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Abstract

In this paper we study the Martin boundary at infinity for a large class of purely
discontinuous Feller processes in metric measure spaces. We show that if∞ is accessible
from an open set D, then there is only one Martin boundary point of D associated with
it, and this point is minimal. We also prove the analogous result for finite boundary
points. As a consequence, we show that minimal thinness of a set is a local property.
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1 Introduction and setup

The Martin kernel and Martin boundary of an open set with respect to a transient strong

Markov process were introduced in [28] with the goal of representing non-negative harmonic

functions (with respect to the underlying process) as an integral of the Martin kernel against a

finite measure on the (minimal) Martin boundary. The identification of the Martin boundary

for purely discontinuous Markov processes began in late nineties when it was shown in [4, 10]

that for the isotropic α-stable process the Martin boundary of a bounded Lipschitz domain

coincides with its Euclidean boundary. Soon after, the result was extended in [30] to the

so-called κ-fat open sets. These results were subsequently extended in two directions: to

more general processes and to general open sets.

In the first direction, the Martin boundary of bounded κ-fat open sets was studied in

[19] for a class of subordinate Brownian motions and then in [24] for some symmetric Lévy

processes. In both papers the Martin boundary was identified with the Euclidean boundary.

In fact, the latter paper gives a local result: if an open set D ⊂ Rd is κ-fat at z0 ∈ ∂D, then

there is exactly one (minimal) Martin boundary point associated to z0. A related result is
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the identification of the Martin boundary at infinity of an unbounded open set with a single

point provided the set is κ-fat at infinity, see [23]. In all of these papers an appropriate

boundary Harnack principle for non-negative harmonic functions played a major role.

In the second direction, the boundary Harnack principle and the Martin kernel for ar-

bitrary open sets were studied in [6] for isotropic α-stable processes. The authors of [6]

introduced the concepts of accessible and inaccessible boundary points and proved a result

that leads to the identification of the finite Martin boundary of an arbitrary bounded open

with its Euclidean boundary. It was also proved in [6] that a finite Martin boundary point

is minimal if and only if the corresponding Euclidean boundary point is accessible. By use

of the Kelvin transform, they were able to identify the infinite part of the Martin boundary

as well.

The main goal of this paper is to generalize results of [6, 23] to more general processes.

Inspired by the paper [7] we will work with a class of purely discontinuous Feller processes in

duality in a measure metric space X. The jumps of these processes are assumed to be quite

regular as precisely described in Assumptions C, C1 and C2 below. Most of Lévy processes

fall into our framework, see Section 4 for details. Our main results can be roughly stated as

follows: let D be an open set in X. If z0 ∈ ∂D (the boundary of D in the original topology of

X) is accessible, then there is exactly one Martin boundary point associated with z0. In case

D ⊂ X is bounded and all its boundary points are accessible, the Martin boundary and the

minimal Martin boundary of D are identified with ∂D. In case of unbounded open set such

that infinity is accessible, we identify the Martin boundary at infinity with a single point.

Another goal of this paper is to show that minimal thinness is a local property. We will

use our results on the Martin boundary to show that under certain geometric assumptions,

if E ⊂ D ⊂ X are open sets with a common boundary point z0 which is accessible from both

E and D, then F ⊂ E is minimally thin at z0 in E if and only if F is minimally thin at z0

in D.

We now provide a precise description of the process and the assumptions it satisfies,

introduce all necessary notation, state the results and explain the methods of proofs.

Let (X, d,m) be a metric measure space with a countable base such that all bounded

closed sets are compact and the measure m has full support. For x ∈ X and r > 0, let

B(x, r) denote the ball centered at x with radius r. Let R0 ∈ (0,∞] be the localization

radius such that X \B(x, 2r) 6= ∅ for all x ∈ X and all r < R0.

Let X = (Xt,Ft,Px) be a Hunt process on X. We will assume the following

Assumption A: X is a Hunt process admitting a strong dual process X̂ with respect to

the measure m and X̂ is also a Hunt process. The transition semigroups (Pt) and (P̂t) of X

and X̂ are both Feller and strongly Feller. Every semi-polar set of X is polar.

For the definition of Hunt processes see p. 45 of [3], and for the definition of a strong

dual, see Definition VI.(1.2) on p.225 of [3]. For the definition of Feller processes see pp.

49–50 of [12], and for the definition of strong Feller processes see p. 129 of [12]. For the

definitions of polar and semi-polar sets, see Definition II.(3.1) on p.79 of [3].
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In the sequel, all objects related to the dual process X̂ will be denoted by a hat. Recall

that a set is polar (semi-polar, respectively) for X if and only if it is polar (semi-polar,

respectively) for X̂ (see VI. (1.19) in [3]). Under assumption A the process X admits a

(possibly infinite) Green function G(x, y) serving as a density of the occupation measure:

G(x,A) := Ex
∫∞

0
1(Xt∈A)dt =

∫
A
G(x, y)m(dy). Moreover, G(x, y) = Ĝ(y, x) for all x, y ∈ X,

cf. VI.1 in [3] for details. Further, let D be an open subset of X and τD = inf{t > 0 : Xt /∈ D}
the exit time from D. The killed process XD is defined by XD

t = Xt if t < τD and XD
t = ∂

where ∂ is an extra point added to X. The killed process X̂D is defined analogously. By

Hunt’s switching identity (Theorem 1.16 in [3]), it holds that Ex[G(XτD , y)] = Êy[Ĝ(X̂τ̂D , x)]

for all x, y ∈ X which implies that XD and X̂D are in duality, see p.43 in [13]. Again by VI.1

in [3], XD admits a unique (possibly infinite) Green function (potential kernel) GD(x, y)

such that for every non-negative Borel function f ,

GDf(x) := Ex
∫ τD

0

f(Xt)dt =

∫
D

GD(x, y)f(y)m(dy) ,

and GD(x, y) = ĜD(y, x), x, y ∈ D, with ĜD(y, x) the Green function of X̂D. It is assumed

throughout the paper that GD(x, y) = 0 for (x, y) ∈ (D ×D)c. We also note that the killed

process XD is strongly Feller, see e.g. the first part of the proof of Theorem on pp. 68–69 in

[11]. From now on, we will always assume that D is Greenian, that is, the Green function

GD(x, y) is finite for all x, y ∈ D, x 6= y. Under this assumption, the killed process XD

is transient in the sense that there exists a non-negative Borel function f on D such that

0 < GDf <∞ (and the same is true for X̂).

Recall that z ∈ ∂D is said to be regular with respect to X if Pz(τD = 0) = 1 and

irregular otherwise. We will denote the set of regular (respectively irregular) points of ∂D

with respect to X by Dreg (respectively Dirr). D̂reg (respectively D̂irr) stands for the sets of

regular (respectively irregular) points of ∂D with respect to X̂ respectively. It is well known

that Dirr and D̂irr are semipolar, hence polar under A.

The process X, being a Hunt process, admits a Lévy system (J,H) where J(x, dy) is a

kernel on the state space X (called the Lévy kernel of X), and H = (Ht)t≥0 is a positive

continuous additive functional of X. We assume that Ht = t so that for every function

f : X× X→ [0,∞) vanishing on the diagonal and every stopping time T ,

Ex
∑

0<s≤T

f(Xs−, Xs) = Ex
∫ T

0

f(Xs, y)J(Xs, dy)ds .

By using τD in the displayed formula above and taking f(x, y) = 1D(x)1A(y) with A ⊂ D
c
,

we get that

Px(XτD ∈ A, τD < ζ) = Ex
∫ τD

0

J(Xs, A)ds =

∫
D

GD(x, y)J(y, A)m(dy) , (1.1)

where ζ is the life time ofX. Similar formulae hold for the dual process X̂ and Ĵ(x, dy)m(dx) =

J(y, dx)m(dy).
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Assumption C: The Lévy kernels of X and X̂ are of the form J(x, dy) = j(x, y)m(dy),

Ĵ(x, dy) = ĵ(x, y)m(dy), where j(x, y) = ĵ(y, x) > 0 for all x, y ∈ X, x 6= y.

The next two related assumptions control the decay of the density j.

Assumption C1(z0, R): Let z0 ∈ X and R ≤ R0. For all 0 < r1 < r2 < R, there exists a

constant c = c(z0, r2/r1) > 0 such that for all x ∈ B(z0, r1) and all y ∈ X \B(z0, r2),

c−1j(z0, y) ≤ j(x, y) ≤ cj(z0, y), c−1ĵ(z0, y) ≤ ĵ(x, y) ≤ cĵ(z0, y).

In the next assumption we require that the localization radius R0 =∞.

Assumption C2(z0, R): Let z0 ∈ X and R > 0. For all R ≤ r1 < r2, there exists a constant

c = c(z0, r2/r1) > 0 such that for all x ∈ B(z0, r1) and all y ∈ X \B(z0, r2),

c−1j(z0, y) ≤ j(x, y) ≤ cj(z0, y), c−1ĵ(z0, y) ≤ ĵ(x, y) ≤ cĵ(z0, y).

We define the Poisson kernel of an open set D ∈ X by

PD(x, z) =

∫
D

GD(x, y)j(y, z)m(dy), x ∈ D, z ∈ Dc. (1.2)

By (1.1), we see that PD(x, ·) is the density of the exit distribution of X from D restricted

to D
c
:

Px(XτD ∈ A, τD < ζ) =

∫
A

PD(x, z)m(dz), A ⊂ D
c
.

Recall that f : X→ [0,∞) is regular harmonic in D with respect to X if

f(x) = Ex[f(XτD), τD < ζ] , for all x ∈ D ,

and it is harmonic in D with respect to X if for every relatively compact open U ⊂ U ⊂ D

f(x) = Ex[f(XτU ), τU < ζ] , for all x ∈ U .

Throughout the paper we will adopt the convention that Xζ = ∂ and f(∂) = 0 for every

function f . Thus we will drop τD < ζ in expressions similar to the right-hand side in the

penultimate display. A function f : X → [0,∞) harmonic in D with respect to XD if for

every relatively compact open U ⊂ U ⊂ D

f(x) = Ex[f(XD
τU

)] , for all x ∈ U .

It follows from the Hunt switching formula that for every y ∈ D and any open neighborhood

U of y, GD(·, y) is regular harmonic in D \U . In particular, GD(·, y) is harmonic in D \ {y}.
The next pair of assumptions is about an approximate factorization of harmonic functions.

This approximate factorization is a crucial tool in proving the oscillation reduction. The first

one is an approximate factorization of harmonic functions at a finite boundary point.

Assumption F1(z0, R): Let z0 ∈ X and R ≤ R0. For any 1
2
< a < 1, there exists

C(a) = C(z0, R, a) ≥ 1 such that for every r ∈ (0, R), every open set D ⊂ B(z0, r), every
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non-negative function f on X which is regular harmonic in D with respect to X and vanishes

in B(z0, r) ∩ (D
c ∪Dreg), and all x ∈ D ∩B(z0, r/8),

C(a)−1Ex[τD]

∫
B(z0,ar/2)c

j(z0, y)f(y)m(dy)

≤ f(x) ≤ C(a)Ex[τD]

∫
B(z0,ar/2)c

j(z0, y)f(y)m(dy). (1.3)

In the second assumption we require that the localization radius R0 =∞.

Assumption F2(z0, R): Let z0 ∈ X and R > 0. For any 1 < a < 2, there exists C(a) =

C(z0, R, a) ≥ 1 such that for every r ≥ R, every unbounded open set D ⊂ B(z0, r)
c, every

non-negative function f on X which is regular harmonic in D with respect to X and vanishes

on B(z0, r)
c ∩ (D

c ∪Dreg), and all x ∈ D ∩B(z0, 8r)
c,

C(a)−1 PD(x, z0)

∫
B(z0,2ar)

f(z)m(dz)

≤ f(x) ≤ C(a)PD(x, z0)

∫
B(z0,2ar)

f(z)m(dz). (1.4)

The approximate factorization of harmonic functions stated in F1 and F2 can be proved

under somewhat stronger assumptions than the Assumptions A, B, C and D in [7]. This is

done in the companion paper [26].

Let D ⊂ X be an open set. A point z ∈ ∂D is called accessible from D with respect to

X if

PD(x, z) =

∫
D

GD(x,w)j(w, z)m(dw) =∞ for all x ∈ D , (1.5)

and inaccessible otherwise.

In case D is unbounded we say that ∞ is accessible from D with respect to X if

ExτD =

∫
D

GD(x,w)m(dw) =∞ for all x ∈ D (1.6)

and inaccessible otherwise. The concepts of accessible and inaccessible points were intro-

duced in [7].

For D ⊂ X, let ∂MD denote the Martin boundary of D with respect to XD in the sense

of Kunita-Watanabe [28], see Section 3 for more details. A point w ∈ ∂MD is said to be

minimal if the Martin kernel MD(·, w) is a minimal harmonic function with respect to XD.

We will use ∂mD to denote the minimal Martin boundary of D with respect to XD. A point

w ∈ ∂MD is said to be a finite Martin boundary point if there exists a bounded (with respect

to the metric d) sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. A point

w ∈ ∂MD is said to be an infinite Martin boundary point if there exists an unbounded (with

respect to the metric d) sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. We

note that these two definitions do not rule out the possibility that a point w ∈ ∂MD is at
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the same time finite and infinite Martin boundary point. We will show in Corollary 1.4(a)

that under appropriate and natural assumptions this cannot happen. A point w ∈ ∂MD is

said to be associated with z0 ∈ ∂D if there is a sequence (yn)n≥1 ⊂ D converging to w in

the Martin topology and to z0 in the topology of X. The set of Martin boundary points

associated with z0 is denoted by ∂z0MD. A point w ∈ ∂MD is said to be associated with ∞ if

w is an infinite Martin boundary point. The set of Martin boundary points associated with

∞ is denoted by ∂∞MD. ∂fMD and ∂fmD will be used to denote the finite part of the Martin

boundary and minimal boundary respectively. Note that ∂∞MD is the set of infinite Martin

boundary points.

Now we can state the first main result of the paper. We will always assume that As-

sumptions A and C hold true.

Theorem 1.1 Let D ⊂ X be an open set. (a) Suppose that z0 ∈ ∂D. Assume that there

exists R ≤ R0 such that C1(z0, R) holds, and that X̂ satisfies F1(z0, R). If z0 is accessible

from D with respect to X, then there is only one Martin boundary point associated with z0.

(b) Suppose that, in addition to the assumptions in (a), for all r ∈ (0, R],

sup
x∈D∩B(z0,r/2)

sup
y∈X\B(z0,r)

max(GD(x, y), ĜD(x, y)) =: c(r) <∞ . (1.7)

Then the Martin kernel MD(·, z0) is harmonic with respect to XD.

(c) Suppose, in addition, that X satisfies F1(z0, R), that

lim
D3x→z

GD(x, y) = 0 for every z ∈ Dreg and every y ∈ D, (1.8)

and that, if D is unbounded then for r ∈ (0, R],

lim
x→∞

GD(x, y) = 0 for all y ∈ D ∩B(z0, r). (1.9)

Then the corresponding Martin boundary point is minimal.

Corollary 1.2 Suppose that every point z0 ∈ ∂D is accessible from D with respect to X,

and that the assumptions of Theorem 1.1(c) are satisfied for all z0 ∈ ∂D (with c(r) in (1.7)

independent of z0).

(a) The finite part of the Martin boundary ∂MD and the minimal Martin boundary ∂mD can

be identified with ∂D.

(b) If D is bounded, then ∂D and ∂MD are homeomorphic.

(c) Let D be bounded. For any non-negative function u which is harmonic with respect to

XD, there exists a unique finite measure µ on ∂D such that

u(x) =

∫
∂D

MD(x, z)µ(dz), x ∈ D.
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Theorem 1.3 (a) Suppose that R0 = ∞, D is an unbounded open subset of X, and ∞ is

accessible from D with respect to X. If there is a point z0 ∈ X and R > 0 such that C2(z0, R)

holds, and X̂ satisfies F2(z0, R), then there is only one Martin boundary point associated

with ∞.

(b) Suppose that, in addition to the assumptions in (a), for all r ≥ R

sup
x∈D∩B(z0,r/2)

sup
y∈X\B(z0,r)

max(GD(x, y), ĜD(x, y)) =: c(r) <∞ . (1.10)

Then the Martin kernel associated with ∞ is harmonic with respect to XD.

(c) Suppose, in addition, that X satisfies F2(z0, R), that (1.8) holds, and that

lim
x→∞

GD(x, y) = 0 for all y ∈ D. (1.11)

Then the Martin boundary point associated with ∞ is minimal.

Corollary 1.4 Let R0 =∞ and D ⊂ X be unbounded. Suppose that every point z0 ∈ ∂D is

accessible from D with respect to X, that ∞ is accessible from D with respect to X, that the

assumptions of Theorem 1.1(c) are satisfied for all z ∈ ∂D (with c(r) in (1.7) independent

of z) and that the assumptions of Theorem 1.3(c) are satisfied. Then

(a) ∂fMD ∩ ∂∞MD = ∅.
(b) The Martin boundary ∂MD is homeomorphic with the one-point compactification of ∂D.

(c) For any non-negative function u which is harmonic with respect to XD, there exists a

unique finite measure µ on ∂D and µ∞ ≥ 0 such that

u(x) =

∫
∂D

MD(x, z)µ(dz) +MD(x,∞)µ∞ , x ∈ D,

where MD(·,∞) denotes the Martin kernel associated with ∞.

The preliminary version of the results of this paper (and the forthcoming paper [27]) was

presented at the 11th Workshop on Markov Processes and Related Topics held in Shanghai

Jiaotong University from June 27 to June 30 2015, and at the International Conference on

Stochastic Analysis and Related Topics held in Wuhan University from August 3 to August

8 2015. In the recent preprint [15], Juszczyszyn and Kwaśnicki independently considered

similar problems as those in Corollary 1.2 for bounded D. Our main motivation for the

current paper was to investigate the Martin boundary at infinity. The investigation starts

with the result stating that there is only one Martin boundary point associated with ∞
which should be understood as a local result about the Martin boundary in the sense that

no other information about the remaining part of the boundary is required. This motivated

our approach in studying the finite part of Martin boundary through the local approach – if

z0 ∈ ∂D is accessible, then there is only one Martin boundary point associated to z0. Again,

no other information about the remaining part of boundary is used. We will first present
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proofs for infinity. For readers’ convenience, even though the structure of proofs is similar,

we also provide the proofs for finite boundary points.

The case of inaccessible boundary points will be discussed in the forthcoming paper

[27], the main reason being that the treatment of inaccessible points requires additional

assumptions on j(x, y) – see E1 and E2 in [27], and Theorem 3.1(ii) in [15].

Organization of the paper: In the next section we study the oscillation reduction at an

accessible boundary point, first for the infinite point in Proposition 2.5, and then for a finite

boundary point in Proposition 2.11. One of the main tools for this, borrowed from [6], is a

decomposition of a regular harmonic function into two parts depending on where the process

exits the open set. An estimate of one of the parts by the other is derived as a consequence

of F2, respectively F1, cf. Lemma 2.1 and Lemma 2.7. The oscillation reduction result

immediately leads to the existence of limits of ratios of non-negative harmonic functions

which implies that the Martin kernel is the limit of ratios of Green functions. This is the

key to associating a point on the topological boundary of D with a point on the Martin

boundary. The third section is devoted to the study of the Martin kernel at infinity under

the assumption that infinity is accessible from D and then of the Martin kernel at a finite

accessible point of an open set D. We first prove that the Martin kernel is harmonic, and

then that it is minimal, thus showing that a minimal Martin boundary point is associated

with an accessible boundary point. In Section 4 we first briefly discuss examples satisfying

our assumptions and then look at the case of a class of symmetric Lévy processes in detail. In

the last section we look at minimal thinness at a minimal Martin boundary point of D. It is

intuitively clear that minimal thinness of a set F ⊂ D should be a local property depending

only on the size of F near the boundary point. This suggests that if F ⊂ E, E open in

D, and E and D have a common boundary point, then F should be minimally thin at that

boundary point in E if and only if it is minimally thin in D. Clearly, the problem is that

Martin spaces for E and D are different and one needs some sort of identification of the

underlying boundary points. This is provided by Theorems 1.1 and 1.3. The second main

ingredient in showing local character of minimal thinness is given in Proposition 5.4 where

the Martin kernel with respect to E is given in terms of the Martin kernel with respect to

D.

Notation: We will use the following conventions in this paper: c, c0, c1, c2, . . . stand

for constants whose values are unimportant and which may change from one appearance to

another. All constants are positive finite numbers. The labeling of the constants c0, c1, c2, . . .

starts anew in the statement of each result. We will use “:=” to denote a definition, which

is read as “is defined to be”. We denote a ∧ b := min{a, b}, a ∨ b := max{a, b}. Notation

f � g means that the quotient f(t)/g(t) stays bounded between two positive numbers on

their common domain of definition. For x ∈ X and r > 0 we denote by B(x, r) be the open

ball centered at x with radius r and by B(x, r) the closure of B(x, r).
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2 Oscillation reduction under accessibility assumption

It follows easily from the strong Markov property that for all Greenian open sets U and D

with U ⊂ D, GD(x, y) = GU(x, y) + Ex [GD(XτU , y); τU <∞] for every (x, y) ∈ X× X.

2.1 Infinity

In this subsection, we deal with the oscillation reduction at infinity. Throughout this subsec-

tion we will assume that R0 = ∞ and that there exists a point z0 ∈ X such that C2(z0, R)

holds, and that X̂ satisfies F2(z0, R) for some R > 0. We will fix z0 and R and use the

notation Br = B(z0, r).

An immediate consequence of F2(z0, R) for X̂ is the boundary Harnack principle at

infinity in [26]: There exists c > 1 such that for any r ≥ R, any open set D ⊂ B
c

r and any

non-negative functions u and v on X that are regular harmonic in D with respect to X̂ and

vanish on B
c

r ∩ (D
c ∪ D̂reg), it holds that

c−1u(y)

v(y)
≤ u(x)

v(x)
≤ c

u(y)

v(y)
for all x, y ∈ D ∩Bc

8r. (2.1)

Note that we can take c = (C(3/2))2. By enlarging C(3/2) in F2(z0, R), without loss of

generality we assume the above c is equal to C(3/2).

For an open set D and p > q > 0, let Dp = D ∩ Bc

p and Dp,q = Dq \Dp. For p > q > 1,

r ≥ R and non-negative function f on X define

fpr,qr(x) = Ex
[
f(X̂τ̂Dpr ) : X̂τ̂Dpr ∈ D

pr,qr
]
,

f̃pr,qr(x) = Ex
[
f(X̂τ̂Dpr ) : X̂τ̂Dpr ∈ (D \Dqr) ∪Br

]
.

Lemma 2.1 Suppose that r ≥ R, D ⊂ B
c

r is an open set, f is a non-negative function on X

which is regular harmonic in D with respect to X̂, and vanishes on B
c

r ∩ (D
c ∪ D̂reg). There

exists C1 = C1(R) > 0 (independent of D, f and r ≥ R) such that for any p/16 > q > 2

and any ε > 0, if ∫
Bqr

f(y)m(dy) ≤ ε

∫
Dpr/8,qr

f(y)m(dy), (2.2)

then for every x ∈ Dpr, f̃pr/8,qr(x) ≤ C1εf
pr/8,qr(x).

Proof. Note that

f̃pr/8,qr(x) = Ex
[
f(X̂τ̂

Dpr/8
) : X̂τ̂

Dpr/8
∈ Bqr

]
=

∫
Bqr

∫
Dpr/8

ĜDpr/8(x, y)ĵ(y, z)m(dy)f(z)m(dz).
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By C2(z0, R), ĵ(y, z) ≤ c1ĵ(y, z0), for all (y, z) ∈ Bc
2qr × Bqr, where the constant c1 is

independent of p and q. Thus∫
Bqr

∫
Dpr/8

ĜDpr/8(x, y)ĵ(y, z)m(dy)f(z)m(dz)

≤ c1

∫
Bqr

∫
Dpr/8

ĜDpr/8(x, y)ĵ(y, z0)m(dy)f(z)m(dz)

= c1P̂Dpr/8(x, z0)

∫
Bqr

f(z)m(dz).

Now, using (2.2) and the fact that f = fpr/8,qr on Dpr/8,qr, we get that for every x ∈ Dpr,

f̃pr/8,qr(x) ≤ c1εP̂Dpr/8(x, z0)

∫
Dpr/8,qr

fpr/8,qr(y)m(dy),

which is less than or equal to

c1εP̂Dpr/8(x, z0)

∫
B3pr/8

fpr/8,qr(y)m(dy).

Since fpr/8,qr is regular harmonic in Dpr/8 with respect to X̂, and vanishes on B
c

pr/8 ∩ (D
c ∪

D̂reg), using F2(z0, R) (with a = 3/2), we conclude that for every x ∈ Dpr,

f̃pr/8,qr(x) ≤ c1εP̂Dpr/8(x, z0)

∫
B3pr/8

fpr/8,qr(y)m(dy) ≤ c1C(3/2)εfpr/8,qr(x).

2

Again, by enlarging C(3/2) in F2, without loss of generality we assume C1 = (C(3/2))2.

From now on we let C = C(3/2), so that C1 = C2.

Let r ≥ R and D ⊂ B
c

r be an open set. Recall that for any p > q > 0, Dp = D ∩Bc

p and

Dp,q = Dq \Dp. If f1 and f2 are non-negative functions on X, for any p > 1, we let

mpr := inf
Dpr

f1

f2

, Mpr := sup
Dpr

f1

f2

.

Note that fi = fpr,qri + f̃pr,qri .

Lemma 2.2 Let r ≥ R, D ⊂ B
c

r an open set, and p/16 > q > 2. If f1 and f2 are non-

negative functions on X which are regular harmonic in D with respect to X̂, and vanish on

B
c

r ∩ (D
c ∪ D̂reg), then

(C + 1)

(
sup
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

− inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

)
≤ (C − 1) (M qr −mqr) . (2.3)

10



Proof. For any x ∈ Dpr/8, we define

g(x) := f
pr/8,qr
1 (x)−mqrf

pr/8,qr
2 (x)

= Ex
[
(f1 −mqrf2)(X̂τ̂

Dpr/8
) : X̂τ̂

Dpr/8
∈ Dpr/8,qr

]
,

which is regular harmonic in Dpr/8 with respect to X̂, and vanishes on B
c

pr/8 ∩ (D
c ∪

D̂reg). Next, it follows from (2.1) that for any x1, x2 ∈ Dpr (we assume that Dpr 6= ∅),
g(x1)f

pr/8,qr
2 (x2) ≤ Cg(x2)f

pr/8,qr
2 (x1). Therefore,

sup
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

−mqr = sup
Dpr

g

f
pr/8,qr
2

≤ C inf
Dpr

g

f
pr/8,qr
2

(2.4)

= C

(
inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

−mqr

)
.

We can similarly get that

M qr − inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

≤ C

(
M qr − sup

Dpr

f
pr/8,qr
1

f
pr/8,qr
2

)
. (2.5)

Adding (2.4) and (2.5) and rearranging, we arrive at (2.3). 2

For any positive function φ on a non-empty open set U , let

ROUφ =
supU φ

infU φ
. (2.6)

Lemma 2.3 Let r ≥ R, D ⊂ B
c

r an open set, p/16 > q > 2, and ε > 0. Let f1 and f2 be

non-negative functions on X which are regular harmonic in D with respect to X̂ and vanish

on B
c

r ∩ (D
c ∪ D̂reg). If∫

Bqr

fi(y)m(dy) ≤ ε

∫
Dpr/8,qr

fi(y)m(dy), i = 1, 2, (2.7)

then

RODpr
f1

f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqr

f1

f2

− 1

)
. (2.8)

Proof. Applying Lemma 2.1 we get that

Mpr = sup
Dpr

f1

f2

= sup
Dpr

f
pr/8,qr
1 + f̃

pr/8,qr
1

f
pr/8,qr
2 + f̃

pr/8,qr
2

≤ sup
Dpr

(1 + C2ε)f
pr/8,qr
1

f
pr/8,qr
2

,

mpr = inf
Dpr

f1

f2

= inf
Dpr

f
pr/8,qr
1 + f̃

pr/8,qr
1

f
pr/8,qr
2 + f̃

pr/8,qr
2

≥ inf
Dpr

f
pr/8,qr
1

(1 + C2ε)f
pr/8,qr
2

.

11



Inserting this in (2.3), we arrive at

(C + 1)

(
Mpr

1 + C2ε
− (1 + C2ε)mpr

)
≤ (C + 1)

(
sup
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

− inf
Dpr

f
pr/8,qr
1

f
pr/8,qr
2

)
≤ (C − 1)(M qr −mqr).

Rearranging and using that mpr ≥ mqr we get

Mpr

mpr
≤ (1 + C2ε)2 + (1 + C2ε)

C − 1

C + 1

(
M qr

mqr
− 1

)
,

which implies (2.8). 2

In the rest of this subsection, we fix an open set D and a point x0 ∈ D.

Lemma 2.4 Suppose that ∞ is accessible from D with respect to X. For any q ≥ 4, r ≥
2d(z0, x0) ∨R and ε > 0, there exists p = p(ε, q,D, x0, r) > 16q such that∫

Dpr,qr
GD(x0, y)m(dy) > ε

∫
Bqr

GD(x0, y)m(dy).

Proof. Since ∞ is accessible from D with respect to X, we have that

Ex0τD =

∫
D

GD(x0, v)m(dv) =∞.

The function v 7→ GD(x0, v) is regular harmonic in Dr ⊃ Dqr/3 with respect to X̂ and

vanishes on B
qr/3 ∩ (Dqr/3

c
∪ ̂(Dqr/3)

reg

). By using F2(z0, R) for X̂ (with the open set Dqr/3,

a = 3/2 and radius qr/3)∫
Bqr

GD(x0, z)m(dz) ≤ c inf
v∈D8qr/3

GD(x0, v)

P̂Dqr/3(v, z0)
<∞.

Thus

∞ =

∫
Dqr

GD(x0, z)m(dz) = lim
p→∞

∫
Dpr,qr

GD(x0, z)m(dz)

and so we can choose p = p(ε, q,D, x0, r) > 16q large enough so that∫
Dpr,qr

GD(x0, z)m(dz) > ε

∫
Bqr

GD(x0, z)m(dz).

2

12



Proposition 2.5 Suppose that∞ is accessible from D with respect to X. Let r > 2d(z0, x0)∨
R. For every η > 0, there exists s = s(r,D, x0, η) > 1 such that for any two non-negative

functions f1, f2 on X which are regular harmonic in Dr with respect to X̂ and vanish on

B
c

r ∩ (D
c ∪ (̂Dr)

reg
), we have

RODsr
f1

f2

≤ 1 + η . (2.9)

Proof. Let η > 0 and define

φ(t) := 1 +
η

2
+

C

C + 1
(t− 1), t ≥ 1. (2.10)

Then φ(t) = t for t = 1 + η(C + 1)/2, φ(t) < t if t > 1 + η(C + 1)/2, and φ(t) > t if

t < 1 + η(C + 1)/2. Thus liml→∞ φ
l(C) = 1 + η(C + 1)/2, where φl is the l-fold composition

of φ. Let l ∈ N be such that

φl(C) < 1 + η(C + 1). (2.11)

Choose ε = ε(η) > 0 small enough so that

(Cε+ 1 + ε)2(1 + ε)2 < 1 + η (2.12)

and

(1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1
(t− 1) < 1 +

η

2
+

C

C + 1
(t− 1) = φ(t) (2.13)

for all t ≥ 1. Let k be the smallest integer such that k > C2ε−2 and denote n = lk. Let

q0 = 8 and choose q1 = p(ε, q0, r,D, x0) as in Lemma 2.4. Inductively, using Lemma 2.4, we

choose qj+1 = p(ε, qj, r,D, x0) for j = 0, 1, . . . , n − 1, and s = qn. Then by Lemma 2.4, for

j = 0, 1, . . . , n− 1, we have∫
Dqj+1r,qjr

GD(x0, y)m(dy) > ε

∫
Bqjr

GD(x0, y)m(dy). (2.14)

It follows from F2(z0, R) (applied to the open set Dqjr/3 with a = 3/2 and radius qjr/3)

that for every j = 0, 1, . . . , n− 1, i = 1, 2 and x ∈ Dqj+1r,8qjr/3,

C
fi(x)∫

Bqjr
fi(y)m(dy)

≥ P̂
Dqjr/3

(x, z0) ≥ C−1 GD(x0, x)∫
Bqjr

GD(x0, y)m(dy)
.

Hence, by integrating over Dqj+1r,8qjr/3 we get∫
Dqj+1r,8qjr/3 fi(x)m(dx)∫

Bqjr
fi(y)m(dy)

≥ C−1

∫
Dqj+1r,8qjr/3 GD(x0, x)m(dx)∫

Bqjr
GD(x0, y)m(dy)

, i = 1, 2.
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Together with (2.14) we get that∫
Dqj+1r,qjr

fi(y)m(dy) ≥
∫
Dqj+1r,8qjr/3

fi(y)m(dy) > C−2ε

∫
Bqjr

fi(y)m(dy)

for both i = 1 and i = 2, and all j = 0, 1, . . . n− 1. Let 0 ≤ m < l. By the definition of k,∫
D
q(m+1)kr/8,qmkr

fi(y)m(dy) ≥
∫
D
q(m+1)k−1r,qmkr

fi(y)m(dy)

=

(m+1)k−1∑
j=mk

∫
Dqj+1r,qjr

fi(y)m(dy) ≥ kC−2ε

∫
Bqmkr

fi(y)m(dy)

≥ ε−1

∫
Bqmkr

fi(y)m(dy), i = 1, 2.

By using Lemma 2.3 with p = q(m+1)k and q = qmk we conclude from (2.13) that for every

integer m such that 0 ≤ m < l,

ROD
q(m+1)kr

f1

f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqmkr

f1

f2

− 1

)
< φ

(
RODqmkr

f1

f2

)
.

By definition of the integer l, monotonicity of φ, and the fact that RODr/2(f1/f2) ≤ C, it

follows that

RODqlkR
f1

f2

≤ φ
(
RO

D
q(l−1)kR

)
≤ · · · ≤ φl (RODq0R) ≤ 1 + η(C + 1).

This means that RODsr
f1
f2
≤ 1 + η(C + 1). Since η > 0 is arbitrary, the proof is complete. 2

Corollary 2.6 Suppose that ∞ is accessible from D with respect to X. Let r > R and let

f1 and f2 be non-negative functions on X which are regular harmonic in Dr with respect to

X̂ and vanish on B
c

r ∩ (D
c ∪ (̂Dr)

reg
). Then the limit

lim
D3x→∞

f1(x)

f2(x)

exists and is finite.

Proof. Since one can increase r so that r > 2d(z0, x0) ∨ R without loss of generality, the

existence of the limit and its finiteness is a direct consequence of Proposition 2.5. 2
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2.2 Finite boundary point

In this subsection, we deal with the oscillation reduction at a boundary point z0 of an

open set D. Throughout the subsection, we assume that there exists R ≤ R0 such that

C1(z0, R) holds, and that X̂ satisfies F1(z0, R). We will see that the results and the estimates

below have the same structure as those in the previous subsection, the difference being

that P̂D(x, z0) is replaced by Exτ̂D and
∫
Bar

f(y)m(dy) is replaced by Λ̂ar(f) (see below for

definition).

As in the previous subsection we begin by recording a simple consequences of F1(z0, R)

for X̂, the boundary Harnack principle in [26]: There exists c > 1 such that for any r ∈ (0, R),

any open set D ⊂ Br and any non-negative functions u and v on X that are regular harmonic

in D with respect to X̂ and vanish on Br ∩ (D
c ∪ D̂reg), it holds that

c−1u(y)

v(y)
≤ u(x)

v(x)
≤ c

u(y)

v(y)
for all x, y ∈ D ∩Br/8. (2.15)

Note that we can take c = (C(2/3))2. By enlarging C(2/3) in F1(z0, R), without loss of

generality we assume the above c is equal to C(2/3).

Let D ⊂ X be an open set. For 0 < p < q, let Dp = D ∩ Bp and Dp,q = Dq \Dp. For a

function f on X, and 0 < p < q, let

Λ̂p(f) :=

∫
B
c
p

ĵ(z0, y)f(y)m(dy), Λ̂p,q(f) :=

∫
Dp,q

ĵ(z0, y)f(y)m(dy). (2.16)

Let r ∈ (0, R]. For 0 < p < q < 1 and a non-negative function f on X define

fpr,qr(x) = Ex
[
f(X̂τ̂Dpr

) : X̂τ̂Dpr
∈ Dpr,qr

]
,

f̃pr,qr(x) = Ex
[
f(X̂τ̂Dpr

) : X̂τ̂Dpr
∈ (D \Dqr) ∪Bc

r

]
.

Lemma 2.7 Suppose that r ≤ R, D is an open subset of Br and f is a non-negative function

on X that is regular harmonic in D with respect to X̂ and vanishes on Br ∩ (D
c ∪ D̂reg).

There exists C2 > 0 independent of f and r ≤ R such that for any 0 < 16p < q < 1/2 and

any ε > 0, if

Λ̂qr(f) ≤ εΛ̂8pr,qr(f), (2.17)

then for every x ∈ Dpr, f̃8pr,qr(x) ≤ C2εf8pr,qr(x).

Proof. Note that

f̃8pr,qr(x) = Ex
[
f(X̂τ̂D8pr

) : X̂τ̂Dpr
∈ Bc

qr

]
=

∫
Bcqr

∫
D8pr

ĜD8pr(x, y)ĵ(y, z)m(dy)f(z)m(dz).

15



By C1(z0, R), ĵ(y, z) ≤ c1ĵ(z0, z) for all (y, z) ∈ Bqr/2 × Bc
qr, where the constant c is

independent of p and q. Thus∫
Bcqr

∫
D8pr

ĜD8pr(x, y)ĵ(y, z)m(dy)f(z)m(dz)

≤c1

∫
D8pr

ĜD8pr(x, y)m(dy)

∫
Bcqr

ĵ(z0, z)f(z)m(dz)

=c1Exτ̂D8pr

∫
Bcqr

ĵ(z0, z)f(z)m(dz)

Now, using (2.17) and the fact that f = f8pr,qr on D8pr,qr, we get that for every x ∈ Dpr,

f̃8pr,qr(x) ≤ c1ε(Exτ̂D8pr)Λ̂8pr,qr(f8pr,qr),

which is less than or equal to cε(Exτ̂D8pr)Λ̂8pr/3(f8pr,qr). Note that f8pr,qr is regular harmonic

in D8pr with respect to X̂ and vanishes on B8pr∩ (D
c∪D̂reg). Thus applying F1(z0, R) (with

a = 2/3) to f8pr,qr we have that for every x ∈ Dpr,

f̃8pr,qr(x) ≤ c1ε(Exτ̂D8pr)Λ̂8pr/3(f8pr,qr) ≤ c1C(2/3)εf8pr,qr(x).

2

Again, by enlarging C(2/3) in F1, without loss of generality we can assume C2 =

(C(2/3))2. From now on we let C = C(2/3), so that C2 = C2.

Let r ∈ (0, R], D ⊂ Br = B(z0, r) an open set and z0 ∈ ∂D. Recall that for 0 < p < q,

Dp = D ∩ Bp and Dp,q = Dq \ Dp. If f1 and f2 are non-negative functions on X, for any

p ∈ (0, 1), we let

mpr := inf
Dpr

f1

f2

, Mpr = sup
Dpr

f1

f2

.

Note that fi = (fi)pr,qr + (f̃i)pr,qr.

Lemma 2.8 Let r ≤ R, D ⊂ Br an open set, and 0 < 16p < q < 1/2. If f1 and f2 are

non-negative functions on X which are regular harmonic in D with respect to X̂ and vanish

on Br ∩ (D
c ∪ D̂reg), then

(C + 1)

(
sup
Dpr

(f1)8pr,qr

(f2)8pr,qr

− inf
Dpr

(f1)8pr,qr

(f2)8pr,qr

)
≤ (C − 1) (Mqr −mqr) . (2.18)

Proof. For any x ∈ D8pr, we define

g(x) := (f1)8pr,qr(x)−mqr(f2)8pr,qr(x)

= Ex
[
(f1 −mqrf2)(X̂τ̂D8pr

) : X̂τ̂D8pr
∈ D8pr,qr

]
,
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which is regular harmonic in D8pr with respect to X̂ and vanishes on B8pr ∩ (D
c ∪ D̂reg).

Next, it follows from (2.15) that for any x1, x2 ∈ Dpr (we assume that Dpr 6= ∅),

g(x1)(f2)8pr,qr(x2) ≤ Cg(x2)(f2)8pr,qr(x1).

Therefore,

sup
Dpr

(f1)8pr,qr

(f2)8pr,qr

−mqr = sup
Dpr

g

(f2)8pr,qr

≤ C inf
Dpr

g

(f2)8pr,qr

(2.19)

= C

(
inf
Dpr

(f1)8pr,qr

(f2)8pr,qr

−mqr

)
.

We can similarly get that

Mqr − inf
Dpr

(f1)8pr,qr

(f2)8pr,qr

≤ C

(
Mqr − sup

Dpr

(f1)8pr,qr

(f2)8pr,qr

)
. (2.20)

Adding (2.19) and (2.20) and rearranging, we arrive at (2.18). 2

Recall that ROUφ is defined in (2.6).

Lemma 2.9 Let r ≤ R, D ⊂ Bc
r an open set, 16p < q < 1/2, and ε > 0. Let f1 and f2 be

non-negative functions on X which are regular harmonic in D with respect to X̂ and vanish

on Br ∩ (D
c ∪ D̂reg). If Λ̂qr(fi) ≤ εΛ̂8pr,qr(fi), i = 1, 2, then

RODpr

f1

f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqr

f1

f2

− 1

)
. (2.21)

Proof. Applying Lemma 2.7, we get that

Mpr = sup
Dpr

f1

f2

= sup
Dpr

(f1)8pr,qr + (f̃1)8pr,qr

(f2)8pr,qr + (f̃2)8pr,qr

≤ sup
Dpr

(1 + C2ε)(f1)8pr,qr

(f2)8pr,qr

,

mpr = inf
Dpr

f1

f2

= inf
Dpr

(f1)8pr,qr + (f̃1)8pr,qr

(f2)8pr,qr + (f̃2)8pr,qr

≥ inf
Dpr

(f1)8pr,qr

(1 + C2ε)(f2)8pr,qr

.

By inserting this in (2.18), we arrive at

(C + 1)

(
Mpr

1 + C2ε
− (1 + C2ε)mpr

)
≤ (C + 1)

(
sup
Dpr

(f1)8pr,qr

(f2)8pr,qr

− inf
Dpr

(f1)8pr,qr

(f2)8pr,qr

)
≤ (C − 1)(Mqr −mqr).
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Rearranging and using that mpr ≥ mqr we get

Mpr

mpr

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
Mqr

mqr

− 1

)
,

which implies (2.21). 2

In the remainder of this subsection, we fix an open set D such that z0 ∈ ∂D, and a point

x0 ∈ D.

Lemma 2.10 Suppose that z0 is accessible from D with respect to X. Assume that r ≤
R ∧ (1

2
d(z0, x0)), q ≤ 1/4 and ε > 0. Then there exists p = p(ε, q,D, x0, r) < q/16 such that

Λ̂pr,qr(GD(x0, ·)) > εΛ̂qr(GD(x0, ·)).

Proof. Since z0 is accessible from D with respect to X, we have that

PD(x0, z0) =

∫
D

GD(x0, v)j(v, z0)m(dv) =∞.

The function v 7→ GD(x0, v) is regular harmonic in Dr ⊃ D3qr with respect to X̂ and vanishes

on B3qr ∩ (D3qr
c∪ (̂D3qr)

reg

). By using F1(z0, R) for X̂ (with the open set D3qr, a = 2/3 and

radius 3qr),∫
B
c
qr

GD(x0, y)j(y, z0)m(dv) = Λ̂qr(GD(x0, ·)) ≤ c inf
v∈D3qr/8

GD(x0, v)

Ev τ̂D3qr

<∞.

Thus

∞ =

∫
Dqr

GD(x0, v)j(v, z0)m(dv) = lim
p→0

∫
Dpr,qr

GD(x0, v)j(v, z0)m(dy)

and so we can choose p = p(ε, q,D, x0, r) < q/16 small so that∫
Dpr,qr

GD(x0, y)j(y, z0)m(dy) > ε

∫
B
c
qr

GD(x0, y)j(y, z0)m(dy).

2

Proposition 2.11 Suppose that z0 is accessible from D with respect to X. Assume that

r ≤ R ∧ (1
2
d(z0, x0)). For every η > 0, there exists s = s(r,D, x0, η) ∈ (0, 1) such that for

any two non-negative functions f1, f2 on X which are regular harmonic in Dr with respect

to X̂ and vanish on Br ∩ (D
c ∪ (̂Dr)

reg
), we have

RODsr

f1

f2

≤ 1 + η. (2.22)
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Proof. Let η > 0 and define φ as in (2.10) and let φl be the l-fold composition of φ. Let

l ∈ N be such that (2.11) holds. Choose ε > 0 small enough so that (2.12) and (2.13) holds.

Let k be the smallest integer such that k > C2ε−2 and denote n = lk. Let q0 = 1/8 and

choose q1 = p(ε, q0, r,D, x0) as in Lemma 2.10. Inductively, using Lemma 2.10, we choose

qj+1 = p(ε, qj, r,D, x0) for j = 0, 1, . . . , n− 1, and s = qn. Then it follows from Lemma 2.10

that for j = 0, 1, . . . , n− 1, we have

Λ̂qj+1r,qjr(GD(x0, ·)) > εΛ̂qjr(GD(x0, ·)). (2.23)

It follows from F1(z0, R) (applied to the open set D3qjr with a = 2/3 and radius 3qjr) that

for every j = 0, 1, . . . , n− 1,

C
fi(x)

Λ̂qjr(fi)
≥ Exτ̂D3qjr

≥ C−1 GD(x0, x)

Λ̂qjr(GD(x0, ·))
, x ∈ Dqj+1r,3qjr/8.

Hence, by integrating over Dqj+1r,3qjr/8 we get

Λ̂qj+1r,3qjr/8(fi)

Λ̂qjr(fi)
≥ C−1 Λ̂qj+1r,3qjr/8(GD(x0, ·))

Λ̂qjr(GD(x0, ·))
, i = 1, 2.

Together with (2.23) it follows that Λ̂qj+1r,qjr(fi) ≥ Λ̂qj+1r,3qjr/8(fi) > C−2εΛ̂qjr(fi) for both

i = 1 and i = 2, and all j = 0, 1, . . . n− 1. Let 0 ≤ m < l; then

Λ8q(m+1)kr,qmkr(fi) ≥ Λ̂q(m+1)k−1r,qmkr(fi) =

(m+1)k−1∑
j=mk

Λ̂qj+1r,qjr(fi)

≥ kC−2εΛ̂qmkr(fi) ≥ ε−1Λ̂qmkr(fi), i = 1, 2.

By using Lemma 2.9 with p = q(m+1)k and q = qmk we conclude that for every integer m

such that 0 ≤ m < l,

RODq(m+1)kr

f1

f2

≤ (1 + C2ε)2 + (1 + C2ε)
C − 1

C + 1

(
RODqmkr

f1

f2

− 1

)
< φ

(
RODqmkr

f1

f2

)
.

The remainder of the proof is the same as the corresponding part of the proof of Proposition

2.5. 2

Corollary 2.12 Suppose that z0 is accessible from D with respect to X. Let r ≤ R and let

f1 and f2 be non-negative functions on X which are regular harmonic in Dr with respect to

X̂ and vanish on Br ∩ (D
c ∪ (̂Dr)

reg
). Then the limit

lim
D3x→z0

f1(x)

f2(x)

exists and is finite.
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Proof. Since one can decrease r so that r ≤ R ∧ (1
2
d(z0, x0)) without loss of generality, the

existence of the limit is a direct consequence of Proposition 2.11. 2

3 Martin boundary for accessible points

Recall that D is a Greenian open subset of X and that XD is the process X killed upon exiting

D. In order to apply the theory of Martin boundary developed in [28], we have to check

that their Hypothesis (B), see p.498 in [28], holds in our setting. Since XD is strongly Feller,

it follows by the dominated convergence theorem that the α-resolvent operator Gα
Df(x) =∫∞

0
e−αtPD

t f(x) dt, α > 0, is also strongly Feller. Here (PD
t )t≥0 denotes the semigroup of

XD. In particular, Gα
Df is continuous for every bounded non-negative measurable f on

D. It follows that Gα
Df is lower semi-continuous for every non-negative f on D and every

α > 0. Since GDf = ↑ limα→0G
α
Df , we see that GDf is also lower semi-continuous for every

non-negative f . Hence, conditions (11) and (12) on p.126 of [12] are satisfied. It follows

from Theorem 2 on p.268 of [12] that GD1K is bounded for every compact set K ⊂ D. Let

f : D → [0,∞) be bounded measurable and vanish outside of a compact set K ⊂ D. Then

0 ≤ f ≤ ‖f‖∞1K . Thus GDf ≤ GD(‖f‖∞1K) ≤ ‖f‖∞GD1K is bounded. Since XD is

strongly Feller, it follows that PD
t GDf is continuous. Further,

GDf − PD
t GDf =

∫ t

0

PD
s fds ≤ ‖f‖∞

∫ t

0

PD
s 1ds ≤ ‖f‖∞t .

The right-hand side converges to 0 uniformly in x ∈ D. Hence

GDf = lim
t→0

PD
t GDf

uniformly in D. Thus GDf is a uniform limit of continuous functions, hence continuous.

Finally, if f ∈ Cc(D) (continuous functions on D with compact support), it is clear that

αGα
Df(x) = Ex

∫∞
0
e−tf(Xt/α) dt→ f(x) boundedly on compacts as α→∞. Since the same

conclusions are valid for X̂, we have checked that Hypothesis (B) from [28] holds true.

Fix x0 ∈ D and define

MD(x, y) :=
GD(x, y)

GD(x0, y)
, x, y ∈ D, y 6= x0.

By Theorem 3 in [28], D has a Martin boundary ∂MD with respect to XD satisfying the

following properties:

(M1) D ∪ ∂MD is a compact metric space (with the metric denoted by dM);

(M2) D is open and dense in D∪ ∂MD, and its relative topology coincides with its original

topology;

(M3) MD(x, · ) can be uniquely extended to ∂MD in such a way that
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(a) MD(x, y) converges to MD(x,w) as y → w ∈ ∂MD in the Martin topology;

(b) for each w ∈ D ∪ ∂MD, the function x 7→ MD(x,w) is excessive with respect to

XD;

(c) the function (x,w) 7→MD(x,w) is jointly continuous on D× ((D \ {x0}) ∪ ∂MD)

in the Martin topology and

(d) MD(·, w1) 6= MD(·, w2) if w1 6= w2 and w1, w2 ∈ ∂MD.

Recall that a positive harmonic function f for XD is minimal if, whenever g is a positive

harmonic function for XD with g ≤ f on D, one must have f = cg for some constant

c. If MD(·, z), z ∈ ∂MD, is a minimal harmonic function, the point z is called a minimal

Martin boundary point. The set of all minimal Martin boundary points is denoted by ∂mD.

Then the following Martin representation is valid, see Theorem 4 in [28]: For every non-

negative function h harmonic with respect to XD, there is a unique finite measure µ on

∂MD concentrated on ∂mD such that

h(x) =

∫
∂MD

MD(x, z)µ(dz) =

∫
∂mD

MD(x, z)µ(dz) , x ∈ D . (3.1)

Recall that a point w ∈ ∂MD is a finite Martin boundary point if there exists a bounded

sequence (yn)n≥1 ⊂ D converging to w in the Martin topology. The finite part of the Martin

boundary will be denoted by ∂fMD. Recall that a point w on the Martin boundary ∂MD of

D is said to be associated with z0 ∈ ∂D if there is a sequence (yn)n≥1 ⊂ D converging to w

in the Martin topology and to z0 in the topology of X. The set of Martin boundary points

associated with z0 is denoted by ∂z0MD.

The proof of part (b) of the following result is a direct extension of that of Lemma 4.18

in [23] and part (a) is even simpler. So we omit the proof.

Lemma 3.1 (a) Let D be a bounded open set and suppose that u is a bounded non-negative

harmonic function for XD. If there exists a polar set N ⊂ ∂D such that for any z ∈ ∂D \N

lim
D3x→z

u(x) = 0 , (3.2)

then u is identically equal to zero.

(b) Let D be an unbounded open set and suppose that u is a bounded non-negative harmonic

function for XD. If there exists a polar set N ⊂ ∂D such that for any z ∈ ∂D \ N (3.2)

holds true and additionally,

lim
D3x→∞

u(x) = 0 ,

then u is identically equal to zero.
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3.1 Martin boundary at infinity

In this subsection we assume that R0 = ∞, that there exists a point z0 ∈ X such that

C2(z0, R) holds, and that X̂ satisfies F2(z0, R) for some R > 0. We will fix z0 and R and

use the notation Br = B(z0, r). Let D be an unbounded open subset of X such that ∞ is

accessible from D with respect to X. We will deal with the Martin boundary of D at infinity.

Recall that x0 is a fixed point in D.

Lemma 3.2 For every x ∈ D the limit

MD(x,∞) := lim
D3v→∞

GD(x, v)

GD(x0, v)
(3.3)

exists and is finite.

Proof. Fix x ∈ D, and let r ≥ 2 min{d(z0, x), d(z0, x0), R}. As before, let Dr = D∩Bc

r. The

functions GD(x, ·) and GD(x0, ·) are regular harmonic in Dr with respect to X̂ and vanish

in B
c

r ∩ (D
c ∪ (̂Dr)

reg

), hence by Corollary 2.6 we deduce that the limit

MD(x,∞) := lim
D3v→∞

GD(x, v)

GD(x0, v)

exists and is finite. 2

Proof of Theorem 1.3(a): We first note that ∂∞MD is not empty. Indeed, let (yn)n≥1 ⊂ D

converge to ∞ in the topology of X. Since D ∪ ∂MD is a compact metric space with

the Martin metric dM , there exist a subsequence (ynk)k≥1 and w ∈ D ∪ ∂MD such that

limk→∞ dM(ynk , w) = 0. Clearly, w /∈ D (since relative topologies on D are equivalent).

Thus we have found an unbounded sequence (ynk)k≥1 ⊂ D which converges to w ∈ ∂MD in

the Martin topology and to ∞ in the topology of X.

Let w ∈ ∂∞MD and let MD(·, w) be the corresponding Martin kernel. If (yn)n≥1 is a

sequence in D converging to w in the Martin topology and to ∞ in the topology of X, then,

by (M3)(a), MD(x, yn) converges to MD(x,w). On the other hand, since yn converges ∞ in

the topology of X, by Lemma 3.2, limn→∞MD(x, yn) = MD(x,∞). Hence, for each w ∈ ∂∞MD
it holds that MD(·, w) = MD(·,∞). Since, by (M3)(d), for two different Martin boundary

points w(1) and w(2) it always holds that MD(·, w(1)) 6= MD(·, w(2)), we conclude that ∂∞MD

consists of exactly one point. 2

Proof of Theorem 1.3(b): We claim that for every r > 4 max(d(z0, x0), R) and U := D∩Br

it holds that

MD(x,∞) = Ex [MD(XτU ,∞)] , x ∈ U. (3.4)

For any z ∈ D2r, since GD(·, z) is regular harmonic in U , we have

GD(x, z)

GD(x0, z)
= Ex

[
GD(XτU , z)

GD(x0, z)

]
, x ∈ U.
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Hence, in view of Lemma 3.2, in order to prove (3.4) it suffices to show that, for any fixed

x ∈ U , there exists s > 16r such that the family{
GD(XτU , z)

GD(x0, z)
: z ∈ D4s

}
is uniformly integrable with respect to the distribution of XτU under Px.

In the remainder of this proof, we fix an x ∈ U . Let s > 8r. Then for any Borel set

E ⊂ Dr,

Ex
[
GD(XτU , z)

GD(x0, z)
, XτU ∈ E

]
≤ Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ (Dr \Ds/3) ∩ E

]
+ Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ Ds/3

]
= : I + II .

We first show that II is small for large s. Let w ∈ U and d(z0, y) > 4r/3. By C2(z0, R)

we have that j(w, y) ≤ c1j(z0, y) with c1 = c1(z0, 4/3). It follows that

PU(x, y) =

∫
U

GU(x,w)j(w, y)m(dw) ≤ c1(ExτU)j(z0, y)

≤ c1(ExτBr)j(z0, y) = c2j(z0, y),

where c2 = c2(z0, x, r). Hence,

Ex[GD(XτU , z), XτU ∈ Ds/3] =

∫
Ds/3

GD(y, z)PU(x, y)m(dy)

≤ c2

∫
Ds/3

GD(y, z)j(z0, y)m(dy). (3.5)

Next, for z ∈ D4s,

GD(x0, z) ≥
∫
Ds/3

GD(y, z)P
D\Ds/4(x0, y)m(dy)

=

∫
Ds/3

∫
D\Ds/4

GD(y, z)G
D\Ds/4(x0, u)j(u, y)m(du)m(dy).

Let y ∈ Ds/3 and u ∈ D \ Ds/4
. By C2(z0, R) we have that j(z0, y) ≤ c4j(u, y) with

c3 = c3(z0). Continuing the above display, we get that

GD(x0, z) ≥ c−1
3

(∫
Ds/3

GD(y, z)j(z0, y)m(dy)

)(∫
D\Ds/4

G
D\Ds/4(x0, u)m(du)

)
. (3.6)

By combining (3.5) and (3.6) we get that for all z ∈ D4s,

II =

∫
Ds/3

GD(y, z)

GD(x0, z)
PU(x, y)m(dy) ≤ c2c3

(∫
D\Ds/4

G
D\Ds/4(x0, u)m(du)

)−1

.
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Since

lim
s→∞

∫
D\Ds/4

G
D\Ds/4(x0, u)m(du) =

∫
D

GD(x0, u)m(du) = Ex0τD =∞,

we see that for any ε > 0 we can find s > 16r such that(∫
D\Ds/4

G
D\Ds/4(x0, u)m(du)

)−1

<
ε

2c2c3

.

Thus II < ε/2 for all z ∈ D4s.

We now fix an s > 16r as above and estimate I for all z ∈ D4s. If y ∈ Dr \Ds/3, then

both GD(y, ·) and GD(x0, ·) are regular harmonic with respect to X̂ in Ds/2 and vanish on

Bs/2 ∩ (D
c ∪ D̂reg). Choose z1 ∈ Ds. By the boundary Harnack principle (2.1), we have that

GD(y, z)

GD(x0, z)
≤ c4

GD(y, z1)

GD(x0, z1)
, z ∈ D4s.

Since z1 ∈ Ds it follows from (1.10) that c5 := supy∈Dr\Ds/3 GD(y, z1) <∞. Hence,

I ≤ c4Ex
[
GD(XτU , z1)

GD(x0, z1)
, XτU ∈ (Dr \Ds/3) ∩ E

]
≤ c4c5

GD(x0, z1)
Px
(
XτU ∈ (Dr \Ds/3) ∩ E

)
≤ c6Px(XτU ∈ E) , (3.7)

where c6 = c4c5/GD(x0, z1). Thus, given ε > 0, for any set E ⊂ Dr with
∫
E
PU(x, y)m(dy) <

ε/(2c7), we have I < ε/2 for all z ∈ D4s.

Therefore we have proved the claimed uniform integrability for the s chosen above, and

consequently (3.4).

Now let U1 ⊂ D be any bounded open set such that U1 ⊂ D. Then there is r > 4R such

that U1 ⊂ D ∩Br =: U . Then by (3.4) and the strong Markov property we have that

MD(x,∞) = Ex
[
MD(XτU1

,∞)
]
, x ∈ U1, (3.8)

which finishes the proof. 2

Because of Theorem 1.3(a), we will also use∞ to denote the Martin boundary point ∂∞MD

associated with ∞. Note that it follows from the proof of Theorem 1.3(a) that if (yn)n≥1

converges to ∞ in the topology of X, then it also converges to ∞ in the Martin topology.

For any ε > 0, define

K∞ε :=
{
w ∈ ∂fMD : dM(w,∞) ≥ ε

}
. (3.9)

By the definition of the finite part of the Martin boundary, for each w ∈ K∞ε there exists a

bounded sequence (ywn )n≥1 ⊂ D such that limn→∞ dM(ywn , w) = 0. Without loss of generality

we may assume that dM(ywn , w) < ε
2

for all n ≥ 1.
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Lemma 3.3 There exists c = c(ε) > 0 such that d(ywn , z0) ≤ c for all w ∈ K∞ε and all n ≥ 1.

Proof. We first claim that for any sequence (yn)n≥1 in D satisfying d(yn, z0)→∞, we have

limn→∞ dM(yn,∞) = 0, i.e., (yn)n≥1 converges to∞ in the Martin topology. Indeed, sinceD∪
∂MD is a compact metric space, (yn) has a convergent subsequence (ynk). Let w = limk→∞ ynk
(in the Martin topology). Then limk→∞MD(·, ynk) = MD(·, w). On the other hand, from

Lemma 3.2 and Theorem 1.3(a) we see that limk→∞MD(·, ynk) = MD(·,∞). Therefore,

MD(·, w) = MD(·,∞), which implies that w = ∞ by (M3)(d). Since this argument also

holds for any subsequence of (yn)n≥1, we conclude that yn →∞ in the Martin topology.

Now suppose the lemma is not true. Then {ywn : w ∈ K∞ε , n ∈ N} contains a se-

quence (ywknk )k≥1 such that limk→∞ d(ywknk , z0) = ∞. By the paragraph above, we have that

limk→∞ dM(ywknk ,∞) = 0. On the other hand, dM(ywknk ,∞) ≥ dM(wk,∞)−dM(ywknk , wk) ≥ ε/2 .

This contradiction proves the claim. 2

Proof of Theorem 1.3(c): Let h be a positive harmonic function for XD such that

h ≤ MD(·,∞). By the Martin representation (3.1), there is a finite measure µ on ∂MD

(concentrated on ∂mD) such that

h(x) =

∫
∂MD

MD(x,w)µ(dw) =

∫
∂MD\{∞}

MD(x,w)µ(dw) +MD(x,∞)µ({∞}) .

In particular, h(x0) = µ(∂MD) ≤ MD(x0,∞) = 1 (because of the normalization at x0).

Hence, µ is a sub-probability measure.

For ε > 0, let K∞ε be the closed subset of ∂fMD defined in (3.9). Define

u(x) :=

∫
K∞ε

MD(x,w)µ(dw). (3.10)

Then u is a positive harmonic function with respect to XD and bounded above by

u(x) ≤ h(x)− µ({∞})MD(x,∞) ≤
(
1− µ({∞})

)
MD(x,∞) . (3.11)

We claim that limx→∞ u(x) = 0. Let p = c(ε) ∨ R, where c(ε) is the constant from Lemma

3.3. Hence, for w ∈ K∞ε and (ywn )n≥1 a sequence such that limn→∞ dM(ywn , w) = 0, it holds

that d(ywn , z0) ≤ p. Fix a point x1 ∈ D8p and choose an arbitrary point y0 ∈ Dp. Then for

any x ∈ D8p and any y ∈ Dp we have that

GD(x, y)

GD(x0, y)
=

GD(x, y)

GD(x1, y)

GD(x1, y)

GD(x0, y)
≤ c1

GD(x, y0)

GD(x1, y0)

GD(x1, y)

GD(x0, y)
,

where the inequality follows from the dual version of (2.1) since X satisfies F2(z0, R). There-

fore for each w ∈ K∞ε we have

MD(x,w) = lim
n→∞

GD(x, ywn )

GD(x0, ywn )
≤ c1

GD(x, y0)

GD(x1, y0)
lim
n→∞

GD(x1, y
w
n )

GD(x0, ywn )
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= c1
GD(x, y0)

GD(x1, y0)
MD(x1, w) ≤ c1

GD(x, y0)

GD(x1, y0)
sup
w∈Kε

MD(x1, w)

= c2GD(x, y0)

by the continuity of the Martin kernel (M3)(c). This inequality together with the definition of

u shows that u(x) ≤ c2GD(x, y0). Now using (1.11), we can conclude that limx→∞,x∈D u(x) =

0 uniformly for w ∈ K∞ε .

Choose r > 16p. For any x ∈ Dr/2 and y, y1 ∈ D8r, by (2.1) applied to GD(x, ·) and

GD(x0, ·), we have
GD(x, y)

GD(x0, y)
≤ c3

GD(x, y1)

GD(x0, y1)
.

Letting D 3 y →∞, by Lemma 3.2 we get

MD(x,∞) ≤ c3
GD(x, y1)

GD(x0, y1)
= c4GD(x, y1) , x ∈ Dr/2. (3.12)

Recall that by (1.8) limD3x→z GD(x, y) = 0 for every z ∈ ∂D which is regular for Dc with

respect to X. Since r > 16p can be arbitrarily large, we see from (3.12) and (3.11) that

limD3x,x→z u(x) = 0 for every z ∈ ∂D which is regular for Dc with respect to X.

Fix r > 16p and y1 ∈ D8r. It follows from (1.10) that for all x ∈ Dr/2,

GD(x, y1) ≤ c5 . (3.13)

From (3.11)–(3.13) we conclude that u is bounded in x ∈ Dr/2. Similarly by (1.10), for every

x ∈ D8p we have that GD(x, y0) ≤ c6 (recall y0 ∈ Dp). Since MD(x,w) ≤ c2GD(x, y0) for

each x ∈ D8p and each w ∈ K∞ε , by using (3.10) we see that u is bounded on D8p. Thus u

is bounded on D.

Now it follows from Lemma 3.1(b) that u ≡ 0 in D. This means that ν = µ|K∞ε = 0.

Since ε > 0 was arbitrary and ∂MD \ {∞} = ∪ε>0K
∞
ε , we see that µ|∂MD\{∞} = 0. Hence

h = µ({∞})M(·,∞) showing that M(·,∞) is minimal. Therefore we have proved the

theorem. 2

3.2 Finite part of Martin boundary

In this subsection, we deal with the oscillation reduction at a boundary point z0 of an open

set D. We will fix D and z0 in this subsection, and use the notation Br = B(z0, r). In this

subsection, we will always assume that there exists R ≤ R0 such that C1(z0, R) holds, and

that X̂ satisfies F1(z0, R). We also assume that z0 is accessible from D with respect to X.

Lemma 3.4 For every x ∈ D, the limit

MD(x, z0) := lim
D3v→z0

GD(x, v)

GD(x0, v)

exists and is finite.
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Proof. Fix x ∈ D, and let r ≤ 1
2

min{d(z0, x), d(z0, x0), R}. As before, let Dr = D∩Br. The

functions GD(x, ·) and GD(x0, ·) are regular harmonic in Dr with respect to X̂ and vanish

in Br ∩ (D
c ∪ (̂Dr)

reg
), hence by Corollary 2.12 we deduce that the limit

MD(x, z0) := lim
D3v→z0

GD(x, v)

GD(x0, v)

exists and is finite. 2

Proof of Theorem 1.1(a): We first note that ∂z0MD is not empty. Indeed, let (yn)n≥1 ⊂
D converge to z0 in the topology of X. Since D ∪ ∂MD is a compact metric space with

the Martin metric dM , there exist a subsequence (ynk)k≥1 and w ∈ D ∪ ∂MD such that

limk→∞ dM(ynk , w) = 0. Clearly, w /∈ D (since relative topologies on D are equivalent).

Thus we have found a sequence (ynk)k≥1 ⊂ D which converges to w ∈ ∂MD in the Martin

topology and to z0 in the topology of X.

Let w ∈ ∂z0MD and let MD(·, w) be the corresponding Martin kernel. If (yn)n≥1 is a

sequence in D converging to w in the Martin topology and to z0 in the topology of X,

then, by (M3)(a), MD(x, yn) converge to MD(x,w). On the other hand, d(yn, z0)→ 0, thus

by Lemma 3.4, limn→∞MD(x, yn) = MD(x, z0). Hence, for each w ∈ ∂z0MD it holds that

MD(·, w) = MD(·, z0). Since, by (M3)(d), for two different Martin boundary points w(1)

and w(2) it always holds that MD(·, w(1)) 6= MD(·, w(2)), we conclude that ∂z0MD consists of

exactly one point. 2

Proof of Theorem 1.1(b): We claim that for every r ≤ 1
4

min{d(z0, x0), R} and U := D\Br

it holds that

MD(x, z0)) = Ex [MD(XτU , z0)] , x ∈ U. (3.14)

For any z ∈ Dr/2, since GD(·, z) is regular harmonic in U , we have

GD(x, z)

GD(x0, z)
= Ex

[
GD(XτU , z)

GD(x0, z)

]
, x ∈ U.

Hence, in view of Lemma 3.4, in order to prove (3.14) it suffices to show that, for any fixed

x ∈ U , there exists s < r/(16) such that the family{
GD(XτU , z)

GD(x0, z)
: z ∈ Ds/4

}
is uniformly integrable with respect to the distribution of XτU under Px.

In the remainder of this proof we fix an x ∈ U . Let 0 < s < r/8. Then for any Borel set

E ⊂ Dr,

Ex
[
GD(XτU , z)

GD(x0, z)
, XτU ∈ E

]
≤ Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ (Dr \D3s) ∩ E

]
+Ex

[
GD(XτU , z)

GD(x0, z)
, XτU ∈ D3s

]
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= : I + II .

We first show that II is small for small s. We claim that PU(x, ·) is bounded on D3r/4.

Indeed, let y ∈ D3r/4. If w ∈ U , then by C1(z0, R), we have that j(w, y) ≤ c1j(w, z0) where

c1 = c1(z0, 4/3). Hence,

PU(x, y) =

∫
U

GU(x,w)j(w, y)m(dw) ≤ c1

∫
U

GU(x,w)j(w, z0)m(dw)

= c1PU(x, z0) =: c2.

This implies that

Ex[GD(XτU , z)), XτU ∈ D3s] =

∫
D3s

GD(y, z)PU(x, y)m(dy)

≤ c2

∫
D3s

GD(y, z)m(dy). (3.15)

Next, for z ∈ Ds/4,

GD(x0, z) ≥
∫
D3s

GD(y, z)PD\D4s
(x0, y)m(dy)

=

∫
D3s

∫
D\D4s

GD(y, z)GD\D4s
(x0, u)j(u, y)m(du)m(dy).

Let y ∈ D3s and u ∈ D\D4s. By C1(z0, R), we have that j(u, z0) ≤ c3j(u, y) with c3 = c3(z0).

Continuing the above display, we get that

GD(x0, z) ≥ c−1
3

(∫
D3s

GD(y, z)m(dy)

)(∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

)
. (3.16)

Combining (3.15) and (3.16) we arrive at

II =

∫
D3s

GD(y, z)

GD(x0, z)
PU(x, y)m(dy)

≤ c2c3

(∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

)−1

.

Since z0 is accessible from D,

lim
s→0

∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

=

∫
D

GD(x0, u)j(u, z0)m(du) = PD(x0, z0) =∞.

Therefore, for any ε > 0 one can find s > 0 such that(∫
D\D4s

GD\D4s
(x0, u)j(u, z0)m(du)

)−1

<
ε

2c2c3

.
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Thus II < ε/2 for all z ∈ Ds/4.

We fix s < r/16 as above and estimate I for all z ∈ Ds/4. Choose z1 ∈ Ds. If y ∈ Dr\D3s,

then both GD(y, ·) and GD(x0, ·) are regular harmonic in D2s with respect to X̂ and vanish

on B2s ∩ (D
c ∪ (̂D2s)

reg

). Hence, by the boundary Harnack principle (2.15), we have that

GD(y, z)

GD(x0, z)
≤ c4

GD(y, z1)

GD(x0, z1)
, z ∈ Ds/4.

Since z1 ∈ Ds it follows from (1.7) that c5 := supy∈Dr\D3s
GD(y, z1) <∞. Hence,

I ≤ c4Ex
[
GD(XτU , z1)

GD(x0, z1)
, XτU ∈ (Dr \D3s) ∩ E

]
≤ c4c5

GD(x0, z1)
Px
(
XτU ∈ (Dr \D3s) ∩ E

)
≤ c6Px(XτU ∈ E), (3.17)

where c6 = c4c5/GD(x0, z1). Thus, given ε > 0, for any set E ⊂ Dr with Px(XτU ∈ E) <

ε/(2c6) we have that I < ε/2 for all z ∈ Ds/4.

Therefore we have proved the claimed uniform integrability for the s chosen above, and

consequently (3.14).

Now let U1 ⊂ D be any open set such that z0 is not in U1. Then there is r > 0 such that

U1 ⊂ D \Br =: U . Then by (3.14) and the strong Markov property we get that

MD(x, z0) = Ex
[
MD(XτU1

, z0)
]
, x ∈ U1, (3.18)

which finishes the proof. 2

Because of Theorem 1.1(a), we will also use z0 to denote the Martin boundary point

∂z0MD associated with z0 ∈ ∂D. Note that it follows from the proof of Theorem 1.1(a) that

if (yn)n≥1 converges to z0 in the topology of X, then it also converges to z0 in the Martin

topology.

For any ε > 0, define

Kz0
ε :=

{
w ∈ ∂fMD : dM(w, z0) ≥ ε

}
. (3.19)

By the definition of the finite part of the Martin boundary, for each w ∈ Kz0
ε there exists a

bounded sequence (ywn )n≥1 ⊂ D such that limn→∞ dM(ywn , w) = 0. Without loss of generality

we may assume that dM(ywn , w) < ε
2

for all n ≥ 1.

Lemma 3.5 There exists c = c(ε) > 0 such that d(ywn , z0) ≥ c for all w ∈ Kz0
ε and all n ≥ 1.

Proof. Suppose the lemma is not true. Then {ywn : w ∈ Kz0
ε , n ∈ N} contains a subsequence

(ywknk )k≥1 such that limk→∞ d(ywknk , z0) = 0. We also have limk→∞ dM(ywknk , z0) = 0. On the

other hand,

dM(ywknk , z0) ≥ dM(wk, z0)− dM(ywknk , wk) ≥ ε/2.
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This contradiction proves the claim. 2

Proof of Theorem 1.1(c): Let h be a positive harmonic function for XD such that

h ≤ MD(·, z0). By the Martin representation (3.1), there is a finite measure µ on ∂MD

(concentrated on ∂mD) such that

h(x) =

∫
∂MD

MD(x,w)µ(dw) =

∫
∂MD\{z0}

MD(x,w)µ(dw) +MD(x, z0)µ({z0}) .

In particular, µ(∂MD) = h(x0) ≤ MD(x0, z0) = 1 (because of the normalization at x0).

Hence, µ is a sub-probability measure.

For ε > 0, let Kz0
ε be the closed subset of ∂MD defined in (3.19). Define

u(x) :=

∫
K
z0
ε

MD(x,w)µ(dw). (3.20)

Then u is a positive harmonic function with respect to XD satisfying

u(x) ≤ h(x)− µ({z0})MD(x, z0) ≤
(
1− µ({z0})

)
MD(x, z0) . (3.21)

Let p = c(ε) ∧ R, where c(ε) is the constant from Lemma 3.5. Hence, for w ∈ Kz0
ε

and (ywn )n≥1 a sequence such that limn→∞ dM(ywn , w) = 0, it holds that d(ywn , z0) ≥ p. Fix

x1 ∈ Dp/8 and choose arbitrary y0 ∈ Dp. For any x ∈ Dp/8 and any y ∈ Dp we have that

GD(x, y)

GD(x0, y)
=

GD(x, y)

GD(x1, y)

GD(x1, y)

GD(x0, y)
≤ c1

GD(x, y0)

GD(x1, y0)

GD(x1, y)

GD(x0, y)
.

Here the inequality follows from the dual version of (2.15) applied to functions GD(·, y) and

GD(·, y0) which are regular harmonic in Dp with respect to X and vanish in B(z0, c)∩ (D
c ∪

Dreg). Now fix w ∈ Kz0
ε and apply the above inequality to ywn to get

MD(x,w) = lim
n→∞

GD(x, ywn )

GD(x0, ywn )
≤ c1

GD(x, y0)

GD(x1, y0)
lim
n→∞

GD(x1, y
w
n )

GD(x0, ywn )

= c1
GD(x, y0)

GD(x1, y0)
MD(x1, w) ≤ c1

GD(x, y0)

GD(x1, y0)
sup
w∈Kz0

ε

MD(x1, w)

≤ c2
GD(x, y0)

GD(x1, y0)
= c3GD(x, y0) .

In the last inequality we used property (M3)(c) of the Martin kernel. Thus,

MD(x,w) ≤ c3GD(x, y0) , x ∈ Dp/8, w ∈ Kz0
ε . (3.22)

Choose r < p/16. For any x ∈ D2r and y, y1 ∈ Dr/8, by (2.15) applied to GD(x, ·) and

GD(x0, ·), we have
GD(x, y)

GD(x0, y)
≤ c4

GD(x, y1)

GD(x0, y1)
.
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Letting D 3 y → z0, we get

MD(x, z0) ≤ c4
GD(x, y1)

GD(x0, y1)
= c5GD(x, y1) , x ∈ D2r. (3.23)

Recall that by (1.8) limD3x→z GD(x, y) = 0 for every z ∈ ∂D which is regular for Dc with

respect to X. Since r < p/16 can be arbitrarily small, we see from (3.23) and (3.21) that

limD3x,x→z u(x) = 0 for every z ∈ ∂D, z 6= z0, which is regular for Dc with respect to X.

Assume D is bounded. Fix r < p/16. It follows from (1.7) that for all x ∈ D2r,

GD(x, y1) ≤ c7 . (3.24)

From (3.23) and (3.21) we conclude that u is bounded in x ∈ D2r. Similarly by (1.7), for

every x ∈ Dp/8 we have that GD(x, y0) ≤ c9 (recall y0 ∈ Dp). Hence by (3.22) and (3.20) we

see that u is bounded on Dp/8. Thus u is bounded on D. Now it follows from Lemma 3.1(a)

that u ≡ 0 in D.

If D is unbounded, we argue as follows. It follows from (3.22) and the assumption (1.9)

that limD3x→∞MD(x, z0) = 0. Hence by (3.21) limD3x→∞ u(x) = 0. Thus, there exists r ≥ 2

such that u(x) ≤ 1 for all x ∈ Dr). Fix r < p/16 ∧ 1 and let x ∈ D ∩ (B(z0, r) \ B(z0, 2r)).

By (3.23) and (1.7),

MD(x, z0) ≤ c5GD(x, y1) ≤ c11 .

It follows that u is bounded in D ∩ (B(z0, r) \ B(z0, 2r)). The proof that u is bounded on

D ∩B(z0, p/16) is the same as in the case of a bounded D. Hence, u is bounded, and again

we conclude from Lemma 3.1 (b) that u ≡ 0 in D.

We see from (3.20) that ν = µ|Kε = 0. Since ε > 0 was arbitrary and ∂MD \ {z0} =

∪ε>0K
z0
ε , it follows that µ|∂MD\{z0} = 0. Therefore h = µ({z0})MD(·, z0) showing that

MD(·, z0) is minimal. 2

Proof of Corollary 1.2 (a) We first note that since D is bounded, all Martin boundary

points are finite, hence ∂fMD = ∂MD. Let Ξ : ∂D → ∂fMD so that Ξ(z) is the unique

Martin boundary point associated with z ∈ ∂D. Since every finite Martin boundary point is

associated with some z ∈ ∂D, we see that Ξ is onto. We show now that Ξ is 1-1. If not, there

are z, z′ ∈ ∂D, z 6= z′, such that Ξ(z) = Ξ(z′) = w. Then MD(·, z) = MD(·, w) = MD(·, z′).
Choose r > 0 small enough and satisfying r < d(z, z′)/4. By (3.23) and (3.24) we see that

there exists a constant c1 = c1(z) such that MD(x, z) ≤ c1 for all x ∈ D \B(z, 2r). Similarly,

there exists c2 = c2(z′) such that MD(x, z′) ≤ c2 for all x ∈ D \ B(z′, 2r). Since B(z, 2r)

and B(z′, 2r) are disjoint, we conclude that MD(·, z) = MD(·, z′) is bounded on D by c1∨ c2.

Again by (3.23), limD3x→ζMD(x, z) = 0 for all regular ζ ∈ ∂D. In case of unbounded D, we

showed in the proof of Theorem 1.1(b) that limx→∞MD(x, z) = 0. Hence by Lemma 3.1 we

conclude that MD(·, z) ≡ 0. This is a contradiction with MD(x0, z) = 1.

The statement about the minimal Martin boundary follows from Theorem 1.1(c).
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(b) We will show that Ξ : ∂D → ∂fMD is actually a homeomorphism. Let z0 ∈ ∂D and

x ∈ D. Choose r < 1
2

min{R, dist(x, z0), dist(x0, z0)} so that x ∈ D \ B(z0, 2r). It follows

from Lemma 3.4 that for any s < 1 and y ∈ Dsr,∣∣∣ GD(x, y)

GD(x0, y)
−MD(x, z0)

∣∣∣ ≤MD(x, z0)

(
RODsr

GD(x, ·)
GD(x0, ·)

− 1

)
. (3.25)

Let s < 1 and z′ ∈ ∂D∩B(z0, sr/2). It follows from Lemma 3.4 that there exists MD(x, z′) =

limD3y→z′MD(x, y). Letting y → z′ in (3.25) we get that

|MD(x, z′)−MD(x, z0)| ≤MD(x, z0)

(
RODsr

GD(x, ·)
GD(x0, ·)

− 1

)
.

Together with Proposition 2.11 we get that if (zn)n≥1 is a sequence of points in ∂D converging

to z0 ∈ ∂D, then MD(·, z0) = limn→∞MD(·, zn).

In order to show that Ξ is continuous we proceed as follows. Let zn → z0 in ∂D.

Since ∂MD is compact, (Ξ(zn))n≥1 has a subsequence (Ξ(znk))k≥1 converging in the Martin

topology to some w ∈ ∂MD. By property (M3), MD(·,Ξ(znk)) → MD(·, w). On the other

hand, by the first part of the proof, MD(·,Ξ(znk)) = MD(·, znk)→ MD(·, z0), implying that

w = Ξ(z0). This shows in fact that (Ξ(zn))n≥1 is convergent with the limit Ξ(z0). Using the

fact that ∂D is compact, the proof of the continuity of the inverse is similar.

(c) The Martin representation for non-negative harmonic functions is now a consequence of

the general result from [28], cf. (3.1). 2

Proof of Corollary 1.4 (a) Assume that w ∈ ∂∞MD∩∂
f
MD. Then there exist an unbounded

sequence (yn)n≥1 ⊂ D and a bounded sequence (zn)n≥1 ⊂ D both converging to w in the

Martin topology. Since there is a subsequence (ynk)k≥1 such that ynk → ∞, we have that

w = ∞, i.e., MD(·, w) = MD(·,∞). Similarly, there is a subsequence (znk)k≥1 and z ∈ ∂D
such that znk → z, hence MD(·, w) = M(·, z). This implies that MD(·,∞) = MD(·, z). We

are going to show now that this is impossible. The proof of this fact is similar to the proof

of Corollary 1.2(a).

As in the proof of Theorem 1.1(c), choose r small enough so that MD(x, z) ≤ c1 for

all x ∈ D \ B(z, 2r), cf. (3.23) and (3.24). Let z0 ∈ X be the point in the statement of

Theorem 1.3. As in the proof of Theorem 1.3(c), choose r′ large enough satisfying r′ >

2(d(z, z0) + 4r) so that MD(x,∞) ≤ c2 for all x ∈ D ∩ B(z0, r
′/2), cf. (3.12) and (3.13).

Since (D \ B(z, 2r)) ∪ B(z0, r
′/2) = D, we conclude that MD(·,∞) = MD(·, z) is bounded

on D by c1 ∨ c2. In the same way as in the proof of Corollary 1.2(a) we conclude that

MD(·, z) ≡ 0 which is a contradiction.

(b) In the proof of Corollary 1.2(a) we defined the mapping Ξ : ∂D → ∂fMD and showed

that it is 1-1 and onto. By inspecting the proof of Corollary 1.2(b), we can see that it carries

over to the case when D is unbounded. Hence, Ξ is a homeomorphism from ∂D to ∂fMD.

Let ∂D ∪ {∂∞} be the one-point compactification of ∂D. Extend Ξ to this compactification

by defining Ξ(∂∞) =∞ ∈ ∂∞MD. By part (a), Ξ is 1-1 and onto.
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Let x ∈ D. Choose r > 2 max{R, dist(x, z0), dist(x0, z0)} so that x ∈ D ∩ B(z0, r/2). It

follows from Lemma 3.2 that for any s > 1∣∣∣ GD(x, y)

GD(x0, y)
−MD(x,∞)

∣∣∣ ≤MD(x,∞)

(
RODsr

GD(x, ·)
GD(x0, ·)

− 1

)
, y ∈ Dsr. (3.26)

Let s > 1 and z′ ∈ ∂D∩B(z0, 2sr)
c. It follows from Lemma 3.4 that there exists MD(x, z′) =

limD3y→z′MD(x, y). Letting y → z′ in (3.26) we get that

|MD(x, z′)−MD(x,∞)| ≤MD(x,∞)

(
RODsr

GD(x, ·)
GD(x0, ·)

− 1

)
.

Together with Proposition 2.5 we get that if (zn)n≥1 is a sequence of points in ∂D converging

to∞, then MD(·,∞) = limn→∞MD(·, zn). 1.2(b). The rest of the proof of (b) and the proof

of (c) is exactly the same as the proof of Corollary 1.2(b) and (c), respectively.

4 Examples

Several classes of Feller processes satisfying the assumptions of [26] were studied in that

paper. These examples include some symmetric and isotropic Lévy processes in Rd, strictly

stable (not necessarily symmetric) processes in Rd, processes obtained by subordinating

a Feller diffusion on unbounded Ahlfors regular n-spaces, and space non-homogeneous pro-

cesses on Rd whose Dirichlet form is comparable to the Dirichlet forms of certain subordinate

Brownian motions. Since the conditions of the present paper are implied by the conditions of

[26], we refer the readers to that paper for details. Here we will focus on certain symmetric

and isotropic Lévy processes where we can say more regarding accessible boundary points,

and a class of subordinate Brownian motions not covered by [15].

4.1 Symmetric and isotropic Lévy processes

Let X = (Xt,Px) be a purely discontinuous symmetric Lévy process in Rd with Lévy expo-

nent Ψ(ξ) so that

Ex
[
eiξ·(Xt−X0)

]
= e−tΨ(ξ), t > 0, x ∈ Rd, ξ ∈ Rd.

Thus the state space X = Rd, the measure m is the d-dimensional Lebesgue measure and the

localization radius R0 =∞. Assume that r 7→ j0(r) is a strictly positive and nonincreasing

function on (0,∞) satisfying

j0(r) ≤ cj0(r + 1), r > 1 , (4.1)

for some c > 1 and that the Lévy measure of X has a density j such that

γ−1j0(|y|) ≤ j(y) ≤ γj0(|y|), y ∈ Rd (4.2)
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for some γ ≥ 1. Since
∫∞

0
j0(r)(1 ∧ r2)rd−1dr < ∞ by (4.2), the function x → j0(|x|) is the

Lévy density of an isotropic unimodal Lévy process whose characteristic exponent is

Ψ0(|ξ|) =

∫
Rd

(1− cos(ξ · y))j0(|y|)dy. (4.3)

The Lévy exponent Ψ can be written as

Ψ(ξ) =

∫
Rd

(1− cos(ξ · y))j(y)dy

and, clearly by (4.2), it satisfies

γ−1Ψ0(|ξ|) ≤ Ψ(ξ) ≤ γΨ0(|ξ|), for all ξ ∈ Rd . (4.4)

Under the above assumptions, the process X satisfies Assumptions (A) and (C) (with

j(y, z) = ĵ(y, z) = j(z − y)), It also satisfies the assumption (B), B1-a(0, R), B1-b(0, R),

B1-c(0, R), B2-a(0, R) of [26] (for some R > 0); see [26] for more details.

Assume further that Ψ0 satisfies the following scaling condition at infinity:

H1: There exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1

(
t

s

)2δ1

≤ Ψ0(t)

Ψ0(s)
≤ a2

(
t

s

)2δ2

, t ≥ s ≥ 1 . (4.5)

Then by (15) and Corollary 22 in [5], for every R > 0, there exists c = c(R) > 1 such that

c−1 Ψ0(r−1)

rd
≤ j(r) ≤ c

Ψ0(r−1)

rd
for r ∈ (0, R] . (4.6)

Let Φ(r) = (Ψ0(r−1))−1. Using (4.1) and (4.6), one can easily see that there exists R > 0

such that Assumption C1(0, R) is satisfied. It is shown in Example 5.1 in [26] that X also

satisfies assumptions C1(0, R) and D1(0, R) of that paper (for some R > 0). Consequently,

Theorem 4.1 of [26] is valid which is precisely the assumption F1(0, R). Further, it follows

from Lemma 2.7 in [24] that (1.7) is also satisfied. Using F1(0, R) and the fact that open

balls are Greenian, we can apply Proposition 6.5 in [26]. Thus for any Greenian open set D,

limx→z GD(x, y) = 0 for every regular point z ∈ ∂D, so (1.8) holds. In case of an unbounded

D we assume that X is transient. Then limx→∞GD(x, y) = 0 by Lemma 2.10 in [24]. We

conclude that Theorem 1.1 and Corollary 1.2 apply.

Instead of H1, assume that Ψ0 satisfies the following scaling condition at zero:

H2: There exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

a3

(
t

s

)2δ3

≤ Ψ0(t)

Ψ0(s)
≤ a4

(
t

s

)2δ4

, s ≤ t ≤ 1 . (4.7)

It is shown in Example 5.1 of [26] that for every R > 0 there exists c = c(R) > 1 such that

c−1 Ψ0(r−1)

rd
≤ j0(r) ≤ c

Ψ0(r−1)

rd
for r ∈ [R,∞). (4.8)
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Together with (4.2) this implies that there is R > 0 such that C2(0, R) is true.

Let d ≥ 3. Then X is transient and let G(x) = G(x, 0) be its Green function. Then

by Lemma 2.10 of [24], (1.10) holds. Assume that there exists a non-increasing function

r 7→ G0(r) and a constant c ≥ 1 such that

c−1G0(|x|) ≤ G(x) ≤ cG0(|x|) , x ∈ Rd . (4.9)

It is shown in Example 5.1 of [26] that X also satisfies assumptions B2-b(0, R), C2(0, R)

and D2(0, R) of that paper (for some R > 0). Consequently, Theorem 2.1 of [26] is valid

which is precisely the assumption F2(0, R). If we assume that the Green function of X

is continuous then using the upper bound G(x) ≤ c|x|−1Ψ0(|x|−1)−1 in (5.16) in [26] and

the strong Markov property, the Green function of XD is continuous for all open set D.

Thus by Proposition 6.2 of [26], (1.8) holds. Further, it follows from (5.16) in [26] that, if

d ≥ 3, (1.11) is also satisfied. We conclude that Theorem 1.3 applies for d ≥ 3 under the

assumption that G is continuous and satisfies (4.9). In fact, it is also shown in Example 5.1

of [26] that, if X is a subordinate Brownian motion whose Laplace exponent φ is a complete

Bernstein function and that ξ → φ(|ξ|2) satisfies Assumption H2, then (1.11) is satisfied for

d > 2δ4. Since G(x) = g(|x|) is continuous and r 7→ g(r) is decreasing, in this case Theorem

1.3 applies for d > 2δ4.

In the next proposition we give a criterion for the accessibility of infinity and a finite

boundary point. Let Br = B(0, r) and for an open set D, Dr = D ∩Br and Dr = D ∩Bc

r.

Proposition 4.1 (a) Let D ⊂ Rd be a Greenian open set such that 0 ∈ ∂D and assume that

H1 holds. Then 0 is inaccessible from D with respect to X if and only if∫
D1

(EyτD1)j(y) dy <∞ . (4.10)

(b) Let D ⊂ Rd be a Greenian open set and assume that H2 holds. Then ∞ is inaccessible

from D with respect to X if and only if∫
D1

PD1(y, 0) dy <∞ . (4.11)

Proof. (b) Recall that ∞ is inaccessible from D if there exists x ∈ D such that ExτD <∞.

Let r = max(2|x|, R, 1) where R > 0 is the constant from C2(0, R) and F2(0, R). We write

ExτD =

∫
B(x,4r)

GD(x, y) dy +

∫
D8r\B(x,4r)

GD(x, y) dy +

∫
D8r

GD(x, y) dy

=: I + II + III.

Since XD is transient, I = GD1B(x,4r) is bounded, hence finite. By (1.10) we have that

GD(x, y) ≤ c(r) for y ∈ D8r \ B(x, 4r), hence II ≤ c(r)|D8r| <∞. Since GD(x, ·) is regular
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harmonic in Dr, it follows from F2(0, R) that GD(x, y) � PDr(y, 0) for all y ∈ D8r. Thus

III �
∫
D8r PDr(y, 0) dy. Hence, ExτD <∞ if and only if

∫
D8r PDr(y, 0) dy <∞. Next,∫

D1

PD1(y, 0) dy =

∫
D∩{1<|y|≤8r}

PD1(y, 0) dy +

∫
D8r

PD1(y, 0) dy

≤
∫
∫
D∩{1<|y|≤8r}

PB1(y, 0) dy +

∫
D8r

PD1(y, 0) dy

= : IV + V .

By Proposition 3.1 of [26], PB1(y, 0) ≤ c1 for all y ∈ B1, hence IV ≤ c1|B8r| < ∞. Finally,

by repeatedly applying Lemma 3.9 of [26] we deduce that

PDr(y, 0) ≤ PD1(y, 0) ≤ c2PDr(y, 0) , y ∈ D8r,

with a constant c2 > 0 depending on r. Thus, V is comparable to
∫
D8r PDr(y, 0) dy, proving

that
∫
D1 PD1(y, 0) dy <∞ if and only if

∫
D8r PDr(y, 0) dy <∞. This finishes the proof.

(a) This can be proved in the similar way, so we omit the proof. 2

Remark 4.2 (a) Note that the criterion in Proposition 4.1 does not depend on x ∈ D.

Hence, if ExτD <∞ for one x ∈ D, then ExτD <∞ for all x ∈ D. Similarly, if PD(x, 0) <∞
for one x ∈ D, then PD(x, 0) <∞ for all x ∈ D.

(b) By inspecting the proof of Proposition 4.1 one can see that it carries over to the case

of the process satisfying the assumptions in [26]. In particular, x 7→ ExτD (respectively

x 7→ PD(x, z0)) is either identically infinite or finite for all x ∈ D.

For any open set V , let sV (x) = ExτV and let ωxV = Px(XτV ∈ ·) be the harmonic measure.

By the strong Markov property, for V ⊂ D we have

sD(x) = sV (x) +

∫
D\V

sD(y)ωxV (dy) .

If ∂V ∩D is Lipschitz, it follows from [31] that ωxV (∂V ) = 0 and hence

sD(x) = sV (x) +

∫
D\V

sD(y)PV (x, y)dy . (4.12)

We now record the following lower bound on the expected exit time from a ball: There

exists a constant c > 0 such that for every r > 0 and every x ∈ Rd

ExτB(x,r) ≥
c

Ψ0(r−1)
. (4.13)

This follows, for example, from the last display in the proof of Theorem 2.2 of [8] and the

proof of Lemma 13.4.2 in [20].
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Let κ ∈ (0, 1/2]. Recall that an open set D in Rd is said to be κ-fat at z0 ∈ ∂D if

there exists r0 > 0 such that for every r ∈ (0, r0] there exists Ar ∈ D such that B(Ar, κr) ⊂
D∩B(0, r). An open set D in Rd is said to be κ-fat at infinity if there exists r0 > 0 such that

for every r ≥ r0 there exists Ar ∈ D such that B(Ar, κr) ⊂ D ∩ B(0, r)c and |Ar| < κ−1r,

cf. Definition 1.3 in [23].

Proposition 4.3 (a) Suppose that H1 holds. If D ⊂ Rd is κ-fat at z0 ∈ ∂D, then z0 is

accessible from D with respect to X.

(b) Suppose that H2 holds. If D ⊂ Rd is κ-fat at infinity, then infinity is accessible from D

with respect to X.

Proof. We prove part (b). The proof of (a) is similar.

Let A0 = Ar0 be a point in D such that B(A0, κr0) ⊂ D∩B(0, r0)c and |A0| < κ−1r0. We

inductively define the sequence rn = 4κ−1rn−1, n ≥ 1, and a sequence of points An = Arn
such that B(An, κrn) ⊂ D ∩ B(0, rn)c and rn < |An| < κ−1rn. It is easy to see that the

family of balls (B(An, κrn)n≥0 is pairwise disjoint.

Let U := ∪∞n=0B(An, κrn). Then by (4.12) with V = B(A0, κr0),

EA0τD ≥
∫
D\B(A0,κr0)

sD(y)PB(A0,κr1)(A10, y) dy

≥
∫
D\B(A0,κr0)

sU(y)PB(A0,κr0)(A0, y) dy

≥
∞∑
n=1

∫
B(An,κrn/2)

sB(An,κrn)(y)PB(A0,κr1)(A0, y) dy

≥
∞∑
n=1

(
inf

y∈B(An,κrn/2)
sB(An,κrn)(y)

) ∫
B(An,κrn/2)

PB(A0,κr1)(A0, y) dy.

By (4.13),

sB(An,κrn)(y) ≥ c1Ψ0((κrn)−1)−1 ≥ c2Ψ0(r−1
n )−1

for all y ∈ B(An, κrn/2). Further, if y ∈ B(An, κrn), then rn/2 ≤ |y − A0| ≤ 3κ−1. Hence,

by Lemma 3.3 of [20], (4.13), (4.2) and (4.8), we have that for y ∈ B(An, κrn/2),

PB(A0,κr0)(A0, y) ≥ c3
Ψ0(|y − A0|−1)

|y − A0|d
Ψ0((κr0)−1)−1 ≥ c4

Ψ0(r−1
n )

rdn
Ψ0(r−1

1 )−1 .

Therefore,

EA0τD ≥
∞∑
n=2

c5Ψ0(r−1
n )−1 Ψ0(r−1

n )

rdn
Ψ0(r−1

1 )−1rdn =∞ .

By using Remark 4.2 we see that ∞ is accessible form D. 2

In the next result we give a criterion for accessibility of infinity from a thorn-like domain.
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Let f : (2,∞) → (0,∞) be a positive non-decreasing function such that f(t) ≤ t for all

t > 0 and define

D = Df := {(y1, ỹ) ∈ Rd : y1 > 2, |ỹ| < f(y1)} .

Here y = (y1, ỹ) with ỹ = (y2, . . . , yd) ∈ Rd−1.

Proposition 4.4 Suppose that H1 and H2 hold. Then infinity is accessible from D if and

only if ∫ ∞
4

Ψ0(t−1)

Ψ0(f(t)−1)

f(t)d−1

td
dt =∞ . (4.14)

Proof. Assume that the integral in (4.14) is infinite. Fix x ∈ D and denote δD(x) by r. Let

U := {(y1, ỹ) ∈ Rd : y1 > 4(1+ |x|), |ỹ| < f(y1)/2}. Since |x−y| ≥ y1−x1 ≥ 4(1+ |x|)−x1 >

2x1 > 2f(x1) > r for all y ∈ U , we have U ⊂ D \B(x, r).

Moreover, B(y, f(y1/2)/2) ⊂ D for all y ∈ U . In fact, for z ∈ B(y, f(y1/2)/2) with y ∈ U
we have z1 > y1 − f(y1/2)/2 > y1/2, which implies that z1 > 6 and f(y1/2) ≤ f(z1). Using

the last inequality we see that |z̃| ≤ |ỹ − z̃|+ |ỹ| < f(y1/2) ≤ f(z1). Thus for y ∈ U ,

sD(y) ≥ sB(y,f(y1/2)/2)(y) ≥ c1

Ψ0((f(y1/2)/2)−1)
,

where the last inequality follows from (4.13).

Notice that for y ∈ U , |y| � y1. Thus, since |z − y| ≤ |x| + |z − x| + |y| ≤ 6y1 for

z ∈ B(x, r), using j(y1) � Ψ0(y−1
1 )

yd1
we have

PB(x,r)(x, y) ≥ c2Ex[τB(x,r)]j(y1) � Ψ0(y−1
1 )

yd1
, y ∈ U.

Therefore

sD(x) ≥
∫
U

sD(y)PB(x,r)(x, y)dy

≥ c3

∫ ∞
4(1+|x|)

Ψ0(y−1
1 )

Ψ0((f(y1/2)/2)−1)

f(y1/2)d−1

yd1
dy1

= c4

∫ ∞
2(1+|x|)

Ψ0(2−1t−1)

Ψ0(2f(t)−1)

f(t)d−1

td
dt

≥ c5

∫ ∞
2(1+|x|)

f(t)d−1

td
Ψ0(t−1)

Ψ0(f(t)−1)
dt =∞ ,

where the last inequality follows from Lemma 1 of [14]. Thus ∞ is accessible from D.

Assume that the integral in (4.14) is finite. For r ≥ 4, let Dr := D ∩ B(0, r). Then, by

Lemma 2.5 and (2.1) in [24], and considering the infinite cylinder, we get supx1=r sD4r(x) ≤
c6Ψ0(f(4r)−1)−1. Thus, by (4.12), we have that for x ∈ D with x1 = r

sD(x) =sD4r(x) +

∫
D\D4r

sD(y)PD4r(x, y)dy (4.15)
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≤c6Ψ0(f(4r)−1)−1 +

∫
D\D4r

sD(y)PD4r(x, y)dy. (4.16)

By the argument in the paragraph before Theorem 3.12 in [21], Lemma 5.4 in [22] is valid

for all r > 0. Hence

PD4r(x, y) ≤ c7sD4r(x)

(∫
D\B(0,2r)

j(|z|)PD4r(z, y)dz + j(|y|)
)

Thus using (4.15)∫
D\D4r

sD(y)PD4r(x, y)dy

≤ c8sD4r(x)

(∫
D\D4r

sD(y)

∫
D\B(0,2r)

j(|z|)PD4r(z, y)dzdy

+

∫
D\D4r

sD(y)j(|y|)dy
)

= c8sD4r(x)

(∫
D\B(0,2r)

j(|z|)
( ∫

D\D4r

sD(y)PD4r(z, y)dy
)
dz

+c8

∫
D\D4r

sD(y)j(|y|)dy
)

≤ c8sD4r(x)

(∫
D\B(0,2r)

j(|z|)sD(z)dz +

∫
D\D4r

sD(y)j(|y|)dy
)

≤ 2c8sD4r(x)

∫
D\B(0,2r)

j(|z|)sD(z)dz

≤ 2c6c8Ψ0(f(4r)−1)−1

∫
D\B(0,2r)

j(|z|)sD(z)dz.

Applying this to (4.16), we get

sD(x) ≤ c9Ψ0(f(4r)−1)−1

(
1 +

∫
D\B(0,2r)

j(|z|)sD(z)dz

)
. (4.17)

Let M(r) := supx1=r sD(x)Ψ0(f(4r)−1). From (4.17), for r > 4,

M(r) ≤ c10

(
1 +

∫ ∞
2r

∫
|z̃|<f(s)

|(s, z̃)|−dΨ0(|(s, z̃)|−1)M(s)Ψ0(f(4s)−1)−1dz̃ds

)
≤ c11

(
1 +

∫ ∞
2r

f(s)d−1s−dΨ0(s−1)M(s)Ψ0(f(4s)−1)−1ds

)
≤ c11

(
1 +

∫ ∞
r

f(s)d−1s−dΨ0(s−1)M(s)Ψ0(f(4s)−1)−1ds

)
.

Let m(r) = M(1/r); by a change of variable we have that for r < 1/4,

m(r) ≤ c11

(
1 +

∫ ∞
1/r

f(s)d−1s−dΨ0(s−1)M(s)Ψ0(f(4s)−1)−1ds

)
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= c11

(
1 +

∫ r

0

f(v−1)d−1vdΨ0(v)m(v)Ψ0(f(4v−1)−1)−1v−2dv

)
.

By Gronwall’s inequality, for r < 1/4,

m(r) ≤ c12 exp

(∫ r

0

f(v−1)d−1vdΨ0(v)Ψ0(f(4v−1)−1)−1v−2dv

)
.

Therefore, under the assumption that the integral in (4.14) is finite, we have for all x ∈ D
with x1 = r > 4,

sD(x) ≤ Ψ0(f(4r)−1)M(r) = Ψ0(f(4r)−1)m(1/r)

≤ c12Ψ0(f(4r)−1) exp

(∫ ∞
r

f(s)d−1s−dΨ0(s−1)Ψ0(f(4s)−1)−1ds

)
≤ c12Ψ0(f(16)−1) exp

(∫ ∞
4

f(4s)d−1s−dΨ0(s−1)Ψ0(f(4s)−1)−1ds

)
≤ c12Ψ0(f(16)−1) exp

(
c13

∫ ∞
16

f(t)d−1t−dΨ0(4t−1)Ψ0(f(t)−1)−1ds

)
≤ c12Ψ0(f(16)−1) exp

(
c14

∫ ∞
16

f(t)d−1t−dΨ0(t−1)Ψ0(f(t)−1)−1ds

)
<∞.

Here the last inequality follows from Lemma 1 of [14]. Hence infinity is inaccessible. 2

Suppose that f(t) = t(log t)−β, β ≥ 0. Then

I =

∫ ∞
4

Ψ0(t−1)

Ψ0(t−1(log t)β)

td−1(log t)−β(d−1)

td
dt

=

∫ ∞
4

Ψ0(t−1)

Ψ0(t−1(log t)β)
(log t)−β(d−1) dt

t

≥ c1

∫ ∞
4

(log t)−β(2δ4+d−1)dt

t
,

where the inequality follows from H2. When β ≤ 1/(d − 1 + 2δ4), the integral above is

divergent and hence infinity is accessible. Note that when β > 0, D is not κ-fat at infinity

for any κ ∈ (0, 1/2]. Similarly,

I ≤ c2

∫ ∞
4

(log t)−β(2δ3+d−1)dt

t
.

When β > 1/(d − 1 + 2δ3), the integral above is convergent and hence the infinity is inac-

cessible.

A result analogous to Proposition 4.4 is valid for a finite boundary point. Let f : (0, 1)→
(0,∞) be a bounded increasing function such that f(t) ≤ t and define

Df := {x = (x1, x̃) : 0 < x1 < 1, |x̃| < f(x1)}.

Proposition 4.5 Assume that H1 holds. Then the point 0 is accessible from D if and only

if ∫ 1

0

Ψ0(t−1)

Ψ0(f(t)−1)

f(t)d−1

td
dt =∞ . (4.18)
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4.2 Subordinate Brownian motions

Let Y = (Yt,Px) be a standard Brownian motion in Rd, and S = (St) an independent

subordinator with the Laplace exponent φ, E[e−λSt ] = e−tφ(λ). The subordinate Brownian

motion X = (Xt,Px) is defined as Xt = Y (St). Assume that φ is a complete Bernstein

function with infinite Lévy measure µ satisfying the following hypothesis

H: There exist constants σ > 0, λ0 > 0 and δ ∈ (0, 1] such that

φ′(λt)

φ′(λ)
≤ σ t−δ for all t ≥ 1 and λ ≥ λ0 .

When d ≤ 2, assume that d+ 2δ − 2 > 0 and there are σ′ > 0 and

δ′ ∈
(
1− d

2
, (1 + d

2
) ∧ (2δ + d−2

2
)
)

(4.19)

such that
φ′(λx)

φ′(λ)
≥ σ′ x−δ

′
for all x ≥ 1 and λ ≥ λ0 ; (4.20)

Assumption H was introduced and used in [17] and [18]. It is easy to check that if φ is

a complete Bernstein function satisfying a weak lower scaling condition at infinity

a1λ
δ1φ(t) ≤ φ(λt) ≤ a2λ

δ2φ(t) , λ ≥ 1, t ≥ 1 , (4.21)

with a1, a2 > 0 and δ1, δ2 ∈ (0, 1), then H is automatically satisfied. In that case the

process X belongs to the class of isotropic unimodal Lévy process considered in the previous

subsection. The reason for assuming hypothesis H here is to cover the case of geometric

stable and iterated geometric stable subordinators. Suppose that α ∈ (0, 2) for d ≥ 2

and that α ∈ (0, 2] for d ≥ 3. A geometric (α/2)-stable subordinator is a subordinator

with Laplace exponent φ(λ) = log(1 + λα/2). Let φ1(λ) := log(1 + λα/2), and for n ≥
2, φn(λ) := φ1(φn−1(λ)). A subordinator with Laplace exponent φn is called an iterated

geometric subordinator. It is easy to check that the functions φ and φn satisfy H, but they

do not satisfy (4.21).

The process X clearly satisfies assumption A and C, and by symmetry, every semipolar

set is polar. Suppose that X is transient. Then it follows from Lemma 5.4 of [18] that for

all z0 ∈ Rd, C1(z0, R), F1(z0, R), and (1.7) (with a uniform constant) hold true. Moreover,

since all Green functions are continuous, by Proposition 6.2 of [26], limx→z GD(x, y) = 0 for

every regular boundary point z of ∂D. Therefore the conclusions of Corollary 1.2 hold true.

Suppose now that X is an (iterated) geometric α-stable process with 0 < α < 2. Then

X satisfies condition H2 from the previous subsection (see Example 5.1 of [26]) and by the

same arguments we conclude that Theorem 1.3 is true.

5 Minimal thinness is a local property

The purpose of this section is to establish several results analogous to those in Section 9.5

of [1] and to conclude that minimal thinness is a local property.
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The setting is the following: (X, d,m) is a metric measure space with countable base

as before. Since bounded closed sets are compact, the topology of X is locally compact.

Let X = (Xt,Px) be a Hunt process in X satisfying Assumption A. The cone of excessive

functions with respect to X is denoted by S(X). We assume that (X,S(X)) is a balayage

space in the sense of [2]. Let D ⊂ X be an open set, XD the killed process and S(XD) the

cone of excessive function with respect to XD. By Proposition V.1.1 and Proposition VI.3.20

of [2], (D,S(XD)) is also a balayage space in the sense of [2]. In particular, all functions in

S(XD) are lower semi-continuous (l.s.c.) Moreover, by definitions and results from p. 94 and

Lemma III 1.2 of [2], bounded harmonic functions on D with respect to XD are continuous.

Since we will be interested only in XD, all notions defined below are relative to XD.

For any (numerical) function f : D → (−∞,∞] we define its lower semi-continuous

(l.s.c.) regularization f̂ by

f̂(x) = f(x) ∧
(

lim inf
y→x

f(y)

)
.

Then f̂ is the largest l.s.c. function dominated by f : f̂ ≤ f . We remark that in this

section the hat ̂ denotes the l.s.c regularization and not the notions related to the dual

process. For a Borel set A ⊂ D, let SA = inf{t ≥ 0 : Xt ∈ A} be the debut of A, and

TA = inf{t > 0 : Xt ∈ A} the hitting time of A. For u ∈ S(XD), the reduced function of u

on A is defined as (see p.243 of [2]):

RA
u = inf{v ∈ S(XD) : v ≥ u on A}

= inf{v ∈ S(XD) : v ≤ u, v = u on A} .

Its l.s.c. regularization R̂A
u := R̂A

u is called the balayage of u on A. Then R̂A
u ∈ S(XD). The

probabilistic interpretations of the reduced function and the balayage are (cf. VI.3 of [2])

RA
u (x) = Ex[u(XSA)] , R̂A

u (x) = Ex[u(XTA)] .

We have the following properties of RA
u and R̂A

u : RA
u = u on A, R̂A

u ≤ RA
u ≤ u (p.243

of [2]), R̂A
u = RA

u on Ac (Proposition VI.2.3 of [2]), {R̂A
u < RA

u } is semipolar (Proposition

VI.5.11 of [2]), hence polar by A.

Let u : D → [0,∞) be continuous and harmonic in D with respect to XD, E ⊂ D an

open set, and w : E → [0,∞) harmonic in E with respect to XE such that w ≤ u− RD\E
u .

We set w ≡ 0 on D \ E.

Lemma 5.1 For every bounded open set U ⊂ U ⊂ D, it holds that

w(x) = Ex[w(XτU∩E)] , x ∈ U ∩ E .

Proof. We first show that there exists a polar set N ⊂ ∂E ∩ D such that for every z ∈
(∂E ∩D) \N ,

lim
x→z,x∈E

w(x) = 0 . (5.1)
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Note that R
D\E
u (x) = R̂

D\E
u (x) for all x ∈ E. Hence by continuity of u and lower semi-

continuity of R̂
D\E
u ,

lim sup
x→z,x∈E

w(x) ≤ lim sup
x→z,x∈E

(
u(x)− R̂D\E

u (x)
)

= u(z)− lim inf
x→z,x∈E

R̂D\E
u (x) ≤ u(z)− R̂D\E

u (z) .

Let N = ∂E ∩ D ∩ {R̂D\E
u < R

D\E
u }. Then N is polar and it follows from the last display

that for all z ∈ (∂E ∩D) \N we have

lim sup
x→z,x∈E

w(x) ≤ u(z)−RD\E
u (z) = 0 .

For each n ≥ 1 define Un := {x ∈ U ∩ E : d(x,Ec) > 1
n
}. Then Un is bounded and open

in E, Un ⊂ Un ⊂ U ∩ E, Un+1 ⊂ Un, and U ∩ E = ∪∞n=1Un. By harmonicity of w, for any

x ∈ U ∩ E and n large enough,

w(x) = Ex[w(XE
τUn

)] = Ex[w(XE
τUn

) : τUm = τU∩E for some m ≥ 1]

+Ex[w(XE
τUn

) : τUm < τU∩E for all m ≥ 1] .

Since w is dominated by u which is continuous on D, it is bounded on the relatively compact

set U . Hence by the dominated convergence theorem and (5.1),

lim
n→∞

Ex[w(XE
τUn

) : τUm < τU∩E for all m ≥ 1]

= Ex
[

lim
n→∞

w(XE
τUn

)1(XE
τU∩E−

∈(∂E∩D)\N) : τUm < τU∩E for all m ≥ 1
]

= 0 .

Further,

lim
n→∞

Ex[w(XE
τUn

) : τUm = τU∩E for some m ≥ 1}

= Ex
[

lim
n→∞

w(XE
τUn

) : τUm = τU∩E for some m ≥ 1}
]

= Ex
[
w(XE

τU∩E
) : τUm = τU∩E for some m ≥ 1}

]
= Ex[w(XE

τU∩E
) : τU < τE] .

This proves the lemma. 2

Lemma 5.2 Let

v(x) :=

{
w(x) +R

D\E
u (x) , x ∈ E

u(x) , x ∈ D \ E . (5.2)

For every bounded open set U ⊂ U ⊂ D it holds that

Ex[v(XD
τU

)] ≤ v(x) , x ∈ U . (5.3)
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Proof. We first note that v ≤ (u−RE
u ) +RE

u = u in E, and clearly v = u in D \E. Hence,

if x ∈ U ∩ (D \ E), then Ex[v(XD
τU

)] ≤ Ex[u(XD
τU

)] = u(x) = v(x).

Assume now that x ∈ U ∩ E. Since R
D\E
u = u on D \ E, we have

Ex[v(XD
τU

)] = Ex[v(XD
τU

); XD
τU
∈ E] + Ex[v(XD

τU
); XD

τU
∈ D \ E]

= Ex[w(XD
τU

); XD
τU
∈ E] + Ex[RD\E

u (XD
τU

); XD
τU
∈ E]

+Ex[RD\E
u (XD

τU
); XD

τU
∈ D \ E]

= Ex[w(XD
τU

); XD
τU
∈ E] + Ex[RD\E

u (XD
τU

)] =: A+B .

Next, by using that w = 0 on D \ E, and the fact that XD
t = XE

t for all t < τE,

A = Ex[w(XD
τU

); XD
τU
∈ E, τU < τE] + Ex[w(XD

τU
); XD

τU
∈ E, τE < τU ]

= Ex[w(XE
τU

)] + Ex[w(XD
τU

); τE < τU ]

= Ex[w(XE
τU∩E

)] + Ex[w(XD
τU

); τE < τU ]

= w(x) + Ex[w(XD
τU

); τE < τU ] =: w(x) + A2 .

In the last line we used Lemma 5.1. We split B into two parts:

B = Ex[RD\E
u (XD

τU
); τE < τU ] + Ex[RD\E

u (XD
τU

); τU ≤ τE] := B1 +B2 ,

and combine B1 with A2:

A2 +B1 = Ex[w(XD
τU

); τE < τU ] + Ex[RD\E
u (XD

τU
); τE < τU ]

= Ex[(w +RD\E
u )(XD

τU
); τE < τU ]

≤ Ex[u(XD
τU

); τE < τU ]

= Ex
[
EXD

τE

(
u(XD

τU
)
)

; τE < τU

]
= Ex[u(XD

τE
); τE < τU ].

In the penultimate line we used the strong Markov property at time τE, and in the last line

harmonicity of u (note that XD
τE
∈ U \ E on τE < τU).

Finally, for B2 we use that N := {R̂D\E
u 6= R

D\E
u } is polar, hence Px(XD

τU
∈ N) = 0.

Therefore, by using that R̂
D\E
u (y) = Ey[u(XD

τE
)] in the second line, and the strong Markov

property in the third,

B2 = Ex[R̂D\E
u (XD

τU
); τU ≤ τE]

= Ex
[
EXD

τU

(
u(XD

τE
)
)

; τU ≤ τE

]
= Ex[u(XD

τE
); τU ≤ τE] .

Putting everything together we get

Ex[v(XD
τU

)] = w(x) + A1 +B1 +B2
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≤ w(x) + Ex[u(XD
τE

); τE < τU ] + Ex[u(XD
τE

); τU ≤ τE]

= w(x) + Ex[u(XD
τE

)] = w(x) +RD\E
u (x)

= w(x) + R̂D\E
u (x) = v(x) .

In the last line we used that R̂
D\E
u = R

D\E
u on E. 2

Lemma 5.3 Let v be defined by (5.2) and let v̂(x) := lim infy→x v(y) be its lower semi-

continuous regularization. Then v̂ is excessive for XD. Moreover, v̂ ≤ u and there exists a

polar set N ⊂ ∂E ∩D such that v̂ = u on (D \ E) \N .

Proof. First note that v̂ ≤ v on D. Let U ⊂ U ⊂ D be open. Define

ṽ(x) := Ex[v̂(XD
τU

)] , x ∈ D .

By the proof of Lemma III.1.2 in [2], ṽ is lower semi-continuous in U . Moreover, by Lemma

5.2,

ṽ(x) = Ex[v̂(XD
τU

)] ≤ Ex[v(XD
τU

)] ≤ v(x) , x ∈ U .

Hence, by lower semi-continuity of ṽ in U , for every x ∈ U ,

ṽ(x) ≤ lim inf
y→x,y∈U

ṽ(y) ≤ lim inf
y→x,y∈U

v(y) = v̂(x) .

This proves that

Ex[v̂(XD
τU

)] ≤ v̂(x) for all x ∈ U . (5.4)

Now, for any open U ⊂ U ⊂ D, let HU(x, dy) = Px(XD
τU
∈ dy). Then the family HU(x, ·)

(over all relatively compact open U ⊂ D) forms a family of harmonic kernels, cf. Chapter II

of [2]. In the notation of [2], (5.4) means that v̂ ∈ ∗H+(D). By Corollary III.2.1 of [2], the

latter family is equal to S(XD). Hence, v̂ is excessive with respect to XD.

Clearly, v̂ ≤ v ≤ u on D. Recall that v = u on D \ E. Let z ∈ ∂E ∩D. Then

lim inf
x→z,x∈E

v(x) = lim inf
x→z,x∈E

(w(x) +RD\E
u (x))

≥ lim inf
x→z,x∈E

w(x) + lim inf
x→z,x∈E

RD\E
u (x)

≥ lim inf
x→z,x∈E

w(x) + R̂D\E
u (z)

(since R̂
D\E
u is the l.s.c. regularization of R

D\E
u ). By (5.1), lim infx→z,x∈E w(x) = 0 for all

z ∈ (∂E ∩D) \N1 with N1 being a polar set. Also, R̂
D\E
u = R

D\E
u except on a polar set N2.

By setting N = N1 ∪N2, we see that for all z ∈ (∂E ∩D) \N ,

lim inf
x→z,x∈E

v(x) ≥ RD\E
u (z) = u(z) .
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Clearly, for all z ∈ ∂E ∩D,

lim inf
x→z,x∈D\E

v(x) = lim inf
x→z,x∈D\E

u(x) ≥ u(z) .

Together the last two displays give that for all z ∈ (∂E ∩D) \N ,

v̂(z) = lim inf
x→z

v(x) ≥ u(z) .

2

We note that for every g : D \ E → [0,∞) the function x 7→ Ex[g(XτE)] = R̂
D\E
g (x)

is harmonic in E with respect to XD. Since R
D\E
g = R̂

D\E
g on E, it follows that R

D\E
g is

harmonic in E with respect to XD.

In what follows, ∂MD denotes the Martin boundary of D with respect to XD, ∂mD

the minimal Martin boundary, and DM = D ∪ ∂MD the Martin space (with the Martin

topology). For z ∈ ∂mD let MD(·, z) be the Martin kernel (based at x0 ∈ E). Then MD(·, z)
is continuous and harmonic in D with respect to XD. We recall that E ⊂ D is minimally

thin in D at z ∈ ∂mD with respect to XD if R̂E
MD(·,z) 6= MD(·, z).

Proposition 5.4 Let E ⊂ D be an open set in D, z ∈ ∂mD such that z is in the closure of

E in DM . Assume that D \ E is minimally thin at z in D with respect to XD. Let

h(x) := MD(x, z)−RD\E
MD(·,z)(x) , x ∈ E .

Then h is a minimal harmonic function in E with respect to XE.

Proof. We first prove that h is harmonic with respect to XE. Let U ⊂ U ⊂ E be relatively

compact open in E. Then

Ex
[
h(XE

τU
)
]

= Ex
[
MD(XE

τU
, z)
]
− Ex

[
EXE

τU

[
MD

(
XD
SD\E

, z
)]]

= Ex
[
MD(XD

τU
, z)
]
− Ex

[
MD(XD

τU
, z); τU = τE

]
−Ex

[
EXD

τU

[
MD

(
XD
SD\E

, z
)]

; τU < τE

]
= Ex

[
MD(XD

τU
, z)
]
− Ex

[
MD(XD

τE
, z); τU = τE

]
−Ex

[
MD

(
XD
SD\E

, z
)

; τU < τE

]
= Ex

[
MD(XD

τU
, z)
]
− Ex

[
MD(XD

D\E, z); τU = SD\E
]

−Ex
[
MD

(
XD
DD\E

, z
)

; τU < SD\E

]
= MD(x, z)− Ex

[
MD

(
XD
SD\E

, z
)]

= h(x).

Now suppose that w : E → [0,∞) is harmonic in E with respect to XE and w ≤ h.

Define v analogously to (5.2) by

v(x) :=

{
w(x) +R

D\E
MD(,·,z)(x) , x ∈ E

MD(x, z) , x ∈ D \ E ,
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and let v̂ be its l.s.c. regularization. By Lemma 5.3, v̂ ∈ S(XD), v̂ ≤ MD(·, z) on D, and

v̂ = MD(·, z) on (D \ E) \N , N polar. By the Riesz decomposition,

v̂ = aMD(·, z) +GDµ ,

where 0 ≤ a ≤ 1 and µ is a measure charging no polar set (since v̂ is locally bounded, the

same holds for GDµ, hence µ cannot charge polar sets). Note that v̂ = w + R
D\E
MD(·,z) on E.

The function R
D\E
MD(·,z) is harmonic in E with respect to XD. By assumption, w is harmonic

in E with respect to XE, and hence harmonic in E with respect to XD (we extend w = 0

on D \ E). Therefore, v̂ is harmonic in E with respect to XD which implies the same for

GDµ = v̂ − aMD(·, z).
Recall that D \ E is thin at y ∈ D if and only if R̂

D\E
GD(·,y) 6= GD(·, y) (this can be proved

along the same lines as the corresponding proof for minimal thinness, cf. Proposition 6.2 of

[24]). Let

A = {y ∈ ∂E ∩D : R̂
D\E
GD(·,y) 6= GD(·, y)} .

By Proposition VI.5.12 of [3], A is polar, and hence µ(A) = 0.

Now consider R
D\E
GDµ

. This function is harmonic in E with respect to XD. Moreover,

R
D\E
GDµ
≤ GDµ on D. Hence, GDµ − RD\E

GDµ
≥ 0 and is harmonic in E with respect to XD.

Note that GDµ − RD\E
GDµ

= 0 on D \ E. Hence, GDµ − RD\E
GDµ

is harmonic in E with respect

to XE. On the other hand, for x ∈ E,

GDµ(x)−RD\E
GDµ

(x) = GDµ(x)− R̂D\E
GDµ

(x)

=

∫
D

GD(x, y)µ(dy)−
∫
D

R̂
D\E
GD(·,y)(x)µ(dy)

=

∫
D

[
GD(x, y)− R̂D\E

GD(·,y)(x)
]
µ(dy)

=

∫
E

[
GD(x, y)− R̂D\E

GD(·,y)(x)
]
µ(dy) +

∫
A

[
GD(x, y)− R̂D\E

GD(·,y)(x)
]
µ(dy)

=

∫
E

GE(x, y)µ(dy) = GEµ(x) .

In the last line we used that µ(A) = 0 and the formula for the Green function of XE:

GE(x, y) = GD(x, y) − Ex[GD(XτE , y)]. This shows that GDµ − RD\E
GDµ

is at the same time

harmonic in E (with respect to XE) and the potential of the measure µ|E. Hence, it is

identically zero in E, that is, GDµ = R
D\E
GDµ

in E, hence in D.

Since v and v̂ differ at most on a polar set, and v = MD(·, z) on D \ E, we see that

GDµ = (1− a)MD(·, z) outside a polar set. Therefore

(1− a)R
D\E
MD(·,z) = R

D\E
GDµ

= GDµ .

Hence, on E we have

w = v̂ −RD\E
MD(·,z) = aMD(·, z) + (1− a)R

D\E
MD(·,z) −R

D\E
MD(·,z)
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= a
(
MD(·, z)−RD\E

MD(·,z)

)
= ah ,

which completes the proof. 2

Remark 5.5 The assumption that D \E is minimally thin at z in D with respect to XD is

used to conclude that h 6= 0. If D \ E is not minimally thin at z in D with respect to XD,

then R
D\E
MD(·,z) = MD(·, z).

Proposition 5.6 Let E ⊂ D be an open set in D, z ∈ ∂mD such that z is in the closure of

E in DM . Assume that D \ E is minimally thin at z in D with respect to XD and let

h(x) := MD(x, z)−RD\E
MD(·,z)(x) , x ∈ E .

Let ζ = ζ(z) be the Martin boundary point of E associated with the minimal harmonic

function h. Assume that (xn)n≥1 is a sequence of points in E that converges to z in DM and

also

lim inf
n→∞

GE(x0, xn)

GD(x0, xn)
> 0 . (5.5)

Assume further that for every subsequence (xnk), GE(·, xnk)/GE(x0, xnk) converges to a har-

monic function with respect to XE. Then (xn)n≥1 converges to ζ in EM (Martin space of

E).

Proof. Let (xn)n≥1 be a sequence in E converging to z in DM and such that (5.5) holds.

Assume that (xn) does not converge to ζ in EM . This implies that there exists a subsequence

(xnk) with the property that GE(·, xnk)/GE(x0, xnk) converges in E to a function u : E →
[0,∞) such that u 6= h/h(x0). By assumption, u is harmonic with respect to XE. It follows

from (5.5), that by choosing a further subsequence (if necessary) we can arrange that

lim
k→∞

GE(x0, xnk)

GD(x0, xnk)
= a > 0 .

Therefore, on E we have that

lim
k→∞

GE(·, xnk)
GD(x0, xnk)

= au .

Since GE(·, y) = GD(·, y)−RD\E
GD(·,y), and since

R
D\E
GD(·,y)(x0)

GD(x0, y)
= R

D\E
MD(·,y)(x0)

(which easily follows from the probabilistic representation of the reduced function), we get

by use of Fatou’s lemma in the last line that

au(x) = lim
k→∞

 GD(x, xnk)

GD(x0, xnk)
−
R
D\E
GD(·,xnk )(x)

GD(x0, xnk)
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= lim
k→∞

(
MD(x, xnk)−R

D\E
MD(·,xnk )(x)

)
≤ MD(x, z)−RD\E

MD(·,z)(x) = h(x) .

Since u is harmonic for XE, it follows from Proposition 5.4 that au is proportional to h.

Since u(x0) = 1, that would imply u = h/h(x0) which contradicts the assumption. 2

If F ⊂ E ⊂ D, and v ∈ S(XE), let ERF
v denote the reduced function of v on F with

respect to XE.

Lemma 5.7 Let F ⊂ E ⊂ D, u ∈ S(XD), and define v := u−RD\E
u . Then v ∈ S(XE) and

ERF
v = RD\F

u −RD\E
u . (5.6)

Proof. Since the excessiveness implies that u(x) ≥ Ex[u(XD
SD\E

)], v is non-negative. If

x ∈ E, by the strong Markov property,

Ex
[
v(XU

t )
]

= Ex
[
u(XE

t )
]
− Ex

[
EXE

t

[
u
(
XD
SD\E

)]]
= Ex

[
u(XD

t )
]
− Ex

[
u(XD

t ) : t ≥ τE
]

−Ex
[
EXD

t

[
u
(
XD
SD\E

)]
: t < τE

]
= Ex

[
u(XD

t )
]
− Ex

[
u(XD

t ) : t ≥ τE
]
− Ex

[
u
(
XD
SD\E

)
: t < τE

]
= Ex

[
u(XD

t )
]
− Ex

[
u
(
XD
t∨τE

)]
.

By the excessiveness of u for XD, Ex
[
u(XD

t )
]
≤ u(x) and

Ex
[
u
(
XD
t∨τE

)]
≥ Ex

[
u
(
XD
τE

)]
.

Thus

Ex
[
v(XE

t )
]
≤ u(x)− Ex

[
u
(
XD
SD\E

)]
.

Moreover

lim
t↓0

Ex
[
v(XE

t )
]

= lim
t↓0

Ex
[
u(XD

t )
]
− lim

t↓0
Ex
[
u
(
XD
t∨τE

)]
= u(x)− Ex

[
u
(
XD
SD\E

)]
.

Note that for x ∈ E,

Ex
[
u
(
XD
SD\F

)]
=Ex

[
u
(
XD
SE\F

)
;XSD\F ∈ E

]
+ Ex

[
u
(
XD
SD\F

)
;SD\F = SD\E

]
=Ex

[
u
(
XE
SE\F

)]
+ Ex

[
u
(
XD
SD\E

)
;SD\F = SD\E

]
=Ex

[
u
(
XE
SE\F

)]
+ Ex

[
u
(
XD
SD\E

)]
− Ex

[
u
(
XD
SD\E

)
;SD\F < SD\E

]
.

49



By strong Markov property,

Ex
[
u
(
XD
SD\E

)
;SD\F < SD\E

]
= Ex

[
EXE

SE\F

[
u
(
XD
SD\E

)]]
.

Thus

Ex
[
u
(
XD
SD\F

)]
=Ex

[
u
(
XD
SD\E

)]
+ Ex

[
u
(
XE
SE\F

)]
− Ex

[
EXU

SE\F

[
u
(
XD
SD\E

)]]
.

Therefore

Ex
[
u
(
XD
SD\F

)]
= Ex

[
u
(
XD
SD\E

)]
+ Ex

[
v
(
XE
SE\F

)]
,

which is (5.6). 2

Proposition 5.8 Let E ⊂ D be an open set in D, z ∈ ∂mD such that z is in the closure of

E in DM . Assume that D \ E is minimally thin at z in D with respect to XD and let

h(x) := MD(x, z)−RD\E
MD(·,z)(x) , x ∈ E .

Let ζ = ζ(z) be the Martin boundary point of E associated with the minimal harmonic

function h. Let F ⊂ E. Then F is minimally thin at ζ in E with respect to XE if and only

if F is minimally thin at z in D with respect to XD.

Proof. The set F is minimally thin at ζ with respect to XE if and only if ERF
h 6= h. By

Lemma 5.7 (with F replaced by E \ F and u = MD(·, z)),
ER

E\F
h = R

D\(E\F )
MD(·,z) −R

D\E
MD(·,z) = R

(D\E)∪F
MD(·,z) −R

D\E
MD(·,z) .

Since h = MD(·, z)−RD\E
MD(·,z), we see that ERF

h 6= h if and only if R
(D\E)∪F
MD(·,z) 6= MD(·, z). The

last condition is equivalent to (D \ E) ∪ F being minimally thin at z in D with respect to

XD. Since D \ E is not minimally thin at z, the latter is equivalent to F being minimally

thin at z in D with respect to XD. 2

Remark 5.9 Proposition 5.8 does not depend on Proposition 5.6.

Let D ⊂ X be an open unbounded set. Suppose E is an open subset of D such that

for some R > 0 it holds that D ∩ B(z0, R)c = E ∩ B(z0, R)c. Assume that ∞ is accessible

both from E and from D. Assume that the assumptions A, C, C2(z0, R) and F2(z0, R)

for X and X̂ are satisfied. By Theorem 1.3 there is only one Martin boundary point of E

associated with ∞, say ∞E, and this point is minimal, ∞E ∈ ∂mE. In the same way, there

is only one Martin boundary point of D associated with ∞, say ∞D, and this point is also

minimal, ∞D ∈ ∂mD. Hence, the concept of minimal thinness at ∞ of a set F ⊂ E makes

sense with respect to both XE and XD. In fact, we have the following result.
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Theorem 5.10 Suppose that A, C, C2(z0, R) and F2(z0, R) for X and X̂ hold true. Let

D ⊂ X be an unbounded open set, and let E be an open subset of D such that for some R > 0

it holds that D ∩ B(z0, R)c = E ∩ B(z0, R)c. Assume that ∞ is accessible from E and from

D. Suppose that F ⊂ E. Then F is minimally thin at ∞ with respect to XE if and only if

it is minimally thin at ∞ with respect to XD.

Proof. Let x0 ∈ E and choose r0 > 2(d(x0, E
c)∧R). For every r ∈ (0, r0), bothGD(x0, ·) and

GE(x0, ·) are regular harmonic in D∩B(z0, r)
c with respect to X and vanish in B(z0, r)

c \D.

Let x1 ∈ E ∩B(z0, 2r)
c = D ∩B(z0, 2r)

c be fixed. By the boundary Harnack principle,

GE(x0, x)

GD(x0, x)
≥ c−1GE(x0, x1)

GD(x0, x1)
, for all x ∈ D ∩B(z0, 8r)

c .

This implies that

lim inf
E3x→∞

GE(x0, x)

GD(x0, x)
> 0 . (5.7)

Let MD(·,∞) = MD(·,∞D), respectively ME(·,∞) = ME(·,∞E), be the Martin kernels at

∞ for D, respectively E. Define

h(x) = MD(x,∞)−RD\E
MD(·,∞)(x).

By Proposition 5.4, h is a minimal harmonic function with respect to XE. Let ζ ∈ ∂mE be

the minimal Martin boundary point of E corresponding to h. Let (xn)n≥1 be a sequence of

points in E converging to ∞. By (5.7),

lim inf
n→∞

GE(x0, xn)

GD(x0, xn)
> 0 .

Also, it follows from Lemma 3.4 and Theorem 1.3(b) that, for every subsequence (xnk),

GE(·, xnk)/GE(x0, xnk) converges to the harmonic function ME(·,∞). It follows from Propo-

sition 5.6 that (xn)n≥1 converges to ζ in the Martin topology of EM . Thus, ζ ∈ ∂mE is

associated to ∞. By uniqueness, ζ = ∞E and therefore h = ME(·,∞E) = ME(·,∞). The

claim of the theorem now follows from Proposition 5.8. 2

Remark 5.11 Suppose that∞ is accessible from E. Since GE(x,w) ≤ GD(x,w), x,w ∈ E,

implies that ExτE ≤ ExτD for x ∈ E, we see that ExτD =∞ for all x ∈ E. If the assumptions

of [26] are satisfied, it follows from Remark 4.2 that ∞ is also accessible from D.

One can similarly prove the following theorem saying that minimal thinness is a local

property at a finite boundary point.

Theorem 5.12 Suppose that A, C, C1(z0, R) and F1(z0, R) for X and X̂ hold true. Let

D ⊂ X, z0 ∈ ∂D, and let E be an open subset of D such that for some R > 0 it holds that

D∩B(z0, R) = E∩B(z0, R). Assume that z0 is accessible from E and from D. Suppose that

F ⊂ E. Then F is minimally thin at z0 with respect to XE if and only if it is minimally

thin at z0 with respect to XD.
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[22] P. Kim, R. Song, Z. Vondraček: Uniform boundary Harnack principle for rotationally sym-
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