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1 Introduction

Let X = (Xt : t ≥ 0) be a d-dimensional Brownian motion. Subordination of Brownian

motion consists of time-changing the paths of X by an independent subordinator. To be

more precise, let S = (St : t ≥ 0) be a subordinator (i.e., a nonnegative, increasing Lévy

process) independent of X. The process Y = (Yt : t ≥ 0) defined by Yt = X(St) is called

a subordinate Brownian motion. The process Y is an example of a rotationally invariant

d-dimensional Lévy process. A general Lévy process in Rd is completely characterized by

its characteristic triple (b, A, π), where b ∈ Rd, A is a nonnegative definite d × d matrix,

and π is a measure on Rd \ {0} satisfying
∫

(1 ∧ |x|2)π(dx) < ∞, called the Lévy measure

of the process. Its characteristic exponent Φ, defined by E[exp{i〈x, Yt〉}] = exp{−tΦ(x)},
x ∈ Rd, is given by the Lévy-Khintchine formula involving the characteristic triple (b, A, π).

The main difficulty in studying general Lévy processes stems from the fact that the Lévy

measure π can be quite complicated.

The situation simplifies immensely in the case of subordinate Brownian motions. If we

take the Brownian motion X as given, then Y is completely determined by the subordinator

S. Hence, one can deduce properties of Y from properties of the subordinator S. On the

analytic level this translates to the following: Let φ denote the Laplace exponent of the

subordinator S. That is, E[exp{−λSt}] = exp{−tφ(λ)}, λ > 0. Then the characteristic

exponent Φ of the subordinate Brownian motion Y takes on the very simple form Φ(x) =

φ(|x|2) (our Brownian motion X runs at twice the usual speed). Hence, properties of Y

should follow from properties of the Laplace exponent φ. This will be the main theme of

these lecture notes – we will study potential-theoretic properties of Y by using information

given by φ. Two main instances of this approach are explicit formulae for the Green function

of Y and the Lévy measure of Y . Let p(t, x, y), x, y ∈ Rd, t > 0, denote the transition

densities of the Brownian motion X, and let µ, respectively U , denote the Lévy measure,

respectively the potential measure, of the subordinator S. Then the Lévy measure π of Y is

given by π(dx) = J(x) dx where

J(x) =

∫ ∞

0

p(t, 0, x)µ(dt) ,

while, when Y is transient, the Green function G(x, y), x, y ∈ Rd, of Y is given by

G(x, y) =

∫ ∞

0

p(t, x, y)U(dt) .

Let us consider the second formula (same reasoning also applies to the first one). This

formula suggests that the asymptotic behavior of G(x, y) when |x − y| → 0 (respectively,

when |x−y| → ∞) should follow from the asymptotic behavior of the potential measure U at

∞ (respectively at 0). The latter can be studied in the case when the potential measure has
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a monotone density u with respect to the Lebesgue measure. Indeed, the Laplace transform

of U is given by LU(λ) = 1/φ(λ), hence one can invoke the Tauberian and monotone density

theorems to obtain the asymptotic behavior of u from the asymptotic behavior of φ. We

will be mainly interested in the behavior of the Green function G(x, y) and the jumping

function J(x) near zero, hence the reasonable assumption on φ will be that it is regularly

varying at infinity with index α ∈ [0, 2]. This includes subordinators having a drift, as well

as subordinators with slowly varying Laplace exponent at infinity, for example, a gamma

subordinator.

The materials covered in these lecture notes are based on several recent papers, primarily

[47], [52], [59] and [57]. The main effort here was given to unify the exposition of those

results, and in doing so we also eradicated the typos in these papers. Some new materials

and generalizations are also included. Here is the outline of the notes.

In Section 2 we recall some basic facts about subordinators and give a list of exam-

ples that will be useful later on. This list contains stable subordinators, relativistic stable

subordinators, subordinators which are sums of stable subordinators and a drift, gamma

subordinators, geometric stable subordinators, iterated geometric stable subordinators and

Bessel subordinators. All of these subordinators belong to the class of special subordina-

tors (even complete Bernstein subordinators). Special subordinators are important to our

approach because they are precisely the ones whose potential measure restricted to (0,∞)

has a decreasing density u. In fact, for all of the listed subordinators the potential measure

has a decreasing density u. In the last part of the section we study asymptotic behaviors of

the potential density u and the Lévy density of subordinators by use of Karamata’s and de

Haan’s Tauberian and monotone density theorems.

In Section 3 we derive asymptotic properties of the Green function and the jumping

function of subordinate Brownian motion. These results follow from the technical Lemma

3.3 upon checking its conditions for particular subordinators. Of special interest is the

order of singularities of the Green function near zero, starting from the Newtonian kernel

at the one end, and singularities on the brink of integrability on the other end obtained

for iterated geometric stable subordinators. The results for the asymptotic behavior of the

jumping function are less complete, but are substituted by results on the decay at zero and

at infinity. Finally, we discuss transition densities for symmetric geometric stable processes

which exhibit unusual behavior on the diagonal for small (as well as large) times.

The original motivation for deriving the results in Sections 2 and 3 was an attempt to

obtain the Harnack inequality for subordinate Brownian motions with subordinators whose

Laplace exponent φ(λ) has the asymptotic behavior at infinity of one of the following two

forms: (i) φ(λ) ∼ λ, or (ii) logarithmic behavior at ∞. A typical example of the first

case is the process Y which is a sum of Brownian motion and an independent rotationally

invariant α-stable process. This situation was studied in [47]. A typical example of the
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second case is a geometric stable process – a subordinate Brownian motion via a geometric

stable subordinator. In this case, φ(λ) ∼ log λ as λ→∞. This was studied in [52]. Section 4

contains an exposition of these results and some generalizations, and is partially based on the

general approach to Harnack inequality from [56]. After obtaining some potential-theoretic

results for a class of radial Lévy processes, we derive Krylov-Safonov-type estimates for the

hitting probabilities involving capacities. Similar estimates involving Lebesgue measure were

obtained in [56] based on the work of Bass and Levin [4]. These estimates are crucial in

proving two types of Harnack inequalities for small balls - scale invariant ones, and the weak

ones in which the constant might depend on the radius of a ball. In fact, we give a full proof

of the Harnack inequality only for iterated geometric stable processes, and refer the reader

to the original papers for the other cases.

Finally, in Section 5 we replace the underlying Brownian motion by the Brownian motion

killed upon exiting a Lipschitz domain D. The resulting process is denoted by XD. We

are interested in the potential theory of the process Y D
t = XD(St) where S is a special

subordinator with infinite Lévy measure or positive drift. Such questions were first studied

for stable subordinators in [31], and the final solution in this case was given in [30]. The

general case for special subordinators appeared in [59]. Surprisingly, it turns out that the

potential theory of Y D is in a one-to-one and onto correspondence with the potential theory of

XD. More precisely, there is a bijection (realized by the potential operator of the subordinate

process ZD
t = XD(Tt) where T is the subordinator conjugate to S) from the cone S(Y D) of

excessive functions of Y D onto the cone S(XD) of excessive functions for XD which preserves

nonnegative harmonic functions. This bijection makes it possible to essentially transfer the

potential theory of XD to the potential theory of Y D. In this way we obtain the Martin

kernel and the Martin representation for Y D which immediately leads to a proof of the

boundary Harnack principle for nonnegative harmonic functions of Y D. In the case of a C1,1

domain we obtain sharp bounds for the transition densities of the subordinate process Y D.

The materials covered in these lecture notes by no means include all that can be said

about the potential theory of subordinate Brownian motions. One of the omissions is the

Green function estimates for killed subordinate Brownian motions and the boundary Harnack

inequality for the positive harmonic functions of subordinate Brownian motions. By using

ideas from [18] or [48] one can easily extend the Green function estimates of [17] and [37]

for killed symmetric stable processes to more general killed subordinate Brownian motions

under certain conditions, and then use these estimates to extend arguments in [14] and [61] to

establish the boundary Harnack inequality for general subordinate Brownian motions under

certain conditions. In the case when the Laplace exponent φ is regularly varying at infinity,

this is done in [35]. Another notable omission is the spectral theory for such processes

together with implications to spectral theory of killed subordinate Brownian motion. We

refer the reader to [19], [20] and [21]. Related to this is the general discussion on the
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exact difference between subordinate killed Brownian motions and the killed subordinate

Brownian motions and its consequences. This was discussed in [55] and [54]. See also [32]

and the forthcoming [60].

We end this introduction with few words on the notations. For functions f and g we

write f ∼ g if the quotient f/g converges to 1, and f � g if the quotient f/g stays bounded

between two positive constants.

Acknowledgment: Some of the material from these lecture notes was presented by the

second named author at the Workshop on Stochastic and Harmonic Analysis of Processes

with Jumps held at Angers, France, May 2-9, 2006. Hospitality of the organizers is gratefully

acknowledged. The notes were written while the second named author was visiting the

Department of Mathematics of University of Illinois at Urbana-Champaign. He thanks the

department for the stimulating environment and hospitality. Thanks are also due to Andreas

Kyprianou for several useful comments.

2 Subordinators

2.1 Special subordinators and complete Bernstein functions

Let S = (St : t ≥ 0) be a subordinator, that is, an increasing Lévy process taking values

in [0,∞] with S0 = 0. We remark that our subordinators are what some authors call killed

subordinators. The Laplace transform of the law of St is given by the formula

E[exp(−λSt)] = exp(−tφ(λ)) , λ > 0. (2.1)

The function φ : (0,∞) → R is called the Laplace exponent of S, and it can be written in

the form

φ(λ) = a+ bλ+

∫ ∞

0

(1− e−λt)µ(dt) . (2.2)

Here a, b ≥ 0, and µ is a σ-finite measure on (0,∞) satisfying∫ ∞

0

(t ∧ 1)µ(dt) <∞ . (2.3)

The constant a is called the killing rate, b the drift, and µ the Lévy measure of the subordi-

nator S. By using condition (2.3) above one can easily check that

lim
t→0

t µ(t,∞) = 0, (2.4)∫ 1

0

µ(t,∞) dt <∞ . (2.5)

For t ≥ 0, let ηt be the distribution of St. To be more precise, for a Borel set A ⊂ [0,∞),

ηt(A) = P(St ∈ A). The family of measures (ηt : t ≥ 0) form a convolution semigroup of
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measures on [0,∞). Clearly, the formula (2.1) reads exp(−tφ(λ)) = Lηt(λ), the Laplace

transform of the measure ηt. We refer the reader to [7] for much more detailed exposition

on subordinators.

Recall that a C∞ function φ : (0,∞) → [0,∞) is called a Bernstein function if (−1)nDnφ ≤
0 for every n ∈ N. It is well known (see, e.g., [6]) that a function φ : (0,∞) → R is a Bernstein

function if and only if it has the representation given by (2.2).

We now introduce the concepts of special Bernstein functions and special subordinators.

Definition 2.1 A Bernstein function φ is called a special Bernstein function if ψ(λ) :=

λ/φ(λ) is also a Bernstein function. A subordinator S is called a special subordinator if its

Laplace exponent is a special Bernstein function.

We will call the function ψ in the definition above the Bernstein function conjugate to φ.

Special subordinators occur naturally in various situations. For instance, they appear as

the ladder time process for a Lévy process which is not a compound Poisson process, see

page 166 of [7]. Yet another situation in which they appear naturally is in connection with

the exponential functional of subordinators (see [9]).

The most common examples of special Bernstein functions are complete Bernstein func-

tions, also called operator monotone functions in some literature. A function φ : (0,∞) → R
is called a complete Bernstein function if there exists a Bernstein function η such that

φ(λ) = λ2Lη(λ), λ > 0,

where L stands for the Laplace transform of the function η: Lη(λ) =
∫∞

0
e−λtη(t) dt. It

is known (see, for instance, Remark 3.9.28 and Theorem 3.9.29 of [34]) that every com-

plete Bernstein function is a Bernstein function and that the following three conditions are

equivalent:

(i) φ is a complete Bernstein function;

(ii) ψ(λ) := λ/φ(λ) is a complete Bernstein function;

(iii) φ is a Bernstein function whose Lévy measure µ is given by

µ(dt) =

∫ ∞

0

e−stγ(ds)dt

where γ is a measure on (0,∞) satisfying∫ 1

0

1

s
γ(ds) +

∫ ∞

1

1

s2
γ(ds) <∞.
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The equivalence of (i) and (ii) says that every complete Bernstein function is a special

Bernstein function. Note also that it follows from the condition (iii) above that being a

complete Bernstein function only depends on the Lévy measure and that the Lévy measure

µ(dt) of any complete Bernstein function has a completely monotone density. We also note

that the tail t→ µ(t,∞) of the Lévy measure µ is a completely monotone function. Indeed,

by Fubini’s theorem

µ(x,∞) =

∫ ∞

x

∫ ∞

0

e−st γ(ds) dt =

∫ ∞

0

e−xs γ(ds)

s
.

A similar argument shows that the converse is also true, namely, if the tail of the Lévy

measure µ is a completely monotone function, then µ has a completely monotone density.

The density of the Lévy measure with respect to the Lebesgue measure (when it exists) will

be called the Lévy density.

The family of all complete Bernstein functions is a closed convex cone containing positive

constants. The following properties of complete Bernstein functions are well known, see, for

instance, [42]: (i) If φ is a nonzero complete Bernstein function, then so are φ(λ−1)−1 and

λφ(λ−1); (ii) if φ1 and φ2 are nonzero complete Bernstein functions and β ∈ (0, 1), then

φβ
1 (λ)φ1−β

2 (λ) is also a complete Bernstein function; (iii) if φ1 and φ2 are nonzero complete

Bernstein functions and β ∈ (−1, 0) ∪ (0, 1), then (φβ
1 (λ) + φβ

2 (λ))1/β is also a complete

Bernstein function.

Most of the familiar Bernstein functions are complete Bernstein functions. The following

are some examples of complete Bernstein functions ([34]): (i) λα, α ∈ (0, 1]; (ii) (λ + 1)α −
1, α ∈ (0, 1); (iii) log(1+λ); (iv) λ

λ+1
. The first family corresponds to α-stable subordinators

(0 < α < 1) and a pure drift (α = 1), the second family corresponds to relativistic α-stable

subordinators, the third Bernstein function corresponds to the gamma subordinator, and

the fourth corresponds to the compound Poisson process with rate 1 and exponential jumps.

An example of a Bernstein function which is not a complete Bernstein function is 1 − e−λ.

One can also check that 1− e−λ is not a special Bernstein function as well.

The potential measure of the subordinator S is defined by

U(A) = E
∫ ∞

0

1(St∈A) dt =

∫ ∞

0

ηt(A) dt, A ⊂ [0,∞). (2.6)

Note that U(A) is the expected time the subordinator S spends in the set A. The Laplace

transform of the measure U is given by

LU(λ) =

∫ ∞

0

e−λt dU(t) = E
∫ ∞

0

exp(−λSt) dt =
1

φ(λ)
. (2.7)

We are going to derive a characterization of special subordinators in terms of their po-

tential measures. Roughly, a subordinator S is special if and only if its potential measure
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U restricted to (0,∞) has a decreasing density. To be more precise, let S be a special

subordinator with the Laplace exponent φ given by

φ(λ) = a+ bλ+

∫ ∞

0

(1− e−λt)µ(dt) .

Then

lim
λ→0

λ

φ(λ)
=

{
0 , a > 0,
1

b+
∫∞
0 t µ(dt)

, a = 0,

lim
λ→∞

1

φ(λ)
=

{
0 , b > 0 or µ(0,∞) = ∞,
1

a+µ(0,∞)
, b = 0 and µ(0,∞) <∞ .

Since λ/φ(λ) is a Bernstein function, we must have

λ

φ(λ)
= ã+ b̃λ+

∫ ∞

0

(1− e−λt) ν(dt) (2.8)

for some Lévy measure ν, and

ã =

{
0 , a > 0,
1

b+
∫∞
0 t µ(dt)

, a = 0, (2.9)

b̃ =

{
0 , b > 0 or µ(0,∞) = ∞,
1

a+µ(0,∞)
, b = 0 and µ(0,∞) <∞ .

(2.10)

Equivalently,
1

φ(λ)
= b̃+

∫ ∞

0

e−λtΠ̃(t) dt (2.11)

with

Π̃(t) = ã+ ν(t,∞) , t > 0 .

Let τ(dt) := b̃ε0(dt) + Π̃(t) dt. Then the right-hand side in (2.11) is the Laplace transform

of the measure τ . Since 1/φ(λ) = LU(λ), the Laplace transform of the potential measure U

of S, we have that LU(λ) = Lτ(λ) . Therefore,

U(dt) = b̃ε0(dt) + u(t) dt ,

with a decreasing function u(t) = Π̃(t).

Conversely, suppose that S is a subordinator with potential measure given by

U(dt) = cε0(dt) + u(t) dt ,

for some c ≥ 0 and some decreasing function u : (0,∞) → (0,∞) satisfying
∫ 1

0
u(t) dt <∞.

Then
1

φ(λ)
= LU(λ) = c+

∫ ∞

0

e−λtu(t) dt .

8



It follows that
λ

φ(λ)
= cλ+

∫ ∞

0

u(t) d(1− e−λt)

= cλ+ u(t)(1− e−λt) |∞0 −
∫ ∞

0

(1− e−λt)u(dt)

= cλ+ u(∞) +

∫ ∞

0

(1− e−λt) γ(dt) , (2.12)

with γ(dt) = −u(dt). In the last equality we used that limt→0 u(t)(1 − e−λt) = 0. This

is a consequence of the assumption
∫ 1

0
u(t) dt < ∞. It is easy to check, by using the same

integrability condition on u, that
∫∞

0
(1∧t) γ(dt) <∞, so that γ is a Lévy measure. Therefore,

λ/φ(λ) is a Bernstein function, implying that S is a special subordinator.

In this way we have proved the following

Theorem 2.1 Let S be a subordinator with the potential measure U . Then S is special if

and only if

U(dt) = cε0(dt) + u(t) dt

for some c ≥ 0 and some decreasing function u : (0,∞) → (0,∞) satisfying
∫ 1

0
u(t) dt <∞.

Remark 2.2 The above result appeared in [8] as Corollaries 1 and 2 and was possibly known

even before. The above presentation is taken from [59]. In case c = 0, we will call u the

potential density of the subordinator S (or of the Laplace exponent φ).

Corollary 2.3 Let S be a subordinator with the Laplace exponent φ and the potential mea-

sure U . Then φ is a complete Bernstein function if and only if U restricted to (0,∞) has a

completely monotone density u.

Proof. Note that from the proof of Theorem 2.1 we have the explicit form of the density u:

u(t) = Π̃(t) where Π̃(t) = ã+ν(t,∞). Here ν is the Lévy measure of λ/φ(λ). If φ is complete

Bernstein, then λ/φ(λ) is complete Bernstein, and hence it follows from the property (iii)

of complete Bernstein function that u(t) = ã + ν(t,∞) is a completely monotone function.

Conversely, if u is completely monotone, then clearly the tail t → ν(t,∞) is completely

monotone, which implies that λ/φ(λ) is complete Bernstein. Therefore, φ is also a complete

Bernstein function. 2

Note that by comparing expressions (2.8) and (2.12) for λ/φ(λ), and by using formulae

(2.9) and (2.10), it immediately follows that

c = b̃ =

{
0 , b > 0 or µ(0,∞) = ∞,
1

a+µ(0,∞)
, b = 0 and µ(0,∞) <∞,

u(∞) = ã =

{
0 , a > 0,
1

b+
∫∞
0 t µ(dt)

, a = 0,

u(t) = ã+ ν(t,∞) .
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In particular, it cannot happen that both a and ã are positive, and similarly, that both b

and b̃ are positive. Moreover, it is clear from the definition of b̃ that b̃ > 0 if and only if

b = 0 and µ(0,∞) <∞.

We record now some consequences of Theorem 2.1 and the formulae above.

Corollary 2.4 Suppose that S = (St : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = a+ bλ+

∫ ∞

0

(1− e−λt)µ(dt)

is a special Bernstein function with b > 0 or µ(0,∞) = ∞. Then the potential measure U

of S has a decreasing density u satisfying

lim
t→0

t u(t) = 0, (2.13)

lim
t→0

∫ t

0

s du(s) = 0 . (2.14)

Proof. The formulae follow immediately from u(t) = ã+ ν(t,∞) and (2.4)–(2.5) applied to

ν. 2

Corollary 2.5 Suppose that S = (St : t ≥ 0) is a special subordinator with the Laplace

exponent given by

φ(λ) = a+

∫ ∞

0

(1− e−λt)µ(dt)

where µ satisfies µ(0,∞) = ∞. Then

ψ(λ) :=
λ

φ(λ)
= ã+

∫ ∞

0

(1− e−λt) ν(dt) (2.15)

where the Lévy measure ν satisfies ν(0,∞) = ∞.

Let T be the subordinator with the Laplace exponent ψ. If u and v denote the potential

density of S and T respectively, then

v(t) = a+ µ(t,∞) . (2.16)

In particular, a = v(∞) and ã = u(∞). Moreover, a and ã cannot be both positive.

Assume that φ is a special Bernstein function with the representation (2.2) where b > 0

or µ(0,∞) = ∞. Let S be a subordinator with the Laplace exponent φ, and let U denote its

potential measure. By Corollary 2.4, U has a decreasing density u : (0,∞) → (0,∞). Let T

be a subordinator with the Laplace exponent ψ(λ) = λ/φ(λ) and let V denote its potential
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measure. Then V (dt) = bε0(dt) + v(t) dt where v : (0,∞) → (0,∞) is a decreasing function.

If b > 0, the potential measure V has an atom at zero, and hence the subordinator T is a

compound Poisson process (this can be also seen as follows: since b > 0, we have u(0+) <∞,

and hence ν(0,∞) = u(0+)− ã <∞). Note that in case b > 0, the Lévy measure µ can be

finite. If b = 0, we require that µ(0,∞) = ∞, and then, by Corollary 2.5, ψ(λ) = λ/φ(λ)

has the same form as φ, namely b̃ = 0 and ν(0,∞) = ∞. In this case, subordinators S and

T play symmetric roles.

The following result will be crucial for the developments in Section 5 of these notes.

Theorem 2.6 Let φ be a special Bernstein function with representation (2.2) satisfying

b > 0 or µ(0,∞) = ∞. Then

b u(t) +

∫ t

0

u(s)v(t− s) ds = b u(t) +

∫ t

0

v(s)u(t− s) ds = 1, t > 0. (2.17)

Proof. Since for all λ > 0 we have

1

φ(λ)
= Lu(λ),

φ(λ)

λ
= b+ Lv(λ) ,

after multiplying we get

1

λ
= bLu(λ) + Lu(λ)Lv(λ)

= bLu(λ) + L(u ∗ v)(λ) .

Inverting this equality gives

1 = b u(t) +

∫ t

0

u(s)v(t− s) ds , t > 0.

2

Theorem 2.6 has an amusing consequence related to the first passage of the subordinator

S. Let σt = inf{s > 0 : Ss > t} be the first passage time across the level t > 0. By the first

passage formula (see, e.g., [7], p.76), we have

P(Sσt− ∈ ds, Sσt ∈ dx) = u(s)µ(x− s) ds dx ,

for 0 ≤ s ≤ t, and x > t. Since µ(x,∞) = v(x), by use of Fubini’s theorem this implies

P(Sσt > t) =

∫ ∞

t

∫ t

0

u(s)µ(x− s) ds dx =

∫ t

0

u(s)

∫ ∞

t

µ(x− s) dx ds

=

∫ t

0

u(s)µ(t− s,∞) ds =

∫ t

0

u(s)v(t− s) ds .
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Since P(Sσt ≥ t) = 1, by comparing with (2.17) we see that P(Sσt = t) = b u(t). This

provides a simple proof in case of special subordinators of the well-known fact true for

general subordinators (see [7], pp.77-79).

In the sequel we will also need the following result on potential density that is valid for

subordinators that are not necessarily special.

Proposition 2.7 Let S = (St : t ≥ 0) be a subordinator with drift b > 0. Then its potential

measure U has a density u continuous on (0,∞) satisfying u(0+) = 1/b and u(t) ≤ u(0+)

for every t > 0.

Proof. For the proof of existence of continuous u and the fact that u(0+) = 1/b see, e.g.,

[7], p.79. That u(t) ≤ u(0+) for every t > 0 follows from the subadditivity of the function

t 7→ U([0, t]) (see, e.g., [47]). 2

2.2 Examples of subordinators

In this subsection we give a list of subordinators that will be relevant in the sequel and

describe some of their properties.

Example 2.8 (Stable subordinators) Our first example covers the family of well-known

stable subordinators. For 0 < α < 2, let φ(λ) = λα/2. By integration

λα/2 =
α/2

Γ(1− α/2)

∫ ∞

0

(1− e−λt) t−1−α/2 dt ,

i.e, the Lévy measure µ(dt) of φ has a density given by (α/2)/Γ(1 − α/2) t−1−α/2. Since

t−1−α/2 =
∫∞

0
e−tssα/2/Γ(1+α/2) ds, it follows that φ is a complete Bernstein function. The

tail of the Lévy measure µ is equal to

µ(t,∞) =
t−α/2

Γ(1− α/2)
.

The conjugate Bernstein function is ψ(λ) = λ1−α/2, hence its tail is ν(t,∞) = tα/2−1/Γ(α/2).

This shows that the potential density of φ(λ) = λα/2 is equal to

u(t) =
tα/2−1

Γ(α/2)
.

The subordinator S corresponding to φ is called an α/2-stable subordinator.

It is known that the distribution η1(ds) of the α/2-stable subordinator has a density η1(s)

with respect to the Lebesgue measure. Moreover, by [53],

η1(s) ∼ 2πΓ
(
1 +

α

2

)
sin
(απ

4

)
s−1−α/2 , s→∞ , (2.18)

12



and

η1(s) ≤ c(1 ∧ s−1−α/2) , s > 0 , (2.19)

for some positive constant c > 0.

Example 2.9 (Relativistic stable subordinators) For 0 < α < 2 and m > 0, let φ(λ) =

(λ+m2/α)α/2 −m. By integration

(λ+m2/α)α/2 −m =
α/2

Γ(1− α/2)

∫ ∞

0

(1− e−λt) e−m2/αt t−1−α/2 dt ,

i.e., the Lévy measure µ(dt) of φ has a density given by (α/2)/Γ(1 − α/2) e−m2/αt t−1−α/2.

This Bernstein function appeared in [39] in the study of the stability of relativistic matter,

and so we call the corresponding subordinator S a relativistic α/2-stable subordinator. Since

the Lévy density of φ is completely monotone, we know that φ is a complete Bernstein

function. The explicit form of potential density u of S can be computed as follows (see [33]

for this calculation): For γ, β > 0 let

Eγ,β(t) =
∞∑

n=0

tn

Γ(β + γn)
, t > 0 ,

be the two parameter Mittag-Leffler function. By integrating term by term it follows that∫ ∞

0

e−λte−m2/αt t−1+α/2Eα/2,α/2(mt
α/2) dt =

1

(λ+m2/α)α/2 −m
.

Therefore,

u(t) = e−m2/αt t−1+α/2Eα/2,α/2(mt
α/2) .

The subordinator S̃ corresponding to the complete Bernstein function m+ φ(λ) = (λ+

m2/α)α/2 is obtained by killing S at an independent exponential time with parameter m. By

checking tables of Laplace transforms ([27]) we see that

1

m+ φ(λ)
=

∫ ∞

0

e−λt 1

Γ(α/2)
e−m2/αt t−1+α/2 dt ,

implying that the potential measure Ũ of the subordinator S̃ has the density ũ given by

ũ(t) =
1

Γ(α/2)
e−m2/αt t−1+α/2 .

Example 2.10 (Gamma subordinator) Let φ(λ) = log(1 + λ). By use of Frullani’s

integral it follows that

log(1 + λ) =

∫ ∞

0

(1− e−λt)
e−t

t
dt ,

13



i.e., the Lévy measure of φ has a density given by e−t/t. Note that e−t/t =
∫∞

0
e−st1(1,∞)(s) ds,

implying that the density of the Lévy measure µ is completely monotone. Therefore, φ is a

complete Bernstein function. The corresponding subordinator S is called a gamma subordi-

nator. The explicit form of the potential density u is not known. In the next section we will

derive the asymptotic behavior of u at 0 and at +∞. On the other hand, the distribution

ηt(ds), t > 0, is well known and given by

ηt(ds) =
1

Γ(t)
st−1e−s ds , s > 0 . (2.20)

Before proceeding to the next two examples, let us briefly discuss composition of subordi-

nators. Suppose that S1 = (S1
t : t ≥ 0) and S2 = (S2

t : t ≥ 0) are two independent subordi-

nators with Laplace exponents φ1, respectively φ2, and convolution semigroups (η1
t : t ≥ 0),

respectively (η2
t : t ≥ 0). Define the new process S = (St : t ≥ 0) by St = S1(S2

t ), subordi-

nation of S1 by S2. Subordinating a Lévy process by an independent subordinator always

yields a Lévy process (e.g. [49], p. 197). Hence, S is another subordinator. The distribution

ηt of St is given by

ηt(ds) =

∫ ∞

0

η2
t (du)η

1
u(ds) . (2.21)

Therefore, for any λ > 0,∫ ∞

0

e−λs ηt(ds) =

∫ ∞

0

e−λs

∫ ∞

0

η2
t (du)η

1
u(ds)

=

∫ ∞

0

η2
t (du)

∫ ∞

0

e−λs η1
u(ds)

=

∫ ∞

0

η2
t (du)e

−uφ1(λ) = φ2(φ1(λ)) ,

showing that the Laplace exponent φ of S is given by φ(λ) = φ2(φ1(λ)).

Example 2.11 (Geometric stable subordinators) For 0 < α < 2, let φ(λ) = log(1 +

λα/2). Since φ is a composition of the complete Bernstein functions from Examples 2.8

and 2.10, it is itself a complete Bernstein function. The corresponding subordinator S is

called a geometric α/2-stable subordinator. Note that this subordinator may be obtained

by subordinating an α/2-stable subordinator by a gamma subordinator. The concept of

geometric stable distributions was first introduced in [36]. We will now compute the Lévy

measure µ of S. Define

Eα/2(t) :=
∞∑

n=0

(−1)n tnα/2

Γ(1 + nα/2)
, t > 0 .

14



By checking tables of Laplace transforms (or by computing term by term), we see that∫ ∞

0

e−λtEα/2(t) dt =
1

λ(1 + λ−α/2)
=

λα/2−1

1 + λα/2
. (2.22)

Further, since φ(0+) = 0 and limλ→∞ φ(λ)/λ = 0, we have that φ(λ) =
∫∞

0
(1− e−λt)µ(dt).

By differentiating this expression for φ and the explicit form of φ we obtain that

φ ′(λ) =

∫ ∞

0

te−λt µ(dt) =
α

2

λα/2−1

1 + λα/2
. (2.23)

By comparing (2.22) and (2.23) we see that the Lévy measure µ(dt) has a density given by

µ(t) =
α

2

Eα/2(t)

t
. (2.24)

The explicit form of the potential density u is not known. In the next section we will derive

the asymptotic behavior of u at 0+ and at ∞.

We will now show that the distribution function of S1 is given by

F (s) = 1− Eα/2(s) =
∞∑

n=1

(−1)n−1 snα/2

Γ(1 + nα/2)
, s > 0 . (2.25)

Indeed, for λ > 0,

LF (λ) =

∫ ∞

0

e−λt F (dt) = λ

∫ ∞

0

e−λt(1− Eα/2(t)) dt

= λ

(
1

λ
− λα/2−1

1 + λα/2

)
= exp{− log(1 + λα/2)} .

Since the function λ 7→ 1 + λα/2 is a complete Bernstein function, its reciprocal function,

λ 7→ 1/(1 + λα/2) is a Stieltjes function (see [34] for more details about Stieltjes functions).

Moreover, since limt→∞ 1/(1 + λα/2) = 0, it follows that there exists a measure σ on (0,∞)

such that
1

1 + λα/2
= L(Lσ)(λ) .

But this means that the function F has a completely monotone density f given by f(t) =

Lσ(t). It is shown in [43] that the distribution function of St, t > 0, is equal to

∞∑
n=1

(−1)n−1 Γ(t+ n− 1)s(t+n−1)α/2

Γ(t)(n− 1)!Γ(1 + (t+ n− 1)α/2)
.

Note that the case of the gamma subordinator may be subsumed under the case of

geometric α/2-stable subordinator by taking α = 2 in the definition.
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Example 2.12 (Iterated geometric stable subordinators) Let 0 < α ≤ 2. Define,

φ(1)(λ) = φ(λ) = log(1 + λα/2) , φ(n)(λ) = φ(φ(n−1)(λ)) , n ≥ 2 .

Since φ(n) is a complete Bernstein function, we have that φ(n)(λ) =
∫∞

0
(1−e−λt)µ(n)(t) dt for

a completely monotone Lévy density µ(n)(t). The exact form of this density is not known.

Let S(n) = (S
(n)
t : t ≥ 0) be the corresponding (iterated) subordinator, and let U (n)

denote the potential measure of S(n). Since φ(n) is a complete Bernstein function, U (n)

admits a completely monotone density u(n). The explicit form of the potential density u(n)

is not known. In the next section we will derive the asymptotic behavior of u at 0 and at

+∞.

Example 2.13 (Stable subordinators with drifts) For 0 < α < 2 and b > 0, let

φ(λ) = bλ + λα/2. Since λ 7→ λα/2 is complete Bernstein, it follow that φ is also a complete

Bernstein function. The corresponding subordinator S = (St : t ≥ 0) is a sum of the pure

drift subordinator t 7→ bt and the α/2-stable subordinator. Its Lévy measure is the same as

the Lévy measure of the α/2-stable subordinator. In order to compute the potential density

u of the subordinator S, we first note that, similarly as in (2.22),∫ ∞

0

e−λtbEα/2(b
−2/αt) dt =

1

bλ+ λα/2
=

1

φ(λ)
.

Therefore, u(t) = bEα/2(b
−2/αt) for t > 0.

Example 2.14 (Bessel subordinators) The two subordinators in this example are taken

from [41]. The Bessel subordinator SI = (SI(t) : t ≥ 0) is a subordinator with no drift, no

killing and Lévy density

µI(t) =
1

t
I0(t) e

−t,

where for any real number ν, Iν is the modified Bessel function. Since µI is the Laplace

transform of the function γ(t) =
∫ t

0
g(s) ds with

g(s) =

{
π−1(2s− s2)−1/2 , s ∈ (0, 2),
0 , s ≥ 2,

the Laplace exponent of SI is a complete Bernstein function. The Laplace exponent of SI is

given by

φI(λ) = log((1 + λ) +
√

(1 + λ)2 − 1).

For any t > 0, the density of SI(t) is given by

ft(x) =
t

x
It(x)e

−x.
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The Bessel subordinator SK = (SK(t) : t ≥ 0) is a subordinator with no drift, no killing

and Lévy density

µK(t) =
1

t
K0(t)e

−t,

where for any real number ν, Kν is the modified Bessel function. Since µK is the Laplace

transform of the function

γ(t) =

{
0, t ∈ (0, 2],

log(t− 1 +
√

(t− 1)2 + 1), t > 2 ,

the Laplace exponent of SK is a complete Bernstein function. The Laplace exponent of SK

is given by

φK(λ) =
1

2

(
log((1 + λ) +

√
(1 + λ)2 − 1)

)2

.

For any t > 0, the density of SK(t) is given by

ft(x) =

√
2π

t
ϑx(

1

t
)
e−x

x
,

where

ϑv(t) =
v√
2π3t

∫ ∞

0

exp(
π2 − ξ2

2t
) exp(−v cosh(ξ)) sinh(ξ) sin(

πξ

t
)dξ.

Example 2.15 For any α ∈ (0, 2) and β ∈ (0, 2 − α), it follows from the properties of

complete Bernstein functions that

φ(λ) = λα/2(log(1 + λ))β/2

is a complete Bernstein function.

Example 2.16 For any α ∈ (0, 2) and β ∈ (0, α), it follows from the properties of complete

Bernstein functions that

φ(λ) = λα/2(log(1 + λ))−β/2

is a complete Bernstein function.

2.3 Asymptotic behavior of the potential, Lévy and transition
densities

Recall the formula (2.7) relating the Laplace exponent φ of the subordinator S with the

Laplace transform of its potential measure U . In the case U has a density u, this formula

reads

Lu(λ) =

∫ ∞

0

e−λtu(t) dt =
1

φ(λ)
.
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The asymptotic behavior of φ at ∞ (resp. at 0) determines, by use of Tauberian and the

monotone density theorems, the asymptotic behavior of the potential density u at 0 (resp. at

∞). We first recall Karamata’s version of these theorems from [10].

Theorem 2.17 (a) (Karamata’s Tauberian theorem) Let U : (0,∞) → (0,∞) be an increas-

ing function. If ` is slowly varying at ∞ (resp. at 0+), ρ ≥ 0, the following are equivalent:

(i) As t→∞ (resp. t→ 0+)

U(t) ∼ tρ`(t)

Γ(1 + ρ)
.

(ii) As λ→ 0 (resp. λ→∞)

LU(λ) ∼ λ−ρ`(1/λ) .

(b)(Karamata’s monotone density theorem) If additionally U(dx) = u(x) dx, where u is

monotone and nonnegative, and ρ > 0, then (i) and (ii) are equivalent to:

(iii) As t→∞ (resp. t→ 0+)

u(t) ∼ ρtρ−1`(t)

Γ(1 + ρ)
.

We are going to use Theorem 2.17 for Laplace exponents that are regularly varying at

∞ (resp. at 0). To be more specific we will assume that either (i)

φ(λ) ∼ λα/2`(λ) , λ→∞ , (2.26)

where 0 < α ≤ 2, and ` is slowly varying at ∞, or (ii)

φ(λ) ∼ λα/2`(λ) , λ→ 0, (2.27)

where 0 < α ≤ 2, and ` is slowly varying at 0. In case (i), (2.26) implies b > 0 or

µ(0,∞) = ∞. If φ is a special Bernstein function, then the corresponding subordinator S

has a decreasing potential density u whose asymptotic behavior at 0 is then given by

u(t) ∼ 1

Γ(α/2)

tα/2−1

`(1/t)
, t→ 0 + . (2.28)

In case (ii), if φ is a special Bernstein function with limλ→∞ φ(λ) = ∞, then the corresponding

subordinator S has a decreasing potential density u whose asymptotic behavior at ∞ is then

given by

u(t) ∼ 1

Γ(α/2)

tα/2−1

`(1/t)
, t→∞ . (2.29)
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As consequences of the above, we immediately get the following: (1) for α ∈ (0, 2), the

potential density of the relativistic α/2-stable subordinator satisfies

u(t) ∼ tα/2−1

Γ(α/2)
, t→ 0+, (2.30)

u(t) ∼ α

2
m1−2/α , t→∞ ; (2.31)

(2) for α ∈ (0, 2), β ∈ (0, 2− α), the potential density of the subordinator corresponding to

Example 2.15 satisfies

u(t) ∼ 1

Γ(α/2)

1

t1−α/2| log t|β/2
, t→ 0+, (2.32)

u(t) ∼ 1

Γ(α/2 + β/2)

1

t1−(α+β)/2
, t→∞ ; (2.33)

(3) for α ∈ (0, 2), β ∈ (0, α), the potential density of the subordinator corresponding to

Example 2.16 satisfies

u(t) ∼ α

2Γ(1 + α/2)

| log t|β/2

t1−α/2
, t→ 0+, (2.34)

u(t) ∼ α− β

2Γ(1 + (α− β)/2)

1

t1−(α−β)/2
, t→∞ . (2.35)

In the case when the subordinator has a positive drift b > 0, the potential density u

always exists, it is continuous, and u(0+) = b. For example, this will be the case when

φ(λ) = bλ+λα/2. Recall (see Example 2.13) that the potential density is given by the rather

explicit formula u(t) = bEα/2(b
−2/αt). The asymptotic behavior of u(t) as t → ∞ is not

easily derived from this formula. On the other hand, since φ(λ) ∼ λα/2 as λ→ 0, it follows

from (2.29) that u(t) ∼ tα/2−1/Γ(α/2) as t→∞.

Note that the gamma subordinator, geometric α/2-stable subordinators, iterated geo-

metric stable subordinators and Bessel subordinators have Laplace exponents that are not

regularly varying with strictly positive exponent at ∞, but are rather slowly varying at ∞.

In this case, Karamata’s monotone density theorem cannot be used, and we need more re-

fined versions of both Tauberian and monotone density theorems. The results are also taken

from [10].

Theorem 2.18 (a) (de Haan’s Tauberian Theorem) Let U : (0,∞) → (0,∞) be an increas-

ing function. If ` is slowly varying at ∞ (resp. at 0+), c ≥ 0, the following are equivalent:

(i) As t→∞ (resp. t→ 0+)

U(λt)− U(t)

`(t)
→ c log λ, ∀λ > 0.
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(ii) As t→∞ (resp. t→ 0+)

LU( 1
λt

)− LU(1
t
)

`(t)
→ c log λ, ∀λ > 0.

(b) (de Haan’s Monotone Density Theorem) If additionally U(dx) = u(x) dx, where u is

monotone and nonnegative, and c > 0, then (i) and (ii) are equivalent to:

(iii) As t→∞ (resp. t→ 0+)

u(t) ∼ ct−1`(t).

We are going to apply this result to establish the asymptotic behaviors of the potential

density of geometric stable subordinators, iterated geometric stable subordinators and Bessel

subordinators at zero.

Proposition 2.19 For any α ∈ (0, 2], let φ(λ) = log(1 + λα/2), and let u be the potential

density of the corresponding subordinator. Then

u(t) ∼ 2

αt(log t)2
, t→ 0+ ,

u(t) ∼ tα/2−1

Γ(α/2)
, t→∞ .

Proof. Recall that

LU(λ) = 1/φ(λ) = 1/ log(1 + λα/2).

Since
LU( 1

xλ
)− LU( 1

λ
)

(log λ)−2
→ 2

α
log x, ∀x > 0 ,

as λ→ 0+, we have by (the 0+ version of) Theorem 2.18 (a) that

U(xt)− U(t)

(log t)−2
→ 2

α
log x, x > 0 ,

as t→ 0+. Now we can apply (the 0+ version of) Theorem 2.18 (b) to get that

u(t) ∼ 2

αt(log t)2

as t→ 0+. The asymptotic behavior of u(t) as t→∞ follows from Theorem 2.17. 2

In order to deal with the iterated geometric stable subordinators, let e0 = 0, and induc-

tively, en = een−1 , n ≥ 1. For n ≥ 1 define ln : (en,∞) → (0,∞) by

ln(y) = log log . . . log y , n times . (2.36)
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Further, let L0(y) = 1, and for n ∈ N, define Ln : (en,∞) → (0,∞) by

Ln(y) = l1(y)l2(y) . . . ln(y) . (2.37)

Note that l′n(y) = 1/(yLn−1(y)) for every n ≥ 1. Let α ∈ (0, 2] and recall from Example 2.12

that φ(1)(y) := log(1 + yα/2), and for n ≥ 1, φ(n)(y) := φ(φ(n−1)(y)). Let kn(y) := 1/φ(n)(y).

Lemma 2.20 Let t > 0. For every n ∈ N,

lim
y→∞

(kn(ty)− kn(y))Ln−1(y)ln(y)2 = − 2

α
log t .

Proof. The proof for n = 1 is straightforward and is implicit in the proof of Proposition

2.19. We only give the proof for n = 2, the proof for general n is similar. Using the fact that

log(1 + y) ∼ y, y → 0+, (2.38)

we can easily get that

lim
y→∞

(
log

log y

log(yt)

)
log y = − lim

y→∞

(
log

log y + log t

log y

)
log y = − log t. (2.39)

Using (2.38) and the elementary fact that log(1 + y) ∼ log y as y →∞ we get that

lim
y→∞

(k2(ty)− k2(y))L1(y)l2(y)
2

=
α

2
lim
y→∞

(
log

log(1 + yα/2)

log(1 + (ty)α/2)

)
log y(log log y)2

(α/2)2 log(log(1 + yα/2)) log(log(1 + (ty)α/2))

=
2

α
lim
y→∞

(
log

log y

log(yt)

)
log y = − 2

α
log t .

2

Recall that U (n) denotes the potential measure and u(n)(t) the potential density of the

iterated geometric stable subordinator S(n) with the Laplace exponent φ(n).

Proposition 2.21 For any α ∈ (0, 2], we have

u(n)(t) ∼ 2

αtLn−1(
1
t
)ln(1

t
)2
, t→ 0+ , (2.40)

u(n)(t) ∼ t(α/2)n−1

Γ((α/2)n)
, t→ 0 + . (2.41)
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Proof. Using Lemma 2.20 we can easily see that

LU (n)( 1
xλ

)− LU (n)( 1
λ
)

(Ln−1(
1
λ
)ln( 1

λ
)2)−1

→ 2

α
log x, ∀x > 0 ,

as λ→ 0+. Therefore, by (the 0+ version of) Theorem 2.18 (a) we have that

U (n)(xt)− U (n)(t)

(Ln−1(
1
t
)ln(1

t
)2)−1

→ 2

α
log x, x > 0 ,

as t→ 0+. Now we can apply (the 0+ version of) Theorem 2.18 (b) to get that

u(n)(t) ∼ 2

αtLn−1(
1
t
)ln(1

t
)2

as t→ 0+. The asymptotic behavior of u(n)(t) at ∞ follows easily from Theorem 2.17. 2

Let uI and uK be the potential densities of the Bessel subordinators I and K respectively.

Then we have the following result.

Proposition 2.22 The potential densities of the Bessel subordinators satisfy the following

asymptotics

uI(t) ∼ 1

t(log t)2
, t→ 0+ ,

uK(t) ∼ 1

t| log t|3
, t→ 0+ ,

uI(t) ∼ 1√
2π

t−1/2, t→∞ ,

uK(t) ∼ 1, t→∞ .

Proof. The proofs of first two relations are direct applications of de Haan’s Tauberian

and monotone density theorems and the proofs of the last two are direct applications of

Karamata’s Tauberian and monotone density theorems. We omit the details. 2

We now discuss the asymptotic behavior of the Lévy density of a subordinator.

Proposition 2.23 Assume that the Laplace exponent φ of the subordinator S is a complete

Bernstein function and let µ(t) denote the density of its Lévy measure.

(i) Let 0 < α < 2. If φ(λ) ∼ λα/2`(λ), λ → ∞, and ` is a slowly varying function at ∞,

then

µ(t) ∼ α/2

Γ(1− α/2)
t−1−α/2 `(1/t) , t→ 0 + . (2.42)
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(ii) Let 0 < α ≤ 2. If φ(λ) ∼ λα/2`(λ), λ → 0, and ` is a slowly varying function at 0,

then

µ(t) ∼ α/2

Γ(1− α/2)
t−1−α/2 `(1/t) , t→∞ . (2.43)

Proof. (i) The assumption implies that there is no drift, b = 0, and hence by integration

by parts,

φ(λ) = λ

∫ ∞

0

e−λtµ(t,∞) dt .

Thus,
∫∞

0
e−λtµ(t,∞) dt ∼ λα/2−1`(λ) as λ→∞, and (2.42) follows by first using Karamata’s

Tauberian theorem and then Karamata’s monotone density theorem.

(ii) In this case it is possible that the drift b is strictly positive, and thus

φ(λ) = λ

(
b+

∫ ∞

0

e−λtµ(t,∞) dt

)
.

This implies that
∫∞

0
e−λtµ(t) dt ∼ λα/2−1`(λ) as λ→ 0, and (2.43) holds by Theorem 2.17.

2

Note that if φ(λ) ∼ bλ as λ→∞ and b > 0, nothing can be inferred about the behavior

of the density µ(t) near zero. Next we record the asymptotic behavior of the Lévy density of

the geometric stable subordinator. The first claim follows from (2.24), and the second from

the previous proposition.

Proposition 2.24 Let µ(dt) = µ(t) dt be the Lévy measure of a geometrically α/2-stable

subordinator. Then

(i) For 0 < α ≤ 2, µ(t) ∼ α
2t

, t→ 0+.

(ii) For 0 < α < 2, µ(t) ∼ α/2
Γ(1−α/2)

t−α/2−1, t→∞. For α = 2, µ(t) = e−t

t
.

In the case of iterated geometric stable subordinators, we have only partial result for the

asymptotic behavior of the density µ(n) which follows from Proposition 2.43 (ii).

Proposition 2.25 For any α ∈ (0, 2),

µ(n)(t) ∼ (α/2)n

Γ(1− (α/2)n)
t−1−(α/2)n

, t→∞ .

Remark 2.26 Note that we do not give the asymptotic behavior of µ(n)(t) as t → ∞ for

α = 2 (iterated gamma subordinator), and the asymptotic behavior of µ(n)(t) as t→ 0+ for

all α ∈ (0, 2]. It is an open problem to determine the correct asymptotic behavior.
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The following results are immediate consequences of Proposition 2.23.

Proposition 2.27 Suppose that α ∈ (0, 2) and β ∈ (0, 2− α). Let µ(t) be the Lévy density

of the subordinator corresponding to Example 2.15. Then

µ(t) ∼ α

2Γ(1− α/2)
t−1−α/2(log(1/t))β/2, t→ 0+ ,

µ(t) ∼ α+ β

2Γ(1− (α+ β)/2)
t−1−(α+β)/2, t→∞ .

Proposition 2.28 Suppose that α ∈ (0, 2) and β ∈ (0, α). Let µ(t) be the Lévy density of

the subordinator corresponding to Example 2.16. Then

µ(t) ∼ α

2Γ(1− α/2)

1

t1+α/2(log(1/t))β/2
, t→ 0+ ,

µ(t) ∼ α− β

2Γ(1− (α− β)/2)

1

t1+(α−β)/2
, t→∞ .

We conclude this section with a discussion of the asymptotic behavior of transition den-

sities of geometric stable subordinators. Let S = (St : t ≥ 0) be a geometric α/2-stable

subordinator, and let (ηs : s ≥ 0) be the corresponding convolution semigroup. Further,

let (ρs : s ≥ 0) be the convolution semigroup corresponding to an α/2-stable subordinator,

and by abuse of notation, let ρs denote the corresponding density. Then by (2.21) and the

explicit formula (2.20), we see that ηt has a density

fs(t) =

∫ ∞

0

ρu(t)
1

Γ(s)
us−1e−u du .

For s = 1, this formula reads

f1(t) =

∫ ∞

0

ρu(t)e
−u du .

Moreover, we have shown in Example 2.11 that f1(t) is completely monotone. To be more

precise, f1(t) is the density of the distribution function F (t) = 1−Eα/2(t) of the probability

measure η1 (see (2.25)).

Proposition 2.29 For any α ∈ (0, 2),

f1(t) ∼ 1

Γ(α/2)
tα/2−1 , t→ 0+ , (2.44)

f1(t) ∼ 2πΓ
(
1 +

α

2

)
sin
(απ

4

)
t−1−α

2 , t→∞ . (2.45)
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Proof. The first relation follows from the explicit form of the distribution function F (t) =

1 − Eα/2(t) and Karamata’s monotone density theorem. For the second relation, use the

scaling property of stable distribution, ρu(t) = u−2/αρ1(u
−2/αt), to get

f1(t) =

∫ ∞

0

e−uu−2/αρ1(u
−2/αt) du.

Now use (2.18), (2.19) and dominated convergence theorem to obtain the required asymptotic

behavior. 2

3 Subordinate Brownian motion

3.1 Definitions and technical lemma

Let X = (Xt,Px) be a d-dimensional Brownian motion. The transition densities p(t, x, y) =

p(t, y − x), x, y ∈ Rd, t > 0, of X are given by

p(t, x) = (4πt)−d/2 exp

(
−|x|

2

4t

)
.

The semigroup (Pt : t ≥ 0) of X is defined by Ptf(x) = Ex[f(Xt)] =
∫

Rd p(t, x, y)f(y) dy,

where f is a nonnegative Borel function on Rd. Recall that if d ≥ 3, the Green function

G(2)(x, y) = G(2)(x− y), x, y ∈ Rd, of X is well defined and is equal to

G(2)(x) =

∫ ∞

0

p(t, x) dt =
Γ(d/2− 1)

4πd/2
|x|−d+2 .

Let S = (St : t ≥ 0) be a subordinator independent of X, with Laplace exponent φ(λ),

Lévy measure µ, drift b ≥ 0, no killing, potential measure U , and convolution semigroup

(ηt : t ≥ 0). We define a new process Y = (Yt : t ≥ 0) by Yt := X(St). Then Y is a

Lévy process with characteristic exponent Φ(x) = φ(|x|2) (see e.g. [49], pp.197–198) called a

subordinate Brownian motion. The semigroup (Qt : t ≥ 0) of the process Y is given by

Qtf(x) = Ex[f(Yt)] = Ex[f(X(St))] =

∫ ∞

0

Psf(x) ηt(ds) .

If the subordinator S is not a compound Poisson process, then Qt has a density q(t, x, y) =

q(t, x− y) given by q(t, x) =
∫∞

0
p(s, x) ηt(ds).

From now on we assume that the subordinate process Y is transient. According to the

criterion due to Port and Stone ([45]), Y is transient if and only if for some small r > 0,∫
|x|<r

R( 1
Φ(x)

) dx <∞. Since Φ(x) = φ(|x|2) is real, it follows that Y is transient if and only

if ∫
0+

λd/2−1

φ(λ)
dλ <∞ . (3.1)
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This is always true if d ≥ 3, and, depending on the subordinator, may be true for d = 1 or

d = 2. For x ∈ Rd and A Borel subset of Rd, the occupation measure is given by

G(x,A) = Ex

∫ ∞

0

1(Yt∈A) =

∫ ∞

0

Qt1A(x) dt =

∫ ∞

0

∫ ∞

0

Ps1A(x)ηt(ds) dt

=

∫ ∞

0

Ps1A U(ds) =

∫
A

∫ ∞

0

p(s, x, y)U(ds) dy ,

where the second line follows from (2.6). If A is bounded, then by the transience of Y ,

G(x,A) < ∞ for every x ∈ Rd. Let G(x, y) denote the density of the occupation measure

G(x, ·). Clearly, G(x, y) = G(y − x) where

G(x) =

∫ ∞

0

p(t, x)U(dt) =

∫ ∞

0

p(t, x)u(t) dt , (3.2)

and the last equality holds in case when U has a potential density u.

The Lévy measure π of Y is given by (see e.g. [49], pp. 197–198)

π(A) =

∫
A

∫ ∞

0

p(t, x)µ(dt) dx =

∫
A

J(x) dx , A ⊂ Rd ,

where

J(x) :=

∫ ∞

0

p(t, x)µ(dt) =

∫ ∞

0

p(t, x)µ(t)dt , (3.3)

is called the jumping function of Y . The last equality is valid in the case when µ(dt) has a

density µ(t). Define the function j : (0,∞) → (0,∞) by

j(r) :=

∫ ∞

0

(4π)−d/2t−d/2 exp

(
−r

2

4t

)
µ(dt) , r > 0 , (3.4)

and note that by (3.3), J(x) = j(|x|), x ∈ Rd \ {0}. We state the following well-known

conditions describing when a Lévy process is a subordinate Brownian motion (for a proof,

see e.g. [34], pp. 190–192).

Proposition 3.1 Let Y = (Yt : t ≥ 0) be a d-dimensional Lévy process with the charac-

teristic triple (b, A, π). Then Y is a subordinate Brownian motion if and only if π has a

rotationally invariant density x 7→ j(|x|) such that r 7→ j(
√
r) is a completely monotone

function on (0,∞), A = cId with c ≥ 0, and b = 0.

Example 3.2 (i) Let φ(λ) = λα/2, 0 < α < 2, and let S be the corresponding α/2-stable

subordinator. The characteristic exponent of the subordinate process Y is equal to Φ(x) =

φ(|x|) = |x|α. Hence Y is a rotationally invariant α-stable process. From now on we will
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(imprecisely) refer to this process as a symmetric α-stable process. Y is transient if and only

if d > α. The jumping function of Y is given by

J(x) =
α2α−1Γ(d+α

2
)

πd/2Γ(1− α
2
)
|x|−α−d, x ∈ Rd ,

and when d ≥ 3, the Green function of Y is given by the Riesz kernel

G(x) =
1

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x|α−d, x ∈ Rd .

(ii) For 0 < α < 2 and m > 0, let φ(λ) = (λ+mα/2)2/α −m, and let S be the corresponding

relativistic α/2-stable subordinator. The characteristic exponent of the subordinate process

Y is equal to Φ(x) = φ(|x|) = (|x|2 +mα/2)2/α −m. The process Y is called the symmetric

relativistic α-stable process. Y is transient if and only if d > 2.

(iii) Let φ(λ) = log(1 + λ), and let S be the corresponding gamma subordinator. The

characteristic exponent of the subordinate process Y is given by Φ(x) = log(1 + |x|2). The

process Y is known in some finance literature (see [40] and [29]) as a variance gamma process

(at least for d = 1). Y is transient if and only if d > 2.

(iv) For 0 < α < 2, let φ(λ) = log(1 + λα/2), and let S be the corresponding subordinator.

The characteristic exponent of the subordinate process Y is given by Φ(x) = log(1 + |x|α).

The process Y is known as a rotationally invariant geometric α-stable process. From now on

we will (imprecisely) refer to this process as a symmetric geometric α-stable process. Y is

transient if and only if d > α.

(v) For 0 < α < 2, let φ(1)(λ) = log(1+λα/2), and for n > 1, let φ(n)(λ) = φ(1)(φ(n−1)(λ). Let

S(n) be the corresponding iterated geometric stable subordinator. Denote Y
(n)
t = X(S

(n)
t ).

Y (n) is transient if and only if d > 2(α/2)n.

(vi) For 0 < α < 2 and let φ(λ) = bλ + λα/2, and let S be the corresponding subordinator.

The characteristic exponent of the subordinate process Y is Φ(x) = b|x|2 + |x|α. Hence Y is

the sum of a (multiple of) Brownian motion and an independent α-stable process. Similarly,

we can realize the sum of an α-stable and an independent β-stable processes by subordinating

Brownian motion X with a subordinator having the Laplace exponent φ(λ) = λα/2 + λβ/2.

(vii) The characteristic exponent of the subordinate Brownian motion with the Bessel sub-

ordinator SI is log((1 + |x|2) +
√

(1 + |x|2)2 − 1) and so this process is transient if and only

if d > 1. The characteristic exponent of the subordinate Brownian motion with the Bessel

subordinator SK is 1
2
(log((1 + |x|2) +

√
(1 + |x|2)2 − 1))2 and so this process is transient if

and only if d > 2.

(viii) For α ∈ (0, 2), β ∈ (0, 2− α), let S be the subordinator with Laplace exponent φ(λ) =

λα/2(log(1 + λ))β/2. The characteristic exponent of the subordinate process Y is Φ(x) =

|x|α(log(1 + |x|2))β/2. Y is transient if and only if d > α+ β.
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(ix) For α ∈ (0, 2), β ∈ (0, α), let S be the subordinator with Laplace exponent φ(λ) =

λα/2(log(1 + λ))−β/2. The characteristic exponent of the subordinate process Y is Φ(x) =

|x|α(log(1 + |x|2))−β/2. Y is transient if and only if d > α− β.

In order to establish the asymptotic behaviors of the Green function G and the jumping

function J of the subordinate Brownian motion Y , we start by defining an auxiliary function.

For any slowly varying function ` at infinity and any ξ > 0, let

f`,ξ(y, t) :=

{
`(1/y)
`(4t/y)

, y < t
ξ
,

0, y ≥ t
ξ
.

Now we state and prove the key technical lemma.

Lemma 3.3 Suppose that w : (0,∞) → (0,∞) is a decreasing function satisfying the fol-

lowing two assumptions:

(i) There exist constants c0 > 0 and β ∈ [0, 2] with β > 1−d/2, and a continuous functions

` : (0,∞) → (0,∞) slowly varying at ∞ such that

w(t) ∼ c0
tβ`(1/t)

, t→ 0 + . (3.5)

(ii) If d = 1 or d = 2, then there exist a constant c∞ > 0 and a constant γ < d/2 such that

w(t) ∼ c∞t
γ−1 , t→ +∞ . (3.6)

Let g : (0,∞) → (0,∞) be a function such that∫ ∞

0

td/2−2+β e−tg(t) dt <∞ .

If there is ξ > 0 such that f`,ξ(y, t) ≤ g(t) for all y, t > 0, then

I(x) :=

∫ ∞

0

(4πt)−d/2e−
|x|2
4t w(t) dt ∼ c0Γ(d/2 + β − 1)

41−βπd/2

1

|x|d+2β−2 `( 1
|x|2 )

, |x| → 0 .

Proof. Let us first note that the assumptions of the lemma guarantee that I(x) < ∞ for

every x 6= 0. By a change of variable we get∫ ∞

0

(4πt)−d/2e−
|x|2
4t w(t) dt =

|x|−d+2

4πd/2

∫ ∞

0

td/2−2e−tw

(
|x|2

4t

)
dt

=
1

4πd/2

(
|x|−d+2

∫ ξ|x|2

0

+|x|−d+2

∫ ∞

ξ|x|2

)
=

1

4πd/2

(
|x|−d+2I1 + |x|−d+2I2

)
.
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We first consider I1 for the case d = 1 or d = 2. It follows from the assumptions that there

exists a positive constant c1 such that w(s) ≤ c1s
γ−1 for all s ≥ 1/(4ξ). Thus

I1 ≤
∫ ξ|x|2

0

td/2−2e−tc1

(
|x|2

4t

)γ−1

dt

≤ c2|x|2γ−2

∫ ξ|x|2

0

td/2−γ−1 dt = c3|x|d−2 .

It follows that

lim
|x|→0

|x|−d+2I1
1

|x|d+2β−2 `( 1
|x|2

)

= 0 . (3.7)

In the case d ≥ 3, we proceed similarly, using the bound w(s) ≤ w(1/(4ξ)) for s ≥ 1/(4ξ).

Now we consider I2:

|x|−d+2I2 =
1

|x|d−2

∫ ∞

ξ|x|2
td/2−2e−tw

(
|x|2

4t

)
dt

=
4β

|x|d+2β−2 `( 1
|x|2 )

∫ ∞

ξ|x|2
td/2−2+βe−t

w
(
|x|2
4t

)
1(

|x|2
4t

)β
` ( 4t
|x|2

)

`( 1
|x|2 )

`( 4t
|x|2 )

dt .

Using the assumption (3.5), we can see that there is a constant c > 0 such that

w
(
|x|2
4t

)
1(

|x|2
4t

)β
`( 4t
|x|2

)

< c

for all t and x satisfying |x|2/(4t) ≤ 1/(4ξ). Since ` is slowly varying at infinity,

lim
|x|→0

`( 1
|x|2 )

`( 4t
|x|2 )

= 1

for all t > 0. Note that
`( 1
|x|2 )

`( 4t
|x|2 )

= f`,ξ(|x|2, t) .

It follows from the assumption that

td/2−2+βe−t
w
(
|x|2
4t

)
1(

|x|2
4t

)β
`( 4t
|x|2

)

`( 1
|x|2 )

`( 4t
|x|2 )

≤ ctd/2−2+βe−tg(t) .
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Therefore, by the dominated convergence theorem we have

lim
|x|→0

∫ ∞

ξ|x|2
td/2−2+βe−t

w
(
|x|2
4t

)
1(

|x|2
4t

)β
`( 4t
|x|2

)

`( 1
|x|2 )

`( 4t
|x|2 )

dt =

∫ ∞

0

c0t
d/2−2+βe−t dt = c0Γ(d/2 + β − 1) .

Hence,

lim
|x|→0

|x|−d+2I2
4β

|x|d+2β−2`( 1
|x|2

)

= c0Γ(d/2 + β − 1) . (3.8)

Finally, combining (3.7) and (3.8) we get

lim
|x|→0

I(x)
1

|x|d+2β−2`( 1
|x|2

)

=
c0Γ(d/2 + β − 1)

41−βπd/2
.

2

Remark 3.4 Note that if in (3.5) we have that ` = 1, then f`,ξ = 1, hence f`,ξ(y, t) ≤ g(y)

and
∫∞

0
td/2+β−2e−tg(t) dt <∞ with g = 1 provided β > 1− d/2.

3.2 Asymptotic behavior of the Green function

The goal of this subsection is to establish the asymptotic behavior of the Green function

G(x) of the subordinate process Y under certain assumptions on the Laplace exponent of

the subordinator S. We start with the asymptotic behavior when |x| → 0 for the following

cases: (1) φ(λ) has a power law behavior at ∞, (2) S is a geometric α/2-stable subordinator,

0 < α ≤ 2, (3) S is an iterated geometric stable subordinator, (4) S is a Bessel subordinator,

and (v) S is the subordinator corresponding to Example 2.15 or Example 2.16.

Theorem 3.5 Suppose that S = (St : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = bλ+
∫∞

0
(1− e−λt)µ(dt) satisfies one of the following two assumptions:

(i) b > 0,

(ii) S is a special subordinator and φ(λ) ∼ γ−1λα/2 as λ→∞, for 0 < α < 2.

If Y is transient, then

G(x) ∼ γ

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x|α−d, |x| → 0, (3.9)

(where in case (i), γ−1 = b and α = 2).
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Proof. (i) In this case, φ(λ) ∼ bλ, λ → ∞. By Proposition 2.7, the potential measure U

has a continuous density u satisfying u(0+) = 1/b = γ and u(t) ≤ u(0+) for all t > 0. Note

first that by change of variables∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt =

|x|−d+2

4πd/2

∫ ∞

0

sd/2−2e−su

(
|x|2

4s

)
ds . (3.10)

By Proposition 2.7, limx→0 u(|x|2/(4s)) = u(0+) = γ for all s > 0 and u(|x|2/(4s)) is

bounded by u(0+). Hence, by the bounded convergence theorem,

lim
x→0

1

|x|−d+2

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt =

γΓ(d/2− 1)

4πd/2
. (3.11)

(ii) In this case the potential measure U has a decreasing density u which by (2.28) satisfies

u(t) ∼ γ

Γ(α/2)

1

t1−α/2
, t→ 0 + .

By recalling Remark 3.4, we can now apply Lemma 3.3 with β = 1 − α/2 to obtain the

required asymptotic behavior. 2

Theorem 3.6 For any α ∈ (0, 2], let φ(λ) = log(1 + λα/2) and let S be the corresponding

geometric α/2-stable subordinator. If d > α, then the Green function of the subordinate

process Y satisfies

G(x) ∼ Γ(d/2)

2απd/2|x|d log2 1
|x|
, |x| → 0. (3.12)

Proof. We apply Lemma 3.3 with w(t) = u(t), the potential density of S. By Proposition

2.19, u(t) ∼ 2
αt log2 t

as t → 0+, so we take c0 = 2/α, β = 1 and `(t) = log2 t. Moreover,

by the second part of Proposition 2.19, u(t) ∼ tα/2−1/(Γ(α)/2) as t → +∞, so we can take

γ = α/2 < d/2. Choose ξ = 1/2. Let

f(y, t) := f`,1/2(y, t) =

{
log2 y
log2 y

4t

, y < 2t ,

0 , y ≥ 2t .

Define

g(t) :=

{
log2 2t
log2 2

, t < 1
4
,

1 , t ≥ 1
4
.

In order to show that f(y, t) ≤ g(t), first let t < 1/4. Then y 7→ f(y, t) is an increasing

function for 0 < y < 2t. Hence,

sup
0<y<2t

f(y, t) = f(2t, t) =
log2 2t

log2 2
.
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Clearly, f(y, 1/4) = 1. For t > 1/4, y 7→ f(y, t) is a decreasing function for 0 < y < 1.

Hence

sup
0<y<(2t)∧1

f(y, t) = f(0, t) := lim
y→0

f(y, t) = 1 .

For t > 1/2, elementary consideration gives that

sup
1<y<2t

f(y, t) ≤ log2 2t

log2 2
.

Clearly, ∫ ∞

0

td/2−1e−tg(t) dt <∞ ,

and the required asymptotic behavior follows from Lemma 3.3. 2

For n ≥ 1, let S(n) be the iterated geometric stable subordinator with the Laplace

exponent φ(n). Recall that φ(1)(λ) = log(1 + λα/2), 0 < α ≤ 2, and φ(n) = φ(1) ◦ φ(n−1). Let

Y
(n)
t = X(S

(n)
t ) be the subordinate process and assume that d > 2(α/2)n. Denote the Green

function of Y (n) by G(n). We want to study the asymptotic behavior of G(n) using Lemma

3.3. In order to check the conditions of that lemma, we need some preparations.

For n ∈ N, define fn : (0, 1/en)× (0,∞) → [0,∞) by

fn(y, t) :=

{
Ln−1( 1

y
)ln( 1

y
)2

Ln−1( 4t
y

)ln( 4t
y

)2
, y < 2t

en
,

0 , y ≥ 2t
en
.

Note that fn is equal to the function f`,ξ, defined before Lemma 3.3, with `(y) = Ln−1(y)ln(y)2

and ξ = en/2. Also, for n ∈ N, let

gn(t) :=

{
fn( 2t

en
, t) , t < 1/4 ,

1 , t ≥ 1/4 .

Moreover, for n ∈ N, define hn : (0, 1/en)× (0,∞) → (0,∞) by

hn(y, t) :=
ln( 1

y
)

ln(4t
y
)
.

Clearly, for 0 < y < 2t
en
∧ 1

en
we have that

fn(y, t) = h1(y, t) . . . hn−1(y, t)hn(y, t)2 . (3.13)

Lemma 3.7 For all y ∈ (0, 1/en) and all t > 0 we have fn(y, t) ≤ gn(t). Moreover,∫∞
0
td/2−1e−tgn(t) dt <∞.
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Proof. A direct calculation of partial derivative gives

∂hn

∂y
(y, t) =

Ln( 1
y
)− Ln(4t

y
)

yLn−1(
1
y
)Ln−1(

4t
y
)ln(4t

y
)2
.

The denominator is always positive. Clearly, the numerator is positive if and only if t > 1/4.

Therefore, for t < 1/4, y 7→ hn(y, t) is increasing on (0, 2t/en), while for t > 1/4 it is

decreasing on (0, 2t/en).

Let t < 1/4. It follows from (3.13) and the fact that y 7→ hn(y, t) is increasing on

(0, 2t/en) that y 7→ fn(y, t) is increasing for 0 < y < 2t/en. Therefore,

sup
0<y<2t/en

fn(y, t) ≤ fn(2t/en, t) = gn(t) .

Clearly, fn(y, 1/4) = 1. For y ≥ 1/4, it follows from (3.13) and the fact that y 7→ hn(y, t) is

decreasing on (0, 2t/en) that y 7→ fn(y, t) is decreasing for 0 < y < 1/en. Hence

sup
0<y< 2t

en
∧ 1

en

fn(y, t) = f(0, t) := lim
y→0

fn(y, t) = 1 .

For t > 1/2, elementary consideration gives that

sup
1

en
<y< 2t

en
∧ 1

en

fn(y, t) ≤ gn(t).

The integrability statement of the lemma is obvious. 2

Theorem 3.8 If d > 2(α/2)n, we have

G(n)(x) ∼ Γ(d/2)

2απd/2|x|dLn−1(1/|x|2)ln(1/|x|2)2
, |x| → 0.

Proof. We apply Lemma 3.3 with w(t) = u(n)(t), the potential density of S(n). By Propo-

sition 2.21,

u(n)(t) ∼ 2

αtLn−1(1/t)ln(1/t)2
, t→ 0+,

so we take c0 = 2/α, β = 1 and `(t) = Ln−1(t)ln(t)2. By the second part of Proposition 2.21,

u(n)(t) is of order t(α/2)n−1 as t → ∞, so we may take γ = (α/2)n < d/2. Choose ξ = en/2.

The result follows from Lemma 3.3 and Lemma 3.7 2

Using arguments similar to that used in the proof of Theorem 3.6, together with Propo-

sition 2.22, (2.32) and (2.34), we can easily get the following two results.
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Theorem 3.9 (i) Suppose d > 1. Let GI be the Green function of the subordinate Brownian

motion via the Bessel subordinator SI . Then

GI(x) ∼
Γ(d/2)

4πd/2|x|d log2 1
|x|
, |x| → 0.

(ii) Suppose d > 2. Let GK be the Green function of the subordinate Brownian motion via

the Bessel subordinator SK. Then

GK(x) ∼ Γ(d/2)

4πd/2|x|d log3 1
|x|
, |x| → 0.

Theorem 3.10 Suppose α ∈ (0, 2), β ∈ (0, 2−α) and that S is the subordinator correspond-

ing Example 2.15. If d > α+ β, the Green function of the subordinate Brownian motion via

S satisfies

G(x) ∼ αΓ((d− α)/2

2α+1πd/2Γ(1 + α/2)

1

|x|d−α(log(1/|x|2))β/2
, |x| → 0.

Theorem 3.11 Suppose α ∈ (0, 2), β ∈ (0, α) and that S is the subordinator corresponding

Example 2.16. If d > α, the Green function of the subordinate Brownian motion via S

satisfies

G(x) ∼ αΓ((d− α)/2

2α+1πd/2Γ(1 + α/2)

(log(1/|x|2))β/2

|x|d−α
, |x| → 0.

Proof. The proof of this theorem is similar to that of Theorem 3.6, the only difference is

that in this case when applying Lemma 3.3 we take the slowly varying function ` to be

`(t) =

{
(log2 t)−β/4, t ≥ 2,
(log2 2)−β/4, t ≤ 2.

Then using argument similar to that in the proof of Theorem 3.6 we can show that with the

functions defined by

f(y, t) =

{
`(1/y)
`(4t/y)

, y < 2t,

0, y ≥ 2t
=



(
log2(4t/y)

log2(1/y)

)β/4

, t < 1/4, y < 2t,(
log2(4t/y)

log2(1/y)

)β/4

, t ≥ 1/4, y < 1/2,(
log2(4t/y)

log2 2

)β/4

, t < 1/4, 1/2 < y < 2t,

0, y ≥ 2t,

and

g(t) =

{ (
log2(8t)

log2 2

)β/4

, t > 1/4,

1, t ≤ 1/4.
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we have f(y, t) ≤ g(t) for all y > 0 and t > 0. The rest of the proof is exactly the same as

that of Theorem 3.6. 2

By using results and methods developed so far, we can obtain the following table of the

asymptotic behavior of the Green function of the subordinate Brownian motion depending

on the Laplace exponent of the subordinator. The left column contains Laplace exponents,

while the right column describes the asymptotic behavior of G(x) as |x| → 0, up to a

constant.

Laplace exponent φ Green function G ∼ c ·
λ |x|−d |x|2∫ 1

0
λ1−ββηdβ (η > −1) |x|−d |x|2 log( 1

|x|2 )
η+1

λα/2(log(1 + λ))β/2, 0 < α < 2, 0 < β < 2− α, |x|−d |x|α 1
(log(1/|x|2))β/2

λα/2, 0 < α < 2 |x|−d |x|α
λα/2(log(1 + λ))−β/2, 0 < α < 2, 0 < β < α, |x|−d |x|α(log(1/|x|2))β/2

log(1 + λα/2), 0 < α ≤ 2 |x|−d 1
log2 1

|x|2

φ(n)(λ) |x|−d 1
Ln−1( 1

x
)ln( 1

x
)2

Notice that the singularity of the Green function increases from top to bottom. This is,

of course, a consequence of the fact that the corresponding subordinator becomes slower and

slower, hence the subordinate process Y moves also more slowly for small times.

We look now at the asymptotic behavior of the Green function G(x) for |x| → ∞.

Theorem 3.12 Suppose that S = (St : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = bλ+

∫ ∞

0

(1− e−λt)µ(dt)

is a special Bernstein function such that limλ→∞ φ(λ) = ∞. If φ(λ) ∼ γ−1λα/2 as λ → 0+

for α ∈ (0, 2] with α < d and a positive constant γ, then

G(x) ∼ γ

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x|α−d

as |x| → ∞.

Proof. By Theorem 2.1 the potential measure of the subordinator has a decreasing density.

By use of Theorem 2.17, the assumption φ(λ) ∼ γ−1λα/2 as λ→ 0+ implies that

u(t) ∼ γ

Γ(α/2)
tα/2−1 , t→∞ .
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Since u is decreasing and integrable near 0, it is easy to show that there exists t0 > 0 such

that u(t) ≤ t−1 for all t ∈ (0, t0). Hence, we can find a positive constant C such that

u(t) ≤ C(t−1 ∨ tα/2−1) . (3.14)

By change of variables we have∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt

=
1

4πd/2
|x|−d+2

∫ ∞

0

sd/2−2e−su

(
|x|2

4s

)
ds

=
γ

4πd/2Γ(α/2)
|x|−d+α

∫ ∞

0

sd/2−2e−s
u
(
|x|2
4s

)
γ

Γ(α/2)

(
|x|2
4s

)α/2−1

(
1

4s

)α/2−1

ds

=
γ

2απd/2Γ(α/2)
|x|−d+α

∫ ∞

0

sd/2−α/2−1e−s
u
(
|x|2
4s

)
γ

Γ(α/2)

(
|x|2
4s

)α/2−1
ds .

Let |x| ≥ 2. Then by (3.14),

u
(
|x|2
4s

)
(
|x|2
4s

)α/2−1
≤ C

((
|x|2

4s

)−α/2

∨ 1

)
≤ C(sα/2 ∨ 1) .

It follows that the integrand in the last formula above is bounded by an integrable function,

so we may use the dominated convergence theorem to obtain

lim
|x|→∞

1

|x|−d+α

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt =

γ

2απd/2

Γ(d−α
2

)

Γ(α
2
)
,

which proves the result. 2

Examples of subordinators that satisfy the assumptions of the last theorem are relativistic

β/2-stable subordinators (with α in the theorem equal to 2), gamma subordinator (α = 2),

geometric β/2-stable subordinators (α = β), iterated geometric stable subordinators, Bessel

subordinators SI , α = 1, and SK , α = 2, and also subordinators corresponding to Examples

2.15 and 2.16.

Remark 3.13 Suppose that St = bt + S̃t where b is positive and S̃t is a pure jump special

subordinator with finite expectation. Then φ(λ) ∼ bλ, λ→∞, and φ(λ) ∼ φ′(0+)λ, λ→ 0.

This implies that, when d ≥ 3, the Green function of the subordinate process Y satisfies

G(x) � G(2)(x) for all x ∈ Rd.
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3.3 Asymptotic behavior of the jumping function

The goal of this subsection is to establish results on the asymptotic behavior of the jumping

function near zero, and results about the rate of decay of the jumping function near zero

and near infinity. We start by stating two theorems on the asymptotic behavior of the

jumping functions at zero for subordinate Brownian motions via subordinators corresponding

to Examples 2.15 and 2.16. We omit the proofs which rely on Lemma 3.3 and are similar to

proofs of Theorems 3.10 and 3.11.

Theorem 3.14 Suppose α ∈ (0, 2), β ∈ (0, 2−α) and that S is the subordinator correspond-

ing to Example 2.15. Then the jumping function of the subordinate Brownian motion Y via

S satisfies

J(x) ∼ αΓ((d+ α)/2)

21−απd/2Γ(1− α/2)

(log(1/|x|2))β/2

|x|d+α
, |x| → 0.

Theorem 3.15 Suppose α ∈ (0, 2), β ∈ (0, α) and that S is the subordinator corresponding

to Example 2.16. Then the jumping function of the subordinate Brownian motion Y via S

satisfies

J(x) ∼ αΓ((d+ α)/2)

21−απd/2Γ(1− α/2)

1

|x|d+α(log(1/|x|2))β/2
, |x| → 0.

We continue by establishing the asymptotic behavior of the jumping function for the

geometric stable processes. More precisely, for 0 < α ≤ 2, let φ(λ) = log(1 + λα/2), S the

corresponding geometric α/2-stable subordinator, Yt = X(St) the subordinate process and

J the jumping function of Y .

Theorem 3.16 For every α ∈ (0, 2], it holds that

J(x) ∼ αΓ(d/2)

2|x|d
, |x| → 0.

Proof. We again apply Lemma 3.3, this time with w(t) = µ(t), the density of the Lévy

measure of S. By Proposition 2.24 (i), µ(t) ∼ α
2t

as t→ 0+, so we take c0 = α/2, β = 1 and

`(t) = 1. By Proposition 2.24 (ii), µ(t) is of the order t−α/2−1 as t → +∞, so we may take

γ = −α/2. Choose ξ = 1/2 and let g = 1. 2

Theorem 3.17 For every α ∈ (0, 2) we have

J(x) ∼ α

2α+1πd/2

Γ(d+α
2

)

Γ(1− α
2
)
|x|−d−α, |x| → ∞.
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Proof. By Proposition 2.24 (ii),

µ(t) ∼ α

2Γ(1− α/2)
t−α/2−1 , t→∞ .

Now combine this with Proposition 2.24 (i) to get that

µ(t) ≤ C(t−1 ∨ t−α/2−1) , t > 0 . (3.15)

By change of variables we have∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
µ(t) dt

=
1

4πd/2
|x|−d+2

∫ ∞

0

sd/2−2e−sµ

(
|x|2

4s

)
ds

=
α

8πd/2Γ(1− α/2)
|x|−d−α

∫ ∞

0

sd/2−2e−s
µ
(
|x|2
4s

)
α

2Γ(1−α/2)

(
|x|2
4s

)−α/2−1

(
1

4s

)−α/2−1

ds

=
α

2α+1πd/2Γ(1− α/2)
|x|−d−α

∫ ∞

0

sd/2+α/2−1e−s
µ
(
|x|2
4s

)
α

aΓ(1−α/2)

(
|x|2
4s

)−α/2−1
ds .

Let |x| ≥ 2. Then by (3.15),

u
(
|x|2
4s

)
(
|x|2
4s

)−α/2−1
≤ C

((
|x|2

4s

)α/2

∨ 1

)
≤ C(s−α/2 ∨ 1) .

It follows that the integrand in the last display above is bounded by an integrable function,

so we may use the dominated convergence theorem to obtain

lim
|x|→∞

1

|x|−d−α

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
µ(t) dt =

α

2α+1πd/2

Γ(d+α
2

)

Γ(1− α
2
)
, (3.16)

which proves the result. 2

In the case α = 2, the behavior of J at ∞ is different and is given in the following result.

Theorem 3.18 When α = 2, we have

J(x) ∼ 2−d/2π−
d−1
2
e−|x|

|x| d+1
2

, |x| → ∞.
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Proof. By change of variables we get that

J(x) =
1

2

∫ ∞

0

t−1e−t(4πt)−d/2 exp(−|x|
2

2
)dt

= 2−d−1π−d/2|x|−d

∫ ∞

0

s
d
2
−1e−

s
4
− |x|

2

s ds

= 2−d−1π−d/2|x|−dI(|x|),

where

I(r) =

∫ ∞

0

s
d
2
−1e−

s
4
− r2

s ds.

Using the change of variable u =
√

s
2
− r√

s
we get

I(r) = e−r

∫ ∞

0

s
d
2
−1e

−(
√

s
2
− r√

s
)2
ds

= e−r

∫ ∞

−∞

2(u+
√
u2 + 2r)d

√
u2 + 2r

e−u2

du

= 2e−rr
d−1
2

∫ ∞

−∞

u+
√
u2 + 2r√

u2 + 2r
(
u√
r

+

√
u2

r
+ 2)d−1e−u2

du .

Therefore by the dominated convergence theorem we obtain

I(r) ∼ 2
d
2
+1
√
πe−rr

d−1
2 , r →∞.

Now the assertion of the theorem follows immediately. 2

Let Y
(n)
t = X(S

(n)
t ) be Brownian motion subordinate by the iterated geometric subordi-

nator S(n), and let J (n) be the corresponding jumping function. Because of Remark 2.26, we

were unable to determine the asymptotic behavior of J (n).

Assume now that φ(λ) is a complete Bernstein function which asymptotically behaves

as λα/2 as λ → 0+ (resp. as λ → ∞). Similar arguments as in Theorems 3.16 and 3.17

would yield that the jumping function J of the corresponding subordinate Brownian motion

behaves (up to a constant) as |x|−α−d as |x| → ∞ (resp. as |x|−α−d as |x| → 0). We are not

going to pursue this here, because, firstly, such behavior of the jumping kernel is known from

the case of α-stable processes, and secondly, in the sequel we will not be interested in precise

asymptotics of J , but rather in the rate of decay near zero and near infinity. Recall that µ(t)

denotes the decreasing density of the Lévy measure of the subordinator S (which exists since

φ is assumed to be complete Bernstein), and recall that the function j : (0,∞) → (0,∞)

was defined by

j(r) :=

∫ ∞

0

(4π)−d/2t−d/2 exp

(
−r

2

4t

)
µ(t) dt , r > 0 , (3.17)

and that J(x) = j(|x|), x ∈ Rd \ {0}.
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Proposition 3.19 Suppose that there exists a positive constant c1 > 0 such that

µ(t) ≤ c1 µ(2t) for all t ∈ (0, 8) , (3.18)

µ(t) ≤ c1 µ(t+ 1) for all t > 1 . (3.19)

Then there exists a positive constant c2 such that

j(r) ≤ c2j(2r) for all r ∈ (0, 2) , (3.20)

j(r) ≤ c2j(r + 1) for all r > 1 . (3.21)

Also, r 7→ j(r) is decreasing on (0,∞).

Proof. For simplicity we redefine in this proof the function j by dropping the factor (4π)−d/2

from its definition. This does not effect (3.20) and (3.21).

Let 0 < r < 2. We have

j(2r) =

∫ ∞

0

t−d/2 exp(−r2/t)µ(t) dt

=
1

2

(∫ 1/2

0

t−d/2 exp(−r2/t)µ(t) dt+

∫ ∞

1/2

t−d/2 exp(−r2/t)µ(t) dt

+

∫ 2

0

t−d/2 exp(−r2/t)µ(t) dt+

∫ ∞

2

t−d/2 exp(−r2/t)µ(t) dt

)
≥ 1

2

(∫ ∞

1/2

t−d/2 exp(−r2/t)µ(t) dt+

∫ 2

0

t−d/2 exp(−r2/t)µ(t) dt

)
=

1

2
(I1 + I2).

Now,

I1 =

∫ ∞

1/2

t−d/2 exp(−r
2

t
)µ(t) dt =

∫ ∞

1/2

t−d/2 exp(−r
2

4t
) exp(−3r2

4t
)µ(t) dt

≥
∫ ∞

1/2

t−d/2 exp(−r
2

4t
) exp(−3r2

2
)µ(t) dt ≥ e−6

∫ ∞

1/2

t−d/2 exp(−r
2

4t
)µ(t) dt ,

I2 =

∫ 2

0

t−d/2 exp(−r
2

t
)µ(t) dt = 4−d/2+1

∫ 1/2

0

s−d/2 exp(− r
2

4s
)µ(4s) ds

≥ c−2
1 4−d/2+1

∫ 1/2

0

s−d/2 exp(− r
2

4s
)µ(s) ds.

Combining the three displays above we get that j(2r) ≥ c3 j(r) for all r ∈ (0, 2).
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To prove (3.21) we first note that for all t ≥ 2 and all r ≥ 1 it holds that

(r + 1)2

t
− r2

t− 1
≤ 1 .

This implies that

exp(−(r + 1)2

4t
) ≥ e−1/4 exp(− r2

4(t− 1)
), for all r > 1, t > 2 . (3.22)

Now we have

j(r + 1) =

∫ ∞

0

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt

≥ 1

2

(∫ 8

0

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt+

∫ ∞

3

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt

)
=

1

2
(I3 + I4).

For I3 note that (r + 1)2 ≤ 4r2 for all r > 1. Thus

I3 =

∫ 8

0

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt ≥

∫ 8

0

t−d/2 exp(−r2/t)µ(t) dt

= 4−d/2+1

∫ 2

0

s−d/2 exp(− r
2

4s
)µ(4s) ds ≥ c−2

1 4−d/2+1

∫ 2

0

s−d/2 exp(− r
2

4s
)µ(s) ds ,

I4 =

∫ ∞

3

t−d/2 exp(−(r + 1)2

4t
)µ(t) dt ≥

∫ ∞

3

t−d/2 exp{−1/4} exp(− r2

4(t− 1)
)µ(t) dt

= e−1/4

∫ ∞

2

(s− 1)−d/2 exp(− r
2

4s
)µ(s+ 1) ds ≥ c−1

1 e−1/4

∫ ∞

2

s−d/2 exp(− r
2

4s
)µ(s) ds .

Combining the three displays above we get that j(r + 1) ≥ c4 j(r) for all r > 1. 2

Suppose that S = (St : t ≥ 0) is an α/2-stable subordinator, or a relativistic α/2-

stable subordinator, or a gamma subordinator. By the explicit forms of the Lévy densities

given in Examples 2.8, 2.9 and 2.10 it is straightforward to verify that in all three cases

µ(t) satisfies (3.18) and (3.19). For the Bessel subordinators, by use of asymptotic behavior

of modified Bessel functions I0 and K0, one obtains that µI(t) ∼ e−t/t, t → 0+, µI(t) ∼
(1/

√
2π) t−3/2, t → ∞, µK(t) ∼ log(1/t)/t, t → 0+, and µK(t) ∼

√
π/2 e−2t t−3/2, t → ∞.

From Propositions 2.27 and 2.28, it is easy to see that corresponding Lévy densities satisfy

(3.18) and (3.19). In the case when S is a geometric α/2-stable subordinator or when S is the

subordinator corresponding to Example 2.15, respectively Example 2.16, these two properties

follow from Proposition 2.24, and Proposition 2.27, respectively Proposition 2.28. In the
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case of an iterated geometric stable subordinator with 0 < α < 2, (3.19) is a consequence

of Proposition 2.25, but we do not know whether (3.18) holds true. By using a different

approach, we will show that if j(n) : (0,∞) → (0,∞) is such that J (n)(x) = j(n)(|x|), then

(3.20) and (3.21) are still true.

We first observe that symmetric geometric α-stable process Y can be obtained by subor-

dinating a symmetric α-stable process Xα via a gamma subordinator S. Indeed, the char-

acteristic exponent of Xα being equal to |x|α, and the Laplace exponent of S being equal

to log(1 + λ), the composition of these two gives the characteristic exponent log(1 + |x|α)

of a symmetric geometric α-stable process. Let pα(t, x, y) = pα(t, x − y) denote the transi-

tion densities of the symmetric α-stable process, and let qα(t, x, y) = qα(t, x− y) denote the

transition densities of the symmetric geometric α-stable process, x, y ∈ Rd, t ≥ 0. Then

qα(t, x) =

∫ ∞

0

pα(s, x)
1

Γ(t)
st−1e−sds . (3.23)

Also, similarly as in (3.3), the jumping function of Y can be written as

J(x) =

∫ ∞

0

pα(t, x)t−1e−t dt , x ∈ Rd \ {0} . (3.24)

Define functions j(n) : (0,∞) → (0,∞) by

j(n)(r) :=

∫ ∞

0

t−d/2 exp

(
−r

2

4t

)
µ(n)(t) dt , r > 0 , (3.25)

where µ(n) denotes the Lévy density of the iterated geometric subordinator, and note that

by (3.3), J (n)(x) = (4π)−d/2j(n)(|x|), x ∈ Rd \ {0}.

Proposition 3.20 For any α ∈ (0, 2) and n ≥ 1, there exists a positive constant c such that

j(n)(r) ≤ cj(n)(2r), for all r > 0 (3.26)

and

j(n)(r) ≤ cj(n)(r + 1), for all r > 1. (3.27)

Proof. The inequality (3.27) follows from Proposition 3.19. Now we prove (3.26). It is

known (see Theorem 2.1 of [12]) that there exist positive constants C1 and C2 such that for

all t > 0 and all x ∈ Rd,

C1 min(t−d/α, t |x|−d−α) ≤ pα(t, x) ≤ C2 min(t−d/α, t |x|−d−α) . (3.28)

Using these estimates one can easily see that there exists C3 > 0 such that

pα(t, x) ≤ C3pα(t, 2x), for all t > 0 and x ∈ Rd. (3.29)
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Let J (1)(x) = J(x) and q
(1)
α (t, x) = qα(t, x). By use of (3.29), it follows from (3.23) and

(3.24) that J (1)(x) ≤ C3J
(1)(2x) , for all x ∈ Rd \ {0}, and q

(1)
α (t, x) ≤ C3q

(1)
α (t, 2x), for

all t > 0 and x ∈ Rd. Further, Y (2) is obtained by subordinating Y (1) by a geometrically

α/2-stable subordinator S. Therefore,

J (2)(x) =
1

2

∫ ∞

0

q(1)
α (s, x)µα/2(s) ds , q(2)

α (t, x) =

∫ ∞

0

q(1)
α (s, x)fα/2(t, s) ds , (3.30)

where µ(s) is the Lévy density of S and fα/2(t, s) the density of P(St ∈ ds). By use of

q
(1)
α (s, x) ≤ C3q

(1)
α (s, 2x), it follows J (2)(x) ≤ C3J

(2)(2x) and q
(2)
α (t, x) ≤ C3q

(2)
α (t, 2x) for all

t > 0 and x ∈ Rd. The proof is completed by induction. 2

We conclude this section with a result that is essential in proving the Harnack inequality

for jump processes, and was the motivation behind Propositions 3.19 and 3.20.

Proposition 3.21 Let Y be a subordinate Brownian motion such that the function j defined

in (3.17) satisfies conditions (3.20) and (3.21). There exist positive constants C4 and C5 such

that if r ∈ (0, 1), x ∈ B(0, r), and H is a nonnegative function with support in B(0, 2r)c,

then

ExH(Y (τB(0,r))) ≤ C4(ExτB(0,r))

∫
H(z)J(z) dz

and

ExH(Y (τB(0,r))) ≥ C5(ExτB(0,r))

∫
H(z)J(z) dz.

Proof. Let y ∈ B(0, r) and z ∈ B(0, 2r)c. If z ∈ B(0, 2) we use the estimates

2−1|z| ≤ |z − y| ≤ 2|z|, (3.31)

while if z /∈ B(0, 2) we use

|z| − 1 ≤ |z − y| ≤ |z|+ 1. (3.32)

Let B ⊂ B(0, 2r)c. Then by using the Lévy system we get

Ex1B(Y (τB(0,r))) = Ex

∫ τB(0,r)

0

∫
B

J(z − Ys) dz ds = Ex

∫ τB(0,r)

0

∫
B

j(|z − Ys|) dz ds .

By use of (3.20), (3.21), (3.31), and (3.32), the inner integral is estimated as follows:∫
B

j(|z − Ys|) dz =

∫
B∩B(0,2)

j(|z − Ys|) dz +

∫
B∩B(0,2)c

j(|z − Ys|) dz

≤
∫

B∩B(0,2)

j(2−1|z|) dz +

∫
B∩B(0,2)c

j(|z| − 1) dz

≤
∫

B∩B(0,2)

c2j(|z|) dz +

∫
B∩B(0,2)c

c2j(|z|) dz

= c2

∫
B

J(z) dz .
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Therefore

Ex1B(Y (τB(0,r))) ≤ Ex

∫ τB(0,r)

0

c2

∫
B

J(z) dz

= c2 Ex(τB(0,r))

∫
1B(z)J(z) dz .

Using linearity we get the above inequality when 1B is replaced by a simple function. Ap-

proximating H by simple functions and taking limits we have the first inequality in the

statement of the lemma.

The second inequality is proved in the same way. 2

3.4 Transition densities of symmetric geometric stable processes

Recall that for 0 < α ≤ 2, qα(t, x) denotes the transition density of the symmetric geometric

α-stable process. The asymptotic behavior of qα(1, x) as |x| → ∞ is given in the following

result.

Proposition 3.22 For α ∈ (0, 2) we have

qα(1, x) ∼
α2α−1 sin απ

2
Γ(d+α

2
)Γ(α

2
)

π
d
2
+1|x|d+α

, |x| → ∞.

For α = 2 we have

q2(1, x) ∼ 2−
d
2π−

d−1
2
e−|x|

|x| d−1
2

, |x| → ∞.

Proof. The proof of the case α < 2 is similar to the proof of Proposition 2.29 and uses

(3.28), while the proof of the case α = 2 is similar to the proof of Theorem 3.18. We omit

the details. 2

The following theorem from [21] provides the sharp estimate for qα(t, x) for small time t

in case 0 < α < 2.

Theorem 3.23 Let α ∈ (0, 2). There are positive constants C1 < C2 such that for all x ∈ Rd

and 0 < t < 1 ∧ d
2α

,

C1tmin(|x|−d−α, |x|−d+tα) ≤ qα(t, x) ≤ C2tmin(|x|−d−α, |x|−d+tα) .

Proof. The following sharp estimates for the stable densities (3.28) is well known (see, for

instance, [12])

pα(s, x) � s−
d
α

(
1 ∧ s

d+α
α

|x|d+α

)
, ∀s > 0 and x ∈ Rd .
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Hence, by (3.23) it follows that qα(t, x) � 1
Γ(t)

I(t, |x|) where

I(t, r) :=

∫ ∞

0

s−
d
α

(
1 ∧ s

d+α
α

rd+α

)
st−1e−s ds

=
1

rd+α

∫ rα

0

ste−s ds+

∫ ∞

rα

st−1−d/αe−s ds .

From now on assume that 0 < t ≤ 1 ∧ d
2α

. Then for 0 < r ≤ 1,

I(t, r) � 1

rd+α

∫ rα

0

st ds+

∫ 1

rα

st−1−d/αe−s ds+

∫ ∞

1

st−1−d/αe−s ds

=
1

t+ 1
rαt−d +

1

d/α− t
(rαt−d − 1) +

∫ ∞

1

st−1−d/αe−s ds � rαt−d .

We also have,

I(t, r) ≤ 1

rd+α

∫ ∞

0

ste−s ds =
Γ(t+ 1)

rd+α
≤ 1

rd+α
, r > 0 ,

I(t, r) ≥ 1

rd+α

∫ 1

0

ste−s ds ≥ 1

rd+α

1

(1 + t)e
≥ 1

2erd+α
, r > 1 .

Note that
1

rd+α
∧ 1

rd−tα
=

{
1

rd−tα , 0 < r ≤ 1
1

rd+α , r > 1.

Therefore I(t, r) � 1
rd+α ∧ 1

rd−tα . This implies that

qα(t, x) � 1

Γ(t)
I(t, |x|) � 1

Γ(t)

(
1

|x|d+α
∧ 1

|x|d−tα

)
� t

(
1

|x|d+α
∧ 1

|x|d−tα

)
,

since for 0 < t ≤ 1, Γ(t) � t−1. 2

Note that by taking x = 0, one obtains that qα(t, 0) = ∞ for 0 < t < 1 ∧ d
2α

. This

somewhat unusual feature of the transition density is easier to show when α = 2, i.e., in the

case of a gamma subordinator. Indeed, then

q2(t, x) :=

∫ ∞

0

(4πs)−d/2e−|x|
2/(4t) 1

Γ(t)
st−1e−s ds ,

and therefore

q2(t, 0) =
(4π)−d/2

Γ(t)

∫ ∞

0

s−d/2+t−1e−s ds =

{
+∞ , t ≤ d/2,
Γ(t−d/2)

(4π)d/2Γ(t)
, t > d/2 .
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Assume now that S(2) is an iterated geometric stable subordinator with the Laplace exponent

φ(λ) = log(1 + log(1 + λ)), and let q
(2)
2 (t, x) be the transition density of the process Y

(2)
t =

X(S
(2)
t ). Then by (3.30),

q
(2)
2 (t, 0) =

∫ ∞

0

q2(s, 0)
1

Γ(t)
st−1e−s ds = ∞

for all t > 0.

4 Harnack inequality for subordinate Brownian mo-

tion

4.1 Capacity and exit time estimates for some symmetric Lévy
processes

The purpose of this subsection is to establish lower and upper estimates for the capacity

of balls and the exit time from balls, with respect to a class of radially symmetric Lévy

processes.

Suppose that Y = (Yt,Px) is a transient radially symmetric Lévy process on Rd. We

will assume that the potential kernel of Y is absolutely continuous with a density G(x, y) =

G(|y − x|) with respect to the Lebesgue measure. Let us assume the following condition:

G : [0,∞) → (0,∞] is a positive and decreasing function satisfying G(0) = ∞. We will have

need of the following elementary lemma.

Lemma 4.1 There exists a positive constant C1 = C1(d) such that for every r > 0 and all

x ∈ B(0, r),

C1

∫
B(0,r)

G(|y|) dy ≤
∫

B(0,r)

G(x, y) dy ≤
∫

B(0,r)

G(|y|) dy .

Moreover, the supremum of
∫

B(0,r)
G(x, y) dy is attained at x = 0, while the infimum is

attained at any point on the boundary of B(0, r).

Proof. The proof is elementary. We only present the proof of the left-hand side inequality

for d ≥ 2. Consider the intersection of B(0, r) and B(x, r). This intersection contains the

intersection of B(x, r) and the cone with vertex x of aperture equal to π/3 pointing towards

the origin. Let C(x) be the latter intersection. Then∫
B(0,r)

G(|y − x|) dy ≥
∫

C(x)

G(|y − x|) dy ≥ c1

∫
B(x,r)

G(|y − x|) dy = c1

∫
B(0,r)

G(|y|) dy ,

where the constant c1 depends only on the dimension d. It is easy to see that the infimum

of
∫

B(0,r)
G(x, y) dy is attained at any point on the boundary of B(0, r). 2
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Let Cap denote the (0-order) capacity with respect to X (for the definition of capacity

see e.g. [13] or [49]). For a measure µ we define

Gµ(x) :=

∫
G(x, y)µ(dy) .

For any compact subset K of Rd, let PK be the set of probability measures supported by

K. Define

e(K) := inf
µ∈PK

∫
Gµ(x)µ(dx) .

Since the kernel G satisfies the maximum principle (see, for example, Theorem 5.2.2 in [22]),

it follows from ([28], page 159) that for any compact subset K of Rd

Cap(K) =
1

infµ∈PK
supx∈Supp(µ)Gµ(x)

=
1

e(K)
. (4.1)

Furthermore, the infimum is attained at the capacitary measure µK . The following lemma

is essentially proved in [38].

Lemma 4.2 Let K be a compact subset of Rd. For any probability measure µ on K, it holds

that

inf
x∈Supp(µ)

Gµ(x) ≤ e(K) ≤ sup
x∈Supp(µ)

Gµ(x) . (4.2)

Proof. The right-hand side inequality follows immediately from (4.1). In order to prove the

left-hand side inequality, suppose that for some probability measure µ on K it holds that

e(K) < infx∈Supp(µ)Gµ(x). Then e(K)+ ε < infx∈Supp(µ)Gµ(x) for some ε > 0. We first have∫
K

Gµ(x)µK(dx) >

∫
K

(e(K) + ε)µK(dx) = e(K) + ε .

On the other hand,∫
K

Gµ(x)µK(dx) =

∫
K

GµK(x)µ(dx) =

∫
K

e(K)µ(dx) = e(K) ,

where we have used the fact that GµK = e(K) quasi everywhere in K, and the measure of

finite energy does not charge sets of capacity zero. This contradiction proves the lemma. 2

Proposition 4.3 There exist positive constants C2 < C3 depending only on d, such that for

all r > 0
C2r

d∫
B(0,r)

G(|y|) dy
≤ Cap(B(0, r)) ≤ C3r

d∫
B(0,r)

G(|y|) dy
. (4.3)
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Proof. Let mr(dy) be the normalized Lebesgue measure on B(0, r). Thus, mr(dy) =

dy/(c1r
d), where c1 is the volume of the unit ball. Consider Gmr = supx∈B(0,r)Gmr(x). By

Lemma 4.1, the supremum is attained at x = 0, and so

Gmr =
1

c1rd

∫
B(0,r)

G(|y|)dy .

Therefore from Lemma 4.2

Cap(B(0, r)) ≥ c1r
d∫

B(0,r)
G(|y|)dy

. (4.4)

For the right-hand side of (4.2), it follows from Lemma 4.1 and Lemma 4.2 that

Cap(B(0, r)) ≤ 1

Gmr(z)
=

c1r
d∫

B(0,r)
G(z, y)

dy ≤ c1r
d

C1

∫
B(0,r)

G(|y|)
dy ,

where z ∈ ∂B(0, r). 2

In the remaining part of this section we assume in addition that G satisfies the following

assumption: There exist r0 > 0 and c0 ∈ (0, 1) such that

c0G(r) ≥ G(2r) , 0 < 2r < r0 . (4.5)

Note that if G is regularly varying at 0 with index δ < 0, i.e., if

lim
r→0

G(2r)

G(r)
= 2δ ,

then (4.5) is satisfied with c0 = (2δ +1)/2 for some positive r0. Let τB(0,r) = inf{t > 0 : Yt /∈
B(0, r)} be the first exit time of Y from the ball B(0, r).

Proposition 4.4 There exists a positive constant C4 such that for all r ∈ (0, r0/2),

C4

∫
B(0,r/6)

G(|y|) dy ≤ inf
x∈B(0,r/6)

ExτB(0,r) ≤ sup
x∈B(0,r)

ExτB(0,r) ≤
∫

B(0,r)

G(|y|) dy . (4.6)

Proof. Let GB(0,r)(x, y) denote the Green function of the process Y killed upon exiting

B(0, r). Clearly, GB(0,r)(x, y) ≤ G(x, y), for x, y ∈ B(0, r). Therefore,

ExτB(0,r) =

∫
B(0,r)

GB(0,r)(x, y) dy

≤
∫

B(0,r)

G(x, y) dy ≤
∫

B(0,r)

G(|y|) dy .
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For the left-hand side inequality, let r ∈ (0, r0/2), and let x, y ∈ B(0, r/6). Then,

GB(0,r)(x, y) = G(x, y)− ExG(Y (τB(0,r)), y)

≥ G(|y − x|)−G(2|y − x|) .

The last inequality follows because |y−Y (τB(0,r))| ≥ 2
3
r ≥ 2|y−x|. Let c1 = 1−c0 ∈ (0, 1). By

(4.5) we have that for all u ∈ (0, r0), G(u)−G(2u) ≥ c1G(u). Hence, G(|y−x|)−G(2|y−x|) ≥
c1G(|y − x|), which implies that GB(0,r)(x, y) ≥ c1G(x, y) for all x, y ∈ B(0, r/6). Now, for

x ∈ B(0, r/6),

ExτB(0,r) =

∫
B(0,r)

GB(0,r)(x, y) dy ≥
∫

B(0,r/6)

GB(0,r)(x, y) dy

≥ c1

∫
B(0,r/6)

G(x, y) dy ≥ c1C1

∫
B(0,r/6)

G(|y|) dy ,

where the last inequality follows from Lemma 4.1. 2

Example 4.5 We illustrate the last two propositions by applying them to the iterated

geometric stable process Y (n) introduced in Example 3.2 (iv) and (v). Hence, we assume

that d > 2(α/2)n. By a slight abuse of notation we define a function G(n) : [0,∞) → (0,∞]

by G(n)(|x|) = G(n)(x). Note that by Theorem 3.8, G is regularly varying at zero with index

β = −d. Let r0 be the constant from (4.5). Let us first look at the asymptotic behavior of∫
B(0,r)

G(n)(|y|) dy for small r. We have∫
B(0,r)

G(n)(|y|) dy = cd

∫ r

0

ud−1G(n)(u) du

∼ cdΓ(d/2)

απd/2

∫ r

0

ud−1 du

udLn−1(1/u2)l2n(1/u2)
=
cdΓ(d/2)

2απd/2

∫ r2

0

dv

vLn−1(1/v)l2n(1/v)

=
cdΓ(d/2)

2απd/2

1

ln(1/r2)
∼ cα,d

1

ln(1/r)
, r → 0 .

It follows from Proposition 4.3 that there exist positive constants C5 ≤ C6 such that for

all r ∈ (0, 1/en),

C5r
dln(1/r) ≤ Cap(B(0, r)) ≤ C6r

dln(1/r) .

Similarly, it follows from Proposition 4.4 that there exist positive constants C7 ≤ C8 such

that for all r ∈ (0, (1/en) ∧ (r0/2)),

C7

ln(1/r)
≤ inf

x∈B(0,r/6)
ExτB(0,r) ≤ sup

x∈B(0,r)

ExτB(0,r) ≤
C8

ln(1/r)
. (4.7)

Here we also used the fact that ln is slowly varying.

By use of Theorem 3.12 and Proposition 4.3, we can estimate capacity of large balls. It

easily follows that as r →∞, Cap(B(0, r) is of the order rα(α/2)n−1
.
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4.2 Krylov-Safonov-type estimate

In this subsection we retain the assumptions from the beginning of the previous one. Thus,

Y = (Yt,Px) is a transient radially symmetric Lévy process on Rd with the potential kernel

having the density G(x, y) = G(|y − x|) which is positive, decreasing and G(0) = ∞. Let

r1 ∈ (0, 1) and let ` : (1/r1,∞) → (0,∞) be a slowly varying function at ∞. Let β ∈ [0, 1]

be such that d + 2β − 2 > 0. We introduce the following additional assumption about the

density G: There exists a positive constant c1 such that

G(x) ∼ c1
|x|d+2β−2`(1/|x|2)

, |x| → 0 . (4.8)

If we abuse notation and let G(|x|) = G(x), then G is regularly varying at 0 with index

−d− 2β+ 2 < 0, hence satisfies the assumption (4.5) with some r0 > 0. In order to simplify

notations, we define the function g : (0, r1) → (0,∞) by

g(r) =
1

rd+2β−2`(1/r2)
.

Clearly, g is regularly varying at 0 with index −d − 2β + 2 < 0. Let g be a monotone

equivalent of g at 0. More precisely, we define g : (0, r1/2) →∞ by

g(r) := sup{g(ρ) : r ≤ ρ ≤ r1} .

By the 0-version of Theorem 1.5.3. in [10], g(r) ∼ g(r) as r → 0. Moreover, g(r) ≥ g(r),

and g is decreasing. Let r2 = min(r0, r1). There exist positive constants C9 < C10 such that

C9g(r) ≤ G(r) ≤ C10g(r) , r < r2 . (4.9)

We define

c = max

{
1

3

(
4C10

C9

) 1
d+2β−2

, 1

}
. (4.10)

Since g is regularly varying at 0 with index −d− 2β + 2, there exists r3 > 0 such that

1

2

(
1

3c

)d+2β−2

≤ g(6cr)

g(2r)
≤ 2

(
1

3c

)d+2β−2

, r < r3 . (4.11)

Finally, let

R = min(r2, r3, 1) = min(r0, r1, r3, 1) . (4.12)

Lemma 4.6 There exists C11 > 0 such that for any r ∈ (0, (7c)−1R), any closed subset A

of B(0, r), and any y ∈ B(0, r),

Py(TA < τB(0,7cr)) ≥ C11κ(r)
Cap(A)

Cap(B(0, r))
,
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where

κ(r) =
rdg(r)∫ r

0
ρd−1g(ρ) dρ

. (4.13)

Proof. Without loss of generality we may assume that Cap(A) > 0. Let GB(0,7cr) be the

Green function of the process obtained by killing Y upon exiting from B(0, 7cr). If ν is the

capacitary measure of A with respect to Y , then we have for all y ∈ B(0, r),

GB(0,7cr)ν(y) = Ey[GB(0,7cr)ν(YTA
) : TA < τB(0,7cr)]

≤ sup
z∈Rd

GB(0,7cr)ν(z)Py(TA < τB(0,7cr))

≤ Py(TA < τB(0,7cr)).

On the other hand we have for all y ∈ B(0, r),

GB(0,7cr)ν(y) =

∫
GB(0,7cr)(y, z)ν(dz) ≥ ν(A) inf

z∈B(0,r)
GB(0,7cr)(y, z)

= Cap(A) inf
z∈B(0,r)

GB(0,7cr)(y, z) .

In order to estimate the infimum in the last display, note that GB(0,7cr)(y, z) = G(y, z) −
Ey[G(YτB(0,7cr)

, z)]. Since |y− z| < 2r < R, it follows by (4.9) and the monotonicity of g that

G(y, z) ≥ C9g(|z − y|) ≥ C9g(2r) . (4.14)

Now we consider G(YτB(0,7cr)
, z). First note that |YτB(0,7cr)

− z| ≥ 7cr− r ≥ 7cr− cr ≥ 6cr. If

|YτB(0,7cr)
− z| ≤ R, then by (4.9) and the monotonicity of g,

G(YτB(0,7cr)
, z) ≤ C10g(|z − YτB(0,7cr)

|) ≤ C10g(6cr) .

If, on the other hand, |YτB(0,7cr)
− z| ≥ R, then G(YτB(0,7cr)

, z) ≤ G(w), where w ∈ Rd is any

point such that |w| = R. Here we have used the monotonicity of G. For |w| = R we have

that G(w) ≤ C10g(|w|) = C10g(R) ≤ C10g(6cr). Therefore

Ey[G(YτB(0,7cr)
, z)] ≤ C10g(6cr) . (4.15)

By use of (4.14) and (4.15) we obtain

GB(0,7cr)(y, z) ≥ C9g(2r)− C10g(6cr)

= g(2r)

(
C9 − C10

g(6cr)

g(2r)

)
≥ g(2r)

(
C9 − 2C10

(
1

3c

)d+2β−2
)

≥ g(2r)

(
C9 − 2C10

C9

4C10

)
=
C9

2
g(2r) ,
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where the next to last line follows from (4.11) and the last from definition (4.10). By using

one more time that g is regularly varying at 0, we conclude that there exists a constant

C12 > 0 such that for all y, z ∈ B(0, r),

GB(0,7cr)(y, z) ≥ C12g(r) .

Further, it follows from Proposition 4.3 that there exists a constant C13 > 0, such that

C13

Cap(B(0, r))

rd∫ r

0
ρd−1g(ρ) dρ

≤ 1 . (4.16)

Hence

GB(0,7cr)(y, z) ≥ C12C13
1

Cap(B(0, r))

rdg(r)∫ r

0
ρd−1g(ρ) dρ

≥ C14
1

Cap(B(0, r))
κ(r) .

To finish the proof, note that

Py(TA < τB(0,7cr)) ≥ GB(0,7cr)ν(y) ≥ C14κ(r)
Cap(A)

Cap(B(0, r))
.

2

Remark 4.7 Note that in the estimate (4.16) we could use g instead of g. Together with

the fact that g(r) ≥ g(r) this would lead to the hitting time estimate

Py(TA < τB(0,7cr)) ≥ C11κ(r)
Cap(A)

Cap(B(0, r))
,

where

κ(r) =
rdg(r)∫ r

0
ρd−1g(ρ) dρ

. (4.17)

We will apply the above lemma to subordinate Brownian motions. Assume, first, that

Yt = X(St) where S = (St : t ≥ 0) is the special subordinator with the Laplace exponent

φ satisfying φ(λ) ∼ λα/2`(λ), λ → ∞, where 0 < α < 2 ∧ d, and ` is slowly varying at ∞.

Then the Green function of Y satisfies all assumptions of this subsection, in particular (4.8)

with β = 1− α/2, see (2.28) and Lemma (3.3). Define c as in (4.10) for appropriate C9 and

C10 and β = 1− α/2, and let R be as in (4.12).
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Proposition 4.8 Assume that Yt = X(St) where S = (St : t ≥ 0) is the special sub-

ordinator with the Laplace exponent φ satisfying one of the following two conditions: (i)

φ(λ) ∼ λα/2`(λ), λ→∞, where 0 < α < 2, and ` is slowly varying at ∞, or (ii) φ(λ) ∼ λ,

λ→∞. If Y is transient, the following statements are true:

(a) There exists a constant C15 > 0 such that for any r ∈ (0, (7c)−1R), any closed subset A

of B(0, r), and any y ∈ B(0, r),

Py(TA < τB(0,7cr)) ≥ C15
Cap(A)

Cap(B(0, r))
.

(b) There exists a constant C16 > 0 such that for any r ∈ (0, R) we have

sup
y∈B(0,r)

Ey τB(0,r) ≤ C16 inf
y∈B(0,r/6)

Ey τB(0,r) .

Proof. We give the proof for case (i), case (ii) being simpler.

(a) It suffices to show that κ(r), r < (7c)−1R, is bounded from below by a positive constant.

Note that g is regularly varying at 0 with index −d + α. Hence there is a slowly varying

function ` such that g(r) = r−d+α`(r). By Karamata’s monotone density theorem one can

conclude that∫ r

0

ρd−1g(ρ) dρ =

∫ r

0

ρα−1`(ρ) dρ ∼ 1

α
rα`(r) =

1

α
rdg(r) , r → 0 .

Therefore,

κ(r) =
rdg(r)∫ r

0
ρd−1g(ρ) dρ

∼ 1

α
.

(b) By Proposition 4.4 it suffices to show that
∫

B(0,r)
G(|y|) dy ≤ c

∫
B(0,r/6)

G(|y|) dy for

some positive constant c. But, by the proof of part (a),
∫

B(0,r)
G(|y|) dy � rdg(r), while∫

B(0,r/6)
G(|y|) dy � (r/6)dg(r/6). Since g is regularly varying, the claim follows. 2

Proposition 4.9 Let S(n) be the iterated geometric stable subordinator and let Y
(n)
t =

X(S
(n)
t ) be the corresponding subordinate process. Assume that d > 2(α/2)n.

(a) Let γ > 0. There exists a constant C17 > 0 such that for any r ∈ (0, (7c)−1R), any closed

subset A of B(0, r), and any y ∈ B(0, r)

Py(TA < τB(0,7cr)) ≥ C17 r
γ Cap(A)

Cap(B(0, r))
.

(b) There exists a constant C18 > 0 such that for any r ∈ (0, R) we have

sup
y∈B(0,r)

Ey τB(0,r) ≤ C18 inf
y∈B(0,r/6)

Ey τB(0,r) .
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Proof. (a) By Proposition 2.21 we take

g(r) =
1

rdLn−1(1/r2)ln(1/r2)2
.

Recall that the functions ln, respectively Ln, were defined in (2.36), respectively (2.37).

Integration gives that∫ r

0

ρd−1g(ρ) dρ =

∫ r

0

1

ρLn−1(1/ρ2)ln(1/ρ2)2
dρ =

2

ln(1/r2)
.

Therefore,

κ(r) =
1

Ln(1/r2)
≥ c̃rγ ,

and the claim follows from Remark 4.7.

(b) This was shown in Example 4.5. 2

Remark 4.10 We note that part (b) of both Propositions 4.8 and 4.9 are true for every

pure jump process. This was proved in [46], and later also in [51].

In the remainder of this subsection we discuss briefly the Krylov-Safonov type estimate

involving the Lebesgue measure instead of the capacity. This type of estimate turns out to

be very useful in case of a pure jump Lévy process. The method of proof comes from [4],

while our exposition follows [56].

Assume that Y = (Yt : t ≥ 0) is a subordinate Brownian motion via a subordinator with

no drift. We retain the notation j(|x|) = J(x), introduce functions

η1(r) = r−2

∫ r

0

ρd+1j(ρ) dρ , η2(r) =

∫ ∞

r

ρd−1j(ρ) dρ ,

and let η(r) = η1(r) + η2(r). The proof of the following result can be found in [56].

Lemma 4.11 There exists a constant C19 > 0 such that for every r ∈ (0, 1), every A ⊂
B(0, r) and any y ∈ B(0, 2r),

Py(TA < τB(0,3r)) ≥ C19
rdj(4r)

η(r)

|A|
|B(0, r)|

,

where | · | denotes the Lebesgue measure.

Proposition 4.12 Assume that Yt = X(St) where S = (St : t ≥ 0) is a pure jump subordi-

nator, and the jumping function J(x) = j(|x|) of Y is such that j satisfies j(r) ∼ r−d−α`(r),

r → 0+, with 0 < α < 2 and ` slowly varying at 0. Then there exists a constant C20 > 0

such that for every r ∈ (0, 1), every A ⊂ B(0, r) and any y ∈ B(0, 2r),

Py(TA < τB(0,3r)) ≥ C20
|A|

|B(0, r)|
.
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Proof. It suffices to prove that rdj(4r)/η(r) is bounded from below by a positive constant.

This is accomplished along the lines of the proof of Proposition 4.8. 2

Note that the assumptions of Proposition 4.12 are satisfied for subordinate Brownian mo-

tions via α/2-stable subordinators, relativistic α-stable subordinators and the subordinators

corresponding to Examples 2.15 and 2.16 (see Theorems 3.14 and 3.15).

In the case of, say, a geometric stable process Y , one obtains from Lemma 4.11 a weak

form of the hitting time estimate: There exists C21 > 0 such that for every r ∈ (0, 1/2),

every A ⊂ B(0, r) and any y ∈ B(0, 2r),

Py(TA < τB(0,3r)) ≥ C21
1

log(1/r)

|A|
|B(0, r)|

. (4.18)

4.3 Proof of Harnack inequality

Let Y = (Yt : t ≥ 0) be a subordinate Brownian motion in Rd and let D be an open subset

of Rd. A function h : Rd → [0,+∞] is said to be harmonic in D with respect to the process

Y if for every bounded open set B ⊂ B ⊂ D,

h(x) = Ex[h(YτB
)] , ∀x ∈ B ,

where τB = inf{t > 0 : Yt /∈ B} is the exit time of Y from B. Harnack inequality is a

statement about the growth rate of nonnegative harmonic functions in compact subsets of

D. We will first discuss two proofs of a scale invariant Harnack inequality for small balls.

Next, we will give a proof of a weak form of Harnack inequality for small balls for the iterated

geometric stable process. All discussed forms of the inequality lead to the following Harnack

inequality: For any compact set K ⊂ D, there exists a constant C > 0, depending only on

D and K, such that for every nonnegative harmonic function h with respect to Y in D, it

holds that

sup
x∈K

h(x) ≤ C inf
x∈K

h(x) .

The general methodology of proving Harnack inequality for jump processes is explained

in [56] following the pioneering work [4] (for an alternative approach see [15]). The same

method was also used in [5] and [16] to prove a parabolic Harnack inequality. There are two

essential ingredients: The first one is a Krylov-Safonov-type estimate for the hitting proba-

bility discussed in the previous subsection. The form given in Lemma 4.11 and Proposition

4.12 can be used in the case of pure jump processes for which one has good control of the

behavior of the jumping function J at zero. More precisely, one needs that j(r) is a regularly

varying function of index −d−α for 0 < α < 2 when r → 0+. This, as shown in Proposition

4.12, implies that the function of r on the right-hand side of the estimate can be replaced by

a constant, which is desirable to obtaining the scale invariant form of Harnack inequality for
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small balls. In the case of a geometric stable process the behavior of J near zero is known

(see Theorem 3.16), but leads to the inequality (4.18) having the factor 1/ log(1/r) on the

right-hand side. This yields a weak type of Harnack inequality for balls. In the case of

the iterated geometric stable processes, no information about the behavior of J near zero is

available, and hence one does not have any control on the factor rdj(r)/η(r) in Lemma 4.11.

In the case where Y has a continuous component (i.e, the subordinator S has a drift), or

the case when information on the behavior of J near zero is missing, one can use the form

of Krylov-Safonov inequality described in Propositions 4.8 and 4.9.

The second ingredient in the proof is the following result which can be considered as

a very weak form of Harnack inequality (more precisely, Harnack inequality for harmonic

measures of sets away from the ball). Recall that R > 0 was defined in (4.12).

Proposition 4.13 Let Y be a subordinate Brownian motion such that the function j defined

in (3.17) satisfies conditions (3.20) and (3.21). There exists a positive constant C22 > 0 such

that for any r ∈ (0, R), any y, z ∈ B(0, r/2) and any nonnegative function H supported on

B(0, 2r)c it holds that

EzH(Y (τB(0,r))) ≤ C22EyH(Y (τB(0,r))) . (4.19)

Proof. This is an immediate consequence of Proposition 3.21 and the comparison results

for the mean exit times explained in Remark 4.10 (see also Propositions 4.8 and 4.9). 2

We are now ready to state Harnack inequality under two different set of conditions.

Theorem 4.14 Let Y be a subordinate Brownian motion such that the function j defined

in (3.17) satisfies conditions (3.20) and (3.21) and is further regularly varying at zero with

index −d − α where 0 < α < 2. Then there exists a constant C > 0 such that, for any

r ∈ (0, 1/4), and any function h which is nonnegative, bounded on Rd, and harmonic with

respect to Y in B(0, 16r), we have

h(x) ≤ Ch(y), ∀x, y ∈ B(0, r).

Proof of this Harnack inequality follows from [56] and uses Proposition 4.12. The second

set of conditions for Harnack inequality uses Proposition 4.8. Recall the constant c defined

in (4.10).

Theorem 4.15 Let Y be a transient subordinate Brownian motion such that the function j

defined in (3.17) satisfies conditions (3.20) and (3.21), and assume further that the subordi-

nator S is special and its Laplace exponent φ satisfies φ(λ) ∼ bλα/2, λ→∞, with α ∈ (0, 2]

and b > 0. Then there exists a constant C > 0 such that, for any r ∈ (0, (14c)−1R), and

any function h which is nonnegative, bounded on Rd, and harmonic with respect to Y in

B(0, 14cr), we have

h(x) ≤ Ch(y), ∀x, y ∈ B(0, r/2).
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Under these conditions, Harnack inequality was proved in [47]. Unfortunately, despite the

fact that Proposition 4.8 holds under weaker conditions for φ than the ones stated in the

theorem above, we were unable to carry out a proof in this more general case.

Now we are going to present a proof of a weak form of Harnack inequality for iterated

geometric stable processes. Let S(n) be the iterated geometric stable subordinator and let

Y
(n)
t = X(S

(n)
t ) be the corresponding subordinate process. We assume that d > 2(α/2)n.

For simplicity we write Y instead of Y (n). We state again Propositions 4.9 (a) and 4.13:

Let γ > 0. There exists a constant C17 > 0 such that for any r ∈ (0, (7c)−1R), any closed

subset A of B(0, r), and any y ∈ B(0, r)

Py(TA < τB(0,7cr)) ≥ C17 r
γ Cap(A)

Cap(B(0, r))
, (4.20)

There exists a positive constant C22 > 0 such that for any r ∈ (0, R), any y, z ∈ B(0, r/2)

and any nonnegative function H supported on B(0, r)c it holds that

EzH(Y (τB(0,r))) ≤ C22EyH(Y (τB(0,r))) . (4.21)

We will also need the following lemma.

Lemma 4.16 There exists a positive constant C23 such that for all 0 < ρ < r < 1/en+1,

Cap(B(0, ρ))

Cap(B(0, r))
≥ C23

(ρ
r

)d

.

Proof. By Example 4.5,

C5r
dln(1/r) ≤ Cap(B(0, r)) ≤ C6r

dln(1/r)

for every r < 1/en+1. Therefore,

Cap(B(0, ρ))

Cap(B(0, r))
≥ C5ρ

dln(1/ρ)

C6rdln(1/r)
≥ C5

C6

(ρ
r

)d

,

where the last inequality follows from the fact that ln is increasing at infinity. 2

Theorem 4.17 Let R and c be defined by (4.12) and (4.10) respectively. Let r ∈ (0, (14c)−1R).

There exists a constant C > 0 such that for every nonnegative bounded function h in Rd which

is harmonic with respect to Y in B(0, 14cr) it holds

h(x) ≤ Ch(y), x, y ∈ B(0, r/2).
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Remark 4.18 Note that the constant C in the theorem may depend on the radius r. This is

why the above Harnack inequality is weak. A version of a weak Harnack inequality appeared

in [3], and our proof follows the arguments there. A similar proof, in a somewhat different

context, was given in [58].

Proof. We fix γ ∈ (0, 1). Suppose that h is nonnegative and bounded in Rd and harmonic

with respect to Y in B(0, 14cr). By looking at h+ ε and letting ε ↓ 0, we may suppose that

h is bounded from below by a positive constant. By looking at ah for a suitable a > 0, we

may suppose that infB(0,r/2) h = 1/2. We want to bound h from above in B(0, r/2) by a

constant depending only on r, d and γ. Choose z1 ∈ B(0, r/2) such that h(z1) ≤ 1. Choose

ρ ∈ (1, γ−1). For i ≥ 1 let

ri =
c1r

iρ
,

where c1 is a constant to be determined later. We require first of all that c1 is small enough

so that
∞∑
i=1

ri ≤
r

8
. (4.22)

Recall that there exists c2 := C17 > 0 such that for any s ∈ (0, (7c)−1R), any closed

subset A ⊂ B(0, s) and any y ∈ B(0, s),

Py(TA < τB(0,7cs)) ≥ c2s
γ Cap(A)

Cap(B(0, s))
. (4.23)

Let c3 be a constant such that

c3 ≤ c22
−4−γ+ργ .

Denote the constant C8 from Lemma 4.16 by c4. Once c1 and c3 have been chosen, choose

K1 sufficiently large so that

1

4
(7c)−d−γc2c4K1 exp((14c)−γrγc1c3i

1−ργ) c4γ+d
1 r4γ ≥ 2i4ργ+ρd (4.24)

for all i ≥ 1. Such a choice is possible since ργ < 1. Note that K1 will depend on r, d and

γ as well as constants c, c1, c2, c3 and c4. Suppose now that there exists x1 ∈ B(0, r/2) with

h(x1) ≥ K1. We will show that in this case there exists a sequence {(xj, Kj) : j ≥ 1} with

xj+1 ∈ B(xj, 2rj) ⊂ B(0, 3r/4), Kj = h(xj), and

Kj ≥ K1 exp((14c)−γrγc1c3j
1−ργ). (4.25)

Since 1−ργ > 0, we have Kj →∞, a contradiction to the assumption that h is bounded. We

can then conclude that h must be bounded by K1 on B(0, r/2), and hence h(x) ≤ 2K1h(y)

if x, y ∈ B(0, r/2).
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Suppose that x1, x2, . . . , xi have been selected and that (4.25) holds for j = 1, . . . , i. We

will show that there exists xi+1 ∈ B(xi, 2ri) such that if Ki+1 = h(xi+1), then (4.25) holds

for j = i+ 1; we then use induction to conclude that (4.25) holds for all j.

Let

Ai = {y ∈ B(xi, (14c)
−1ri) : h(y) ≥ Kir

2γ
i } .

First we prove that
Cap(Ai)

Cap(B(xi, (14c)−1ri))
≤ 1

4
. (4.26)

To prove this claim, we suppose to the contrary that Cap(Ai)/Cap(B(xi, (14c)−1ri)) > 1/4.

Let F be a compact subset of Ai with Cap(F )/Cap(B(xi, (14c)−1ri)) > 1/4. Recall that

r ≥ 8ri. Now we have

1 ≥ h(z1) ≥ Ez1 [h(YTF∧τB(0,7cr)
);TF < τB(0,7cr)]

≥ Kir
2γ
i Pz1(TF < τB(0,7cr))

≥ c2Kir
2γ
i r

γ Cap(F )

Cap(B(0, r))

= c2Kir
2γ
i r

γ Cap(F )

Cap(B(xi, (7c)−1ri))

Cap(B(xi, (7c)−1ri))

Cap(B(0, r))

≥ 1

4
c2Kir

2γ
i r

γ CapB(0, (7c)−1ri))

Cap(B(0, r))

≥ 1

4
c2Kir

2γ
i r

γc4

(
(7c)−1ri

r

)d

=
1

4
c2c4(7c)

−dKir
2γ
i r

γ
(ri

r

)d

≥ 1

4
c2c4(7c)

−d−γKir
4γ
i

(ri

r

)d

≥ 1

4
c2c4(7c)

−d−γK1 exp((14c)−γrγc1c3i
1−ργ)r4γ

i

(ri

r

)d

≥ 1

4
c2c4(7c)

−d−γK1 exp((14c)−γrγc1c3i
1−ργ)

(c1r
iρ

)4γ (c1
iρ

)d

≥ 1

4
c2c4(7c)

−d−γK1 exp((14c)−γrγc1c3j
1−ργ)c4γ+d

1 r4γi−4γρ−ρd

≥ 2i4γρ+ρdi−4γρ−ρd = 2 .

We used the definition of harmonicity in the first line, (4.23) in the third, Lemma 4.16 in the

sixth, (4.25) in the ninth, and (4.24) in the last line. This is a contradiction, and therefore

(4.26) is valid.
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By subadditivity of the capacity and by (4.26) it follows that there exists Ei ⊂ B(xi, (14c)−1c)\
Ai such that

Cap(Ei)

Cap(B(xi, (14c)−1ri))
≥ 1

2
.

Write τi for τB(xi,ri/2) and let pi := Pxi(TEi
< τi). It follows from (4.23) that

pi ≥ c2

( ri

14c

)γ Cap(Ei)

Cap(B(xi, (14c)−1))

≥ c2
2

( ri

14c

)γ

. (4.27)

Set Mi = supB(xi,ri)
h. Then

Ki = h(xi) = Exi [h(YTEi
∧τi

);TEi
< τi]

+ Exi [h(YTEi
∧τi

);TEi
≥ τi, Yτi

∈ B(xi, ri)]

+ Exi [h(YTEi
∧τi

);TEi
≥ τi, Yτi

/∈ B(xi, ri)]. (4.28)

We are going to estimate each term separately. Since Ei is compact, we have

Exi [h(YTEi
∧τi

);TEi
< τi] ≤ Kir

2γ
i Pxi(TEi

< τi) ≤ Kir
2γ
i .

Further,

Exi [h(YTEi
∧τi

);TEi
≥ τi, Yτi

∈ B(xi, ri)] ≤Mi(1− pi).

Inequality (4.26) implies in particular that there exists yi ∈ B(xi, (14c)
−1ri) with h(yi) ≤

Kir
2γ
i . We then have, by (4.21) and with c5 = C22

Kir
2γ
i ≥ h(yi) ≥ Eyi [h(Yτi

) : Yτi
/∈ B(xi, ri)]

≥ c5Exi [h(Yτi
) : Yτi

/∈ B(xi, ri)] . (4.29)

Therefore

Exi [h(YTEi
∧τi

);TEi
≥ τi, Yτi

/∈ B(xi, ri)] ≤ c6Kir
2γ
i

for the positive constant c6 = 1/c5. Consequently we have

Ki ≤ (1 + c6)Kir
2γ
i +Mi(1− pi). (4.30)

Rearranging, we get

Mi ≥ Ki

(
1− (1 + c6)r

2γ
i

1− pi

)
. (4.31)

Now choose

c1 ≤ min{ 1

14c

1

r

(
1

4

c2
1 + c6

)1/γ

, 1} .
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This choice of c1 implies that

2(1 + c6)r
2γ
i ≤ c2

2

( ri

14c

)γ

≤ pi ,

where the second inequality follows from (4.27). Therefore, 1− (1 + c6)r
2γ
i ≥ 1− pi/2, and

hence by use of (4.31)

Mi ≥ Ki

(
1− 1

2
pi

1− pi

)
> (1 +

pi

2
)Ki.

Using the definition of Mi and (4.21), there exists a point xi+1 ∈ B(xi, ri) ⊂ B(xi, 2ri) such

that

Ki+1 = h(xi+1) ≥ Ki

(
1 +

c2
4

( ri

14c

)γ)
.

Taking logarithms and writing

logKi+1 = logKi +
i∑

j=1

[logKj+1 − logKj],

we have

logKi+1 ≥ logK1 +
i∑

j=1

log
(
1 +

c2
4

( rj

14c

)γ)
≥ logK1 +

i∑
j=1

c2
4

rγ
j

(14c)γ

= logK1 +
c2
4

1

(14c)γ

i∑
j=1

(
c1r

jρ

)γ

≥ logK1 +
c2
4

1

(14c)γ
rγcγ1

i∑
j=1

j−ργ

≥ logK1 +
c2
4

1

(14c)γ
rγc1i

1−ργ

≥ logK1 +
1

(14c)γ
rγc1c3(i+ 1)1−ργ .

In the fifth line we used the fact that c1 < 1. For the last line recall that

c3 ≤ c22
−4−γ+ργ =

c2
23+γ

(
1

2

)1−ργ

≤ c2
23+γ

(
i

i+ 1

)1−ργ

,

implying that
c2
4
i1−ργ ≥ 21+γc3(1 + i)1−ργ .
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Therefore we have obtained that

Ki+1 ≥ K1 exp((14c)−γrγc1c3(i+ 1)1−ργ)

which is (4.25) for i+ 1. The proof is now finished. 2

Remark 4.19 The proof given above can be easily modified to provide a proof of Theorem

4.15. Indeed, one can modify slightly Lemma 4.16, take γ = 0 and choose any ρ > 1 in the

proof. The choice of K1 in (4.24) and Kj in (4.25) will not depend on r > 0, thus giving a

strong form of Harnack inequality.

5 Subordinate killed Brownian motion

5.1 Definitions

Let X = (Xt,Px) be a d-dimensional Brownian motion. Let D be a bounded connected open

set in Rd, and let τD = inf{t > 0 : Xt /∈ D} be the exit time of X from D. Define

XD
t =

{
Xt, t < τD ,
∂ , t ≥ τD ,

where ∂ is the cemetery. We call XD a Brownian motion killed upon exiting D, or simply,

a killed Brownian motion. The semigroup of XD will be denoted by (PD
t : t ≥ 0), and its

transition density by pD(t, x, y), t > 0, x, y ∈ D. The transition density pD(t, x, y) is strictly

positive, and hence the eigenfunction ϕ0 of the operator −∆|D corresponding to the smallest

eigenvalue λ0 can be chosen to be strictly positive, see, for instance, [24]. The potential

operator of XD is given by

GDf(x) =

∫ ∞

0

PD
t f(x) dt

and has a density GD(x, y), x, y ∈ D. Here, and further below, f denotes a nonnegative

Borel function on D. We recall the following well-known facts: If h is a nonnegative harmonic

function for XD (i.e., harmonic for ∆ in D), then both h and PD
t h are continuous functions

in D.

In this section we always assume that (PD
t : t ≥ 0) is intrinsically ultracontractive, that

is, for each t > 0 there exists a constant ct such that

pD(t, x, y) ≤ ctϕ0(x)ϕ0(y), x, y ∈ D, (5.1)

where ϕ0 is the positive eigenfunction corresponding to the smallest eigenvalue λ0 of the

Dirichlet Laplacian −∆|D. It is well known that (see, for instance, [25]) when (PD
t ; t ≥ 0)

is intrinsically ultracontractive there is c̃t > 0 such that

pD(t, x, y) ≥ c̃tϕ0(x)ϕ0(y), x, y ∈ D.
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Intrinsic ultracontractivity was introduced by Davies and Simon in [25]. It is well known that

(see, for instance, [1]) (PD
t : t ≥ 0) is intrinsically ultracontractive when D is a bounded

Lipschitz domain, or a Hölder domain of order 0, or a uniformly Hölder domain of order

β ∈ (0, 2).

Let S = (St : t ≥ 0) and T = (Tt : t ≥ 0) be two special subordinators. Suppose that

X, S and T are independent. We assume that the Laplace exponents of S and T , denoted

by φ and ψ respectively, are conjugate, i.e., λ = φ(λ)ψ(λ). We also assume that φ has the

representation (2.2) with b > 0 or µ(0,∞) = ∞. We define two subordinate processes Y D

and ZD by

Y D
t = XD(St), t ≥ 0

ZD
t = XD(Tt), t ≥ 0.

Then Y D = (Y D
t : t ≥ 0) and ZD = (ZD

t : t ≥ 0) are strong Markov processes on D. We call

Y D (resp. ZD) a subordinate killed Brownian motion. If we use ηt(ds) and θt(ds) to denote

the distributions of St and Tt respectively, the semigroups of Y D and ZD are given by

QD
t f(x) =

∫ ∞

0

PD
s f(x)ηt(ds),

RD
t f(x) =

∫ ∞

0

PD
s f(x)θt(ds),

respectively. The semigroup QD
t has a density given by

qD(t, x, y) =

∫ ∞

0

pD(s, x, y)ηt(ds) .

The semigroup RD
t will have a density

rD(t, x, y) =

∫ ∞

0

pD(s, x, y)θt(ds)

in the case b = 0, while for b > 0, RD
t is not absolutely continuous with respect to the

Lebesgue measure. Let U and V denote the potential measures of S and T , respectively.

Then there are decreasing functions u and v defined on (0,∞) such that U(dt) = u(t) dt and

V (dt) = bε0(dt) + v(t) dt. The potential kernels of Y D and ZD are given by

UDf(x) =

∫ ∞

0

PD
t f(x)U(dt) =

∫ ∞

0

PD
t f(x)u(t) dt,

V Df(x) =

∫ ∞

0

PD
t f(x)V (dt) = bf(x) +

∫ ∞

0

PD
t f(x) v(t) dt ,

respectively. The potential kernel UD has a density given by

UD(x, y) =

∫ ∞

0

pD(t, x, y)u(t) dt ,
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while V D needs not be absolutely continuous with respect to the Lebesgue measure. Note

that UD(x, y) is the Green function of the process Y D. For the process Y D we define the

potential of a Borel measure m on D by

UDm(x) :=

∫
D

UD(x, y)m(dy) =

∫ ∞

0

PD
t m(x)u(t) dt .

Let (UD
λ , λ > 0) be the resolvent of the semigroup (QD

t , t ≥ 0). Then UD
λ is given by a

kernel which is absolutely continuous with respect to the Lebesgue measure. Moreover, one

can easily show that for a bounded Borel function f vanishing outside a compact subset of

D, the functions x 7→ UD
λ f(x), λ > 0, and x 7→ UDf(x) are continuous. This implies (e.g.,

[13], p.266) that excessive functions of Y D are lower semicontinuous.

Recall that a measurable function s : D → [0,∞] is excessive for Y D (or QD
t ), if QD

t s ≤ s

for all t ≥ 0 and s = limt→0Q
D
t s. We will denote the family of all excessive function for Y D

by S(Y D). The notation S(XD) and S(ZD) are now self-explanatory.

A measurable function h : D → [0,∞] is harmonic for Y D if h is not identically infinite

in D and if for every relatively compact open subset U ⊂ U ⊂ D,

h(x) = Ex[h(Y D(τY
U ))], ∀x ∈ U,

where τY
U = inf{t : Y D

t /∈ U} is the first exit time of Y D from U . We will denote the family

of all excessive function for Y D by H+(Y D). Similarly, H+(XD) will denote the family of all

nonnegative harmonic functions for XD. It is well known that H+(·) ⊂ S(·).

5.2 Representation of excessive and harmonic functions of subor-
dinate process

The factorization in the next proposition is similar in spirit to Theorem 4.1 (5) in [50].

Proposition 5.1 (a) For any nonnegative Borel function f on D we have

UDV Df(x) = V DUDf(x) = GDf(x), x ∈ D.

(b) For any Borel measure m on D we have

V DUDm(x) = GDm(x) .

Proof. (a) We are only going to show that UDV Df(x) = GDf(x) for all x ∈ D. For the

proof of V DUDf(x) = GDf(x) see part (b). For any nonnegative Borel function f on D, by
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using the Markov property and Theorem 2.6 we get that

UDV Df(x) =

∫ ∞

0

PD
t V

Df(x)u(t)dt

=

∫ ∞

0

PD
t

(
bf(x) +

∫ ∞

0

PD
s f(x)v(s)ds

)
u(t)dt

= bUDf(x) +

∫ ∞

0

PD
t

(∫ ∞

0

PD
s f(x)v(s)ds

)
u(t)dt

= bUDf(x) +

∫ ∞

0

∫ ∞

0

PD
t+sf(x)v(s)ds u(t)dt

= bUDf(x) +

∫ ∞

0

∫ ∞

t

PD
r f(x)v(r − t)dr u(t)dt

= bUDf(x) +

∫ ∞

0

(∫ r

0

u(t)v(r − t)dt

)
PD

r f(x)dr

=

∫ ∞

0

(
bu(r) +

∫ r

0

u(t)v(r − t)dt

)
PD

r f(x)dr

=

∫ ∞

0

PD
r f(x)dr = GDf(x).

(b) Similarly as above,

V DUDm(x) = bUDm(x) +

∫ ∞

0

PD
t U

Dm(x)v(t) dt

= bUDm(x) +

∫ ∞

0

PD
t

(∫ ∞

0

PD
s m(x)u(s) ds

)
v(t) dt

= bUDm(x) +

∫ ∞

0

∫ ∞

0

PD
t+sm(x)u(s) ds v(t) dt

= bUDm(x) +

∫ ∞

0

∫ ∞

r

PD
r m(x)u(r − t) dr v(t) dt

= bUDm(x) +

∫ ∞

0

(∫ r

0

u(r − t)v(t) dt

)
PD

r m(x) dr

=

∫ ∞

0

(
b+

∫ r

0

u(r − t)v(t) dt

)
PD

r m(x) dr

=

∫ ∞

0

PD
r m(x) dr = GDm(x) .

2

Proposition 5.2 Let g be an excessive function for Y D. Then V Dg is excessive for XD.
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Proof. We first observe that if g is excessive with respect to Y D, then g is the increasing

limit of UDfn for some fn. Hence it follows from Proposition 5.1 that

V Dg = lim
n→∞

V DUDfn = lim
n→∞

GDfn,

which implies that V Dg is either identically infinite or excessive with respect to XD. We

prove now that V Dg is not identically infinite. In fact, since g is excessive with respect to

Y D, there exists x0 ∈ D such that for every t > 0,

∞ > g(x0) ≥ QD
t g(x0) =

∫ ∞

0

PD
s g(x0)ρt(ds).

Thus there is s > 0 such that PD
s g(x0) is finite. Hence

∞ > PD
s g(x0) =

∫
D

pD(s, x0, y)g(y) dy ≥ c̃sϕ0(x0)

∫
D

ϕ0(y)g(y) dy,

so we have
∫

D
ϕ0(y)g(y) dy <∞. Consequently∫

D

V Dg(x)ϕ0(x) dx =

∫
D

g(x)V Dϕ0(x) dx

=

∫
D

g(x)

(
bϕ0(x) +

∫ ∞

0

PD
t ϕ0(x)v(t) dt

)
dx

=

∫
D

g(x)

(
bϕ0(x) +

∫ ∞

0

e−λ0tϕ0(x)v(t) dt

)
dx

=

∫
D

ϕ0(x)g(x) dx

(
b+

∫ ∞

0

e−λ0tv(t) dt

)
<∞ .

Therefore s = V Dg is not identically infinite in D. 2

Remark 5.3 Note that the proposition above is valid with Y D and ZD interchanged: If g is

excessive for ZD, then UDg is excessive for XD. Using this we can easily get the following

simple fact: If f and g are two nonnegative Borel functions on D such that V Df and V Dg

are not identically infinite, and such that V Df = V Dg a.e., then f = g a.e. In fact, since

V Df and V Dg are excessive for ZD, we know that GDf = UDV Df and GDg = UDV Dg are

excessive for XD. Moreover, by the absolute continuity of UD, we have that GDf = GDg.

The a.e. equality of f and g follows from the uniqueness principle for GD.

The second part of Proposition 5.1 shows that if s = GDm is the potential of a measure,

then s = V Dg where g = UDm is excessive for Y D. The function g can be written in the
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following way:

g(x) =

∫ ∞

0

PD
s m(x)u(s) ds

=

∫ ∞

0

PD
s m(x)

(
u(∞) +

∫ ∞

s

−du(t)
)
ds

=

∫ ∞

0

PD
s m(x)u(∞) ds+

∫ ∞

0

PD
s m(x)

(∫ ∞

s

−du(t)
)
ds

= u(∞)s(x) +

∫ ∞

0

(∫ t

0

PD
s m(x) ds

)
(−du(t))

= u(∞)s(x) +

∫ ∞

0

(PD
t s(x)− s(x)) du(t) . (5.2)

In the next proposition we will show that every excessive function s for XD can be

represented as a potential V Dg, where g, given by (5.2), is excessive for Y D. We need the

following important lemma.

Lemma 5.4 Let h be a nonnegative harmonic function for XD, and let

g(x) = u(∞)h(x) +

∫ ∞

0

(PD
t h(x)− h(x)) du(t) . (5.3)

Then g is continuous.

Proof. For any ε > 0 it holds that |
∫∞

ε
du(t)| ≤ u(ε). Hence from the continuity of h and

PD
t h it follows by the dominated convergence theorem that the function

x 7→
∫ ∞

ε

(PD
t h(x)− h(x)) du(t), x ∈ D,

is continuous. Therefore we only need to prove that the function

x 7→
∫ ε

0

(PD
t h(x)− h(x)) du(t), x ∈ D,

is continuous. For any x0 ∈ D choose r > 0 such that B(x0, 2r) ⊂ D, and let B = B(x0, r).

It is enough to show that

lim
ε↓0

∫ ε

0

(PD
t h(x)− h(x)) du(t) = 0

uniformly on B, the closure of B. For any x ∈ B, h(Xt∧τB
) is a Px-martingale. Therefore,

0 ≤ h(x)− PD
t h(x) = Ex[h(Xt∧τB

)]− Ex[h(Xt), t < τD]

= Ex[h(Xt), t < τB] + Ex[h(XτB
), τB ≤ t]

−Ex[h(Xt), t < τB]− Ex[h(Xt), τB ≤ t < τD]

= Ex[h(XτB
), τB ≤ t]− Ex[h(Xt), τB ≤ t < τD]

≤ Ex[h(XτB
), τB ≤ t] ≤MPx(τB ≤ t) , (5.4)
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where M is a constant such that h(y) ≤ M for all y ∈ B. It is a standard fact that there

exists a constant c > 0 such that for every x ∈ B it holds that Px(τB ≤ t) ≤ ct, for all t > 0.

Therefore, 0 ≤ h(x)− PD
t h(x) ≤ Mct, for all x ∈ B and all t > 0. It follows that for every

x ∈ B, ∣∣∣∣∫ ε

0

(PD
t h− h)(x) du(t)

∣∣∣∣ ≤Mc

∣∣∣∣∫ ε

0

t du(t)

∣∣∣∣ .
By use of (2.14) we get that

lim
ε↓0

∫ ε

0

(PD
t h(x)− h(x)) du(t) = 0

uniformly on B. The proof is now complete. 2

Proposition 5.5 If s is an excessive function with respect to XD, then

s(x) = V Dg(x), x ∈ D ,

where g is the excessive function for Y D given by the formula

g(x) = u(∞)s(x) +

∫ ∞

0

(PD
t s(x)− s(x)) du(t) (5.5)

= ψ(0)s(x) +

∫ ∞

0

(s(x)− PD
t s(x)) dν(t) . (5.6)

Proof. We know that the result is true when s is the potential of a measure. Let s be an

arbitrary excessive function of XD. By the Riesz decomposition theorem (see, for instance,

Chapter 6 of [13]), s = GDm + h, where m is a measure on D, and h is a nonnegative har-

monic function for XD. By linearity, it suffices to prove the result for nonnegative harmonic

functions.

In the rest of the proof we assume therefore that s is a nonnegative harmonic function

for XD. Define the function g by formula (5.5). We have to prove that g is excessive for Y D

and s = V Dg. By Lemma 5.4, we know that g is continuous.

Further, since s is excessive, there exists a sequence of nonnegative functions fn such that

sn := GDfn increases to s. Then also PD
t sn ↑ PD

t s, implying sn − PD
t sn → s− PD

t s. If

gn = u(∞)sn +

∫ ∞

0

(sn − PD
t sn)(−du(t)) ,
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then we know that sn = V Dgn and gn is excessive for Y D. By use of Fatou’s lemma we get

that

g = u(∞)s+

∫ ∞

0

(s− PD
t s)(−du(t))

= lim
n
u(∞)sn +

∫ ∞

0

lim
n

(sn − PD
t sn)(−du(t))

≤ lim inf
n

(
u(∞)sn +

∫ ∞

0

(sn − PD
t sn)(−du(t))

)
= lim inf

n
gn .

This implies (again by Fatou’s lemma) that

V Dg ≤ V D(lim inf
n

gn) (5.7)

≤ lim inf
n

V Dgn = lim inf
n

sn = s .

For any nonnegative function f , put GD
1 f(x) :=

∫∞
0
e−tPD

t f(x) dt, and define s1 := s −
GD

1 s. Using an argument similar to that of the proof of Proposition 5.2 we can show that GDs

is not identically infinite. Thus by the resolvent equation we get GDs1 = GDs−GDGD
1 s =

GD
1 s, or equivalently,

s(x) = s1(x) +GD
1 s(x) = s1(x) +GDs1(x), x ∈ D,

By use of formula (5.2) for the potential GDs1, Fubini’s theorem and the easy fact that V D

and GD
1 commute, we have

GD
1 s = GDs1 = V D

(
u(∞)GDs1 +

∫ ∞

0

(PD
t G

Ds1 −GDs1) du(t)

)
= V D

(
u(∞)GD

1 s+

∫ ∞

0

(PD
t G

D
1 s−GD

1 s) du(t)

)
= GD

1 V
D

(
u(∞)s+

∫ ∞

0

(PD
t s− s) du(t)

)
.

By the uniqueness principle it follows that

s = V D

(
u(∞)s+

∫ ∞

0

(PD
t s− s) du(t)

)
= V Dg a.e. in D .

Together with (5.7), this implies that V Dg = V D(lim infn gn) a.e. From Remark 5.3 it follows

that

g = lim inf
n

gn a.e. (5.8)
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By Fatou’s lemma and the Y D-excessiveness of gn we get that,

λUD
λ g = λUD

λ (lim inf gn) ≤ lim inf
n

λUD
λ gn ≤ lim inf gn = g a.e .

We want to show that, in fact, λUD
λ g ≤ g everywhere, i.e., that g is supermedian. In order

to do this we define g̃ := supn∈N nU
D
n g. Then g̃ ≤ g a.e., hence, by the absolute continuity

of UD
n , nUD

n g̃ ≤ nUD
n g ≤ g̃ everywhere. This implies that λ 7→ λUD

λ g̃ is increasing (see, e.g.,

Lemma 3.6 in [11]), hence g̃ is supermedian. The same argument gives that n 7→ nUD
n g is

increasing a.e. Define
˜̃g := sup

λ>0
λUD

λ g̃ = sup
n
nUD

n g̃ .

Then ˜̃g is excessive, and therefore lower semicontinuous. Moreover,

˜̃g = sup
n
nUD

n g̃ ≤ g̃ ≤ g a.e.

Combining this with the continuity of g and the lower semicontinuity of ˜̃g, we can get

that ˜̃g ≤ g everywhere. Further, for x ∈ D such that g̃(x) < ∞, we have by the monotone

convergence theorem and the resolvent equation

λUD
λ g̃(x) = lim

n→∞
λUD

λ (nUD
n )g(x)

= lim
n→∞

nλ

n− λ
(UD

λ g(x)− UD
n g(x)

= λUD
λ g(x) .

Since g̃ <∞ a.e., we have

λUD
λ g̃ = λUD

λ g a.e.

Together with the definition of g̃ this implies that

˜̃g = g̃ a.e. (5.9)

By the continuity of g and the fact that the measures nUD
n (x, ·) converge weakly to the point

mass at x, we have that for every x ∈ D

g(x) ≤ lim inf
n→∞

g(x) ≤ g̃(x) .

Hence, by using (5.9), it follows that g ≤ ˜̃g a.e. Since we already proved that ˜̃g ≤ g, it holds

that g = ˜̃g a.e. By the absolute continuity of UD
λ , g ≥ ˜̃g ≥ λUD

λ
˜̃g = λUD

λ g everywhere, i.e.,

g is supermedian.

Since it is well known (see e.g. [22]) that a supermedian function which is lower semi-

continuous is in fact excessive, this proves that g is excessive for Y D. By Proposition 5.2 we

70



then have that V Dg ≤ s is excessive for XD. Moreover, V Dg = s a.e., and both functions

being excessive for XD, they are equal everywhere.

It remains to notice that the formula (5.6) follows immediately from (5.5) by noting that

u(∞) = ψ(0) and du(t) = −dν(t). 2

Propositions 5.1 and 5.5 can be combined in the following theorem containing additional

information on harmonic functions.

Theorem 5.6 If s is excessive with respect to XD, then there is a function g excessive with

respect to Y D such that s = V Dg. The function g is given by the formula (5.2). Furthermore,

if s is harmonic with respect to XD, then g is harmonic with respect to Y D.

Conversely, if g is excessive with respect to Y D, then the function s defined by s = V Dg

is excessive with respect to XD. If, moreover, g is harmonic with respect to Y D, then s is

harmonic with respect to XD.

Every nonnegative harmonic function for Y D is continuous.

Proof. It remains to show the statements about harmonic functions. First note that every

excessive functions g for Y D admits the Riesz decomposition g = UDm + h where m is a

Borel measure on D and h is harmonic function of Y D (see Chapter 6 of [13] and note that

the assumptions on pp. 265, 266 are satisfied). We have already mentioned that excessive

functions of XD admit such decomposition. Since excessive functions of XD and Y D are in 1-

1 correspondence, and since potentials of measures of XD and Y D are in 1-1 correspondence,

the same must hold for nonnegative harmonic functions of XD and Y D.

The continuity of nonnegative harmonic functions for Y D follows from Lemma 5.4 and

Proposition 5.5. 2

It follows from the theorem above that V D is a bijection from S(Y D) to S(XD), and is

also a bijection from H+(Y D) to H+(XD). We are going to use (V D)−1 to denote the inverse

map and so we have for any s ∈ S(Y D),

(V D)−1s(x) = u(∞)s(x) +

∫ ∞

0

(PD
t s(x)− s(x)) du(t) (5.10)

= ψ(0)s(x) +

∫ ∞

0

(s(x)− PD
t s(x)) dν(t) .

Although the map V D is order preserving, we do not know if the inverse map (V D)−1 is

order preserving on S(XD). However from the formula above we can see that (V D)−1 is

order preserving on H+(XD).

By combining Proposition 5.1 and Theorem 5.6 we get the following relation which we

are going to use later.

71



Proposition 5.7 For any x, y ∈ D, we have

UD(x, y) = (V D)−1(GD(·, y))(x).

5.3 Harnack inequality for subordinate process

In this subsection we are going to prove the Harnack inequality for positive harmonic func-

tions for the process Y D under the assumption that D is a bounded domain such that (PD
t )

is intrinsic ultracontractive. The proof we offer uses the intrinsic ultracontractivity in an

essential way, and differs from the existing proofs of Harnack inequalities in other settings.

We first recall that since (PD
t : t ≥ 0) is intrinsic ultracontractive, by Theorem 4.2.5 of

[24] there exists T > 0 such that

1

2
e−λ0tϕ0(x)ϕ0(y) ≤ pD(t, x, y) ≤ 3

2
e−λ0tϕ0(x)ϕ0(y), t ≥ T, x, y ∈ D. (5.11)

Lemma 5.8 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracontrac-

tive. There exists a constant C > 0 such that

V Dg ≤ Cg, ∀g ∈ S(Y D) . (5.12)

Proof. Let T be the constant from (5.11). For any nonnegative function f ,

UDf(x) =

(∫ T

0

PD
t f(x)u(t) dt+

∫ ∞

T

PD
t f(x)u(t) dt

)
.

We obviously have ∫ T

0

PD
t f(x)u(t) dt ≥ u(T )

∫ T

0

PD
t f(x) dt.

By using (5.11) we see that∫ ∞

T

PD
t f(x)u(t) dt ≥

(
1

2

∫ ∞

T

e−λ0tu(t) dt

)∫
D

ϕ0(x)ϕ0(y)f(y) dy

= c1

∫
D

ϕ0(x)ϕ0(y)f(y) dy

and ∫ ∞

T

PD
t f(x) dt ≤

(
3

2

∫ ∞

T

e−λ0tdt

)∫
D

ϕ0(x)ϕ0(y)f(y)dy

= c2

∫
D

ϕ0(x)ϕ0(y)f(y)dy .
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The last two displays imply that∫ ∞

T

PD
t f(x)u(t) dt ≥ c1

c2

∫ ∞

T

PD
t f(x) dt .

Therefore,

UDf(x) ≥ u(T )

∫ T

0

PD
t f(x) dt+

c1
c2

∫ ∞

T

PD
t f(x) dt

≥ C

∫ ∞

0

PD
t f(x) dt = CGDf(x) .

From GDf(x) = V DUDf(x), we obtain V DUDf(x) ≤ CUDf(x). Since every g ∈ S(Y D) is

an increasing limit of potentials UDf(x), the claim follows. 2

Lemma 5.9 Suppose D is a bounded domain such that (PD
t ) is intrinsic ultracontractive.

If g ∈ S(Y D), then for any x ∈ D,

g(x) ≥ 1

2C
e−λ0T 1

ψ(λ0)
ϕ0(x)

∫
D

g(y)ϕ0(y) dy,

where T is the constant in (5.11) and C is the constant in (5.12).

Proof. From the lemma above we know that, for every x ∈ D, V Dg(x) ≤ Cg(x), where C

is the constant in (5.12). Since V Dg is in S(XD), we have

V Dg(x) ≥
∫

D

pD(T, x, y)V Dg(y) dy

≥ 1

2
e−λ0Tϕ0(x)

∫
D

ϕ0(y)V
Dg(y) dy.

Hence

Cg(x) ≥ V Dg(x) ≥ 1

2
e−λ0Tϕ0(x)

∫
D

ϕ0(y)V
Dg(y) dy

=
1

2
e−λ0Tϕ0(x)

∫
D

g(y)V Dϕ0(y) dy

=
1

2
e−λ0T 1

ψ(λ0)
ϕ0(x)

∫
D

g(y)ϕ0(y) dy ,

where the last line follows from

V Dϕ0(y) =

∫ ∞

0

PD
t ϕ0(y)V (dt) =

∫ ∞

0

e−λ0tϕ0(y)V (dt)

= ϕ0(y)LV (λ0) =
ϕ0(y)

ψ(λ0)
.
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2

In particular, it follows from the lemma that if g ∈ S(Y D) is not identically infinite, then∫
D
ϕ0(y)g(y) dy <∞.

Theorem 5.10 Suppose D is a bounded domain such that (PD
t ) is intrinsic ultracontractive.

For any compact subset K of D, there exists a constant C depending on K and D such that

for any h ∈ H+(Y D),

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

Proof. If the conclusion of the theorem were not true, for any n ≥ 1, there would exist

hn ∈ H+(Y D) such that

sup
x∈K

hn(x) ≥ n2n inf
x∈K

hn(x). (5.13)

By the lemma above, we may assume without loss of generality that∫
D

hn(y)ϕ0(y)dy = 1, n ≥ 1.

Define

h(x) =
∞∑

n=1

2−nhn(x), x ∈ D.

Then ∫
D

h(y)ϕ0(y)dy = 1 ,

and so h ∈ H+(Y D). By (5.13) and the lemma above, for every n ≥ 1, there exists xn ∈ K

such that hn(xn) ≥ n2nc1 where

c1 =
1

2C
e−λ0T 1

ψ(λ0)
inf
x∈K

ϕ0(x)

with T as in (5.11) and C in (5.12). Therefore we have h(xn) ≥ nc1. Since K is compact,

there is a convergent subsequence of xn. Let x0 be the limit of this convergent subsequence.

Theorem 5.6 implies that h is continuous, and so we have h(x0) = ∞. This is a contradiction.

So the conclusion of the theorem is valid. 2

5.4 Martin boundary of subordinate process

In this subsection we assume that d ≥ 3 and that D is a bounded Lipschitz domain in Rd.

Fix a point x0 ∈ D and set

MD(x, y) =
GD(x, y)

GD(x0, y)
, x, y ∈ D.
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It is well known that the limit limD3y→z M
D(x, y) exists for every x ∈ D and z ∈ ∂D. The

function MD(x, z) := limD3y→z M
D(x, y) on D × ∂D defined above is called the Martin

kernel of XD based at x0. The Martin boundary and minimal Martin boundary of XD both

coincide with the Euclidean boundary ∂D. For these and other results about the Martin

boundary of XD one can see [2]. One of the goals of this section is to determine the Martin

boundary of Y D.

By using the Harnack inequality, one can easily show that (see, for instance, pages 17–18

of [26]), if (hj) is a sequence of functions in H+(XD) converging pointwise to a function

h ∈ H+(XD), then (hj) is locally uniformly bounded in D and equicontinuous at every point

in D. Using this, one can get that, if (hj) is a sequence of functions in H+(XD) converging

pointwise to a function h ∈ H+(XD), then (hj) converges to h uniformly on compact subsets

of D. We are going to use this fact below.

Lemma 5.11 Suppose that x0 ∈ D is a fixed point.

(a) Let (xj : j ≥ 1) be a sequence of points in D converging to x ∈ D and let (hj) be

a sequence of functions in H+(XD) with hj(x0) = 1 for all j. If the sequence (hj)

converges to a function h ∈ H+(XD), then for each t > 0

lim
j→∞

PD
t hj(xj) = PD

t h(x) .

(b) If (yj : j ≥ 1) is a sequence of points in D such that limj yj = z ∈ ∂D, then for each

t > 0 and for each x ∈ D

lim
j→∞

PD
t

(
GD(·, yj)

GD(x0, yj)

)
(x) = PD

t (MD(·, z))(x) .

Proof. (a) For each j ∈ N, since hj(x0) = 1, there exists a probability measure µj on ∂D

such that

hj(x) =

∫
∂D

MD(x, z)µj(dz), x ∈ D.

Similarly, there exists a probability measure µ on ∂D such that

h(x) =

∫
∂D

MD(x, z)µ(dz), x ∈ D.

Let D0 be a relatively compact open subset of D such that x0 ∈ D0, and also x, xj ∈ D0.
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Then

|PD
t hj(xj)− PD

t h(x)|

=

∣∣∣∣∫
D

pD(t, xj, y)hj(y)dy −
∫

D

pD(t, x, y)h(y)dy

∣∣∣∣
≤
∣∣∣∣∫

D0

pD(t, xj, y)hj(y)dy −
∫

D0

pD(t, x, y)h(y)dy

∣∣∣∣
+

∫
D\D0

pD(t, xj, y)hj(y) dy +

∫
D\D0

pD(t, x, y)h(y) dy .

Recall that (see Section 6.2 of [23], for instance) there exists a constant c > 0 such that

GD(x, y)GD(y, w)

GD(x,w)
≤ c

(
1

|x− y|d−2
+

1

|y − w|d−2

)
, x, y, w ∈ D. (5.14)

From this and the definition of the Martin kernel we immediately get

GD(x0, y)M
D(y, z) ≤ c

(
1

|x0 − y|d−2
+

1

|y − z|d−2

)
, y ∈ D, z ∈ ∂D. (5.15)

Recall (see [24], p.131, Theorem 4.6.11) that there is a constant c > 0 such that

ϕ0(x0)ϕ0(y) ≤ cGD(x0, y), y ∈ D .

By the boundedness of ϕ0 we have that ϕ0(u) ≤ c1ϕ0(x0) for every u ∈ D. Hence it follows

from the last display that

ϕ0(u)ϕ0(y) ≤ cGD(x0, y), u, y ∈ D , (5.16)

with a possibly different constant c > 0. Now using (5.1), (5.15) and (5.16) we get that for

any u ∈ D, ∫
D\D0

pD(t, u, y)h(y) dy ≤ ctϕ0(u)

∫
D\D0

ϕ0(y)h(y) dy

= ctϕ0(u)

∫
D\D0

dy ϕ0(y)

∫
∂D

MD(y, z)µ(dz)

= ctϕ0(u)

∫
∂D

µ(dz)

∫
D\D0

ϕ0(y)M
D(y, z) dy

≤ cct

∫
∂D

µ(dz)

∫
D\D0

GD(x0, y)M
D(y, z) dy

≤ cct

∫
∂D

µ(dz)

∫
D\D0

(
1

|y − z|d−2
+

1

|x0 − y|d−2

)
dy

≤ cct

∫
∂D

µ(dz)

∫
D\D0

sup
z∈∂D

(
1

|y − z|d−2
+

1

|x0 − y|d−2

)
dy

= cct

∫
D\D0

sup
z∈∂D

(
1

|y − z|d−2
+

1

|x0 − y|d−2

)
dy .
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The same estimate holds with hj instead of h. For a given ε > 0 choose D0 large enough so

that the last line in the display above is less than ε. Put A = supD0
h. Take j0 ∈ N large

enough so that for all j ≥ j0 we have

|pD(t, xj, y)− pD(t, x, y)| ≤ ε and |hj(y)− h(y)| < ε

for all y ∈ D0. Then∣∣∣∣∫
D0

pD(t, xj, y)hj(y)dy −
∫

D0

pD(t, x, y)h(y)dy

∣∣∣∣
≤
∫

D0

pD(t, xj, y)|hj(y)− h(y)|dy +

∫
D0

|pD(t, xj, y)− pD(t, x, y)|h(y)dy

≤ ε+ A|D0|ε,

where |D0| stands for the Lebesgue measure of D0. This proves the first part.

(b) We proceed similarly as in the proof of the first part. The only difference is that we use

(5.14) to get the following estimate:∫
D\D0

pD(t, x, y)
GD(y, yj)

GD(x0, yj)
dy

≤ ctϕ0(x)

∫
D\D0

ϕ0(y)
GD(y, yj)

GD(x0, yj)
dy

≤ cct

∫
D\D0

GD(x0, y)G
D(y, yj)

GD(x0, yj)
dy

≤ cct

∫
D\D0

(|x0 − y|2−d + |y − yj|2−d) dy

≤ cct sup
j

∫
D\D0

(|x0 − y|2−d + |y − yj|2−d) dy .

The corresponding estimate for MD(·, z) is given in part (a) of the lemma. For a given ε > 0

find D0 large enough so that the last line in the display above is less than ε. Then find

j0 ∈ N such that for all j ≥ j0,∣∣∣∣ GD(y, yj)

GD(x0, yj)
−MD(y, z)

∣∣∣∣ < ε, y ∈ D0.

Then ∫
D0

pD(t, x, y)

∣∣∣∣ GD(y, yn)

GD(x0, yj)
−MD(y, z)

∣∣∣∣ dy < ε for all j ≥ j0 .

This proves the second part. 2
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Theorem 5.12 Suppose that D ⊂ Rd, d ≥ 3 is a bounded Lipschitz domain and let x0 ∈ D
be a fixed point.

(a) If (xj) is a sequence of points in D converging to x ∈ D and (hj) is a sequence of

functions in H+(XD) converging to a function h ∈ H+(XD), then

lim
j

(V D)−1hj(xj) = (V D)−1h(x) .

(b) If (yj) is a sequence of points in D converging to z ∈ ∂D, then for every x ∈ D,

lim
j

(V D)−1(
GD(·, yj)

GD(x0, yj)
)(x) = lim

j

(V D)−1(GD(·, yj))(x)

GD(x0, yj)
= (V D)−1MD(·, z)(x) .

Proof. (a) Normalizing by hj(x0) if necessary, we may assume without loss of generality

that hj(x0) = 1 for all j ≥ 1. Let ε > 0. By (5.10) we have

|(V D)−1hj(xj)− (V D)−1h(x)|

=

∣∣∣∣∫ ∞

0

(PD
t hj(xj)− hj(xj) du(t)−

∫ ∞

0

(PD
t h(x)− h(x)) du(t) + u(∞)(hj(xj)− h(x))

∣∣∣∣
≤

∫ ε

0

(PD
t hj(xj)− hj(xj)) du(t) +

∫ ε

0

(PD
t h(x)− h(x)) du(t)

+

∣∣∣∣∫ ∞

ε

(PD
t hj(xj)− hj(xj)) du(t)−

∫ ∞

ε

(PD
t h(x)− h(x)) du(t)

∣∣∣∣
+u(∞)|hj(xj)− h(x)| .

The last term clearly converges to zero as j →∞.

For any x ∈ D choose r > 0 such that B(x, 2r) ⊂ D and put B = B(x, r). Without loss

of generality we may and do assume that xj ∈ B for all j ≥ 1. Since h and hj are continuous

in D and (hj) is locally uniformly bounded in D, there is a constant M > 0 such that h and

hj, j = 1, 2, . . . , are all bounded from above by M on B. Now from the proof of Lemma 5.4,

more precisely from display (5.4), it follows that there is a constant c1 > 0 such that

0 ≤ h(y)− PD
t h(y) ≤ c1t, y ∈ B ,

and

0 ≤ hj(y)− PD
t hj(y) ≤ c1t, y ∈ B, j ≥ 1 .

Therefore we have, ∣∣∣∣∫ ε

0

(PD
t h− h)(y) du(t)

∣∣∣∣ ≤ c1

∣∣∣∣∫ ε

0

t du(t)

∣∣∣∣ , y ∈ B
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and ∣∣∣∣∫ ε

0

(PD
t hj − hj)(y) du(t)

∣∣∣∣ ≤ c1

∣∣∣∣∫ ε

0

t du(t)

∣∣∣∣ , y ∈ B , j ≥ 1.

Using (2.14) we get that

lim
ε↓0

∫ ε

0

(PD
t h(x)− h(x)) du(t) = 0 ,

and

lim
ε↓0

∫ ε

0

(PD
t hj(xj)− hj(xj)) du(t) = 0 .

Further,∣∣∣∣∫ ∞

ε

(PD
t hj(xj)− hj(xj)) du(t)−

∫ ∞

ε

(PD
t h(x)− h(x)) du(t)

∣∣∣∣
≤

∫ ∞

ε

(|hj(xj)− h(xj)|+ |h(xj)− h(x)|) du(t) +

∫ ∞

ε

|PD
t hj(xj)− PD

t h(x)| du(t) .

Since |hj(xj) − h(xj)| + |h(xj) − h(x)| ≤ 2M and |PD
t hj(xj) − PD

t h(x)| ≤ M for all j ≥ 1

and all x ∈ B, we can apply Lemma 5.11(a) and the dominated convergence theorem to get

lim
j→∞

∫ ∞

ε

(|hj(xj)− h(xj)|+ |h(xj)− h(x)|) du(t) = 0

and

lim
j→∞

∫ ∞

ε

|PD
t hj(xj)− PD

t h(x)|du(t) = 0.

The proof of (a) is now complete.

(b) The proof of (b) is similar to (a). The only difference is that we use 5.11(b) in this

case. We omit the details. 2

Let us define the function KD
Y (x, z) := (V D)−1MD(·, z)(x) on D × ∂D. For each fixed

z ∈ ∂D, KD
Y (·, z) ∈ H+(Y D). By the first part of Theorem 5.12, we know that KD

Y (x, z) is

continuous on D × ∂D. Let (yj) be a sequence of points in D converging to z ∈ ∂D, then

from Theorem 5.12(b) we get that

KD
Y (x, z) = lim

j→∞
(V D)−1

(
GD(·, yj)

GD(x0, yj)

)
(x)

= lim
j→∞

(V D)−1(GD(·, yj))(x)

GD(x0, yj)

= lim
j→∞

UD(x, yj)

GD(x0, yj)
, (5.17)
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where the last line follows from Proposition 5.7. In particular, there exists the limit

lim
j→∞

UD(x0, yj)

GD(x0, yj)
= KD

Z (x0, z) . (5.18)

Now we define a function MD
Y on D × ∂D by

MD
Y (x, z) :=

KD
Y (x, z)

KD
Y (x0, z)

, x ∈ D, z ∈ ∂D. (5.19)

For each z ∈ ∂D, MD
Y (·, z) ∈ H+(Y D). Moreover, MD

Y is jointly continuous on D × ∂D.

From the definition above and (5.17) we can easily see that

lim
D3y→z

UD(x, y)

UD(x0, y)
= MD

Y (x, z), x ∈ D, z ∈ ∂D. (5.20)

Theorem 5.13 Let D ⊂ Rd, d ≥ 3, be a bounded Lipschitz domain. The Martin boundary

and the minimal Martin boundary of Y D both coincide with the Euclidean boundary ∂D, and

the Martin kernel based at x0 is given by the function MD
Y .

Proof. The fact that MD
Y is the Martin kernel of Y D based at x0 has been proven in the

paragraph above. It follows from Theorem 5.6 that when z1 and z2 are two distinct points on

∂D, the functions MD
Y (·, z1) and MD

Y (·, z2) are not identical. Therefore the Martin boundary

of Y D coincides with the Euclidean boundary ∂D. Since MD(·, z) ∈ H+(XD) is minimal, by

the order preserving property of (V D)−1 we know that MD
Y (·, z) ∈ H+(Y D) is also minimal.

Therefore the minimal Martin boundary of YD also coincides with the Euclidean boundary

∂D. 2

It follows from Theorem 5.13 and the general theory of Martin boundary that for any

g ∈ H+(Y D) there exists a finite measure n on ∂D such that

g(x) =

∫
∂D

MD
Y (x, z)n(dz), x ∈ D.

The measure n is sometimes called the Martin measure of g. The following result gives the

relation between the Martin measure of h ∈ H+(XD) and the Martin measure of (V D)−1h ∈
H+(Y D).

Proposition 5.14 If h ∈ H+(XD) has the representation

h(x) =

∫
∂D

MD(x, z)m(dz), x ∈ D,

then

(V D)−1h(x) =

∫
∂D

MD
Y (x, z)n(dz), x ∈ D

with n(dz) = KD
Y (x0, z)m(dz).
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Proof. By assumption we have

h(x) =

∫
∂D

MD(x, z)m(dz), x ∈ D.

Using (5.5) and Fubini’s theorem we get

(V D)−1h(x) =

∫
∂D

(V D)−1(MD(·, z))(x)m(dz)

=

∫
∂D

MD
Y (x, z)KD

Y (x0, z)m(dz) =

∫
∂D

MD
Y (x, z)n(dz) ,

with n(dz) = KD
Y (x0, z)m(dz). The proof is now complete. 2

From Theorem 5.12 we know that (V D)−1 : H+(XD) → H+(Y D) is continuous with

respect to topologies of locally uniform convergence. In the next result we show that V D :

H+(Y D) → H+(XD) is also continuous.

Proposition 5.15 Let (gj, j ≥ 0) be a sequence of functions in H+(Y D) converging point-

wise to the function g ∈ H+(Y D). Then limj→∞ V Dgj(x) = V Dg(x) for every x ∈ D.

Proof. Without loss of generality we may assume that gj(x0) = 1 for all j ∈ N. Then there

exist probability measures nj, j ∈ N, and n on ∂D such that gj(x) =
∫

∂D
MD

Y (x, z)nj(dz), j ∈
N, and g(x) =

∫
∂D
MD

Y (x, z)n(dz). It is easy to show that the convergence of the harmonic

functions hj implies that nj → n weakly. Let V Dgj(x) =
∫

∂D
MD(x, z)mj(dz) and V Dg(x) =∫

∂D
MD(x, z)m(dz). Then nj(dz) = KD

Y (x0, z)mj(dz) and n(dz) = KD
Y (x0, z)m(dz). Since

the density KD
Y (x0, ·) is bounded away from zero and bounded from above, it follows that

mj → m weakly. From this the claim of proposition follows immediately. 2

5.5 Boundary Harnack principle for subordinate process

The boundary Harnack principle is a very important result in potential theory and harmonic

analysis. For example, it is usually used to prove that, when D is a bounded Lipschitz

domain, both the Martin boundary and the minimal Martin boundary of XD coincide with

the Euclidean boundary ∂D. We have already proved in Theorem 5.13 that for Y D, both the

Martin boundary and the minimal Martin boundary coincide with the Euclidean boundary

∂D. By using this we are going to prove a boundary Harnack principle for functions in

H+(Y D).

In this subsection we will always assume that D ⊂ Rd, d ≥ 3, is a bounded Lipschitz

domain and x0 ∈ D is fixed. Recall that ϕ0 is the eigenfunction corresponding to the
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smallest eigenvalue λ0 of −∆|D. Also recall that the potential operator V D is not absolutely

continuous in case b > 0 and is given by

V Df(x) = bf(x) +

∫ ∞

0

PD
t f(x)v(t) dt .

Define

Ṽ D(x, y) =

∫ ∞

0

pD(t, x, y)v(t) dt .

Then

V Df(x) = bf(x) +

∫
D

Ṽ D(x, y)f(y) dy .

Proposition 5.16 Suppose that D is a bounded Lipschitz domain. There exist c > 0 and

k > d such that

UD(x, y) ≤ c
ϕ0(x)ϕ0(y)

|x− y|k
,

Ṽ D(x, y) ≤ c
ϕ0(x)ϕ0(y)

|x− y|k
,

for all x, y ∈ D.

Proof. We give a proof of the second estimate, the proof of the first being exactly the same.

Note that similarly as in (2.13)

lim
t→0

tv(t) = 0 . (5.21)

It follows from Theorem 4.6.9 of [24] that the density pD of the killed Brownian motion on

D satisfies the following estimate

pD(t, x, y) ≤ c1t
−k/2ϕ0(x)ϕ0(y)e

− |x−y|2
6t , t > 0, x, y ∈ D,

for some k > d and c2 > 0. Recall that v is a decreasing function. From (5.21) it follows

that there exists a t0 > 0 such that v(t) ≤ 1
t

for t ≤ t0. Consequently,

v(t) ≤M +
1

t
, t > 0,

for some M > 0. Now we have

Ṽ D(x, y) =

∫ ∞

0

pD(t, x, y)v(t)dt ≤ c1

∫ ∞

0

t−k/2ϕ0(x)ϕ0(y)e
− |x−y|2

6t v(t)dt

≤ c1

∫ ∞

0

t−k/2−1ϕ0(x)ϕ0(y)e
− |x−y|2

6t dt+Mc1

∫ ∞

0

t−k/2ϕ0(x)ϕ0(y)e
− |x−y|2

6t dt

≤ c2
ϕ0(x)ϕ0(y)

|x− y|k
+Mc3

ϕ0(x)ϕ0(y)

|x− y|k−2

≤ c4
ϕ0(x)ϕ0(y)

|x− y|k
.
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The proof is now finished. 2

Lemma 5.17 Suppose that D is a bounded Lipschitz domain and W an open subset of Rd

such that W ∩ ∂D is non-empty. If h ∈ H+(Y D) satisfies

lim
x→z

h(x)

(V D)−11(x)
= 0, for all z ∈ W ∩ ∂D,

then

lim
x→z

V Dh(x) = 0, for all z ∈ W ∩ ∂D .

Proof. Fix z ∈ W ∩ ∂D. For any ε > 0, there exists δ > 0 such that h(x) ≤ ε(V D)−11(x)

for x ∈ B(z, δ) ∩D. Thus we have

V Dh(x) ≤ V D(h 1D\B(z,δ))(x) + εV D(V D)−11(x) = V D(h 1D\B(z,δ))(x) + ε, x ∈ D.

For any x ∈ B(z, δ/2) ∩D we have

V D(h 1D\B(z,δ))(x) = bh(x) 1D\B(z,δ)(x) +

∫
D\B(z,δ)

Ṽ D(x, y)h(y) dy

=

∫
D\B(z,δ)

Ṽ D(x, y)h(y) dy

since 1D\B(z,δ)(x) = 0 for x ∈ B(z, δ/2) ∩ D. By Proposition 5.16 we get that there exists

c > 0 such that for any x ∈ B(z, δ/2) ∩D,∫
D\B(z,δ)

Ṽ D(x, y)h(y) ≤ cϕ0(x)

∫
D\B(z,δ)

ϕ0(y)

|x− y|k
h(y) dy

≤ cϕ0(x)

∫
D\B(z,δ)

ϕ0(y)

(δ/2)k
h(y) dy ≤ cϕ0(x)

∫
D

ϕ0(y)h(y) dy .

Hence,

V Dh(x) ≤ cϕ0(x)

∫
D

ϕ0(y)h(y)dy + ε .

From Lemma 5.9 we know that
∫

D
ϕ0(y)h(y)dy < ∞. Now the conclusion of the lemma

follows easily from the fact that limx→z ϕ0(x) = 0. 2

Now we can prove the main result of this section: the boundary Harnack principle.

Theorem 5.18 Suppose that D ⊂ Rd, d ≥ 3, is a bounded Lipschitz domain, W an open

subset of Rd such that W ∩ ∂D is non-empty, and K a compact subset of W . There exists

a constant c > 0 such that for any two functions h1 and h2 in H+(Y D) satisfying

lim
x→z

hi(x)

(V D)−11(x)
= 0, z ∈ W ∩ ∂D, i = 1, 2,
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we have
h1(x)

h2(x)
≤ c

h1(y)

h2(y)
, x, y ∈ K ∩D.

Proof. By use of (5.11) and Proposition 5.16 there exist positive constants c1 and c2 such

that

c1ϕ0(x)ϕ0(y) ≤ UD(x, y) ≤ c2
ϕ0(x)ϕ0(y)

|x− y|k
, x, y ∈ D,

where k > d is given in Proposition 5.16. Therefore it follows from (5.20) that there exist

positive constants c3 and c4 such that

c3ϕ0(x) ≤MD
Y (x, z) ≤ c4ϕ0(x), x ∈ K ∩D, z ∈ ∂D \W. (5.22)

Suppose that h1 and h2 are two functions in H+(Y D) such that

lim
x→z

hi(x)

(V D)−11(x)
= 0, z ∈ W ∩ ∂D, i = 1, 2,

then by Lemma 5.17 we have

lim
x→z

V Dhi(x) = 0, z ∈ W ∩ ∂D, i = 1, 2.

Now by Corollary 8.1.6 of [44] we know that the Martin measures m1 and m2 of V Dh1 and

V Dh2 are supported by ∂D \W and so we have

V Dhi(x) =

∫
∂D\W

MD(x, z)mi(dz), x ∈ D, i = 1, 2.

Using Proposition 5.14 we get that

hi(x) =

∫
∂D\W

MD
Y (x, z)ni(dz), x ∈ D, i = 1, 2,

where ni(dz) = KD
Y (x0, z)mi(dz), i = 1, 2. Now using (5.22) it follows that

c3ϕ0(x)ni(∂D \W ) ≤ hi(x) ≤ c4ϕ0(x)ni(∂D \W ), x ∈ K ∩D, i = 1, 2.

The conclusion of the theorem follows immediately. 2

From the proof of Theorem 5.18 we can see that the following result is true.

Proposition 5.19 Suppose that D ⊂ Rd, d ≥ 3, is a bounded Lipschitz domain and W an

open subset of Rd such that W ∩ ∂D is non-empty. If h ∈ H+(Y D) satisfies

lim
x→z

h(x)

(V D)−11(x)
= 0, z ∈ W ∩ ∂D,

then

lim
x→z

h(x) = 0, z ∈ W ∩ ∂D.
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Proof. From the proof of Theorem 5.18 we see that the Martin measure n of h is supported

by ∂D \W and so we have

h(x) =

∫
∂D\W

MD
Y (x, z)n(dz), x ∈ D.

For any z0 ∈ W ∩ ∂D, take δ > 0 small enough so that B(z0, δ) ⊂ B(z0, δ) ⊂ W . Then it

follows from (5.22) that

c5ϕ0(x) ≤MD
Y (x, z) ≤ c6ϕ0(x), x ∈ B(z0, δ) ∩D, z ∈ ∂D \W ,

for some positive constants c5 and c6. Thus

h(x) ≤ c6ϕ0(x)n(∂D \W ), x ∈ B(z0, δ) ∩D,

from which the assertion of the proposition follows immediately. 2

5.6 Sharp bounds for the Green function and the jumping func-
tion of subordinate process

In this subsection we are going to derive sharp bounds for the Green function and the

jumping function of the process Y D. The method uses the upper and lower bounds for the

transition densities pD(t, x, y) of the killed Brownian motion. The lower bound that we need

is available only in case when D is a bounded C1,1 domain in Rd. Therefore, throughout

this subsection we assume that D ⊂ Rd is a bounded C1,1 domain. Moreover, recall the

standing assumption that S is a special subordinator such that b > 0 or µ(0,∞) = ∞ which

guarantees the existence of a decreasing potential density u.

Recall that a bounded domain D ⊂ Rd, d ≥ 2, is called a bounded C1,1 domain if

there exist positive constants r0 and M with the following property: For every z ∈ ∂D and

every r ∈ (0, r0], there exist a function Γz : Rd−1 → R satisfying the condition |∇Γz(ξ) −
∇Γz(η)| ≤ M |ξ − η| for all ξ, η ∈ Rd−1, and an orthonormal coordinate system CSz such

that if y = (y1, . . . , yd) in CSz coordinates, then

B(z, r) ∩D = B(z, r) ∩ {y : yd > Γz(y1, . . . , yd−1} .

When we speak of a bounded C1,1 domain in R we mean a finite open interval.

For any x ∈ D, let ρ(x) denote the distance between x and ∂D. We will use the following

two bounds for transition densities pD(t, x, y): There exists a positive constant c1 such that

for all t > 0 and any x, y ∈ D,

pD(t, x, y) ≤ c1t
−d/2−1ρ(x)ρ(y) exp

(
−|x− y|2

6t

)
. (5.23)
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This result (valid also for Lipschitz domains) can be found in [24] (see also [55]). The lower

bound was obtained in [62] and [54] and states that for any A > 0, there exist positive

constants c2 and c such that for any t ∈ (0, A] and any x, y ∈ D,

pD(t, x, y) ≥ c2

(
ρ(x)ρ(y)

t
∧ 1

)
t−d/2 exp

(
−c|x− y|2

t

)
. (5.24)

Recall that the Green function of Y D is given by

UD(x, y) =

∫ ∞

0

pD(t, x, y)u(t) dt ,

where u is the potential density of the subordinator S. Instead of assuming conditions on

the asymptotic behavior of the Laplace exponent φ(λ) as λ → ∞, we will directly assume

the asymptotic behavior of u(t) as t→ 0+.

Assumption A: (i) There exist constants c0 > 0 and β ∈ [0, 1] with β > 1 − d/2, and a

continuous function ` : (0,∞) → (0,∞) which is slowly varying at ∞ such that

u(t) ∼ c0
tβ`(1/t)

, t→ 0 + . (5.25)

(ii) In the case when d = 1 or d = 2, there exist constants c > 0, T > 0 and γ < d/2 such

that

u(t) ≤ ctγ−1, t ≥ T. (5.26)

Note that under certain assumptions on the asymptotic behavior of φ(λ) as λ→∞, one can

obtain (5.25) and (5.26) for the density u.

Theorem 5.20 Suppose that D is a bounded C1,1 domain in Rd and that the potential

density u of the special subordinator S = (St : t ≥ 0) satisfies the Assumption A. Suppose

also that there is a function g : (0,∞) → (0,∞) such that∫ ∞

0

td/2−2+βe−tg(t)dt <∞

and ξ > 0 such that f`,ξ(y, t) ≤ g(t) for all y, t > 0, where f`,ξ is the function defined before

Lemma 3.3 using the ` in (5.25). Then there exist positive constants C1 ≤ C2 such that for

all x, y ∈ D,

C1

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d+2β−2 `( 1
|x−y|2 )

≤ UD(x, y)

≤ C2

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d+2β−2 `( 1
|x−y|2 )

. (5.27)
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Proof. We start by proving the upper bound. Using the obvious upper bound pD(t, x, y) ≤
(4πt)−d/2 exp(−|x− y|2/4t) and Lemma 3.3 one can easily show that

UD(x, y) ≤ c1
1

|x− y|d+2β−2 `
(

1
|x−y|2

) .
Now note that (5.23) gives

UD(x, y) ≤ c2ρ(x)ρ(y)

∫ ∞

0

t−d/2−1e−|x−y|2/6tu(t) dt .

Thus it follows from Lemma 3.3 that

UD(x, y) ≤ c3ρ(x)ρ(y)
1

|x− y|d+2β `
(

1
|x−y|2

) .
Now combining the two upper bounds obtained so far we arrive at the upper bound in (5.27).

In order to prove the lower bound, we first recall the following result about slowly varying

functions (see [10], p. 22, Theorem 1.5.12):

lim
λ→∞

`(tλ)

`(λ)
= 1

uniformly in t ∈ [a, b] where [a, b] ⊂ (0,∞). Together with joint continuity of (t, λ) 7→
`(tλ)/`(λ), this shows that for a given λ0 > 0 and an interval [a, b] ⊂ (0,∞), there exists a

positive constant c(a, b, λ0) such that

`(tλ)

`(λ)
≤ c(a, b, λ0) , a ≤ t ≤ b, λ ≥ λ0 . (5.28)

Now, by (5.24),

UD(x, y) ≥ c4

∫ A

0

(
ρ(x)ρ(y)

t
∧ 1

)
t−d/2 exp

(
−c|x− y|2

t

)
dt .

Assume x 6= y. Let R be the diameter of D and assume that A has been chosen so that

A = R2. Then for any x, y ∈ D, ρ(x)ρ(y) < R2 = A. The lower bound is proved by

considering two separate cases:

(i) |x− y|2 < 2ρ(x)ρ(y). In this case we have

UD(x, y) ≥ c4

∫ ρ(x)ρ(y)

0

(
ρ(x)ρ(y)

t
∧ 1

)
t−d/2 exp{−c|x− y|2/t}u(t) dt

≥ c5|x− y|−d+2

∫ ∞

c|x−y|2
ρ(x)ρ(y)

sd/2−2e−su(c|x− y|2/s) ds

≥ c5|x− y|−d+2

∫ 4c

2c

sd/2−2e−su(c|x− y|2/s) ds . (5.29)

87



For 2c ≤ s ≤ 4c, we have that 1/4 ≤ c|x− y|2/s ≤ 1/2. Hence, by (5.25), there exists c6 > 0

such that

u

(
c|x− y|2

s

)
≥ c6(

c|x−y|2
s

)β

`
(

s
c|x−y|2

) .
Further, since 1/|x − y|2 ≥ 1/R2 for all x, y ∈ D, we can use (5.28) to conclude that there

exists c7 > 0 such that

`
(

1
|x−y|2

)
`
(

s
c|x−y|2

) ≥ c7 , 2c ≤ s ≤ 4c , x, y ∈ D .

It follows from (5.29), that

UD(x, y) ≥ c5|x− y|−d+2

∫ 4c

2c

sd/2−2e−s c6c7(
c|x−y|2

s

)β

`
(

1
|x−y|2

) ds
=

c4
|x− y|d+2β−2`( 1

|x−y|2 )

∫ 4c

2c

sd/2+β−2e−s ds

=
c9

|x− y|d+2β−2`( 1
|x−y|2 )

.

(ii) |x− y|2 ≥ 2ρ(x)ρ(y). In this case we have

UD(x, y) ≥ c4ρ(x)ρ(y)

∫ A

ρ(x)ρ(y)

t−d/2−1 exp{−c|x− y|2/t}u(t) dt

= c10ρ(x)ρ(y)|x− y|−d

∫ c|x−y|2
ρ(x)ρ(y)

c|x−y|2
A

sd/2−1e−su(c|x− y|2/s) ds

≥ c10ρ(x)ρ(y)|x− y|−d

∫ 2c

c

sd/2−1e−su(c|x− y|2/s) ds .

The integral above is estimated in the same way as in case (i). It follows that there exists a

positive constant c11 such that

UD(x, y) ≥ c10ρ(x)ρ(y)|x− y|−d c11
|x− y|2β`( 1

|x−y|2 )

= c12
ρ(x)ρ(y)

|x− y|d+2β`( 1
|x−y|2 )

.

Combining the two cases above we arrive at the lower bound (5.27). 2

Suppose that the subordinator S has a strictly positive drift b and d ≥ 3. Then we

can take β = 0 and ` = 1 in the Assumption A, and Theorem 5.20 implies that the Green
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function UD of Y D is comparable to the Green function of XD. Further, if φ(λ) ∼ c0λ
α/2,

as λ → ∞, 0 < α < 2, then by (2.28) it follows that the Assumption A holds true with

β = 1 − α/2 and ` = 1. In this way we recover a result from [57] saying that under the

stated assumption,

C1

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d−α
≤ UD(x, y) ≤ C2

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d−α
.

The jumping function JD(x, y) of the subordinate process Y D is given by the following

formula:

JD(x, y) =

∫ ∞

0

pD(t, x, y)µ(dt) .

Suppose that µ(dt) has a decreasing density µ(t) which satisfies

Assumption B: There exist constants c0 > 0, β ∈ [1, 2] and a continuous function ` :

(0,∞) → (0,∞) which is slowly varying at ∞ such that such that

µ(t) ∼ c0
tβ`(1/t)

, t→ 0 + . (5.30)

Then we have the following result on sharp bounds of JD(x, y). The proof is similar to the

proof of Theorem 5.20, and therefore omitted.

Theorem 5.21 Suppose that D is a bounded C1,1 domain in Rd and that the Lévy density

µ(t) of the subordinator S = (St : t ≥ 0) exists, is decreasing and satisfies the Assumption

B. Suppose also that there is a function g : (0,∞) → (0,∞) such that∫ ∞

0

td/2−2+βe−tg(t)dt <∞

and ξ > 0 such that f`,ξ(y, t) ≤ g(t) for all y, t > 0, where f`,ξ is the function defined before

Lemma 3.3 using the ` in (5.30). Then there exist positive constants C3 ≤ C4 such that for

all x, y ∈ D

C3

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d+2β−2`( 1
|x−y|2 )

≤ JD(x, y)

≤ C4

(
ρ(x)ρ(y)

|x− y|2
∧ 1

)
1

|x− y|d+2β−2`( 1
|x−y|2 )

. (5.31)
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