ
−α `((κr)

−2)

`((2r)−2)
u(A), y ∈ D ∩B(0,

3r

2
),

for some constant c1 > 0. For x ∈ D ∩B(0, r2), we have

u1(x) = Ex
[
u(XτD∩B(0,r)

) : XτD∩B(0,r)
∈ D ∩A(0, r,

3r

2
)

]
≤

(
sup

D∩A(0,r, 3r
2

)

u(y)

)
Px
(
XτD∩B(0,r)

∈ D ∩A(0, r,
3r

2
)

)

≤

(
sup

D∩A(0,r, 3r
2

)

u(y)

)
Px
(
XτD∩B(0,r)

∈ B(0, r)c
)

≤ c1 κ
−α `((κr)

−2)

`((2r)−2)
u(A)Px

(
XτD∩B(0,r)

∈ B(0, r)c
)
.

Now using Lemma 4.17 (withD replaced byD∩B(0, r)) and (4.36), we have that for x ∈ D∩B(0, r2),

u1(x) (4.37)

≤ c2 κ
−d− 3

2
α `((κr)

−2)

`((2r)−2)

`(r−2)

`((4r)−2)

(
1 +

`((κr2 )−2)

`((4r)−2)

)
u(A)Px

(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)

≤ c3 u(A)Px
(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)

(4.38)

for some positive constants c2 and c3 = c3(κ). Since r < 1/4, Theorem 4.7 implies that

u(y) ≥ c4 u(A), y ∈ B(A,
κr

2
)

for some constant c4 > 0. Therefore for x ∈ D ∩B(0, r2)

u(x) = Ex
[
u(Xτ(D∩B(0,r))\B(A,κr2 )

)
]
≥ c4 u(A)Px

(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)
. (4.39)

Using (4.38), the analogue of (4.39) for v, and the assumption that u(A) = v(A), we get that for

x ∈ D ∩B(0, r2),

u1(x) ≤ c3 v(A)Px
(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)
≤ c5 v(x) (4.40)
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for some constant c5 = c5(κ) > 0. For x ∈ D ∩B(0, r), we have

u2(x) =

∫
B(0, 3r

2
)c
KD∩B(0,r)(x, z)u(z)dz

=

∫
B(0, 3r

2
)c

∫
D∩B(0,r)

GD∩B(0,r)(x, y)J(y − z)dy u(z) dz.

Let

s(x) :=

∫
D∩B(0,r)

GD∩B(0,r)(x, y)dy.

Note that for every y ∈ B(0, r) and z ∈ B(0, 3r
2 )c,

1

3
|z| ≤ |z| − r ≤ |z| − |y| ≤ |y − z| ≤ |y|+ |z| ≤ r + |z| ≤ 2|z| ,

and that for every y ∈ B(0, r) and z ∈ B(0, 12)c,

|z| − 1 ≤ |y − z| ≤ |z|+ 1.

So by the monotonicity of j, for every y ∈ B(0, r) and z ∈ A(0, 3r
2 , 12),

j(12|z|) ≤ j(2|z|) ≤ J(y − z) ≤ j

(
|z|
3

)
≤ j

(
|z|
12

)
,

and for every y ∈ B(0, r) and every z ∈ B(0, 12)c,

j(|z| − 1) ≤ J(y − z) ≤ j(|z|+ 1).

Using (3.15) and (3.16), we have that, for every y ∈ B(0, r) and z ∈ B(0, 3r
2 )c,

c−1
6 j(|z|) ≤ J(y − z) ≤ c6 j(|z|)

for some constant c6 > 0. Thus we have

c−1
7 ≤

(
u2(x)

u2(A)

)(
s(x)

s(A)

)−1

≤ c7, (4.41)

for some constant c7 > 1. Applying (4.41) to u, and v and Lemma 4.19 to v and v2, we obtain for

x ∈ D ∩B(0, r2),

u2(x) ≤ c7 u2(A)
s(x)

s(A)
≤ c2

7

u2(A)

v2(A)
v2(x) ≤ c8 κ

−α `((κr)
−2)

`((2r)−2)

u(A)

v(A)
v2(x) = c8 κ

−α `((κr)
−2)

`((2r)−2)
v2(x),

(4.42)

for some constant c8 > 0. Combining (4.40) and (4.42) and applying (4.36), we have

u(x) ≤ c9 v(x), x ∈ D ∩B(0,
r

2
),

for some constant c9 = c9(κ) > 0. 2
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[14] Chen, Z.-Q., Kim, P., Song, R. and Vondraček, Z.: Sharp Green function estimates for ∆ + ∆α/2 in
C1,1 open sets and their applications. Ill. J. Math., to appear, 2011.

[15] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets. Stoch. Proc. Appl.
108 (2003), 27–62.

[16] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure
spaces. Probab. Theory Relat. Fields 140 (2008), 277–317.

[17] Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct.
Anal., 226 (2005), 90–113.

[18] Chen, Z.-Q., Song, R.: Continuity of eigenvalues of subordinate processes in domains. Math. Z., 252
(2006), 71–89.

[19] Chen, Z.-Q., Song, R.: Spectral properties of subordinate processes in domains. In Stochastic Analysis
and Partial Differential Equations, AMS, Providence, 2007.

[20] Fristedt, B. E.: Sample functions of stochastic processes with stationary, independent increments.
Advances in probability and related topics, Vol. 3, pp. 241–396, Dekker, New York, 1974.
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