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Abstract

In this paper we study the Martin boundary of open sets with respect to a large class of
purely discontinuous symmetric Lévy processes in Rd. We show that, if D ⊂ Rd is an open set
which is κ-fat at a boundary point Q ∈ ∂D, then there is exactly one Martin boundary point
associated with Q and this Martin boundary point is minimal.
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1 Introduction

The Martin boundary of an open set D is an abstract boundary introduced in 1941 by Martin

[26] so that every nonnegative classical harmonic function in D can be written as an integral

of the Martin kernel with respect to a finite measure on the Martin boundary. This integral

representation is called a Martin representation. The concepts of Martin boundary and Martin

kernel were extended to general Markov processes by Kunita and Watanabe [25] in 1965. In order

for the Martin representation to be useful, one needs to have a better understanding of the Martin

boundary, for instance, its relation with the Euclidean boundary. In 1970, Hunt and Wheeden [14]

proved that, in the classical case, the Martin boundary of a bounded Lipschitz domain coincides

with its Euclidean boundary. Subsequently, a lot of progress has been made in studying the Martin

boundary in the classical case.

With the help of the boundary Harnack principle for rotationally invariant α-stable (α ∈ (0, 2))

processes established in [2], it was proved in [3, 11, 27] that the Martin boundary, with respect

to the rotationally invariant α-stable process, of a bounded Lipschitz domain D coincides with

its Euclidean boundary and that any nonnegative harmonic function with respect to the killed

rotationally invariant α-stable process in D can be written uniquely as an integral of the Martin

kernel with respect to a finite measure on ∂D. In [29] this result was extended to bounded κ-

fat open sets. The Martin boundary, with respect to truncated stable processes, of any roughly
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connected κ-fat open set was shown in [16] to coincide with its Euclidean boundary. In [17], the

results of [29] were extended to a large class of purely discontinuous subordinate Brownian motions.

For Martin boundary at infinity with respect to subordinate Brownian motions, see [23].

In this paper, we study the Martin boundary of open set D ⊂ Rd with respect to a large class

of symmetric, not necessarily rotationally invariant, (transient) Lévy processes killed upon exiting

D. We show that if D is an open set and D is κ-fat at a single point Q ∈ ∂D, then the Martin

boundary associated with Q consists of exactly one point and the corresponding Martin kernel is

a minimal harmonic function. Another point is that, unlike [3, 11, 16, 17, 27, 29], the set D is

not necessarily bounded. In the case when D is unbounded, we do not study the Martin boundary

associated with infinite boundary points.

Now we describe the class of processes we are going to work with.

Throughout this paper, r 7→ j(r) is a strictly positive and non-increasing function on (0,∞)

satisfying

j(r) ≤ cj(r + 1) for r ≥ 1, (1.1)

and X = (Xt,Px) is a purely discontinuous symmetric Lévy process with Lévy exponent ΨX(ξ) so

that

Ex
[
eiξ·(Xt−X0)

]
= e−tΨX(ξ), t > 0, x ∈ Rd, ξ ∈ Rd.

We assume that the Lévy measure of X has a density JX such that

γ−1
1 j(|y|) ≤ JX(y) ≤ γ1j(|y|), for all y ∈ Rd , (1.2)

for some γ1 > 1. Since
∫∞

0 j(r)(1 ∧ r2)rd−1dr < ∞ by (1.2), the function x → j(|x|) is the Lévy

density of an isotropic unimodal Lévy process whose characteristic exponent is

Ψ(|ξ|) =

∫
Rd

(1− cos(ξ · y))j(|y|)dy. (1.3)

The Lévy exponent ΨX can be written as

ΨX(ξ) =

∫
Rd

(1− cos(ξ · y))JX(y)dy

and, clearly by (1.2), it satisfies

γ−1
1 Ψ(|ξ|) ≤ ΨX(ξ) ≤ γ1Ψ(|ξ|), for all ξ ∈ Rd . (1.4)

The function Ψ may be not increasing. However, if we put Ψ∗(r) := sups≤r Ψ(s), then, by [4,

Proposition 2] (cf. also [13, Proposition 1]), we have

Ψ(r) ≤ Ψ∗(r) ≤ π2Ψ(r).

Thus by (1.4),

(π2γ1)−1Ψ∗(|ξ|) ≤ ΨX(ξ) ≤ γ1Ψ∗(|ξ|), for all ξ ∈ Rd . (1.5)
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We will always assume that Ψ satisfies the following scaling condition at infinity:

(H): There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
2δ1Ψ(t) ≤ Ψ(λt) ≤ a2λ

2δ2Ψ(t), λ ≥ 1, t ≥ 1 . (1.6)

Then by [4, (15) and Corollary 22], for every R > 0, there exists c = c(R) > 1 such that

c−1 Ψ(r−1)

rd
≤ j(r) ≤ cΨ(r−1)

rd
for r ∈ (0, R]. (1.7)

Note that the class of purely discontinuous symmetric Lévy processes considered in this paper

contains some of the purely discontinuous isotropic unimodal Lévy processes dealt with in [4].

Let us now formulate precisely the main result of this paper.

Definition 1.1 Let D ⊂ Rd be an open set and Q ∈ Rd. We say that D is κ-fat at Q for some κ ∈
(0, 1

2), if there exists R > 0 such that for all r ∈ (0, R], there is a ball B(Ar(Q), κr) ⊂ D ∩B(Q, r).

The pair (R, κ) is called the characteristics of the κ-fat open set D at Q. We say that an open set

D is κ-fat with characteristics (R, κ) if D is κ-fat at Q ∈ ∂D with characteristics (R, κ) for all

Q ∈ ∂D .

For D ⊂ Rd we denote by ∂MD the Martin boundary of D. A point w ∈ ∂MD is said to be

associated with Q if there is a sequence (yn)n≥1 ⊂ D converging to w in the Martin topology and

to Q in the Euclidean topology. The set of Martin boundary points associated with Q is denoted

by ∂QMD.

Theorem 1.2 Suppose that the assumption (H) is satisfied. Let X be a symmetric Lévy process

with a Lévy density satisfying (1.2) and let D be an open subset of Rd which is κ-fat at Q ∈ ∂D. If

D is bounded, then ∂QMD consists of exactly one point and this point is a minimal Martin boundary

point. If D is unbounded and the process X is transient, the same conclusion is true.

In the case when D is unbounded, a natural assumption would be that D is Greenian, that is,

the killed process XD is transient. Unfortunately, under the assumption (H), which governs the

behavior of the process in small space, it seems difficult to obtain estimates of the Green function

GD(x, y) when either x or y becomes large. This is why in the case of unbounded D we impose

the transience assumption on X which gives the asymptotic behavior of the free Green function

G(x, y), cf. Lemma 2.20.

We begin the paper by showing that only small modifications are needed to extend some results

from the isotropic case studied in [20] to the symmetric Lévy processes X considered in this paper.

These results include exit time estimates, Poisson kernel estimates and Harnack inequality. A little

more work is needed to establish the upper and the lower bound on the Green function GD. Those

are used to obtain sharp bounds on the Poisson kernel and the boundary Harnack principle in the

same way as in [20]. In Section 3 we follow the well-established route, see [2, 17, 19, 23], to identify
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the Martin boundary point associated to Q. After preliminary estimates about harmonic functions,

we first show that the oscillation reduction lemma, see [2, Lemma 16], is valid in our setting (with

essentially the same proof). The lemma almost immediately implies that ∂QMD consists of exactly

one point. We then show that this point is a minimal Martin boundary point. We end the paper

by giving the Martin representation for bounded κ-fat open sets.

We finish this introduction by setting up some notation and conventions. We use “:=” to denote

a definition, which is read as “is defined to be”; we denote a ∧ b := min{a, b}, a ∨ b := max{a, b};
we denote by B(x, r) the open ball centered at x ∈ Rd with radius r > 0; for any two positive

functions f and g, f � g means that there is a positive constant c ≥ 1 so that c−1 g ≤ f ≤ c g on

their common domain of definition; for any Borel subset E ⊂ Rd and x ∈ E, diam(E) stands for

the diameter of E and δE(x) stands for the Euclidean distance between x and Ec; N is the set of

natural numbers.

In this paper, we use the following convention: The values of the constantsR, δ1, δ2, C1, C2, C3, C4

remain the same throughout this paper, while c, c0, c1, c2, . . . represent constants whose values are

unimportant and may change. All constants are positive finite numbers. The labeling of the

constants c0, c1, c2, . . . starts anew in the statement and proof of each result. The dependence of

constant c on dimension d is not mentioned explicitly.

2 Green function estimates

Let S = (St : t ≥ 0) be a subordinator with no drift. The Laplace exponent φ of S is a Bernstein

function and admits the following representation

φ(λ) =

∫ ∞
0

(1− e−λt)µ(dt), λ > 0,

where µ satisfies
∫∞

0 (1 ∧ t)µ(dt) < ∞. µ is called the Lévy measure of S or φ. The function φ is

called a complete Bernstein function if µ has a completely monotone density.

The following elementary result observed in [19, 22] will be used several times later in this

paper.

Lemma 2.1 If φ is a Bernstein function, then for all λ, t > 0, 1 ∧ λ ≤ φ(λt)/φ(t) ≤ 1 ∨ λ.

Recall that, throughout this paper, we assume that X = (Xt,Px) is a purely discontinuous

symmetric Lévy process in Rd with Lévy exponent ΨX(ξ) and a Lévy density JX satisfying (1.2).

It follows from [4, (28)], (1.4), (1.6) and (1.7) that there exist a constant γ2 > 1 and a complete

Bernstein function φ such that

γ−1
2 φ(|ξ|2) ≤ Ψ(|ξ|) ≤ γ2φ(|ξ|2), for all ξ ∈ Rd , (2.1)

and j enjoys the following property: for every R > 0,

j(r) � φ(r−2)

rd
for r ∈ (0, R]. (2.2)
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Furthermore, there exist b1, b2 > 0 such that

b1λ
δ1φ(t) ≤ φ(λt) ≤ b2λδ2φ(t), λ ≥ 1, t ≥ 1 . (2.3)

Throughout this paper, we assume that φ is the above complete Bernstein function.

From Lemma 2.1 and (2.2), we also get that for every R > 0,

j(r) ≤ cj(2r) , r ∈ (0, R] . (2.4)

The infinitesimal generator L of X is given by

Lf(x) =

∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1{|y|≤1}

)
JX(y)dy (2.5)

for f ∈ C2
b (Rd). Furthermore, for every f ∈ C2

b (Rd), f(Xt)−f(X0)−
∫ t

0 Lf(Xs) ds is a Px-martingale

for every x ∈ Rd.
The following two results are valid without assuming (H). The next lemma is a special case of

[13, Corollary 1].

Lemma 2.2 There exists a constant c > 0 depending only on d such that

c−1Ψ(r−1) ≤ 1

r2

∫ r

0
sd+1j(s)ds+

∫ ∞
r

sd−1j(s)ds ≤ cΨ(r−1) , ∀r > 0. (2.6)

Lemma 2.3 There exists a constant c = c(Ψ, γ1, γ2) > 0 such that for every f ∈ C2
b (Rd) with

0 ≤ f ≤ 1,

Lfr(x) ≤ c φ(r−2)

2 + sup
y

∑
j,k

|(∂2/∂yj∂yk)f(y)|

 , for every x ∈ Rd, r > 0,

where fr(y) := f(y/r).

Proof. Using (1.2) and Lemma 2.2 or [4, Corollary 3], this result can be obtained by following the

proof of [21, Lemma 4.2]. We omit the details. 2

For any open set D, we use τD to denote the first exit time of D, i.e., τD = inf{t > 0 : Xt /∈ D}.
Using Lemmas 2.1 and 2.3 and (2.1), the proof of the next result is the same as those of [18,

Lemmas 13.4.1 and 13.4.2]. Thus we omit the proof.

Lemma 2.4 There exists a constant c = c(Ψ, γ1, γ2) > 0 such that for every r > 0 and every

x ∈ Rd,
inf

z∈B(x,r/2)
Ez
[
τB(x,r)

]
≥ c

φ(r−2)
.

The idea of the following key result comes from [31].
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Lemma 2.5 There exists a constant c = c(Ψ, γ1, γ2) > 0 such that for any r > 0 and x0 ∈ Rd,

Ex[τB(x0,r)] ≤ c (φ(r−2)φ((r − |x− x0|)−2))−1/2 , x ∈ B(x0, r).

Proof. Without loss of generality, we may assume that x0 = 0. We fix x 6= 0 and put Zt = Xt·x
|x| .

Then, Zt is a one dimensional symmetric Lévy process in R with Lévy exponent

ΨZ(θ) =

∫
Rd

(
1− cos(

θx

|x|
· y)

)
JX(y)dy, θ ∈ R.

By (1.2),

ΨZ(θ) �
∫
Rd

(
1− cos(

θx

|x|
· y)

)
j(|y|)dy = Ψ(θ).

It is easy to see that, if Xt ∈ B(0, r), then |Zt| < r, hence Ex[τB(0,r)] ≤ E|x|[τ̃ ], where τ̃ =

inf{t > 0 : |Zt| ≥ r}. By [5, (2.17)], the proof of [5, Proposition 2.4] and Lemma 2.2.

Ex[τB(0,r)] ≤ E|x|[τ̃ ] ≤ c (Ψ(r−1)Ψ((r − |x|)−1))−1/2.

Now the assertion of the lemma follows immediately by (2.1). 2

Given an open set D ⊂ Rd, we define XD
t (ω) = Xt(ω) if t < τD(ω) and XD

t (ω) = ∂ if t ≥ τD(ω),

where ∂ is a cemetery state. We now recall the definitions of harmonic functions with respect to

X and with respect to XD.

Definition 2.6 Let D be an open subset of Rd. A nonnegative function u on Rd is said to be

(1) harmonic in D with respect to X if

u(x) = Ex [u(XτU )] , x ∈ U,

for every open set U whose closure is a compact subset of D;

(2) regular harmonic in D with respect to X if for each x ∈ D,

u(x) = Ex [u(XτD); τD <∞] .

Definition 2.7 Let D be an open subset of Rd. A nonnegative function u on D is said to be

harmonic with respect to XD if

u(x) = Ex [u(XτU )] , x ∈ U,

for every open set U whose closure is a compact subset of D.

Obviously, if u is harmonic with respect to XD, then the function which is equal to u in D and

zero outside D is harmonic with respect to X in D.

Since our X satisfies [7, (1.6), (UJS)], by [7, Theorem 1.4] and using the standard chain

argument one has the following form of Harnack inequality.
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Theorem 2.8 For every a ∈ (0, 1), there exists c = c(a,Ψ, γ1, γ2) > 0 such that for every r ∈ (0, 1),

x0 ∈ Rd, and every function u which is nonnegative on Rd and harmonic with respect to X in

B(x0, r), we have

u(x) ≤ c u(y), for all x, y ∈ B(x0, ar) .

Let D ⊂ Rd be an open set. Since JX satisfies the assumption [7, (1.6)], by [7, Theorem 3.1],

bounded functions that are harmonic in D with respect to X are Hölder continuous. Suppose that

u is a nonnegative function which is harmonic with respect to X in D. For any ball B := B(x0, r)

with B ⊂ B ⊂ D, the functions un, n ≥ 1, defined by

un(x) := Ex [(u ∧ n)(XτB )] , x ∈ Rd ,

are bounded functions which are harmonic with respect to X in B. Applying Theorem 2.8 to

vn(x) := u(x)− un(x) = Ex [(u− (u ∧ n))(XτB )], it is easy to see that un converges to u uniformly

in B(x0, r/2). Thus u is continuous in D. This implies that all nonnegative functions that are

harmonic in D with respect to X are continuous.

A subset D of Rd is said to be Greenian (for X) if XD is transient. By [7, Theorem 3.1] XD

has Hölder continuous transition densities pD(t, x, y). For any Greenian open set D in Rd, let

GD(x, y) =
∫∞

0 pD(t, x, y)dt be the Green function of XD. Then GD(x, y) is finite off the diagonal

D × D. Furthermore, x 7→ GD(x, y) is harmonic in D \ {y} with respect to X and therefore

continuous. Using the Lévy system for X, we know that for every Greenian open subset D and

every f ≥ 0 and x ∈ D,

Ex [f(XτD); XτD− 6= XτD ] =

∫
D
c

∫
D
GD(x, z)JX(z − y)dzf(y)dy. (2.7)

We define the Poisson kernel

KD(x, y) :=

∫
D
GD(x, z)JX(z − y)dz, (x, y) ∈ D ×Dc

. (2.8)

Thus (2.7) can be simply written as

Ex [f(XτD); XτD− 6= XτD ] =

∫
D
c
KD(x, y)f(y)dy.

The following result will be used later in this paper.

Lemma 2.9 There exist c1 = c1(Ψ, γ1, γ2) > 0 and c2 = c2(Ψ, γ1, γ2) > 0 such that for every

r ∈ (0, 1] and x0 ∈ Rd,

KB(x0,r)(x, y) ≤ c1j(|y − x0| − r)(φ(r−2)φ((r − |x− x0|)−2))−1/2

≤ c1j(|y − x0| − r)φ(r−2)−1 (2.9)

for all (x, y) ∈ B(x0, r)×B(x0, r)
c

and

KB(x0,r)(x0, y) ≥ c2j(|y − x0|)φ(r−2)−1, for all y ∈ B(x0, r)
c
. (2.10)
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Proof. This proof is exactly the same as that of [18, Proposition 13.4.10]. We provide the proof

to show that only the monotonicity of j, (1.1), (2.4) and Lemmas 2.4 and 2.5 are used.

Without loss of generality, we assume x0 = 0. For z ∈ B(0, r) and r < |y| < 2,

|y| − r ≤ |y| − |z| ≤ |y − z| ≤ |z|+ |y|+ r + |y| ≤ 2|y|,

and for z ∈ B(0, r) and y ∈ B(0, 2)c,

|y| − r ≤ |y| − |z| ≤ |y − z| ≤ |z|+ |y|+ r + |y| ≤ |y|+ 1.

Thus by the monotonicity of j, (1.1) and (2.4), there exists a constant c > 0 such that

cj(|y|) ≤ j(|z − y|) ≤ j(|y| − r), (z, y) ∈ B(0, r)×B(0, r)
c
.

Applying the above inequalities, Lemmas 2.4 and 2.5 to (2.8), we immediately get the assertion of

the lemma. 2

As in [20], to deal with κ-fat open set, we need the following form of Harnack inequality.

Theorem 2.10 Let L > 0. There exists a positive constant c = c(L,Ψ, γ1, γ2) > 1 such that

the following is true: If x1, x2 ∈ Rd and r ∈ (0, 1) are such that |x1 − x2| < Lr, then for every

nonnegative function u which is harmonic with respect to X in B(x1, r) ∪B(x2, r), we have

c−1u(x2) ≤ u(x1) ≤ cu(x2).

Proof. Let r ∈ (0, 1], x1, x2 ∈ Rd be such that |x1 − x2| < Lr and let u be a nonnegative function

which is harmonic in B(x1, r)∪B(x2, r) with respect to X. If |x1− x2| < 1
4r, then since r < 1, the

theorem is true by Theorem 2.8. Thus we only need to consider the case when 1
4r ≤ |x1−x2| ≤ Lr

with L > 1
4 .

Let w ∈ B(x1,
r
8). Because |x2 − w| ≤ |x1 − x2| + |w − x1| < (L + 1

8)r ≤ 2Lr, first using the

monotonicity of j and (2.10), then using (2.2) and Lemma 2.1, we get

KB(x2,
r
8

)(x2, w) ≥ c1 j(2Lr)φ(r−2)−1 ≥ c2 r
−dφ((2Lr)−2)

φ(r−2)
≥ c3r

−d. (2.11)

For any y ∈ B(x1,
r
8), u is regular harmonic in B(y, 7r

8 ) ∪ B(x1,
7r
8 ). Since |y − x1| < r

8 , by the

already proven part of this theorem,

u(y) ≥ c2u(x1), y ∈ B(x1,
r

8
), (2.12)

for some constant c2 > 0. Therefore, by (2.7) and (2.11)–(2.12),

u(x2) = Ex2
[
u(XτB(x2,

r
8 )

)
]
≥ Ex2

[
u(XτB(x2,

r
8 )

);XτB(x2,
r
8 )
∈ B(x1,

r

8
)
]
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≥ c2 u(x1)Px2
(
XτB(x2,

r
8 )
∈ B(x1,

r

8
)
)

= c2 u(x1)

∫
B(x1,

r
8

)
KB(x2,

r
8

)(x2, w) dw

≥ c3 u(x1)
∣∣∣B(x1,

r

8
)
∣∣∣ r−d = c4 u(x1).

Thus we have proved the right-hand side inequality in the conclusion of the theorem. The inequality

on the left-hand side follows by symmetry. 2

For notational convenience, we define

Φ(r) =
1

φ(r−2)
, r > 0. (2.13)

The inverse function of Φ will be denoted by the usual notation Φ−1(r).

Our process X belongs to the class of Markov processes considered in [7]. Thus we have the

following two-sided estimates for p(t, x, y) from [7]. The proof is the same as that of [9, Proposition

2.2].

Proposition 2.11 For any T > 0, there exists c1 = c1(T,Ψ, γ1, γ2) > 0 such that

p(t, x, y) ≤ c1 (Φ−1(t))−d for all (t, x, y) ∈ (0, T ]× Rd × Rd. (2.14)

For any T,R > 0, there exists c2 = c2(T,R,Ψ, γ1, γ2) > 1 such that for all (t, x, y) ∈ [0, T ]×Rd×Rd

with |x− y| < R,

c−1
2

(
(Φ−1(t))−d ∧ t

|x− y|d Φ(|x− y|)

)
≤ p(t, x, y) ≤ c2

(
(Φ−1(t))−d ∧ t

|x− y|d Φ(|x− y|)

)
.

(2.15)

Our argument to obtain upper bound on the Green functions of bounded open sets is similar

to those in [8, 15]. We give the details here for the completeness.

Lemma 2.12 For every bounded open set D, the Green function GD(x, y) is finite and continuous

off the diagonal of D ×D and there exists c = c(diam(D),Ψ, γ1, γ2) ≥ 1 such that for all x, y ∈ D,

GD(x, y) ≤ c
Φ(|x− y|)
|x− y|d

=
c

|x− y|dφ(|x− y|−2)
. (2.16)

Proof. Put L := diam(D). By (2.15), for every x ∈ D we have

Px(τD ≤ 1) ≥ Px(X1 ∈ Rd \D) =

∫
Rd\D

p(1, x, y)dy

≥ c1

∫
Rd\D

(
1 ∧ 1

|x− y|d Φ(|x− y|)

)
dy ≥ c1

∫
{ |z| ≥L }

(
1 ∧ 1

|z|d Φ(|z|)

)
dz = c2 > 0.

Thus

sup
x∈D

∫
D
pD(1, x, y)dy = sup

x∈D
Px(τD > 1) < 1.
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Now the Markov property of X implies that there exist positive constants c3 and c4 such that∫
D
pD(t, x, y)dy ≤ c3e

−c4t for all (t, x) ∈ (0,∞)×D.

Thus combining this, (2.15) and the semigroup property, we have that for any (t, x, y) ∈ (1,∞)×
D ×D,

pD(t, x, y) =

∫
D
pD(t− 1, x, z)pD(1, z, y)dz ≤ c5

∫
D
pD(t− 1, x, z)dz ≤ c6e

−c4t.

This with (2.15) implies that such that for any (x, y) ∈ D ×D,

GD(x, y) =

∫ ∞
0

pD(t, x, y)dt ≤ c7

∫ 1

0

(
(Φ−1(t))−d ∧ t

|x− y|d Φ(|x− y|)

)
dt+ c7. (2.17)

By the proof of [7, Theorem 6.1],∫ 1

0

(
(Φ−1(t))−d ∧ t

|x− y|d Φ(|x− y|)

)
dt � Φ(|x− y|)

|x− y|d
.

Therefore the Green function GD(x, y) =
∫∞

0 pD(t, x, y)dt is finite and continuous off the diagonal

of D × D. Furthermore, by (2.3), we have infa≤diam(D) Φ(a)a−d > 0. Consequently, (2.16) holds.

2

For interior lower bound on the Green function, we use some recent results from [9]. The next

result is an analog of [9, Proposition 3.6], which is the main result of [9, Section 3]. Even though

it is assumed in [9] that X is rotationally symmetric and its Lévy density satisfies a little stronger

assumption than in this paper, all the arguments of [9, Section 3] only use the results in [7], (1.1),

(1.2), (2.2), (2.3), and the semigroup property. Thus by following the same arguments line by

line, one can prove the next proposition. We omit the details. We note in passing that D is not

necessarily bounded in the next proposition.

Proposition 2.13 Let T and a be positive constants. There exists c = c(T, a,Ψ, γ1, γ2) > 0 such

that for any open set D,

pD(t, x, y) ≥ c ((Φ−1(t))−d ∧ tj(|x− y|))

for every (t, x, y) ∈ (0, T ]×D ×D with δD(x) ∧ δD(y) ≥ aΦ−1(t).

Lemma 2.14 For every L, T > 0, there exists c = c(T, L,Ψ, γ1, γ2) > 0 such that for any bounded

open set D with diam(D) ≤ T , x, y ∈ D with |x− y| ≤ L(δD(x) ∧ δD(y)),

GD(x, y) ≥ cΦ(|x− y|)
|x− y|d

=
c

|x− y|dφ(|x− y|−2)
. (2.18)
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Proof. Without loss of generality, we assume L ≥ 1, δD(y) ≤ δD(x) and diam(D) ≤ T . By

Proposition 2.13 and (2.2), there exists c1 = c1(T,Ψ, γ1, γ2) > 0 such that for all (t, z, w) ∈
(0, T ]×D ×D with δD(z) ∧ δD(w) ≥ Φ−1(t),

pD(t, z, w) ≥ c1

(
(Φ−1(t))−d ∧ t

|z − w|dΦ(|z − w|)

)
. (2.19)

Using this we have

GD(x, y) ≥
∫ T

0
pD(t, x, y)dt ≥

∫ Φ(δD(y))

0
pD(t, x, y)dt

≥ c1

∫ Φ(δD(y))

0
(Φ−1(t))−d ∧ t

|x− y|dΦ(|x− y|)
dt

≥ c1

∫ Φ(L−1|x−y|)

0
(Φ−1(t))−d ∧ t

|x− y|dΦ(|x− y|)
dt. (2.20)

Let r = |x− y|. By the change of variable u = Φ(r)
t and the fact that t→ Φ(t) is increasing,∫ Φ(L−1r)

0
(Φ−1(t))−d ∧ t

rdΦ(r)
dt =

Φ(r)

rd

∫ ∞
Φ(r)/Φ(L−1r)

u−2

((
r

Φ−1(u−1Φ(r))

)d
∧ u−1

)
du

=
Φ(r)

rd

∫ ∞
Φ(r)/Φ(L−1r)

u−3du. (2.21)

Since by (2.3) and (2.13) ∫ ∞
Φ(r)/Φ(L−1r)

u−3du ≥
∫ ∞
c2L2δ1

u−3du > 0, (2.22)

we conclude from (2.20) and (2.21) that (2.18) holds. 2

It follows from (2.3), Lemmas 2.14 and 2.5 that, for all r ∈ (0, 1) and all α ∈ (0, π), there exists

c = c(α) > 0 such that for all cones V of angle α with vertex at the origin,

E0

∫ τB(0,r)

0
1V (Xs)ds ≥

∫
V ∩B(0,r/2)

GB(0,r)(0, y)dy ≥ c1

∫
V ∩B(0,r/2)

1

|y|dφ(|y|−2)
dy

≥ c2

∫ r/2

0

1

rφ(r−2)
dr ≥ c3φ(r−2) ≥ c4E0τB(0,r).

Thus X satisfies hypothesis H in [30]. It follows from (1.2), (2.2) and Lemma 2.4 that for every

cone V with vertex at the origin,∫
V ∩B(0,1)

E0τB(0,|y|)JX(y)dy ≥ c
∫
V ∩B(0,1)

|y|−ddy =∞.

Therefore it follows from [30, Theorem 1] that if V is a Lipschitz open set in Rd and D is an open

subset of V ,

Px(XτD ∈ ∂V ) = 0, x ∈ D.
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Using Theorem 2.8, the proof of the next result is the same as that of [18, Proposition 13.4.11]. So

we omit the proof.

Proposition 2.15 For every a ∈ (0, 1), there exists c = c(Ψ, γ1, γ2, a) > 0 such that for every

r ∈ (0, 1], x0 ∈ Rd and x1, x2 ∈ B(x0, ar),

KB(x0,r)(x1, y) ≤ cKB(x0,r)(x2, y), a.e. y ∈ B(x0, r)
c
.

Proposition 2.16 For every a ∈ (0, 1), there exists c = c(Ψ, γ1, γ2, a) > 0 such that for every

r ∈ (0, 1] and x0 ∈ Rd,

KB(x0,r)(x, y) ≤ c r−d
(
φ((|y − x0| − r)−2)

φ(r−2)

)1/2

for all x ∈ B(x0, ar) and a.e. y such that r < |x0 − y| < 2r.

Proof. Using (2.2), Lemmas 2.2, 2.5 and Proposition 2.15, the proof is exactly the same as that

of [21, Proposition 4.9]. We omit it. 2

Lemma 2.17 For every a ∈ (0, 1), there exists a constant c = c(Ψ, γ1, γ2, a) > 0 such that for any

r ∈ (0, 1) and any open set D with D ⊂ B(0, r) we have

Px (XτD ∈ B(0, r)c) ≤ c φ(r−2)

∫
D
GD(x, y)dy, x ∈ D ∩B(0, ar) .

Proof. Using Lemma 2.3, the proof is exactly the same as that of [21, Lemma 4.10]. We omit it.

2

With these preparations in hand, we can repeat the argument of [21, Section 5] to get the

following form of the boundary Harnack principle established in [21]. We omit the details. Note

that the open set D in the next result is not necessarily bounded.

Theorem 2.18 There exists C1 = C1(Ψ, γ1, γ2) ≥ 1 such that the following hold for all r ∈ (0, 1).

(i) For every z0 ∈ Rd, every open set U ⊂ B(z0, r) and for any nonnegative function u in Rd

which is regular harmonic in U with respect to X and vanishes a.e. in U c ∩B(z0, r) it holds

that

C−1
1 Ex[τU ]

∫
B(z0,r/2)c

j(|y − z0|)u(y)dy ≤ u(x) ≤ C1 Ex[τU ]

∫
B(z0,r/2)c

j(|y − z0|)u(y)dy

for every x ∈ U ∩B(z0, r/2).

12



(ii) For every z0 ∈ Rd, every open set D ⊂ Rd, every r ∈ (0, 1) and for any nonnegative functions

u, v in Rd which are regular harmonic in D ∩ B(z0, r) with respect to X and vanish a.e. in

Dc ∩B(z0, r), we have

u(x)

v(x)
≤ C4

1

u(y)

v(y)
, x, y ∈ D ∩B(z0, r/2).

(iii) For every z0 ∈ Rd, every Greenian open set D ⊂ Rd, every r ∈ (0, 1), we have

KD(x1, y1)KD(x2, y2) ≤ C4
1KD(x1, y2)KD(x2, y1)

for all x1, x2 ∈ D ∩B(z0, r/2) and a.e. y1, y2 ∈ D
c ∩B(z0, r)

c.

In the next two results, we will assume that X is transient and will use G(x, y) to denote the

Green function of X. Note that G(x, y) = G(y, x) by symmetry and G(x, y) = G(0, y − x) by

translation invariance. Since we only assume that X is symmetric, rather than unimodal, the next

result does not follow from [13].

Theorem 2.19 For every M ≥ 1 there exists a constant C2(M) = C2(M,Ψ, γ1, γ2) > 0 such that

for all x ∈ B(0,M),

C2(M)−1 Φ(|x|)
|x|d

≤ G(x, 0) ≤ C2(M)
Φ(|x|)
|x|d

.

Proof. In this proof, we always assume that x ∈ B(0,M). It follows from Lemma 2.14 that

G(x, 0) ≥ GB(0,2M)(x, 0) ≥ c1
Φ(|x|)
|x|d

.

On the other hand, by the strong Markov property and Lemma 2.12,

G(x, 0) = GB(0,2M)(x, 0) + Ex[G(XτB(0,2M)
, 0)] ≤ c2

Φ(|x|)
|x|d

+ Ex[G(XτB(0,2M)
, 0)].

Choose x0 = (0, . . . , 0,M/2). By Theorem 2.10 and the strong Markov property, we have

Ex[G(XτB(0,2M)
, 0)] ≤ c3Ex0 [G(XτB(0,2M)

, 0)] ≤ c3G(x0, 0) ≤ c4 <∞.

Furthermore, by (2.3), we have infa≤2M Φ(a)a−d > 0. Thus we conclude that

G(x, 0) = GB(0,2M)(x, 0) + Ex[G(XτB(0,2M)
, 0)] ≤ c2

Φ(|x|)
|x|d

+ c4 ≤ c5
Φ(|x|)
|x|d

.

2

The following result will be needed in the proof of Theorem 3.12.
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Lemma 2.20 If X is transient, then

lim
x→∞

G(x, 0) = 0.

Proof. It follows from the transience assumption and (1.5) that 1/ΨX is locally integrable in Rd,
thus by [1, Proposition 13.23] that the semigroup of X is integrable (in the sense of [1]). Therefore

it follows from [1, Proposition 13.21] that, for any nonnegative continuous function f on Rd with

compact support, limx→∞Gf(x) = 0.

By Theorem 2.8, for any x ∈ B(0, 4)c,

G(x, 0) ≤ cG(x, y), y ∈ B(0, 2).

Take a nonnegative function f with support in B(0, 2) such that f is identically 1 on B(0, 1). Then

G(x, 0)

∫
B(0,2)

f(y)dy =

∫
B(0,2)

G(x, 0)f(y)dy ≤ c
∫
B(0,2)

G(x, y)f(y)dy = Gf(x),

which yields

G(x, 0) ≤ c Gf(x)∫
B(0,2) f(y)dy

.

Therefore limx→∞G(x, 0) = 0. 2

Remark 2.21 Note that several results of this section are stated only for small radii r, namely

r ∈ (0, 1]. This is, of course, a consequence of the scaling condition (H) at infinity which governs

the behavior of the process for small time and small space. If we want to study the large time and

large space behavior of X, we would need to add the following scaling condition on Ψ near the

origin too:

(H2): There exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

a3λ
2δ4Ψ(t) ≤ Ψ(λt) ≤ a4λ

2δ3φ(t), λ ≤ 1, t ≤ 1 .

One consequence of adding condition (H2) to condition (H) is that many results that were valid

for small r only will hold true for all r > 0. For future reference, we list below precisely which

statements are true.

First note that if both (H) and (H2) hold, there exist a5, a6 > 0 such that

a5

(
R

r

)2(δ1∧δ3)

≤ Ψ(R)

Ψ(r)
≤ a6

(
R

r

)2(δ2∨δ4)

, a > 0, 0 < r < R <∞ , (2.23)

cf. [22, (2.6)].

In the remainder of this remark, in addition to all conditions from Section 1, namely (1.1), (1.2)

and (H), we also assume (H2). Then X satisfies the assumptions in [10]. Furthermore, it follows
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from [4, (15), Corollary 23, Proposition 28] and (2.23) that (2.2) and (2.4) hold for all r > 0. That

is, under both (H) and (H2)

j(r) � φ(r−2)

rd
for r > 0, (2.24)

and

j(r) ≤ cj(2r) , r > 0 . (2.25)

The following results are now true for all r > 0: Theorem 2.8, Lemma 2.9, Theorem 2.10, Proposi-

tion 2.15, Proposition 2.16, Lemma 2.17 and Theorem 2.18. In order to prove Theorem 2.8, we also

have to use [10, Theorem 4.12], while in the proof of Theorem 2.10 we use (2.24) instead of (2.2).

Furthermore, using results in [10], Proposition 2.13 and Lemma 2.14 hold with T = ∞. Proofs of

all other listed results stay the same.

3 Martin Boundary

In this section we will use the boundary Harnack principle (Theorem 2.18) and follow the well-

established route, see [2, 17, 19, 23], to study the Martin boundary of an open set D with respect

to X. The key ingredient is the oscillation reduction technique used in the proof of Lemma 3.4.

Throughout this section we assume that D ⊂ Rd is a Greenian open set, Q ∈ D and D is

κ-fat at Q for some κ ∈ (0, 1
2), that is, there is R > 0 such that for all r ∈ (0, R], there is a ball

B(Ar(Q), κr) ⊂ D ∩ B(Q, r). Without loss of generality, we assume that R ≤ 1/2. After Lemma

3.4, we will further assume that Q ∈ ∂D.

Lemma 3.1 There exist C3 = C3(Ψ, κ, γ1, γ2) > 0 and ξ = ξ(Ψ, κ, γ1, γ2) ∈ (0, 1) such that for

every r ∈ (0, R) and any non-negative function h in Rd which is harmonic in D ∩B(Q, r) it holds

that

h(Ar(Q)) ≤ C3(φ(r−2))−1ξkφ((κ/2)−2kr−2)h(A(κ/2)kr(Q)) , k = 0, 1, 2, . . . . (3.1)

Proof. Without loss of generality, we may assume that Q = 0. Fix r ∈ (0, R). For k = 0, 1, 2, . . . ,

let ηk = (κ/2)kr, Ak = Aηk(0) and Bk = B(Ak, ηk+1). Note that the balls Bk are pairwise disjoint.

By harmonicity of h, for every k = 0, 1, 2 . . . ,

h(Ak) = EAk
[
h(XτBk

)
]
≥

k−1∑
l=0

EAk
[
h(XτBk

) : XτBk
∈ Bl

]
=

k−1∑
l=0

∫
Bl

KBk(Ak, z)h(z) dz .

By Theorem 2.10, there exists c1 = c1(Ψ, γ1, γ2) > 0 such that for every l = 0, 1, 2, . . . , h(z) ≥
c1h(Al) for all z ∈ Bl . Hence∫

Bl

KBk(Ak, z)h(z) dz ≥ c1h(Al)

∫
Bl

KBk(Ak, z) dz , 0 ≤ l ≤ k − 1 .
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By (2.10), we have∫
Bl

KBk(Ak, z)dz ≥ c2φ(η−2
k )−1

∫
Bl

j(|2(Ak − z)|)dz , 0 ≤ l ≤ k − 1 .

For l = 0, 1, · · · , k− 1 and z ∈ Bl, it holds that |z| ≤ κ(κ/2)lr+ (κ/2)(l+1)r = (3κ/2)(κ/2)lr. Since

|Ak| ≤ κηk, we have that |Ak − z| ≤ |Ak| + |z| < 3ηl. Together with (2.2) and Lemma 2.1, this

implies that j(|2(Ak − z)|) ≥ c3|ηl|−dφ(η−2
k ) for every z ∈ Bl and 0 ≤ l ≤ k − 1. Therefore,∫

Bl

KBk(Ak, z) dz ≥ c4|ηl|−dφ(η−2
k )φ(η−2

k )−1|Bl| ≥ c5φ(η−2
l )/φ(η−2

k ) , 0 ≤ l ≤ k − 1 .

Hence,

φ(η−2
k )h(Ak) ≥ c5

k−1∑
l=0

φ(η−2
l )h(Al) , for all k = 1, 2, . . . ,

where c5 = c5(Ψ, γ1, γ2, κ). Let ak := φ(η−2
k )h(Ak) so that ak ≥ c5

∑k−1
l=0 al. Using the identity

1 + c5
∑k−2

l=0 (1 + c5)l = (1 + c5)k−1 for k ≥ 3, by induction it follows that ak ≥ c5(1 + c5)k−1a0. Let

ξ := (1 + c5)−1 ∈ (0, 1) so that

φ(r−2)h(A0) = a0 ≤ (1 + c5)c−1
5 ξkak = (1 + c5)c−1

5 ξkφ(η−2
k )h(Ak).

Then,

h(Ar(0)) ≤ (1 + c5)c−1
5 (φ(r−2))−1ξkφ(η−2

k )h(A(κ/2)kr(0)) .

2

Lemma 3.2 There exists c = c(Ψ, κ, γ1, γ2) > 0 such that for every r ∈ (0, R) and every non-

negative function u in Rd which is regular harmonic in D ∩B(Q, r) with respect to X,

u(Ar(Q)) ≥ cφ(r−2)−1

∫
B(Q,r)c

j(|z −Q|)u(z)dz.

Proof. Without loss of generality, we may assume that Q = 0. Fix r ∈ (0, R) and let A := Ar(0).

Since u is regular harmonic in D ∩B(0, (1− κ/2)r) with respect to X, we have

u(A) ≥ EA
[
u(XτD∩B(0,(1−κ/2)r)) : XτD∩B(0,(1−κ/2)r) ∈ B(0, r)c

]
=

∫
B(0,r)c

KD∩B(0,(1−κ/2)r)(A, z)u(z)dz

=

∫
B(0,r)c

∫
D∩B(0,(1−κ/2)r)

GD∩B(0,(1−κ/2)r)(A, y)JX(y − z)dyu(z)dz.

Since B(A, κr/2) ⊂ D ∩B(0, (1− κ/2)r), by the domain monotonicity of Green functions,

GD∩B(0,(1−κ/2)r)(A, y) ≥ GB(A,κr/2)(A, y), y ∈ B(A, κr/2).
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Thus

u(A) ≥
∫
B(0,r)c

∫
B(A,κr/2)

GB(A,κr/2)(A, y)JX(y − z)dyu(z)dz

=

∫
B(0,r)c

KB(A,κr/2)(A, z)u(z)dz

≥ c1φ((κr/2)−2)−1

∫
B(0,r)c

j(|A− z|)u(z)dz,

where in the last line we used (2.10). Note that |A−z| ≤ 2|z| for z ∈ A(0, r, 1) and |A−z| ≤ |z|+1

for z ∈ B(0, 1)c. Hence by (1.1), (2.4) and Lemma 2.1,

u(A) ≥ c2φ(r−2)−1

∫
B(0,r)c

j(|z|)u(z)dz.

2

Lemma 3.3 There exist C4 = C4(Ψ, κ, γ1, γ2) ≥ 1 and ξ = ξ(Ψ, κ, γ1, γ2) ∈ (0, 1) such that for

any r ∈ (0, 1), and any non-negative function u on Rd which is regular harmonic in D ∩ B(Q, r)

with respect to X and vanishes in Dc ∩B(Q, r) we have

Ex
[
u(XτD∩Bk

) : XτD∩Bk
∈ B(Q, r)c

]
≤ C4ξ

ku(x), x ∈ D ∩Bk,

where Bk := B(Q, (κ/2)kr), k = 0, 1, 2, · · · .

Proof. Without loss of generality, we may assume that Q = 0. Fix r ∈ (0, R). Let ηk := (κ/2)kr,

Bk := B(0, ηk) and

uk(x) := Ex
[
u(XτD∩Bk

) : XτD∩Bk
∈ B(0, r)c

]
, x ∈ D ∩Bk.

Note that for x ∈ D ∩Bk+1,

uk+1(x) = Ex
[
u(XτD∩Bk+1

) : XτD∩Bk+1
∈ B(0, r)c

]
= Ex

[
u(XτD∩Bk+1

) : τD∩Bk+1
= τD∩Bk , XτD∩Bk+1

∈ B(0, r)c
]

= Ex
[
u(XτD∩Bk

) : τD∩Bk+1
= τD∩Bk , XτD∩Bk

∈ B(0, r)c
]

≤ Ex
[
u(XτD∩Bk

) : XτD∩Bk
∈ B(0, r)c

]
.

Thus

uk+1(x) ≤ uk(x), x ∈ D ∩Bk+1. (3.2)

Let Ak := Aηk(0). Similarly we have

uk(Ak) = EAk
[
u(XτD∩Bk

) : XτD∩Bk
∈ B(0, r)c

]
17



≤ EAk
[
u(XτBk

) : XτD∩Bk
∈ B(0, r)c

]
≤

∫
B(0,r)c

KBk(Ak, z)u(z)dz.

By (2.9), we have

KBk(Ak, z) ≤ c1j(|z| − ηk)φ(η−2
k )−1, z ∈ B(0, r)c.

Note that |z| − ηk ≥ |z|/2 for z ∈ A(0, r, 2) and |z| − ηk ≥ |z| − 1 for z ≥ 2. Thus by (1.1), (2.4)

and the monotonicity of j,

uk(Ak) ≤ c2φ(η−2
k )−1

∫
B(0,r)c

j(|z|)u(z)dz, k = 1, 2, · · · . (3.3)

By Lemma 3.2, we have

u(A0) ≥ c3φ(η−2
1 )−1

∫
B(0,r)c

j(|z|)u(z)dz. (3.4)

Thus (3.3)–(3.4) imply that

uk(Ak) ≤ c4φ(η−2
1 )/φ(η−2

k )u(A0).

On the other hand, using Lemma 3.1, we get

u(A0) ≤ c5(φ(r−2))−1ξkφ(η−2
k )u(Ak).

Combining the last two displays and using Lemma 2.1, we get

uk(Ak) ≤ c6ξ
kφ(η−2

1 )

φ(r−2)
u(Ak) ≤ c7ξ

ku(Ak).

By the boundary Harnack principle, Theorem 2.18 (i), we have

uk(x)

u(x)
≤ uk−1(x)

u(x)
≤ c8

uk−1(Ak−1)

u(Ak−1)
≤ c9ξ

k

for k = 1, 2, · · · . The proof is now complete. 2

Using the boundary Harnack principle and Lemma 3.3 (instead of Lemmas 13 and 14 in [2]),

we can repeat the argument of [2, Lemma 16] (which dealt with isotropic stable process) to get

the following result. We include the proof from [2] to show that it does not depend on scaling

property of stable processes, and on the way make some constants explicit and provide the detailed

computation in the end of the induction argument.

Lemma 3.4 There exist c = c(Ψ, γ1, γ2, κ) > 0 and β = β(Ψ, γ1, γ2, κ) > 0 such that for all

r ∈ (0, R/2) and non-negative functions u and v on Rd which are regular harmonic in D∩B(Q, 2r)

with respect to X, vanish on Dc ∩ B(Q, 2r) and satisfy u(Ar(Q)) = v(Ar(Q)), the limit g =

limD3x→Q
u(x)
v(x) exists, and we have∣∣∣∣u(x)

v(x)
− g
∣∣∣∣ ≤ c( |x−Q|r

)β
, x ∈ D ∩B(Q, r). (3.5)
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Proof. Fix r ∈ (0, R/2). Without loss of generality, we assume that u(Ar(Q)) = v(Ar(Q)) = 1.

Let D0 = D ∩ B(Q, r). We start the proof by fixing several constants. We first choose c1 =

c1(Ψ, γ1, γ2) ≥ 10 such that

sup
x∈D0

u(x)

v(x)
≤
(

1 +
c1

2

)
inf
x∈D0

u(x)

v(x)
. (3.6)

This is possible because of Theorem 2.18 (it suffices to choose 1+c1/2 ≥ C2
1 ). Let δ = δ(Ψ, γ1, γ2) :=

1 − 1
2C
−1
1 ∈ (1/2, 1), where C1 is the constant from Theorem 2.18. We further define ε =

ε(Ψ, γ1, γ2) ∈ (0, 1/4) by

ε :=
1− δ
20c1

,

and choose k0 = k0(Ψ, γ1, γ2, κ) ∈ N large enough so that (1 − ξk0)−1 ≤ 2 and C4ξ
k0 ≤ ε(4C1)−1

where C4 ≥ 1 and ξ ∈ (0, 1) are the constants from Lemma 3.3.

For k = 0, 1, . . . , define

rk = (κ/2)k0kr, Bk = B(Q, rk), Dk = D ∩Bk, Πk = Dk \Dk+1, Π−1 = Bc
0.

For l = −1, 0, 1, . . . , k − 1, let

ulk(x) := Ex
[
u(XτDk

);XτDk
∈ Πl

]
, x ∈ Rd, (3.7)

vlk(x) := Ex
[
v(XτDk

);XτDk
∈ Πl

]
, x ∈ Rd. (3.8)

Apply Lemma 3.3 with r̃ = rl+1 instead of r. Then rk = (κ/2)k0kr = (κ/2)k0(k−l−1)r̃, hence for

k = 0, 1, 2, . . . and x ∈ Dk

ulk(x) ≤ C4(ξk0)k−l−1u(x), l = −1, 0, 1, . . . , k − 2. (3.9)

Then since
∑k−2

l=−1(ξk0)k−1−l = ξk0
∑k−1

n=0(ξk0)n ≤ ξk0(1 − ξk0)−1 ≤ 2ξk0 , we have that for k =

1, 2, . . . and x ∈ Dk,
k−2∑
l=−1

ulk(x) ≤ 2C4ξ
k0u(x). (3.10)

Since 2C4ξ
k0 ≤ ε/2 < 1/2, for k = 1, 2, . . . , l = −1, 0, 1, . . . , k − 2, we have

∑k−2
l=−1 u

l
k(x) ≤ uk−1

k (x)

for all x ∈ Dk and, by (3.10)

ulk(x) ≤ εk−1−luk−1
k (x), x ∈ Dk. (3.11)

By symmetry we also have that for k = 1, 2, . . . , l = −1, 0, 1, . . . , k − 2,

vlk(x) ≤ εk−1−lvk−1
k (x), x ∈ Dk. (3.12)

Define ζ = ζ(Ψ, γ1, γ2) ∈ (1/2, 1) by

ζ =

√
1 + δ

2
.
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We claim that for all l = 0, 1, . . .

sup
x∈Dl

u(x)

v(x)
≤ (1 + c1ζ

l) inf
x∈Dl

u(x)

v(x)
. (3.13)

By Theorem 2.18 with y = Ar(Q) we have that

C−1
1 ≤ u(x)

v(x)
≤ C1, x ∈ D0 = D ∩B(Q, r). (3.14)

We show that (3.13) and (3.14) imply the statement of the lemma. Indeed,

sup
x∈Dl

u(x)

v(x)
− inf
x∈Dl

u(x)

v(x)
≤ c1ζ

l inf
x∈Dl

u(x)

v(x)
≤ C1c1ζ

l, l = 0, 1, . . . .

Since the right-hand side goes to zero as l → ∞, the same is valid for the left-hand side proving

that the limit g = limD3x→Q
u(x)
v(x) exists. Further, for x ∈ D ∩B(Q, r) there is a unique l ≥ 1 such

that x ∈ Πl−1 ⊂ Dl−1. Thus x /∈ Dl implying |x−Q| ≥ rl = (κ/2)k0lr, that is

l ≥
log r

|x−Q|

k0 log 2
κ

.

Let β := − log ζ

k0 log 2
κ

. Then β = β(Ψ, γ1, γ2, κ) and

∣∣∣∣u(x)

v(x)
− g
∣∣∣∣ ≤ C1c1ζ

l ≤ C1c1ζ

log r
|x−Q|

k0 log 2
κ = C1c1

(
r

|x−Q|

) log ζ

k0 log 2
κ = C1c1

(
|x−Q|

r

)β
.

We now prove (3.13) by induction. By (3.6) we wee that (3.13) holds for l = 0. Again by (3.6)

and the fact that ζ > 1/2 we have

sup
x∈D1

u(x)

v(x)
≤ sup

x∈D0

u(x)

v(x)
≤
(

1 +
c1

2

)
inf
x∈D0

u(x)

v(x)
≤ (1 + c1ζ) inf

x∈D0

u(x)

v(x)
≤ (1 + c1ζ) inf

x∈D1

u(x)

v(x)
,

hence (3.13) holds also for l = 1. Let k = 0, 1, . . . and assume that (3.13) holds for l = 0, 1, 2, . . . , k.

By the definitions (3.7)–(3.8), and the regular harmonicity of u and v, we have

u(x) =
k∑

l=−1

ulk+1(x), x ∈ Dk+1, (3.15)

v(x) =

k∑
l=−1

vlk+1(x), x ∈ Dk+1. (3.16)

For any function f on a set A we define

OscAf = sup
x∈A

f(x)− inf
x∈A

f(x).
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Let g(x) := ukk+1(x)/vkk+1(x), x ∈ Dk. We claim that

OscDk+2
g ≤ δOscDkg. (3.17)

Recall that δ = 1 − 1
2C
−1
1 ∈ (1/2, 1). Let m1 := infx∈Dk g(x) and m2 := supx∈Dk g(x). By (3.7),

(3.8) and Theorem 2.18, it holds that 0 < m1 ≤ m2 < ∞. If m1 = m2, then both OscDk+2
g and

OscDkg are zero so (3.17) holds trivially. Otherwise, let

g̃(x) :=
g(x)−m1

m2 −m1
=
ukk+1(x)−m1v

k
k+1(x)

(m2 −m1)vkk+1(x)
, x ∈ Dk.

Note that g̃ is the quotient of two non-negative functions regular harmonic in Dk+1 with respect

to X. Clearly OscDk g̃ = 1. Furthermore,

OscDk+2
g = OscDk+2

g̃ ·OscDkg. (3.18)

This is clear from g(x) = (m2 −m1)g̃(x) +m1 = (OscDkg)g̃(x) +m1. If supDk+2
g̃(x) ≤ 1/2, then

OscDk+2
g̃ ≤ 1/2, and it follows from (3.18) that

OscDk+2
g ≤ 1

2
OscDkg. (3.19)

If, on the other hand, supDk+2
g̃(x) > 1/2, we apply Theorem 2.18 to the functions ũ(x) = ukk+1(x)−

m1v
k
k+1(x) and ṽ(x) = vkk+1(x) to conclude that

C−1
1

ũ(y)

ṽ(y)
≤ ũ(x)

ṽ(x)
≤ C1

ũ(y)

ṽ(y)
, x, y ∈ Dk+1.

This can be written as

C−1
1 g̃(y) ≤ g̃(x) ≤ C1g̃(y), x, y ∈ Dk+1.

Hence, for all x ∈ Dk+2, we have

g̃(x) ≥ C−1
1 sup

y∈Dk+2

g̃(y) ≥ 1

2
C−1

1 .

Therefore, infy∈Dk+2
g̃(y) ≥ 1

2C
−1
1 , and since g̃ ≤ 1, we get that

OscDk+2
g̃ ≤ 1− 1

2
C−1

1 = δ. (3.20)

By (3.18)–(3.20) we get (3.17).

We claim that

inf
x∈Dk+2

ukk+1(x)

vkk+1(x)
≥ inf

x∈Dk+1

ukk+1(x)

vkk+1(x)
≥ inf

x∈Dk

u(x)

v(x)
≥ inf

x∈Di

u(x)

v(x)
, i = 0, . . . k. (3.21)
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Indeed, let η := infx∈Dk
u(x)
v(x) so that u(x) ≥ ηv(x) on Dk. Then for x ∈ Dk+1,

ukk+1(x) = Ex[u(XτDk+1
);XτDk+1

∈ Πk] ≥ ηEx[v(XτDk+1
);XτDk+1

∈ Πk] = ηvkk+1(x),

so the second inequality of (3.21) holds. The first and third equalities of (3.21) are trivial. Similarly

we have

sup
x∈Dk+2

ukk+1(x)

vkk+1(x)
≤ sup

x∈Dk+1

ukk+1(x)

vkk+1(x)
≤ sup

x∈Dk

u(x)

v(x)
. (3.22)

Combining (3.21), (3.22) and (3.17) we get

supx∈Dk+2

ukk+1(x)

vkk+1(x)

infx∈Dk+2

ukk+1(x)

vkk+1(x)

− 1 ≤ δ

supx∈Dk
u(x)
v(x)

infx∈Dk
u(x)
v(x)

− 1

 . (3.23)

Using (3.23) and (3.13) with l = k (the induction hypothesis) we obtain

sup
x∈Dk+2

ukk+1(x)

vkk+1(x)
= (1 + c1δρζ

k) inf
x∈Dk+2

ukk+1(x)

vkk+1(x)
(3.24)

with a suitably chosen ρ ∈ [0, 1] (independent of x ∈ Dk+2). Indeed,

M :=
supx∈Dk+2

ukk+1(x)

vkk+1(x)

infx∈Dk+2

ukk+1(x)

vkk+1(x)

≤ 1 + δ

supx∈Dk
u(x)
v(x)

infx∈Dk
u(x)
v(x)

− 1

 ≤ 1 + c1δζ
k.

Thus, 1 ≤ M ≤ 1 + c1δζ
k which implies that there exists ρ = ρ(c1, ζ, k) ∈ [0, 1] such that M =

1 + c1δρζ
k. Next, by symmetry and (3.24) we have

sup
x∈Dk+2

vkk+1(x)

ukk+1(x)
= (1 + c1δρζ

k) inf
x∈Dk+2

vkk+1(x)

ukk+1(x)
. (3.25)

Combining (3.21) and (3.13) we get

sup
x∈Dl

u(x)

v(x)
≤ (1 + c1ζ

l) inf
x∈Dk+2

ukk+1(x)

vkk+1(x)
, l = 0, 1, . . . , k. (3.26)

Now we fix x ∈ Dk+2. Then by (3.15) and (3.16),

u(x)

v(x)
=

∑k
l=0 u

l
k+1(x) + u−1

k+1(x)∑k
l=0 v

l
k+1(x) + v−1

k+1(x)

≤
∑k

l=0 u
l
k+1(x) + εk+1ukk+1(x)∑k

l=0 v
l
k+1(x)

≤ (1 + εk+1)

∑k
l=0 u

l
k+1(x)∑k

l=0 v
l
k+1(x)

, (3.27)
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where in the first inequality we used (3.11) with l = −1. Now we apply [2, Lemma 15] with

u0 = ukk+1(x), v0 = vkk+1(x), a = (1 + c1δρζ
k) inf

y∈Dk+2

ukk+1(y)

vkk+1(y)
,

ui = uk−ik+1(x), vi = vk−ik+1(x), bi = (1 + c1ζ
k−i) inf

y∈Dk+2

ukk+1(y)

vkk+1(y)
, εi = εi, i = 1, . . . , k.

We need to check the conditions of [2, Lemma 15]. [2, (5.16)], a ≤ bi, i = 1, . . . , k, is immediate.

[2, (5.18)], u0 ≤ av0, is true by (3.24). [2, (5.17)] consists of two parts: ui ≤ bivi and vi ≤ εiv0 for

i = 1, . . . , k. The first part follows from

sup
y∈Dk+1

uk−ik+1(y)

vk−ik+1(y)
≤ sup

y∈Dk−i

u(y)

v(y)
≤ (1 + c1ζ

k−i) inf
y∈Dk+2

uk−ik+1(y)

vk−ik+1(y)
,

where the first inequality is (3.22) and the second inequality is (3.26). The second part of [2, (5.17)]

is precisely (3.12). Now we apply [2, Lemma 15] to conclude that

k∑
i=0

uk−ik+1(x)

≤

[
(1 + c1δρζ

k) inf
y∈Dk+2

ukk+1(y)

vkk+1(y)
+

k∑
i=1

c1(ζk−i − δρζk) inf
y∈Dk+2

ukk+1(y)

vkk+1(y)
· εi
]
·
k∑
i=0

vk−ik+1(x)

≤

[
1 + c1δρζ

k + c1

k∑
i=1

ζk−iεi

]
inf

y∈Dk+2

ukk+1(y)

vkk+1(y)
·
k∑
i=0

vk−ik+1(x) .

Hence, letting τ := (1 + εk+1)(1 + c1δρζ
k + c1

∑k
i=1 ζ

k−iεi) and applying (3.27) we get

u(x)

v(x)
≤ (1 + εk+1)

∑k
i=0 u

k−i
k+1(x)∑k

i=0 v
k−i
k+1(x)

≤ τ · inf
y∈Dk+2

ukk+1(y)

vkk+1(y)
. (3.28)

By symmetry,

v(x)

u(x)
≤ τ · inf

y∈Dk+2

vkk+1(y)

ukk+1(y)
. (3.29)

Now, (3.28), (3.24) and (3.29) imply that

sup
y∈Dk+2

u(y)

v(y)
≤ τ · inf

y∈Dk+2

ukk+1(y)

vkk+1(y)

=
τ

1 + c1δρζk
sup

y∈Dk+2

ukk+1(y)

vkk+1(y)

≤ τ2

1 + c1δρζk
inf

y∈Dk+2

u(y)

v(y)
.
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The proof of the induction step will be finished by showing that

τ2

1 + c1δρζk
≤ 1 + c1ζ

k+2. (3.30)

First note that

τ = (1 + εk+1)

(
1 + c1

(
δρ+

ε

ζ − ε

(
1−

(
ε

ζ

)k))
ζk

)
.

Let

τ̃ := (1 + εk+1)

(
1 + c1

(
δρ+

ε

ζ − ε

)
ζk
)
,

so that τ ≤ τ̃ . Then

τ2 ≤ τ̃2 = (1 + εk+1)2

(
1 + 2c1

(
δρ+

ε

ζ − ε

)
ζk + c2

1

(
δρ+

ε

ζ − ε

)2

ζ2k

)
≤ (1 + 3εk+1)A ,

where

A := 1 + c1

(
2δρ+

2ε

ζ − ε

)
ζk + c2

1

(
δρ+

ε

ζ − ε

)2

ζ2k .

Further, let

B := (1 + c1δρζ
k)(1 + c1ζ

k+2) = 1 + c1(δρ+ ζ2)ζk + c2
1(δρζ2)ζ2k .

We will show that B − (1 + 3εk+1)A = B − A − 3εk+1A ≥ 0. Since B − (1 + 3εk+1)A ≤ B − τ2,

this will prove what want. We now prove B − (1 + 3εk+1)A = B − A − 3εk+1A ≥ 0. Note that

ε ∈ (0, 1/200) ⊂ (0, 1/4) and thus ζ − ε > 1/2− 1/4 = 1/4. We will need the following estimate:

ε

ζ − ε
≤ 4ε < 1 . (3.31)

Since δ ∈ (1/2, 1), ρ ∈ [0, 1] and ζ < 1 we have

A ≤ 1 + c1(2 + 2) + c2
1(1 + 1)2 = 1 + 4c1 + 4c2

1 = (1 + 2c1)2 ≤ (3c1)2 = 9c2
1 . (3.32)

Note that it follows from (3.31) that

ζ2 − δ − 8ε =
1 + δ

2
− δ − 2(1− δ)

5c1
= (1− δ)

(
1

2
− 2

5c1

)
≥ 2

5
(1− δ) ,

where we used that 1/2 − 2/(5c1) ≥ 1/2 − 2/50 = 23/50 ≥ 2/5 which follows immediately from

c1 ≥ 10. Thus,

B −A = c1

(
δρ+ ζ2 − 2δρ− 2ε

ζ − ε

)
ζk + c2

1

(
δρζ2 − δ2ρ2 − 2δρ

ε

ζ − ε
− ε2

(ζ − ε)2

)
ζ2k

= c1

(
ζ2 − δρ− 2ε

ζ − ε

)
ζk + c2

1

[
δρ

(
ζ2 − δρ− 2ε

ζ − ε

)
− ε2

(ζ − ε)2

]
ζ2k
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> c1(ζ2 − δρ− 8ε)ζk − c2
1

ε2

(ζ − ε)2
ζ2k

≥ c1(ζ2 − δ − 8ε)ζk − c2
1(4ε)2ζ2k

≥ 2

5
c1(1− δ)

(
1 + δ

2

)k/2
− c2

1

(
1− δ
5c1

)2(1 + δ

2

)k
=

2

5
c1(1− δ)

(
1 + δ

2

)k/2
− (1− δ)2

25

(
1 + δ

2

)k
= (1− δ)

(
1 + δ

2

)k/2(2

5
c1 −

1− δ
25

(
1 + δ

2

)k/2)

≥ (1− δ)
(

1 + δ

2

)k/2(
4− 1

25

(
1 + δ

2

)k/2)
, (3.33)

where in the third line above we used (3.31) and neglected the first term in the square brackets in

the line above, in the fourth line we used that ρ ≤ 1 and again (3.31), and in the last line we used

that c1 ≥ 10.

By combining (3.32) and (3.33) we get

B −A− 3εk+1A ≥ B −A− 3εk+1 · 9c2
1

≥ (1− δ)
(

1 + δ

2

)k/2(
4− 1

25

(
1 + δ

2

)k/2)
− 27

(
1− δ
20c1

)k−1(1− δ
20c1

)2

c2
1

= (1− δ)
(

1 + δ

2

)k/2(
4− 1

25

(
1 + δ

2

)k/2)
− 27

202

(
1− δ
20c1

)k−1

(1− δ)2

≥ (1− δ)
(

1 + δ

2

)k/2(
4− 1

25

(
1 + δ

2

)k/2)
− 27

(
1− δ

20

)k+1

≥ 3(1− δ)
(

1 + δ

2

)k/2
− 27

(
1− δ

20

)k+1

≥ 3
1

2

(
1

2

)k/2
− 27

(
1

20

)k+1

= 3

(
1

2

)k/2+1

− 27

(
1

20

)k+1

> 0

for all k ≥ 1. In the penultimate line we used that 1− δ ≥ 1/2, (1 + δ)/2 ≥ 1/2 and 1− δ < 1.

The proof is now complete. 2

An alternative approach to the oscillation reduction in case of rotationally stable processes is

given in [6, Lemma 8]. We note that for non-local operators the oscillation reduction technique

seems much harder than for the Laplacian, because the subtraction used in this process may destroy

global nonnegativity. In this regard, we note that there is a gap of this nature in the proof of [11,

Lemma 3.3].
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In the remainder of this section, we assume that Q ∈ ∂D. Since D is Greenian, the Green

function GD(x, y), x, y ∈ D, is well defined. Fix x0 ∈ D and set

MD(x, y) =
GD(x, y)

GD(x0, y)
, x, y ∈ D , y 6= x0.

Let r < 1
2 min{dist(x,Q), dist(x0, Q)}. Since GD(x, ·) and GD(x0, ·) are regular harmonic in D ∩

B(Q, 2r) and vanish in Dc ∩B(Q, 2r), using Lemma 3.4, one immediately gets the following.

Corollary 3.5 The limit MD(x,Q) := limD3y→QMD(x, y) exists. Furthermore, there exist posi-

tive constants c and β depending on (Ψ, γ1, γ2, κ) such that for any r ∈ (0, 1
2(R ∧ dist(x0, Q)), any

y ∈ D ∩B(Q, r) and any x ∈ D \B(Q, 2r),

|MD(x, y)−MD(x,Q)| ≤ cMD(x,Ar(Q))

(
|y −Q|

r

)β
. (3.34)

Proof. Put

u(y) :=
GD(x, y)

GD(x,Ar(Q))
, v(y) :=

GD(x0, y)

GD(x0, Ar(Q))
.

Since u and v satisfy the assumptions of Lemma 3.4, there exists

g := lim
D3y→Q

u(y)

v(y)
= lim

D3y→Q

MD(x, y)

MD(x,Ar(Q))
.

This implies the existence of MD(x,Q) := limD3y→QMD(x, y). Furthermore, by (3.5) we have that∣∣∣∣u(y)

v(y)
− g
∣∣∣∣ ≤ c( |y −Q|r

)β
, for all y ∈ D ∩B(Q, r) .

Equivalently,∣∣∣∣ MD(x, y)

MD(x,Ar(Q))
− MD(x,Q)

MD(x,Ar(Q))

∣∣∣∣ ≤ c( |y −Q|r

)β
, for all y ∈ D ∩B(Q, r) ,

which is (3.34). 2

Recall that XD is the process X killed upon exiting D. As the process XD satisfies Hypothesis

(B) in [25], D has a Martin boundary ∂MD with respect to XD satisfying the following properties:

(M1) D ∪ ∂MD is a compact metric space (with the metric denoted by d);

(M2) D is open and dense in D ∪ ∂MD, and its relative topology coincides with its original

topology;

(M3) MD(x, · ) can be uniquely extended to ∂MD in such a way that

(a) MD(x, y) converges to MD(x,w) as y → w ∈ ∂MD in the Martin topology;
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(b) for each w ∈ D ∪ ∂MD the function x→MD(x,w) is excessive with respect to XD;

(c) the function (x,w)→ MD(x,w) is jointly continuous on D × (D ∪ ∂MD) in the Martin

topology and

(d) MD(·, w1) 6= MD(·, w2) if w1 6= w2 and w1, w2 ∈ ∂MD.

We will say that a point w ∈ ∂MD is a finite Martin boundary point if there exists a bounded

sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. The finite part of the Martin

boundary will be denoted by ∂fMD. Recall that a point w on the Martin boundary ∂MD of D is

said to be associated with Q ∈ ∂D if there is a sequence (yn)n≥1 ⊂ D converging to w in the Martin

topology and to Q in the Euclidean topology. The set of Martin boundary points associated with

Q is denoted by ∂QMD.

Proposition 3.6 ∂QMD consists of exactly one point.

Proof. We first note that ∂QMD is not empty. Indeed, let (yn)n≥1 ⊂ D converge to Q in the

Euclidean topology. Since D ∪ ∂MD is a compact metric space with the Martin metric, there exist

a subsequence (ynk)k≥1 and w ∈ D ∪ ∂MD such that limk→∞ d(ynk , w) = 0. Clearly, w /∈ D (since

relative topologies on D are equivalent). Thus we have found a sequence (ynk)k≥1 ⊂ D which

converges to w ∈ ∂MD in the Martin topology and to Q in the Euclidean topology.

Let w ∈ ∂QMD and let MD(·, w) be the corresponding Martin kernel. If (yn)n≥1 ⊂ D is a

sequence converging to w in the Martin topology and to Q in the Euclidean topology, then, by

(M3)(a), MD(x, yn) converge to MD(x,w). On the other hand, |yn − Q| → 0, thus by Corollary

3.5,

lim
n→∞

MD(x, yn) = MD(x,Q).

Hence, for each w ∈ ∂QMD it holds that MD(·, w) = MD(·, Q). Since, by (M3)(d), for two different

Martin boundary points w(1) and w(2) it always holds that MD(·, w(1)) 6= MD(·, w(2)), we conclude

that ∂QMD consists of exactly one point. 2

Because of the proposition above, we will also use Q to denote the point on the Martin boundary

∂QMD associated with Q. Note that it follows from the proof of Proposition 3.6 that if (yn)n≥1

converges to Q in the Euclidean topology, then it also converges to Q in the Martin topology.

For ε > 0 let

Kε := {w ∈ ∂MD : d(w,Q) ≥ ε} (3.35)

be a closed subset of ∂MD. By the definition of Martin boundary, for each w ∈ Kε there exists a

sequence (ywn )n≥1 ⊂ D such that limn→∞ d(ywn , w) = 0. Without loss of generality we may assume

that d(ywn , w) < ε
2 for all n ≥ 1.

Lemma 3.7 There exists c = c(ε) > 0 such that |ywn −Q| ≥ c for all w ∈ Kε and all n ≥ 1.
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Proof. Suppose the lemma is not true. Then {ywn : w ∈ Kε, n ∈ N} contains a sequence (ywknk )k≥1

such that limk→∞ |ywknk −Q| = 0. Then also limk→∞ d(ywknk , Q) = 0. On the other hand,

d(ywknk , Q) ≥ d(wk, Q)− d(ywknk , wk) ≥ ε−
ε

2
=
ε

2
.

This contradiction proves the claim. 2

We continue by showing that MD(·, Q) is harmonic in D with respect to X.

Lemma 3.8 For every bounded open U ⊂ U ⊂ D and every x ∈ D, MD(XτU , Q) is Px-integrable.

Proof. Let (ym)m≥1 be a sequence in D \ U such that |ym − Q| → 0. Then MD(·, ym) is regular

harmonic in U . Hence, by Fatou’s lemma and Corollary 3.5,

Ex[MD(XτU , Q)] = Ex[ lim
m→∞

MD(XτU , ym)] ≤ lim inf
m→∞

Ex[MD(XτU , ym)]

= lim inf
m→∞

MD(x, ym) = MD(x,Q) <∞ .

2

Using the results above, we can get the following result.

Lemma 3.9 Suppose that D is either (i) a bounded open set or (ii) an unbounded open set and X

is transient. For any x ∈ D and ρ ∈ (0, R ∧ (δD(x)/2)],

MD(x,Q) = Ex[MD(XτB(x,ρ)
, Q)] .

Proof. Fix x ∈ D and a positive r < R ∧ δD(x)
2 . Let

ηm :=
(κ

2

)m
r and zm = Aηm(Q), m = 0, 1, . . . .

Note that

B(zm, ηm+1) ⊂ D ∩B(Q,
ηm
2

) ⊂ D ∩B(Q, ηm) ⊂ D ∩B(Q, r) ⊂ D \B(x, r)

for all m ≥ 0. Thus by the harmonicity of MD(·, zm), we have

MD(x, zm) = Ex
[
MD(XτB(x,r)

, zm)
]
.

On the other hand, by Theorem 2.18, there exist m0 = m0(κ) ≥ 2 and c1 = c1(Ψ, γ1, γ2, κ) > 0

such that for every w ∈ D \B(Q, ηm) and y ∈ D ∩B(Q, ηm+1),

MD(w, zm) =
GD(w, zm)

GD(x0, zm)
≤ c1

GD(w, y)

GD(x0, y)
= c1MD(w, y), m ≥ m0.
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Letting y → Q we get

MD(w, zm) ≤ c1MD(w,Q), m ≥ m0, w ∈ D \B(Q, ηm). (3.36)

To prove this lemma, it suffices to show that {MD(XτB(x,r)
, zm) : m ≥ m0} is Px-uniformly

integrable. Since MD(XτB(x,r)
, Q) is integrable by Lemma 3.8, for any ε > 0, there is an N0 > 1

such that

Ex
[
MD(XτB(x,r)

, Q);MD(XτB(x,r)
, Q) > N0/c1

]
<

ε

2c1
. (3.37)

Note that by (3.36) and (3.37),

Ex
[
MD(XτB(x,r)

, zm);MD(XτB(x,r)
, zm) > N0 and XτB(x,r)

∈ D \B(Q, ηm)
]

≤ c1Ex
[
MD(XτB(x,r)

, Q); c1MD(XτB(x,r)
, Q) > N0

]
< c1

ε

2c1
=
ε

2
.

By (2.9), we have for m ≥ m0,

Ex
[
MD(XτB(x,r)

, zm);XτB(x,r)
∈ D ∩B(Q, ηm)

]
=

∫
D∩B(Q,ηm)

MD(w, zm)KB(x,r)(x,w)dw

≤ c2φ(r−2)−1

∫
D∩B(Q,ηm)

MD(w, zm)j(|w − x| − r)dw

for some c2 = c2(Ψ, γ1, γ2) > 0. Since |w − x| ≥ |x−Q| − |Q− w| ≥ δD(x)− ηm ≥ 7
4r, using (2.4)

and (2.2), we get that

Ex
[
MD(XτB(x,r)

, zm);XτB(x,r)
∈ D ∩B(Q, ηm)

]
≤ c3j(r)φ(r−2)−1

∫
D∩B(Q,ηm)

MD(w, zm)dw

≤ c4r
−d
∫
D∩B(Q,ηm)

MD(w, zm)dw

= c4r
−dGD(x0, zm)−1

∫
D∩B(Q,ηm)

GD(w, zm)dw (3.38)

for some c3 = c3(Ψ, γ1, γ2) > 0 and c4 = c4(Ψ, γ1, γ2) > 0. Note that, by Lemma 3.1,

GD(x0, zm)−1 ≤ C3(φ(η−2
m0

))−1ξm−m0φ(η−2
m )GD(x0, zm0)−1. (3.39)

By (2.3), there exists c5 = c5(Ψ, γ1, γ2) > 0 such that for any η < 1,∫ η

0

1

sφ(s−2)
ds ≤ c5φ(η−2)−1.

Thus by Lemma 2.12 in case D is bounded and by Theorem 2.19 in case of unbounded D,∫
B(Q,ηm)

GD(w, zm)dw ≤ c6

∫
B(zm,2ηm)

1

|w − zm|dφ(|w − zm|−2)
dw ≤ c7φ((2ηm)−2)−1 (3.40)
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for some constants c6 = c6(Ψ, γ1, γ2) > 0 and c7 = c7(Ψ, γ1, γ2) > 0. It follows from (3.38)–(3.40)

that

Ex
[
MD(XτB(x,r)

, zm);XτB(x,r)
∈ D ∩B(Q, ηm)

]
≤ c8r

−d(φ(η−2
m0

))−1GD(x0, zm0)−1 φ(η−2
m )

φ((2ηm)−2)
ξm−m0 .

Applying Lemma 2.1, we get

Ex
[
MD(XτB(x,r)

, zm);XτB(x,r)
∈ D ∩B(Q, ηm)

]
≤ c9r

−d(φ(η−2
m0

))−1GD(x0, zm0)−1ξm−m0 .

Thus there exists N > 0 such that for all m ≥ N ,

Ex
[
MD(XτB(x,r)

, zm);XτB(x,r)
∈ D ∩B(Q, ηm)

]
≤ ε

2
.

Consequently, for all m ≥ N ,

Ex
[
MD(XτB(x,r)

, zm);MD(XτB(x,r)
, zm) > N

]
≤ ε,

which implies that {MD(XτB(x,r)
, zm) : m ≥ m0} is Px-uniformly integrable. 2

Using this, we can easily get the following

Theorem 3.10 The function MD(·, Q) is harmonic in D with respect to X.

Proof. The proof is basically the same as that of [19, Theorem 3.9]. We write the details here for

completeness. Let h(x) := MD(x,Q). Consider a relatively compact open set D1 ⊂ D1 ⊂ D, and

put r(x) = R∧ (1
3δD(x)) and B(x) = B(x, r(x)). Define a sequence {Tm : m ≥ 1} of stopping times

as follows: T1 := inf{t > 0 : Xt /∈ B(X0)}, and for m ≥ 2,

Tm :=

{
Tm−1 + τB(XTm−1

) · θTm−1 if XTm−1 ∈ D1

τD1 otherwise.

Note that XτD1
∈ ∂D1 on ∩∞n=1{Tn < τD1}. Thus, since limm→∞ Tm = τD1 Px-a.s. and h is

continuous in D, using the quasi-left continuity of XD, we have limm→∞ h(XD
Tm

) = h(XD
τD1

) on

∩∞n=1{Tn < τD1}. Now by the dominated convergence theorem and Lemma 3.9,

h(x) = lim
m→∞

Ex[h(XD
Tm);∪∞n=1{Tn = τD1}] + lim

m→∞
Ex[h(XD

Tm);∩∞n=1{Tn < τD1}]

= Ex[h(XD
τD1

);∪∞n=1{Tn = τD1}] + Ex[h(XD
τD1

);∩∞n=1{Tn < τD1}]

= Ex[h(XD
τD1

)].

2

Part (b) of the following result is proved in [23, Lemma 4.18]. Part (a) is even simpler.
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Lemma 3.11 (a) Let D be a bounded open set and suppose that u is a bounded nonnegative har-

monic function for XD. If there exists a polar set N ⊂ ∂D such that for any z ∈ ∂D \N

lim
D3x→z

u(x) = 0 , (3.41)

then u is identically equal to zero.

(b) Let D be an unbounded open set and suppose that u is a bounded nonnegative harmonic function

for XD. If there exists a polar set N ⊂ ∂D such that for any z ∈ ∂D \ N (3.41) holds true and

additionally

lim
D3x→∞

u(x) = 0 ,

then u is identically equal to zero.

The next result completes the proof of Theorem 1.2. Recall that a point z ∈ ∂D is said to

regular boundary point of D if Pz(τD = 0) = 1 and an irregular boundary point if Pz(τD = 0) = 0.

The set of irregular boundary points is polar.

Theorem 3.12 Assume that either D is bounded, or D is unbounded and X is transient. Then Q

is a minimal Martin boundary point, that is, MD(·, Q) is a minimal harmonic function.

Proof. Let h be a positive harmonic function for XD such that h ≤ MD(·, Q). By the Martin

representation in [25], there is a finite measure on ∂MD such that

h(x) =

∫
∂MD

MD(x,w)µ(dw) =

∫
∂MD\{Q}

MD(x,w)µ(dw) +MD(x,Q)µ({Q}) .

In particular, µ(∂MD) = h(x0) ≤MD(x0, Q) = 1 (because of the normalization at x0). Hence, µ is

a sub-probability measure.

For ε > 0, Kε is the compact subset of ∂MD defined in (3.35). Define

u(x) :=

∫
Kε

MD(x,w)µ(dw). (3.42)

Then u is a positive harmonic function with respect to XD satisfying

u(x) ≤ h(x)− µ({Q})MD(x,Q) ≤
(
1− µ({Q})

)
MD(x,Q) . (3.43)

Let c = c(ε) > 0 be the constant from Lemma 3.7. Hence, for w ∈ Kε and (ywn )n≥1 a sequence

such that limn→∞ d(ywn , w) = 0, it holds that |ywn − Q| ≥ c. Fix x1 ∈ D ∩ B(Q, c/2) and choose

arbitrary y0 ∈ D \B(Q, c). For any x ∈ D ∩B(Q, c/2) and any y ∈ D \B(Q, c) we have that

GD(x, y)

GD(x0, y)
=

GD(x, y)

GD(x1, y)

GD(x1, y)

GD(x0, y)
≤ c1

GD(x, y0)

GD(x1, y0)

GD(x1, y)

GD(x0, y)
.
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Here the inequality follows from Theorem 2.18 applied to functions GD(·, y) and GD(·, y0) which

are regular harmonic in D ∩ B(Q, c) and vanish in D \ B(Q, c). Now fix w ∈ Kε and apply the

above inequality to ywn to get

MD(x,w) = lim
n→∞

GD(x, ywn )

GD(x0, ywn )
≤ c1

GD(x, y0)

GD(x1, y0)
lim
n→∞

GD(x1, y
w
n )

GD(x0, ywn )

= c1
GD(x, y0)

GD(x1, y0)
MD(x1, w) ≤ c1

GD(x, y0)

GD(x1, y0)
sup
w∈Kε

MD(x1, w)

≤ c2
GD(x, y0)

GD(x1, y0)
= c3GD(x, y0) .

In the last line we used property (M3) (c) of the Martin kernel. Thus,

MD(x,w) ≤ c3GD(x, y0) , x ∈ D ∩B(Q, c/2), w ∈ Kε . (3.44)

Choose r < c/4. For any x ∈ D \ B(Q, 2r) and y ∈ D ∩ B(Q, r) with r small enough, by

Theorem 2.18 applied to GD(x, ·) and GD(x0, ·), we have

GD(x, y)

GD(x0, y)
≤ c4

GD(x,Ar(Q))

GD(x0, Ar(Q))
.

Letting D 3 y → Q, we get

MD(x,Q) ≤ c4
GD(x,Ar(Q))

GD(x0, Ar(Q))
= c5GD(x,Ar(Q)) , x ∈ D \B(Q, 2r) . (3.45)

Recall that limD3x→z GD(x, y) = 0 for every regular z ∈ ∂D. Since r < c/4 can be arbitrarily

small, we see from (3.45) and (3.43) that limD3x,x→z u(x) = 0 for every regular z ∈ ∂D, z 6= Q.

Assume D is bounded. Fix r < c/4. It follows from Lemma 2.12 that for all x ∈ D \B(Q, 2r),

GD(x,Ar(Q)) ≤ c6
Φ(|x−Ar(Q)|)
|x−Ar(Q)|d

≤ c6 sup
a≥r

Φ(a)

ad
≤ c7 . (3.46)

From (3.45) and (3.43) we conclude that u is bounded in x ∈ D \ B(Q, 2r). Similarly, for every

x ∈ D ∩ B(Q, c/2) we have that GD(x, y0) ≤ c8 supa≥c/2 Φ(c)c−d =: c9 (recall y0 ∈ D \ B(Q, c)).

Hence by (3.44) and (3.43) we see that u is bounded on D ∩B(Q, c/2). Thus u is bounded on D.

Now it follows from Lemma 3.11 (a) that u ≡ 0 in D.

If D is unbounded, we argue as follows. Since GD(x,Ar(Q)) ≤ G(x,Ar(Q)), it follows from

(3.44) and Lemma 2.20 that limD3x→∞MD(x,Q) = 0. Hence by (3.43) limD3x→∞ u(x) = 0.

Thus, there exists R ≥ 2 such that u(x) ≤ 1 for all x ∈ D \ B(Q,R). Fix r < c/4 ∧ 1 and let

x ∈ D ∩ (B(Q,R) \B(Q, 2r)). By (3.45) and Theorem 2.19,

MD(x,Q) ≤ c5G(x,Ar(Q)) ≤ c5C2(R)
Φ(|x−Ar(Q)|)
|x−Ar(Q)|d

≤ c10 sup
a≥r

Φ(a)

ad
≤ c11 .
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It follows that u is bounded in D ∩ (B(Q,R) \ B(Q, 2r)). The proof that u is bounded on D ∩
B(Q, c/2) is the same as in the case of a bounded D. Hence, u is bounded, and again we conclude

from Lemma 3.11 (b) that u ≡ 0 in D.

We see from (3.42) that ν = µ|Kε = 0. Since ε > 0 was arbitrary and ∂MD \ {Q} = ∪ε>0Kε, we

see that µ|∂MD\{Q} = 0. Hence h = µ({Q})MD(·, Q) showing that MD(·, Q) is minimal. 2

In the next two results we assume that D is a κ-fat set. Then one can define Ξ : ∂D → ∂fMD

so that Ξ(Q) is the unique element of ∂QMD, cf. Proposition 3.6.

Theorem 3.13 Suppose that either D is bounded, or D is unbounded and X in transient. If D

is a κ-fat set, then the finite part of the minimal Martin boundary of D and the finite part of the

Martin boundary of D both coincide with the Euclidean boundary ∂D of D. More precisely, Ξ is

1-1- and onto.

Proof. Since every finite Martin boundary point is associated with some Q ∈ ∂D, we see that Ξ

is onto. We show now that Ξ is 1-1. If not, there are Q,Q′ ∈ ∂D, Q 6= Q′, such that Ξ(Q) =

Ξ(Q′) = w. Then MD(·, Q) = MD(·, w) = MD(·, Q′). Choose r > 0 small enough and satisfying

r < |Q − Q′|/4. By (3.45) and (3.46) we see that there exists a constant c1 = c1(Q) such that

MD(x,Q) ≤ c1 for all x ∈ D\B(Q, 2r). Similarly, there exists c2 = c2(Q′) such that MD(x,Q′) ≤ c2

for all x ∈ D \ B(Q′, 2r). Since B(Q, 2r) and B(Q′, 2r) are disjoint, we conclude that MD(·, Q) =

MD(·, Q′) is bounded on D by c1 ∨ c2. Again by (3.45), limD3x→zMD(x,Q) = 0 for all regular z ∈
∂D. In case of unbounded D, we showed in the proof of Theorem 3.12 that limx→∞MD(x,Q) = 0.

Hence by Lemma 3.11 we conclude that MD(·, Q) ≡ 0. This is a contradiction with MD(x0, Q) = 1.

The statement about the minimal Martin boundary follows from Theorem 3.12. 2

As a consequence of the result above and the general result of [25]), we have the following

Martin representation for nonnegative harmonic functions with respect to the killed process XD.

Theorem 3.14 Suppose that D is a bounded κ-fat set. Then Ξ : ∂D → ∂MD is a homeomorphism.

Furthermore, for any nonnegative function u which is harmonic with respect to XD, there exists a

unique finite measure µ on ∂D such that

u(x) =

∫
∂D

MD(x, z)µ(dz), x ∈ D.

Proof. Let Q ∈ ∂D and x ∈ D. Choose r < 1
2 min{R,dist(x,Q), dist(x0, Q)} so that x ∈

D \ B(Q, 2r). Let Q′ ∈ ∂D ∩ B(Q, r/2). Since D is κ-fat at Q′, by Corollary 3.5 there exists

MD(x,Q′) = limD3y→Q′MD(x, y). Further, by letting y → Q′ in (3.34) we get that

|MD(x,Q′)−MD(x,Q)| ≤ cMD(x,Ar(Q))

(
|Q′ −Q|

r

)β
.

33



This shows that if (Qn)n≥1 is a sequence of points in ∂D converging to Q ∈ ∂D, then MD(·, Q) =

limn→∞MD(·, Qn).

In order to show that Ξ is continuous we proceed as follows. Let Qn → Q in ∂D. Since ∂MD is

compact, (Ξ(Qn))n≥1 has a subsequence (Ξ(Qnk))k≥1 converging in the Martin topology to some

w ∈ ∂MD. By property (M3), MD(·,Ξ(Qnk))→MD(·, w). On the other hand, by the first part of

the proof, MD(·,Ξ(Qnk)) = MD(·, Qnk)→ MD(·, Q), implying that w = Ξ(Q). This shows in fact

that (Ξ(Qn))n≥1 is convergent with the limit Ξ(Q). Using the fact that ∂D is compact, the proof

of the continuity of the inverse is similar.

The Martin representation for nonnegative harmonic functions is now a consequence of the

general result form [25]. 2
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