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Abstract

Suppose that S is a subordinator with a nonzero drift andW is an independent 1-dimensional
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give sharp bounds for the Green function of the process X killed upon exiting a bounded open
interval and prove a boundary Harnack principle. In the case when S is a stable subordinator
with a positive drift, we prove sharp bounds for the Green function of X in (0,∞), and sharp
bounds for the Poisson kernel of X in a bounded open interval.
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1 Introduction

A one-dimensional Lévy process S = (St : t ≥ 0) is called a subordinator if t → St(ω) is non-
negative and increasing. Suppose that W = (Wt : t ≥ 0) is a one-dimensional Brownian motion
and S = (St : t ≥ 0) is a subordinator independent of W . The process X = (Xt : t ≥ 0) defined
by Xt = WSt is called a subordinate Brownian motion. In this paper we will be concerned with
the case when the subordinator has a drift. This leads to a Lévy process with both a continuous
and a jumping component. A typical example is the independent sum of a Brownian motion and
a symmetric α-stable process. The difficulty in studying the potential theory of such a process
stems from the fact that the process runs on two different scales: on the small scale one expects
the continuous component to be dominant, while on the large scale the jumping component of the
process should be the dominant one. Furthermore, upon exiting an open set, the process can both
jump out of the set and exit continuously through the boundary.

The literature on the potential theory of Markov processes with both continuous and jumping
components is rather scarce. Green function estimates (for the whole space) and the Harnack
inequality for some of these processes were established in [12] and [15]. The parabolic Harnack
inequality and heat kernel estimates were studied in [17] for the independent sum of a d-dimensional
Brownian motion and a rotationally invariant α-stable process, and in [6] for much more general
diffusions with jumps. There are still a lot of open questions about subordinate Brownian motions
with both continuous and jumping components. Some of these questions are as follows: Can one
establish sharp two-sided estimates for the Green functions of these processes in open sets? Can
one prove a boundary Harnack principle for these processes?

The goal of this paper is to answer the above questions in the case of a subordinate Brownian
motion with a continuous component in the one-dimensional setting. In particular, we will be
concerned with the process X(0,r), the process obtained by killing X upon exiting the open interval
(0, r). The process X(0,r) is called a killed subordinate Brownian motion. Our method relies on
two main ingredients: one is the fluctuation theory of one-dimensional Lévy processes (which has
already proved very useful in [10]), and the other is a comparison of the killed subordinate Brownian
motion with the subordinate killed Brownian motion where we will use some of the results obtained
in [19]. The reader is referred to Section 3 for the definition of the subordinate killed Brownian
motion and its relation with the killed subordinate Brownian motion X(0,r). The results obtained
in this paper should provide a guideline for the more difficult d-dimensional case.

The paper is organized as follows: In the next section we set up notations, introduce our basic
processX - the subordinate Brownian motion with a continuous component, and give some auxiliary
results. In Section 3 we prove sharp two-sided estimates for the Green function of X killed upon
exiting a bounded open interval. Not surprisingly, the estimates are given by the Green function of
the Brownian motion killed upon exiting that interval. In Section 3 we also prove sharp two-sided
estimates for the Green function of X killed upon a bounded open set which is the union of finitely
many disjoint open intervals such that the distance between any two of them is strictly positive.
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The Green function estimates are used in Section 4 to prove the boundary Harnack principle for
X. In the last section we consider the special case when X is the independent sum of a Brownian
motion and a symmetric α-stable process, and we give sharp bounds for the Green function of X
killed upon exiting (0,∞) and sharp bounds of the Poisson kernel of a bounded open interval.

Throughout the paper we use the following notations: For functions f and g, f ∼ g, t → 0
(respectively t → ∞) means that limt→0 f(t)/g(t) = 1 (respectively limt→∞ f(t)/g(t) = 1), while
f � g means that the quotient f(t)/g(t) is bounded and bounded away from zero. The uppercase
constants C1, C2, . . . will appear in the statements of results and will stay fixed throughout the
paper, while the lowercase constants c1, c2, . . . will be used in proofs (and will change from one
proof to another).

Throughout this paper, we will use dx to denote the Lebesgue measure in R. We will use “:=”
to denote a definition, which is read as “is defined to be”. For a Borel set A ⊂ R, we also use |A|
to denote the Lebesgue measure of A. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. We
will use ∂ to denote a cemetery point and for every function f , we extend its definition to ∂ by
setting f(∂) = 0.

2 Setting and notation

Let S = (St : t ≥ 0) be a subordinator with a positive drift. Without loss of generality, we shall
assume that the drift of S is equal to 1. The Laplace exponent of S can be written as

φ(λ) = λ+ ψ(λ),

where
ψ(λ) =

∫
(0,∞)

(1− e−λt)µ(dt).

The measure µ in the display above satisfies
∫
(0,∞)(1∧ t)µ(dt) <∞ and is called the Lévy measure

of S. In this paper, we will exclude the trivial case of St = t, that is the case of ψ ≡ 0. Let W =
(Wt : t ≥ 0) be a 1-dimensional Brownian motion independent of S. The process X = (Xt : t ≥ 0)
defined by Xt = WSt = W (St) is called a subordinate Brownian motion. We denote by Px the law
of X started at x ∈ R. The process X is a one-dimensional Lévy process with the characteristic
exponent Φ given by

Φ(θ) = φ(θ2) = θ2 + ψ(θ2), θ ∈ R . (2.1)

The Lévy measure of X has a density j with respect to the Lebesgue measure given by

j(x) =
∫ ∞

0
(4πt)−1/2e−x2/4t µ(dt) , x ∈ R . (2.2)

Note that j(−x) = j(x), and that j is decreasing on (0,∞).
Let X = (Xt : t ≥ 0) be the supremum process of X defined by Xt = sup{0 ∨Xs : 0 ≤ s ≤ t},

and let X − X be the reflected process at the supremum. The local time at zero of X − X is
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denoted by L = (Lt : t ≥ 0) and the inverse local time by L−1 = (L−1
t : t ≥ 0). The inverse local

time is a (possibly killed) subordinator. The (ascending) ladder height process of X is the process
H = (Ht : t ≥ 0) defined by Ht = X(L−1

t ). The ladder height process is again a (possibly killed)
subordinator. We denote by χ the Laplace exponent of H. It follows from [7, Corollary 9.7] that

χ(λ) = exp
(

1
π

∫ ∞

0

log(Φ(λθ))
1 + θ2

dθ

)
= exp

(
1
π

∫ ∞

0

log(θ2λ2 + ψ(θ2λ2))
1 + θ2

dθ

)
, λ > 0. (2.3)

In the next lemma we show that the ladder height process H has a drift, and give a necessary
and sufficient condition for its Lévy measure to be finite.

Lemma 2.1 (a) It holds that

lim
λ→∞

χ(λ)
λ

= 1 .

(b) The Lévy measure of H is finite if and only if∫ ∞

0
log
(

1 +
ψ(t2)
t2

)
dt <∞ . (2.4)

Proof. (a) Note first that the following identity is valid for λ > 0:

λ = exp
{

1
π

∫ ∞

0

log(θ2λ2)
1 + θ2

dθ

}
. (2.5)

Therefore

χ(λ)
λ

=
exp{ 1

π

∫∞
0 log(θ2λ2 + ψ(θ2λ2)) dθ

1+θ2 }
exp{ 1

π

∫∞
0 log(θ2λ2) dθ

1+θ2 }

= exp
{

1
π

∫ ∞

0
(log(θ2λ2 + ψ(θ2λ2))− log(θ2λ2))

dθ

1 + θ2

}
= exp

{
1
π

∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
dθ

1 + θ2

}
= exp

{
1
π

∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
(1{θ≤1/λ} + 1{θ>1/λ})

dθ

1 + θ2

}
.

Since there exists a constant c1 > 0 such that log(1 + x) ≤ c1x
1
4 for x ≥ 1, we have, for any θ ≤ 1

λ ,

log
(

1 +
ψ(θ2λ2)
θ2λ2

)
≤ log

(
1 +

ψ(1)
θ2λ2

)
≤ c2

θ1/2λ1/2
,

for some c2 > 0. Consequently,

lim
λ→∞

∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
1{θ≤1/λ}

dθ

1 + θ2
= 0.

Since

ψ(x) ≤
∫

(0,∞)
(xt ∧ 1)µ(dt) ≤ x

∫
(0,∞)

(t ∧ 1)µ(dt) = c3x, for all x ∈ (1,∞),
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we know that

log
(

1 +
ψ(θ2λ2)
θ2λ2

)
1

1 + θ2
1{θ>1/λ} ≤

log(1 + c3)
1 + θ2

,

thus by the dominated convergence theorem

lim
λ→∞

∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
1{θ>1/λ}

dθ

1 + θ2
= 0.

Therefore we have shown
lim

λ→∞

χ(λ)
λ

= 1 . (2.6)

(b) By (2.6), the function χ(λ) − λ is the Laplace exponent of the jump part of H. The Lévy
measure of H will be finite if and only if limλ→∞(χ(λ) − λ) < ∞. First note that by a change of
variables we have∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
dθ

1 + θ2
= λ

∫ ∞

0
log
(

1 +
ψ(t2)
t2

)
dt

λ2 + t2
.

By (2.6) this integral converges to 0 as λ→∞. Therefore,

lim
λ→∞

(χ(λ)− λ) = lim
λ→∞

λ

[
exp

{
1
π

∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
dθ

1 + θ2

}
− 1
]

= lim
λ→∞

λ

π

∫ ∞

0
log
(

1 +
ψ(θ2λ2)
θ2λ2

)
dθ

1 + θ2

= lim
λ→∞

1
π

∫ ∞

0
log
(

1 +
ψ(t2)
t2

)
λ2

λ2 + t2
dt

=
1
π

∫ ∞

0
log
(

1 +
ψ(t2)
t2

)
dt .

2

Remark 2.2 It is easy to see that, in the case when ψ(λ) = λα/2, the integral in (2.4) converges
if and only if 0 < α < 1.

The potential measure (or the occupation measure) of the subordinator H is the measure on
[0,∞) defined by

V (A) = E
[∫ ∞

0
1{Ht∈A} dt

]
,

where A is a Borel subset of [0,∞).
By [1, Theorem 5, page 79] and our Lemma 2.1(a), V is absolutely continuous and has a

continuous and strictly positive density v such that v(0+) = 1. Thus

V (x) := V ([0, x]) =
∫ x

0
v(t) dt ∼ x as x→ 0.
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Lemma 2.3 Let R > 0. There exists a constant C1 = C1(R) ∈ (0, 1) such that for all x ∈ (0, R],

C1 ≤ v(x) ≤ C−1
1 and C1x ≤ V (x) ≤ C−1

1 x .

Proof. Let c1 = inf0<t≤R v(t) > 0 and c2 = sup0<t≤R v(t). Since v(0+) = 1, we have that c1 ≤ 1.
Choose C1 = C1(R) ∈ (0, 1) such that C1 ≤ c1 ≤ c2 ≤ C−1

1 . Since V (x) =
∫ x
0 v(t) dt, the claim

follows immediately. 2

For any open set D, we use τD to denote the first exit time from D, i.e., τD = inf{t > 0 :
Xt /∈ D}. Given an open set D ⊂ R, we define XD

t (ω) = Xt(ω) if t < τD(ω) and XD
t (ω) = ∂ if

t ≥ τD(ω), where ∂ is a cemetery state. We now recall the definition of harmonic functions with
respect to X.

Definition 2.4 Let D be an open subset of R. A function h defined on R is said to be

(1) harmonic in D for X if

Ex [|h(XτB )|] <∞ and h(x) = Ex [h(XτB )] , x ∈ B,

for every open set B whose closure is a compact subset of D;

(2) regular harmonic in D for X if it is harmonic in D with respect to X and for each x ∈ D,

h(x) = Ex [h(XτD)] ;

(3) invariant in D for X if for each x ∈ D and each t ≥ 0,

h(x) = Ex [h(Xt)] ;

(4) harmonic for XD if it is harmonic for X in D and vanishes outside D.

We are now going to use some results from [11]. It is assumed there that the resolvent kernels
of Lévy process are absolutely continuous with respect to the Lebesgue measure. This is true in
our case since X has transition densities. Another assumption in [11] is that 0 is regular for (0,∞)
which is also satisfied here, since X is of unbounded variation. Further, since X is symmetric, the
notions of coharmonic and harmonic functions coincide. In [11, Theorem 2] it is proved that V is
invariant, hence harmonic, for X in (0,∞). In particular, for 0 < ε < r < ∞, let τ(ε,r) = inf{t >
0 : Xt /∈ (ε, r)} be the first exit time from (ε, r) and let T(−∞,0] = inf{t > 0 : Xt ∈ (−∞, 0]} be the
first hitting time to (−∞, 0]. Then by harmonicity

V (x) = Ex

[
V (X(τ(ε,r))); τ(ε,r) < T(−∞,0]

]
, x > 0 . (2.7)

By letting ε→ 0 in (2.7) and using that V is continuous at zero and V (0) = 0, it follows that

V (x) = Ex

[
V (X(τ(0,r))); τ(0,r) < T(−∞,0]

]
, x > 0 . (2.8)
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Formula (2.8) also reads

V (x) = Ex

[
V (X(0,∞)(Tr))

]
=
∫

[r,∞)
V (y)Px(X(0,∞)(Tr) ∈ dy) , x > 0 , (2.9)

where Tr = inf{t > 0 : X(0,∞) ≥ r}. Let ζ = T(−∞,0] be the lifetime of X(0,∞). Since V is
nondecreasing, it follows from (2.9) that

V (x) ≥ V (r)Px(Tr < ζ) , 0 < x < r <∞ . (2.10)

We end this section by noting that the function v is also harmonic for X in (0,∞). This is shown
in [11, Theorem 1].

3 Green function estimates

Let G(0,∞) be the Green function of X(0,∞), the process X killed upon exiting (0,∞). By using
[1, Theorem 20, p. 176] which was originally proved in [11], the following formula for G(0,∞) was
shown in [10, Proposition 2.8]:

G(0,∞)(x, y) =
{ ∫ x

0 v(z)v(y + z − x)dz, x ≤ y,∫ y
0 v(z)v(x+ z − y)dz, x > y.

(3.1)

The goal of this section is to obtain the sharp bounds for the Green function G(0,r) of X(0,r),
the process X(0,∞) killed upon exiting (0, r) (which is the same as X killed upon exiting (0, r)).
Note that by symmetry, for all x, y ∈ (0, r),

G(0,r)(x, y) = G(0,r)(y, x) , (3.2)

G(0,r)(r − x, r − y) = G(0,r)(x, y) . (3.3)

Proposition 3.1 Let R > 0. There exists a constant C2 = C2(R) > 0 such that for all r ∈ (0, R],

G(0,r)(x, y) ≤ C2
x(r − y) ∧ (r − x)y

r
, 0 < x, y < r .

Proof. Assume first that 0 < x ≤ y ≤ r/2, and note that x(r − y) ∧ (r − x)y = x(r − y) ≥ xr/2.
Therefore, by Lemma 2.3

G(0,r)(x, y) ≤ G(0,∞)(x, y) =
∫ x

0
v(z)v(y + z − x)dz ≤ C−2

1 x ≤ 2C−2
1

x(r − y) ∧ (r − x)y
r

. (3.4)

Now we consider the case 0 < x < r/2 < y < r and use an idea from [8]. Let τ(0,r/2) be the exit
time of X(0,r) from (0, r/2). Note that this is the same as the exit time of X(0,∞) from (0, r/2).
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Since w 7→ G(0,r)(w, y) is regular harmonic in (0, r/2) for X(0,r), we have

G(0,r)(x, y) = Ex

[
G(0,r)(X(0,r)(τ(0,r/2)), y); X

(0,r)(τ(0,r/2)) > r/2
]

= Ex

[
G(0,r)(r −X(0,r)(τ(0,r/2)), r − y); X(0,r)(τ(0,r/2)) > r/2

]
≤ 2C−2

1

r
Ex

[
X(0,r)(τ(0,r/2))(r − y); X(0,r)(τ(0,r/2)) > r/2

]
≤ 2C−2

1

r
r(r − y)Px

(
X(0,r)(τ(0,r/2)) > r/2

)
≤ 2C−2

1 (r − y)
V (x)
V (r/2)

≤ 2C−2
1 (r − y)2C−2

1

x

r

= C2
x(r − y) ∧ (r − x)y

r
.

Here the second line follows from (3.3), the third from the first part of the proof, and the fifth from
(2.10) and Lemma 2.3.

All other cases follow by (3.2) and (3.3). 2

For x ∈ (0, r), let δ(x) = dist(x, (0, r)c) be the distance of the point x to the boundary of the
interval (0, r): δ(x) = x for x ≤ r/2, and δ(x) = r − x for r/2 ≤ x < r.

Remark 3.2 The upper bound in Proposition 3.1 can be written in a different way. Suppose, first,
that 0 < x ≤ r/2 < y. Then

G(0,r)(x, y) ≤ C2
x(r − y)

r
= C2

δ(x)δ(y)
r

≤ C2
δ(x)δ(y)
|y − x|

,

and since δ(x)1/2δ(y)1/2 < r, we also have

δ(x)δ(y)
r

≤ (δ(x)δ(y))1/2 .

Therefore,

G(0,r)(x, y) ≤ C2

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
. (3.5)

Assume now that 0 < x < y ≤ r/2. It follows from (3.4) that G(0,r)(x, y) ≤ C−2
1 x. Clearly,

x ≤ δ(x)1/2δ(y)1/2, and also,

x <
xy

y − x
=
δ(x)δ(y)
|y − x|

.

Hence, (3.5) is valid in this case too.

In order to obtain the lower bound for G(0,r) we recall the notion of a subordinate killed
Brownian motion. Let W (0,r) be the Brownian motion W killed upon exiting (0, r), then the process
Z(0,r) defined by Z

(0,r)
t = W (0,r)(St) is called a subordinate killed Brownian motion. The precise
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relationship between X(0,r) - the killed subordinate Brownian motion, and Z(0,r) - the subordinate
killed Brownian motion, was studied in [14, 19]. In particular, the interested reader can refer to
[14, Fig. 1] for an illustration of the relation between the subordinate killed Brownian motion and
the killed subordinate Brownian motion. Let U (0,r) denote the Green function of Z(0,r). It follows
from [19, Proposition 3.1] that Z(0,r) is a subprocess of X(0,r) and that G(0,r)(x, y) ≥ U (0,r)(x, y)
for all x, y ∈ (0, r). Hence, it suffices to obtain a lower bound for U (0,r). For this we use a slight
modification of the proof of the lower bound in [18, Theorem 5.91].

Recall that
U (0,r)(x, y) =

∫ ∞

0
p(0,r)(t, x, y)u(t) dt ,

where p(0,r)(t, x, y) is the transition density of the Brownian motion W (0,r) and u is the potential
density of the subordinator S. Since the drift of S is equal to 1, it follows from [1, Theorem 5, page
79] that the density u exists, is continuous, strictly positive and u(0+) = 1.

Proposition 3.3 Let R > 0. There exists a constant C3 = C3(R) > 0 such that for all r ∈ (0, R],

U (0,r)(x, y) ≥ C3
x(r − y) ∧ (r − x)y

r
, 0 < x, y < r .

Proof. Let r > 0 be such that r < R. Since U (0,r) is symmetric and U (0,r)(r−x, r−y) = U (0,r)(x, y),
we only need to consider the case 0 < x ≤ r/2 and x ≤ y < r. It follows from [13, Theorem 3.9] and
the scaling property that there exist c1 > 0 and c2 > 0 independent of r such that for all t ∈ (0, r2]
and all x, y ∈ (0, r)

p(0,r)(t, x, y) ≥ c2

(
δ(x)δ(y)

t
∧ 1
)
t−1/2 exp

{
−c1|x− y|2

t

}
.

For convenience, we put A := 2r2. Let c3 = c3(R) := inf0<t≤2R2 u(t). We consider two cases:
Case (i): |x− y|2 < δ(x)δ(y). Then,

U (0,r)(x, y) ≥ c2

∫ A

0

(
δ(x)δ(y)

t
∧ 1
)
t−1/2 exp

{
−c1δ(x)δ(y)

t

}
u(t) dt

≥ c2c3

∫ δ(x)δ(y)

0
t−1/2 exp

{
−c1δ(x)δ(y)

t

}
dt

= c2c3

∫ ∞

1

(
δ(x)δ(y)

s

)−1/2

e−c1s δ(x)δ(y)
s2

ds

= c2c3(δ(x)δ(y))1/2

∫ ∞

1
s−3/2e−c1s ds = c4(δ(x)δ(y))1/2 . (3.6)

Assume that 0 < x ≤ y < r/2. Then δ(y) ≥ δ(x), and hence

U (0,r)(x, y) ≥ c4(δ(x)δ(y))1/2 ≥ c4δ(x) ≥ c4(1/r)x(r − y) = c4(x(r − y) ∧ (r − x)y)/r .
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Now assume that 0 < x ≤ r/2 ≤ y < r. Then

U (0,r)(x, y) ≥ c4(δ(x)δ(y))1/2 = c4
x(r − y)

(x(r − y))1/2
≥ c4

x(r − y)
r

= c4(x(r − y) ∧ (r − x)y)/r .

Case (ii): |x− y|2 ≥ δ(x)δ(y). Then

U (0,r)(x, y) ≥ c2

∫ A

δ(x)δ(y)

(
δ(x)δ(y)

t
∧ 1
)
t−1/2 exp

{
−c1|x− y|2

t

}
u(t) dt

≥ c2c3δ(x)δ(y)
∫ A

δ(x)δ(y)
t−3/2 exp

{
−c1|x− y|2

t

}
dt

= c2c3|x− y|−1δ(x)δ(y)
∫ c1|x−y|2/(δ(x)δ(y))

c1|x−y|2/A
s−1/2e−s ds

≥ c2c3|x− y|−1δ(x)δ(y)
∫ c1

c1/2
s−1/2e−s ds

= c6|x− y|−1δ(x)δ(y) . (3.7)

Assume that 0 < x ≤ y < r/2. Then

U (0,r)(x, y) ≥ c6x
y

y − x
≥ c6x

r − y

r
≥ c6(x(r − y) ∧ (r − x)y)/r.

Now assume that 0 < x ≤ r/2 ≤ y < r. Then

U (0,r)(x, y) ≥ c6|x− y|−1δ(x)δ(y) ≥ c6(1/r)x(r − y) = c6(x(r − y) ∧ (r − x)y)/r .

2

Remark 3.4 It follows from (3.6) and (3.7) that

U (0,r)(x, y) ≥ C3

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
. (3.8)

By combining Propositions 3.1 and 3.3 with G(0,r)(x, y) ≥ U (0,r)(x, y) we arrive at the following

Theorem 3.5 Let R > 0. There exist a constant C4 = C4(R) > 1 such that for all r ∈ (0, R] and
all x, y ∈ (0, r),

C−1
4

x(r − y) ∧ (r − x)y
r

≤ G(0,r)(x, y) ≤ C4
x(r − y) ∧ (r − x)y

r
,

C−1
4

x(r − y) ∧ (r − x)y
r

≤ U (0,r)(x, y) ≤ C4
x(r − y) ∧ (r − x)y

r
.

Remark 3.6 From Remarks 3.2 and 3.4 it follows that

G(0,r)(x, y) � (δ(x)δ(y))1/2 ∧ δ(x)δ(y)
|y − x|

.

The bounds written in this way can be generalized to some disconnected open sets (see Theorem
3.8).
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Corollary 3.7 Let R > 0. There exist a constant C5 = C5(R) > 1 such that for all r ∈ (0, R] and
all x ∈ (0, r),

C−1
5 δ(x) ≤ Ex[τ(0,r)] ≤ C5δ(x) .

Proof. This follows immediately by integrating the bounds for G(0,r) in the formula Ex[τ(0,r)] =∫ r
0 G

(0,r)(x, y) dy. 2

Now we assume that D ⊂ R is a bounded open set that can be written as the union of finitely
many disjoint intervals at a positive distance from each other. More precisely, let a1 < b1 < a2 <

b2 < · · · < an < bn, n ∈ N, Ij := (aj , bj), and D = ∪n
j=1Ij . Such a set D is sometimes called a

bounded C1,1 open set in R (see [5]). For a point x ∈ D, let δ(x) := dist(x,Dc) be the distance of
x to the boundary of D. Further, let R := diam(D) = bn − a1, ξ := min1≤j≤n−1 dist(Ij , Ij+1) =
min1≤j≤n−1(aj+1 − bj).

Let XD be the process X killed upon exiting the set D, and let GD be the corresponding Green
function. Now we prove the following sharp estimates for GD corresponding to the estimates in
Remark 3.6.

Theorem 3.8 There exists a constant C6 = C6(D) such that for all x, y ∈ D,

C−1
6

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
≤ GD(x, y) ≤ C6

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
. (3.9)

Proof. Assume that x and y are in two distinct components of D. Let D(x) and D(y) be the
components of D that contains x and y respectively. Then by the strong Markov property and the
Ikeda-Watanabe formula (see [9]), we have

GD(x, y) = Ex

[
GD(XτD(x)

, y)
]

= Ex

[∫ τD(x)

0

(∫
D\D(x)

j(|Xs − z|)GD(z, y)dz

)
ds

]
.

Since j is decreasing,

j(R) Ex[τD(x)]
∫

D\D(x)
GD(y, z)dz ≤ GD(x, y) ≤ j(ξ) Ex[τD(x)]

∫
D\D(x)

GD(y, z)dz. (3.10)

By Corollary 3.7 there exists c1 = c1(D) > 0 such that

c−1
1 δ(x) ≤ Ex

[
τD(x)

]
≤ c1δ(x), (3.11)∫

D\D(x)
GD(y, z)dz ≥

∫
D(y)

GD(y)(y, z)dz = Ey[τD(y)] ≥ c−1
1 δ(y)

and
sup
z∈D

Ez[τD] ≤ sup
z∈D

Ez[τ(a1,bn)] ≤ c1 <∞.

11



Moreover by (3.11), the strong Markov property, and the Ikeda-Watanabe formula we have∫
D\D(x)

GD(y, z)dz ≤ Ey

[
τD
]

= Ey

[
τD(y)

]
+ Ey

[
EXτD(y)

[τD]
]

≤ c1 δ(y) + Ey

[∫ τD(y)

0

(∫
D\D(y)

j(Xs, z) Ez[τD]dz

)
ds

]
≤ c1 δ(y) + c2j(ξ)Ey

[
τD(y)

]
≤ c3 δ(y).

We conclude from the last three displays and (3.10)-(3.11) that there is a constant c4 = c4(D) ≥ 1
such that

c−1
4 δ(x)δ(y) ≤ GD(x, y) ≤ c4δ(x)δ(y). (3.12)

When x and y are in two different components of D, it holds that ξ ≤ |x− y| ≤ R. Thus, we have
established (3.9) in this case.

Now we assume that x, y are in the same component U of D. We have the inequalities (3.9) for
U . Thus

GD(x, y) ≥ GU (x, y) ≥ c5

(
(δU (x)δU (y))1/2 ∧ δU (x)δU (y)

|y − x|

)
= c5

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
,

where δU (x) is the distance between x and U c. For the upper bound, we use the strong Markov
property, the Ikeda-Watanabe formula, (3.11) and (3.12), and obtain

GD(x, y) = GU (x, y) + Ex

[
GD(XτU , y)

]
≤ c6

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
+ Ex

[∫ τU

0

(∫
D\U

j(|Xs − z|)GD(z, y)dz

)
ds

]

≤ c6

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
+ j(ξ) Ex[τU ]

∫
D\U

GD(y, z)dz

≤ c6

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
+ c7δ(x)δ(y)

∫
D\U

δ(z)dz.

Since, by the boundedness of D,

δ(x)δ(y) ≤ c8

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
,

we have
GD(x, y) ≤ c9

(
(δ(x)δ(y))1/2 ∧ δ(x)δ(y)

|y − x|

)
2

Remark 3.9 In case of one-dimensional symmetric α-stable process, 0 < α < 2, and D as above,
the sharp bounds for the Green function GD

α are given in [5]. When 1 < α < 2 they read

GD
α (x, y) � (δ(x)δ(y))(α−1)/2 ∧ δ(x)α/2δ(y)α/2

|y − x|
.
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4 Boundary Harnack principle

We start this section by looking at how the process X exits the interval (0, r). By the Ikeda-
Watanabe formula (see [9]), it follows that for any Borel set A ⊂ [0, r]c,

Px(X(τ(0,r)) ∈ A) =
∫

A
P (0,r)(x, z) dz , x ∈ (0, r) ,

where P (0,r)(x, z) is the Poisson kernel for X in (0, r) given by

P (0,r)(x, z) =
∫ r

0
G(0,r)(x, y)j(y − z) dy, z ∈ [0, r]c. (4.1)

Recall that the function j is the density of the Lévy measure of X and is given by (2.2). The
function z 7→ P (0,r)(x, z) is the density of the exit distribution of X(0,r) starting at x ∈ (0, r) by
jumping out of (0, r). This type of exit from an open set is well-studied. In the last section we
will give sharp bounds on P (0,r) in the case when ψ(λ) = λα/2, α ∈ (0, 2). On the other hand, the
process X can also exit the interval (0, r) continuously. By a slight abuse of notation, for x ∈ (0, r)
and z ∈ {0, r}, let

P (0,r)(x, z) = Px

(
X(τ(0,r)) = z

)
.

Note that if ζ = T(−∞,0], then Px(Tr < ζ) = Px

(
X(τ(0,r)) ≥ r

)
. Hence, (2.10) can be rewritten as

Px

(
X(τ(0,r)) ≥ r

)
≤ V (x)
V (r)

≤ C−2
1

x

r
,

where we have used Lemma 2.3 in the second inequality. Suppose that 0 < x < 5r/6. Then

P (0,r)(x, r) ≤ Px

(
X(τ(0,r)) ≥ r

)
≤ C−2

1

x

r
. (4.2)

By symmetry, for r/6 < x < r,

P (0,r)(x, 0) ≤ C−2
1

r − x

r
. (4.3)

We prove now the lower bound corresponding to (4.2).

Lemma 4.1 Let R > 0. There exists C7 = C7(R) > 0 such that for all r ∈ (0, R] and all x ∈ (0, r),

P (0,r)(x, r) ≥ C7
x

r
. (4.4)

Proof. Let Z(0,r) be the subordinate killed Brownian motion and let τZ
(0,r) be its lifetime. From

the results in [19, Section 3], it follows immediately that

Px

(
X(τ(0,r)) = r

)
≥ Px

(
Z(0,r)(τZ

(0,r)−) = r
)
.

By [19, Corollary 4.4] (although it was assumed that the Lévy measure µ of S is infinite there,
what was really used there was the condition that the potential measure of S has no atoms which
is obviously satisfied in the present case),

Px

(
Z(0,r)(τZ

(0,r)−) = r
)

= Ex [u(ρ); Wρ = r] ,

13



where ρ = inf{t > 0 : Wt /∈ (0, r)} and u is the potential density of the subordinator S. Let
c1 = c1(R) := inf0<t≤R2 u(t).

For every t > 0 we have that tPx(ρ > t) ≤ Ex[ ρ ] = x(r − x)/2, hence

Px(Wρ = r, ρ > t) ≤ Px(ρ > t) ≤ 1
2t
x(r − x) ≤ r

2t
x .

Choose t = t(r) = r2. Then

Px(Wρ = r, ρ ≤ t) = Px(Wρ = r)− Px(Wρ = r, ρ > t) ≥ x

r
− r

2r2
x =

1
2
x

r
.

Therefore,

Ex [u(ρ); Wρ = r] ≥ Ex [u(ρ); Wρ = r, ρ ≤ t] ≥ c1Px(Wρ = r, ρ ≤ t) ≥ c1
2
x

r
= C7

x

r
.

This concludes the proof. 2

Proposition 4.2 (Harnack inequality) Let R > 0. There exists a constant C8 = C8(R) > 0
such that for all r ∈ (0, R) and every nonnegative function h on R which is harmonic with respect
to X in (0, 3r),

h(x) ≤ C8h(y) , for all x, y ∈ (r/2, 5r/2) .

Proof. Let a1 = r/4, a2 = r/2, a3 = 5r/4 and a4 = 11r/4. It follows from Theorem 3.5 that there
exists c1 = c1(R) > 0 such that

G(a1,a4)(x1, y) ≤ c1G
(a1,a4)(x2, y), for all x1, x2 ∈ (a2, a3), y ∈ (a1, a4),

consequently by (4.1) we have

P (a1,a4)(x1, z) ≤ c1P
(a1,a4)(x2, z), for all x1, x2 ∈ (a2, a3), z ∈ [a1, a4]c.

It follows from (4.2)–(4.4) that there exists c2 = c2(R) > 0 such that

P (a1,a4)(x1, z) ≤ c2P
(a1,a4)(x2, z), for all x1, x2 ∈ (a2, a3), z ∈ {a1, a4}.

The conclusion of the proposition follows immediately from the last two displays. 2

We are ready now to prove a boundary Harnack principle.

Theorem 4.3 (Boundary Harnack principle) Let R > 0. There exists a constant C9 = C9(R) >
0 such that for all r ∈ (0, R), and every h : R → [0,∞) which is harmonic in (0, 3r) and vanishes
continuously on (−r, 0] it holds that

h(x)
h(y)

≤ C9
x

y

for all x, y ∈ (0, r/2).
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Proof. Let x ∈ (0, r/2). Since h is harmonic in (0, 3r) and vanishes continuously on (−r, 0] we
have

h(x) = lim
ε↓0

Ex

[
h(Xτ(ε,r)

)
]

= Ex

[
h(Xτ(0,r)

)
]

= Ex

[
h(Xτ(0,r)

); Xτ(0,r)
∈ [r, 2r)

]
+ Ex

[
h(Xτ(0,r)

); Xτ(0,r)
≥ 2r

]
+ Ex

[
h(Xτ(0,r)

); Xτ(0,r)
≤ −r

]
= I1 + I2 + I3 . (4.5)

We estimate each term separately. By (2.10) and the Harnack inequality (Proposition 4.2), we have

I1 ≤ C8h(r/2)Px(Xτ(0,r)
≥ r) ≤ C8h(r/2)

V (x)
V (r)

≤ C8C
−2
1

x

r
h(r/2) . (4.6)

In the last inequality we used Lemma 2.3. For the lower bound we use Lemma 4.1 and the Harnack
inequality (Proposition 4.2):

h(x) ≥ I1 ≥ Ex

[
h(Xτ(0,r)

); Xτ(0,r)
= r
]

= h(r)P (0,r)(x, r) ≥ C−1
8 C7

x

r
h(r/2) . (4.7)

In order to deal with I2 and I3 we use Theorem 3.5. Since x ∈ (0, r/2), by Theorem 3.5, we have

G(0,r)(x, y) ≤ C4
x(r − y) ∧ (r − x)y

r
= C4

x

r

(
(r − y) ∧ (

r

x
− 1)y

)
≤ C4

x

r
((r − y) ∧ y) ≤ 2C2

4

x

r
G(0,r)(r/2, y) .

Thus

I2 =
∫ ∞

2r
P (0,r)(x, z)h(z) dz =

∫ ∞

2r

∫ r

0
G(0,r)(x, y)j(z − y)h(z) dy dz

≤ 2C2
4

x

r

∫ ∞

2r

∫ r

0
G(0,r)(r/2, y)j(z − y)h(z) dy dz ≤ 2C2

4

x

r
h(r/2).

Similarly,
I3 ≤ 2C2

4

x

r
h(r/2). (4.8)

By putting together (4.5)–(4.8) we obtain

1
c1

x

r
h(r/2) ≤ h(x) ≤ c1

x

r
h(r/2)

for some constant c1 = c1(R) > 1. If, now, x, y ∈ (0, r/2), then it follows from the last display that

h(x)
h(y)

≤ c21
xh(r/2)
y h(r/2)

= c21
x

y
,

which completes the proof. 2
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5 The case of stable subordinator

In this section we assume that ψ(λ) = λα/2, 0 < α < 2. Thus the subordinator S is the sum
of a unit drift and an α/2-stable subordinator, while X is the sum of a Brownian motion and a
symmetric α-stable process. We will use the fact that S is a special subordinator, that is, the
restriction to (0,∞) of the potential measure of S has a decreasing density with respect to the
Lebesgue measure (for more details see [16] or [18]). It follows from [10, Proposition 2.1] and [16,
Corollary 2.3] that H is a special (possibly killed) subordinator. Thus the density v of the potential
measure V is decreasing, and since v(0+) = 1, it holds that v(t) ≤ 1 for all t > 0.

By applying the Tauberian theorem (Theorem 1.7.1 in [2]) and the monotone density theorem
(Theorem 1.7.2 in [2]) one easily gets that

v(t) ∼ tα/2−1

Γ(α/2)
, t→∞ .

Together with v(t) ∼ 1, as t→ 0+, we obtain the following estimates

v(t) �
{

1 , 0 < t < 2 ,
tα/2−1 , 1/2 < t <∞ .

(5.1)

We recall now the Green function formula (3.1) for the process X(0,∞):

G(0,∞)(x, y) =
∫ x

0
v(t)v(y − x+ t) dt , 0 < x ≤ y <∞ . (5.2)

The next result provides sharp bounds for the Green function G(0,∞).

Theorem 5.1 Assume that φ(λ) = λ + λα/2, 0 < α < 2. Then the Green function G(0,∞) of the
killed process X(0,∞) satisfies the following sharp bounds:

(a) For 1 < α < 2,

G(0,∞)(x, y) � (x ∧ xα/2)(yα/2−1 ∧ 1) , 0 < x < y <∞ .

(b) For α = 1,

G(0,∞)(x, y) �


x(y−1/2 ∧ 1) , 0 < x < 1 ,
log 1+x1/2y1/2

1+y−x , 1 ≤ x < y < 2x ,
x1/2y−1/2 , 1 ≤ x < 2x < y .

(c) For 0 < α < 1,

G(0,∞)(x, y) �


x(yα/2−1 ∧ 1) , 0 < x < 1 ,
1 , 1 ≤ x < y < x+ 1 ,
(y − x)α−1 , 1 ≤ x < x+ 1 < y < 2x ,
xα/2yα/2−1 , 1 ≤ x < 2x < y .
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Proof. The proof is straightforward, but long. It uses only the Green function formula (5.2) and
estimates (5.1) for v. It consists of analyzing several cases and subcases. We will give the complete
proof for 0 < α < 1. Cases 1–3 below work also for 1 ≤ α < 2.
Case 1: 0 < x < y < 2.

Since 0 < t < x < 2, v(t) � 1. Also, 0 < y − x < y − x + t < y < 2, hence v(y − x + t) � 1.
Therefore, G(x, y) �

∫ x
0 1 · 1 dt = x.

Case 2: 0 < x < 1 < 2 < y.
Again, v(t) � 1. Further, y−x+ t ≥ y−x > 1, hence v(y−x+ t) � (y−x+ t)α/2−1. Therefore,

by the mean value theorem,

G(x, y) �
∫ x

0
1 · (y − x+ t)α/2−1 dt =

∫ y

y−x
sα/2−1 ds � θα/2−1x ,

where y − x < θ < y. Further, x < 1 < y/2, hence y − x > y/2. Thus, for θ ∈ (y − x, y) it holds
that θα/2−1 � yα/2−1. Therefore, G(x, y) � xyα/2−1.

Case 3: 1 ≤ x < 2x < y.
Note that 1 + x < 2x < y and thus 1 < y − x. Hence, y − x + t > 1 and thus v(y − x + t) �

(y − x+ t)α/2−1. Further,

G(x, y) =
∫ 1

0
v(t)v(y − x+ t) dt+

∫ x

1
v(t)v(y − x+ t) dt =: I1 + I2 .

For the first integral we have

I1 =
∫ 1

0
v(t)v(y − x+ t) dt �

∫ 1

0
1 · (y − x+ t)α/2−1dt =

∫ y−x+1

y−x
sα/2−1 ds � θα/2−1

for some θ ∈ (y − x, y − x+ 1). Therefore

I1 =
∫ 1

0
v(t)v(y − x+ t) dt � (y − x)α/2−1 � yα/2−1 (5.3)

since y/2 < y−x < y. For the second integral, we use that y/2 < y−x < y−x+1 < y−x+ t < y,
and hence

I2 =
∫ x

1
v(t)v(y−x+ t) dt �

∫ x

1
tα/2−1(y−x+ t)α/2−1 dt �

∫ x

1
tα/2−1yα/2−1 dt � (xα/2−1)yα/2−1 .

(5.4)
Putting (5.3) and (5.4) together, we obtain

G(x, y) � yα/2−1 + (xα/2 − 1)yα/2−1 � xα/2yα/2−1 .

From now on we assume that 0 < α < 1.
Case 4: 1 ≤ x < y < x+ 1.
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For 0 < t < 1 we have y − x < y − x+ t < y − x+ 1 < 2, hence

I1 =
∫ 1

0
v(t)v(y − x+ t) dt �

∫ 1

0
1 · 1 dt = 1 .

For I2 we have

I2 �
∫ x

1
tα/2−1(y − x+ t)α/2−1 dt ≤

∫ x

1
tα/2−1tα/2−1 dt � 1− xα−1 � 1 ,

and

I2 � tα/2−1(y − x+ t)α/2−1 dt ≥
∫ x

1
tα/2−1(1 + t)α/2−1 dt

≥
∫ x

1
(1 + t)α/2−1(1 + t)α/2−1 dt � 2α−1 − (x+ 1)α−1 � 1 .

Hence G(x, y) � 1 .
Case 5: 1 ≤ x < x+ 1 < y < 2x.

For 0 < t < 1, we have 1 < 1 + t < y − x+ t, and hence

I1 �
∫ 1

0
1 · (y − x+ t)α/2−1dt � (y − x)α/2−1 ,

where we used the fact that y − x ≤ y − x+ t < y − x+ 1 ≤ 2(y − x).
To get the upper bound for I2 we use the change of variable:

I2 �
∫ x

1
tα/2−1(y − x+ t)α/2−1 dt = (y − x)α−1

∫ x
y−x

1
y−x

sα/2−1(1 + s)α/2−1 ds

≤ (y − x)α−1

∫ ∞

0
sα/2−1(1 + s)α/2−1 ds = c(y − x)α−1 .

For the lower bound, we consider separately three cases: (i) and y − x ≥ x/2 and x ≥ 2, (ii)
y − x ≥ x/2 and 1 ≤ x ≤ 2, (iii) y − x ≤ x/2.

In case (i), by use of y − x+ t < x+ x = 2x, it follows that

I2 �
∫ x

1
tα/2−1(y−x+t)α/2−1 dt ≥ 2α/2−1xα/2−1

∫ x

1
tα/2−1 dt ≥ 2α/2−1xα/2−1

∫ x

x/2
tα/2−1 dt = cxα−1 .

Since y − x ≥ x/2, we have 2x > y > y − x > x/2, thus (y − x)α−1 � xα−1. Therefore in this case
we have that I2 ≥ c(y − x)α−1.

In case (ii), I2 ≥ 0. Note that for this case 1 < y − x < x ≤ 2, hence I1 + I2 ≥ (y − x)α/2−1 �
(y − x)α−1.

In case (iii), we have that x ≥ 2(y − x), hence again by a change of variable

I2 �
∫ x

1
tα/2−1(y − x+ t)α/2−1 dt ≥

∫ 2(y−x)

1
tα/2−1(y − x+ t)α/2−1 dt

= (y − x)α−1

∫ 2

1
y−x

sα/2−1(1 + s)α/2−1 ds ≥ (y − x)α−1

∫ 2

1
sα/2−1(1 + s)α/2−1 ds

= c(y − x)α−1 .
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Note, further, that for y − x ≥ 1 it holds that (y − x)α/2−1 ≤ (y − x)α−1. Hence, by combining
the expression for I1, the upper and the lower bound for I2, we obtain that G(x, y) � (y − x)α−1.

2

Remark 5.2 In case of a symmetric α-stable process, the sharp bounds for the Green function
G

(0,∞)
α of the process killed upon exiting (0,∞) can be easily deduced from [4]. They read

G(0,∞)
α (x, y) � xα/2yα/2−1 , 1 < α < 2,

G(0,∞)
α (x, y) �

{
x1/2y−1/2 , 0 < x < y/2 ,
log x

y−x , 0 < y/2 < x < y ,
α = 1,

G(0,∞)
α (x, y) �

{
xα/2yα/2−1 , 0 < x < y/2 ,
(y − x)α−1 , 0 < y/2 < x < y ,

0 < α < 1.

Now we recall the formula (4.1) for the Poisson kernel of X in (0, r)

P (0,r)(x, z) =
∫ r

0
G(0,r)(x, y)j(y − z) dy, z ∈ [0, r]c .

In the case of α/2-stable subordinator, it turns out that j(z − y) = c(α)|z − y|−1−α. For 0 < x <

r < z let

P̃ (0,r)(x, z) :=
1
r

∫ x

0
(r − x)y(z − y)−1−α dy +

1
r

∫ r

x
x(r − y)(z − y)−1−α dy .

It follows from the Green function estimates in Theorem 3.5 that P̃ (0,r)(x, z) � P (0,r)(x, z).

Lemma 5.3 For x ∈ (0, r) and z > r we have

P̃ (0,r)(x, z) =


κ(α)

r

(
r(z − x)1−α − x(z − r)1−α − (r − x)z1−α

)
, α ∈ (0, 1) ∪ (1, 2),

1
r

(
x log z−x

z−r + (r − x) log z−x
z

)
, α = 1 ,

where κ(α) = 1/(α(α− 1)).

Proof. This follows by straightforward integration. 2

For z ∈ [0, r]c, let δ(z) = dist(z, (0, r)). By combining the above lemma with P̃ (0,r)(x, z) �
P (0,r)(x, z), one can show the following sharp bounds for the Poisson kernel. We will omit the
proof.

Theorem 5.4 Let R > 0. There exists a constant C10 = C10(R) > 1 such that for all r ∈ (0, R],
for all x ∈ (0, r), and for all z /∈ [0, r] it holds that

C−1
10

δ(x)
1 + δ(z)

|z − x|−α ≤ P (0,r)(x, z) ≤ C10
δ(x)

1 + δ(z)
|z − x|−α , 0 < α < 1 ,

C−1
10

δ(x)| log(δ(z)|
(1 + δ(z)) log(2 + δ(z))

≤ P (0,r)(x, z) ≤ C10
δ(x)| log(δ(z))|

(1 + δ(z)) log(2 + δ(z))
|z − x|−1 , α = 1 ,

C−1
10

δ(x)
(1 + δ(z))δ(z)α−1

≤ P (0,r)(x, z) ≤ C10
δ(x)

(1 + δ(z))δ(z)α−1
|z − x|−1 , 1 < α < 2 .
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The Poisson kernel P (0,r)
α for the symmetric α-stable process was computed in [3], and it turns

out that

P (0,r)
α (x, z) � δ(x)α/2

(1 + δ(z))δ(z)α/2
|z − x|−1 , x ∈ (0, r), z ∈ [0, r]c, 0 < α < 2 .

An interesting new feature of P (0,r) is that in case 0 < α < 1 there is no singularity in δ(z). This
is not surprising in view of Lemma 2.1(b) and Remark 2.2.

Acknowledgment: We thank the referee for his/her helpful comments on the first version of this
paper.
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[12] M. Rao, R. Song, Z. Vondraček, Green function estimates and Harnack inequalities for subordinate
Brownian motion, Potential Anal. 25, 1–27 (2006).

[13] R. Song, Sharp bounds on the density, Green function and jumping function of subordinate killed BM.
Probab. Theory Relat. Fields 128, 606–628 (2004).
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[18] R. Song and Z. Vondraček, Potential theory of subordinate Brownian motion. In: Potential Analysis of
Stable Processes and its Extensions, P. Graczyk, A. Stos, editors, Lecture Notes in Mathematics 1980,
87–176 (2009).
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