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Abstract

Minimal thinness is a notion that describes the smallness of a set at a boundary point. In
this paper, we provide tests for minimal thinness for a large class of subordinate killed Brownian
motions in bounded C1,1 domains, C1,1 domains with compact complements and domains above
graphs of bounded C1,1 functions.
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1 Introduction

Let X = (Xt,Px) be a Hunt process in an open set D ⊂ Rd, d ≥ 2. Let ∂MD and ∂mD be the Martin

and minimal Martin boundary of D with respect to X respectively. For any z ∈ ∂MD, we denote

by MD(x, z) the Martin kernel of D at z with respect to X. The family of all excessive functions

for X will be denoted by S. For a function v : D → [0,∞] and a set E ⊂ D, the reduced function

of v on E is defined by REv = inf{s ∈ S : s ≥ v on E} and its lower semi-continuous regularization

is denoted by R̂Ev . A set E ⊂ D is said to be minimally thin in D at z ∈ ∂mD with respect to X if

R̂E
MD(·,z) 6= MD(·, z), cf. [14]. A probabilistic interpretation of minimal thinness is given in terms

of the process X conditioned to die at z ∈ ∂mD: For any z ∈ ∂mD, let Xz = (Xz
t ,Pzx) denote the

MD(·, z)-process, Doob’s h-transform of X with h(·) = MD(·, z). The lifetime of Xz will be denoted

by ζ. It is known (see [24]) that limt↑ζ X
z
t = z, Pzx-a.s. For E ⊂ D, let TE := inf{t > 0 : Xz

t ∈ E}.
It is proved in [14, Satz 2.6] that a set E ⊂ D is minimally thin at z ∈ ∂mD with respect to X if

and only if there exists x ∈ D such that Pzx(TE < ζ) 6= 1. This shows that minimal thinness is a

concept describing smallness of a set at a boundary point.

The history of minimal thinness goes back to Lelong-Ferrand [25] who introduced this concept

in case of the half-space in the setting of classical potential theory. Minimal thinness for general

open sets was developed in Näım [27], while probabilistic interpretation (in terms of Brownian

motion) was given by Doob (see e.g. [12]). Various versions of Wiener-type criteria for minimal

thinness were developed over the years culminating in the work of Aikawa [2] who, by using the

powerful concept of quasi-additivity of capacity, established a criterion for minimal thinness for
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subsets of NTA domains. For a good exposition of these results and methods cf. [3, Part II, 7]. In

case of a C1,1 domain D ⊂ Rd, the finite part of the minimal Martin boundary ∂mD coincides with

the Euclidean boundary ∂D, and Aikawa’s criterion reads as follows: Let E be a Borel subset of

D. If E is minimally thin at z ∈ ∂D, then∫
E∩B(z,1)

|x− z|−d dx <∞ . (1.1)

Conversely, if E is the union of a subfamily of Whitney cubes of D and (1.1) holds, then E is

minimally thin in D at z.

Note that all works listed above pertain to the classical potential theory related to Brownian

motion. For more general Hunt processes, although the general theory of minimal thinness was

developed by Föllmer already in 1969, see [14], until recently no concrete criteria for minimal

thinness were known. The first paper addressing this question was [20] which dealt with minimal

thinness of subsets of the half-space for a large class of subordinate Brownian motions. Quite

general results for a large class of symmetric Lévy processes in κ-fat open sets were obtained in

[23]. The special case of a C1,1 open set D was given in [23, Corollary 1.5]. We present here a

slightly simplified version of the main result of [23]. Assume that X is an isotropic Lévy process

in Rd, d ≥ 2, with characteristic exponent Ψ(x) = Ψ(|x|) satisfying the following weak scaling

condition: There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
2δ1Ψ(t) ≤ Ψ(λt) ≤ a2λ2δ2Ψ(t) , λ ≥ 1, t ≥ 1 . (1.2)

We note that many subordinate Brownian motions, particularly all isotropic stable processes, satisfy

the above condition. Let XD be the process X killed upon exiting a C1,1 open set D. If a Borel set

E ⊂ D is minimally thin in D at z ∈ ∂D with respect to XD, then (1.1) holds true. The converse

is also true provided E is the union of a subfamily of Whitney cubes of D. Thus one obtains the

same Aikawa-type criterion for minimal thinness regardless of the particular isotropic Lévy process

X as long as X satisfies the weak scaling condition (1.2). This is a somewhat surprising result. An

explanation for this hinges on sharp two-sided estimates for the Green function of XD which imply

that the singularity of the Martin kernel MD(x, z) near z ∈ ∂D is of the order |x− z|−d for all such

processes.

The purpose of this paper is to exhibit a large class of (non-Lévy) Markov processes for which

the Aikawa-type criterion for minimal thinness depends on the particular process and is different

from (1.1). This class consists of subordinate killed Brownian motions via subordinators having

Laplace exponents satisfying a certain weak scaling condition. Let us now precisely formulate the

setting and results.

Let W = (Wt,Px) be a Brownian motion in Rd, d ≥ 2, with transition density

p(t, x, y) = (4πt)−
d
2 exp

(
−|x− y|

2

4t

)
, t > 0, x, y ∈ Rd .

Let S = (St)t≥0 be an independent subordinator with Laplace exponent φ : (0,∞) → (0,∞), i.e.,

E[e−λSt ] = e−tφ(λ), t ≥ 0, λ > 0. The process X = (Xt,Px) defined by Xt = WSt , t ≥ 0, is

called a subordinate Brownian motion. It is an isotropic Lévy process with characteristic exponent

Ψ(x) = φ(|x|2). Let D be an open subset of Rd, and let XD be the process X killed upon exiting

D. This process is known as a killed subordinate Brownian motion. By reversing the order of

subordination and killing one obtains a different process. Assume from now on that D is a domain
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(i.e., connected open set) in Rd, and let WD = (WD
t ,Px) be the Brownian motion W killed upon

exiting D. The process Y D = (Y D
t ,Px) defined by Y D

t = WD
St

, t ≥ 0, is called a subordinate killed

Brownian motion. It is a Hunt process and its infinitesimal generator is given by −φ(−∆|D) where

∆|D is the Dirichlet Laplacian.

Recall that the Laplace exponent of a subordinator is a Bernstein function, i.e., it has the

representation

φ(λ) = bλ+

∫
(0,∞)

(1− e−λx)µ(dx) ,

with b ≥ 0 and µ a measure on (0,∞) satisfying
∫
(0,∞)(1 ∧ x)µ(dx) <∞, which is called the Lévy

measure of S. The potential measure of the subordinator S is defined by U(A) =
∫∞
0 P(St ∈ A) dt.

A Bernstein function φ is called a complete Bernstein function if its Lévy measure has a completely

monotone density. A Bernstein function φ is called a special Bernstein function if the function

λ 7→ λ/φ(λ) is also a Bernstein function. The function λ 7→ λ/φ(λ) is called the conjugate Bernstein

function of φ. It is well known that any complete Bernstein function is a special Bernstein function.

For this and other properties of complete and special Bernstein functions, see [28].

In this the paper we will impose following assumptions:

(A1) the potential measure of S has a decreasing density u;

(A2) the Lévy measure of S is infinite and has a decreasing density µ;

(A3) there exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λt)

φ′(λ)
≤ σ t−δ for all t ≥ 1 and λ ≥ λ0 .

Depending on whether our domain D is bounded or unbounded, we will consider the following two

sets of conditions.

(A4) If D is bounded and d = 2, we assume that there are σ0 > 0 and δ0 ∈ (0, 2) such that

φ′(λt)

φ′(λ)
≥ σ0 t−δ0 for all t ≥ 1 and λ ≥ λ0.

(A5) If D is bounded and d = 2, we assume that∫ 1

0

dλ

φ(λ)
<∞.

(A6) If D is unbounded then we assume that d ≥ 3 and that there are β, σ1 > 0 such that

u(λt)

u(λ)
≥ σ1t−β for all t ≥ 1 and λ > 0 . (1.3)

Assumptions (A1)–(A5) were introduced and used in [18] and [19]. It is easy to check that if φ is

a complete Bernstein function satisfying condition (H1): there exist a1, a2 > 0 and δ1, δ2 ∈ (0, 1)

satisfying

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λδ2φ(t) , λ ≥ 1, t ≥ 1 ,
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then (A1)–(A4) are automatically satisfied. One of the reasons for adopting the more general setup

above is to cover the case of geometric stable and iterated geometric stable subordinators. Suppose

that α ∈ (0, 2) for d ≥ 2 and that α ∈ (0, 2] for d ≥ 3. A geometric (α/2)-stable subordinator

is a subordinator with Laplace exponent φ(λ) = log(1 + λα/2). Let φ1(λ) := log(1 + λα/2), and

for n ≥ 2, φn(λ) := φ1(φn−1(λ)). A subordinator with Laplace exponent φn is called an iterated

geometric subordinator. It is easy to check that the functions φ and φn satisfy (A1)–(A6), but

they do not satisfy (H1).

Assumption (A1) implies that φ is a special Bernstein function, see, for instance, [33, Theorem

5.1]. Moreover, (A3) implies b = 0, (A2) implies that µ((0,∞)) = ∞, and (A5) is equivalent to

the transience of X. In case d ≥ 3, X is always transient.

Condition (A6) is only assumed when D is unbounded and can be restated as

u(R)

u(r)
≥ σ1

(
R

r

)−β
, 0 < r ≤ R <∞ . (1.4)

Under (A1)–(A3), the inequality in (1.4) is valid with β = 2 − δ whenever 0 < r ≤ R ≤ 1, (see

(2.11) and (2.12) below). So (A6) is mainly a condition about the behavior of u near infinity. It

follows easily from [21] that if φ is a complete Bernstein function satisfying, in addition to (H1),

also condition (H2): there exist a3, a4 > 0 and δ3, δ4 ∈ (0, 1) satisfying

a3λ
δ3φ(t) ≤ φ(λt) ≤ a4λδ4φ(t) , λ ≤ 1, t ≤ 1 ,

then (A6) is satisfied, see [21, Corollary 2.4]. There are plenty of examples of complete Bernstein

functions which satisfy (A6) but not (H2). For any m > 0 and α ∈ (0, 2), the function φ(λ) :=

(λ+m2/α)α/2 −m, the Laplace exponent of a relativistic stable subordinator, is such an example.

Recall that an open set D in Rd is said to be a (uniform) C1,1 open set if there exist a localization

radius R > 0 and a constant Λ > 0 such that for every z ∈ ∂D, there exist a C1,1-function ψ =

ψz : Rd−1 → R satisfying ψ(0) = 0, ∇ψ(0) = (0, . . . , 0), ‖∇ψ‖∞ ≤ Λ, |∇ψ(x)−∇ψ(w)| ≤ Λ|x−w|,
and an orthonormal coordinate system CSz with its origin at z such that

B(z,R) ∩D = {y = (ỹ, yd) in CSz : |y| < R, yd > ψ(ỹ)}.

The pair (R,Λ) is called the characteristics of the C1,1 open set D.

Recall that an open set D is said to satisfy the interior and exterior balls conditions with radius

R1 if for every z ∈ ∂D, there exist x ∈ D and y ∈ Dc
such that dist(x, ∂D) = R1, dist(y, ∂D) = R1,

B(x,R1) ⊂ D and B(y,R1) ⊂ D
c
. It is known, see [4, Definition 2.1 and Lemma 2.2], that an

open set D is a C1,1 open set if and only if it satisfies the interior and exterior ball conditions. By

taking R smaller if necessary, we will always assume a C1,1 open set with characteristics (R,Λ) also

satisfies the interior and exterior balls conditions with the same radius R.

We can now state the main result of this paper. By δ(x) we denote the distance of the point

x ∈ D to the boundary ∂D.

Theorem 1.1 Assume that φ is a Bernstein function satisfying (A1)–(A6). Let D ⊂ Rd be either

a bounded C1,1 domain, or a C1,1 domain with compact complement or a domain above the graph

of a bounded C1,1 function.

(1) If E is minimally thin in D at z ∈ ∂D with respect to Y D, then∫
E∩B(z,1)

δ(x)2φ(δ(x)−2)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

dx <∞ . (1.5)
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(2) Conversely, if E is the union of a subfamily of Whitney cubes of D and (1.5) holds true, then

E is minimally thin in D at z ∈ ∂D with respect to Y D.

Since minimal thinness is defined for points in the minimal Martin boundary, the first step in

proving this theorem is the identification of the finite part of the (minimal) Martin boundary of

D with its Euclidean boundary. In case of a bounded Lipschitz domain, special subordinator S,

and d ≥ 3, this was accomplished in [31, Theorem 4.3] (see also [33, Theorem 5.84]). The method

employed in [31, 33] heavily depended on the fact that the semigroup of the killed Brownian

motion WD in a bounded Lipschitz domain D is intrinsically ultracontractive which implies that

all excessive functions with respect to WD are purely excessive. In fact, [31] proves that there is

1-1 correspondence between the cone of excessive (respectively non-negative harmonic) functions of

WD and the cone of excessive (respectively non-negative harmonic) functions of Y D, thus allowing

an easy transfer of many results valid for WD to results for Y D. In case of an unbounded domain,

the semigroup of WD is no longer intrinsically ultracontractive and the method from [31] cannot be

used to identify the finite part of the (minimal) Martin boundary of D with its Euclidean boundary.

In the case of killed subordinate Brownian motions, one of the main tools used in identifying the

(minimal) Martin boundary of a (possibly) unbounded open set is the boundary Harnack principle.

In the present case of subordinate killed Brownian motions, the boundary Harnack principle is

not yet available. As a substitute for the boundary Harnack principle, we first establish sharp two-

sided estimates on the Green functions of subordinate killed Brownian motions in any C1,1 domain

with compact complement or any domain above the graph of a bounded C1,1 function. This is done

in Section 3, see Theorems 3.1 and 3.2. In Section 4, by using some ideas from [31], we then show

that the Martin kernel MD
Y (·, ·) can be extended from D × D to D × D, cf. Proposition 4.4. By

using sharp two-sided estimates of the Green function, we subsequently establish in Theorems 4.5

and 4.6 sharp two-sided estimates for the Martin kernel MD
Y (x, z), x ∈ D, z ∈ ∂D. The remaining

part of the section is devoted to proving that the finite part of the (minimal) Martin boundary

of D can be identified with its Euclidean boundary in case D is either a bounded C1,1 domain, a

C1,1 domain with compact complement or a domain above the graph of a bounded C1,1 function.

We note that in case of a bounded C1,1 domain (and under the assumptions (A1)–(A5)) this

gives an alternative proof of some of the results form [31]. Results of Sections 3 and 4 might be of

independent interest.

Having identified the finite part of the (minimal) Martin boundary with the Euclidean boundary,

we can follow the method developed by Aikawa, cf. [2] and [3, Part II, 7], which was also used in

[23], to prove Theorem 1.1. One of the main ingredients of this method is the quasi-additivity

of the capacity related to the process Y D, see Proposition 5.9. This depends on the construction

of a measure comparable to the capacity which relies on an appropriate Hardy’s inequality. The

first result on minimal thinness is a criterion given in Proposition 6.2 stating that a subset E of

D is minimally thin at z ∈ ∂D (with respect to Y D) if and only if
∑∞

n=1R
En
MD
Y (·,z)(x0) < ∞; here

En = E∩{x ∈ D : 2−n−1 ≤ |x−z| < 2−n} and x0 ∈ D a fixed point. The proof of this general result

depends on an inequality relating the Green function and the Martin kernel of Y D, cf. Corollary

4.14. The inequality itself hinges on sharp two-sided estimates of the Green function of Y D (cf.

Theorems 3.1 and 3.2) and sharp two-sided estimates of the Martin kernel (cf. Theorems 4.5 and

4.6). With the quasi-additivity of capacity and the criterion for minimal thinness from Proposition

6.2 in hand, it is rather straightforward to complete the proof of Theorem 1.1.

As an application of Theorem 1.1, we derive an analogue to a criterion in the classical setting

for minimal thinness in the half-space H of a set below the graph of a Lipschitz function f : Rd−1 →
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[0,∞). In the classical case and the case of killed subordinate Brownian motions in the half-space

studied in [23], the criterion states that the set A = {(x̃, xd) ∈ H : 0 < xd ≤ f(x̃)} is minimally

thin at 0 if and only if
∫
{|x̃|<1} f(x̃)|x̃|−d dx̃ <∞. For the subordinate killed Brownian motion Y D

the criterion depends on the underlying Bernstein function φ and says that A is minimally thin at

0 if and only if ∫
{|x̃|<1}

f(x̃)3φ(f(x̃)−2)φ′(|x̃|−2)
|x̃|d+4φ(|x̃|−2)2

dx̃ <∞ ,

see Proposition 6.5 and Remark 6.6 for the precise statement.

Finally, we give some examples. We first look at three processes related to the stable process:

(1) XD – the isotropic α-stable process killed upon exiting D, (2) Y D – the subordinate killed

Brownian motion in D with (α/2)-stable subordinator, and (3) ZD – the censored α-stable process

in D. Following [26] we briefly indicate how to prove criteria for minimal thinness for the censored

process, and then compare minimal thinness of a given set with respect to these processes and the

index of stability α. Roughly, minimal thinness for ZD implies minimal thinness for XD which

in turn implies minimal thinness for Y D, see Corollary 7.3 for the precise statement. We also

show that the converse does not hold. At the end of Section 7, we give some examples related to

subordinate killed Brownian motions via geometric stable subordinators.

Organization of the paper: In the next section we give some preliminaries on Bernstein functions

satisfying conditions (A1)–(A5) and on the subordinate killed Brownian motion Y D and its rela-

tion to the killed subordinate Brownian motion. In Section 3 we prove sharp two-sided estimates

for the Green function and the jumping kernel of Y D. In Section 4 we identify the finite part of

the (minimal) Martin boundary with the Euclidean boundary and give sharp two-sided estimates

on the Martin kernel of Y D. We continue in Section 5 with the proof of the quasi-additivity of

the capacity. Results about minimal thinness are proved in Section 6. The paper concludes with

criteria for minimal thinness with respect to processes related to the stable case, and with respect

to subordinate killed Brownian motions via geometric stable subordinators.

In this paper, we use the letter c, with or without subscripts, to denote a constant, whose value

may change from one appearance to another. The notation c(·, . . . , ·) specifies the dependence of

the constant. The dependence of the constants on the domain D (including the dimension d) and

the Bernstein function φ will not be explicitly mentioned. For any two positive functions f and

g, f � g means that there is a positive constant c ≥ 1 so that c−1 g ≤ f ≤ c g on their common

domain of definition. We will use “:=” to denote a definition, which is read as “is defined to be”.

For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2 Preliminaries

In this section we first collect several properties of Bernstein functions and then collect some results

on the subordinate killed Brownian motion Y D and its relation to the killed subordinate Brownian

motion XD.

Lemma 2.1 (a) For every Bernstein function φ,

1 ∧ λ ≤ φ(λt)

φ(t)
≤ 1 ∨ λ , for all t > 0, λ > 0 . (2.1)

(b) If φ is a special Bernstein function, then λ 7→ λ2φ′(λ) and λ 7→ λ2 φ
′(λ)

φ(λ)2
are increasing

functions. Furthermore, for any γ > 2, limλ→0 λ
γ φ
′(λ)

φ(λ)2
= 0.
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(c) If φ is a special Bernstein function, then for every d ≥ 2, γ ≥ 2, λ > 0, b ∈ (0, 1] and

a ∈ [1,∞) it holds that

b

ad+γ+1λd+γ
φ′(λ−2)

φ(λ−2)2
≤ 1

td+γ
φ′(t−2)

φ(t−2)2
≤ a

bd+γ+1λd+γ
φ′(λ−2)

φ(λ−2)2
, for all t ∈ [bλ, aλ] . (2.2)

Part (a) is well known, part (b) is proved in [18, Lemma 4.1], and part (c) can be proved in the

same way as [19, Corollary 2.2] where the proof is given for γ = 2. We will frequently use all three

properties of the lemma, often without explicitly mentioning it.

Let W be a Brownian motion in Rd, D ⊂ Rd a domain, and WD a Brownian motion killed

upon exiting D. We denote by pD(t, x, y), t > 0, x, y ∈ D, the transition densities of WD, and

by (PDt )t≥0 the corresponding semigroup. Let S be a subordinator independent of the Brownian

motion W . Let Y D
t = WD

St
be the corresponding subordinate killed Brownian motion in D. The

process Y D is a symmetric Hunt process, cf. [32]. We will use (ED,D(ED)) to denote the Dirichlet

form associated with Y D. The killing measure of ED has a density κD given by the formula

κD(x) =

∫
(0,∞)

(1− PDt 1(x))µ(dt) , x ∈ D . (2.3)

It follows from the general theory of Dirichlet forms that for every v ∈ D(ED) it holds that

ED(v, v) ≥
∫
D
v(x)2κD(x) dx . (2.4)

Let (RDt )t≥0 be the transition semigroup of Y D. We will need to compare this semigroup with

the semigroup of the killed subordinate Brownian motion. Recall that Xt = WSt is the subordinate

Brownian motion and (XD
t )t≥0 is the subprocess of X killed upon exiting D. Let (QDt )t≥0 denote the

transition semigroup of XD. It is well known, cf. [32, Proposition 3.1], that (RDt )t≥0 is subordinate

to (QDt )t≥0 in the sense that

RDt f(x) ≤ QDt f(x) for all Borel f : D → [0,∞) all t ≥ 0 and all x ∈ D. (2.5)

Let jX(x) denote the density of the Lévy measure of the process X. Then

jX(x) =

∫
(0,∞)

p(t, x, 0)µ(dt) =

∫
(0,∞)

(4πt)−
d
2 exp

(
−|x|

2

4t

)
µ(dt) .

Clearly, jX is a continuous function of x on Rd \ {0} and radial (that is, jX(x) = jX(|x|)). Let κXD
denote the killing function of XD. Then

κXD(x) =

∫
Dc
jX(x− y) dy , x ∈ D , (2.6)

and κXD is a continuous function of x ∈ D.

Lemma 2.2 For any open set D ⊂ Rd,

κXD(x) ≤ κD(x) , for almost all x ∈ D . (2.7)
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Proof. Using (2.5), the Lemma follows from the argument of [30, Proposition 3.2]. 2

Assume φ is a Bernstein function satisfying (A1) so that the potential measure of S has a

decreasing density u(t). Then the Green function of the subordinate killed Brownian motion Y D,

denoted by UD(x, y), x, y ∈ D, is given by the formula

UD(x, y) =

∫ ∞
0

pD(t, x, y)u(t) dt =

∫ ∞
0

rD(t, x, y) dt , x, y ∈ D . (2.8)

Similarly, the Green function of X, denoted by GX(x, y), x, y ∈ Rd, is given by

GX(x, y) =

∫ ∞
0

p(t, x, y)u(t) dt , x, y ∈ Rd . (2.9)

Since pD(t, x, y) ≤ p(t, x, y) for all x, y ∈ D, we see from (2.8) and (2.9) that

UD(x, y) ≤ GX(x, y) , for all x, y ∈ D . (2.10)

Assume now that φ is a Bernstein function satisfying (A1)–(A5) and let S be a subordinator

with Laplace exponent φ. The potential density u(t) of S satisfies the following two estimates:

u(t) ≤ (1− 2e−1)−1
φ′(t−1)

t2φ(t−1)2
, t > 0 , (2.11)

and, for every M > 0 there exists c1 = c1(M) > 0 such that

u(t) ≥ c1
φ′(t−1)

t2φ(t−1)2
, 0 < t ≤M . (2.12)

For the upper estimate see [18, Lemma A.1], and for the lower [18, Proposition 3.4]

The density µ(t) of the Lévy measure of S satisfies the following two estimates:

µ(t) ≤ (1− 2e−1)−1t−2φ′(t−1) , t > 0 , (2.13)

and, for every M > 0 there exists c2 = c2(M) > 0 such that

µ(t) ≥ c2t−2φ′(t−1) , 0 < t ≤M . (2.14)

For the upper estimate see [18, Lemma A.1], and for the lower [18, Proposition 3.3].

Recall that GX(x, y) denotes the Green function of the subordinate Brownian motion Xt = WSt .

When d ≥ 3 we have that there exists c3 > 0 such that

GX(x, y) ≤ c3
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
, x, y ∈ Rd . (2.15)

This can be proved by following the proof of [21, Lemma 3.2(b)] using (2.11) and [18, Lemma 4.1].

Moreover, by [18, Proposition 4.5] we have the following two-sided inequality: For every d ≥ 2 and

M > 0, there exists c4 = c4(M) > 1 such that

c−14

φ′(|x− y|−2)
|x− y|d+2φ(|x− y|−2)2

≤ GX(x, y) ≤ c4
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
, |x− y| ≤M . (2.16)

The Lévy density of X also has the following two-sided estimates by [18, Proposition 4.2]: For

every M > 0 there exists c5 = c5(M) > 0 such that

c−15 r−d−2φ′(r−2) ≤ jX(r) ≤ c5r−d−2φ′(r−2) , r ∈ (0,M ] . (2.17)

Thus, by using Lemma 2.1(a) and (c), for every M > 0,

jX(r) ≤ cjX(2r) , r ∈ (0,M ] . (2.18)
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3 Kernel estimates on subordinate killed Brownian motion

In this section we assume that D ⊂ Rd is either a bounded C1,1 domain, or a C1,1 domain with

compact complement or a domain above the graph of a bounded C1,1 function. We assume that

the C1,1 characteristics of D is (R,Λ).

Recall that (PDt )t≥0 denotes the transition semigroup of the killed Brownian motion WD and

pD(t, x, y), t > 0, x, y ∈ D, is the corresponding transition density. It is known that pD(t, x, y)

satisfies the following short-time estimates (cf. [35, 36, 29]): For any T > 0, there exist positive

constants c1, c2, c3, c4 such that for any t ∈ (0, T ] and any x, y ∈ D,

pD(t, x, y) ≤ c1
(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
, (3.1)

pD(t, x, y) ≥ c3
(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
t−d/2 exp

(
−c4|x− y|

2

t

)
. (3.2)

Thus, by the semigroup property and (3.1), we get there exist positive constants c5, c6, c7, c8 such

that for every t > 3

pD(t, x, y) =

∫
D

∫
D
pD(1, x, z)pD(t− 2, z, w)pD(1, w, y)dzdw

≤ c5 (δ(x) ∧ 1) (δ(y) ∧ 1)

×
∫
D

∫
D

exp
(
−c6|x− z|2

)
(t− 2)−d/2 exp

(
−c6|z − w|

2

t− 2

)
exp

(
−c6|w − y|2

)
dzdw

≤ c5 (δ(x) ∧ 1) (δ(y) ∧ 1)

×
∫
Rd

∫
Rd

exp
(
−c6|x− z|2

)
(t− 2)−d/2 exp

(
−c6|z − w|

2

t− 2

)
exp

(
−c6|w − y|2

)
dzdw

≤ c7 (δ(x) ∧ 1) (δ(y) ∧ 1) t−d/2 exp

(
−c8|x− y|

2

t

)
.

Combining this with (3.1), we have that there exist positive constant c9, c10 such that for all t > 0

and any x, y ∈ D,

pD(t, x, y) ≤ c9
(

δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c10|x− y|

2

t

)
. (3.3)

We will use the following bound several times: By the change of variables s = c|x− y|2/t, for every

c > 0 and a ∈ R, we have∫ |x−y|2
0

(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−a/2 exp

(
−c|x− y|

2

t

)
dt

=

∫ ∞
c

(√
s/c δ(x)

|x− y|
∧ 1

)(√
s/c δ(y)

|x− y|
∧ 1

)(
c|x− y|2

s

)−a/2
e−s

c|x− y|2

s2
ds

≥ c1−(a/2)
(

δ(x)

|x− y|
∧ 1

)(
δ(y)

|x− y|
∧ 1

)
|x− y|−a+2

∫ ∞
c

sa/2−2e−s ds. (3.4)

Our first goal is to obtain sharp two-sided estimates on UD. Under stronger assumptions on

the Laplace exponent φ such estimates were given in [33, Theorem 5.91] for bounded D. In the

remainder of this section φ is a Bernstein function satisfying (A1)–(A5). We first consider the

case |x− y| ≤M .
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Theorem 3.1 For every M > 0, there exists a constant c = c(M) ≥ 1 such that for all x, y ∈ D
with |x− y| ≤M ,

c−1
(
δ(x)δ(y)

|x− y|2
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2

≤ UD(x, y) ≤ c
(
δ(x)δ(y)

|x− y|2
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
. (3.5)

Proof. Upper bound: It follows from (2.10) and (2.16) that there exists a constant c1 > 0 such

that for all x, y ∈ D with |x− y| ≤M ,

UD(x, y) ≤ GX(x, y) ≤ c1
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
. (3.6)

Let c2 be the constant c10 in (3.3). Since t → φ′(t−1)
φ(t−1)2

is increasing, using (2.11) we have that

for r > 0,

I1(r) :=

∫ r2

0
t−d/2−1 exp

(
− c2r2

t

)
u(t) dt ≤ c3

∫ r2

0
t−d/2−1 exp

(
− c2r2

t

)
t−2

φ′(t−1)

φ(t−1)2
dt

≤ c3
φ′(r−2)

φ(r−2)2

∫ r2

0
t−

d
2
−3 exp

(
− c2r2

t

)
dt = c4r

−d−4 φ
′(r−2)

φ(r−2)2

∫ ∞
c2

t
d
2
+1e−t dt . (3.7)

On the other hand, since u is decreasing, using (2.11) we have that for r > 0,

I2(r) :=

∫ ∞
r2

t−d/2−1u(t) dt ≤ u(r2)

∫ ∞
r2

t−d/2−1dt

≤ c5r−4
φ′(r−2)

φ(r−2)2

∫ ∞
r2

t−d/2−1dt ≤ c6r−d−4
φ′(r−2)

φ(r−2)2
. (3.8)

It follows from [18, Lemma 4.4] that

L :=

∫ ∞
(2M)2

t−d/2u(t) dt <∞. (3.9)

Thus from (2.8), (3.3) and (3.7)–(3.9), we have that, for |x− y| ≤M ,

UD(x, y) =

∫ ∞
0

pD(t, x, y)u(t) dt

≤
∫ |x−y|2
0

pD(t, x, y)u(t) dt+

∫ (2M)2

|x−y|2
pD(t, x, y)u(t) dt+

∫ ∞
(2M)2

pD(t, x, y)u(t) dt

≤c7
∫ |x−y|2
0

t−d/2−1δ(x)δ(y) exp

(
−c2|x− y|

2

t

)
u(t) dt

+ c7

∫ (2M)2

|x−y|2
t−d/2−1δ(x)δ(y)u(t) dt+ c7

∫ ∞
(2M)2

t−d/2δ(x)δ(y)u(t) dt

≤c7δ(x)δ(y)
(
I1(|x− y|) + I2(|x− y|) + L

)
≤ c8

δ(x)δ(y)

|x− y|2
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
.
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In the last inequality above we use the fact that r → r−d−4 φ
′(r−2)

φ(r−2)2
is a decreasing function and

is thus bounded from below by a positive constant on (0,M2]. Together with (3.6) this gives the

upper bound in (3.5).

Lower bound: Since u is decreasing and |x− y| ≤M , by (3.2) and (2.12),

UD(x, y) ≥ c9
∫ |x−y|2
0

(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−d/2 exp

(
−c10|x− y|

2

t

)
u(t) dt

≥ c9u(|x− y|2)
∫ |x−y|2
0

(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−d/2 exp

(
−c10|x− y|

2

t

)
dt

≥ c11
φ′(|x− y|−2)

|x− y|4φ(|x− y|−2)2

∫ |x−y|2
0

(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−d/2 exp

(
−c10|x− y|

2

t

)
dt.

By combining this with (3.4) we arrive at

UD(x, y) ≥ c12
(

δ(x)

|x− y|
∧ 1

)(
δ(y)

|x− y|
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2

�
(
δ(x)δ(y)

|x− y|2
∧ 1

)
φ′(|x− y|−2)

|x− y|d+2φ(|x− y|−2)2
.

2

We now assume d ≥ 3 and consider our two types of unbounded C1,1 domains and give different

estimates for UD.

If D ⊂ Rd is a domain above the graph of a bounded C1,1 function, then it follows from [35, 29]

that there exist positive constants c1, c2, c3 and c4 such that for any t ∈ (0,∞) and any x, y ∈ D,

pD(t, x, y) ≤ c1
(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
, (3.10)

pD(t, x, y) ≥ c3
(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−d/2 exp

(
−c4|x− y|

2

t

)
. (3.11)

Clearly for a > 2,∫ ∞
|x−y|2

(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−a/2dt ≤ 2

a− 2

(
δ(x)

|x− y|
∧ 1

)(
δ(y)

|x− y|
∧ 1

)
1

|x− y|a−2
. (3.12)

By the change of variables s = |x− y|2/t and the inequality(√
sδ(x)

|x− y|
∧ 1

)
≤
√
s

(
δ(x)

|x− y|
∧ 1

)
, s ≥ 1,

it is easy to see that for a ∈ R and b > 0, there exist a constant c = c(a, b) > 0 such that∫ |x−y|2
0

(
δ(x)√
t
∧ 1

)(
δ(y)√
t
∧ 1

)
t−a/2 exp

(
−b|x− y|

2

t

)
dt

≤ c
(

δ(x)

|x− y|
∧ 1

)(
δ(y)

|x− y|
∧ 1

)
1

|x− y|a−2
. (3.13)
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If D ⊂ Rd is a C1,1 domain with compact complement, then it follows from [36] that there exist

positive constants c5, c6, c7 and c8 such that for any t ∈ (0,∞) and any x, y ∈ D,

pD(t, x, y) ≤ c5
(

δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c6|x− y|

2

t

)
, (3.14)

pD(t, x, y) ≥ c7
(

δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c8|x− y|

2

t

)
. (3.15)

Clearly for a > 2,∫ ∞
|x−y|2

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−a/2dt

≤ 2

a− 2

(
δ(x)

|x− y| ∧ 1
∧ 1

)(
δ(y)

|x− y| ∧ 1
∧ 1

)
1

|x− y|a−2
. (3.16)

By the change of variables s = |x− y|2/t and the inequalities(
δ(x)

|x− y| ∧ 1
∧ 1

)
≤
(

δ(x)

(|x− y|/
√
s) ∧ 1

∧ 1

)
≤
√
s

(
δ(x)

|x− y| ∧ 1
∧ 1

)
, s ≥ 1,

it is easy to see that for a ∈ R and b > 0, there exists a constant c = c(a, b) > 0 such that∫ |x−y|2
0

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−a/2 exp

(
−b|x− y|

2

t

)
dt

≤ c
(

δ(x)

|x− y| ∧ 1
∧ 1

)(
δ(y)

|x− y| ∧ 1
∧ 1

)
1

|x− y|a−2
(3.17)

and ∫ |x−y|2
0

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−a/2 exp

(
−b|x− y|

2

t

)
dt

≥ c−1
(

δ(x)

|x− y| ∧ 1
∧ 1

)(
δ(y)

|x− y| ∧ 1
∧ 1

)
1

|x− y|a−2
. (3.18)

Theorem 3.2 Suppose that d ≥ 3 and that φ is a Bernstein function satisfying (A1)–(A3) and

(A6). (1) Let D ⊂ Rd be a domain above the graph of a bounded C1,1 function. There exists a

constant c1 ≥ 1 such that for all x, y ∈ D,

c−11

(
δ(x)

|x− y|
∧ 1

)(
δ(y)

|x− y|
∧ 1

)
u(|x− y|2)
|x− y|d−2

≤ UD(x, y)

≤ c1
(

δ(x)

|x− y|
∧ 1

)(
δ(y)

|x− y|
∧ 1

)
u(|x− y|2)
|x− y|d−2

.

(2) Let D ⊂ Rd be a C1,1 domain with compact complement. There exists a constant c1 ≥ 1 such

that for all x, y ∈ D,

c−11

(
δ(x)

|x− y| ∧ 1
∧ 1

)(
δ(y)

|x− y| ∧ 1
∧ 1

)
u(|x− y|2)
|x− y|d−2

≤ UD(x, y)

≤ c1
(

δ(x)

|x− y| ∧ 1
∧ 1

)(
δ(y)

|x− y| ∧ 1
∧ 1

)
u(|x− y|2)
|x− y|d−2

.
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Proof. We give the proof of (2) first.

Upper bound: Using (1.3) and the fact u is decreasing, we have from (3.14) that

UD(x, y) =

∫ ∞
0

pD(t, x, y)u(t) dt

≤c1
∫ ∞
0

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c2|x− y|

2

t

)
u(t) dt

≤c3|x− y|2βu(|x− y|2)
∫ |x−y|2
0

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−β−d/2 exp

(
−c2
|x− y|2

t

)
dt

+ c1u(|x− y|2)
∫ ∞
|x−y|2

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 dt.

Together with (3.16)–(3.17) we obtain the upper bound.

Lower bound: Since u is decreasing, by (3.15)

UD(x, y) ≥c4
∫ |x−y|2
0

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c5|x− y|

2

t

)
u(t) dt

≥c4u(|x− y|2)
∫ |x−y|2
0

(
δ(x)√
t ∧ 1

∧ 1

)(
δ(y)√
t ∧ 1

∧ 1

)
t−d/2 exp

(
−c5|x− y|

2

t

)
dt . (3.19)

Combining (3.19) and (3.18) we arrive at

UD(x, y) ≥ c6
(

δ(x)

|x− y| ∧ 1
∧ 1

)(
δ(y)

|x− y| ∧ 1
∧ 1

)
u(|x− y|2)
|x− y|d−2

.

Using (3.4) and (3.10)–(3.13), instead of (3.14)–(3.19), the proof of (1) is similar to (2). 2

Proposition 3.3 The Green function UD is jointly continuous in the extended sense, hence jointly

lower semi-continuous, on D ×D.

Proof. Let x, y ∈ D, x 6= y, and set η = |x−y|/2. Let (xn, yn)n≥1 be a sequence inD×D converging

to (x, y) and assume that |xn − yn| ≥ η. For every t > 0, limn→∞ p
D(t, xn, yn) = pD(t, x, y).

Moreover

pD(t, xn, yn) ≤ (4πt)−d/2 exp

(
−|xn − yn|

2

4t

)
≤ (4πt)−d/2 exp

(
−η

2

4t

)
.

Since the process X is transient, we have that∫ ∞
0

(4πt)−d/2 exp

(
−η

2

4t

)
u(t) dt <∞ .

Now it follows from the bounded convergence theorem that

lim
n→∞

UD(xn, yn) = lim
n→∞

∫ ∞
0

pD(t, xn, yn)u(t) dt =

∫ ∞
0

pD(t, x, y)u(t) dt = UD(x, y) .

On the other hand, from Theorem 3.1 we get that

lim
(xn,yn)→(x,x)

UD(xn, yn) = +∞ = UD(x, x) .
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Thus UD is jointly continuous in the extended sense, and therefore jointly lower semi-continuous.

2

We now recall a result from analysis (see [34, Theorem 1, p. 167]): Any open set D ⊂ Rd is the

union of a family {Qj}j∈N of closed cubes, with sides all parallel to the axes, satisfying the following

properties: (i) int(Qj) ∩ int(Qk) = ∅, j 6= k; (ii) for any j, diam(Qj) ≤ dist(Qj , ∂D) ≤ 4diam(Qj),

where dist(Qj , ∂D) denotes the Euclidean distance between Qj and ∂D. The family {Qj}j∈N above

is called a Whitney decomposition of D and the Qj ’s are called Whitney cubes (of D). We will use

xj to denote the center of the cube Qj . For each cube Qj let Q∗j denote the interior of the double

of Qj .

Corollary 3.4 (i) For every M > 0 there exists a constant c1 = c1(M) ≥ 1 such that for all

Whitney cubes Qj whose diameter is less than M ,

c−11 UD(x′, y) ≤ UD(x, y) ≤ c1UD(x′, y) , (3.20)

for all x, x′ ∈ Qj and all y ∈ D \Q∗j with dist(y,Qj) < M .

(ii) For every M > 0 there exists a constant c2 = c2(M) > 0 such that for all cubes Qj whose

diameter is less than M and all x, x′ ∈ Qj, it holds that

UD(x, x′) ≥ c2GX(x, x′) . (3.21)

Proof. (i) From the geometry of Whitney cubes it is easy to see that there exists a constant c ≥ 1

such that for every cube Qj it holds that

c−1δ(x) ≤ δ(xj) ≤ cδ(x) , for all x ∈ Qj ,
c−1|x− y| ≤ |xj − y| ≤ c|x− y| , for all x ∈ Qj and all y ∈ D \Q∗j .

Together with Theorem 3.1 and Lemma 2.1(c), these estimates imply that

UD(x, y) � UD(xj , y) , for all x ∈ Qj and all y ∈ D \Q∗j with dist(y,Qj) < M ,

with a constant independent of Qj . This clearly implies the statement of the corollary.

(ii) If x, x′ ∈ Qj , then |x − x′| ≤ diam(Qj) ≤ dist(Qj , ∂D) ≤ δ(x) ∧ δ(x′) ∧ (4M). Thus it follows

from (3.5) and (2.16) that

UD(x, x′) ≥ c1
φ′(|x− x′|−2)

|x− x′|d+2φ(|x− x′|−2)2
≥ c2GX(x, x′) .

2

Let JD(x, y) be the jumping density of Y D defined by

JD(x, y) =

∫ ∞
0

pD(t, x, y)µ(t) dt.

Clearly JD(x, y) ≤ jX(|x− y|), x, y ∈ D.

Using (2.13), (2.14), (2.17) and the fact that t2φ′(t) is increasing (see Lemma 2.1(b)), the proof

of the next proposition is very similar to that of Theorem 3.1.
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Proposition 3.5 For every M > 0, there exists a constant c = c(M) ≥ 1 such that such that for

all x, y ∈ D with |x− y| ≤M ,

c−1
(
δ(x)δ(y)

|x− y|2
∧ 1

)
φ′(|x− y|−2)
|x− y|d+2

≤ JD(x, y) ≤ c
(
δ(x)δ(y)

|x− y|2
∧ 1

)
φ′(|x− y|−2)
|x− y|d+2

.

For any open subset B of D, let UD,B(x, y) be the Green function of Y D killed upon exiting B.

We define the Poisson kernel

KD,B(x, y) :=

∫
B
UD,B(x, z)JD(z, y)dz, (x, y) ∈ B × (D \B). (3.22)

Using the Lévy system for Y D, we know that for every open subset B of D and every f ≥ 0 on

D \B and x ∈ B,

Ex
[
f(Y D

τB
); Y D

τB− 6= Y D
τB

]
=

∫
D\B

KD,B(x, y)f(y)dy. (3.23)

Lemma 3.6 For every M > 0, there exists c = c(M) > 0 such that for any ball B(x0, r) ⊂ D of

radius r ∈ (0, 1], we have for all (x, y) ∈ B(x0, r)× (D \B(x0, r)) with |x− y| ≤M ,

KD,B(x0,r)(x, y) ≤ c δ(y)
φ′((|y − x0| − r)−2)

(|y − x0| − r)d+3
φ(r−2)−1. (3.24)

Proof. Let B = B(x0, r). Since UD,B(x, y) ≤ GX(x, y), (3.22) and Proposition 3.5 imply that for

every (x, y) ∈ B × (D \B) with |x− y| ≤M ,

KD,B(x, y) ≤
∫
B
GX(x, z)JD(z, y)dz

≤ c1(M)

∫
B
GX(x, z)

(
δ(z)δ(y)

|z − y|2
∧ 1

)
φ′(|z − y|−2)
|z − y|d+2

dz

≤ c1(M)δ(y)

∫
B
GX(x, z)

φ′(|z − y|−2)
|z − y|d+3

dz. (3.25)

Since |z − y| ≥ |y − x0| − r and t→ t−d−3φ′(t−2) is decreasing (see Lemma 2.1(b)),∫
B
GX(x, z)

φ′(|z − y|−2)
|z − y|d+3

dz ≤ φ′((|y − x0| − r)−2)
(|y − x0| − r)d+3

∫
B
GX(x, z)dz

≤ φ′((|y − x0| − r)−2)
(|y − x0| − r)d+3

∫
B(0,2r)

GX(0, z)dz. (3.26)

By (2.16), we have∫
B(0,2r)

GX(0, z)dz ≤ c2
∫
B(0,2r)

|z|−d−2 φ
′(|z|−2)

φ(|z|−2)2
dz = c2

∫ 2r

0
r−3

φ′(r−2)

φ(r−2)2
dr

≤ 2−1c3φ(2−1r−2)−1 ≤ 2c4φ(r−2)−1. (3.27)

Combining (3.25)–(3.27), we have proved the proposition. 2
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4 Martin boundary and Martin kernel estimates

In this section we assume that D ⊂ Rd is either a bounded C1,1 domain, or a C1,1 domain with

compact complement or a domain above the graph of a bounded C1,1 function. We assume that

the C1,1 characteristics of D is (R,Λ).

Denote by Ỹ D the subordinate killed Brownian motion via a subordinator with Laplace expo-

nent λ/φ(λ). Let µ̃(dt) be the Lévy measure of the (possibly killed) subordinator with Laplace

exponent λ/φ(λ), the conjugate Bernstein function of φ(λ). Since µ((0,∞)) = ∞, we also have

µ̃((0,∞)) =∞,
λ

φ(λ)
= u(∞) +

∫ ∞
0

(1− e−λt)µ̃(dt)

and

u(t) = µ̃((t,∞)) + u(∞). (4.1)

(See [33, Corollary 5.5] and the paragraph after it.)

Denote by (R̃Dt )t≥0 the transition semigroup of Ỹ D and by ŨD the potential operator of Ỹ D.

For any function f which is excessive for WD we define an operator Ṽ D by

Ṽ Df(x) = u(∞)f(x) +

∫
(0,∞)

(f(x)− PDt f(x)) µ̃(dt) , x ∈ D .

Let GD(x, y) =
∫∞
0 pD(t, x, y)dt be the Green function of WD.

Lemma 4.1 For any x, y ∈ D, we have

UD(x, y) = Ṽ D(GD(·, y))(x).

Proof. By the semigroup property, for every s > 0,

GD(x, y) =

∫ ∞
0

pD(t, x, y)dt =

∫ s

0
pD(t, x, y)dt+

∫ ∞
0

pD(t+ s, x, y)dt

=

∫ s

0
pD(t, x, y)dt+ PDs

∫ ∞
0

pD(t, ·, y)(x)dt =

∫ s

0
pD(t, x, y)dt+ PDs G

D(·, y)(x).

Thus ∫
(0,∞)

(GD(x, y)− PDs GD(·, y)(x))µ̃(ds) =

∫
(0,∞)

∫ s

0
pD(t, x, y)dtµ̃(ds). (4.2)

Using (4.1) we see that

Ṽ D(GD(·, y))(x) = u(∞)GD(x, y) +

∫
(0,∞)

∫ s

0
pD(t, x, y)dtµ̃(ds)

= u(∞)GD(x, y) +

∫ ∞
0

µ̃((t,∞))pD(t, x, y)dt

= u(∞)GD(x, y) +

∫ ∞
0

(u(t)− u(∞))pD(t, x, y)dt = UD(x, y).

2
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Note that according to the pointwise version of the Bochner subordination formula one can

regard −Ṽ as the generator of Ỹ D. This provides an intuitive explanation of Lemma (4.1), namely

V DUD(·, y) = V DṼ DGD(·, y) = −∆GD(·, y) = −δy.
Fix a point x0 ∈ D and define the Martin kernel with respect to Y D based at x0 by

MD
Y (x, y) :=

UD(x, y)

UD(x0, y)
, x, y ∈ D, y 6= x0. (4.3)

We will establish some relation between the Martin kernel for Y D and the Martin kernel for WD.

Define the Martin kernel with respect to WD based at x0 by

MD(x, y) :=
GD(x, y)

GD(x0, y)
, x, y ∈ D, y 6= x0. (4.4)

Since D is a C1,1 domain, for each z ∈ ∂D there exists the limit

MD(x, z) := lim
y→z

MD(x, y) .

In the next lemma, we extend [33, Lemma 5.82] by including our two types of unbounded C1,1

domains and the case d = 2 for bounded C1,1 domains.

Lemma 4.2 If (yj)j≥1 is a sequence of points in D such that limj→∞ yj = z ∈ ∂D, then for each

t > 0 and each x ∈ D,

lim
j→∞

PDt

(
GD(·, yj)
GD(x0, yj)

)
(x) = PDt (MD(·, z))(x) .

Proof. Recall that the C1,1 characteristics of D is (R,Λ). Fix x ∈ D and let R1 := (R ∧ |x0 −
z| ∧ |x − z|)/4. We assume all yj are in B(z,R1/2) ∩ D. For any r ∈ (0, R1], there exists a ball

B(Ar(z), r/2) ⊂ D ∩B(z, r). It is well known (see [1, page 140] and [17, Theorem 7.1]) that there

exist c1, β > 0 such that for any r ∈ (0, R1] and any (y, w) ∈ D ∩B(z, r)× (D \B(z, 2r)),

|MD(w, y)−MD(w, z)| ≤ c1MD(w,Ar(z))

(
|y − z|
r

)β
. (4.5)

Let g(w) = |w|−d+2 be the Newtonian kernel when d ≥ 3 and be the logarithmic kernel g(x) =(
log 1

|x|

)
∨1 when d = 2. Using the estimate of pD(t, x, y) in (3.1) and the Green function estimates

of Brownian motion, we have the following estimates: for every t > 0 there exists a constant

c2 = c2(t, δ(x), R1) > 0 such that

pD(t, x, y)MD(y, z) ≤ c2g(y − z) ∀y ∈ B(z,R1) ∩D, (4.6)

pD(t, x, y)MD(y, yj) ≤ c2g(y − yj) ∀y ∈ B(yj , R1) ∩D. (4.7)

In fact, since (
δ(y)

|y − yj |
∧ δ(y)

δ(yj)

)
≤ 2,

for d ≥ 3,

pD(t, x, y)MD(y, yj) ≤ c3(t)δ(x)δ(y)
GD(y, yj)

δ(yj)
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≤ c4(t, δ(x))
δ(y)

δ(yj)

(
δ(y)

|y − yj |
∧ 1

)(
δ(yj)

|y − yj |
∧ 1

)
|y − yj |−d+2

≤ c4(t, δ(x))
δ(y)

δ(yj)

(
δ(yj)

|y − yj |
∧ 1

)
|y − yj |−d+2

≤ c4(t, δ(x))

(
δ(y)

|y − yj |
∧ δ(y)

δ(yj)

)
|y − yj |−d+2 ≤ 2c4(t, δ(x))|y − yj |−d+2.

This proves (4.7) for d ≥ 3, and by letting yj → z, we get (4.6) for d ≥ 3. The proofs of (4.6) and

(4.7) for d = 2 are similar.

The inequalities (4.6) and (4.7) imply that for every r ≤ R1 and sufficiently large j,∫
D∩B(z,r)

pD(t, x, y)(MD(y, yj) +MD(y, z))dy ≤ 2c2

∫
B(0,2r)

g(y)dy. (4.8)

Given ε > 0, choose 0 < r1 ≤ R1 small such that
∫
B(0,2r1)

g(y)dy < ε/(4c2). For y ∈ D \ B(z, r1),

by (4.5) we get that

|MD(y, yj)−MD(y, z)| ≤ c2MD(y,Ar1(z))

(
|yj − z|
r1

)β
. (4.9)

Therefore, using the fact that y →MD(y, z) is excessive for WD, for every large j

|PDt
(
GD(·, yj)
GD(x0, yj)

)
(x)− PDt (MD(·, z))(x)|

≤
∫
D∩B(z,r1)

pD(t, x, y)(MD(y, yj) +MD(y, z))dy +

∫
D\B(z,r1)

pD(t, x, y)|MD(y, yj)−MD(y, z)|dy

≤ε/2 + c2

(
|yj − z|
r1

)β ∫
D
PDt M

D(·, Ar1(z))(y)dy ≤ ε/2 + c2

(
|yj − z|
r1

)β
MD(x,Ar1(z)) ≤ ε.

2

Using the previous lemma, the proof of the next lemma is the same as that of [33, Theorem

5.83(b)]. So we omit the proof.

Lemma 4.3 If (yj)j≥1 is a sequence of points in D converging to z ∈ ∂D, then for every x ∈ D,

lim
j→∞

Ṽ D

(
GD(·, yj)
GD(x0, yj)

)
(x) = lim

j→∞

Ṽ D(GD(·, yj))(x)

GD(x0, yj)
= Ṽ D(MD(·, z))(x) .

Let us define the function HD
Y (x, z) := Ṽ D(MD(·, z))(x) on D × ∂D. Let (yj) be a sequence of

points in D converging to z ∈ ∂D, then from Lemma 4.3 we get that

HD
Y (x, z) = lim

j→∞

Ṽ D(GD(·, yj))(x)

GD(x0, yj)
= lim

j→∞

UD(x, yj)

GD(x0, yj)
, (4.10)

where the last equality follows from Lemma 4.1. In particular, there exists the limit

lim
j→∞

UD(x0, yj)

GD(x0, yj)
= HD

Y (x0, z) . (4.11)
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Now we define a function M
D
Y on D × ∂D by

M
D
Y (x, z) :=

HD
Y (x, z)

HD
Y (x0, z)

, x ∈ D, z ∈ ∂D. (4.12)

From the definition above and (4.10)–(4.11), we can easily see that

lim
D3y→z

UD(x, y)

UD(x0, y)
= M

D
Y (x, z), x ∈ D, z ∈ ∂D. (4.13)

Thus we have proved the following result.

Proposition 4.4 The function MD
Y (·, ·) can be extended from D × D to D × D so that for each

z ∈ ∂D we have that

M
D
Y (x, z) = lim

y→z
MD
Y (x, y) = lim

y→z

UD(x, y)

UD(x0, y)
.

The following two types of sharp two-sided estimates for M
D
Y (x, z) now follow easily from

Theorems 3.1 and 3.2.

Theorem 4.5 Assume that φ is a Bernstein function satisfying (A1)–(A5). Let D ⊂ Rd be a

bounded C1,1 domain, or a C1,1 domain with compact complement or domain above the graph of a

bounded C1,1 function. For every M > 0 and z ∈ ∂D, there exists a constant c = c(M, z) ≥ 1 such

that for all x ∈ D with |x− z| ≤M ,

c−1
δ(x)φ′(|x− z|−2)

|x− z|d+4φ(|x− z|−2)2
≤MD

Y (x, z) ≤ c δ(x)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

. (4.14)

Note that the constant c in Theorem 4.5 will in general depend on z ∈ ∂D. This is inconse-

quential, because the point z will always be fixed.

Theorem 4.6 Assume that φ is a Bernstein function satisfying (A1)–(A3) and (A6). (1) Let

D ⊂ Rd be a domain above the graph of a bounded C1,1 function. There exists a constant c1 ≥ 1

such that for all x ∈ D and z ∈ ∂D,

c−11 δ(x)
u(|x− z|2)|x0 − z|d

u(|x0 − z|2)|x− z|d
≤MD

Y (x, z) ≤ c1δ(x)
u(|x− z|2)|x0 − z|d

u(|x0 − z|2)|x− z|d
. (4.15)

(2) Let D ⊂ Rd be a C1,1 domain with compact complement. There exists a constant c2 ≥ 1 such

that for all x ∈ D and z ∈ ∂D,

c−12

(
δ(x)

|x− z| ∧ 1
∧ 1

)(
|x0 − z| ∧ 1

|x− z| ∧ 1

)
u(|x− z|2)|x0 − z|d−2

u(|x0 − z|2)|x− z|d−2
≤MD

Y (x, z)

≤ c2
(

δ(x)

|x− z| ∧ 1
∧ 1

)(
|x0 − z| ∧ 1

|x− z| ∧ 1

)
u(|x− z|2)|x0 − z|d−2

u(|x0 − z|2)|x− z|d−2
. (4.16)

Remark 4.7 (1) Theorem 4.5 in particular implies that M
D
Y (·, z1) differs from M

D
Y (·, z2) if z1 and

z2 are two different points on ∂D.
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(2) From Theorem 4.6, we have limD3x→∞M
D
Y (x, z) = 0 for any z ∈ ∂D. In fact, for |x− z| ≥

|z − x0| we have u(|x− z|) ≤ u(|x0 − z|). It is clear that

lim sup
D3x→∞

(
δ(x)
|x0 − z|2

|x− z|2
+
|x0 − z| ∧ 1

|x− z| ∧ 1

)
≤ lim sup

D3x→∞

(
|x0 − z|2

|x− z|
+
|x0 − z| ∧ 1

|x− z| ∧ 1

)
<∞ .

Thus, in both cases,

lim sup
D3x→∞

M
D
Y (x, z) ≤ c lim sup

D3x→∞

u(|x− z|2)|x0 − z|d−2

u(|x0 − z|2)|x− z|d−2
≤ c lim sup

D3x→∞

|x0 − z|d−2

|x− z|d−2
= 0. (4.17)

Using the continuity of UD in the extended sense (Proposition 3.3) and the upper bound in

(2.16), one can check that Y D satisfies Hypothesis (B) in [24]. Therefore, D has a Martin boundary

∂MD with respect to Y D satisfying the following properties:

(M1) D ∪ ∂MD is a compact metric space (with the metric denoted by d);

(M2) D is open and dense in D ∪ ∂MD, and its relative topology coincides with its original

topology;

(M3) MD
Y (x, · ) can be uniquely extended to ∂MD in such a way that

(a) MD
Y (x, y) converges to MD

Y (x,w) as y → w ∈ ∂MD in the Martin topology;

(b) for each w ∈ D ∪ ∂MD the function x→MD
Y (x,w) is excessive with respect to Y D;

(c) the function (x,w)→MD
Y (x,w) is jointly continuous on D× ((D \ {x0})∪ ∂MD) in the

Martin topology and

(d) MD
Y (·, w1) 6= MD

Y (·, w2) if w1 6= w2 and w1, w2 ∈ ∂MD.

Recall that a positive harmonic function f for Y D is minimal if, whenever h is a positive

harmonic function for Y D with h ≤ f on D, one must have f = ch for some constant c. A point

z ∈ ∂MD is called a minimal Martin boundary point if MD
Y (·, z) is a minimal harmonic function

for Y D. The minimal Martin boundary of Y D is denoted by ∂mD.

We will say that a point w ∈ ∂MD is a finite Martin boundary point if there exists a bounded

sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. Recall that a point w on the Martin

boundary ∂MD of D is said to be associated with z ∈ ∂D if there is a sequence (yn)n≥1 ⊂ D

converging to w in the Martin topology and to z in the Euclidean topology. The set of Martin

boundary points associated with z is denoted by ∂zMD.

By using Proposition 4.4, the proof of next lemma is same as that of [22, Lemma 3.6]. Thus we

omit it.

Proposition 4.8 For any z ∈ ∂D, ∂zMD consists of exactly one point w and MD
Y (·, w) = M

D
Y (·, z).

Because of the proposition above, we will also use z to denote the point on the Martin boundary

∂zMD associated with z ∈ ∂D. Note that it follows from the proof of [22, Lemmas 3.6] that if (yn)n≥1
converges to z ∈ ∂D in the Euclidean topology, then it also converges to z in the Martin topology.

In the remainder of this section, we fix z ∈ ∂D. The proof of the next result is same as that of

[22, Lemma 3.8]. Thus we omit the proof.

Lemma 4.9 For every bounded open O ⊂ O ⊂ D and every x ∈ D, MD
Y (Y D

τO
, z) is Px-integrable.
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Using the results above, we can get the following result.

Lemma 4.10 Suppose that φ is a Bernstein function satisfying (A1)–(A6). For any x ∈ D and

r ∈ (0, R ∧ (δ(x)/2)],

MD
Y (x, z) = Ex[MD

Y (Y D
τB(x,r)

, z)] .

Proof. Recall that D satisfies the interior and exterior balls conditions with radius R. Thus, for

all r ∈ (0, R], there is a ball B(Ar(z), r/2) ⊂ D ∩ B(z, r). Fix x ∈ D and a positive r < R ∧ δ(x)
2 .

Let

ηm := 2−2mr and zm = Aηm(z), m = 0, 1, . . . .

Note that

B(zm, ηm+1) ⊂ D ∩B(z, 2−1ηm) ⊂ D ∩B(z, ηm) ⊂ D ∩B(z, r) ⊂ D \B(x, r)

for all m ≥ 0. Thus by the harmonicity of MD
Y (·, zm), we have

MD
Y (x, zm) = Ex

[
MD
Y (Y D

τB(x,r)
, zm)

]
.

Choose m0 = m0 ≥ 2 such that ηm0 < δ(x0)/4.

To prove the lemma, it suffices to show that {MD
Y (Y D

τB(x,r)
, zm) : m ≥ m0} is Px-uniformly

integrable. Fix an arbitrary ε > 0. We first note that if D is unbounded, by Theorem 3.2 there

exists L ≥ 2r ∨ 2 such that for every m ≥ m0 and w ∈ D \B(z, L),

UD(w, zm)

UD(x0, zm)
≤ c

δ(zm)

(
δ(zm)

|w − zm| ∧ 1
∧ 1

)(
δ(w)

|w − zm| ∧ 1
∧ 1

)
u(|w − zm|2)
|w − zm|d−2

≤ c

δ(zm)
(δ(zm) ∧ 1) (δ(w) ∧ 1)

u(|w − zm|2)
|w − zm|d−2

≤ cu(|w − zm|2)
|w − zm|d−2

≤ c φ′(|w − zm|−2)
|w − zm|d+2φ(|w − zm|−2)2

≤ c φ′((L/2)−2)

(L/2)d+2φ((L/2)−2)2
≤ ε

4
.

In the above inequalities, we have used Lemma 2.1(b). If D is a bounded domain we simply take

L = 2diam(D) so that D \B(z, L) = ∅. Thus

Ex
[
MD
Y (Y D

τB(x,r)
, zm);Y D

τB(x,r)
∈ D \B(z, L)

]
≤ ε

4
. (4.18)

By Theorem 3.1, there exist m1 ≥ m0 and c1 = c1(L) > 0 such that for every w ∈ (D ∩B(z, L)) \
B(z, ηm) and y ∈ D ∩B(z, ηm+1),

MD
Y (w, zm) ≤ c1MD

Y (w, y), m ≥ m1.

Letting y → z we get

MD
Y (w, zm) ≤ c1MD

Y (w, z), m ≥ m1, w ∈ (D ∩B(z, L)) \B(z, ηm). (4.19)

Since MD
Y (Y D

τB(x,r)
, z) is Px-integrable by Lemma 4.9, there is an N0 = N0(ε) > 1 such that

Ex
[
MD
Y (Y D

τB(x,r)
, z);MD

Y (Y D
τB(x,r)

, z) > N0/c1

]
<

ε

2c1
. (4.20)
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By (4.18), (4.19) and (4.20),

Ex
[
MD
Y (Y D

τB(x,r)
, zm);MD

Y (Y D
τB(x,r)

, zm) > N0 and Y D
τB(x,r)

∈ D \B(z, ηm)
]

≤ Ex
[
MD
Y (Y D

τB(x,r)
, zm);MD

Y (Y D
τB(x,r)

, zm) > N0 and Y D
τB(x,r)

∈ (D ∩B(z, L)) \B(z, ηm)
]

+Ex
[
MD
Y (Y D

τB(x,r)
, zm);Y D

τB(x,r)
∈ D \B(z, L)

]
≤ c1Ex

[
MD
Y (Y D

τB(x,r)
, z); c1M

D
Y (Y D

τB(x,r)
, z) > N0

]
+
ε

4
< c1

ε

2c1
+
ε

4
=

3ε

4
.

By (3.24), we have for m ≥ m1,

Ex
[
MD
Y (Y D

τB(x,r)
, zm);Y D

τB(x,r)
∈ D ∩B(z, ηm)

]
=

∫
D∩B(z,ηm)

MD
Y (w, zm)KD,B(x,r)(x,w)dw

≤ c2φ(r−2)−1
∫
D∩B(z,ηm)

MD
Y (w, zm)δ(w)

φ′((|w − x| − r)−2)
(|w − x| − r)d+3

dw.

Since |w − x| ≥ |x− z| − |z − w| ≥ δ(x)− ηm ≥ 7
4r, applying Lemma 2.1(a)–(c), we get that

Ex
[
MD
Y (Y D

τB(x,r)
, zm);Y D

τB(x,r)
∈ D ∩B(z, ηm)

]
≤ c3r−d−3φ′(((3r/4)−2)φ((3r/4)−2)−1

∫
D∩B(z,ηm)

MD
Y (w, zm)δ(w)dw

≤ c4r−d−3φ′(r−2)φ(r−2)−1UD(x0, zm)−1
∫
D∩B(z,ηm)

UD(w, zm)δ(w)dw. (4.21)

Note that, by Theorem 3.1 ,

UD(x0, zm)−1 ≤ c5
ηm

(4.22)

and by (2.16) ∫
D∩B(z,ηm)

δ(w)UD(w, zm)dw ≤
∫
D∩B(z,ηm)

δ(w)GX(w, zm)dw

≤ c6ηm

∫
D∩B(z,ηm)

φ′(|w − zm|−2)
|w − zm|d+2φ(|w − zm|−2)2

dw

≤ c6ηm

∫
B(zm,2ηm)

φ′(|w − zm|−2)
|w − zm|d+2φ(|w − zm|−2)2

dw

= c6ηm

∫
B(0,2ηm)

φ′(|w|−2)
|w|d+2φ(|w|−2)2

dw = c7ηm

∫ 2ηm

0

φ′(r−2)

r3φ(r−2)2
dr

= c7ηm

∫ 2ηm

0

d

dr

(
1

φ(r−2)

)
dr ≤ c8ηmφ((2ηm)−2)−1. (4.23)

It follows from (4.21)–(4.23) that

Ex
[
MD
Y (Y D

τB(x,r)
, zm);Y D

τB(x,r)
∈ D ∩B(z, ηm)

]
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≤ c9r−d−3φ′(r−2)φ(r−2)−1
1

φ((2ηm)−2)
≤ c(r)

φ((2ηm)−2)
.

Thus there exists m2 ≥ m1 such that for all m ≥ m2,

Ex
[
MD
Y (Y D

τB(x,r)
, zm);Y D

τB(x,r)
∈ D ∩B(z, ηm)

]
≤ ε

4
.

Consequently, for all m ≥ m2,

Ex
[
MD
Y (Y D

τB(x,r)
, zm);MD(Y D

τB(x,r)
, zm) > N

]
≤ ε,

which implies that {MD
Y (Y D

τB(x,r)
, zm) : m ≥ m0} is Px-uniformly integrable. 2

Using this, we can easily get the following

Theorem 4.11 Suppose that φ is a Bernstein function satisfying (A1)–(A6). The function

MD(·, z) is harmonic in D with respect to Y D.

Proof. The proof is the same as that of [22, Theorem 3.10]. 2

Theorem 4.12 Suppose that φ is a Bernstein function satisfying (A1)–(A6). Every point z on

∂D is a minimal Martin boundary point.

Proof. Fix z ∈ ∂D and let h be a positive harmonic function for Y D such that h ≤MD
Y (·, z). By

the Martin representation in [24], there is a finite measure on ∂MD such that

h(x) =

∫
∂MD

MD
Y (x,w)µ(dw) =

∫
∂MD\{z}

MD
Y (x,w)µ(dw) +MD

Y (x, z)µ({z}) .

In particular, µ(∂MD) = h(x0) ≤MD
Y (x0, z) = 1 (because of the normalization at x0). Hence, µ is

a sub-probability measure.

For ε > 0, put Kε := {w ∈ ∂MD : d(w, z) ≥ ε}. Then Kε is a compact subset of ∂MD. Define

u(x) :=

∫
Kε

MD
Y (x,w)µ(dw). (4.24)

Then u is a positive harmonic function with respect to Y D satisfying

u(x) ≤ h(x)− µ({z})MD
Y (x, z) ≤

(
1− µ({z})

)
MD
Y (x, z) . (4.25)

By (M3)(c), our estimates in Theorems 4.5 and 4.6 and the fact limD3x→∞M
D
Y (x, z) = 0 (cf. Re-

mark 4.7) we see from (4.24) and (4.25) that u is bounded, limD3x→w u(x) = 0 for every w ∈ ∂D
and limD3x→∞ u(x) = 0. Therefore by the harmonicity of u, u ≡ 0 in D.

We see from (4.24) that ν = µ|Kε = 0. Since ε > 0 was arbitrary and ∂MD \ {z} = ∪ε>0Kε, we

see that µ|∂MD\{z} = 0. Hence h = µ({z})MD
Y (·, z) showing that MD

Y (·, z) is minimal. 2

Combining Remark 4.7(1) and Theorem 4.12, we conclude that

Theorem 4.13 Suppose that φ is a Bernstein function satisfying (A1)–(A6). The finite part of

the minimal Martin boundary of D and the finite part of the Martin boundary of D both coincide

with the Euclidean boundary ∂D of D.
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We conclude this section with following inequality, which will be used in Section 6.

Corollary 4.14 Fix z ∈ ∂D and assume that x0 ∈ D ∩ B(z,R) satisfies R/4 < δ(x0) < R and

MD
Y is the Martin kernel of D based on x0. Then there exists c = c(z) > 0 such that for all

x, y ∈ B(z,R/4) with 3
4 |x− z| ≤ |x− y|,

UD(x, y)

MD
Y (x, z)

≤ cUD(x0, y) . (4.26)

Proof. It follows from Theorem 3.1 and Theorem 4.5 that

UD(x, y) � δ(x)δ(y)|x− y|−d−4φ′(|x− y|−2)φ(|x− y|−2)−2 ,
MD
Y (x, z) � δ(x)|x− z|−d−4φ′(|x− z|−2)φ(|x− z|−2)−2 ,

UD(x0, y) � δ(y)|x0 − y|−d−4φ′(|x0 − y|−2)φ(|x0 − y|−2)−2 � δ(y) .

Since |x0 − y| ≥ R/4 and r 7→ r−d−4φ′(r−2)φ(r−2)−2 is decreasing, we can estimate UD(x0, y) ≥
c1δ(y). Using the monotonicity of r 7→ r−d−4φ′(r−2)φ(r−2)−2, we get

φ′(|x− y|−2)
|x− y|d+4φ(|x− y|−2)2

≤ c φ′(((3|x− z|)/4)−2)

((3|x− z|)/4)d+4φ(((3|x− z|)/4)−2)2
.

Applying Lemma 2.1(c) we get that UD(x, y)/MD
Y (x, z) ≤ c1δ(y). This completes the proof. 2

5 Quasi-additivity of capacity

Throughout this section we assume that φ is a Bernstein function satisfying (A1)–(A5). Let Cap

denote the capacity with respect to the subordinate Brownian motion X and CapD the capacity

with respect to the subordinate killed Brownian motion Y D. The goal of this section is to prove

that CapD is quasi-additive with respect to Whitney decompositions of D.

We start with the following inequality: There exist positive constants c1 < c2 such that

c1r
dφ(r−2) ≤ Cap(B(0, r)) ≤ c2rdφ(r−2) , for every r ∈ (0, 1] . (5.1)

Using (2.16), the proof of (5.1) is the same as that of [23, Proposition 5.2]. Thus we omit the proof.

For any open set D ⊂ Rd, let S(D) denote the collection of all excessive functions with respect

to Y D and let Sc(D) be the family of positive functions in S(D) which are continuous in the

extended sense. For any v ∈ S(D) and E ⊂ D, the reduced function of v relative to E in D is

defined by

REv (x) = inf{w(x) : w ∈ S(D) and w ≥ v on E}, x ∈ Rd. (5.2)

The lower semi-continuous regularization R̂Ev of REv is called the balayage of v relative to E in

D. Note that the killed Brownian motion WD is a strongly Feller process. Thus it follows by [5,

Proposition V.3.3] that the semigroup of Y D also has strong Feller property. So it follows easily

from [5, Proposition V.2.2] that the cone of excessive functions S(D) is a balayage space in the

sense of [5].

In the remainder of this section we assume that D ⊂ Rd is either a bounded C1,1 domain, or a

C1,1 domain with compact complement or a domain above the graph of a bounded C1,1 function.
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Given v ∈ Sc(D), define a kernel kv : D ×D → [0,∞] by

kv(x, y) :=
UD(x, y)

v(x)v(y)
, x, y ∈ D . (5.3)

We will later consider v(y) = UD(y, x0) ∧ 1. Note that kv(x, y) is jointly lower semi-continuous on

D ×D by the joint lower semi-continuity of UD, cf. Proposition 3.3, and the assumptions that v

is positive and continuous in the extended sense. For a measure λ on D let λv(dy) := λ(dy)/v(y).

Then

kvλ(x) :=

∫
D
kv(x, y)λ(dy) =

∫
D

UD(x, y)

v(x)v(y)
λ(dy) =

1

v(x)

∫
D
UD(x, y)

λ(dy)

v(y)
=

1

v(x)
UDλv(dy) .

We define a capacity with respect to the kernel kv as follows:

Cv(E) := inf{‖λ‖ : kvλ ≥ 1 on E} , E ⊂ D ,

where ‖λ‖ denotes the total mass of the measure λ on D. The following dual representation of the

capacity of compact sets can be found in [15, Théorème 1.1]:

Cv(K) = sup{µ(K) : µ(D \K) = 0, kvµ ≤ 1 on D} . (5.4)

For a compact set K ⊂ D, consider the balayage R̂Kv . Being a potential, R̂Kv = UDλK,v for a

measure λK,v supported in K. Recall that (ED,D(ED)) is the Dirichlet form associated with Y D.

Define the Green energy of K (with respect to v) by

γv(K) :=

∫
D

∫
D
UD(x, y)λK,v(dx)λK,v(dy) =

∫
D
UDλK,v(x)λK,v(dx) = ED(UDλK,v, UDλK,v) .

As usual, this definition of energy is extended first to open and then to Borel subsets of D. By

following the proof of [23, Proposition 5.3] we see that for all Borel subsets E ⊂ D it holds that

γv(E) = Cv(E) . (5.5)

Note that in case v ≡ 1, γ1(E) = C1(E) = CapD(E).

Let {Qj}j≥1 be a Whitney decomposition of D. Recall that xj is the center of Qj and Q∗j the

interior of the double of Qj . Then {Qj , Q∗j} is a quasi-disjoint decomposition of D in the sense of

[3, pp. 146-147].

Definition 5.1 A kernel k : D × D → [0,+∞] is said to satisfy the local Harnack property with

localization constant r1 > 0 with respect to {Qj , Q∗j} if

k(x, y) � k(x′, y) , for all x, x′ ∈ Qj and all y ∈ D \Q∗j , (5.6)

for all cubes Qj of diameter less than r1.

Definition 5.2 A function v : D → (0,∞) is said to satisfy the local scale invariant Harnack

inequality with localization constant r1 > 0 with respect to {Qj} if there exists c > 0 such that

sup
Qj

v ≤ c inf
Qj
v , for all Qj with diam(Qj) < r1 . (5.7)
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Lemma 5.3 If v ∈ Sc(D) satisfies the local scale invariant Harnack inequality with localization

constant r1 > 0 with respect to {Qj}, then the kernel kv satisfies the local Harnack property with

localization constant r1 > 0 with respect to {Qj , Q∗j}.

Proof. This is an immediate consequence of Corollary 3.4(i). 2

Typical examples of positive continuous excessive functions v that satisfy the scale invariant

Harnack inequality are functions v ≡ 1 and v = UD(·, x0) ∧ c with x0 ∈ D and c > 0 fixed.

Lemma 5.4 For every M > 0, there exists a constant c = c(M) ∈ (0, 1) such that

cCapD(Qj) ≤ Cap(Qj) ≤ CapD(Qj) (5.8)

for all Whitney cubes whose diameter is less than M .

Proof. By (5.4) and (5.5) we have that for every compact set K ⊂ D,

CapD(K) = sup{µ(K) : supp(µ) ⊂ K,UDµ ≤ 1 on D} .

If supp(µ) ⊂ K and GXµ ≤ 1 on Rd, then clearly UDµ ≤ 1 on D. This implies that Cap(K) ≤
CapD(K) for all compact subset K ⊂ D, in particular for each Whitney cube Qj .

Let µ be the capacitary measure of Qj (with respect to Y D), i.e., µ(Qj) = CapD(Qj) and

UDµ ≤ 1. Then by Corollary 3.4(ii) for every x ∈ Qj we have

1 ≥ UDµ(x) =

∫
Qj

UD(x, y)µ(dy) ≥
∫
Qj

cGX(x, y)µ(dy) = GX(cµ)(x) .

By the maximum principle it follows that GX(cµ) ≤ 1 everywhere on Rd. Hence, Cap(Qj) ≥
(cµ)(Qj) = cCapD(Qj). 2

Lemma 5.5 Suppose that v ∈ Sc(D) is a function satisfying the local scale invariant Harnack

inequality with localization constant r1 > 0 with respect to Y D. Then for every Qj of diameter less

than r1 and every E ⊂ Qj it holds that

γv(E) � v(xj)
2CapD(E) . (5.9)

Proof. The proof is same as the proof of [23, Lemma 5.8(i)]. 2

Definition 5.6 Let {Qj} be a Whitney decomposition of D and v ∈ Sc(D). A Borel measure σ

on D is locally comparable to the capacity Cv with respect to {Qj} at z ∈ ∂D if there exists r, c > 0

such that

σ(Qj) � Cv(Qj), for all Qj with Qj ∩B(z, r) 6= ∅ ,
σ(E) ≤ c Cv(E), for all Borel E ⊂ D ∩B(z, 2r).

Recall that (ED,D(ED)) is the Dirichlet form associated with Y D.
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Lemma 5.7 (Local Hardy’s inequality) There exist constants c > 0 and r > 0 such that for every

v ∈ D(ED) and z ∈ ∂D,

ED(v, v) ≥ c
∫
D∩B(z,r)

v(x)2φ(δ(x)−2) dx . (5.10)

Proof. Since D is a C1,1 domain, there exist b1 > 1, R1 > 0 and a cone C whose vertex is at the

origin, such that for every z ∈ ∂D and x ∈ D ∩B(z, b1R1/2), there exists Ĉ, which is a rotation of

C, such that

(Ĉ + x) ∩ {b1δ(x) < |x− y| < R1} ⊂ Dc. (5.11)

Choose r ∈ (0, b1R1/2) small that φ((b1r)
−2) ≥ 2φ(R−21 ).

Fix v ∈ D(ED) and z ∈ ∂D. By (2.4) and (2.7),

ED(v, v) ≥
∫
D∩B(z,r)

v(x)2κD(x) dx ≥
∫
D∩B(z,r)

v(x)2κXD(x) dx .

Let x ∈ D ∩B(z, r). By (2.6), (5.11), and the lower bound in (2.17),

κXD(x) =

∫
Dc
j(x− y) dy ≥

∫
(Ĉ+x)∩{b1δ(x)<|x−y|<R1}

j(x− y)dy

≥ c1

∫
(Ĉ+x)∩{b1δ(x)<|x−y|<R1}

|x− y|−d−2φ′(|x− y|−2) dy

≥ c2

∫ R1

b1δ(x)
− d

ds
(φ(s−2))ds = c2(φ((b1δ(x))−2)− φ(R−21 ))

= 2−1c2φ((b1δ(x))−2) ≥ c3φ(δ(x)−2) .

In the second to last inequality we used φ((b1δ(x))−2) ≥ φ((b1r)
−2) ≥ 2φ(R−21 ) and, in the last

inequality we used (2.1). 2

For v ∈ Sc(D), define

σv(E) :=

∫
E
v(x)2φ(δ(x)−2) dx , E ⊂ D .

Proposition 5.8 Let v ∈ Sc(D) satisfy the local scale invariant Harnack inequality with localiza-

tion constant r1 > 0 with respect to the Whitney decomposition {Qj}. Then σv is locally comparable

to the capacity Cv with respect to {Qj} for every z ∈ D.

Proof. Fix z ∈ ∂D and let r̃ = (r1∧r2)/2 where r2 is the constant r in Lemma 5.7. Since v satisfies

the local scale invariant Harnack inequality with localization constant r1, we have v � v(xj) on

any Qj of diameter less than r1. By Lemma 5.5, γv(Qj) � v(xj)
2CapD(Qj) for any Qj of diameter

less than r̃. On the other hand, by Lemma 5.4 and (5.1),

σv(Qj) =

∫
Qj

v(x)2φ(δ(x)−2) dx � v(xj)
2φ
(
(diam(Qj)

)−2|Qj | � Cap(D) � CapD(Qj)

for all Qj with Qj ∩B(z, r̃) 6= ∅. Thus γv(Qj) � CapD(Qj).
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Using local Hardy’s inequality, Lemma 5.7, for any Borel subset E ⊂ D and compact K ⊂
E ∩B(z, 2r̃),

γv(E) ≥ γv(K) = ED(UDλK,v, UDλK,v) ≥ c1
∫
K

(UDλK,v)(x)2φ(δ(x)−2) dx

= c1

∫
K
v(x)2φ(δ(x)−2) dx = c1σv(K) .

This proves that γv(E) ≥ c1σv(E). 2

Now we can repeat the argument in the proof of [3, Theorem 7.1.3] and conclude that γv = Cv
is quasi-additive with respect to {Qj}.

Proposition 5.9 For any Whitney decomposition {Qj} of D and any v ∈ Sc(D) satisfying the

local scale invariant Harnack inequality with respect to {Qj}, the Green energy γv is locally quasi-

additive with respect to {Qj} for every z ∈ ∂D: There exist r, c > 0 such that for every z ∈ ∂D,

c−1
∑
j≥1

γv(E ∩Qj) ≤ γv(E) ≤ c
∑
j≥1

γv(E ∩Qj) for all Borel E ⊂ D ∩B(z, r).

6 Minimal thinness

Throughout this section, we assume that φ is a Bernstein function satisfying (A1)–(A6) and that

D ⊂ Rd is either a bounded C1,1 domain, or a C1,1 domain with compact complement or a domain

above the graph of a bounded C1,1 function. We assume that the C1,1 characteristics of D is (R,Λ).

We start this section by recalling the definition of minimal thinness of a set at a minimal Martin

boundary point with respect to the subordinate killed Brownian motion Y D.

Definition 6.1 Let D be an open set in Rd. A set E ⊂ D is said to be minimally thin in D at

z ∈ ∂mD with respect to Y D if R̂E
MD
Y (·,z) 6= MD

Y (·, z).

For any z ∈ ∂mD, let Y D,z = (Y D,z
t ,Pzx) denote the MD

Y (·, z)-process, Doob’s h-transform of

Y D with h(·) = MD
Y (·, z). The lifetime of Y D,z will be denoted by ζ. It is known (see [24]) that

limt↑ζ Y
D,z
t = z, Pzx-a.s. For E ⊂ D, let TE := inf{t > 0 : Y D,z

t ∈ E}. It is proved in [14, Satz

2.6] that a set E ⊂ D is minimally thin at z ∈ ∂mD if and only if there exists x ∈ D such that

Pzx(TE < ζ) 6= 1.

We assume now that z is a fixed point in ∂D and the base point x0 of the Martin kernel MD
Y

(cf. (4.3)) satisfies x0 ∈ D ∩B(z,R) and R/4 < δ(x0) < R.

The following criterion for minimal thinness has been proved for a large class of symmetric

Lévy processes in [23, Proposition 6.4]. The proof is quite general and it works whenever (1) the

cone of excessive functions of the underlying process forms a balayage space, and (2) the inequality

in Corollary 4.14 relating the Green function and the Martin kernel of the processes is valid. In

particular, the proof works in the present setting. For E ⊂ D, define

En = E ∩ {x ∈ D : 2−n−1 ≤ |x− z| < 2−n} , n ≥ 1 .

Proposition 6.2 A set E ⊂ D is minimally thin in D at z with respect to Y D if and only if∑∞
n=1R

En
MD
Y (·,z)(x0) <∞.
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Let us fix z ∈ ∂D. Define v(x) = UD(x, x0) ∧ 1 so that v ∈ Sc(D). By Theorems 3.1 and 4.5

we see that for x close to z,

MD
Y (x, z)

v(x)
� φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

with a constant depending on z and x0, but not on x. By using Lemma 2.1(b), we see that there

exists a constant c1 > 0 such that for large n,

c−11

2n(d+4)φ′(22n)

φ(22n)2
v(x) ≤MD

Y (x, z) ≤ c1
2(n+1)(d+4)φ′(22(n+1))

φ(22(n+1))2
v(x) , x ∈ En .

This implies that

c−11

2n(d+4)φ′(22n)

φ(22n)2
REnv ≤ R

En
MD
Y (·,z) ≤ c1

2(n+1)(d+4)φ′(22(n+1))

φ(22(n+1))2
REnv .

In particular,

∞∑
n=1

REn
MD
Y (·,z)(x0) <∞ if and only if

∑
n=1

2n(d+4)φ′(22n)

φ(22n)2
REnv (x0) <∞ . (6.1)

Since R̂Env is a potential, there is a measure λn (supported by En) charging no polar sets such that

R̂Env = UDλn. Also, R̂Env = v = UD(·, x0) on En (except for a polar set, and at least for large n),

hence

R̂Env (x0) = UDλn(x0) =

∫
En

UD(x0, y)λn(dy) =

∫
En

v(y)λn(dy)

=

∫
En

R̂Env (y)λn(dy) =

∫
D

∫
D
UD(x, y)λn(dy)λn(dx) = γv(En) .

We conclude from (6.1) that

∞∑
n=1

REn
MD
Y (·,z)(x0) <∞ if and only if

∑
n=1

2n(d+4)φ′(22n)

φ(22n)2
γv(En) <∞ . (6.2)

Thus we have proved the following Wiener-type criterion for minimal thinness.

Corollary 6.3 E ⊂ D is minimally thin in D at z with respect to Y D if and only if

∞∑
n=1

2n(d+4)φ′(22n)

φ(22n)2
γv(En) <∞.

Now we state a version of Aikawa’s criterion for minimal thinness.

Proposition 6.4 Let z ∈ ∂D and E ⊂ D, let {Qj} be a Whitney decomposition of D and let xj
denote the center of Qj. The following are equivalent:

(a) E is minimally thin at z with respect to Y D;
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(b) ∑
j:Qj∩B(z,1)6=∅

v2(xj)φ
′(dist(z,Qj)

−2)

dist(z,Qj)d+4φ(dist(z,Qj)−2)2
CapD(E ∩Qj) <∞ ;

(c) ∑
j:Qj∩B(z,1)6=∅

dist2(Qj , ∂D)φ′(dist(z,Qj)
−2)

dist(z,Qj)d+4φ(dist(z,Qj)−2)2
CapD(E ∩Qj) <∞ . (6.3)

Proof. By using Proposition 5.9, the proof is analogous to the proofs of [23, Proposition 6.6 and

Corollary 6.7], cf. also [26, Proposition 4.4], therefore we omit the proof. 2

Proof of Theorem 1.1: Assume that E is minimally thin at z ∈ ∂D. By Proposition 6.4, the

series (6.3) converges. By Proposition 5.8, the measure

σ(A) :=

∫
A
φ(δ(x)−2) dx , A ⊂ D ,

is comparable to the capacity CapD with respect to the Whitney decomposition {Qj}. Therefore

CapD(E ∩Qj) ≥ c1σ(E ∩Qj) = c1

∫
E

1Qj (x)φ(δ(x)−2) dx .

For x ∈ Qj we have that dist2(Qj , ∂D) � δ(x) and dist(z,Qj) � |x− z|. Therefore,

∞ >
∑

j:Qj∩B(z,1)6=∅

dist2(Qj , ∂D)φ′(dist(z,Qj)
−2)

dist(z,Qj)d+4φ(dist(z,Qj)−2)2
CapD(E ∩Qj)

≥ c2
∑

j:Qj∩B(z,1) 6=∅

∫
E

δ(x)2φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

1Qj (x)φ(δ(x)−2) dx

= c2

∫
E∩B(z,1)

δ(x)2φ(δ(x)−2)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

dx .

Conversely, assume that E is a union of a subfamily of Whitney cubes of D. Then E ∩ Qj is

either empty or equal to Qj . Since CapD(Qj) � σ(Qj) =
∫
Qj
φ(δ(x)−2) dx, we can reverse the first

inequality in the display above to conclude that∑
j:Qj∩B(z,1) 6=∅

dist2(Qj , ∂D)φ′(dist(z,Qj)
−2)

dist(z,Qj)d+4φ(dist(z,Qj)−2)2
CapD(E ∩Qj)

≤ c3

∫
E∩B(z,1)

δ(x)2φ(δ(x)−2)φ′(|x− z|−2)
|x− z|d+4φ(|x− z|−2)2

dx .

2

Theorem 1.1 will be now applied to study minimal thinness of a set below the graph of a

Lipschitz function. We start by recalling Burdzy’s result, cf. [7, 16]: Let f : Rd−1 → [0,∞) be a

Lipschitz function. The set A = {x = (x̃, xd) ∈ H : 0 < xd ≤ f(x̃)} is minimally thin in H with

respect to Brownian motion at z = 0 if and only if∫
{|x̃|<1}

f(x̃)|x̃|−d dx̃ <∞ . (6.4)
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It is shown recently in [20] that the same criterion for minimal thinness is true for the subordinate

Brownian motions studied there. By using Theorem 1.1 one can follow the proof of [20, Theorem

4.4] and show the Burdzy-type criterion for minimal thinness in Proposition 6.5. In the proof we

will need the following simple observation: For any T > 0, we have for t ∈ (0, T ],∫ t

0
r2φ(r−2) dr � t3φ(t−2), (6.5)

Indeed, since r2φ(r−2) ≤ t2φ(t−2) for all 0 < r ≤ t, it follows that
∫ t
0 r

2φ(r−2) dr ≤ t3φ(t−2). On

the other hand, since φ is increasing,
∫ t
0 r

2φ(r−2) dr ≥ φ(t−2)
∫ t
0 r

2 dr = t3

3 φ(t−2).

Proposition 6.5 Assume that d ≥ 3 and that f : Rd−1 → [0,∞) is a Lipschitz function. Suppose

D = {x = (x̃, xd) ∈ Rd : xd > h(x̃)} is the domain above the graph of a bounded C1,1 function h.

Then the set

A := {x = (x̃, xd) ∈ Rd : h(x̃) < xd ≤ f(x̃) + h(x̃)}

is minimally thin in D at 0 with respect to Y D if and only if∫
{|x̃|<1}

f(x̃)3φ(f(x̃)−2)φ′(|x̃|−2)
|x̃|d+4φ(|x̃|−2)2

dx̃ <∞ . (6.6)

Proof. Without loss of generality we may assume that f(0̃) = 0. We first note that by the Lipschitz

continuity of f , it follows that |x̃| ≤ |x| ≤ c1|x̃| for x = (x̃, xd) ∈ A. Hence by Fubini’s theorem we

have ∫
A

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx =

∫
|x̃|<1

dx̃

∫
1A(x̃, xd)

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dxd

�
∫
|x̃|<1

φ′(x̃)

|x̃|d+4φ(|x̃|−2)2
dx̃

∫ f(x̃)

0
x2dφ(x−2d ) dxd

�
∫
|x̃|<1

f(x̃)3φ(f(x̃)−2)φ′(|x̃|−2)
|x̃|d+2φ(|x̃|−2)2

dx̃, (6.7)

where the last asymptotic relation follows from (6.5) with T = sup|x̃|≤1 f(x̃). It follows from

Theorem 1.1 that if A is minimally thin in D at 0, then (6.6) holds true.

For the converse, let {Qj} be a Whitney decomposition of D and define E = ∪Qj∩A 6=∅Qj ; clearly

A ⊂ E. Let Q∗j be the interior of the double of Qj and note that {Q∗j} has bounded multiplicity,

say N . Moreover, if Qj ∩ A 6= ∅, then by the Lipschitz continuity of f we have |Q∗j ∩ A| � |Qj |.
Moreover, for x ∈ Q∗j we have |x| � dist(0, Qj). Therefore∫

A

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx ≤
∫
E

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx

=
∑

Qj∩A 6=∅

∫
Qj

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx

≤ c2
∑

Qj∩A 6=∅

|Q∗j ∩A|
dist2(Q∗j , D)φ(dist−2(Q∗j , D))φ′(dist−2(0, Qj))

distd+4(0, Qj)φ(dist−2(0, Qj))2

≤ c3
∑

Qj∩A 6=∅

∫
Q∗j∩A

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx ≤ c3N
∫
A

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx . (6.8)
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If (6.6) holds, then (6.7) and (6.8) imply that∫
E

x2dφ(x−2d )φ′(|x|−2)
|x|d+4φ(|x|−2)2

dx <∞.

Hence, by Theorem 1.1, E is minimally thin, and thus A is also minimally thin. 2

Remark 6.6 In case d ≥ 2 and a bounded C1,1 domain, we can get an analog of Proposition 6.5.

Let z ∈ ∂D and choose a coordinate system CS with its origin at z such that

B(z,R) ∩D = {y = (ỹ, yd) in CS : |y| < R, yd > h(ỹ)},

where h is a C1,1-function h : Rd−1 → R satisfying h(0̃) = 0. Let f : Rd−1 → [0,∞) be a Lipschitz

function and

A := {x = (x̃, xd) ∈ D : |x| < R, h(x̃) < xd ≤ f(x̃) + h(x̃)}.

Then the set is minimally thin in D at z ∈ ∂D with respect to Y D if and only if (6.6) holds true.

7 Examples

In this section we assume D is either a bounded C1,1 domain in Rd or a half-space. We first

compare criteria for minimal thinness for three processes in D related to the isotropic α-stable

process. The first process is the killed isotropic α-stable process XD, 0 < α < 2, that is a

killed subordinate Brownian motion Xt = WSt where (St)t≥0 is an (α/2)-stable subordinator. The

corresponding Laplace exponent is the function φ(λ) = λα/2. The second process is the subordinate

killed Brownian motion Y D
t = WD

St
with the same (α/2)-stable subordinator. The third process is

the censored α-stable process ZD. The process ZD is a symmetric Markov process with Dirichlet

form given by

C(v, v) =

∫
D

∫
D

(v(y)− v(x))2j(y − x) dy dx ,

where j(x) is the density of the Lévy measure of the isotropic α-stable process. The censored stable

process was introduced and studied in [6]. When α ∈ (1, 2), ZD is transient and converges to the

boundary of D at its lifetime.

Hardy’s inequality for the Dirichlet form of ZD was obtained in [10, 13]. Let GDZ be the Green

function of ZD. If D is a bounded C1,1 domain, sharp two-sided estimates on GDZ were obtained in

[8]. If D is a half-space, say the upper half-space, then it follows from [6] that the censored α-stable

process in D satisfies the following scaling property: for any c > 0, if (ZDt )t≥0 is a censored α-stable

process in D starting from x ∈ D, then (cZDt/cα)t≥0 is a censored α-stable process in D starting

from cx. Thus the transition density pDZ (t, x, y) of ZD satisfies the following relation:

pDZ (t, x, y) = t−d/αpDZ (1, t−1/αx, t−1/αy), t > 0, x, y ∈ D.

Now using the short-time heat kernel estimates in [9] we immediately arrive at the following global

estimates:

pDZ (t, x, y) � t−
d
α

(
1 ∧ t1/α

|x− y|

)d+α(
1 ∧ δD(x)

t1/α

)α−1(
1 ∧ δD(x)

t1/α

)α−1
, on (0,∞)×D ×D.
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Using the above estimates, one can easily get sharp two-sided estimates on GD from which one can

easily show that

lim
x3D→∞

GDZ (x, y)

GDZ (z, y)
= 0.

Sharp two-sided estimates on GDZ give sharp two-sided estimates on the Martin kernel of ZD. The

arguments in [8] imply that the finite part of the minimal Martin boundary of D with respect to

ZD and the finite part of the Martin boundary of D with respect to ZD both coincide with the

Euclidean boundary ∂D of D.

Based on these results, one can follow the proof of [26, Proposition 4.4] (which is an analog

of Proposition 6.4) line by line and see that the same results also hold when D is a half-space.

Therefore the following holds.

Proposition 7.1 Let α ∈ (1, 2) and d ≥ 2. Let D be either a bounded C1,1 domain in Rd or a

half-space, z ∈ ∂D, E ⊂ D, and let xj denote the center of Qj. Let x0 ∈ D be fixed, CapD be the

capacity with respect to ZD and v(x) = GDZ (x, x0) ∧ 1. The following are equivalent:

(a) E is minimally thin at z;

(b) ∑
j:Qj∩B(z,1) 6=∅

dist(z,Qj)
−d−α+2v(xj)

2CapD(E ∩Qj) <∞ ; (7.1)

(c)

∑
j:Qj∩B(z,1)6=∅

dist(Qj , ∂D)2(α−1)

dist(z,Qj)d+α−2
CapD(E ∩Qj) <∞ . (7.2)

It is shown in [26] that the measure σ(A) :=
∫
A δ(x)−αdx is comparable to CapD with respect to

the Whitney decomposition. Further, it follows from [8, Theorem 1.1] that v(xj) � dist(Qj , ∂D) �
δ(x)2(α−1) for all x ∈ Qj . With this in hand one can use the argument in the proof of Theorem 1.1

to prove the following criterion for minimal thinness with respect to the censored α-stable process.

Theorem 7.2 Assume that α ∈ (1, 2). Let D be either a bounded C1,1 domain in Rd or a half-

space, d ≥ 2, and let E be a Borel subset of D.

(1) If E is minimally thin in D at z ∈ ∂D with respect to ZD, then∫
E∩B(z,1)

δ(x)α−2

|x− z|d+α−2
dx <∞ .

(2) Conversely, if E is the union of a subfamily of Whitney cubes of D and is not minimally thin

in D at z ∈ ∂D with respect to Y D, then∫
E∩B(z,1)

δ(x)α−2

|x− z|d+α−2
dx =∞ .
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Note that for XD the integral in the criterion for minimal thinness is∫
E∩B(z,1)

1

|x− z|d
dx ,

while for Y D the corresponding integral becomes∫
E∩B(z,1)

δ(x)2−α

|x− z|d+2−α dx .

Corollary 7.3 Let D be either a bounded C1,1 domain in Rd with d ≥ 2 or a half-space with d ≥ 3.

Let E be the union of a subfamily of Whitney cubes of D and z ∈ ∂D.

(i) Let 1 < α < 2. If E is minimally thin at z with respect to ZD, then it is minimally thin at z

with respect to XD.

(ii) Let 0 < α < 2. If E is minimally thin at z with respect to XD, then it is minimally thin at z

with respect to Y D.

(iii) Let 1 < α1 ≤ α2 < 2. If E is minimally thin at z with respect to the α1-stable censored process,

then it is minimally thin at z with respect to the α2-stable censored process.

(iv) Let 0 < α1 ≤ α2 < 2. If E is minimally thin at z with respect to Y D with index α2, then it is

minimally thin at z with respect to Y D with index α1.

Proof. All statements follow easily from criteria in Theorems 1.1 and 7.2 together with the

observation that since δ(x) ≤ |x− z|,(
δ(x)

|x− z|

)2−α
≤ 1 ≤

(
δ(x)

|x− z|

)α−2
.

2

A criterion for minimal thinness of a set below the graph of a Lipschitz function with respect

to the censored stable process is given in the following result which can be proved in the same way

as Proposition 6.5.

Proposition 7.4 Let α ∈ (1, 2). Assume that f : Rd−1 → [0,∞) is a Lipschitz function. Suppose

that D = {x = (x̃, xd) ∈ Rd : 0 < xd}. Then the set

A := {x = (x̃, xd) ∈ D : 0 < xd ≤ f(x̃)}

is minimally thin in D at 0 with respect to ZD if and only if∫
{|x̃|<1}

f(x̃)α−1

|x̃|d+α−2
dx̃ <∞ . (7.3)

In case of XD, the criterion reads ∫
{|x̃|<1}

f(x̃)

|x̃|d
dx̃ <∞ , (7.4)

while for Y D with d ≥ 3, (6.6) becomes∫
{|x̃|<1}

f(x̃)3−α

|x̃|d+2−αdx̃ <∞ . (7.5)
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Example 7.5 Let d ≥ 3 and D = {x = (x̃, xd) ∈ Rd : 0 < xd}, f : Rd−1 → [0,∞) a Lipschitz

function and put A := {x = (x̃, xd) ∈ D : 0 < xd ≤ f(x̃)}.
(1) If f(x̃) = |x̃|γ with γ ≥ 1, then an easy calculation shows that all three integrals in (7.3)-(7.5)

are finite if and only if γ > 1. Thus, for all three processes, A is minimally thin at z = 0 if and

only if γ > 1.

(2) Let f(x̃) = |x̃|
(

log(1/|x̃|)
)−β

, β ≥ 0. Then f is Lipschitz. By use of (7.3)-(7.5) it follows easily

that A is minimally thin at z = 0

with respect to ZD if and only if β >
1

α− 1
,

with respect to XD if and only if β > 1 ,

with respect to Y D if and only if β >
1

3− α
.

Since 1 < 1/(3−α) for α ∈ (0, 2) and 1 < 1/(α−1) for α ∈ (1, 2) this is in accordance with Corollary

7.3. By choosing β and α appropriately, we conclude that none of the converse in Corollary 7.3

holds true.

We conclude this paper with an example about minimal thinness with respect to subordinate

killed Brownian motion in the half-space via geometric stable subordinators. We define L1(λ) =

log λ, and for n ≥ 2 and λ > 0 large enough, Ln(λ) = L1(Ln−1(λ)). Applying Proposition 6.5, we

can easily check the following.

Example 7.6 Let d ≥ 3 and α ∈ (0, 1]. Suppose that D = {x = (x̃, xd) ∈ Rd : 0 < xd} and Y D is

the subordinate killed Brownian motion in D via a subordinator with Laplace exponent log(1+λα).

Assume that f : Rd−1 → [0,∞) a Lipschitz function and define A := {x = (x̃, xd) ∈ D : 0 < xd ≤
f(x̃)}.
(1) Let f(x̃) = |x̃|

(
L1(1/|x̃|)

)−β
with β ≥ 0. Then A is minimally thin at z = 0 with respect to

Y D if and only if β > 0.

(2) Let n ≥ 2 and f(x̃) = |x̃|(L2(1/|x̃|) · · ·Ln(1/|x̃|)
)−1/3(

Ln+1(1/|x̃|)
)−β

with β ≥ 0. Then A is

minimally thin at z = 0 with respect to Y D if and only if β > 1/3.

Acknowledgements: We are grateful to the referee for the insightful comments on the first version

of this paper.
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(Grenoble) 7 (1957) 183–281.

36
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