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1 Introduction

Let X = (X; : t > 0) be a d-dimensional Brownian motion. Subordination of Brownian
motion consists of time-changing the paths of X by an independent subordinator. To be
more precise, let S = (S; : ¢ > 0) be a subordinator (i.e., a nonnegative, increasing Lévy
process) independent of X. The process Y = (Y; : ¢ > 0) defined by Y; = X(S;) is called
a subordinate Brownian motion. The process Y is an example of a rotationally invariant
d-dimensional Lévy process. A general Lévy process in R? is completely characterized by
its characteristic triple (b, A, 7), where b € R? A is a nonnegative definite d x d matrix,
and 7 is a measure on R?\ {0} satisfying [(1 A |z|?) 7(dz) < oo, called the Lévy measure
of the process. Its characteristic exponent ®, defined by Elexp{i(z,Y;)}] = exp{—t®(z)},
r € R4, is given by the Lévy-Khintchine formula involving the characteristic triple (b, A, 7).
The main difficulty in studying general Lévy processes stems from the fact that the Lévy
measure 7 can be quite complicated.

The situation simplifies immensely in the case of subordinate Brownian motions. If we
take the Brownian motion X as given, then Y is completely determined by the subordinator
S. Hence, one can deduce properties of Y from properties of the subordinator S. On the
analytic level this translates to the following: Let ¢ denote the Laplace exponent of the
subordinator S. That is, E[exp{—AS;}] = exp{—té#(N\)}, A > 0. Then the characteristic
exponent ¢ of the subordinate Brownian motion Y takes on the very simple form ®(z) =
é(|z|?) (our Brownian motion X runs at twice the usual speed). Hence, properties of YV
should follow from properties of the Laplace exponent ¢. This will be the main theme of
these lecture notes — we will study potential-theoretic properties of Y by using information
given by ¢. Two main instances of this approach are explicit formulae for the Green function
of Y and the Lévy measure of Y. Let p(t,z,y), x,y € R% t > 0, denote the transition
densities of the Brownian motion X, and let u, respectively U, denote the Lévy measure,
respectively the potential measure, of the subordinator S. Then the Lévy measure 7 of Y is
given by 7(dz) = J(x)dx where

J@%=AthQ@uMﬂ,

while, when Y is transient, the Green function G(x,v), z,y € R?, of Y is given by

wawzlwmumwvww.

Let us consider the second formula (same reasoning also applies to the first one). This
formula suggests that the asymptotic behavior of G(x,y) when |z — y| — 0 (respectively,
when |z —y| — 00) should follow from the asymptotic behavior of the potential measure U at
oo (respectively at 0). The latter can be studied in the case when the potential measure has
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a monotone density u with respect to the Lebesgue measure. Indeed, the Laplace transform
of U is given by LU (X) = 1/¢()), hence one can invoke the Tauberian and monotone density
theorems to obtain the asymptotic behavior of u from the asymptotic behavior of ¢. We
will be mainly interested in the behavior of the Green function G(z,y) and the jumping
function J(z) near zero, hence the reasonable assumption on ¢ will be that it is regularly
varying at infinity with index o € [0, 2]. This includes subordinators having a drift, as well
as subordinators with slowly varying Laplace exponent at infinity, for example, a gamma
subordinator.

The materials covered in these lecture notes are based on several recent papers, primarily
[47], [52], [59] and [57]. The main effort here was given to unify the exposition of those
results, and in doing so we also eradicated the typos in these papers. Some new materials
and generalizations are also included. Here is the outline of the notes.

In Section 2 we recall some basic facts about subordinators and give a list of exam-
ples that will be useful later on. This list contains stable subordinators, relativistic stable
subordinators, subordinators which are sums of stable subordinators and a drift, gamma
subordinators, geometric stable subordinators, iterated geometric stable subordinators and
Bessel subordinators. All of these subordinators belong to the class of special subordina-
tors (even complete Bernstein subordinators). Special subordinators are important to our
approach because they are precisely the ones whose potential measure restricted to (0, c0)
has a decreasing density u. In fact, for all of the listed subordinators the potential measure
has a decreasing density u. In the last part of the section we study asymptotic behaviors of
the potential density u and the Lévy density of subordinators by use of Karamata’s and de
Haan’s Tauberian and monotone density theorems.

In Section 3 we derive asymptotic properties of the Green function and the jumping
function of subordinate Brownian motion. These results follow from the technical Lemma
3.3 upon checking its conditions for particular subordinators. Of special interest is the
order of singularities of the Green function near zero, starting from the Newtonian kernel
at the one end, and singularities on the brink of integrability on the other end obtained
for iterated geometric stable subordinators. The results for the asymptotic behavior of the
jumping function are less complete, but are substituted by results on the decay at zero and
at infinity. Finally, we discuss transition densities for symmetric geometric stable processes
which exhibit unusual behavior on the diagonal for small (as well as large) times.

The original motivation for deriving the results in Sections 2 and 3 was an attempt to
obtain the Harnack inequality for subordinate Brownian motions with subordinators whose
Laplace exponent ¢(\) has the asymptotic behavior at infinity of one of the following two
forms: (i) ¢(A) ~ A, or (ii) logarithmic behavior at co. A typical example of the first
case is the process Y which is a sum of Brownian motion and an independent rotationally
invariant a-stable process. This situation was studied in [47]. A typical example of the



second case is a geometric stable process — a subordinate Brownian motion via a geometric
stable subordinator. In this case, ¢(\) ~ log A as A — oo. This was studied in [52]. Section 4
contains an exposition of these results and some generalizations, and is partially based on the
general approach to Harnack inequality from [56]. After obtaining some potential-theoretic
results for a class of radial Lévy processes, we derive Krylov-Safonov-type estimates for the
hitting probabilities involving capacities. Similar estimates involving Lebesgue measure were
obtained in [56] based on the work of Bass and Levin [4]. These estimates are crucial in
proving two types of Harnack inequalities for small balls - scale invariant ones, and the weak
ones in which the constant might depend on the radius of a ball. In fact, we give a full proof
of the Harnack inequality only for iterated geometric stable processes, and refer the reader
to the original papers for the other cases.

Finally, in Section 5 we replace the underlying Brownian motion by the Brownian motion
killed upon exiting a Lipschitz domain D. The resulting process is denoted by X”. We
are interested in the potential theory of the process ;¥ = XP(S;) where S is a special
subordinator with infinite Lévy measure or positive drift. Such questions were first studied
for stable subordinators in [31], and the final solution in this case was given in [30]. The
general case for special subordinators appeared in [59]. Surprisingly, it turns out that the
potential theory of Y is in a one-to-one and onto correspondence with the potential theory of
XP . More precisely, there is a bijection (realized by the potential operator of the subordinate
process ZP = XP(T;) where T is the subordinator conjugate to S) from the cone S(Y?) of
excessive functions of Y2 onto the cone S(XP) of excessive functions for X which preserves
nonnegative harmonic functions. This bijection makes it possible to essentially transfer the
potential theory of XP to the potential theory of Y”. In this way we obtain the Martin
kernel and the Martin representation for Y? which immediately leads to a proof of the
boundary Harnack principle for nonnegative harmonic functions of Y2, In the case of a C1*
domain we obtain sharp bounds for the transition densities of the subordinate process Y.

The materials covered in these lecture notes by no means include all that can be said
about the potential theory of subordinate Brownian motions. One of the omissions is the
Green function estimates for killed subordinate Brownian motions and the boundary Harnack
inequality for the positive harmonic functions of subordinate Brownian motions. By using
ideas from [18] or [48] one can easily extend the Green function estimates of [17] and [37]
for killed symmetric stable processes to more general killed subordinate Brownian motions
under certain conditions, and then use these estimates to extend arguments in [14] and [61] to
establish the boundary Harnack inequality for general subordinate Brownian motions under
certain conditions. In the case when the Laplace exponent ¢ is regularly varying at infinity,
this is done in [35]. Another notable omission is the spectral theory for such processes
together with implications to spectral theory of killed subordinate Brownian motion. We
refer the reader to [19], [20] and [21]. Related to this is the general discussion on the



exact difference between subordinate killed Brownian motions and the killed subordinate
Brownian motions and its consequences. This was discussed in [55] and [54]. See also [32]
and the forthcoming [60].

We end this introduction with few words on the notations. For functions f and g we

write f ~ g if the quotient f/g converges to 1, and f < g if the quotient f/g stays bounded
between two positive constants.
Acknowledgment: Some of the material from these lecture notes was presented by the
second named author at the Workshop on Stochastic and Harmonic Analysis of Processes
with Jumps held at Angers, France, May 2-9, 2006. Hospitality of the organizers is gratefully
acknowledged. The notes were written while the second named author was visiting the
Department of Mathematics of University of Illinois at Urbana-Champaign. He thanks the
department for the stimulating environment and hospitality. Thanks are also due to Andreas
Kyprianou for several useful comments.

2 Subordinators

2.1 Special subordinators and complete Bernstein functions

Let S = (S; : t > 0) be a subordinator, that is, an increasing Lévy process taking values
in [0, 00| with Sy = 0. We remark that our subordinators are what some authors call killed
subordinators. The Laplace transform of the law of S; is given by the formula

Elexp(—ASy)] = exp(—tod(N)), A > 0. (2.1)

The function ¢ : (0,00) — R is called the Laplace exponent of S, and it can be written in
the form

d(A\) = a+bA+ / (1 — e ) p(dt). (2.2)
0
Here a,b > 0, and p is a o-finite measure on (0, 00) satisfying
/ (A1) pldt) < oo (2.3)
0

The constant a is called the killing rate, b the drift, and p the Lévy measure of the subordi-
nator S. By using condition (2.3) above one can easily check that

Pn&t,u(t, o0) =0, (2.4)
1
/ p(t,00)dt < oo. (2.5)
0

For t > 0, let n; be the distribution of S;. To be more precise, for a Borel set A C [0, 00),
ne(A) = P(S; € A). The family of measures (1, : ¢t > 0) form a convolution semigroup of
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measures on [0,00). Clearly, the formula (2.1) reads exp(—t¢(\)) = Ln:(\), the Laplace
transform of the measure n;. We refer the reader to [7] for much more detailed exposition
on subordinators.

Recall that a C* function ¢ : (0, 00) — [0, 00) is called a Bernstein function if (—1)"D"¢ <
0 for every n € N. It is well known (see, e.g., [6]) that a function ¢ : (0,00) — R is a Bernstein
function if and only if it has the representation given by (2.2).

We now introduce the concepts of special Bernstein functions and special subordinators.

Definition 2.1 A Bernstein function ¢ is called a special Bernstein function if ¥(\) :=
A P(N) is also a Bernstein function. A subordinator S is called a special subordinator if its
Laplace exponent is a special Bernstein function.

We will call the function 1 in the definition above the Bernstein function conjugate to ¢.

Special subordinators occur naturally in various situations. For instance, they appear as
the ladder time process for a Lévy process which is not a compound Poisson process, see
page 166 of [7]. Yet another situation in which they appear naturally is in connection with
the exponential functional of subordinators (see [9]).

The most common examples of special Bernstein functions are complete Bernstein func-
tions, also called operator monotone functions in some literature. A function ¢ : (0,00) — R
is called a complete Bernstein function if there exists a Bernstein function 7 such that

d(N\) = XN2Ln(A), A >0,

where £ stands for the Laplace transform of the function n: Ln(X) = [ e *n(t)dt. Tt

is known (see, for instance, Remark 3.9.28 and Theorem 3.9.29 of [34]) that every com-
plete Bernstein function is a Bernstein function and that the following three conditions are
equivalent:

(i) ¢ is a complete Bernstein function;
(ii) ¥ (N) := A/p(N) is a complete Bernstein function;

(iii) ¢ is a Bernstein function whose Lévy measure p is given by

w(dt) = /000 e "'y (ds)dt

where 7y is a measure on (0, 00) satisfying

/11 <d>+/°°i (ds) <
i S (ds 1 2 7(ds) < co.



The equivalence of (i) and (ii) says that every complete Bernstein function is a special
Bernstein function. Note also that it follows from the condition (iii) above that being a
complete Bernstein function only depends on the Lévy measure and that the Lévy measure
w(dt) of any complete Bernstein function has a completely monotone density. We also note
that the tail t — u(t, 00) of the Lévy measure y is a completely monotone function. Indeed,

w(z, 0o) / / v(ds) dt = / e_“@.
0 s

A similar argument shows that the converse is also true, namely, if the tail of the Lévy

by Fubini’s theorem

measure p is a completely monotone function, then p has a completely monotone density.
The density of the Lévy measure with respect to the Lebesgue measure (when it exists) will
be called the Lévy density.

The family of all complete Bernstein functions is a closed convex cone containing positive
constants. The following properties of complete Bernstein functions are well known, see, for
instance, [42]: (i) If ¢ is a nonzero complete Bernstein function, then so are ¢p(A~1)~! and
Ap(A7Y); (ii) if ¢; and ¢y are nonzero complete Bernstein functions and 8 € (0,1), then
7 (N)ps P (\) is also a complete Bernstein function; (iii) if ¢; and ¢, are nonzero complete
Bernstein functions and 8 € (—1,0) U (0,1), then (¢7(\) + ¢5(X\))/? is also a complete
Bernstein function.

Most of the familiar Bernstein functions are complete Bernstein functions. The following
are some examples of complete Bernstein functions ([34]): (i) A%, a € (0,1]; (ii) (A +1)* —
Lo € (0,1); (iii) log(14X); (iv) 25
(0 < a < 1) and a pure drift (o« = 1), the second family corresponds to relativistic a-stable

The first family corresponds to a-stable subordinators

subordinators, the third Bernstein function corresponds to the gamma subordinator, and
the fourth corresponds to the compound Poisson process with rate 1 and exponential jumps.

An example of a Bernstein function which is not a complete Bernstein function is 1 — e,
One can also check that 1 — e~ is not a special Bernstein function as well.
The potential measure of the subordinator S is defined by
U(A) =E / Lsien) dt = / n(A)dt, AcC[0,00). (2.6)
0 0

Note that U(A) is the expected time the subordinator S spends in the set A. The Laplace
transform of the measure U is given by

b
¢(A)

We are going to derive a characterization of special subordinators in terms of their po-

LUN) = / Y dU(t) =E / h exp(—AS;) dt = (2.7)

tential measures. Roughly, a subordinator S is special if and only if its potential measure
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U restricted to (0,00) has a decreasing density. To be more precise, let S be a special
subordinator with the Laplace exponent ¢ given by

d(N) =a+bA+ /000(1 — e M) p(dt).

Then
I A { 0, a >0,
im—— =
A—0 (Zb()\) b+f0001t_,u,(dt) y a = O,
I 1 0, b > 0 or u(0,00) = oo,
im —— =
Ao0 A(N) araossy » 0= 0and p(0,00) < oo.
Since A\/¢(A) is a Bernstein function, we must have
L: ~+B)\_|_/Oo(1—e_’\t) v(dt) (2.8)
P(A) 0
for some Lévy measure v, and
. { 0, a>0, (29)
a = 1 . .
b+ [ t p(dt) a=0,
= 0, b > 0 or p(0,00) = o0,
b= {m, b=0 and p(0,00) < 0. (2.10)
Equivalently,
1 - e
— = b+/ e M(t) dt (2.11)
$(A) 0
with

(t)=a+wv(t,o0), t>0.

Let 7(dt) := beo(dt) 4+ II(t) dt. Then the right-hand side in (2.11) is the Laplace transform
of the measure 7. Since 1/¢(\) = LU(X), the Laplace transform of the potential measure U
of S, we have that LU(X\) = L7()). Therefore,

U(dt) = beo(dt) + u(t) dt

with a decreasing function u(t) = II(t).
Conversely, suppose that S is a subordinator with potential measure given by

U(dt) = ceo(dt) + u(t) dt,

for some ¢ > 0 and some decreasing function u : (0,00) — (0, 00) satisfying fol u(t) dt < oo.

Then . -
— _ —At
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It follows that

A cA+ /Oou(t) d(1 — e

20y
= cA+u(t)(l—e M) |z _/o (1 —e ) u(dt)

= cA+u(oc0) + /000(1 —e M) y(dt), (2.12)

with y(dt) = —u(dt). In the last equality we used that lim; .o u(t)(1 — e *) = 0. This
is a consequence of the assumption fol u(t)dt < co. It is easy to check, by using the same
integrability condition on u, that [°(1At) y(dt) < oo, so that 7 is a Lévy measure. Therefore,
A/¢(A) is a Bernstein function, implying that S is a special subordinator.

In this way we have proved the following

Theorem 2.1 Let S be a subordinator with the potential measure U. Then S is special if
and only if
U(dt) = ceo(dt) 4+ u(t) dt

for some ¢ > 0 and some decreasing function u : (0, 00) — (0, 00) satisfying fol u(t) dt < oo.

Remark 2.2 The above result appeared in [8] as Corollaries 1 and 2 and was possibly known
even before. The above presentation is taken from [59]. In case ¢ = 0, we will call u the
potential density of the subordinator S (or of the Laplace exponent ¢).

Corollary 2.3 Let S be a subordinator with the Laplace exponent ¢ and the potential mea-
sure U. Then ¢ is a complete Bernstein function if and only if U restricted to (0,00) has a
completely monotone density u.

Proof. Note that from the proof of Theorem 2.1 we have the explicit form of the density wu:
u(t) = II(t) where II(t) = a+v(t, 00). Here v is the Lévy measure of A\/¢(\). If ¢ is complete
Bernstein, then A/¢()) is complete Bernstein, and hence it follows from the property (iii)
of complete Bernstein function that u(t) = a + v(¢, 00) is a completely monotone function.
Conversely, if u is completely monotone, then clearly the tail ¢ — v(t,00) is completely
monotone, which implies that A\/¢()) is complete Bernstein. Therefore, ¢ is also a complete
Bernstein function. O

Note that by comparing expressions (2.8) and (2.12) for A\/¢()), and by using formulae
(2.9) and (2.10), it immediately follows that

2 { 0, b > 0 or u(0,00) = o0,
C = = 1 o
p b=0 and p(0,00) < oo,

(0,00)
- 0, a >0,
u(oo) = a= 1 —0
bt 0 4T

u(t) = a+v(t,o00).



In particular, it cannot happen that both a and a are positive, and similarly, that both b
and b are positive. Moreover, it is clear from the definition of b that b > 0 if and only if
b= 0 and p(0,00) < 0.

We record now some consequences of Theorem 2.1 and the formulae above.

Corollary 2.4 Suppose that S = (S;: t > 0) is a subordinator whose Laplace exponent

d(N\) = a + b\ + /000(1 — ™M) p(dt)

is a special Bernstein function with b > 0 or p(0,00) = co. Then the potential measure U
of S has a decreasing density u satisfying

limtu(t) = 0, (2.13)
t
lim [ sdu(s) = 0. (2.14)
t=0 Jg

Proof. The formulae follow immediately from u(t) = a + v(t,00) and (2.4)—(2.5) applied to
V. O

Corollary 2.5 Suppose that S = (S; : t > 0) is a special subordinator with the Laplace
exponent given by

(N = at / T e ()

where p satisfies 1(0,00) = oo. Then

DA = =G+ /000(1 — M) p(dt) (2.15)

where the Lévy measure v satisfies v(0, 00) = o0.
Let T be the subordinator with the Laplace exponent . If u and v denote the potential
density of S and T respectively, then

v(t) =a+ p(t,o0). (2.16)
In particular, a = v(c0) and a = u(oco). Moreover, a and a cannot be both positive.

Assume that ¢ is a special Bernstein function with the representation (2.2) where b > 0
or 11(0,00) = 0o. Let S be a subordinator with the Laplace exponent ¢, and let U denote its
potential measure. By Corollary 2.4, U has a decreasing density u : (0,00) — (0,00). Let T
be a subordinator with the Laplace exponent 1/(A) = A/¢(\) and let V' denote its potential
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measure. Then V (dt) = beg(dt) + v(t) dt where v : (0,00) — (0, 00) is a decreasing function.
If b > 0, the potential measure V has an atom at zero, and hence the subordinator 7" is a
compound Poisson process (this can be also seen as follows: since b > 0, we have u(0+) < oo,
and hence v(0,00) = u(0+) — a < 00). Note that in case b > 0, the Lévy measure p can be
finite. If b = 0, we require that u(0,00) = 0o, and then, by Corollary 2.5, ¥(A) = A/¢(N)
has the same form as ¢, namely b =0 and v(0,00) = oo. In this case, subordinators S and
T play symmetric roles.
The following result will be crucial for the developments in Section 5 of these notes.

Theorem 2.6 Let ¢ be a special Bernstein function with representation (2.2) satisfying
b >0 or u(0,00) = co. Then

bu(t) + /tu(s)v(t —s)ds =bu(t) + /tv(s)u(t —s)ds=1, t>0. (2.17)

Proof. Since for all A > 0 we have
1
d(N)

= Lu(N), @ = b+ Lo()),

after multiplying we get

= bLu(X\) + Lu(N)Lov(N)
= bLu(N) + L(uxv)(N).

> =

Inverting this equality gives
t
1 =bu(t) +/ u(s)v(t —s)ds, t>0.
0
(I

Theorem 2.6 has an amusing consequence related to the first passage of the subordinator
S. Let o, = inf{s > 0: S5 > t} be the first passage time across the level ¢ > 0. By the first
passage formula (see, e.g., [7], p.76), we have

P(S,, € ds, Sy, € dx) = u(s)u(z — s)dsdz,
for 0 < s <t,and x > t. Since p(z,00) = v(x), by use of Fubini’s theorem this implies
o) t t 00
P(S,, >t) = / / u(s)u(r —s)dsdx = / u(s)/ pu(x — s)drds
t Jo 7o ¢
= / u(s)u(t — s,00)ds = / u(s)v(t —s)ds.
0 0
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Since P(S,, > t) = 1, by comparing with (2.17) we see that P(S,, = t) = bu(t). This
provides a simple proof in case of special subordinators of the well-known fact true for
general subordinators (see [7], pp.77-79).

In the sequel we will also need the following result on potential density that is valid for
subordinators that are not necessarily special.

Proposition 2.7 Let S = (S;: t > 0) be a subordinator with drift b > 0. Then its potential
measure U has a density u continuous on (0,00) satisfying uw(0+) = 1/b and u(t) < u(0+)
for every t > 0.

Proof. For the proof of existence of continuous u and the fact that u(0+) = 1/b see, e.g.,
(7], p.79. That u(t) < u(0+) for every ¢t > 0 follows from the subadditivity of the function
t— U([0,]) (see, e.g., [47]). O

2.2 Examples of subordinators

In this subsection we give a list of subordinators that will be relevant in the sequel and
describe some of their properties.

Example 2.8 (Stable subordinators) Our first example covers the family of well-known
stable subordinators. For 0 < a < 2, let ¢(\) = A*/2. By integration

r(1a_/z/2) /000(1 —e )

i.e, the Lévy measure yu(dt) of ¢ has a density given by (a/2)/T(1 — a/2)t~1=%/2. Since
t1me/2 = [ et/ /(1 + o/2) ds, it follows that ¢ is a complete Bernstein function. The
tail of the Lévy measure p is equal to

)\a/? _

t—oz/2
too) = — .
The conjugate Bernstein function is (A\) = A'7%/2, hence its tail is v(t, 00) = t*/>71 /T'(a/2).
This shows that the potential density of ¢(\) = A%/? is equal to
ta/271

) = o)

The subordinator S corresponding to ¢ is called an «/2-stable subordinator.
It is known that the distribution 7, (ds) of the «/2-stable subordinator has a density 7;(s)
with respect to the Lebesgue measure. Moreover, by [53],

m(s) ~ 2nT (1 + %) sin <%) sTIT2 s 0o, (2.18)
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and
m(s) <c(lAs 1% s>0, (2.19)

for some positive constant ¢ > 0.

Example 2.9 (Relativistic stable subordinators) For 0 < a < 2 and m > 0, let ¢(\) =
(A +m?/*)%/2 —m. By integration
2 oe 2/
A 2/a\a/2 _ CK/ / 1— —At\ ,—m tt—l—a/2 dt
i.c., the Lévy measure p(dt) of ¢ has a density given by (a/2)/T(1 — o/2) e=™" 1 ¢=1-/2,
This Bernstein function appeared in [39] in the study of the stability of relativistic matter,
and so we call the corresponding subordinator S a relativistic o/2-stable subordinator. Since
the Lévy density of ¢ is completely monotone, we know that ¢ is a complete Bernstein
function. The explicit form of potential density u of S can be computed as follows (see [33]
for this calculation): For v, 5 > 0 let
tTL

Emﬁ(t):Zm, 1‘:>07

n=0
be the two parameter Mittag-Leffler function. By integrating term by term it follows that

1
(A + m2/e)a/2 —m

0

Therefore,
7m2/a — o (07
u(t) =-e byt /QEQ/M/Q(mt /2y,

The subordinator S corresponding to the complete Bernstein function m + d(A) =N+
m?*)*/2 is obtained by killing S at an independent exponential time with parameter m. By
checking tables of Laplace transforms ([27]) we see that

1 /OO —\t 1 —m2/%t ,—1+a/2
—_— = e ———e M Tt
m+o(A)  Jo [(a/2)

implying that the potential measure U of the subordinator S has the density @ given by

B 1
10 = Fa)

—m?2/t 75—1—1—&/2

Example 2.10 (Gamma subordinator) Let ¢(\) = log(1 + A). By use of Frullani’s
integral it follows that

00 —t
log(1+ \) = / (1— e”\t)eT dt
0

13



i.e., the Lévy measure of ¢ has a density given by e~*/t. Note that e ™"/t = [ e™*1(1 o) (s) ds,
implying that the density of the Lévy measure p is completely monotone. Therefore, ¢ is a
complete Bernstein function. The corresponding subordinator S is called a gamma subordi-
nator. The explicit form of the potential density u is not known. In the next section we will
derive the asymptotic behavior of v at 0 and at +00. On the other hand, the distribution
ne(ds), t > 0, is well known and given by

n(ds) = % sle™sds, s>0. (2.20)
Before proceeding to the next two examples, let us briefly discuss composition of subordi-
nators. Suppose that S* = (S} : ¢ > 0) and S? = (S?: t > 0) are two independent subordi-
nators with Laplace exponents ¢!, respectively ¢*, and convolution semigroups (n;} : ¢ > 0),
respectively (n? : t > 0). Define the new process S = (S; : t > 0) by S; = S1(S?), subordi-
nation of S! by S2. Subordinating a Lévy process by an independent subordinator always
yields a Lévy process (e.g. [49], p. 197). Hence, S is another subordinator. The distribution
n; of S; is given by

ni(ds) = / "R (duyn’(ds). (2.21)

Therefore, for any A > 0,

/ e ny(ds) = / / 2 (du)(ds)
0 0 0

= [kt [

= [ e = o).
0
showing that the Laplace exponent ¢ of S is given by ¢(\) = ¢*(o'(N)).

Example 2.11 (Geometric stable subordinators) For 0 < a < 2, let ¢(\) = log(1 +
A%/2). Since ¢ is a composition of the complete Bernstein functions from Examples 2.8
and 2.10, it is itself a complete Bernstein function. The corresponding subordinator S is
called a geometric o /2-stable subordinator. Note that this subordinator may be obtained
by subordinating an «/2-stable subordinator by a gamma subordinator. The concept of
geometric stable distributions was first introduced in [36]. We will now compute the Lévy
measure 4 of S. Define

> tnoz/Q
Eap(t) =Y (—1)'=———, ¢>0.
p2(f) g( ST v naz 17
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By checking tables of Laplace transforms (or by computing term by term), we see that

/ Y eNp it di— LA (2.22)
0 ST XA+ A2 T T a2 '

Further, since ¢(0+) = 0 and limy_.« ¢(A)/A = 0, we have that ¢(A) = [[7(1 — ™) u(dt).
By differentiating this expression for ¢ and the explicit form of ¢ we obtain that

, % o )\a/Q—l
¢ ()\) = /0 te At [L(dt) = 5 W . (223)

By comparing (2.22) and (2.23) we see that the Lévy measure p(dt) has a density given by

gEa/Q(t)
2 t

pu(t) =

The explicit form of the potential density v is not known. In the next section we will derive

(2.24)

the asymptotic behavior of v at 0+ and at oo.
We will now show that the distribution function of S; is given by

o] Sna/Q
F(s) =1— Eqpa(s) = Z(—nﬂm, §>0. (2.25)

Indeed, for A > 0,
LFO) = / N F(dt) = A / e M1 = By a(t) dt
0 0

1 )\a/2—1 /2
= )\ (X — m) = exp{—log(l + )\a )} .

Since the function A — 1 + A*2 is a complete Bernstein function, its reciprocal function,
A= 1/(1 + \*/?) is a Stieltjes function (see [34] for more details about Stieltjes functions).
Moreover, since lim; .., 1/(1 4+ A%/2) = 0, it follows that there exists a measure o on (0, c0)

such that 1

14 /2
But this means that the function F' has a completely monotone density f given by f(t) =
Lo(t). It is shown in [43] that the distribution function of Sy, ¢ > 0, is equal to

= L(Lo)(N).

o0

n—1 D(t +n — 1)sttn—1e/2
Z(—l) L) (n— DT+ (t+n—1)a/2) .

n=1

Note that the case of the gamma subordinator may be subsumed under the case of
geometric a/2-stable subordinator by taking o = 2 in the definition.

15



Example 2.12 (Iterated geometric stable subordinators) Let 0 < a < 2. Define,

pM(N) = o(\) =log(1+ A1), ¢ (A) =d(¢™V(N), n>2.

Since ¢ is a complete Bernstein function, we have that ¢(™ fo e~ M) u™(t) dt for
a completely monotone Lévy density p(™(t). The exact form of this densfcy is not known.

Let S = (St(n) . ¢t > 0) be the corresponding (iterated) subordinator, and let U™
denote the potential measure of S™. Since #™ is a complete Bernstein function, U™
admits a completely monotone density u™. The explicit form of the potential density u(™
is not known. In the next section we will derive the asymptotic behavior of v at 0 and at
+00.

Example 2.13 (Stable subordinators with drifts) For 0 < o < 2 and b > 0, let
H(A) = bA + X2 Since A — A%/? is complete Bernstein, it follow that ¢ is also a complete
Bernstein function. The corresponding subordinator S = (S; : ¢ > 0) is a sum of the pure
drift subordinator ¢ — bt and the a/2-stable subordinator. Its Lévy measure is the same as
the Lévy measure of the a/2-stable subordinator. In order to compute the potential density
u of the subordinator S, we first note that, similarly as in (2.22),

& 1 1
MOE, o (b7 t) dt = = :
/O e a/?( ) bA + )\a/g QZS()\)

Therefore, u(t) = bE,/2(b~%/t) for t > 0.

Example 2.14 (Bessel subordinators) The two subordinators in this example are taken
from [41]. The Bessel subordinator S; = (S;(t) : ¢t > 0) is a subordinator with no drift, no
killing and Lévy density
1 _
pi(t) = 5 Lo(t) e
where for any real number v, I is the modified Bessel function. Since p; is the Laplace
transform of the function (¢ fo s) ds with

“1(9q _ 2)-1/2
S):{ﬂ' (2s — s%) : 0,2),

€ (
g 0, s> 2,

the Laplace exponent of S7 is a complete Bernstein function. The Laplace exponent of Sy is
given by
dr(A) =log((1+ X))+ /(1 +X)2—1).

For any ¢ > 0, the density of S;(t) is given by



The Bessel subordinator Sk = (Sk(t) : t > 0) is a subordinator with no drift, no killing
and Lévy density

pac(t) = T Fo(t)e ™,

where for any real number v, K, is the modified Bessel function. Since py is the Laplace
transform of the function

(0,2],

a1 te
7”_{ log(t —1+/(t—12+1), t>2,

the Laplace exponent of Sk is a complete Bernstein function. The Laplace exponent of Sy
is given by

ox(X) = 5 (logl(1+ X + VT A1)

For any ¢ > 0, the density of Sk(t) is given by

where

U, (t) = \/%/000 exp(w 2_t§ ) exp(—wv cosh(§)) sinh(§) sin(%g)dg.

Example 2.15 For any a € (0,2) and § € (0,2 — «), it follows from the properties of
complete Bernstein functions that
o(A) = A" (log(1 + 1))

is a complete Bernstein function.

Example 2.16 For any a € (0,2) and g € (0, «), it follows from the properties of complete
Bernstein functions that
d(N) = X (log(1 + 1))~

is a complete Bernstein function.

2.3 Asymptotic behavior of the potential, Lévy and transition
densities

Recall the formula (2.7) relating the Laplace exponent ¢ of the subordinator S with the
Laplace transform of its potential measure U. In the case U has a density u, this formula
reads

Lu(\) = /0 e Mu(t) dt = ﬁ |

17



The asymptotic behavior of ¢ at oo (resp. at 0) determines, by use of Tauberian and the
monotone density theorems, the asymptotic behavior of the potential density u at 0 (resp. at
00). We first recall Karamata’s version of these theorems from [10].

Theorem 2.17 (a) (Karamata’s Tauberian theorem) Let U : (0,00) — (0,00) be an increas-
ing function. If € is slowly varying at co (resp. at 04 ), p > 0, the following are equivalent:
(i) Ast — oo (resp. t — 0+)
tPU(t)
Ult) ~ ——.
(t) I'(1+p)

(ii) As A — 0 (resp. A — o0)

LU(N) ~ X7PL(L1/N).

(b)(Karamata’s monotone density theorem) If additionally U(dx) = wu(z)dx, where u is
monotone and nonnegative, and p > 0, then (i) and (ii) are equivalent to:

(111) Ast — oo (resp. t — 0+)
ptP=L(t)

u(t) ~ a1,

We are going to use Theorem 2.17 for Laplace exponents that are regularly varying at
oo (resp. at 0). To be more specific we will assume that either (i)

d(\) ~ A20(N), X — oo, (2.26)
where 0 < a < 2, and ¢ is slowly varying at oo, or (ii)
d(N) ~ A20(N), A —0, (2.27)

where 0 < o < 2, and / is slowly varying at 0. In case (i), (2.26) implies b > 0 or
1(0,00) = oo. If ¢ is a special Bernstein function, then the corresponding subordinator S
has a decreasing potential density u whose asymptotic behavior at 0 is then given by

1 ta/Qfl

T g L0 (2.28)

In case (ii), if ¢ is a special Bernstein function with limy ., ¢(\) = oo, then the corresponding

u(t) ~

subordinator S has a decreasing potential density u whose asymptotic behavior at oo is then

given by | e
u(t)wmm, t— o0. (2.29)
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As consequences of the above, we immediately get the following: (1) for o € (0,2), the
potential density of the relativistic a/2-stable subordinator satisfies

ta/2_1
) ~ —=, t—0 2.30
W) ~ fe to 0k (2.30)
u(t) ~ %m1’2/a, t— o0; (2.31)

(2) for a € (0,2), B € (0,2 — ), the potential density of the subordinator corresponding to
Example 2.15 satisfies

1 1
Wt ~ T mer g L0 (2:32)
u(t) ~ ! ! t— 00; (2.33)
T(a)2 + 3/2) -@+B)2’ !

(3) for a € (0,2), B € (0,a), the potential density of the subordinator corresponding to
Example 2.16 satisfies

a | log t|5/2
t t 2.34
— 1
u(t) ~ a0 t— oo. (2.35)

(1 + (o — B)/2) ti-(@ D)2’

In the case when the subordinator has a positive drift b > 0, the potential density u
always exists, it is continuous, and u(0+) = b. For example, this will be the case when
#(A) = bA+ A2, Recall (see Example 2.13) that the potential density is given by the rather
explicit formula u(t) = bE,/»(b~2/*t). The asymptotic behavior of u(t) as t — oo is not
easily derived from this formula. On the other hand, since ¢(\) ~ A*/2 as A — 0, it follows
from (2.29) that u(t) ~ t*/>71/T(a/2) as t — oo.

Note that the gamma subordinator, geometric «/2-stable subordinators, iterated geo-
metric stable subordinators and Bessel subordinators have Laplace exponents that are not
regularly varying with strictly positive exponent at oo, but are rather slowly varying at oco.
In this case, Karamata’s monotone density theorem cannot be used, and we need more re-
fined versions of both Tauberian and monotone density theorems. The results are also taken
from [10].

Theorem 2.18 (a) (de Haan’s Tauberian Theorem) Let U : (0,00) — (0, 00) be an increas-
ing function. If € is slowly varying at co (resp. at 0+ ), ¢ > 0, the following are equivalent:
(i) Ast — oo (resp. t — 0+)

UM) — U(t)

— clog A A .
0 clogA, VYA>0
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(i1) Ast — oo (resp. t — 0+)

LU(L) — cU (L)

)
(1)

L
M

— clog A, VA>0.

(b) (de Haan’s Monotone Density Theorem) If additionally U(dx) = u(x)dx, where u is
monotone and nonnegative, and ¢ > 0, then (i) and (ii) are equivalent to:
(iii) Ast — oo (resp. t — 0+)

u(t) ~ ct H(t).

We are going to apply this result to establish the asymptotic behaviors of the potential
density of geometric stable subordinators, iterated geometric stable subordinators and Bessel
subordinators at zero.

Proposition 2.19 For any a € (0,2], let ¢(\) = log(1 + X*/2), and let u be the potential
density of the corresponding subordinator. Then

(t) 2 t 0+
u ~ — —
at(logt)?’ ’
ta/Qfl
t) ~ —/——— t .

Proof. Recall that
LUN) = 1/6(X) = 1/log(1 + A¥/?).

Since ) .
LU(=) — LU(5)
(log A)~2
as A — 0+, we have by (the 04 version of) Theorem 2.18 (a) that

2
— —logx, Vx>0,
Q

(logt)=2 a

as t — 04. Now we can apply (the 0+ version of) Theorem 2.18 (b) to get that

2

)~ ——
u(t) at(logt)?
as t — 0+. The asymptotic behavior of u(t) as t — oo follows from Theorem 2.17. a

In order to deal with the iterated geometric stable subordinators, let ey = 0, and induc-
tively, e, = e, n > 1. For n > 1 define I, : (e, 00) — (0, 00) by

l,(y) =loglog...logy, mn times. (2.36)
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Further, let Ly(y) = 1, and for n € N, define L,, : (e,,0) — (0, 00) by

Ln(y) = b(®)la(y) - - - In(y) - (2.37)
Note that I/, (y ) 1/(yLy—1(y)) for every n > 1. Let a € (0, 2] and recall from Example 2.12
that ¢V (y) := log(1 + ‘”/2) and for n > 1, ¢ (y) := ¢(¢"V(y)). Let kn(y) := 1/6M™(y).

Lemma 2.20 Lett > 0. For everyn € N,

i (ka(19) — ko () Lo (9)ln(9)” = —— lost

Yy—00

Proof. The proof for n = 1 is straightforward and is implicit in the proof of Proposition
2.19. We only give the proof for n = 2, the proof for general n is similar. Using the fact that

log(1+y) ~y, y— 0+, (2.38)
we can easily get that
1 1 logt
lim ( log 08y logy = — lim ( log sy + gt logy = —logt. (2.39)
y—o0 log(yt) y—oo logy

Using (2.38) and the elementary fact that log(1 + y) ~ logy as y — oo we get that

Jim (ks (ty) = ko (1)) L ()2 ()

2 lim (O log(1 + y*/?) ) log y(log log y)*

2 yme \ P log(1+ (t9)*/2) ) (a/2)? log(log(1 + /%)) log(log (1 + (fy)°/%))
p

a

1 2
lim logﬂ logy = ——logt.
y—00 log(yt) a

O

Recall that U™ denotes the potential measure and u(™(¢) the potential density of the
iterated geometric stable subordinator S™ with the Laplace exponent ¢(™

Proposition 2.21 For any o € (0,2], we have

2
) (#) ~ t—0 2.40
O LS T (240
W@y ~ S oy (2.41)
—_— — . .
! T((a/2)")
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Proof. Using Lemma 2.20 we can easily see that

LUM(LY — LUML) 2
L — —logz, Vr>0,
Loa(DL(HnT o ®

as A — 0+. Therefore, by (the 0+ version of) Theorem 2.18 (a) we have that

U™ (zt) — UM™(t) 2
(Lo—1(Pla(p))7 «

as t — 04. Now we can apply (the 0+ version of) Theorem 2.18 (b) to get that

logx, x>0,

2

M) (£) ~
w(t) 0t L1 (L)1n(1)2

as t — 0+. The asymptotic behavior of u(™(t) at oo follows easily from Theorem 2.17. O

Let u; and ug be the potential densities of the Bessel subordinators I and K respectively.
Then we have the following result.

Proposition 2.22 The potential densities of the Bessel subordinators satisfy the following
asymptotics

1
t ~ t 0
w(t) t(logt)?’ -
1
t) ~ —, t—0
uc(t) t|logt|3’ =0
1
ur(t) ~ —t7V2 t— o0,

V21

uK(t) ~ 1, t—o00.

Proof. The proofs of first two relations are direct applications of de Haan’s Tauberian
and monotone density theorems and the proofs of the last two are direct applications of
Karamata’s Tauberian and monotone density theorems. We omit the details. a

We now discuss the asymptotic behavior of the Lévy density of a subordinator.

Proposition 2.23 Assume that the Laplace exponent ¢ of the subordinator S is a complete
Bernstein function and let p(t) denote the density of its Lévy measure.

(i) Let 0 < a < 2. If (X)) ~ A20(N), A — oo, and { is a slowly varying function at oo,

then
a/2

w(t) ~ m75—1—0‘/26(1/1t) . t— 0+ . (2.42)
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(ii) Let 0 < a < 2. If ¢(\) ~ AX¥20(N\), A — 0, and { is a slowly varying function at 0,
then

p(t) ~ I o/2 21/, t— 0. (2.43)

1—a/2)
Proof. (i) The assumption implies that there is no drift, b = 0, and hence by integration
by parts,

p(N) = A/Ooo e Mu(t,00) dt .

Thus, [, e u(t, 00) dt ~ A*/271(X) as A — oo, and (2.42) follows by first using Karamata’s
Tauberian theorem and then Karamata’s monotone density theorem.
(ii) In this case it is possible that the drift b is strictly positive, and thus

d(N) = A (b+ /OOO e Mu(t, 00) dt) .

This implies that [ e pu(t) dt ~ A*/*714(X) as A — 0, and (2.43) holds by Theorem 2.17.
O

Note that if ¢(X) ~ bA as A — oo and b > 0, nothing can be inferred about the behavior
of the density p(t) near zero. Next we record the asymptotic behavior of the Lévy density of
the geometric stable subordinator. The first claim follows from (2.24), and the second from
the previous proposition.

Proposition 2.24 Let p(dt) = u(t)dt be the Lévy measure of a geometrically o /2-stable
subordinator. Then
(i) For 0 < a <2, p(t) ~ &, t — 0+,

(i1) For 0 < a <2, u(t) ~ F(loi/j/2) t=/271 t — 00, Fora =2, u(t) = e—;t

In the case of iterated geometric stable subordinators, we have only partial result for the
asymptotic behavior of the density p(™ which follows from Proposition 2.43 (ii).

Proposition 2.25 For any a € (0,2),

(a/2)" f—1=(a/2)"
I'(1—(a/2)")

Remark 2.26 Note that we do not give the asymptotic behavior of u™(t) as t — oo for
o = 2 (iterated gamma subordinator), and the asymptotic behavior of u™(t) ast — 04 for
all « € (0,2]. It is an open problem to determine the correct asymptotic behavior.

1™ (t) ~ , t—00.
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The following results are immediate consequences of Proposition 2.23.

Proposition 2.27 Suppose that o € (0,2) and 3 € (0,2 — «). Let u(t) be the Lévy density
of the subordinator corresponding to Example 2.15. Then

2T (1 — o/2)

N a+p —1—(atB)/
i) (1= (a+5)2) " e,

p(t) t=172(log(1/1))"2, t — 0+,

t— 00.

Proposition 2.28 Suppose that o € (0,2) and B € (0,«). Let u(t) be the Lévy density of
the subordinator corresponding to Example 2.16. Then

o 1
pl) ~ 2I'(1 — «/2) t1+o/2(log(1/t))P/2’
a— 1

M =g e T

t— 0+,

We conclude this section with a discussion of the asymptotic behavior of transition den-
sities of geometric stable subordinators. Let S = (S; : t > 0) be a geometric «/2-stable
subordinator, and let (ns : s > 0) be the corresponding convolution semigroup. Further,
let (ps : s > 0) be the convolution semigroup corresponding to an «/2-stable subordinator,
and by abuse of notation, let p; denote the corresponding density. Then by (2.21) and the
explicit formula (2.20), we see that 7, has a density

o 1
s(t) = W) —— e du .
0= [ nies
For s = 1, this formula reads
fi(t) :/ pu(t)e du.
0

Moreover, we have shown in Example 2.11 that fi(¢) is completely monotone. To be more
precise, fi(t) is the density of the distribution function F(t) = 1 — E,5(t) of the probability
measure 77 (see (2.25)).

Proposition 2.29 For any o € (0, 2),

1
~J _ Oé/ - —
fi(t) fa/2) ! ot =0+, (2.44)
fi(t) ~ 27T (1 + %) sin <%> 772, t— 0. (2.45)
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Proof. The first relation follows from the explicit form of the distribution function F'(t) =
1 — E,/2(t) and Karamata’s monotone density theorem. For the second relation, use the
u=%p; (u=?t), to get

fi(t) :/ e~ "u"Hpy (u=?/°t) du.

0

scaling property of stable distribution, p,(t) =

Now use (2.18), (2.19) and dominated convergence theorem to obtain the required asymptotic
behavior. O

3 Subordinate Brownian motion

3.1 Definitions and technical lemma

Let X = (X}, P?) be a d-dimensional Brownian motion. The transition densities p(t,x,y) =
p(t,y — ), 2,y € R4t > 0, of X are given by

p(t,z) = (4mt) Y% exp <—%) :

The semigroup (P, : ¢t > 0) of X is defined by P, f(x) = E*[f(X})] = [eap(t,z,y)f(y) dy,
where f is a nonnegative Borel function on R?. Recall that if d > 3, the Green function
GO(z,y) = G (x —y), r,y € RY, of X is well defined and is equal to

o0 rd/i2-1), _
@)/ _ _ d+2
G (x) = /0 p(t,x)dt = i || )

Let S = (S;: t > 0) be a subordinator independent of X, with Laplace exponent ¢(\),
Lévy measure pu, drift b > 0, no killing, potential measure U, and convolution semigroup
(me : t > 0). We define a new process Y = (Y; : t > 0) by V; := X(5;). Then Y is a
Lévy process with characteristic exponent ®(x) = ¢(|z|?) (see e.g. [49], pp.197-198) called a
subordinate Brownian motion. The semigroup (Q; : t > 0) of the process Y is given by

Quf(x) = E*[f(Y0)] = E*[/(X(S)))] = / " Pu(e) m(ds).

If the subordinator S is not a compound Poisson process, then @ has a density q(t,z,y) =
q(t,x —y) given by q(t,x) = " p(s, z) n(ds).

From now on we assume that the subordinate process Y is transient. According to the
criterion due to Port and Stone ([45]), Y is transient if and only if for some small r > 0,
f‘x|<r fﬁ(ﬁ) dx < oo. Since ®(z) = ¢(|z|?) is real, it follows that Y is transient if and only
if

)\d/?—l

+ o)
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This is always true if d > 3, and, depending on the subordinator, may be true for d = 1 or
d = 2. For z € R? and A Borel subset of R?, the occupation measure is given by

Glo, A) — Ex/oool(yteA):/OooQtlA(q:)dt:/Ooo/ooopslA(x)nt(ds)dt
= [ ruvta = [ [ e v,

where the second line follows from (2.6). If A is bounded, then by the transience of Y,
G(z,A) < oo for every z € R%. Let G(x,y) denote the density of the occupation measure
G(z,-). Clearly, G(z,y) = G(y — =) where

Glz) = /0 " ol 2) Udt) = /0 ot )ult) dt (3.2)

and the last equality holds in case when U has a potential density .
The Lévy measure 7 of Y is given by (see e.g. [49], pp. 197-198)

W(A):/A/Ooop(t,x)u(dt)dm:/AJ(x)dx, ACRY,

where
J(x) = / plt, 2) puldt) = / p(t, )bt (3.3)

is called the jumping function of Y. The last equality is valid in the case when pu(dt) has a
density p(t). Define the function j : (0,00) — (0, 00) by

2

j(r) == /000(47T)_d/2t_d/2 exp (—Z—t) p(dt), >0, (3.4)

and note that by (3.3), J(z) = j(|z]), z € R?\ {0}. We state the following well-known
conditions describing when a Lévy process is a subordinate Brownian motion (for a proof,
see e.g. [34], pp. 190-192).

Proposition 3.1 Let Y = (Y; : t > 0) be a d-dimensional Lévy process with the charac-
teristic triple (b, A,mw). Then Y is a subordinate Brownian motion if and only if T has a
rotationally invariant density x — j(|x|) such that r — j(\/r) is a completely monotone
function on (0,00), A = cly with ¢ >0, and b = 0.

Example 3.2 (i) Let ¢(\) = A*2, 0 < a < 2, and let S be the corresponding «/2-stable
subordinator. The characteristic exponent of the subordinate process Y is equal to ®(z) =
¢(|z|) = |z|*. Hence Y is a rotationally invariant a-stable process. From now on we will
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(imprecisely) refer to this process as a symmetric a-stable process. Y is transient if and only
if d > a. The jumping function of Y is given by

Q201 (449)

) = )

|x|_“_d, reR?,

and when d > 3, the Green function of Y is given by the Riesz kernel

1 T(5Y)

G(z) = lz|*7¢, z e R?.

(ii) For 0 < a < 2 and m > 0, let ¢(A) = (A +m*/2)%* —m, and let S be the corresponding
relativistic «/2-stable subordinator. The characteristic exponent of the subordinate process
Y is equal to ®(x) = ¢(|2|) = (Jx|* + m®/?)?/* —m. The process Y is called the symmetric
relativistic a-stable process. Y is transient if and only if d > 2.

(iii) Let ¢(A) = log(l 4+ A), and let S be the corresponding gamma subordinator. The
characteristic exponent of the subordinate process Y is given by ®(z) = log(1 + |z|?). The
process Y is known in some finance literature (see [40] and [29]) as a variance gamma process
(at least for d =1). Y is transient if and only if d > 2.

(iv) For 0 < a < 2, let ¢(\) = log(1 + A*/2), and let S be the corresponding subordinator.
The characteristic exponent of the subordinate process Y is given by ®(z) = log(1 + |z|%).
The process Y is known as a rotationally invariant geometric a-stable process. From now on
we will (imprecisely) refer to this process as a symmetric geometric a-stable process. Y is

transient if and only if d > «.

(v) For 0 < a < 2, let ¢ (X\) = log(1+A%/?), and for n > 1, let (™ () = ¢M (¢ (N). Let
S be the corresponding iterated geometric stable subordinator. Denote Yt(n) =X (St(n)).
Y™ is transient if and only if d > 2(a/2)".

(vi) For 0 < @ < 2 and let ¢(A\) = bA + A*/2 and let S be the corresponding subordinator.
The characteristic exponent of the subordinate process Y is ®(x) = b|z|* + |z|*. Hence Y is
the sum of a (multiple of) Brownian motion and an independent a-stable process. Similarly,
we can realize the sum of an a-stable and an independent 3-stable processes by subordinating
Brownian motion X with a subordinator having the Laplace exponent ¢(\) = A*/2 4 \9/2,
(vii) The characteristic exponent of the subordinate Brownian motion with the Bessel sub-
ordinator St is log((1 + |z|?) + /(1 + |z[2)2 — 1) and so this process is transient if and only
if d > 1. The characteristic exponent of the subordinate Brownian motion with the Bessel
subordinator Sk is $(log((1 + |z[*) + /(1 + |#]?)2 — 1))? and so this process is transient if
and only if d > 2.

(viii) For a € (0,2), 5 € (0,2 — «), let S be the subordinator with Laplace exponent ¢(\) =
A*/2(log(1 + X))?/2. The characteristic exponent of the subordinate process Y is ®(x) =
|z|*(log(1 + |2[?))%/2. Y is transient if and only if d > o + f3.
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(ix) For @ € (0,2),08 € (0,), let S be the subordinator with Laplace exponent ¢(\) =
A*2(log(1 4+ A\))™%/2. The characteristic exponent of the subordinate process Y is ®(x) =
|2|*(log(1 + |2|?))#/2. Y is transient if and only if d > a — §3.

In order to establish the asymptotic behaviors of the Green function G and the jumping
function J of the subordinate Brownian motion Y, we start by defining an auxiliary function.
For any slowly varying function ¢ at infinity and any & > 0, let

¢(1/y)
<
t = e(4t/y)’ y

Y

)

REYAIES

Now we state and prove the key technical lemma.

Lemma 3.3 Suppose that w : (0,00) — (0,00) is a decreasing function satisfying the fol-

lowing two assumptions:
(i) There exist constants co > 0 and 5 € [0,2] with § > 1—d/2, and a continuous functions
0:(0,00) — (0,00) slowly varying at oo such that

Co

w(t)

(i) If d =1 or d = 2, then there exist a constant cs, > 0 and a constant v < d/2 such that

w(t) ~ oo’ t— +o0. (3.6)

Let g : (0,00) — (0,00) be a function such that

/ 427248 ety (1) dt < o0
0

If there is £ > 0 such that fie(y,t) < g(t) for all y,t >0, then

Y _dje =2 col'(d/2+ 5 —1) 1
I() ._/0 R L mrr==ven LT

ER

Proof. Let us first note that the assumptions of the lemma guarantee that [(z) < oo for
every x # 0. By a change of variable we get

/ Tlamy e Fua - 1 / ez, (B 4
0 4/ 0 4t
1 &lz|? %
= |z _d+2/ +|x|‘d+2/
dme/? ( 0 €2
1

— oy a0+ ol 28
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We first consider I for the case d = 1 or d = 2. It follows from the assumptions that there

exists a positive constant ¢; such that w(s) < ¢;s7 ! for all s > 1/(4€). Thus

£lz|? |£L‘|2 v-1
Il S / td/2_2€_t01 (—> dt
] At

&la|?
02|93|27_2/ t1270 7t = cglw|42.
0

IN

It follows that —di2
lim =1 h
1
|z]—0 m

=0. (3.7)

In the case d > 3, we proceed similarly, using the bound w(s) < w(1/(4€)) for s > 1/(4¢).

Now we consider Is:

1 oo 2
2|2, = ’ ‘dQ/ td/Q—Qe—tw(’Z’Jf ) dt
x
3

||

o ﬁ) 1

_ 49 / $3/2-2+0 ot v ( 4 ¢ |2) dt

P20 L) Sy S—— |
e 8l (22) e (a5)

Using the assumption (3.5), we can see that there is a constant ¢ > 0 such that

|z
W 7
— <

(55) e

for all ¢ and =z satisfying |z|?/(4t) < 1/(4€). Since { is slowly varying at infinity,

()

=1

T

||

for all ¢ > 0. Note that
Uor)

It follows from the assumption that

=2 1
v ( 4 ) E(WZ) Ctd/Z—Z—i—Be—t (t)

IN

$4/2-248 ,—t
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Therefore, by the dominated convergence theorem we have

o0 w (%) 0(=5) 00
|li‘m0 /2248t T g(ﬂ ) dt = / cotY? 2Pt dt = ¢oT(d/2+ 3 —1).
z|=0 Je|z|? a8 . 22 0

Hence,

lim — 2 T (df2 4§ 1). (3.8)

Finally, combining (3.7) and (3.8) we get

, I(x) _cl(d/2+3-1)
|£1\T0 —_1l_ A1=Bd/2

2P 2520 1)

Remark 3.4 Note that if in (3.5) we have that £ = 1, then foe =1, hence fie(y,t) < g(y)
and fooo td/2+8=2c=t () dt < oo with g = 1 provided 3 > 1 — d/2.

3.2 Asymptotic behavior of the Green function

The goal of this subsection is to establish the asymptotic behavior of the Green function
G(z) of the subordinate process Y under certain assumptions on the Laplace exponent of
the subordinator S. We start with the asymptotic behavior when |z| — 0 for the following
cases: (1) ¢(\) has a power law behavior at oo, (2) S is a geometric «/2-stable subordinator,
0 < a <2, (3) 85 isan iterated geometric stable subordinator, (4) S is a Bessel subordinator,
and (v) S is the subordinator corresponding to Example 2.15 or Example 2.16.

Theorem 3.5 Suppose that S = (S; : t > 0) is a subordinator whose Laplace exponent
P(X) = bA+ [[7(1 — e ) u(dt) satisfies one of the following two assumptions:

(i) b>0,
(i) S is a special subordinator and ¢(\) ~ v IA2 as X\ — oo, for 0 < a < 2.

If Y s transient, then

G(x) ~ 2|7, x| =0, (3.9)
(where in case (i), v"' =b and a = 2).
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Proof. (i) In this case, ¢(\) ~ bA, A — oo. By Proposition 2.7, the potential measure U
has a continuous density u satisfying u(0+) = 1/b = v and u(t) < u(0+) for all t > 0. Note
first that by change of variables

/00(47rt)d/2 exp —@ u(t) dt = w /00 s¥2 2075y @ ds (3.10)
0 4t 47Td/2 0 4s ' '

By Proposition 2.7, lim, o u(|z[*/(4s)) = u(0+) = v for all s > 0 and u(|z|?/(4s)) is
bounded by u(0+). Hence, by the bounded convergence theorem,

/00(47Tt)_d/2 exp (—W> u(t) dt = w (3.11)

’
S 4t Amrd/2

a0 || 4+

(ii) In this case the potential measure U has a decreasing density u which by (2.28) satisfies

(e

T(aj2) o 170

By recalling Remark 3.4, we can now apply Lemma 3.3 with f = 1 — /2 to obtain the
required asymptotic behavior. O

Theorem 3.6 For any o € (0,2], let ¢(\) = log(1 + X*/2) and let S be the corresponding
geometric «/2-stable subordinator. If d > «, then the Green function of the subordinate
process Y satisfies

'(d/2)
2a74/2|z|41og? I?l\

. |z] —o0. (3.12)

Proof. We apply Lemma 3.3 with w(t) = u(t), the potential density of S. By Proposition
2.19, u(t) ~ #ggt as t — 0+, so we take ¢ = 2/a, 3 = 1 and £(t) = log>t. Moreover,
by the second part of Proposition 2.19, u(t) ~ /271 /(I'(a)/2) as t — 400, so we can take
v =a/2 < d/2. Choose £ =1/2. Let

log? y y < 2t,

1) = ) ={ leg” 77
fQy,t) = fer2(y,t) { st

Define

log? 2t t
g(t) :=( log’2”
t

In order to show that f(y,t) < g(t), first let t < 1/4. Then y — f(y,t) is an increasing
function for 0 < y < 2t. Hence,

Y

= s =

<
>

log? 2t
sup f(y,t) = f(2t,t) = 5
0<y<2t log” 2
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Clearly, f(y,1/4) = 1. For t > 1/4, y — f(y,t) is a decreasing function for 0 < y < 1.
Hence

sup  f(y,t) = f(0,) == iig%f(y,t) =1.

0<y<(2t)Al

For ¢t > 1/2, elementary consideration gives that

log? 2t
su 1) < .
1<y£2tf(y ) log® 2
Clearly,
/ 42 e tg(t) dt < oo,
0
and the required asymptotic behavior follows from Lemma 3.3. a

For n > 1, let S™ be the iterated geometric stable subordinator with the Laplace
exponent ¢™. Recall that ¢ () = log(1 4+ A*/?), 0 < a < 2, and ¢ = ¢ 0 "=V, Let
Y™ = X (5™) be the subordinate process and assume that d > 2(c/2)". Denote the Green
function of Y by G(™. We want to study the asymptotic behavior of G™ using Lemma
3.3. In order to check the conditions of that lemma, we need some preparations.

For n € N, define f,, : (0,1/e,) x (0,00) — [0,00) by

Ln-1(3)ln(3)? 2
faly 1) = { Lo GOl (2 7 Y S e
y> 2.

Y

Note that f, is equal to the function f, ¢, defined before Lemma 3.3, with £(y) = Ly, _1(y)l,(y)?
and £ = e, /2. Also, for n € N, let

R, t<1/4,
gn(t) '_{ 1, t>1/4.

Moreover, for n € N, define h,, : (0,1/e,) x (0,00) — (0, 00) by

l(5)
ho(y,t) == —5~ .
Clearly, for 0 < y < f_,tl A i we have that
oy, t) = hi(y,t) .. hu1(y, ) hn(y, ). (3.13)

Lemma 3.7 For all y € (0,1/e,) and all t > 0 we have f,(y,t) < gn(t). Moreover,
Jo ot e g, (1) dt < .
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Proof. A direct calculation of partial derivative gives

8}1” Ln(l) _Ln(%)

Y

Ty W0 = YLt (3) Lot ()1, ()2

The denominator is always positive. Clearly, the numerator is positive if and only if ¢ > 1/4.
Therefore, for ¢t < 1/4, y — h,(y,t) is increasing on (0,2t/e,), while for ¢ > 1/4 it is
decreasing on (0, 2t/e,).

Let t < 1/4. It follows from (3.13) and the fact that y — h,(y,t) is increasing on
(0,2t/e,) that y — f.(y,t) is increasing for 0 < y < 2t/e,,. Therefore,

sup fn(yu t) < fn(Qt/enat> = 9n<t> .
O<y<2t/en

Clearly, f.(y,1/4) = 1. For y > 1/4, it follows from (3.13) and the fact that y — h,(y,t) is
decreasing on (0, 2t/e,,) that y — f,(y,t) is decreasing for 0 < y < 1/e,. Hence

sup  fuly,t) = f(0,¢) := Zl/li% faly,t) =1.

O<y<ZLAL

en €n

For t > 1/2, elementary consideration gives that

sup  fu(y,t) < gn(t).

1 2t 1
a<y<—/\—

en €n

The integrability statement of the lemma is obvious. O

Theorem 3.8 Ifd > 2(«/2)", we have

. r(/2)
2042 || Ly, 1 (1/]2]?) (1) 2|?)?

G (x) |z| — 0.
Proof. We apply Lemma 3.3 with w(t) = u(™(t), the potential density of S™. By Propo-

sition 2.21,
2

(1) ~ t—0
Wt~ a0
so we take cg = 2/a, =1 and £(t) = L,_1(t)l,,(t)>. By the second part of Proposition 2.21,
u™(t) is of order t*/2" 1 as t — o0, so we may take v = (a/2)" < d/2. Choose & = ¢, /2.
The result follows from Lemma 3.3 and Lemma 3.7 4

Using arguments similar to that used in the proof of Theorem 3.6, together with Propo-
sition 2.22, (2.32) and (2.34), we can easily get the following two results.
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Theorem 3.9 (i) Suppose d > 1. Let Gy be the Green function of the subordinate Brownian
motion via the Bessel subordinator S;. Then

Gila) ~ ot

47rd/2|z|d log? ﬁ

, x| —0.

(ii) Suppose d > 2. Let Gk be the Green function of the subordinate Brownian motion via
the Bessel subordinator Si. Then

(d/2)

Gg(x) ~
x(@) 47Td/2|x|dlog3m

|z| — 0.

Theorem 3.10 Suppose a € (0,2),5 € (0,2—«) and that S is the subordinator correspond-
g Example 2.15. If d > a+ 3, the Green function of the subordinate Brownian motion via
S satisfies

al'((d — ) /2

G(z) ~ 201 7d/21(1 4 «/2) |x|?—(log(1/|x|?))5/2’

|z| — 0.

Theorem 3.11 Suppose a € (0,2), § € (0,«) and that S is the subordinator corresponding
Example 2.16. If d > «, the Green function of the subordinate Brownian motion via S
satisfies

al((d—a)/2  (log(1/[2[*))"?
2041 7d/21(1 4 «/2) |x|d—«

G(x) ~

, |z —0.

Proof. The proof of this theorem is similar to that of Theorem 3.6, the only difference is
that in this case when applying Lemma 3.3 we take the slowly varying function ¢ to be

oy = { Qg 77, 122,
| (log?2)#1 t<2.

Then using argument similar to that in the proof of Theorem 3.6 we can show that with the
functions defined by

B8/4
() <y <t
Fly, 1) :{ fiy Y <2 _ (%) L t>1/4, y<1/2,
’ 0, y=2t log? (4
<°gloét§y)> L t<1/4, 1/2<y<2t,
O’ y Z 2t7

and




we have f(y,t) < g(t) for all y > 0 and ¢t > 0. The rest of the proof is exactly the same as
that of Theorem 3.6. O

By using results and methods developed so far, we can obtain the following table of the
asymptotic behavior of the Green function of the subordinate Brownian motion depending
on the Laplace exponent of the subordinator. The left column contains Laplace exponents,
while the right column describes the asymptotic behavior of G(x) as |z| — 0, up to a
constant.

Laplace exponent ¢ Green function G ~ c¢-
A 2|~ Ja?

Jy Ngrds (n > ~1) 2 |z log ()"

A 2(log(1+A)P20<a<2,0<B<2—a, |z \x!am
220 < a <2 |z~ | x|

A 2(log(1+A) P2 0<a<20<B<a, 2|~ |z|*(log(1/]x|?))?/?
log(1+ A% 0<a <2 ||~ @

o (N) 2|~ :

Lnfl(%)ln(%)z

Notice that the singularity of the Green function increases from top to bottom. This is,
of course, a consequence of the fact that the corresponding subordinator becomes slower and
slower, hence the subordinate process Y moves also more slowly for small times.

We look now at the asymptotic behavior of the Green function G(z) for || — oo.

Theorem 3.12 Suppose that S = (S; : t > 0) is a subordinator whose Laplace exponent

B(N) = bA+ / T e ()

is a special Bernstein function such that limy_ ¢(A) = co. If ¢(A) ~ v 'A% as X — 0+
for a € (0,2] with o < d and a positive constant vy, then

oy e
m4/22% T(%)

G(z)

’$|a_d

as |x| — oo.

Proof. By Theorem 2.1 the potential measure of the subordinator has a decreasing density.
By use of Theorem 2.17, the assumption ¢(A\) ~ v~ 'A%/2 as A — 0+ implies that

g a/2-1
O~

, t—o00.
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Since u is decreasing and integrable near 0, it is easy to show that there exists ty > 0 such
that u(t) <t~ for all ¢t € (0,ty). Hence, we can find a positive constant C' such that

u(t) < Ot v /21y (3.14)

By change of variables we have

/000(47rt)_d/2 exp (—%) u(t) dt

1 [e9) 2
— 47Td/2‘x’—d+2/(; Sd/2—2€—su (%) ds

Let |z| > 2. Then by (3.14),

4s

It follows that the integrand in the last formula above is bounded by an integrable function,
so we may use the dominated convergence theorem to obtain

lim ;/00(47%)‘1/26)@ i u(t)dt = i 2
|x|—o00 |ZL’|_d+O‘ 0 4t 2aqd/2 F(%) ’

which proves the result. O

Examples of subordinators that satisfy the assumptions of the last theorem are relativistic
(3 /2-stable subordinators (with « in the theorem equal to 2), gamma subordinator (o = 2),
geometric [3/2-stable subordinators (o = [3), iterated geometric stable subordinators, Bessel
subordinators Sy, a = 1, and Sk, a = 2, and also subordinators corresponding to Examples
2.15 and 2.16.

Remark 3.13 Suppose that S; = bt + S, where b is positive and S, is a pure jump special
subordinator with finite expectation. Then ¢(N) ~ bA, X\ — 00, and ¢(\) ~ ¢'(0+)A, A — 0.
This implies that, when d > 3, the Green function of the subordinate process Y satisfies
G(z) < G@(x) for all x € RY.
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3.3 Asymptotic behavior of the jumping function

The goal of this subsection is to establish results on the asymptotic behavior of the jumping
function near zero, and results about the rate of decay of the jumping function near zero
and near infinity. We start by stating two theorems on the asymptotic behavior of the
jumping functions at zero for subordinate Brownian motions via subordinators corresponding
to Examples 2.15 and 2.16. We omit the proofs which rely on Lemma 3.3 and are similar to
proofs of Theorems 3.10 and 3.11.

Theorem 3.14 Suppose a € (0,2),5 € (0,2—«) and that S is the subordinator correspond-
ing to Example 2.15. Then the jumping function of the subordinate Brownian motion Y via
S satisfies

al((d+a)/2)  (log(1/|z[*))"”

J(z)~ 21—amd/2[(1 — o /2) |z dto , el =0

Theorem 3.15 Suppose o € (0,2),5 € (0,«) and that S is the subordinator corresponding
to Example 2.16. Then the jumping function of the subordinate Brownian motion Y wvia S
satisfies

T~ al'((d + @)/2) 1
T 21— a2) [ol T (log (1/]2 )P

|z| — 0.

We continue by establishing the asymptotic behavior of the jumping function for the
geometric stable processes. More precisely, for 0 < a < 2, let ¢(A\) = log(1 + A*/?), S the
corresponding geometric «/2-stable subordinator, ¥; = X(.S;) the subordinate process and
J the jumping function of Y.

Theorem 3.16 For every a € (0,2], it holds that

J(x) ~ %, 2] — 0.

Proof. We again apply Lemma 3.3, this time with w(t) = pu(t), the density of the Lévy
measure of S. By Proposition 2.24 (i), u(t) ~ 5; as t — 0+, so we take co = /2, 3 = 1 and
{(t) = 1. By Proposition 2.24 (ii), u(t) is of the order t~%/2~! as t — +o00, so we may take
v = —a/2. Choose £ =1/2 and let g = 1. O

Theorem 3.17 For every o € (0,2) we have

~—

J ()

2] 747, 2] — oo

o T
™ Sat1,d/2 r(1—

N|R

)



Proof. By Proposition 2.24 (ii),

o
e — .
O~ SF T —a/2) T

Now combine this with Proposition 2.24 (i) to get that
pt) <O tve 2 >0, (3.15)

By change of variables we have

00(4 t —d/2 _|x|2 d
)P exp ( =0 p(t)dit
0

1 —avr [T aje—2 s |x|2

= 47_‘_(1/2’37‘ /0 S / e Z ds
o2
L ( 1o > 1 —a/2—-1
—a/2—1 ( ) ds

— o —d—a OO d/2—-2 _—s
87rd/2F(1—oz/2)|$| /0 e o (I ds
T(1—a/2) <E>

« o0 H (li_F)

— —d—a d/24+a/2-1_—s s
20t d20(1 — o )2) || /0 s € . w2 /21 ds-.
al'(1—a/2) (K)

Let |z| > 2. Then by (3.15),

()

|$’2 o2 /2
S nd i < —a '
R <C <4s) V1| <CO(s V1)
(%)

It follows that the integrand in the last display above is bounded by an integrable function,

so we may use the dominated convergence theorem to obtain

e (P o T
lim m/o (4mt)~Y= exp <_E ,u(t)dt:2a+17rd/2r(1

which proves the result.

In the case a = 2, the behavior of J at oo is different and is given in the following result.

)

_%)’

(3.16)

O

Theorem 3.18 When a = 2, we have

d—1 e"””‘
27— x| = 0.

d+1)
]2

J(z) ~ 2727~
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Proof. By change of variables we get that
1 [ 2
J(z) = —/ t~te ! (4mt)~9? exp(—ﬂ
2 Jo 2
oLy d/2| | / e
0

= 2]~ (Ja)),

)dt

where
oo s 2
I(r) = / st lemi" % ds
0
Using the change of variable u = \/75 — \/Lg we get

I(r) = e’"/ st le™ (BT g
0

_, /‘X’ 2(u+ Vu?+2r)¢
—= e (&
oo Vu?+2r
a1t [CTu+Vur4+2r u u?
= 2e r 2 ————(—+1/—
oo NUZH2r T r
Therefore by the dominated convergence theorem we obtain

I(r) ~ 28 T/me " rT, 1 — oo.

du

+2)4 e du .

Now the assertion of the theorem follows immediately. O

Let Y;(") =X (St(")) be Brownian motion subordinate by the iterated geometric subordi-
nator S, and let J™ be the corresponding jumping function. Because of Remark 2.26, we
were unable to determine the asymptotic behavior of J™.

Assume now that ¢(\) is a complete Bernstein function which asymptotically behaves
as A*? as A — 0+ (resp. as A — 00). Similar arguments as in Theorems 3.16 and 3.17
would yield that the jumping function J of the corresponding subordinate Brownian motion
behaves (up to a constant) as |x|7"% as |z| — oo (resp. as |z|7"? as |z| — 0). We are not
going to pursue this here, because, firstly, such behavior of the jumping kernel is known from
the case of a-stable processes, and secondly, in the sequel we will not be interested in precise
asymptotics of J, but rather in the rate of decay near zero and near infinity. Recall that p(?)
denotes the decreasing density of the Lévy measure of the subordinator S (which exists since
¢ is assumed to be complete Bernstein), and recall that the function j : (0,00) — (0, 00)
was defined by

2

j(r) = /000(47r)d/2td/2 exp <—Z—t) peydt, r>0, (3.17)

and that J(z) = j(|z]), z € R?\ {0}.
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Proposition 3.19 Suppose that there exists a positive constant ¢; > 0 such that

p(t) < e u(2t) forallt e (0,8),
< capt+1) forallt>1.

Then there exists a positive constant co such that

j(r) < ej(2r) forallr € (0,2),
jr) < eg(r+1) forallr>1.

Also, r +— j(r) is decreasing on (0,00).

Proof. For simplicity we redefine in this proof the function j by dropping the factor (47)

from its definition. This does not effect (3.20) and (3.21).
Let 0 <r < 2. We have

j(2r) = / T exp(—r? ft)u(t) de

1/2

_ %( /0 Y 012 (St di + / 2 (e
+ /0 2 t= Y2 exp(—r?/t)u(t) dt + /2 h t= 42 exp(—r?/t)u(t) dt)
% (/Oo t~ 2 exp(—r?/t)u(t) dt + /02 =42 exp(—r? /) u(t) dt>

v

1/2
1

= —([{+1).
2(1+ 2)

Now,

4t 2

r2 3r2 > ?
> / 9 exp(— ") exp(~ " Ju(t) di > ¢ / 40 exp(~"
1/2 1

2 1/2
o= [ e = [ e s s
0

1/2 2
> [ (- ) ds.
0 S

Combining the three displays above we get that j(2r) > ¢3 j(r) for all r € (0, 2).
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To prove (3.21) we first note that for all ¢ > 2 and all » > 1 it holds that

2 2
r+1°
t t—1—
This implies that
1)2 §
(I " ) > -1 exp(~g—y) forallr>10>2. (3:22)
Now we have
00 1 2
j(?“ + 1) — / /2 exp(— (7“ jl_t ) ) (t) dt
0

> % (/0 =42 oxp(— (r Ll) () dt—l—/goo =42 eXp(—(T Ll) )u(t) dt)
= %([3 + 1).

For I3 note that (r + 1)* < 472 for all r > 1. Thus

o= ez [T epr oun

7,2

2 2 2
1 [ e s ds 2 20 [ e TG ds,
0 0

2

At—1)

) u(t) dt

o] 1 2 oo
Iy = / t_d/2exp(—%)u(t) dtZ/ t= 42 exp{—1/4} exp(—
3 3

00 2 00 2
= 6_1/4/ (s —1)7%2 exp(—r—) p(s+1)ds > cl_le_l/4/ s74/2 exp(—r—),u(s) ds.
9 4s 9 4s

Combining the three displays above we get that j(r + 1) > ¢4 j(r) for all r > 1. O

Suppose that S = (S; : t > 0) is an «/2-stable subordinator, or a relativistic a/2-
stable subordinator, or a gamma subordinator. By the explicit forms of the Lévy densities
given in Examples 2.8, 2.9 and 2.10 it is straightforward to verify that in all three cases
w(t) satisfies (3.18) and (3.19). For the Bessel subordinators, by use of asymptotic behavior
of modified Bessel functions Iy and Ky, one obtains that p;(t) ~ e */t, t — 0+, us(t) ~
(L/V2m)t732, t — oo, ug(t) ~ log(1/t)/t, t — 0+, and pg(t) ~ \/7/2e 2732 ¢t — .
From Propositions 2.27 and 2.28, it is easy to see that corresponding Lévy densities satisfy
(3.18) and (3.19). In the case when S is a geometric a/2-stable subordinator or when S is the
subordinator corresponding to Example 2.15, respectively Example 2.16, these two properties
follow from Proposition 2.24, and Proposition 2.27, respectively Proposition 2.28. In the
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case of an iterated geometric stable subordinator with 0 < o < 2, (3.19) is a consequence
of Proposition 2.25, but we do not know whether (3.18) holds true. By using a different
approach, we will show that if ™ : (0,00) — (0, 00) is such that J™(x) = j™(|x|), then
(3.20) and (3.21) are still true.

We first observe that symmetric geometric a-stable process Y can be obtained by subor-
dinating a symmetric a-stable process X via a gamma subordinator S. Indeed, the char-
acteristic exponent of X being equal to |z|*, and the Laplace exponent of S being equal
to log(1 + ), the composition of these two gives the characteristic exponent log(1 + |z|*)
of a symmetric geometric a-stable process. Let p,(t,x,y) = pa(t,z — y) denote the transi-
tion densities of the symmetric a-stable process, and let ¢, (¢, z,y) = qa(t, 2 — y) denote the
transition densities of the symmetric geometric a-stable process, z,y € R?, ¢ > 0. Then

Go(t,x) = /000 pa(s,x)ﬁst_le_sds. (3.23)

Also, similarly as in (3.3), the jumping function of Y can be written as
J(z) = / pa(t,x)t retdt, x € R\ {0}. (3.24)
0
Define functions j™ : (0, 00) — (0, 00) by

00 2
j(”) (r) = / %2 exp <—%) u(")(t) dt, r>0, (3.25)
0

where ;") denotes the Lévy density of the iterated geometric subordinator, and note that
by (3.3), J™(z) = (4m)~"25(|2]), 2 € R\ {0}

Proposition 3.20 For any o € (0,2) and n > 1, there exists a positive constant ¢ such that
J () < ej™(2r),  forallr >0 (3.26)

and
) < i@+ 1),  forallr > 1. (3.27)

Proof. The inequality (3.27) follows from Proposition 3.19. Now we prove (3.26). It is
known (see Theorem 2.1 of [12]) that there exist positive constants C; and Cy such that for
all t > 0 and all z € R,

Cymin(t~Y t |z|~%) < po(t, z) < Coymin(t~Y ¢ |z|~49). (3.28)
Using these estimates one can easily see that there exists C's > 0 such that

Palt,x) < Cspa(t,2z), for all t >0 and x € R% (3.29)
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Let JW(z) = J(x) and q&l)(t,x) = qa(t,z). By use of (3.29), it follows from (3.23) and
(3.24) that JW(z) < C5JV(22) | for all z € RY\ {0}, and ¢{"(¢, :1:') < C3qiV(t, 22), for
all t > 0 and x € R% Further, Y is obtained by subordinating Y(!) by a geometrically
a/2-stable subordinator S. Therefore,

1

1) =5 [T oap)ds, @@ )= [ faplts)ds. (330
0 0

where p(s) is the Lévy density of S and f,/(t, s) the density of P(S; € ds). By use of
qg)(s,x) < ng&”(s, 21), it follows J@(z) < C3J® (2z) and g (t x) < ngé)(t 2z) for all
t > 0 and z € R, The proof is completed by induction. O

We conclude this section with a result that is essential in proving the Harnack inequality
for jump processes, and was the motivation behind Propositions 3.19 and 3.20.

Proposition 3.21 LetY be a subordinate Brownian motion such that the function j defined
in (3.17) satisfies conditions (3.20) and (3.21). There exist positive constants Cy and Cs such
that if r € (0,1), € B(0,r), and H is a nonnegative function with support in B(0,2r)c,
then

E*H(Y (7500m)) < Co(E*T50m) / H(2)J(2) dz
and
E*H(Y (7o) = Cs(E*Tp0r)) /H(z)J(z) dz.

Proof. Let y € B(0,r) and z € B(0,2r)¢. If z € B(0,2) we use the estimates
27| <2 =yl <202, (3.31)

while if z ¢ B(0,2) we use
2| =1 <]z —y| <|z| + 1. (3.32)

Let B C B(0,2r)¢. Then by using the Lévy system we get

TB(0,r) TB(0,r)
E“15(Y (TB(0,r))) / / z =Y, dZdS—Ex/ / (|lz = Ys|)dzds.

By use of (3.20), (3.21), (3.31), and (3.32), the inner integral is estimated as follows:

[ie=viha = [ -yt [ -V
B BNB(0,2) BNB(0,2)°
< [ geede [ el - D
BAB(0,2) BNB(0,2)¢
< [ ailhds [ )
BNB(0,2) BNB(0,2)c

:CQ/J
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Therefore

TB(0,r)
WbWhWM)SIW/ @/ﬂ@w
0 B

= CQEI(TB(07T))/1B(Z)J(Z) dz .

Using linearity we get the above inequality when 1p is replaced by a simple function. Ap-
proximating H by simple functions and taking limits we have the first inequality in the
statement of the lemma.

The second inequality is proved in the same way. a

3.4 Transition densities of symmetric geometric stable processes

Recall that for 0 < a < 2, q,(t, ) denotes the transition density of the symmetric geometric
a-stable process. The asymptotic behavior of ¢,(1,z) as || — oo is given in the following
result.

Proposition 3.22 For a € (0,2) we have

a2°sin & T(52)T(5)

q(X(lax) ~ ﬂ%+1|x|d+a ) ’.CC‘ — Q.
For o = 2 we have o
—|T
@1, ) ~ PRET |z’|d217 |z| — oo.

Proof. The proof of the case @ < 2 is similar to the proof of Proposition 2.29 and uses
(3.28), while the proof of the case o = 2 is similar to the proof of Theorem 3.18. We omit
the details. O

The following theorem from [21] provides the sharp estimate for g, (¢, x) for small time ¢
in case 0 < a < 2.

Theorem 3.23 Let a € (0,2). There are positive constants Cy < Cy such that for all x € R?
and 0 <t <1A %,

Cit nrlin(|x|_al_‘”7 |x|_d+w) < Golt,x) < Cot nrlin(|x|_al_a7 |x|_d+w) .

Proof. The following sharp estimates for the stable densities (3.28) is well known (see, for

instance, [12])

dto
1004(5,:15)xs’g (1/\8—a> , Vs>0andz€R?.

’x|d+a
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Hence, by (3.23) it follows that g,(t,z) < ﬁ I(t,|z|) where

foe) dta
S «
I(t,r) = / sa <1/\ d+a> stle % ds
0 r

1 re 00
= — / ste™*ds + / siml=d/ae=s gs .
rito
0 ro

From now on assume that 0 < ¢ < 1A %. Then for 0 < r <1,

1 re 1 o)
I(t,r) = Td+a/ stds+/ st_l_d/ae_sds—I—/ stml-dlag=s qg
0 r

@ 1
1 t—d 1 t—d /OO t—1-dja_— t—d
= —— _ya —(r* % -1 s “eds < r¥Te.
1 e )+

We also have,

1 * I't+1 1
I(t,r) < / s'e™ds = (t+ )< r>0,
0

rd—l—a ,rd—l—a — Td—i—a ’
1 ! 1 1 1
I(t,r) > fe~*ds > > , r>1.
(t,r) > rd+a/0 se §Z rdta (14 t)e = 2erdte r

Note that

= 1

| 1 Lo 0<r<1
por; el r>1.

rd+a A ,,adfta

Therefore I(t,7) < = A —4. This implies that

.2 1IG\D 1 1L (L, 1
Wt ) <X —=1(t, |z]) < = ,
4 F(t) F(t) |x|d+a |x|d—ta |x’d+a |x’d—ta

since for 0 < ¢ <1, I'(¢) < ¢t 1 O

Note that by taking x = 0, one obtains that ¢,(t,0) = oo for 0 < t < 1 A %. This
somewhat unusual feature of the transition density is easier to show when a = 2, i.e., in the
case of a gamma subordinator. Indeed, then

o 2 1
@t x) = / (4ms) Y271/ _—_gt=1e=s g
0 ['(t)

and therefore

(47T)_d/2 * —d/2+t—1 — +00, t < d/2,
QQ<t7 0) = T S e Sds = I(t—d/2)
['(t) 0 @72 ° t>d/2.
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Assume now that S® is an iterated geometric stable subordinator with the Laplace exponent
d(A) = log(1 + log(1 + X)), and let q§2) (t,x) be the transition density of the process Y@ =
X(S®). Then by (3.30),

& 1
@2 (t,0) = /O ol O) st e ds =

for all ¢t > 0.

4 Harnack inequality for subordinate Brownian mo-
tion

4.1 Capacity and exit time estimates for some symmetric Lévy
processes

The purpose of this subsection is to establish lower and upper estimates for the capacity
of balls and the exit time from balls, with respect to a class of radially symmetric Lévy
processes.

Suppose that Y = (Y;,P?) is a transient radially symmetric Lévy process on RZ. We
will assume that the potential kernel of Y is absolutely continuous with a density G(z,y) =
G(|y — z|) with respect to the Lebesgue measure. Let us assume the following condition:
G : [0,00) — (0,00] is a positive and decreasing function satisfying G(0) = oo. We will have
need of the following elementary lemma.

Lemma 4.1 There exists a positive constant C; = C1(d) such that for every r > 0 and all
x € B(0,7),

ol/ G<|y|>dys/ G(x,wdys/ G(lyl) dy
B(0,r) B(0,r)

B(0,r)
Moreover, the supremum of fB(O " G(z,y)dy is altained at x = 0, while the infimum is
attained at any point on the boundary of B(0,r).

Proof. The proof is elementary. We only present the proof of the left-hand side inequality
for d > 2. Consider the intersection of B(0,r) and B(x,r). This intersection contains the
intersection of B(z,r) and the cone with vertex x of aperture equal to 7/3 pointing towards
the origin. Let C'(x) be the latter intersection. Then

/ G<|y—x|>dyz/ G<|y—x|>dy2cl/ G<|y—x|>dy=q/ G(yl) dy,
B(0,r) C(x) B(z,r) B(0,r)

where the constant ¢; depends only on the dimension d. It is easy to see that the infimum
of fB(o " G(z,y) dy is attained at any point on the boundary of B(0, ). O
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Let Cap denote the (0-order) capacity with respect to X (for the definition of capacity
see e.g. [13] or [49]). For a measure pu we define

Gulz) = / Gl y) u(dy)

For any compact subset K of R? let Px be the set of probability measures supported by
K. Define

e(K):= inf /G,u(x) p(dr) .

nEPK

Since the kernel G satisfies the maximum principle (see, for example, Theorem 5.2.2 in [22]),
it follows from ([28], page 159) that for any compact subset K of R?

1 1
Cap(K) = - = . 4.1
p( ) lnf,UEPK SUDzeSupp(u) G,u(l') €<K) ( )

Furthermore, the infimum is attained at the capacitary measure px. The following lemma
is essentially proved in [38].

Lemma 4.2 Let K be a compact subset of R%. For any probability measure 1 on K, it holds
that
inf Gu(z) <e(K)< sup Gu(z). (4.2)

x€Supp (1) zeSupp(p)

Proof. The right-hand side inequality follows immediately from (4.1). In order to prove the
left-hand side inequality, suppose that for some probability measure g on K it holds that
e(K) < infyegupp(un) Gu(z). Then e(K) + € < inf egupp(n) Gr(z) for some € > 0. We first have

| Guta) pcldn) > [ (e(0) + €) () = () + .

K

On the other hand,

| Guta)pclde) = [ G utde) = [ () utie) = e(6),

where we have used the fact that Gux = e(K) quasi everywhere in K, and the measure of
finite energy does not charge sets of capacity zero. This contradiction proves the lemma. O

Proposition 4.3 There exist positive constants Cy < Cs depending only on d, such that for

allr >0
Cyr? S Car?
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Proof. Let m,(dy) be the normalized Lebesgue measure on B(0,r). Thus, m,(dy) =
dy/(c1r?), where ¢; is the volume of the unit ball. Consider Gm, = sup,c () Gm.(z). By
Lemma 4.1, the supremum is attained at x = 0, and so

1
Gm, = — G(ly|)d
i Jnon (ly)dy
Therefore from Lemma 4.2
d
cr
Cap(B(0,7) (4.4)
fB 0,r) ‘y’
For the right-hand side of (4.2), it follows from Lemma 4.1 and Lemma 4.2 that
—_— 1 cird crrt
Cap(B(0,7)) < - Sy <
Gm,.(z) fB(O,r) G(z, 4 fB 0.1) ]y\
where z € 0B(0, 7). O

In the remaining part of this section we assume in addition that GG satisfies the following
assumption: There exist ro > 0 and ¢y € (0, 1) such that

coG(r) > G(2r), 0<2r<rg. (4.5)

Note that if G is regularly varying at 0 with index 0 < 0, i.e., if

lim G(2r)

=20
MG T

then (4.5) is satisfied with ¢y = (2° +1)/2 for some positive ro. Let 750,y = inf{t > 0: Y; ¢
B(0,7)} be the first exit time of Y from the ball B(0,r).

Proposition 4.4 There exists a positive constant Cy such that for all r € (0,7¢/2),

, / Gy dy < inf Ergon < sup E'rpoy < / Gllydy.  (46)
B(0,r/6) IGB(O r/6) z€B(0,r) B(0,r)

Proof. Let Gpo,)(z,y) denote the Green function of the process Y killed upon exiting
B(0,7). Clearly, G (z,y) < G(x,y), for z,y € B(0,r). Therefore,

IEmTB(ox) = /( )GB(O,r)(CUaZJ)dZ/
B(0,r

S/ G(x,y)dyﬁ/ G(lyl) dy-
B(0,r) B(0,r)
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For the left-hand side inequality, let r € (0,7¢/2), and let z,y € B(0,r/6). Then,

Gpon(z,y) = Glz,y) —E*G(Y (0:), )
> Gly—z|) = G2ly —=|).

The last inequality follows because [y—Y (7p(0,)| > 37 > 2Jy—=|. Let ¢; = 1—¢o € (0,1). By
(4.5) we have that for all u € (0,79), G(u)—G(2u) > ¢G(u). Hence, G(|ly—z|)—G(2|ly—=x|) >
c1G(|ly — x|), which implies that G (z,y) > c1G(z,y) for all z,y € B(0,r/6). Now, for
x € B(0,7/6),

ExTB(O,T) = / GB(O,?")(:an)dyZ/ GB(O,T)(@",?/)d?J
B(0,r) B(0,r/6)

> o / Gla,y)dy > a.Cy / G(lyl) dy.
B(0,r/6) B(0,r/6)

where the last inequality follows from Lemma 4.1. O

Example 4.5 We illustrate the last two propositions by applying them to the iterated
geometric stable process Y™ introduced in Example 3.2 (iv) and (v). Hence, we assume
that d > 2(a/2)". By a slight abuse of notation we define a function G™ : [0, 00) — (0, o]
by G™(|z]) = G™(x). Note that by Theorem 3.8, G is regularly varying at zero with index
B = —d. Let o be the constant from (4.5). Let us first look at the asymptotic behavior of
Js0m G™ (|y|) dy for small 7. We have

/ G(")(\yl) dy = cd/ ud_lG(")(u) du
B(0,r)

0

cal'(d/2) [T w1t du _cql'(d/2) r dv
amd/? /0 ulLy,_ 1 (1/u2)2(1/u?) — 2amd/? /0 VL, 1 (1/v)2(1/v)
cal'(d/2) 1 1
209 1,(1/r2) (1))
It follows from Proposition 4.3 that there exist positive constants C5 < Cj such that for
all 7 € (0,1/ey,),

r—0.

Csr,(1/r) < Cap(B(0,7)) < Ceril, (1/7).
Similarly, it follows from Proposition 4.4 that there exist positive constants C7; < Cg such
that for all » € (0, (1/e,) A (10/2)),

07 . CS
T < f Erpo, < Erpiom < ——o 4.7
(L/r) = weBlowssy P00 = S0 FTEON =10 (4.7)

Here we also used the fact that [, is slowly varying.
By use of Theorem 3.12 and Proposition 4.3, we can estimate capacity of large balls. It

easily follows that as r — oo, Cap(B(0, ) is of the order pale/2)" "t
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4.2 Krylov-Safonov-type estimate

In this subsection we retain the assumptions from the beginning of the previous one. Thus,
Y = (Y;,P?) is a transient radially symmetric Lévy process on R? with the potential kernel
having the density G(z,y) = G(|ly — z|) which is positive, decreasing and G(0) = oco. Let
r1 € (0,1) and let £ : (1/r;,00) — (0,00) be a slowly varying function at co. Let 5 € [0, 1]
be such that d + 28 — 2 > 0. We introduce the following additional assumption about the
density G: There exists a positive constant ¢; such that
1
e o)

G(z) lz| — 0. (4.8)
If we abuse notation and let G(|z|) = G(z), then G is regularly varying at 0 with index
—d — 20+ 2 < 0, hence satisfies the assumption (4.5) with some 7y > 0. In order to simplify
notations, we define the function g : (0,71) — (0, 00) by

1
g(r) = rd20-20(1/r2) "

Clearly, g is regularly varying at 0 with index —d — 26 + 2 < 0. Let g be a monotone
equivalent of g at 0. More precisely, we define g : (0,r;/2) — oo by

g(r) ==sup{g(p) : 7 < p <m}.

By the 0-version of Theorem 1.5.3. in [10], g(r) ~ g(r) as r — 0. Moreover, g(r) > g(r),
and 7 is decreasing. Let ro = min(rg,r1). There exist positive constants Cy < Cyqy such that

Cog(r) < G(r) < Cg(r), r<ry. (4.9)

1 [4Cy\ 77
c:max{§< g;0> ,1} . (4.10)

Since g is regularly varying at 0 with index —d — 23 4 2, there exists r3 > 0 such that

We define

1 1 d+2(—-2 (6 1 d+2(-2
(= < 9er) o (L r <7y (4.11)
2 \ 3¢ g(2r) 3c
Finally, let
R = min(ry, 73, 1) = min(rg, ry,73,1). (4.12)

Lemma 4.6 There exists C1y > 0 such that for any r € (0, (7¢)"'R), any closed subset A
of B(0,r), and any y € B(0,r),
Cap(A)

PY(Ty < TB(07er)) = C11E(1r) ——0——,
(Ta < TB©7¢r)) 1R( )Cap(B(O,r))
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where 50
_ rg(r
R(r) = -2t (4.13)
Jo p'g(p) dp
Proof. Without loss of generality we may assume that Cap(A) > 0. Let Gg(7er) be the
Green function of the process obtained by killing Y upon exiting from B(0, 7cr). If v is the
capacitary measure of A with respect to Y, then we have for all y € B(0,r),

GB(o,7cr)V(?/) = Ey[GB(o,7cr)V(YTA) 1Ty < TB(o,m«)]
< su% GB(OJCT)V(Z)IPW(TA < TB(0,7cr))
zeR
< PY(Ts < TB©7er))-

On the other hand we have for all y € B(0, ),

GB(O,?CT)V(y) = /GB(0,7CT) (yv Z)V(dZ) Z V(A> inf GB 0,7cr) (yv )

z€B(0,r)

= Cap(A) 1311(37”) GB(0,7CT) (y7 Z) :

zE

In order to estimate the infimum in the last display, note that G e (y,2) = G(y, 2) —
EY[G(Y, z)]. Since |y — z| < 2r < R, it follows by (4.9) and the monotonicity of g that

TB(0,7cr)’
Gy, z) = Cog(|z — yl) = Cog(2r) . (4.14)

TB(0.70r) z). First note that |YTB o.7em) —z| >Ter —r > Ter —cer > 6er. If

z| < R, then by (4.9) and the monotonicity of g,

G(YTB(O,7C7‘)’ ) < Clog(lz TB(o 7cr)|) < CIO§<6CT> .

If, on the other hand, Y, .., — 2| > R, then G(Y,, .., %) < G(w), where w € R? is any
point such that |w| = R. Here we have used the monotonicity of G. For |w| = R we have

that G(U)) < C’10§(|w|) = Clog(R) < Cl()§<6c7">. Therefore

Now we consider G(Y,
v,

B(0,7cr) o

EY[G(Y, 2)] < Chog(6er) . (4.15)

TB(0,7cr)?

By use of (4.14) and (4.15) we obtain

Gporen(y,2) = Cog(2r) — Crog(6er)

e

d+28-2

v

v
/\/\



where the next to last line follows from (4.11) and the last from definition (4.10). By using
one more time that g is regularly varying at 0, we conclude that there exists a constant
(19 > 0 such that for all y,z € B(0,r),

GBo7er) (Y, 2) > Crag(r) .
Further, it follows from Proposition 4.3 that there exists a constant C3 > 0, such that

013 T’d

Cap(B(0,7)) for p1g(p) dp

<1. (4.16)

Hence

1 rig(r)
Cap(B(0,7)) foT p*1g(p) dp

GB(0,7cr) (y> 2) > (1203

V
9
~

To finish the proof, note that

Cap(A)

]P)Z/T < T cr ZG er\V ZC R(T)—————.
( A B(0,7 )) B(0,7cr) (?J) 14 ( )Cap(B(O,'r))

Remark 4.7 Note that in the estimate (4.16) we could use g instead of g. Together with
the fact that g(r) > g(r) this would lead to the hitting time estimate

Cap(A)

PY(Ty < T, or 20 R\T) ——,
(Ta < TB(0,7er)) = Craki( )Cap(B(O,T))

where 1y(r)

reg(r
K(r) = +——"—-"—. (4.17)

Jo p1g(p) dp
We will apply the above lemma to subordinate Brownian motions. Assume, first, that
Y; = X(S;) where S = (S; : t > 0) is the special subordinator with the Laplace exponent
¢ satisfying ¢(A) ~ A*2((\), A — oo, where 0 < a < 2 A d, and / is slowly varying at oo.
Then the Green function of Y satisfies all assumptions of this subsection, in particular (4.8)
with =1 —«a/2, see (2.28) and Lemma (3.3). Define ¢ as in (4.10) for appropriate Cy and
Cipand B =1 — /2, and let R be as in (4.12).

52



Proposition 4.8 Assume that Y; = X(S;) where S = (S; : t > 0) is the special sub-
ordinator with the Laplace exponent ¢ satisfying one of the following two conditions: (i)
H(N) ~ A20(N), X — oo, where 0 < a < 2, and { is slowly varying at oo, or (ii) ¢p(A) ~ A,
A — o0o. IfY is transient, the following statements are true:
(a) There exists a constant Cy5 > 0 such that for any r € (0,(7¢)"'R), any closed subset A
of B(0,7), and any y € B(0,r),

Cap(A)
Cap(B(0,7))

(b) There exists a constant Cyg > 0 such that for any r € (0, R) we have

PY(Tx < Tpo,7er)) = Cis

sup EY7poy) < Cis  inf  EY7p¢,,.
yEB(0,r) yeB(0,r/6)
Proof. We give the proof for case (i), case (ii) being simpler.
(a) Tt suffices to show that %(r), r < (7¢)"' R, is bounded from below by a positive constant.
Note that ¢ is regularly varying at 0 with index —d 4+ «. Hence there is a slowly varying
function ¢ such that g(r) = r=4+*¢(r). By Karamata’s monotone density theorem one can
conclude that

T L r a__ 1 Oé_
/ F1G(p) dp = / ) dp ~ S 1oT(r) =
0 0 o

Therefore,
oy~ )
R(r) = T g g
Jo p*19(p) dp
(b) By Proposition 4.4 it suffices to show that [, G(ly))dy < ¢ [,/ G|yl dy for
some positive constant c¢. But, by the proof of part (a), fB(O o Gyl dy = rdg(r), while

1
o

fB(o,r/G) G(|ly|) dy < (r/6)%g(r/6). Since g is regularly varying, the claim follows. a

Proposition 4.9 Let S™ be the iterated geometric stable subordinator and let Y;(n) =

X(St(")) be the corresponding subordinate process. Assume that d > 2(a/2)".
(a) Let v > 0. There exists a constant Cy7 > 0 such that for any r € (0,(7¢)"*R), any closed
subset A of B(0,7), and any y € B(0,r)

Cap(A) .
Cap(B(0,7))

(b) There exists a constant C1g > 0 such that for any r € (0, R) we have

PY(Ty < TB0,7er)) = Cir 77

sup EY TB(0,r) < Clg inf EY TB(0,r) -
yeB(0,r) y€B(0,r/6)
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Proof. (a) By Proposition 2.21 we take
") 1
r) = .
I = L, (1)1, (1))

Recall that the functions l,, respectively L,, were defined in (2.36), respectively (2.37).

Integration gives that

r de1 B T 1 B 2
(Apg@@_lpMJWWMMWM_%WM‘

B 1
") = L)
and the claim follows from Remark 4.7.
(b) This was shown in Example 4.5. 0

Therefore,

> ¢or?

I

Remark 4.10 We note that part (b) of both Propositions 4.8 and 4.9 are true for every
pure jump process. This was proved in [{6], and later also in [51].

In the remainder of this subsection we discuss briefly the Krylov-Safonov type estimate
involving the Lebesgue measure instead of the capacity. This type of estimate turns out to
be very useful in case of a pure jump Lévy process. The method of proof comes from [4],
while our exposition follows [56].

Assume that Y = (Y; : ¢t > 0) is a subordinate Brownian motion via a subordinator with
no drift. We retain the notation j(|z|) = J(z), introduce functions

m(r)=r" / P ilp)dp,  ma(r) = / p"i(p)dp,
0 r
and let n(r) = m(r) + n2(r). The proof of the following result can be found in [56].

Lemma 4.11 There exists a constant Cig > 0 such that for every r € (0,1), every A C
B(0,7) and any y € B(0,2r),

4(4r) |A]

n(r) |BO,r)

,
PY(Ts < T,3r)) = Cho

where | - | denotes the Lebesgue measure.

Proposition 4.12 Assume that Y; = X (S;) where S = (S; : t > 0) is a pure jump subordi-
nator, and the jumping function J(x) = j(|z|) of Y is such that j satisfies j(r) ~ r=4=¢(r),
r — 0+, with 0 < a < 2 and ¢ slowly varying at 0. Then there exists a constant Cyy > 0

such that for every r € (0,1), every A C B(0,7) and any y € B(0,2r),
A

PY(Th < TB0,3r)) > C20m-

o4



Proof. It suffices to prove that 7¢j(4r)/n(r) is bounded from below by a positive constant.
This is accomplished along the lines of the proof of Proposition 4.8. a

Note that the assumptions of Proposition 4.12 are satisfied for subordinate Brownian mo-
tions via «/2-stable subordinators, relativistic a-stable subordinators and the subordinators
corresponding to Examples 2.15 and 2.16 (see Theorems 3.14 and 3.15).

In the case of, say, a geometric stable process Y, one obtains from Lemma 4.11 a weak
form of the hitting time estimate: There exists Cy; > 0 such that for every r € (0,1/2),
every A C B(0,r) and any y € B(0,2r),

1 4]
log(1/r) [B(0,r)|

PY(Ty < TB0,3r)) = Cn (4.18)

4.3 Proof of Harnack inequality

Let Y = (Y; : t > 0) be a subordinate Brownian motion in R? and let D be an open subset
of RY. A function h : R? — [0, +-00] is said to be harmonic in D with respect to the process
Y if for every bounded open set B C B C D,

h(z) = E*[h(Y:,)], VzeB,

where 75 = inf{t > 0 : Y, ¢ B} is the exit time of Y from B. Harnack inequality is a
statement about the growth rate of nonnegative harmonic functions in compact subsets of
D. We will first discuss two proofs of a scale invariant Harnack inequality for small balls.
Next, we will give a proof of a weak form of Harnack inequality for small balls for the iterated
geometric stable process. All discussed forms of the inequality lead to the following Harnack
inequality: For any compact set K C D, there exists a constant C' > 0, depending only on
D and K, such that for every nonnegative harmonic function h with respect to Y in D, it
holds that
sup h(z) < C inf h(x).

rxeK zeK

The general methodology of proving Harnack inequality for jump processes is explained
in [56] following the pioneering work [4] (for an alternative approach see [15]). The same
method was also used in [5] and [16] to prove a parabolic Harnack inequality. There are two
essential ingredients: The first one is a Krylov-Safonov-type estimate for the hitting proba-
bility discussed in the previous subsection. The form given in Lemma 4.11 and Proposition
4.12 can be used in the case of pure jump processes for which one has good control of the
behavior of the jumping function J at zero. More precisely, one needs that j(r) is a regularly
varying function of index —d — « for 0 < a < 2 when r — 04-. This, as shown in Proposition
4.12, implies that the function of r on the right-hand side of the estimate can be replaced by
a constant, which is desirable to obtaining the scale invariant form of Harnack inequality for
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small balls. In the case of a geometric stable process the behavior of J near zero is known
(see Theorem 3.16), but leads to the inequality (4.18) having the factor 1/log(1/7) on the
right-hand side. This yields a weak type of Harnack inequality for balls. In the case of
the iterated geometric stable processes, no information about the behavior of J near zero is
available, and hence one does not have any control on the factor r%j(r)/n(r) in Lemma 4.11.
In the case where Y has a continuous component (i.e, the subordinator S has a drift), or
the case when information on the behavior of J near zero is missing, one can use the form
of Krylov-Safonov inequality described in Propositions 4.8 and 4.9.

The second ingredient in the proof is the following result which can be considered as
a very weak form of Harnack inequality (more precisely, Harnack inequality for harmonic
measures of sets away from the ball). Recall that R > 0 was defined in (4.12).

Proposition 4.13 Let Y be a subordinate Brownian motion such that the function j defined
in (3.17) satisfies conditions (3.20) and (3.21). There ezists a positive constant Cas > 0 such
that for any r € (0, R), any y,z € B(0,7/2) and any nonnegative function H supported on
B(0,2r)¢ it holds that

]EZH(Y(TB(OJ))) S C’QQEyH(Y<TB(O7r))) . (419)

Proof. This is an immediate consequence of Proposition 3.21 and the comparison results
for the mean exit times explained in Remark 4.10 (see also Propositions 4.8 and 4.9). O

We are now ready to state Harnack inequality under two different set of conditions.

Theorem 4.14 Let Y be a subordinate Brownian motion such that the function j defined
in (3.17) satisfies conditions (3.20) and (3.21) and is further regularly varying at zero with
inder —d — o where 0 < o < 2. Then there exists a constant C' > 0 such that, for any
r € (0,1/4), and any function h which is nonnegative, bounded on R?, and harmonic with
respect to Y in B(0, 16r), we have

h(z) < Ch(y), Vz,y e B(0,r).

Proof of this Harnack inequality follows from [56] and uses Proposition 4.12. The second

set of conditions for Harnack inequality uses Proposition 4.8. Recall the constant ¢ defined
in (4.10).

Theorem 4.15 Let Y be a transient subordinate Brownian motion such that the function j
defined in (3.17) satisfies conditions (3.20) and (3.21), and assume further that the subordi-
nator S is special and its Laplace exponent ¢ satisfies (\) ~ bAY2, X\ — oo, with o € (0,2]
and b > 0. Then there exists a constant C > 0 such that, for any r € (0,(14c)"'R), and
any function h which is nonnegative, bounded on R?, and harmonic with respect to Y in
B(0, 14cr), we have

h(z) < Ch(y), Vz,y € B(0,r/2).
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Under these conditions, Harnack inequality was proved in [47]. Unfortunately, despite the
fact that Proposition 4.8 holds under weaker conditions for ¢ than the ones stated in the
theorem above, we were unable to carry out a proof in this more general case.

Now we are going to present a proof of a weak form of Harnack inequality for iterated
geometric stable processes. Let S™ be the iterated geometric stable subordinator and let
v =X (St(n)) be the corresponding subordinate process. We assume that d > 2(a/2)".
For simplicity we write Y instead of Y. We state again Propositions 4.9 (a) and 4.13:
Let v > 0. There exists a constant C17 > 0 such that for any r € (0, (7¢)™'R), any closed
subset A of B(0,r), and any y € B(0,7)

Cap(4)

PY(T <T cr ZC ,,,’Y——’
s mone) = O G B, )

(4.20)

There exists a positive constant Cys > 0 such that for any r € (0, R), any y,z € B(0,7/2)
and any nonnegative function H supported on B(0,7)¢ it holds that

E*H(Y (T5(0,))) < C2BYH(Y (T5(0,1))) - (4.21)
We will also need the following lemma.

Lemma 4.16 There exists a positive constant Coz such that for all0 < p <r < 1/ep1,

Cap(B(0,p)) Cos (g)d |
Cap(B(0,7)) r

Proof. By Example 4.5,
C'5len(1/r) < Cap(B(0,r)) < Cﬁrdln(l/r)

for every r < 1/e,11. Therefore,

Cap(B(0,p)) o Csp'la(1/p) _ Cs <p)d

Cap(B(0,7)) — Cerilu(1/r) = Cs

r

where the last inequality follows from the fact that [, is increasing at infinity. O

Theorem 4.17 Let R and c be defined by (4.12) and (4.10) respectively. Letr € (0, (14¢) ' R).
There exists a constant C' > 0 such that for every nonnegative bounded function h in R which
is harmonic with respect to'Y in B(0, 14cr) it holds

h(z) < Ch(y), =,y € B(0,r/2).
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Remark 4.18 Note that the constant C' in the theorem may depend on the radius r. This is
why the above Harnack inequality is weak. A version of a weak Harnack inequality appeared
in [3], and our proof follows the arguments there. A similar proof, in a somewhat different
context, was given in [58].

Proof. We fix v € (0,1). Suppose that h is nonnegative and bounded in R? and harmonic
with respect to Y in B(0, 14cr). By looking at h + € and letting € | 0, we may suppose that
h is bounded from below by a positive constant. By looking at ah for a suitable a > 0, we
may suppose that infp,/2 h = 1/2. We want to bound h from above in B(0,r/2) by a
constant depending only on r, d and 7. Choose z; € B(0,7/2) such that h(z;) < 1. Choose
p€ (1,7 1). Fori>1let

ar

ri=—0

P
where ¢; is a constant to be determined later. We require first of all that ¢; is small enough
so that

o0

Y o< g. (4.22)

i=1

Recall that there exists ¢y := Cj7 > 0 such that for any s € (0,(7¢)"'R), any closed
subset A C B(0, s) and any y € B(0, s),

Cap(4)

A (4.23)
Cap(B(0, s))

PY(Ta < TB(0,7¢s)) = C28”

Let c3 be a constant such that
c3 < 022—4—w+m‘
Denote the constant Cs from Lemma 4.16 by c4. Once ¢; and c3 have been chosen, choose
K sufficiently large so that
1
4
for all 4 > 1. Such a choice is possible since py < 1. Note that K; will depend on r,d and

(7¢) ™V epey Ky exp((14¢) 17 ey egit=P7) ¢ T4 > 94terted (4.24)

v as well as constants ¢, ¢y, ¢o, ¢3 and ¢4. Suppose now that there exists z; € B(0,7/2) with
h(x1) > K;. We will show that in this case there exists a sequence {(z;, K;) : j > 1} with
zjy1 € B(xj,2r;) C B(0,3r/4), K; = h(xj), and

K; > Ky exp((14c) "7 ciez5' 7). (4.25)

Since 1—py > 0, we have K; — o0, a contradiction to the assumption that h is bounded. We
can then conclude that h must be bounded by K; on B(0,r/2), and hence h(x) < 2K;h(y)
if z,y € B(0,7/2).
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Suppose that x1, s, ..., x; have been selected and that (4.25) holds for j =1,...,i. We
will show that there exists z;11 € B(zy,2r;) such that if K;.; = h(x;11), then (4.25) holds
for j =i+ 1; we then use induction to conclude that (4.25) holds for all j.

Let

Ai = {y € Blxi, (140)7'r3)  h(y) = K]}
First we prove that
Cap(4) < 1
Cap(B(z;, (14¢)~1ry)) — 4

(4.26)

To prove this claim, we suppose to the contrary that Cap(A;)/Cap(B(z;, (14¢)~1r;)) > 1/4.
Let F' be a compact subset of A; with Cap(F)/Cap(B(x;, (14c)~'r;)) > 1/4. Recall that
r > 8r;. Now we have

I > h(zl) > E* [h(YTF/\TB(()Jcr));TF < TB(0»7CT)]
> Ko]'P Ty < TB(0,7cr))
Z c K’L 3'7 Y Ca’p( )
Cap(B(0,r))
1
ek Con(F) Cap(Bla (i)
Cap(B(x;, (7c) i) Cap(B(0,r))
- lc Ko 27 VCapB(O, (7¢)~1ry))
4 Cap(B(0,7))
1 “1p\ ¢
> 12 KTQ,YT’YC4 ((70) rl)
1
= —cocy(Tc) dKTQVW( )
4 r
1
> —cye(7e) K, 7“47 (T >
4 r
1 —d— —YY A—pyydy (Ti)
> 10204(70) Ky exp((14e) "7 eresi " )r,” | —
,
1 e _ a_ cr\4 rci\ ¢
> 10204(70) K exp((14¢) 17 epegit TP) (;7) (Z—;>
1
> 10204(70)_‘1_7[(1 exp((14¢) 1Y eyegf =07 ) e et te—pd

> 9P tpd;—dyp—pd _ o

We used the definition of harmonicity in the first line, (4.23) in the third, Lemma 4.16 in the
sixth, (4.25) in the ninth, and (4.24) in the last line. This is a contradiction, and therefore
(4.26) is valid.

29



By subadditivity of the capacity and by (4.26) it follows that there exists E; C B(w;, (14¢)~te)\

A; such that
Cap(£:)

Cap(B(z;, (14¢)~1ry))
Write 7; for 7, r,/2) and let p; := P* (T, < 7;). It follows from (4.23) that

pi > e ( li )” o Cap(E;)

1
> —.
-2

1de B(z;, (14¢)71))
> 3G an

Set M; = supp(y, ) h. Then
+ EY[h(Yrar); T, > 70, Yo, € B(wi,14)]

We are going to estimate each term separately. Since E; is compact, we have

B [h(Yry ar, )i T, < i) < K] P* (T, < 73) < Kir}?.
Further,

E*[h(Yry,nr )i T, 2 73, Yy, € By, mi)] < Mi(1 — pa).
Inequality (4.26) implies in particular that there exists y; € B(x;, (14¢)™'r;) with h(y;) <
Kirfw. We then have, by (4.21) and with ¢5 = Co

Kl h(yi) > EY[h(Yr,) : Yo, & B(xi, 1)

>
> GERM(Y,) Yy, ¢ Blar). (4.29)

Therefore
E"[h(Yry, pri )i T, 2 7iy Yo, & Bl mi)] < ceIKir”

for the positive constant cg = 1/c5. Consequently we have

Rearranging, we get
1-(1 2
M, > K, ( (L +co)rs ) . (4.31)
L —p
Now choose Y
11/1 e K
< min{—- [ - 1}.
cl_mm{Mcr (41+c6) 1
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This choice of ¢; implies that

Co ([ Ti \7
2(1 .2”<—< ) <pi,
(1+co)ri" < 2 \11¢) =P

where the second inequality follows from (4.27). Therefore, 1 — (1 + ¢¢)r.” > 1 — p;/2, and
hence by use of (4.31)

1— 3p; pi
M, > K; 27 ) > (1+ DK,

Using the definition of M; and (4.21), there exists a point z;11 € B(x;, ;) C B(x;,2r;) such
that

C i\
Kipr = Nzisr) 2 Ki (1 + ZQ (14c> > '

Taking logarithms and writing

log K1 = log K; + Z[log Kj1 — log Kjl,

J=1

we have

d cy [ T \"
log Kip1 > logK1+Zlog<1—l——2<r‘jc>>

Jj=1

[ ¢ 7";
log K1 + ;Z(MC)V

v

v
—
@]

o

=

_l’_

|
=2

»—Qg

jilNg
<

he)

S

Co 1
log K1 + — rYeyit =P

4 (14c)

v

1
2 lOg Kl -+ WT’YClCB(i —+ 1)17’07 .

In the fifth line we used the fact that ¢; < 1. For the last line recall that
1—py . 1—py
deytpy . ©2 1 Co ?
€ < a2 ~ 25 (2) = B (i—i— 1 ’

%H’V > 2" ey (1 +4) 7.

implying that
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Therefore we have obtained that
Kio1 > Kiexp((14c) " eres(i + 1))
which is (4.25) for ¢ + 1. The proof is now finished. O

Remark 4.19 The proof given above can be easily modified to provide a proof of Theorem
4.15. Indeed, one can modify slightly Lemma 4.16, take v = 0 and choose any p > 1 in the
proof. The choice of Ky in (4.24) and K in (4.25) will not depend on r > 0, thus giving a
strong form of Harnack inequality.

5 Subordinate killed Brownian motion

5.1 Definitions

Let X = (X;,P*) be a d-dimensional Brownian motion. Let D be a bounded connected open
set in R?, and let 7p = inf{t > 0: X; ¢ D} be the exit time of X from D. Define

X, t<rT
D __ ty D,
Xt—{aa tzTDa

where 0 is the cemetery. We call X a Brownian motion killed upon exiting D, or simply,
a killed Brownian motion. The semigroup of X will be denoted by (PP : ¢t > 0), and its
transition density by p”(¢,z,y), t > 0, x,y € D. The transition density p” (¢, x,y) is strictly
positive, and hence the eigenfunction ¢, of the operator —A|p corresponding to the smallest
eigenvalue \g can be chosen to be strictly positive, see, for instance, [24]. The potential
operator of X” is given by

GPf(x) = /0 PP f(a) di

and has a density GP(z,y), #,y € D. Here, and further below, f denotes a nonnegative
Borel function on D. We recall the following well-known facts: If h is a nonnegative harmonic
function for X? (i.e., harmonic for A in D), then both h and PPh are continuous functions
in D.

In this section we always assume that (PP : ¢ > 0) is intrinsically ultracontractive, that
is, for each ¢ > 0 there exists a constant ¢; such that

P(t,z,y) < apolz)poly), z,y € D, (5.1)

where ¢ is the positive eigenfunction corresponding to the smallest eigenvalue \q of the
Dirichlet Laplacian —A|p. It is well known that (see, for instance, [25]) when (PP; ¢ > 0)
is intrinsically ultracontractive there is ¢, > 0 such that

b

pD(thay) Z @gO()(.T)(,Do(y), x,y eD.
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Intrinsic ultracontractivity was introduced by Davies and Simon in [25]. It is well known that
(see, for instance, [1]) (PP : t > 0) is intrinsically ultracontractive when D is a bounded
Lipschitz domain, or a Holder domain of order 0, or a uniformly Hélder domain of order

B € (0,2).

Let S = (S;: t>0)and T = (T : t > 0) be two special subordinators. Suppose that
X, S and T are independent. We assume that the Laplace exponents of S and T, denoted
by ¢ and 1 respectively, are conjugate, i.e., A = ¢(A\)1p(N\). We also assume that ¢ has the
representation (2.2) with b > 0 or u(0,00) = co. We define two subordinate processes Y
and ZP by

VP o= XP(8), t>0
7P = XP(1), t>o.
Then YP = (VP : ¢t > 0) and ZP = (ZP : t > 0) are strong Markov processes on D. We call

YD (resp. ZP) a subordinate killed Brownian motion. If we use 7;(ds) and 6;(ds) to denote
the distributions of S; and T} respectively, the semigroups of Y? and Z” are given by

QPf(x) = / PP f(a)n(ds),

0

RS = " PP f(a)0y(ds).

0

respectively. The semigroup QP has a density given by

¢ (t,z,y) = /OmpD(sw,y)m(dS)-

The semigroup RP will have a density

Pt 2, y) = / " P (s,2,y)0,(ds)

in the case b = 0, while for b > 0, RP is not absolutely continuous with respect to the
Lebesgue measure. Let U and V' denote the potential measures of S and T, respectively.
Then there are decreasing functions u and v defined on (0, c0) such that U(dt) = u(t) dt and
V (dt) = beg(dt) + v(t) dt. The potential kernels of Y2 and ZP are given by

vrra) - " PP f(a) U(d) = / PP f(x) ult) dt,

0 0

Vo) = [T PPr@ Vi =bi)+ [ PP r@) v,

0 0

respectively. The potential kernel UP has a density given by
UP(z,y) = / pP(t, @ y) ult) dt,
0
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while VP needs not be absolutely continuous with respect to the Lebesgue measure. Note
that UP(x,y) is the Green function of the process Y2. For the process Y we define the
potential of a Borel measure m on D by

UPm(x) := /DUD(x,y)m(dy) = /000 PPm(z)u(t)dt .

Let (UP, X > 0) be the resolvent of the semigroup (QF, ¢ > 0). Then UP is given by a
kernel which is absolutely continuous with respect to the Lebesgue measure. Moreover, one
can easily show that for a bounded Borel function f vanishing outside a compact subset of
D, the functions x — UP f(x), A > 0, and z — UP f(z) are continuous. This implies (e.g.,
[13], p.266) that excessive functions of Y2 are lower semicontinuous.

Recall that a measurable function s : D — [0, 00] is excessive for Y2 (or QP), if QPs < s
for all £ > 0 and s = lim;_,g Q? 5. We will denote the family of all excessive function for Y?
by S(YP). The notation S(XP”) and S(ZP) are now self-explanatory.

A measurable function h : D — [0, 00] is harmonic for Y2 if h is not identically infinite
in D and if for every relatively compact open subset U C U C D,

h(z) = E*[R(YP(7)))], VxeU,

where 77 = inf{t : Y,? ¢ U} is the first exit time of Y from U. We will denote the family
of all excessive function for Y2 by H*(YP). Similarly, H*(X?) will denote the family of all
nonnegative harmonic functions for X?. It is well known that HT(:) C S(-).

5.2 Representation of excessive and harmonic functions of subor-
dinate process

The factorization in the next proposition is similar in spirit to Theorem 4.1 (5) in [50].
Proposition 5.1 (a) For any nonnegative Borel function f on D we have
UPVP f(z) = VPUPf(x) = GPf(x), =z € D.
(b) For any Borel measure m on D we have
VPUPm(z) = GPm(x).

Proof. (a) We are only going to show that UPVP f(z) = GP f(x) for all z € D. For the
proof of VPUP f(x) = GP f(z) see part (b). For any nonnegative Borel function f on D, by
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using the Markov property and Theorem 2.6 we get that

UPVP f(z) = / OOPtDVDf(x)u(t)dt

0

_ /0oo P (bf(x) +/O°O Pff(x)v(s)ds> u(t)dt

= wos+ [ ( / " PP () <s>ds) u(t)dt

= bUPf( / / PP f(z)v(s)dsu(t)dt

= bUPf(x) //PDf v(r — t)dru(t)dt

= bUPf(x) + /O (/0 u(t)v (r—t)dt> P f(x)dr
_ /O h (bu(r) + /0 Tu(t)v(r—t)dt) PP f(x)dr

= [ RPraar =62,

(b) Similarly as above,

VPUPm(z) = bUPm(x)+ /O PPUPm(x)v(t) dt
= UPm(z )+/OOPD </OOPD (z)u (s)ds)v(t)dt
= UPm / / PP m(z)u(s) dsv(t) dt
= bUPm / / PPm(z)u(r —t)dro(t) dt
= bUPm(z) /O (/O u(r — t)o ()dt) PPm(z) dr

N
_ /OOO <b+ /Oru(r — t(t) dt) PPm(x) dr

- / " PPm(@)dr = GPmia)

0

Proposition 5.2 Let g be an excessive function for Y. Then VPgq is excessive for XP.
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Proof. We first observe that if g is excessive with respect to Y2, then g is the increasing
limit of UP f,, for some f,. Hence it follows from Proposition 5.1 that

VPg = lim VPUPf, = lim GPf,,

n—oo

which implies that V?g is either identically infinite or excessive with respect to X?. We
prove now that Vg is not identically infinite. In fact, since g is excessive with respect to
YP . there exists xy € D such that for every ¢ > 0,

00 > g(x0) > Q7 g(x0) = /000 PPg(xo)pe(ds).

Thus there is s > 0 such that PP”g(x) is finite. Hence

0o > PPg(zy) = /

[ (s 0.9)0(0) d > Gupufa) / eo(y)9(y) dy,

D

so we have [, ¢o(y)g(y) dy < oco. Consequently

VPg(x)po(x) dr = /D 9(2)VPpo(z) de

= [ o) (sl + [ PPntarete) i ) o

0

= [o) (beutor+ [ utorntoyae ) as
= /D wo(x)g(x) da (b+ /0 N e (1) dt) < 00.

Therefore s = VPg is not identically infinite in D. O

D

Remark 5.3 Note that the proposition above is valid with YP and ZP interchanged: If g is
excessive for ZP, then UP g is excessive for XP. Using this we can easily get the following
simple fact: If f and g are two nonnegative Borel functions on D such that VP f and VPg
are not identically infinite, and such that VP f = VPgq a.e., then f = g a.e. In fact, since
VP and VPg are excessive for ZP, we know that GP f = UPVP f and GPg = UPVPyg are
excessive for XP. Moreover, by the absolute continuity of UP, we have that GPf = GPy.
The a.e. equality of f and g follows from the uniqueness principle for GP.

The second part of Proposition 5.1 shows that if s = GPm is the potential of a measure,
then s = VPg where g = UPm is excessive for Y?. The function g can be written in the
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following way:

g(z) = /OOOPSDm(x)u(S)ds

= u(c0)s(z) + /0 N ( /O tPSDm(x) ds) (—du(t))

= wu(oo)s(z) + /Ooo(PtDs(x) — s(z)) du(t) . (5.2)

In the next proposition we will show that every excessive function s for X” can be
represented as a potential Vg, where g, given by (5.2), is excessive for Y. We need the
following important lemma.

Lemma 5.4 Let h be a nonnegative harmonic function for X, and let

9(x) = u(co)h(x) + /OOO(Pch(l“) — h(z)) du(t) . (5.3)
Then g is continuous.

Proof. For any € > 0 it holds that | [~ du(t)| < u(e). Hence from the continuity of h and
PPh it follows by the dominated convergence theorem that the function

T / (PPh(z) — h(z)) du(t), =€ D,
is continuous. Therefore we only need to prove that the function

T /Oe(Pch(:L') — h(x))du(t), ze€D,

is continuous. For any xy € D choose r > 0 such that B(zg,2r) C D, and let B = B(x, 7).
It is enough to show that

hlrél (PPh(z) — h(z))du(t) =0
€ 0
uniformly on B, the closure of B. For any x € B, h(Xinrg) is a P*-martingale. Therefore,

0 < hx)— PPh(z) = B h(Xinsy)] — ER(X,), 1 < 7]
= E"h(Xy),t < 78] + E*h(X,,), 78 <]
—E*[h(Xy),t < 78] — E*[M(X}), 78 <t < Tp]
M X)), 78 < t] = E*[h(Xy), 75 <t < Tp|
(

Ell?
E*[h(X,,), 75 < t] < MP*(r5 < 1), (5.4)

IN
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where M is a constant such that h(y) < M for all y € B. It is a standard fact that there
exists a constant ¢ > 0 such that for every x € B it holds that P*(tp <t) <ct, forall t > 0.
Therefore, 0 < h(x) — PPh(z) < Met, for all x € B and all t > 0. It follows that for every

x € B,
/Oetdu(t)'.

le%l i (PPh(z) — h(z))du(t) =0

/OE(Pch — h)(x) du(t)‘ < Mc

By use of (2.14) we get that

uniformly on B. The proof is now complete. a

Proposition 5.5 If s is an excessive function with respect to XP, then
s(x) =VPg(z), wzeD,

where g is the excessive function for Y given by the formula
ole) = u(o)s(o)+ [ (PPsta) = sta) dutt) (5.5
= V0)s(o) + [ (s(o) ~ Psta) dvlt). (5.6

Proof. We know that the result is true when s is the potential of a measure. Let s be an
arbitrary excessive function of X”. By the Riesz decomposition theorem (see, for instance,
Chapter 6 of [13]), s = GPm + h, where m is a measure on D, and h is a nonnegative har-
monic function for X”. By linearity, it suffices to prove the result for nonnegative harmonic
functions.

In the rest of the proof we assume therefore that s is a nonnegative harmonic function
for XP. Define the function g by formula (5.5). We have to prove that g is excessive for Y'?
and s = VPg. By Lemma 5.4, we know that ¢ is continuous.

Further, since s is excessive, there exists a sequence of nonnegative functions f,, such that
s, := G f, increases to s. Then also PPs, 1 PPs, implying s,, — PPs, — s — PPs. If

%—wwm+éﬂ%—ﬁmwmw»
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then we know that s, = Vg, and g, is excessive for Y. By use of Fatou’s lemma we get
that

g = uloo)s+ / (s — PPs)(~du(t))

= liran u(o0)s, + /000 lign(sn — PPs,)(—du(t))

< liminf (u(oo)sn + /Ooo(sn — PtDSn)(_du(t)))

n

= liminfg, .
This implies (again by Fatou’s lemma) that
VPg < VP(liminf g,) (5.7)

< liminf VPg, = liminfs, = s.

For any nonnegative function f, put G¥ f(x) := [;° e *PP f(x)dt, and define s* := s —
GPs. Using an argument similar to that of the proof of Proposition 5.2 we can show that G”s
is not identically infinite. Thus by the resolvent equation we get GPst = GPs — GPGPs =
GPs, or equivalently,

s(z) = s'(x) + GPs(x) = s'(z) + GPs'(z), =z € D,

By use of formula (5.2) for the potential GPs;, Fubini’s theorem and the easy fact that V'
and GP commute, we have

GPs = GPst=V"P <u(oo)GDs1 + /OOO(PtDGDS1 —GPsh) du(t))
= yP (u(oo)G?s + /OOO(PtDG?S — GPs) du(t))
= GPvP (u(oo)s + /OOO(PtDs —3) du(t)) :
By the uniqueness principle it follows that
s=VP (u(oo)s + /Ooo(PtDs —3) du(t)) =VPg ae inD.

Together with (5.7), this implies that V”g = VP (liminf,, g,) a.e. From Remark 5.3 it follows
that

g =liminfg, a.c. (5.8)
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By Fatou’s lemma and the Y P-excessiveness of g, we get that,
NP g = AUP (liminf g,) < liminf A\Ug, < liminfg, =¢ a.e.

We want to show that, in fact, \UPg < g everywhere, i.e., that g is supermedian. In order
to do this we define § := sup,,cynUPg. Then § < g a.e., hence, by the absolute continuity
of UP nUPg < nUPg < g everywhere. This implies that A — AUPg is increasing (see, e.g.,
Lemma 3.6 in [11]), hence g is supermedian. The same argument gives that n +— nUPg is
increasing a.e. Define
g = sup A\UY § = supnUP”g.
A>0 n

Then g is excessive, and therefore lower semicontinuous. Moreover,

g=supnUlj<j<g ac

n

Combining this with the continuity of ¢ and the lower semicontinuity of g, we can get
that g < g everywhere. Further, for 2 € D such that §(z) < co, we have by the monotone
convergence theorem and the resolvent equation

AURg(x) = lim MUY (nU;)g(x)
nA
= 1 D 77D
Jim ———(Ux'g(x) = Uy'g(2)
= AU{g(z).

Since g < oo a.e., we have
NUPG=AULg  ae.

Together with the definition of g this implies that

=g ae. (5.9)

Qn

By the continuity of g and the fact that the measures nUP(z, -) converge weakly to the point
mass at x, we have that for every x € D

g(z) <liminf g(z) < g(x).
Hence, by using (5.9), it follows that g < g a.e. Since we already proved that § < g, it holds
that g = § a.e. By the absolute continuity of UP, g > § > AUP§ = AUPg everywhere, i.c.,
g is supermedian.

Since it is well known (see e.g. [22]) that a supermedian function which is lower semi-
continuous is in fact excessive, this proves that g is excessive for Y. By Proposition 5.2 we
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then have that Vg < s is excessive for X?. Moreover, VPg = s a.e., and both functions
being excessive for X P, they are equal everywhere.

It remains to notice that the formula (5.6) follows immediately from (5.5) by noting that
u(oo) = ¥(0) and du(t) = —dv(t). O

Propositions 5.1 and 5.5 can be combined in the following theorem containing additional
information on harmonic functions.

Theorem 5.6 If s is excessive with respect to X P, then there is a function g excessive with
respect to Y2 such that s = VPg. The function g is given by the formula (5.2). Furthermore,
if 5 is harmonic with respect to X, then g is harmonic with respect to Y.

Conversely, if g is excessive with respect to YP, then the function s defined by s = VPg
is excessive with respect to XP. If, moreover, g is harmonic with respect to Y, then s is
harmonic with respect to XP.

Every nonnegative harmonic function for Y is continuous.

Proof. It remains to show the statements about harmonic functions. First note that every
excessive functions g for Y” admits the Riesz decomposition g = U”m + h where m is a
Borel measure on D and h is harmonic function of Y2 (see Chapter 6 of [13] and note that
the assumptions on pp. 265, 266 are satisfied). We have already mentioned that excessive
functions of X admit such decomposition. Since excessive functions of X” and Y” are in 1-
1 correspondence, and since potentials of measures of X” and Y? are in 1-1 correspondence,
the same must hold for nonnegative harmonic functions of X” and V7.

The continuity of nonnegative harmonic functions for Y2 follows from Lemma 5.4 and
Proposition 5.5. O

It follows from the theorem above that V' is a bijection from S(Y?) to S(XP), and is
also a bijection from HT(YP) to HT(XP). We are going to use (V?)™! to denote the inverse
map and so we have for any s € S(Y'?),

(V) ts(z) = u(oo)s(x) + /Ooo(PtDs(x) — s(x)) du(t) (5.10)

= p(0)s(x) + / " (s(2) — PPs()) dut).

Although the map V' is order preserving, we do not know if the inverse map (VP)7! is
order preserving on S(XP?). However from the formula above we can see that (V?)~! is
order preserving on H™(X7?).

By combining Proposition 5.1 and Theorem 5.6 we get the following relation which we

are going to use later.
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Proposition 5.7 For any x,y € D, we have
UP(z,y) = (VP) "GP (- y)(2).

5.3 Harnack inequality for subordinate process

In this subsection we are going to prove the Harnack inequality for positive harmonic func-
tions for the process P under the assumption that D is a bounded domain such that (PP)
is intrinsic ultracontractive. The proof we offer uses the intrinsic ultracontractivity in an
essential way, and differs from the existing proofs of Harnack inequalities in other settings.
We first recall that since (PP : ¢t > 0) is intrinsic ultracontractive, by Theorem 4.2.5 of
[24] there exists T' > 0 such that
1

—e
2

—Xot — Aot

wo(z)po(y) < pP(t,2,y) < se po(x)poly), t>T, z,y€D. (5.11)

Lemma 5.8 Suppose that D is a bounded domain such that (PP) is intrinsic ultracontrac-
tive. There exists a constant C' > 0 such that

VPg<Cg, VgeSYP). (5.12)
Proof. Let T be the constant from (5.11). For any nonnegative function f,
T o)
02 pw) = ([ BP s [T rP ).
0 T
We obviously have
T T
/ PP f(z)u(t) dt > u(T)/ PP f(z)dt.
0 0
By using (5.11) we see that
o0 1 oo
[ s = (5 [t a) [ awamio
T 2 Jr D
= o [ el w)dy
D

/ PPf(z)dt < ( AOtdt)
T T

= /D wo()po(y) f(y)dy .

and

DN o

U\

wo(z)o(y)f(y)dy
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The last two displays imply that

/ PPt de = < [ PP f(e) d
T

CQT

Therefore,
UPf(z) > u(T) /T PP f(x) dt + % /OO PP f(x) dt
0 2JT
> C/OO PP f(z)dt = CGP f(x).
0

From GP f(z) = VPUP f(x), we obtain VPUP f(z) < CUP f(x). Since every g € S(YP) is
an increasing limit of potentials UP f(z), the claim follows. O

Lemma 5.9 Suppose D is a bounded domain such that (PP) is intrinsic ultracontractive.
If g € S(YP), then for any x € D,

g(z) > %6‘” ¢(1AO)¢0($) /D 9(y)eo(y) dy,

where T' is the constant in (5.11) and C' is the constant in (5.12).

Proof. From the lemma above we know that, for every z € D, VPg(z) < Cg(z), where C
is the constant in (5.12). Since VPg is in S(XP), we have

VPg(z) > /D PP (T, 2, y)VPg(y) dy

> Loty /D o (y)VPg(y) dy.

|

Hence
Cg(x) > VDg(m)z%e—“TsoO(x) /D 2o(y)V 7 g(y) dy
= %eAOTsoO(%) /D 9y)VP¢o(y) dy
— %e—AOTﬁwo(I) /D 9(y)po(y) dy,

where the last line follows from

VP(y) — / " PP oly) Vdt) = / " ety () V(db)

= o(y)LV (ho) = go(zg\z;) :

S
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O

In particular, it follows from the lemma that if g € S(Y'?) is not identically infinite, then
I eo)aly) dy < oc.

Theorem 5.10 Suppose D is a bounded domain such that (PP) is intrinsic ultracontractive.
For any compact subset K of D, there exists a constant C' depending on K and D such that
for any h € HY(YP),

sup h(z) < C inf h(x).

reK rzeK

Proof. If the conclusion of the theorem were not true, for any n > 1, there would exist
h, € HT(Y?) such that
sup hy,(x) > n2" inf h,(z). (5.13)

zeK zeK

By the lemma above, we may assume without loss of generality that

/Dhn(y)cpo(y)dy— 1, n>1

Define .
h(z) =Y 27"h,(x), z€D.
n=1

Then
/Dh(y)wo(y)dy =1,

and so h € H*(YP). By (5.13) and the lemma above, for every n > 1, there exists z,, € K
such that h,(x,) > n2"c; where

1 s 1 .
1 = —e " ——inf po(z
1790 (o) aek #o(2)
with 7" as in (5.11) and C' in (5.12). Therefore we have h(z,) > nc;. Since K is compact,
there is a convergent subsequence of x,,. Let xy be the limit of this convergent subsequence.
Theorem 5.6 implies that & is continuous, and so we have h(zy) = co. This is a contradiction.

So the conclusion of the theorem is valid. O

5.4 Martin boundary of subordinate process

In this subsection we assume that d > 3 and that D is a bounded Lipschitz domain in R%.
Fix a point xg € D and set

GP(x,y)
MP = = Y D.
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It is well known that the limit limps, ., M (z,y) exists for every x € D and z € 9D. The
function MP(z,z) := limps, .. MP(x,y) on D x dD defined above is called the Martin
kernel of X based at z5. The Martin boundary and minimal Martin boundary of X? both
coincide with the Euclidean boundary 0D. For these and other results about the Martin
boundary of X one can see [2]. One of the goals of this section is to determine the Martin
boundary of Y?.

By using the Harnack inequality, one can easily show that (see, for instance, pages 17-18
of [26]), if (h;) is a sequence of functions in H*(X?) converging pointwise to a function
h € HT(XP), then (h;) is locally uniformly bounded in D and equicontinuous at every point
in D. Using this, one can get that, if (h;) is a sequence of functions in H*(X?) converging
pointwise to a function h € H*(X?), then (h;) converges to h uniformly on compact subsets
of D. We are going to use this fact below.

Lemma 5.11 Suppose that xq € D is a fized point.

(a) Let (xz; : j > 1) be a sequence of points in D converging to x € D and let (h;) be
a sequence of functions in HY(XP) with hj(zg) = 1 for all j. If the sequence (h;)
converges to a function h € H™(XP), then for each t > 0

lim PPhy(x;) = PPh(x).
j—o0

(b) If (y; : 7 > 1) is a sequence of points in D such that lim; y; = z € D, then for each

t >0 and for each x € D

: p( G"(.y) ) = PP(MP( o)z
tim P2 (G o) () = PP 2)(0),

Proof. (a) For each j € N, since hj(xy) = 1, there exists a probability measure p; on 0D
such that

hj(x) = - MP(z,2)u;(dz), x € D.

Similarly, there exists a probability measure 1 on 0D such that

h(z) = - MP(z, 2)u(dz), x € D.

Let Dy be a relatively compact open subset of D such that xy € Dy, and also z, x; € Dy.

5



Then
|PPhj(x;) — PPh(z)|

[ oty - | pD<t,x,y>h<y>dy\

<

/DOPD(taijay)hj(y)dy—/DOpD(t,x,y)h(y)dy‘

+/ PP (t,z;,y)h;(y) dy+/ pP(t,z, y)h(y) dy.
D\Dg D\Dg

Recall that (see Section 6.2 of [23], for instance) there exists a constant ¢ > 0 such that

GP(, )Gy, w) _ . 1 1
GP(z,w) |z —y|4=2 |y —w|*?

From this and the definition of the Martin kernel we immediately get
1 1
G (o, y)M"(y,2) < ¢ (

[T =y |y — 2|*2
Recall (see [24], p.131, Theorem 4.6.11) that there is a constant ¢ > 0 such that

) , x,y,w € D. (5.14)

>, ye D,z e dD. (5.15)

vo(T0)po(y) < cGP(zo,y), y€D.

By the boundedness of ¢y we have that po(u) < c1p9(zo) for every u € D. Hence it follows
from the last display that

wo(u)po(y) < cGP(xo,y), w,yeD, (5.16)

with a possibly different constant ¢ > 0. Now using (5.1), (5.15) and (5.16) we get that for
any u € D,

/ PP (t,u, y)h(y) dy < ctwo(U)/ wo(y)h(y) dy
D\Dg D\Dg

— cpolu) /D o drants) [ (e

= cipo(u) /BD p(dz) /D\D poly) MP(y, 2) dy

< Cct/ u(dZ)/ GP (w0, y) M (y, 2) dy
oD D\Dy

< / (d )/ ( ! + ! ) d
< cc pulaz Y

' oD D\ Dy ly — 2|42 |zo —y|t?

1 1

§cc/udz/ sup< + )dy

' oD (d2) D\Dg 2€0D ly —2[*2 " [xo — y[?2

[ ——
= ¢y sup Y.
D\Dy 2€0D ly — 22 [xg — y|?2
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The same estimate holds with h; instead of h. For a given € > 0 choose Dy large enough so
that the last line in the display above is less than e. Put A = supp, h. Take jo € N large
enough so that for all 7 > j, we have

|pD(t7xj7y) _pD(tax>y)| <e and ‘h](y) - h(y)‘ <€

for all y € Dy. Then

/p(t%, y)dy — /pt:ry )dy‘
Do DO

< / PPt 25 9) ) — h(y)|dy + / PPt 25, ) — (¢, 2, ) () dy
Do DO
< e+ A|Dyle,

where |Dy| stands for the Lebesgue measure of Dy. This proves the first part.
(b) We proceed similarly as in the proof of the first part. The only difference is that we use
(5.14) to get the following estimate:

GP(y,y;)
Dt,x, — P g
/D\Dop ( y)GD(x(%yj) Y
GP(y,y;)
<c T — 2P
< ol >/D\D(J 900(9)@[)(%7%) Y

D D ,
< e, / G (%};Z/)G (v, y;) d
D\Dg G ($anj)

< e, / (2o — g~ + |y — 5> dy
D\ Dy

< cq sup/ (lzo —yI* 4+ |y — g1 dy .
J D\DO

The corresponding estimate for MP(-, 2) is given in part (a) of the lemma. For a given € > 0

find Dy large enough so that the last line in the display above is less than e. Then find

Jo € N such that for all j > j,

G (y,y5) D
—— M7 (y,2)| <, € Dy.
‘GD(:Eanj) (y ) Yy 0
Then an( )
D Y, Yn D . .
po(t,x,y ’——M y,2)| dy < e forall j> jo.
e Gty = M0 o
This proves the second part. g
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Theorem 5.12 Suppose that D C R?, d > 3 is a bounded Lipschitz domain and let xo € D
be a fized point.

(a) If (x;) is a sequence of points in D converging to x € D and (h;) is a sequence of
functions in HT(XP) converging to a function h € H*(XP), then

lim(V?) " (2;) = (V2) " ha)

J
(b) If (y;) is a sequence of points in D converging to z € 0D, then for every x € D,

Proof. (a) Normalizing by h;(zo) if necessary, we may assume without loss of generality
that h;(zo) =1 for all j > 1. Let € > 0. By (5.10) we have

|(VP) hy(x;) — (VP) h(x)]
/0 (PP hyj(x;) = hy(a;) du(t) — /0 (PP h(x) — h(x)) du(t) + u(o0) (hy(x;) — h(x))

< / (PPhy () — () du(t) + / (PPh(x) — h(x)) du(?)

+

| PPy = )y dule) ~ [ (PPha) = b)) dutt
+ u(00)|hy(z;) — h(z)].
The last term clearly converges to zero as j — oo.
For any x € D choose r > 0 such that B(z,2r) C D and put B = B(z,r). Without loss
of generality we may and do assume that z; € B for all j > 1. Since h and h; are continuous
in D and (h;) is locally uniformly bounded in D, there is a constant M > 0 such that h and

hj, j =1,2,..., are all bounded from above by M on B. Now from the proof of Lemma 5.4,
more precisely from display (5.4), it follows that there is a constant ¢; > 0 such that

0<h(y)—PPh(y) <cat, yeB,

and
0<h;(y) — PPhij(y) <eit, y€B,j>1.

Therefore we have,

[ en-nw) du<t>] <a

/ tdu(t)‘, yeB
0
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and

, yeB,j>1

/Oe(Pchj — hy)(y) du(t)’ <o

Using (2.14) we get that

/0 "t du(t)

lim [ (PPh(z) — h(z))du(t) =0,

€l0 0
and .
lim (PPhj(;) — hy(a;)) du(t) = 0.
l0 Jo
Further,

| PP w) = b)) dutt) — [ (PPH(w) — bl dut

< [ hyta) — b))+ Ibw) — A dut) + [ 1PPhy(a;) — PPR)] du).

Since |h;(x;) — h(z;)| + |h(x;) — h(z)] < 2M and |PPhj(z;) — PPh(z)] < M for all j > 1
and all 2 € B, we can apply Lemma 5.11(a) and the dominated convergence theorem to get

o

tim [ (i) = hap) + [bey) = ()] dut) =0

and -
lim |PPhj(x;) — PPh(x)|du(t) = 0.

—
J oo €

The proof of (a) is now complete.
(b) The proof of (b) is similar to (a). The only difference is that we use 5.11(b) in this
case. We omit the details. a

Let us define the function K2(z,z2) := (VP)"*MP(-,2)(x) on D x D. For each fixed
z € 0D, KP2(-,2) € HY(YP). By the first part of Theorem 5.12, we know that K{(z, z) is
continuous on D x dD. Let (y;) be a sequence of points in D converging to z € 9D, then
from Theorem 5.12(b) we get that

K@) = v (Grls ) @)
L )Gy )
j—00 GP(z0, ;)
= lim —UD(Lyj)
B8 G20, 4y)

, (5.17)
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where the last line follows from Proposition 5.7. In particular, there exists the limit

UD('ZU07 y])

1i = KP(z0, 2). 5.18
oo GP(zg ;) Y (0. 2) (519
Now we define a function M{ on D x 4D by
KP(z,2)
MP ="~ zeD,zedD. 5.19
Y(x7z) K?(I’(),Z)’ z z ( )

For each z € 0D, MP(-,z) € H,(YP). Moreover, M{ is jointly continuous on D x dD.
From the definition above and (5.17) we can easily see that

D
im U (z,y)

= MP D D. 2
P TP o) v(z,z), €D z€0 (5.20)

Theorem 5.13 Let D C R, d > 3, be a bounded Lipschitz domain. The Martin boundary
and the minimal Martin boundary of Y both coincide with the Euclidean boundary 0D, and
the Martin kernel based at xo is given by the function M.

Proof. The fact that M{ is the Martin kernel of Y'? based at z, has been proven in the
paragraph above. It follows from Theorem 5.6 that when z; and 2z, are two distinct points on
0D, the functions MP (-, z;) and M{ (-, z3) are not identical. Therefore the Martin boundary
of YP coincides with the Euclidean boundary 0D. Since MP (-, 2) € H*(XP) is minimal, by
the order preserving property of (VP)™! we know that MP(-,z) € HT(YP) is also minimal.

Therefore the minimal Martin boundary of Yp also coincides with the Euclidean boundary
oD. O

It follows from Theorem 5.13 and the general theory of Martin boundary that for any
g € HY(YP) there exists a finite measure n on 9D such that

g(x) = M (z, 2)n(dz), =z € D.
oD
The measure n is sometimes called the Martin measure of g. The following result gives the

relation between the Martin measure of h € H*(X?) and the Martin measure of (V)"1h €
HT(YP).

Proposition 5.14 If h € H"(XP) has the representation
h(z) = / MP(z,2)m(dz), =€ D,
oD
then

(VY h(z) = - MP(x,2)n(dz), z€D

with n(dz) = K& (xg, 2z) m(dz).
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Proof. By assumption we have

h(z) = - MP(z,2)m(dz), =€ D.

Using (5.5) and Fubini’s theorem we get

(V)" h(z) = /6D(VD)1(MD(~7Z))(:IC) m(dz)

= Mg(x, Z)K{?(xo, z)m(dz) = M{?(m, z)n(dz),
oD oD

with n(dz) = K2 (g, z)m(dz). The proof is now complete. O

From Theorem 5.12 we know that (VP)™' : HT(XP) — H*(YP) is continuous with
respect to topologies of locally uniform convergence. In the next result we show that V7 :
HT(YP) — HT(XP) is also continuous.

Proposition 5.15 Let (g;, j > 0) be a sequence of functions in HT(YP) converging point-
wise to the function g € HT(Y'P). Then lim;_., VPg;(x) = VPg(z) for every x € D.

Proof. Without loss of generality we may assume that g; (xo) = 1 for all j € N. Then there
exist probablhty measures 5, j € N, and n on 9D such that g;(x) = [, MP(x,2)n;(dz), j €
N, and g(z) = [, My (z, z)n(dz). It is easy to ShOW that the convergence of the harmonic
functlons h 1mphes that n; — n weakly. Let VPg;(x) = [,, MP(x, z)m;(dz) and VPg(z) =
Jop M m(dz). Then n;(dz) = KP(xo, )mj(dz) and n(dz) = K2(xy,2)m(dz). Since
the densfcy K D(xg,) is bounded away from zero and bounded from above, it follows that
m; — m weakly. From this the claim of proposition follows immediately. O

5.5 Boundary Harnack principle for subordinate process

The boundary Harnack principle is a very important result in potential theory and harmonic
analysis. For example, it is usually used to prove that, when D is a bounded Lipschitz
domain, both the Martin boundary and the minimal Martin boundary of X coincide with
the Euclidean boundary dD. We have already proved in Theorem 5.13 that for Y2, both the
Martin boundary and the minimal Martin boundary coincide with the Euclidean boundary
0D. By using this we are going to prove a boundary Harnack principle for functions in
HT(YD).

In this subsection we will always assume that D C R? d > 3, is a bounded Lipschitz
domain and zy € D is fixed. Recall that ¢, is the eigenfunction corresponding to the
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smallest eigenvalue \g of —A|p. Also recall that the potential operator V2 is not absolutely
continuous in case b > 0 and is given by

VO f(a) = bf(a) + | " PP f(ayo(t) di

0

Define -
7P(,y) = / PP (3, y)o(t) dt
Then
VES(@) = bf(e) + [ VP (s dy.

D
Proposition 5.16 Suppose that D is a bounded Lipschitz domain. There exist ¢ > 0 and
k > d such that

UD(;(;’y) S C%)
VP(z,y) < c%,

for all x,y € D.

Proof. We give a proof of the second estimate, the proof of the first being exactly the same.
Note that similarly as in (2.13)
limtu(t) =0. (5.21)

t—0
It follows from Theorem 4.6.9 of [24] that the density p” of the killed Brownian motion on
D satisfies the following estimate

_Ja—y?

pD<t7x7 y) S Clt_k/2¢0<$)@0(y)€ 6t t> Oa z,y € Da

for some k > d and ¢; > 0. Recall that v is a decreasing function. From (5.21) it follows
that there exists a to > 0 such that v(t) < I for t <t,. Consequently,

1
’U(t)SM—i—g, t >0,

for some M > 0. Now we have

_Jz—y?

VD(x,y) = /OOOpD(t,x,y)v(t)dt < /000 t’k/2g00(x)<p0(y)e st v(t)dt

| — _lz—y|?

00 2 oo
< Cl/ R0 (2)po(y)e ™ o dt+M01/ tF 200 () po(y)e™ o dt
0 0

< 02800(95)900(3) 4 MCgSOO(x)SOz(_?é)
|z — ] |z —yl
vo(x)wo(y)
o
|z — y|
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The proof is now finished. O

Lemma 5.17 Suppose that D is a bounded Lipschitz domain and W an open subset of R?
such that W N 0D is non-empty. If h € HY(YP) satisfies
, h(x)
igmzo, fOT&llZEWﬂ@D,
then

lim VPh(z) =0, forallz€ WNoD.

r—z

Proof. Fix z € W N dD. For any € > 0, there exists 6 > 0 such that h(z) < e(VP)~ 1 (x)
for x € B(z,6) N D. Thus we have

VPh(z) < VP(hip\pes) (@) +eVPVP)Y M (2) = VP(hippes)(z) +6, z€D.

For any x € B(z,0/2) N D we have

VD<h1D\B(z,6))(x) = bh(7) 1D\B(z,5)(x)+/ VD(x,y)h(y)dy

D\B(2,0)

— / VP (2, y)h(y) dy
D\B(z,6)

since 1p\p(z0)(z) = 0 for € B(z,6/2) N D. By Proposition 5.16 we get that there exists
¢ > 0 such that for any = € B(z,0/2) N D,

[ e seat [ W),
D\B(z,5) D\ B(z,5) |z —y

o(y)
< enln) [ Sy < ca) [ ah)dy.

Hence,

VPh(z) < cpo(x) /D eo(y)h(y)dy + .

From Lemma 5.9 we know that [, po(y)h(y)dy < oo. Now the conclusion of the lemma
follows easily from the fact that lim,_., po(z) = 0. O

Now we can prove the main result of this section: the boundary Harnack principle.

Theorem 5.18 Suppose that D C R, d > 3, is a bounded Lipschitz domain, W an open
subset of RY such that W N D is non-empty, and K a compact subset of W. There exists
a constant ¢ > 0 such that for any two functions hy and hy in HT(YP) satisfying
hi
lim (z)

5~ =20 WnoD, i=1,2
AP TE) S T
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we have
M) _ )

c Y

ho(z) = ha(y)

Proof. By use of (5.11) and Proposition 5.16 there exist positive constants ¢; and co such
that

r,y e KND.

vo(x)o(y)

crpo(@)po(y) < UP(2,y) < e |z — yF

) :E’y€D7

where k > d is given in Proposition 5.16. Therefore it follows from (5.20) that there exist
positive constants c3 and ¢4 such that

cspo(r) < MY (2, 2) < capo(x), € KND,z€dD\W. (5.22)
Suppose that h; and hy are two functions in H*(Y?) such that

lim —hz(@
A (VD) 1)

then by Lemma 5.17 we have

=0, zeWnaoD,i=1,2,

lim VPhi(z) =0, z€WnNaD, i=1,2.

r—z

Now by Corollary 8.1.6 of [44] we know that the Martin measures m; and my of VPh; and
VPhy are supported by 9D \ W and so we have

VPh(x) = MP(z,2)mi(dz), x€D,i=1,2.
OD\W

Using Proposition 5.14 we get that

hi(z) = o MP(z,2)ni(dz), z€D,i=1,2,

where n;(dz) = K (xg, 2) mi(dz),i = 1,2. Now using (5.22) it follows that
cspo(x)ni(OD\ W) < hi(x) < eypo(z)n;(OD\ W), ze€ KND, i=1,2.
The conclusion of the theorem follows immediately. a
From the proof of Theorem 5.18 we can see that the following result is true.

Proposition 5.19 Suppose that D C R%, d > 3, is a bounded Lipschitz domain and W an
open subset of RY such that W N 0D is non-empty. If h € HT(YP) satisfies

. h(z)

lim ————-—— = W D
IIH;(VD)_ll(:L‘) 0, zeWnab,
then

limh(z) =0, ze€WnNaD.

r—z
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Proof. From the proof of Theorem 5.18 we see that the Martin measure n of h is supported
by 0D \ W and so we have

h(z) = M (z,2)n(dz), x € D.
OD\W
For any zp € W N oD, take § > 0 small enough so that B(zy,d) C B(zp,d) C W. Then it
follows from (5.22) that

cspo(r) < MY (2, 2) < copo(x), € B(2,0)ND,2€ 0D\ W,
for some positive constants c¢5 and cg. Thus
h(z) < cgpo(x)n(OD\ W), x € B(20,0) N D,

from which the assertion of the proposition follows immediately. O

5.6 Sharp bounds for the Green function and the jumping func-
tion of subordinate process

In this subsection we are going to derive sharp bounds for the Green function and the
jumping function of the process Y”. The method uses the upper and lower bounds for the
transition densities p” (¢, x, ) of the killed Brownian motion. The lower bound that we need
is available only in case when D is a bounded C'!' domain in R¢. Therefore, throughout
this subsection we assume that D C R? is a bounded C'! domain. Moreover, recall the
standing assumption that S is a special subordinator such that b > 0 or (0, c0) = oo which
guarantees the existence of a decreasing potential density w.

Recall that a bounded domain D C R% d > 2, is called a bounded C*' domain if
there exist positive constants 7y and M with the following property: For every z € 0D and
every r € (0,rg], there exist a function ', : R¥™! — R satisfying the condition |VT,(£) —
VI.(n)| < M|¢ —n| for all £,7 € R¥1 and an orthonormal coordinate system C'S, such
that if y = (y1,...,yq) in C'S, coordinates, then

B<Z7T)QD:B(Z7T)Q{Z/: yd>Fz(y17"'7yd71}-

When we speak of a bounded C*! domain in R we mean a finite open interval.

For any = € D, let p(x) denote the distance between x and 9D. We will use the following
two bounds for transition densities p? (¢, z,y): There exists a positive constant ¢; such that
for all t > 0 and any z,y € D,

2
—dj2— r—Yy
pP(t.) < et ot exn () (5.23)
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This result (valid also for Lipschitz domains) can be found in [24] (see also [55]). The lower
bound was obtained in [62] and [54] and states that for any A > 0, there exist positive
constants ¢ and ¢ such that for any ¢ € (0, A] and any =,y € D,

pP(tx,y) > o <M A 1) =42 exp (—M) : (5.24)

t

Recall that the Green function of Y is given by

UP(x,y) = / WPt yhut) di

where u is the potential density of the subordinator S. Instead of assuming conditions on
the asymptotic behavior of the Laplace exponent ¢(\) as A — oo, we will directly assume
the asymptotic behavior of u(t) as t — 0+.

Assumption A: (i) There exist constants ¢g > 0 and 8 € [0,1] with § > 1 — d/2, and a
continuous function ¢ : (0, 00) — (0, 00) which is slowly varying at oo such that

Co

u(t)wm, t—0+ . (5.25)

(i) In the case when d = 1 or d = 2, there exist constants ¢ > 0,7 > 0 and v < d/2 such
that
ult) <et’ t>T. (5.26)

Note that under certain assumptions on the asymptotic behavior of ¢(A) as A — oo, one can
obtain (5.25) and (5.26) for the density u.

Theorem 5.20 Suppose that D is a bounded C*' domain in R and that the potential
density u of the special subordinator S = (S; : t > 0) satisfies the Assumption A. Suppose
also that there is a function g : (0,00) — (0,00) such that

/ 427248~y ()dt < oo
0

and & > 0 such that foe(y,t) < g(t) for all y,t > 0, where fy¢ is the function defined before
Lemma 3.3 using the £ in (5.25). Then there exist positive constants Cy; < Cy such that for
all x,y € D,

p(x)p(y) 1 Dy
“ ( w—yp " 1) =gy < U
p(r)p(y) 1
< (O ( z — y? A 1) |z — y|d+26-2 g(\x—lyp) . (5.27)
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Proof. We start by proving the upper bound. Using the obvious upper bound p? (¢, z,y) <
(4mt)~4? exp(—|x — y|?/4t) and Lemma 3.3 one can easily show that

1

[z =yl 2€(|z y|2>

UD(xa y) S &1

Now note that (5.23) gives

tﬂ%ay>stx@p@)/ 2 ety (1) i
0

Thus it follows from Lemma 3.3 that

UP(,) < esple)ply) !

|$_ |d+25€<‘$ yl2> .

Now combining the two upper bounds obtained so far we arrive at the upper bound in (5.27).

In order to prove the lower bound, we first recall the following result about slowly varying
functions (see [10], p. 22, Theorem 1.5.12):

lim ( N _ =1

A—00 ( )
uniformly in ¢ € [a,b] where [a,b] C (0,00). Together with joint continuity of (¢,A) —
0(tA\)/€(N), this shows that for a given A\g > 0 and an interval [a, b] C (0,00), there exists a

positive constant c(a, b, Ag) such that

(N
e SE<h A= 2
g()\) _C(afyb7)\0)7 a“_t_b,>\_>\0 (5 8)
Now, by (5.24),
A _ 22
UD(x7y) > c4/ (M A 1) Zffd/2 exp (_C|IL’ y| ) gt

0 t

Assume z # y. Let R be the diameter of D and assume that A has been chosen so that
A = R?. Then for any z,y € D, p(z)p(y) < R?> = A. The lower bound is proved by
considering two separate cases:

(i) |z — y|* < 2p(z)p(y). In this case we have

p(z)p(y) x
UP(z,y) > 04/0 (w A 1) t= 2 exp{—c|z — y|*/t}u(t) dt

> o a7 [ S S — g5 ds
p(x)p(y)
4c

> eyl [ el — g ) ds (5:29
2c
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For 2¢ < s < 4e, we have that 1/4 < c|z —y|?/s < 1/2. Hence, by (5.25), there exists cg > 0
such that

U (c]:c - Z/’Z) > ﬂCG .
S clz—yl2 s
(#5) ¢ (757)
Further, since 1/|z — y|*> > 1/R? for all x,y € D, we can use (5.28) to conclude that there
exists ¢; > 0 such that

>cr, 20<s<4c,x,yeD.

It follows from (5.29), that

4c o
UP(z,y) > C5|x—y|_d+2/ §4/2-2,s 6CT s
2

‘ (ﬁ)ﬂ ()

Cy 4c /

o d/2+B—2 —s
= s e °ds
|z — y|dt20- 2g( )/26

lz— y|2

Cg
|z — y|d+28-2¢(

|z — ylz)

(ii) |z — y|* > 2p(x)p(y). In this case we have

UP(e,y) > QMxm@y/(H)f%ﬂ*emﬂ—dx—yﬁﬁh«wﬁ
p()p(y
el
_ p(@)p(y
= cuplelplole ol [ S (el — g /) ds
et

z(mM@mww—md/wdﬂl ulcle — yP/s) ds

The integral above is estimated in the same way as in case (i). It follows that there exists a
positive constant ¢y, such that

C
UP(z,y) > crop(x)ply)|z —y|™@ =

o — PP L)

_ p(@)p(y)
- d+28 '
|z =yl )
|z— yl
Combining the two cases above we arrive at the lower bound (5.27). O

Suppose that the subordinator S has a strictly positive drift b and d > 3. Then we
can take 0 = 0 and ¢ = 1 in the Assumption A, and Theorem 5.20 implies that the Green
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function UP of Y? is comparable to the Green function of X?. Further, if ¢(\) ~ coA*/2,
as A — 00, 0 < a < 2, then by (2.28) it follows that the Assumption A holds true with
B =1—«/2 and ¢ = 1. In this way we recover a result from [57] saying that under the
stated assumption,

cl(p(x)p(y)m> ! SUD(x,y)SCQ(M/H) !

|z — yl? |z — yld—e |z — y[? |z —yld—o’

The jumping function JP(z,y) of the subordinate process Y is given by the following
formula:

TP, y) = / Pt ) lde).

Suppose that u(dt) has a decreasing density p(t) which satisfies
Assumption B: There exist constants ¢o > 0, § € [1,2] and a continuous function ¢ :
(0,00) — (0, 00) which is slowly varying at co such that such that

Co

Then we have the following result on sharp bounds of J?(x,y). The proof is similar to the
proof of Theorem 5.20, and therefore omitted.

Theorem 5.21 Suppose that D is a bounded C*' domain in R and that the Lévy density
wu(t) of the subordinator S = (Sy : t > 0) ewists, is decreasing and satisfies the Assumption
B. Suppose also that there is a function g : (0,00) — (0,00) such that

/ t42=24 Bty ()dt < oo
0
and & > 0 such that foe(y,t) < g(t) for all y,t > 0, where f¢ is the function defined before

Lemma 3.3 using the £ in (5.30). Then there exist positive constants Cs < Cy such that for
all x,y € D

p(x)p(y) 1 b,
@ ( w—yP " 1) |z — y|d+2P20 (L) < J7(x,y)
p(x)p(y) 1
< (4 < iz — g2 A 1) z — y|d+25—2€(‘xjy|2) . (5.31)
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