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Abstract

In this paper we study the Martin boundary at infinity for a large class of purely
discontinuous Feller processes in metric measure spaces. We show that if oo is accessible
from an open set D, then there is only one Martin boundary point of D associated with
it, and this point is minimal. We also prove the analogous result for finite boundary
points. As a consequence, we show that minimal thinness of a set is a local property.

AMS 2010 Mathematics Subject Classification: Primary 60J50, 31C40; Secondary
31C35, 60J45, 60J75.

Keywords and phrases: Martin boundary, Martin kernel, purely discontinuous Feller
process, minimal thinness

1 Introduction and setup

The Martin kernel and Martin boundary of an open set with respect to a transient strong
Markov process were introduced in [28] with the goal of representing non-negative harmonic
functions (with respect to the underlying process) as an integral of the Martin kernel against a
finite measure on the (minimal) Martin boundary. The identification of the Martin boundary
for purely discontinuous Markov processes began in late nineties when it was shown in [4, 10]
that for the isotropic a-stable process the Martin boundary of a bounded Lipschitz domain
coincides with its Euclidean boundary. Soon after, the result was extended in [30] to the
so-called k-fat open sets. These results were subsequently extended in two directions: to
more general processes and to general open sets.

In the first direction, the Martin boundary of bounded k-fat open sets was studied in
[19] for a class of subordinate Brownian motions and then in [24] for some symmetric Lévy
processes. In both papers the Martin boundary was identified with the Euclidean boundary.
In fact, the latter paper gives a local result: if an open set D C R? is s-fat at zy € D, then
there is exactly one (minimal) Martin boundary point associated to zg. A related result is
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the identification of the Martin boundary at infinity of an unbounded open set with a single
point provided the set is k-fat at infinity, see [23]. In all of these papers an appropriate
boundary Harnack principle for non-negative harmonic functions played a major role.

In the second direction, the boundary Harnack principle and the Martin kernel for ar-
bitrary open sets were studied in [6] for isotropic a-stable processes. The authors of [6]
introduced the concepts of accessible and inaccessible boundary points and proved a result
that leads to the identification of the finite Martin boundary of an arbitrary bounded open
with its Euclidean boundary. It was also proved in [6] that a finite Martin boundary point
is minimal if and only if the corresponding Euclidean boundary point is accessible. By use
of the Kelvin transform, they were able to identify the infinite part of the Martin boundary
as well.

The main goal of this paper is to generalize results of [6, 23] to more general processes.
Inspired by the paper [7] we will work with a class of purely discontinuous Feller processes in
duality in a measure metric space X. The jumps of these processes are assumed to be quite
regular as precisely described in Assumptions C, C1 and C2 below. Most of Lévy processes
fall into our framework, see Section 4 for details. Our main results can be roughly stated as
follows: let D be an open set in X. If zg € 0D (the boundary of D in the original topology of
X) is accessible, then there is exactly one Martin boundary point associated with zy. In case
D C X is bounded and all its boundary points are accessible, the Martin boundary and the
minimal Martin boundary of D are identified with 0D. In case of unbounded open set such
that infinity is accessible, we identify the Martin boundary at infinity with a single point.

Another goal of this paper is to show that minimal thinness is a local property. We will
use our results on the Martin boundary to show that under certain geometric assumptions,
if E C D C X are open sets with a common boundary point 2z, which is accessible from both
E and D, then F' C F is minimally thin at zp in E if and only if F' is minimally thin at z
in D.

We now provide a precise description of the process and the assumptions it satisfies,
introduce all necessary notation, state the results and explain the methods of proofs.

Let (X,d,m) be a metric measure space with a countable base such that all bounded
closed sets are compact and the measure m has full support. For x € X and r > 0, let
B(x,r) denote the ball centered at x with radius r. Let Ry € (0,00] be the localization
radius such that X\ B(z,2r) # 0 for all z € X and all r < Ry.

Let X = (X3, F;,IP,) be a Hunt process on X. We will assume the following

Assumption A: X is a Hunt process admitting a strong dual process X with respect to
the measure m and X is also a Hunt process. The transition semigroups (P;) and (]375) of X
and X are both Feller and strongly Feller. Every semi-polar set of X is polar.

For the definition of Hunt processes see p. 45 of [3], and for the definition of a strong
dual, see Definition VI.(1.2) on p.225 of [3]. For the definition of Feller processes see pp.
49-50 of [12], and for the definition of strong Feller processes see p. 129 of [12]. For the
definitions of polar and semi-polar sets, see Definition I1.(3.1) on p.79 of [3].



In the sequel, all objects related to the dual process X will be denoted by a hat. Recall
that a set is polar (semi-polar, respectively) for X if and only if it is polar (semi-polar,
respectively) for X (see VI. (1.19) in [3]). Under assumption A the process X admits a
(possibly infinite) Green function G(z,y) serving as a density of the occupation measure:
Gz, A) :=E, [[° 1x,eadt = [, G(z,y)m(dy). Moreover, G(z,y) = G(y,z) forall z,y € X,
cf. VLI.1in [3] for details. Further, let D be an open subset of X and 7p = inf{t > 0: X; ¢ D}
the exit time from D. The killed process X is defined by XP = X, if t < 7p and XP =9
where 0 is an extra point added to X. The killed process XP is defined analogously. By
Hunt’s switching identity (Theorem 1.16 in [3]), it holds that E,[G(X,,,y)] = Ey[@(f(ﬂ), )]
for all z,y € X which implies that X” and XD are in duality, see p.43 in [13]. Again by VI.1
in [3], X admits a unique (possibly infinite) Green function (potential kernel) Gp(z,y)
such that for every non-negative Borel function f,

Gpf(z) =E, / 7 r)de = /D G, y) f(y) m(dy)

and Gp(z,y) = Gp(y, ), z,y € D, with Gp(y, z) the Green function of XP. It is assumed
throughout the paper that Gp(z,y) = 0 for (z,y) € (D x D). We also note that the killed
process X7 is strongly Feller, see e.g. the first part of the proof of Theorem on pp. 6869 in
[11]. From now on, we will always assume that D is Greenian, that is, the Green function
Gp(z,y) is finite for all z,y € D, x # y. Under this assumption, the killed process X%
is transient in the sense that there exists a non-negative Borel function f on D such that
0 < Gpf < oo (and the same is true for )?)

Recall that z € 0D is said to be regular with respect to X if P,(7p = 0) = 1 and
irregular otherwise. We will denote the set of regular (respectively irregular) points of 0D
with respect to X by D™ (respectively D). D™ (respectively D™) stands for the sets of
regular (respectively irregular) points of D with respect to X respectively. It is well known
that D' and D™ are semipolar, hence polar under A.

The process X, being a Hunt process, admits a Lévy system (J, H) where J(z,dy) is a
kernel on the state space X (called the Lévy kernel of X), and H = (Hi);>o is a positive
continuous additive functional of X. We assume that H; = ¢ so that for every function
f:X x X — [0,00) vanishing on the diagonal and every stopping time 7',

T
E. ) f(XS,XS):Em/O F(Xe,9)J (X, dy)ds .

0<s<T

By using 7p in the displayed formula above and taking f(x,y) = 1p(z)14(y) with A ¢ D,
we get that

P.(X,, € A,7p < () =E, /OTD J( X, A)ds = /DGD(x,y)J(y,A)m(dy), (1.1)

where  is the life time of X. Similar formulae hold for the dual process X and J(z, dy)m(dz) =
J(y, dx)ym(dy).



Assumption C: The Lévy kernels of X and X are of the form J(z,dy) = j(z,y)m(dy),
j(x, dy) = j(z,y)m(dy), where j(z,y) = j(y,x) > 0 for all 2,y € X, z # y.

The next two related assumptions control the decay of the density j.
Assumption C1(zg, R): Let zp € X and R < Ry. For all 0 < r < ry < R, there exists a
constant ¢ = ¢(zo,79/71) > 0 such that for all x € B(z,71) and all y € X\ B(zo,72),

C_lj(any) S j(l’,y) § Cj(Z07y)a C_lj(Z07y) S j(l‘,y) S Cj('ZO?y)'

In the next assumption we require that the localization radius Ry = oc.
Assumption C2(zg, R): Let zp € X and R > 0. For all R < ry < ry, there exists a constant
¢ = ¢(zo,72/71) > 0 such that for all x € B(z,7) and all y € X\ B(zg,72),

C_lj(an y) < j<x> y) < Cj(Zo, y)a 0_15(Z07 y) < 3($7 y) < 05(207 y)
We define the Poisson kernel of an open set D € X by
Pp(z,z) = / Gp(x,y)jly, z)m(dy), xeD,ze D" (1.2)
D

By (1.1), we see that Pp(z,-) is the density of the exit distribution of X from D restricted
to D:
P.(X,, € A,7p < () = / Pp(z, z)m(dz), AcD.
A

Recall that f: X — [0,00) is regular harmonic in D with respect to X if
flz) =E,[f(X:,), 70 < (], forallze D,
and it is harmonic in D with respect to X if for every relatively compact open U C U C D
flx) =E,[f(X,),7v <(], forallzelU.

Throughout the paper we will adopt the convention that X, = 0 and f(0) = 0 for every
function f. Thus we will drop 7p < ( in expressions similar to the right-hand side in the
penultimate display. A function f : X — [0,00) harmonic in D with respect to X if for
every relatively compact open U C U C D

flx) =E,[f(XP)], forallzeU.

It follows from the Hunt switching formula that for every y € D and any open neighborhood
U of y, Gp(-,y) is regular harmonic in D\ U. In particular, Gp(:,y) is harmonic in D\ {y}.
The next pair of assumptions is about an approximate factorization of harmonic functions.
This approximate factorization is a crucial tool in proving the oscillation reduction. The first
one is an approximate factorization of harmonic functions at a finite boundary point.
Assumption F1(z, R): Let zp € X and R < R,. For any 5 < a < 1, there exists
C(a) = C(zp, R,a) > 1 such that for every r € (0, R), every open set D C B(z,r), every

4



non-negative function f on X which is regular harmonic in D with respect to X and vanishes
in B(zp,r) N (D°U D™, and all z € D N B(zy,/8),

B(zo,ar/2)¢

C(a) Ealrp) / J(z0,9) F y)midy)

< f(x) < C(a)Eu[r) / 320, ) F()midy). (1.3)

B(zo,ar/2)¢

In the second assumption we require that the localization radius Ry = oc.
Assumption F2(zy, R): Let zp € X and R > 0. For any 1 < a < 2, there exists C'(a) =
C(zo, R,a) > 1 such that for every r > R, every unbounded open set D C B(zy,7)°, every
non-negative function f on X which is regular harmonic in D with respect to X and vanishes
on B(zy,r)°N (D°UD™*8), and all z € D N Bz, 8r)°,

Cla)™ Polz. 20) / f(2)m(dz)

B(zo0,2ar)

< () < Clo) Polenz) [ flapm(da) (1.4)
B(z0,2ar)
The approximate factorization of harmonic functions stated in F1 and F2 can be proved
under somewhat stronger assumptions than the Assumptions A, B, C and D in [7]. This is
done in the companion paper [26].

Let D C X be an open set. A point z € 0D is called accessible from D with respect to
X if
Pp(z,z) = / Gp(z,w)j(w, z)m(dw) =oco forall z € D, (1.5)
D

and inaccessible otherwise.
In case D is unbounded we say that oo is accessible from D with respect to X if

E,7p = / Gp(z,w)m(dw) =00 forall x € D (1.6)
D

and inaccessible otherwise. The concepts of accessible and inaccessible points were intro-
duced in [7].

For D C X, let 9y;D denote the Martin boundary of D with respect to X? in the sense
of Kunita-Watanabe [28], see Section 3 for more details. A point w € Jy D is said to be
minimal if the Martin kernel Mp(-,w) is a minimal harmonic function with respect to XP.
We will use 9,,D to denote the minimal Martin boundary of D with respect to X”. A point
w € Oy D is said to be a finite Martin boundary point if there exists a bounded (with respect
to the metric d) sequence (y,),>1 C D converging to w in the Martin topology. A point
w € Oy D is said to be an infinite Martin boundary point if there exists an unbounded (with
respect to the metric d) sequence (y,),>1 C D converging to w in the Martin topology. We
note that these two definitions do not rule out the possibility that a point w € 0y D is at



the same time finite and infinite Martin boundary point. We will show in Corollary 1.4(a)
that under appropriate and natural assumptions this cannot happen. A point w € Oy D is
said to be associated with zo € 9D if there is a sequence (y,),>1 C D converging to w in
the Martin topology and to 2, in the topology of X. The set of Martin boundary points
associated with zy is denoted by 0;9D. A point w € Oy D is said to be associated with oo if
w is an infinite Martin boundary point. The set of Martin boundary points associated with
o0 is denoted by 939D. d],D and 8/, D will be used to denote the finite part of the Martin
boundary and minimal boundary respectively. Note that 037D is the set of infinite Martin
boundary points.

Now we can state the first main result of the paper. We will always assume that As-
sumptions A and C hold true.

Theorem 1.1 Let D C X be an open set. (a) Suppose that zg € 0D. Assume that there
ezists R < Rq such that C1(z, R) holds, and that X satisfies F1(zo, R). If zo is accessible
from D with respect to X, then there is only one Martin boundary point associated with zg.
(b) Suppose that, in addition to the assumptions in (a), for all r € (0, R],

sup sup  max(Gp(z,y), Gp(z,y)) = c(r) < oo. (1.7)
x€DNB(z0,r/2) yeX\B(z0,r)

Then the Martin kernel Mp(-, zo) is harmonic with respect to XP.
(c) Suppose, in addition, that X satisfies F1(zy, R), that

lim Gp(x,y) =0 for every z € D™ and every y € D, (1.8)

D3z—z

and that, if D is unbounded then for r € (0, R],
lim Gp(z,y) =0 forally € DN B(z,T). (1.9)
Tr—00

Then the corresponding Martin boundary point is minimal.

Corollary 1.2 Suppose that every point zy € 0D 1is accessible from D with respect to X,
and that the assumptions of Theorem 1.1(c) are satisfied for all zg € 0D (with c(r) in (1.7)
independent of z).

(a) The finite part of the Martin boundary Oy D and the minimal Martin boundary 0,,D can
be identified with OD.

(b) If D is bounded, then 0D and Oy D are homeomorphic.

(c) Let D be bounded. For any non-negative function uw which is harmonic with respect to
XP, there exists a unique finite measure p on 0D such that

u(x) = - Mp(z, z)u(dz), zeD.



Theorem 1.3 (a) Suppose that Ry = oo, D is an unbounded open subset of X, and oo is
accessible from D with respect to X . If there is a point zo € X and R > 0 such that C2(zy, R)
holds, and X satisfies F2(zy, R), then there is only one Martin boundary point associated
with co.

(b) Suppose that, in addition to the assumptions in (a), for allv > R

sup sup  max(Gp(z,y),Gplz,y)) = c(r) < 0. (1.10)
x€DNB(20,r/2) yeX\B(z0,r)

Then the Martin kernel associated with oo is harmonic with respect to XP.
(c¢) Suppose, in addition, that X satisfies F2(zy, R), that (1.8) holds, and that

lim Gp(z,y) =0 forally € D. (1.11)
Tr—r00
Then the Martin boundary point associated with oo is minimal.

Corollary 1.4 Let Ry = oo and D C X be unbounded. Suppose that every point zq € 0D is
accessible from D with respect to X, that oo is accessible from D with respect to X, that the
assumptions of Theorem 1.1(c) are satisfied for all z € 0D (with ¢(r) in (1.7) independent
of z) and that the assumptions of Theorem 1.3(c) are satisfied. Then

(a) DI, DN XD =0,

(b) The Martin boundary Oy D is homeomorphic with the one-point compactification of 0D.
(¢c) For any non-negative function u which is harmonic with respect to X7, there exists a
unique finite measure i on 0D and ps > 0 such that

U($) = MD($a Z)lu(dz) + MD('I" OO)MOO? T e Da
oD

where Mp(-,00) denotes the Martin kernel associated with oo.

The preliminary version of the results of this paper (and the forthcoming paper [27]) was
presented at the 11th Workshop on Markov Processes and Related Topics held in Shanghai
Jiaotong University from June 27 to June 30 2015, and at the International Conference on
Stochastic Analysis and Related Topics held in Wuhan University from August 3 to August
8 2015. In the recent preprint [15], Juszczyszyn and Kwasnicki independently considered
similar problems as those in Corollary 1.2 for bounded D. Our main motivation for the
current paper was to investigate the Martin boundary at infinity. The investigation starts
with the result stating that there is only one Martin boundary point associated with oo
which should be understood as a local result about the Martin boundary in the sense that
no other information about the remaining part of the boundary is required. This motivated
our approach in studying the finite part of Martin boundary through the local approach — if
z9 € 0D is accessible, then there is only one Martin boundary point associated to zy. Again,
no other information about the remaining part of boundary is used. We will first present



proofs for infinity. For readers’ convenience, even though the structure of proofs is similar,
we also provide the proofs for finite boundary points.

The case of inaccessible boundary points will be discussed in the forthcoming paper
[27], the main reason being that the treatment of inaccessible points requires additional
assumptions on j(z,y) — see E1 and E2 in [27], and Theorem 3.1(ii) in [15].

Organization of the paper: In the next section we study the oscillation reduction at an
accessible boundary point, first for the infinite point in Proposition 2.5, and then for a finite
boundary point in Proposition 2.11. One of the main tools for this, borrowed from [6], is a
decomposition of a regular harmonic function into two parts depending on where the process
exits the open set. An estimate of one of the parts by the other is derived as a consequence
of F2, respectively F1, cf. Lemma 2.1 and Lemma 2.7. The oscillation reduction result
immediately leads to the existence of limits of ratios of non-negative harmonic functions
which implies that the Martin kernel is the limit of ratios of Green functions. This is the
key to associating a point on the topological boundary of D with a point on the Martin
boundary. The third section is devoted to the study of the Martin kernel at infinity under
the assumption that infinity is accessible from D and then of the Martin kernel at a finite
accessible point of an open set D. We first prove that the Martin kernel is harmonic, and
then that it is minimal, thus showing that a minimal Martin boundary point is associated
with an accessible boundary point. In Section 4 we first briefly discuss examples satisfying
our assumptions and then look at the case of a class of symmetric Lévy processes in detail. In
the last section we look at minimal thinness at a minimal Martin boundary point of D. It is
intuitively clear that minimal thinness of a set F' C D should be a local property depending
only on the size of F' near the boundary point. This suggests that if F' C E, F open in
D, and E and D have a common boundary point, then F' should be minimally thin at that
boundary point in E if and only if it is minimally thin in D. Clearly, the problem is that
Martin spaces for £ and D are different and one needs some sort of identification of the
underlying boundary points. This is provided by Theorems 1.1 and 1.3. The second main
ingredient in showing local character of minimal thinness is given in Proposition 5.4 where
the Martin kernel with respect to E is given in terms of the Martin kernel with respect to
D.

Notation: We will use the following conventions in this paper: ¢, co,cq,co,... stand
for constants whose values are unimportant and which may change from one appearance to
another. All constants are positive finite numbers. The labeling of the constants ¢, 1, ¢o, . . .
starts anew in the statement of each result. We will use “:=” to denote a definition, which
is read as “is defined to be”. We denote a A b := min{a, b}, a V b := max{a,b}. Notation
f =< g means that the quotient f(t)/g(t) stays bounded between two positive numbers on
their common domain of definition. For x € X and r > 0 we denote by B(x,r) be the open
ball centered at 2 with radius r and by B(x,r) the closure of B(z,7).



2 Oescillation reduction under accessibility assumption

It follows easily from the strong Markov property that for all Greenian open sets U and D
with U C D, Gp(z,y) = Gu(z,y) + B, [Gp (X, y); T < o0] for every (z,y) € X x X.

2.1 Infinity

In this subsection, we deal with the oscillation reduction at infinity. Throughout this subsec-
tion we will assume that Ry = oo and that there exists a point zy € X such that C2(z, R)
holds, and that X satisfies F2(z, R) for some R > 0. We will fix zo and R and use the
notation B, = B(zg,r).

An immediate consequence of F2(zg, R) for X is the boundary Harnack principle at
infinity in [26]: There exists ¢ > 1 such that for any » > R, any open set D C B, and any
non-negative functions u and v on X that are regular harmonic in D with respect to X and
vanish on B, N (DU D™), it holds that

suy) o ul@) o uly) o1 all —e
U(wgv(x)g o) for all z,y € DN By,. (2.1)

c

Note that we can take ¢ = (C(3/2))?. By enlarging C(3/2) in F2(zy, R), without loss of
generality we assume the above ¢ is equal to C'(3/2).

For an open set D and p > g > 0, let D? = DDEZ and D4 = D9\ DP. For p > q > 1,
r > R and non-negative function f on X define

@) = B [f(Rep) s o € D7,

Frore) = B [f(Re) : Rayy € (D\DM)UTB,]

Lemma 2.1 Suppose thatr > R, D C Ei is an open set, f is a non-negative function on X
which s reqular harmonic in D with respect to )A(, and vanishes on B, N (DU ﬁreg). There
exists C1 = C1(R) > 0 (independent of D, f and r > R) such that for any p/16 > q > 2
and any € > 0, if

Fy)m(dy) < e / f(yymidy), (2.2)

Bgr ppr/8,qr

then for every x € DP", fpr/&qr(m) < Crefrr/8ar(x),

Proof. Note that
Tpr/8,qr _ Y. .Y n
fp e (x) - Ex |:f( TDpT/S) N XTDp'r/S 6 qu:|

= G pwrss(2,9)5 (y, 2)m(dy) f (z)m(dz).

Bgr J Dpr/3



~

By C2(zo, R), j(y,2) < cﬁ(y,zo), for all (y,z) € BS

540 X Bgr, where the constant c¢; is

independent of p and ¢. Thus

/B /D/ Clowrss(2,9)5(y, 2)m(dy) f(2)m(d2)

IN

o[ [ Gomslon)in hmldy)f(m(d)

= ¢, Ppprss(, 20) [ f(z)m(dz).

Bgr

Now, using (2.2) and the fact that f = /39" on DP"/39" we get that for every x € DP",

fpr/&qr(m) S ClGﬁDPr/S (-1'7 ZO)/ fpr/&qr(y)m(dy)’

Dpr/8,qr

which is less than or equal to

1€Prpr a2, 20) / P (g ym(dy).

B3pr/8

Since fP"/#4" is regular harmonic in DP"/® with respect to X, and vanishes on E;r /8N (DU
D), using F2(zo, R) (with a = 3/2), we conclude that for every z € D",

Frism(a) < cePplaza) [ P (@)mldy) < e CE/R (o)

BBpr/S

O

Again, by enlarging C(3/2) in F2, without loss of generality we assume C; = (C'(3/2))2.
From now on we let C' = C(3/2), so that C; = C?.

Let r > Rand D C Ei be an open set. Recall that for any p > ¢ >0, DP = D ﬂ§; and
Dt = D%\ DP. If f; and f, are non-negative functions on X, for any p > 1, we let

Note that f; = f7"7" + ﬁpnqr.

Lemma 2.2 Letr > R, D C Fi an open set, and p/16 > q > 2. If f1 and fy are non-

negative functions on X which are reqular harmonic in D with respect to X, and vanish on
B, N (D°U D), then

{)r/&qr fr/&qr
3 _ qr __ qr
(C+1) S,;;Ir) T ng£ gr/&qr <(C—=1)(MT —m). (2.3)
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Proof. For any = € D/3, we define
P () —m fR ()

g(x) = fi
- Em [(fl - mqrf2>(X?Dpr/8) : X?DPT/S S DpT/S,qr

which is regular harmonic in DP"/® with respect to X , and vanishes on F;r/g N (D° U
ﬁreg). Next, it follows from (2.1) that for any z;,29 € DP" (we assume that DP" # (),
/8T (1) < Cg(ma) f27%9" (). Therefore,

9(w1) fy
pr/8,qr
L _oar g
SD%I;_) f2pr/8,qr m N SDU;IT) f2p7"/8,q7" < C-leg gr/&qr (24>

fpr/&qT
= O |inf 2 —mi ).
Dpr p7’/8,q7’

2

We can similarly get that

pr/8,qr pr/8,qr
L . (2.5)

M — inf <C | M?T —su
Dpr ng/S,qr - DPI’? fé)T’/S,qT

Adding (2.4) and (2.5) and rearranging, we arrive at (2.3). O
For any positive function ¢ on a non-empty open set U, let
supy; ¢
ROpy¢p = ——. 2.6
U infy (2.6)

Lemma 2.3 Letr > R, D C B, an open set, p/16 > q > 2, and € > 0. Let f, and f, be
non-negative functions on X which are regular harmonic in D with respect to X and vanish

on Bon (DU D*e). If

[ wm <e [ pwmd), i-12 2.7
Byr Dpr/8,ar
then ; o1 ;
ROprr = < (14 C2%)%*+ (1 + C*)—— (ROparZ: — 1. 2.8
Dpfz—(+ )+ (1+ e)CH Dy (2.8)
Proof. Applying Lemma 2.1 we get that
pr/8,qr | 7pr/8.qr 142 pr/8,qr
MP" = sup—l:supf1 +Jil < L+ ), )
Dpr f2 Dpr f;’r/&qT _i_f;’T/quT Dpr 57'/87(17'
pr/8,qr | Tpr/8.qr pr/8,qr
mPr = infézinf L +~1 > inf ! )
Drr £y Dpr f2pr/8,qr+f§)r/8,qr Dpr (1 _I_CQE)fgr/&qr
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Inserting this in (2.3), we arrive at

pr

(C+1) (1 fc% i+ 02e)mpr>

pr/8,qr pr/8,qr
< (C+1) sup = inf 2t

—in
pr/8,qr  ppr ppr/8,qr
prr fy /2

< (C = 1)(M™ —m™).

Rearranging and using that mP"™ > m9?" we get

Mrr C—-1[/MT
< (1+C%)*+ (14 C? —1
ml""_< + C%e)* 4 ( —I—CE)C+1<qu >,
which implies (2.8). O

In the rest of this subsection, we fix an open set D and a point xg € D.

Lemma 2.4 Suppose that oo is accessible from D with respect to X. For any q > 4, r >
2d(zo, o) V R and € > 0, there exists p = p(€,q, D, xo,7) > 16q such that

| Golaymidn) > [ Gofanyym(dy).

Byr

Proof. Since oo is accessible from D with respect to X, we have that
E.,7p = / Gp(xo,v)m(dv) = 0.
D

The function v +— Gp(z,v) is regular harmonic in D" > D?/3 with respect to X and

—ar —— ——— reg o~
vanishes on B"* N (Der/3"U (De/3) ). By using F2(zo, R) for X (with the open set D?"/3,

a = 3/2 and radius ¢r/3)

[ Gotanmiaa) <c_ng G20t _
o vebes P a(v, 20
Thus
00 = Gp(xo, 2)m(dz) = lim Gp(zo, z)m(dz)
Dar p—oo Dorar

and so we can choose p = p(¢,q, D, xg,r) > 16q large enough so that

/Dzmqr GD(]:O’ Z)m(dz) > € GD(IO? Z)m(dz),

Byr

12



Proposition 2.5 Suppose that oo is accessible from D with respect to X. Letr > 2d(zy, zo)V
R. For every n > 0, there exists s = s(r, D,xzo,n) > 1 such that for any two non-negative
functzons fl, fo on X which are regular harmonic in D" with respect to X and vanish on
B, n (DU (DT) eg)7 we have

f
Proof. Let n > 0 and define
n C
t):=1 —((t-1), t>1. 2.10
o) =1+ 3+ (- 1), 12 (2.10)

Then ¢(t) =t for t = 14+ n(C +1)/2, ¢(t) < tif t > 1 +n(C +1)/2, and ¢(t) > ¢ if
t <1+4n(C+1)/2. Thus lim_, ¢'(C) = 14 n(C' +1)/2, where ¢' is the [-fold composition
of ¢. Let [ € N be such that

¢'(0) < 1+n(C+1). (2.11)
Choose € = €(n) > 0 small enough so that
(Ce+14+e?(1+e? <1+ (2.12)

and

g—:(t—l) < 1+U+L(t—1) o) (213)

2 \2 2
(1+C%)"+ (1 + C%) Cr1

for all t > 1. Let k be the smallest integer such that k& > C?¢~2 and denote n = lk. Let
¢o = 8 and choose ¢; = p(€, qo, 7, D, o) as in Lemma 2.4. Inductively, using Lemma 2.4, we
choose g;+1 = p(e,qj,7, D, xo) for j =0,1,...,n — 1, and s = ¢,. Then by Lemma 2.4, for
7=0,1,...,n—1, we have

[ o Golanim(ds) > [ Goao.g)m(dy) (2.14)

Byg.r
a;r

It follows from F2(zg, R) (applied to the open set D%"/? with a = 3/2 and radius g¢;r/3)
that for every j =0,1,...,n—1,i=1,2 and z € D+ 7847/3

fi(z) 2 Gp (9, 7)

C a3, 20) > C7F .
qujT fi(y)ym(dy) > Pporis(@, 20) 2 qujr Gp(xo, y)m(dy)

r/3

Hence, by integrating over D%+1"8%7/3 we get

fqu+1r,8q]-r/3 f,(m)m(dw) C 1fDq]+1T‘ 8q;7/3 GD(wo, )m(dx)
Js,, ity)m(dy) Js,,, Go(zo, y)m(dy)

i=1,2.

13



Together with (2.14) we get that

[ Rmtan = [ pman) > €% [ fwma)
DY+1ITGT DY+17°4" Bar

for both i =1and i =2, and all j =0,1,...n — 1. Let 0 < m < [. By the definition of &,

Lo Famtan) = fil)mi(dy)
Im+1)k"/SImk" DYm+1)k—1"9mk"

(m+1)k—1
= > / m(dy) > kC~? / fiy)m(dy)
je=mk JDYTITGT By,
> 6_1/ filyym(dy), i=1,2.
Bq, .

By using Lemma 2.3 with p = ¢(m+1)r and ¢ = ¢x we conclude from (2.13) that for every
integer m such that 0 < m < [,

RODq(m+1)kT% <(1+ 026)2 + (1+ 026)0 -1 (ROqukrﬁ — 1)

C+1 72
co(ront)

By definition of the integer I, monotonicity of ¢, and the fact that ROp.2(f1/f2) < C, it
follows that

RODqlkR%

2

S ¢ (RODq(lfl)kR) S e S le (ROD‘IOR) S 1+ 77(0 + 1)'

This means that RO Dsr% < 1+n(C+1). Since n > 0 is arbitrary, the proof is complete. O

Corollary 2.6 Suppose that oo is accessible from D with respect to X. Let r > R and let

f1 and fs be non-negative functz’onsg on X which are reqular harmonic in D" with respect to
X and vanish on B, N (DU (D) ). Then the limit

lim h@)

D>x—00 f2 (,’ﬂ)

exists and 1s finite.

Proof. Since one can increase r so that r > 2d(zp,z) V R without loss of generality, the
existence of the limit and its finiteness is a direct consequence of Proposition 2.5. a

14



2.2 Finite boundary point

In this subsection, we deal with the oscillation reduction at a boundary point 2, of an
open set D. Throughout the subsection, we assume that there exists R < Ry such that
C1(zp, R) holds, and that X satisfies F1(z, R). We will see that the results and the estimates
below have the same structure as those in the previous subsection, the difference being
that Pp(z, z) is replaced by E,7p and Is. m(dy) is replaced by Au(f) (see below for
definition).

As in the previous subsection we begin by recording a simple consequences of F1(z, R)
for X, the boundary Harnack principle in [26]: There exists ¢ > 1 such that for any r € (0, R),
any open set D C B, and any non-negative functions v and v on X that are regular harmonic
in D with respect to X and vanish on B, N (DU ﬁreg), it holds that

671U(y) < u(r) < CU(y)

v(y) (@)

Note that we can take ¢ = (C(2/3))?. By enlarging C'(2/3) in F1(z, R), without loss of
generality we assume the above c is equal to C(2/3).

Let D C X be an open set. For 0 < p < ¢, let D, =DnNB, and D,, = D, \ D,. For a
function f on X, and 0 < p < g, let

for all z,y € DN B, s. (2.15)

A= [ Geons@m@n, R [ GConfemdn. (210

P

Let r € (0, R]. For 0 < p < ¢ < 1 and a non-negative function f on X define

forar(®) = E; [f(X?D,,T) : X?DW = Dpr,qr] ’

Frarl@) = Eu|f(Xz,,): Kny, € (D\ Dy) UBE].
Lemma 2.7 Suppose thatr < R, D is an open subset ofB and f is a non- negatwe functzon
on X that is regqular harmonic in D with respect to X and vanishes on B, N (D° U Dreg)
There exists Co > 0 independent of f and r < R such that for any 0 < 16p < ¢ < 1/2 and
any € > 0, if

Aqr(f) S €A8pr,qr<f)7 (217)

then for every x € D,,, J?;;p,,,qr(x) < Cse fsprgr().

Proof. Note that

~

fSpr,qr(x) = Ew f( ) . X?Dpr € Bgr]

_ /D Gy, (2,9)7 (v, 2)m{dy) £ (2)m(dz).

15



By Cl(z0,R), j(y,2) < c1j(z0,2) for all (y,2) € Byja x B, where the constant c is

independent of p and g. Thus

qr’

/ ) . Goute i miansGyma)

~

<o /D Gon (wypmldy) [ Gea,2)(Im(d)
—ciEo,, [Tl f@m(d2)

Now, using (2.17) and the fact that f = fgp. 4 00 Dgpy g, We get that for every x € D,

f8pr,qr (SE) < ClE(Ex?D8pT )A&vr,qr (f8pr,q7") )

which is less than or equal to ce(E, TDSPT)Ang /3( fspr, qr) Note that fg, 4 is regular harmonic
in Dg,, with respect to X and vanishes on Bgyr N (D° U D). Thus applying F1(z, R) (with
a=2/3) to fsprq we have that for every z € D,,,

fgpr,qr (.ZC) S 016<Eac?D8pT)K8pr/3(f8pr,qr) S Clc<2/3)6.f8pr,qr<x>-
O

Again, by enlarging C'(2/3) in F1, without loss of generality we can assume Cy =
(C(2/3))%. From now on we let C'= C(2/3), so that Cy = C?.
Let r € (0,R], D C B, = B(z,r) an open set and zo € dD. Recall that for 0 < p < g,
D,=DnNB,and D,, = D, \ D,. If fi and f, are non-negative functions on X, for any
€ (0,1), we let

M, = sup — h .

m,, = inf = h
7 D,. f2

Dy f2

Note that f; = (fi)prgr + (]?i)pr,qr-

Lemma 2.8 Let r < R, D C B, an open set, and 0 < 16p < ¢ < 1/2. If f; and fy are
non-negative functions on X which are reqular harmonic in D with respect to X and vanish
on B, N (D°U D™, then

(C+1) (sup Usprar inf M) <(C—1) (Mg —my). (2.18)

Dy (f2)8pr,qr Dpr (J2)8pryqr

Proof. For any x € Dsg,,, we define

9(x) = (f1)sprar(x) — Mgr(f2)8prar()
- Eaz [(fl - mqer)()??Dng) : )??Dspr € D8pr,qr] )
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which is regular harmonic in Dg,, with respect to X and vanishes on Bg, N (DU ﬁreg).
Next, it follows from (2.15) that for any x1, 22 € D,, (we assume that D, # 0),

9(x1)(f2)sprar(22) < Cg(x2)(f2)8pr.qr (1)
Therefore,

sup (f1)sprgr — Mg = sup < C'inf 9 (2.19)

Dy <f2)8pr,qr Dy <f2)8pr,qr Dpr ( 2)8pr,qr

= C (inf(fl)ﬂ —mqr> .

Dy (f?)Sp'r,qr

We can similarly get that

M, — inf U)sprar < C | My —sup U)sprar . (2.20)
Dypr (f2)8pr,qr Dpr (f2)8pr7qr
Adding (2.19) and (2.20) and rearranging, we arrive at (2.18). O

Recall that ROy ¢ is defined in (2.6).

Lemma 2.9 Let r < R, D C B¢ an open set, 16p < q < 1/2, and € > 0. Let f; and fo be
non-negative functions on X which are regular harmonic in D with respect to X and vanish
on B, N (DU D). If Ay (f;) < eAgprge(fi), i = 1,2, then

RODPT% < (1+C%)*+ (1 + C?%)
2

Proof. Applying Lemma 2.7, we get that

-1

S
o1 <RODqTE - 1) : (2.21)

Wsmar + (Psorar (L4 C2)(f1)sprar
f2)8pr,qr + (f2)8pr,qr B Dypr (f?)Spr,qr

inf (fl 8pr,qr + (fl)Spr,qr > inf (fl)Spr,qr

.1
m,, = inf — =in — > .
T el Do (B)sprgr + (F)sprar Do (L C2)(f)sprar

Dy J2

r

M, = Supﬁ:sup(
Dpr (

S~— [ ~—

By inserting this in (2.18), we arrive at

MPT 2
(C+1) (1 % T (1+C e)mpr>

< (C+1) (sup (S )sprar inf (fl)Spr,qr)

Dy (f2)sprar  Dor (f2)8prar

< (O = 1)(Myr — mygy).

17



Rearranging and using that m,, > m, we get

My, <(1+C%)?2+(1 +C2€)C_ ! <M‘” - 1) :

Mepr CH+1 \myg

which implies (2.21). O

In the remainder of this subsection, we fix an open set D such that zg € 0D, and a point
T € D.

Lemma 2.10 Suppose that zy is accessible from D with respect to X. Assume that r <
R A (%d(zo,mo)); q < 1/4 and € > 0. Then there exists p = p(€,q, D, xo,7) < q/16 such that
Apror (Gp(20, ) > €Ay (Gp (20, -)).

Proof. Since zj is accessible from D with respect to X, we have that
Po(eo.20) = [ Golan,0)i(w,z0)m(dv) = oo,
D

The function v — G p(xo, v) is regular harmonic in D, D D3, with respect to X and vanishes
——rTeg

on Bsy N (Dsgr U(Dsg) ). By using F1(z, R) for X (with the open set Ds,,, a = 2/3 and
radius 3qr),

, ~ . Gp(zg,v
/ G0, 9)j (s 20)m(dv) = R (G, ) <c imf  Z2E0)
B;,,. UGngr/g IE:"U7—D3q7‘

Thus
00 = Gp(xo,v)j(v, z0)m(dv) = lim G p(0,v)j(v, 20)m(dy)

DCIT' p_>0 DP’",QT'

and so we can choose p = p(e, q, D, xg,r) < q/16 small so that

| Gotanitnzmdn) > < [ Goan,)ito. )m(dy).

pr,qr qr

Proposition 2.11 Suppose that zy is accessible from D with respect to X. Assume that
r < R A (3d(z0,%0)). For every n > 0, there exists s = s(r, D, zg,n) € (0,1) such that for
any two non-negative functions ]E,\ Jlfge on X which are reqular harmonic in D, with respect
to X and vanish on B, N (D" U (D,) g), we have

RODST? <147 (2.22)
2

18



Proof. Let 7 > 0 and define ¢ as in (2.10) and let ¢' be the I-fold composition of ¢. Let
[ € N be such that (2.11) holds. Choose ¢ > 0 small enough so that (2.12) and (2.13) holds.
Let k be the smallest integer such that k& > C%¢ 2 and denote n = lk. Let ¢o = 1/8 and
choose q1 = p(€,qo, 7, D, x9) as in Lemma 2.10. Inductively, using Lemma 2.10, we choose
¢j+1 = p(€,q;,r, D, xg) for j =0,1,...,n—1, and s = g,. Then it follows from Lemma 2.10
that for j =0,1,...,n — 1, we have

gy iy (G(@o, ) > elg (Gp(xo, ). (2.23)
It follows from F1(zo, R) (applied to the open set Ds, . with a = 2/3 and radius 3¢;r) that

for every j =0,1,...,n—1,
C,\fl(x) Z EZ‘?D:sq.T > C«—l/\ GD('xOVr)
Agr(fi) ’ Ag;r(Gp (o, -))

Hence, by integrating over Dy, ;3478 We get

y T E qu+1r,3qu/8-

qu+1r,3qu/8(fi) > C,lAqJ'+1T,3qu/8(GD('/BO7.))
AQjT(fi) a AqJ'T(GD<x07 ))
Together with (2.23) it follows that ]A\qﬂmqu(fi) > quﬂ,.,gqﬁ/g(fi) > C’_Qeﬁqﬂ(fi) for both
t=1landi=2,and all j =0,1,...n— 1. Let 0 < m < [; then

(m+1)k—1
ASq(m+1)kT:kaT(fi> > AQ(m+1)k—1T7kaT(fi>: Z Aqg’+1r,qu<fi)

j=mk

> kC2eh, o (fi) > e Ay o(fi), i=1,2.

? ? y =

By using Lemma 2.9 with p = gn41)» and ¢ = ¢, we conclude that for every integer m
such that 0 < m < [,

fl 2 \92 9 -1 fl
RODq(mH)kTE <A+C%)*+(1+C e)C+ ; ROD‘“"”E 1
f1
< (b (ROquwg .
The remainder of the proof is the same as the corresponding part of the proof of Proposition
2.5. o

Corollary 2.12 Suppose that zo is accessible from D with respect to X. Let r < R and let
f1 and fy be non-negative functions on X which are regular harmonic in D, with respect to
~ — —— reg o
X and vanish on B, N (D U (D,) ). Then the limit

lim h(x)

D3>z—zo fQ(J,’)

exists and is finite.
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Proof. Since one can decrease r so that 7 < R A (3d(20, z0)) without loss of generality, the
existence of the limit is a direct consequence of Proposition 2.11. a

3 Martin boundary for accessible points

Recall that D is a Greenian open subset of X and that X is the process X killed upon exiting
D. In order to apply the theory of Martin boundary developed in [28], we have to check
that their Hypothesis (B), see p.498 in [28], holds in our setting. Since X7 is strongly Feller,
it follows by the dominated convergence theorem that the a-resolvent operator G¢,f(z) =
J. e PP f(x)dt, a > 0, is also strongly Feller. Here (P”);> denotes the semigroup of
XD In particular, G% f is continuous for every bounded non-negative measurable f on
D. It follows that G f is lower semi-continuous for every non-negative f on D and every
a > 0. Since Gpf =1 lim,—,0 G} f, we see that Gpf is also lower semi-continuous for every
non-negative f. Hence, conditions (11) and (12) on p.126 of [12] are satisfied. It follows
from Theorem 2 on p.268 of [12] that Gplk is bounded for every compact set K C D. Let
f: D — [0,00) be bounded measurable and vanish outside of a compact set K C D. Then
0 < f < |fllolx. Thus Gpf < Gp(||flleelx) < ||flleeGplk is bounded. Since X7 is
strongly Feller, it follows that PPGpf is continuous. Further,

t t
Gof = PPGof = [ PPfis < £l [ PP1ds <|f]t.
0 0
The right-hand side converges to 0 uniformly in x € D. Hence
GDf = lim PtDGDf
t—0

uniformly in D. Thus Gpf is a uniform limit of continuous functions, hence continuous.
Finally, if f € C.(D) (continuous functions on D with compact support), it is clear that
aGYf(r) =E, fo e tf( Xt/a )dt — f(x) boundedly on compacts as @ — oo. Since the same
concluswns are valid for X, we have checked that Hypothesis (B) from [28] holds true.

Fix x¢y € D and define

GD(xay)
GD(QZO, y)’

By Theorem 3 in [28], D has a Martin boundary 9,,D with respect to X7 satisfying the
following properties:

MD(x7y) = .T,yGD, y?’é%

(M1) DU OyD is a compact metric space (with the metric denoted by dyy);

(M2) D is open and dense in D U0dy, D, and its relative topology coincides with its original
topology;

(M3) Mp(z, -) can be uniquely extended to dy D in such a way that
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(a) Mp(z,y) converges to Mp(z,w) as y — w € Oy D in the Martin topology;

(b) for each w € D U 0y D, the function x — Mp(z,w) is excessive with respect to
XD'

(¢) the function (z,w) — Mp(z,w) is jointly continuous on D x ((D \ {zo}) U Oy D)
in the Martin topology and

(d) Mp(-,wy) # Mp(-,wy) if wy # wy and wy, wy € Iy D.

Recall that a positive harmonic function f for X? is minimal if, whenever ¢ is a positive
harmonic function for X” with ¢ < f on D, one must have f = cg for some constant
c. If Mp(-,2), z € Oy D, is a minimal harmonic function, the point z is called a minimal
Martin boundary point. The set of all minimal Martin boundary points is denoted by 0,,D.
Then the following Martin representation is valid, see Theorem 4 in [28]: For every non-
negative function h harmonic with respect to XP, there is a unique finite measure p on
Oy D concentrated on 0,,D such that

h(z) = Mp(z,z) p(dz) = Mp(z,z) pu(dz), zxe€D. (3.1)
O D OmD
Recall that a point w € 0y, D is a finite Martin boundary point if there exists a bounded
sequence (Y, )n>1 C D converging to w in the Martin topology. The finite part of the Martin
boundary will be denoted by 8]{4D. Recall that a point w on the Martin boundary 9y, D of
D is said to be associated with zo € 0D if there is a sequence (y,,),>1 C D converging to w
in the Martin topology and to zy in the topology of X. The set of Martin boundary points
associated with z, is denoted by 079 D.
The proof of part (b) of the following result is a direct extension of that of Lemma 4.18
in [23] and part (a) is even simpler. So we omit the proof.

Lemma 3.1 (a) Let D be a bounded open set and suppose that u is a bounded non-negative

harmonic function for XP. If there exists a polar set N C 0D such that for any z € 9D\ N
Dlsligzu(:c) =0, (3.2)

then u is identically equal to zero.

(b) Let D be an unbounded open set and suppose that u is a bounded non-negative harmonic

function for XP. If there exists a polar set N C OD such that for any z € 0D \ N (3.2)

holds true and additionally,

pRB ) =0,

then wu is identically equal to zero.
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3.1 Martin boundary at infinity

In this subsection we assume that Ry = oo, that there exists a point zy € X such that
C2(z, R) holds, and that X satisfies F2(zo, R) for some R > 0. We will fix z, and R and
use the notation B, = B(zp,r). Let D be an unbounded open subset of X such that oo is
accessible from D with respect to X. We will deal with the Martin boundary of D at infinity.
Recall that x( is a fixed point in D.

Lemma 3.2 For every x € D the limit

o . GD(':E’,U)

(3.3)

exists and 1s finite.

Proof. Fix z € D, and let r > 2min{d(z, z), d(20, o), R}. As before, let D" = DNB... The

functions Gp(z,-) and Gp(x,-) are regular harmonic in D" with respect to X and vanish
———T€

in B. N (D°U (D) ), hence by Corollary 2.6 we deduce that the limit

o . GD(x7U>
Mp(r,00) = Dalggoo m

exists and is finite. O

Proof of Theorem 1.3(a): We first note that 937D is not empty. Indeed, let (y,)n>1 C D
converge to oo in the topology of X. Since D U dy D is a compact metric space with
the Martin metric dy, there exist a subsequence (y,, )r>1 and w € D U 0y D such that
limy—s00 dps (Y, w) = 0. Clearly, w ¢ D (since relative topologies on D are equivalent).
Thus we have found an unbounded sequence (yy, )r>1 C D which converges to w € 9D in
the Martin topology and to oo in the topology of X.

Let w € 0yD and let Mp(-,w) be the corresponding Martin kernel. If (y,),>1 is a
sequence in D converging to w in the Martin topology and to oo in the topology of X, then,
by (M3)(a), Mp(x,y,) converges to Mp(z,w). On the other hand, since y,, converges oo in
the topology of X, by Lemma 3.2, lim,,_,o. Mp(x,y,) = Mp(x,o0). Hence, for each w € 957D
it holds that Mp(-,w) = Mp(-,00). Since, by (M3)(d), for two different Martin boundary
points w» and w® it always holds that Mp(-,w®) # Mp(-,w?), we conclude that 953D
consists of exactly one point. O

Proof of Theorem 1.3(b): We claim that for every r > 4 max(d(z, x¢), R) and U := DNB,
it holds that
Mp(z,00) =E, [Mp(X,,,0)], x e U. (3.4)

For any 2z € D?, since Gp(+, z) is regular harmonic in U, we have

Gp(z,z) E, {GD(XTU,z)]

— = z e U.
Gp(zo, 2) Gp(xo, 2)
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Hence, in view of Lemma 3.2, in order to prove (3.4) it suffices to show that, for any fixed
x € U, there exists s > 16r such that the family

GD(XTU7 Z) 4 }
— 1z E D s
{ G p(zo, 2)

is uniformly integrable with respect to the distribution of X, under PP,.
In the remainder of this proof, we fix an x € U. Let s > 8r. Then for any Borel set
EcDr

GD(XT 7Z> :|
E, | " X, €F
{ Gp(o, 2)
Gp(Xry, 2) Gp (X, 2)
< E, | =22 X D'\D*NE|+E, | —/—"0"2 X, € D3
- x{GD(a:O,z)’ w € (D7 )N ]+ I|:GD(£UO,Z)’ m €

= I+1I.

We first show that 17 is small for large s. Let w € U and d(z9,y) > 4r/3. By C2(zo, R)
we have that j(w,y) < ¢17(20,y) with ¢; = ¢1(z0,4/3). It follows that

Py(e.y) = / G, w)j(w, yym(dw) < e (Ear)j(z0,)

< a(Eemg,)j (20, ) = c27(20,y),

where ¢y = (20, x, 7). Hence,
BalGol(X ) X € D7) = [ Gioly2)Pole phmidy
< o /DS/S Gpl(y, 2)j(z0, y)m(dy). (3.5)
Next, for z € D*,

Gp(xo,z) > / GD(y,z)PD\ﬁs/4(x0,y)m(dy)
Ds/3

- /DS/3 /D\DS/4 GD(CU;Z)GD\Bs/z;(:L‘O,u)j(u,y)m(du)m(dy)_

Let y € D*/3 and u € D\ﬁsM. By C2(zp, R) we have that j(zo,y) < c4j(u,y) with
c3 = ¢3(zp). Continuing the above display, we get that

Gotar.) 2 ' ([ Gotmaionman)) ([ Gppntoimian). @0

By combining (3.5) and (3.6) we get that for all z € D,

I = /D CoW2) b Nm(dy) < escs ( /D

s/4

-1
s/3 G[)(SIZ’O7 Z) GD\ESM (-TO, U)m(du)) .

\D
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Since

lim GD\55/4(:co,u)m(du) = /DGD(:UO,u)m(du) =E, 7p = o0,

§—00 D\ff/4

we see that for any € > 0 we can find s > 167 such that

€

1
(/D\DS/4 GD\DS/4(x0,u)m(du)> < 2oy’

Thus 11 < €/2 for all z € D*.

We now fix an s > 16r as above and estimate I for all z € D*. If y € D"\ D*3, then
both Gp(y,-) and Gp(xg,-) are regular harmonic with respect to X in D*? and vanish on
B,»N(D°U D™g). Choose z; € D*. By the boundary Harnack principle (2.1), we have that

GD(?J» Z) GD(.% 21)
GD<IOaZ) GD(:E07ZI)7

2z e D%,

<

Since 21 € D* it follows from (1.10) that c5 := sup,c pr ps/s Gp(y, 21) < oo. Hence,

GD(XTU7 2’1)
GD(9007 Z1)

CyCsy
— 22 P.(X. D'\ DN E) < ¢sPu(X,, € F), 3.7
S Golwo. ) (X7, € (D" )N E) < cPo(X,, € E) (3.7)

I < R, X, €(D"\D¥NE

where ¢ = ¢4¢5/Gp(w0, z1). Thus, given e > 0, for any set £ C D" with [, Py(z,y)m(dy) <
€/(2¢7), we have I < ¢/2 for all z € D*.

Therefore we have proved the claimed uniform integrability for the s chosen above, and
consequently (3.4).

Now let U; C D be any bounded open set such that U; C D. Then there is r > 4R such
that U; C DN B, =: U. Then by (3.4) and the strong Markov property we have that

Mp(x,00) = E, [Mp(Xy,,,00)], x €U, (3.8)
which finishes the proof. a

Because of Theorem 1.3(a), we will also use oo to denote the Martin boundary point 957D
associated with co. Note that it follows from the proof of Theorem 1.3(a) that if (y,)n>1
converges to oo in the topology of X, then it also converges to oo in the Martin topology.

For any € > 0, define

KX = {w € d!.D : dy(w,00) > e} : (3.9)

By the definition of the finite part of the Martin boundary, for each w € K2 there exists a
bounded sequence (y¥),>1 C D such that lim,, . dp(yY, w) = 0. Without loss of generality
we may assume that dy(y,,w) < § for all n > 1.
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Lemma 3.3 There exists ¢ = c(€) > 0 such that d(y?, z9) < ¢ for allw € K and alln > 1.

Proof. We first claim that for any sequence (y,),>1 in D satisfying d(y,, zo) — 0o, we have
limy, 00 das(Yn, 00) = 0, i.e., (yn)n>1 converges to oo in the Martin topology. Indeed, since DU
Oum D is a compact metric space, (y,,) has a convergent subsequence (y,, ). Let w = limy_,o0 Yn,
(in the Martin topology). Then limy . Mp(-,yn,) = Mp(-,w). On the other hand, from
Lemma 3.2 and Theorem 1.3(a) we see that limy_,oo Mp(-,yn,) = Mp(-,00). Therefore,
Mp(-,w) = Mp(-,00), which implies that w = oo by (M3)(d). Since this argument also
holds for any subsequence of (y,),>1, we conclude that y, — oo in the Martin topology.
Now suppose the lemma is not true. Then {y¥ : w € K> ,n € N} contains a se-
quence (y,*)r>1 such that limg . d(y,*, z0) = co. By the paragraph above, we have that
limy, 00 das (¥, 00) = 0. On the other hand, da;(y, ¥, 00) > dus(wi, 00) —dar (Y 'k, wi) > €/2.
This contradiction proves the claim. O

Proof of Theorem 1.3(c): Let h be a positive harmonic function for X? such that
h < Mp(-,00). By the Martin representation (3.1), there is a finite measure p on 9y D
(concentrated on 0,,D) such that

)= [ Mo utaw) = | oy Mol ) () + Mo, <) {o0)).

In particular, h(zg) = pw(OnD) < Mp(xy,00) = 1 (because of the normalization at x).
Hence, 1 is a sub-probability measure.
For € > 0, let K> be the closed subset of 8/, D defined in (3.9). Define

u(z) == Mp(z,w) p(dw). (3.10)

Kee

Then u is a positive harmonic function with respect to X and bounded above by
u(@) < h(z) — p({oo}) Mp(z,00) < (1 — p({o0})) Mp(z,00). (3.11)

We claim that lim, . u(z) = 0. Let p = ¢(€) V R, where c¢(¢) is the constant from Lemma
3.3. Hence, for w € K and (yY),>1 a sequence such that lim, . dy(yY,w) = 0, it holds
that d(yY,29) < p. Fix a point z; € D® and choose an arbitrary point yo € D,. Then for
any © € D¥ and any y € D, we have that

Go(o,y) _ Go(o,y) Golrny) | Go(r.40) Gole1,y)
Gp(zo,y) Gplx1,y) Gp(zo,y) =  Gp(z1,y0) Gp(wo,y)’

where the inequality follows from the dual version of (2.1) since X satisfies F2(zp, R). There-

fore for each w € K2 we have

. GD(wayw) GD(x7y0) . GD<$layw)
Mp(z,w) = lim N <e lim ——2<2
D( ) n—00 GD(an y;}”) 1GD($17y0) n—00 GD(a:an}f)
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e GD(fE, ?/0)
GD(:L‘17 yO)
= CQGD(:C7 Z/O)

Go(@,50) sup Mp(z1,w)

Mp(x1,w) <c
D( ' ) IGD(:E17QO) weKe

by the continuity of the Martin kernel (M3)(c). This inequality together with the definition of
u shows that u(x) < coGp(z,yo). Now using (1.11), we can conclude that lim, . .cp u(z) =
0 uniformly for w € K2°.
Choose r > 16p. For any = € D, and y,y1 € D*, by (2.1) applied to Gp(z,-) and
Gp(xo,-), we have
Go(z,y) _  Golz,y)
=G .
Gp(zo,y) Gp(zo,y1)
Letting D 3 y — oo, by Lemma 3.2 we get

GD(QT, yl)

Mp(x,0) <c
o ) 3GD(I073/1)

=c,Gp(x,y1), € Dypo. (3.12)
Recall that by (1.8) limps, .. Gp(z,y) = 0 for every z € 0D which is regular for D¢ with
respect to X. Since r > 16p can be arbitrarily large, we see from (3.12) and (3.11) that
limpsg oy u(x) = 0 for every z € D which is regular for D¢ with respect to X.

Fix r > 16p and y; € D¥. It follows from (1.10) that for all z € D, s,

GD<CC,y1) S Cs . (313)

From (3.11)—(3.13) we conclude that v is bounded in x € D, /. Similarly by (1.10), for every
x € D® we have that Gp(x,y0) < ¢ (recall yo € D,). Since Mp(z,w) < caGp(z,yo) for
each z € D® and each w € K>, by using (3.10) we see that u is bounded on D*. Thus u
is bounded on D.

Now it follows from Lemma 3.1(b) that v = 0 in D. This means that v = g~ = 0.
Since € > 0 was arbitrary and dyD \ {00} = UesoK2°, we see that jug,, p\jec} = 0. Hence
h = p({oc})M(-,00) showing that M(-,00) is minimal. Therefore we have proved the
theorem. O

3.2 Finite part of Martin boundary

In this subsection, we deal with the oscillation reduction at a boundary point 2y of an open
set D. We will fix D and z, in this subsection, and use the notation B, = B(zo, ). In this
subsection, we will always assume that there exists R < Ry such that C1(zg, R) holds, and
that X satisfies F1(29, R). We also assume that zy is accessible from D with respect to X.

Lemma 3.4 For every x € D, the limit

o . GD<ZZ',U)
MD(xa ZU) T Dglvrgzo m

exists and is finite.
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Proof. Fixz € D, and let r < 5 min{d(zo, x), d(z0, z0), R}. As before, let D, = DN B,. The
functions Gp(x,-) and Gp(zo,-) are regular harmonic in D, with respect to X and vanish

in B, N (D°U (D,) g), hence by Corollary 2.12 we deduce that the limit

o . GD(xa U)
Mol z0) = o e

exists and is finite. O

Proof of Theorem 1.1(a): We first note that 037D is not empty. Indeed, let (y,,)n>1 C
D converge to zy in the topology of X. Since D U 0y D is a compact metric space with
the Martin metric dy, there exist a subsequence (y,, )r>1 and w € D U 0y D such that
limy—s00 dps (Y, w) = 0. Clearly, w ¢ D (since relative topologies on D are equivalent).
Thus we have found a sequence (yn, )k>1 C D which converges to w € 9D in the Martin
topology and to 2 in the topology of X.

Let w € 039D and let Mp(-,w) be the corresponding Martin kernel. If (y,),>1 is a
sequence in D converging to w in the Martin topology and to 2, in the topology of X,
then, by (M3)(a), Mp(z,y,) converge to Mp(z,w). On the other hand, d(y,, z0) — 0, thus
by Lemma 3.4, lim, .. Mp(x,y,) = Mp(x,2p). Hence, for each w € 979D it holds that
Mp(-,w) = Mp(-,z). Since, by (M3)(d), for two different Martin boundary points w"
and w® it always holds that Mp(-,w") # Mp(-,w®), we conclude that 9D consists of
exactly one point. O

Proof of Theorem 1.1(b): We claim that for every r < 1 min{d(z, o), R} and U := D\B,
it holds that
Mp(z,20)) = E; [Mp(Xr,20)] . z €U (3.14)

For any z € D, s, since Gp(, ) is regular harmonic in U, we have

Gp(x,z) E, {M

= , zel
GD(.CE(),Z) GD(,T(),Z) :|

Hence, in view of Lemma 3.4, in order to prove (3.14) it suffices to show that, for any fixed
x € U, there exists s < r/(16) such that the family

GD(XT 72)
=y D
{ Golro,2) 5/4}

is uniformly integrable with respect to the distribution of X, under P,.
In the remainder of this proof we fix an z € U. Let 0 < s < /8. Then for any Borel set
E cCD,,

GD(X-,- Z) GD(X.,- ,Z)
E, | —~ X F| < E,|——2 72 X D.\D E
x GD(Z'Q,Z) s “dTry € :| = T |: GD(.T(),Z) y AT S ( 7“\ 35) N
GD(XT Z)
E, | ——2~ X D
T |i GD(Z'(),Z> y AT € 35:|
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= I+1I.

We first show that /7 is small for small s. We claim that Py(x,-) is bounded on Ds, 4.
Indeed, let y € D3, 4. If w € U, then by C1(2, R), we have that j(w,y) < c15(w, 29) where
¢1 = ¢1(20,4/3). Hence,

Pu(e.y) = [ Gulwwlitw,ymldw) < er [ Gulww)jtw,zo)m(dv)
U U
=1 Py(x, z0) =: ca.

This implies that

Em[GD<XTU7Z))7XTU € D3S} = GD(yaz)PU(x7y)m<dy)

D3

< Gpl(y, z)m(dy). (3.15)

D3

Next, for z € D, 4,
Gp(re,2) > / Gp(y, 2)Pp\p,, (%0, y)m(dy)
D3s
_ / / Gy, )G, (0, u)i(u, y) m(du) m{dy).
D3s D\D4s

Let y € D3, and u € D\ Dy,. By C1(zg, R), we have that j(u, 20) < ¢35 (u, y) with c3 = ¢3(20).
Continuing the above display, we get that

%m@zﬁ(%QM@mmﬂlwﬁwmmwwwmm) (3.16)

Combining (3.15) and (3.16) we arrive at

GD(y,Z)
I = — P
. G, 2) v (z, y)m(dy)

-1
< e[ Gppleanitam(in)
D\Das
Since zq is accessible from D,

lim [ Gpp,. (w0, u)j(u, 20)m(du)
s—0 D\D4S

= /DGD(JUO,u)j(u, zo)m(du) = Pp(xg, 29) = 0.

Therefore, for any € > 0 one can find s > 0 such that

€

1
([, Gomutammitamn) <zt
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Thus I1 < €/2 for all z € Dy4.

We fix s < r/16 as above and estimate [ for all z € D,/4. Choose z; € D,. If y € D, \ Ds;,
then both Gp(y, ) and Gp(xo, ) are regular harmonic in Dy, with respect to X and vanish
on By, N (DU (/D\gs)reg). Hence, by the boundary Harnack principle (2.15), we have that

GD<y7 Z) < cs GD(Z/? Zl)
Gp(xe,z) =  Gplxg,21)’

A D8/4.

Since 21 € D it follows from (1.7) that c5 := sup,ep \p,, Gp(y, 21) < co. Hence,

GD<XTU7 Zl)
GD<5U07 2’1)
P, (X,, € (D, \ Dss) N E) < ¢6Pu(Xs, € E), (3.17)

I S C4Ex ,XTU € (Dr \ Dgs) Nk

C4Cs

GD(l’o,Zl)

where ¢ = cq4¢5/Gp(x0, 21). Thus, given € > 0, for any set £ C D, with P,(X,, € F) <
€/(2cs) we have that I < €/2 for all z € D, 4.

Therefore we have proved the claimed uniform integrability for the s chosen above, and
consequently (3.14).

Now let U; C D be any open set such that zy is not in U;. Then there is 7 > 0 such that
Uy C D\ B, =: U. Then by (3.14) and the strong Markov property we get that

MD<.’I},ZO) :Ex [MD(XTUI,Z())] s x Ul, (318)
which finishes the proof. O

Because of Theorem 1.1(a), we will also use z; to denote the Martin boundary point
039D associated with zyp € 9D. Note that it follows from the proof of Theorem 1.1(a) that
if (yn)n>1 converges to zp in the topology of X, then it also converges to zy in the Martin
topology.

For any € > 0, define

K2 .= {w e dl.D: dy(w,z) > e} : (3.19)

By the definition of the finite part of the Martin boundary, for each w € K?° there exists a
bounded sequence (y¥),>1 C D such that lim,, . dp(yY, w) = 0. Without loss of generality
we may assume that dy(y;;,w) < § for all n > 1.

Lemma 3.5 There exists ¢ = c(€) > 0 such that d(yY, zo) > ¢ for allw € K2 and alln > 1.

Proof. Suppose the lemma is not true. Then {y* : w € K, n € N} contains a subsequence
(¥ k=1 such that limy . d(y;*, 20) = 0. We also have limy o dar(y,*, 20) = 0. On the
other hand,

dM(y;,U:a ZO) 2 dM(wk7 ZO) - dM(y;f:: wk) Z 6/2
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This contradiction proves the claim. O

Proof of Theorem 1.1(c): Let h be a positive harmonic function for X? such that
h < Mp(-,29). By the Martin representation (3.1), there is a finite measure p on 9y D
(concentrated on 0,,D) such that

)= [ Mp(a,w) ) = /6 o Mo, ) ) 4 M, o) {0)).

In particular, pu(0pyD) = h(xg) < Mp(xg,20) = 1 (because of the normalization at ).
Hence, p is a sub-probability measure.
For € > 0, let K?° be the closed subset of 0psD defined in (3.19). Define

u(z) = Mp(z,w) p(dw). (3.20)

KZ0

Then u is a positive harmonic function with respect to X satisfying

u(@) < h(x) — p({z20})Mp(@, 20) < (1 - p({z0})) Mp(z, 2) - (3.21)

Let p = ¢(e) A R, where c(e) is the constant from Lemma 3.5. Hence, for w € K2
and (y2)n>1 a sequence such that lim,, . dp(yY, w) = 0, it holds that d(yY, zp) > p. Fix
x1 € D,/ and choose arbitrary yo € DP. For any = € D)3 and any y € DP we have that

Gp(r,y) _ Gp(z,y) Gp(x,y) < e Gp(z,v) Gp(x1,y)
Gp(zo,y)  Gp(z1,y) Gp(zo,y) =  Gp(z1,y0) Gp(xo,y)

Here the inequality follows from the dual version of (2.15) applied to functions Gp(+,y) and

Gp(-,90) which are regular harmonic in D, with respect to X and vanish in B(z,c) N (DU
Dreg). Now fix w € K and apply the above inequality to y* to get

. GD(xayw) GD(“%?UO) . GD(Ibyw)

Mp(xz,w) = lim o <ec m L
D( ) n—00 GD(ony%”) 1GD($17?J0) n—o0 GD(%,?J%)
Gp(z,v0) Gp(z,y0)

=c————= Mp(x,w) <c sup Mp(xzq,w
1GD(QU1,yO) D( ! ) IGD("L‘hyO) wEI(IZzO D( ' )
GD(nyO)
<cp——"" =G .

In the last inequality we used property (M3)(c) of the Martin kernel. Thus,
Mp(z,w) < csGp(x, ), r € Dyjg,w e K. (3.22)

Choose r < p/16. For any z € D*" and y,y1 € D,/s, by (2.15) applied to Gp(z,-) and
Gp(xo,-), we have

GD(may) < GD('r?yl)

G'p(x0,Yy) Gp(zo,y1)
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Letting D > y — 29, we get

e GD(%Z/l)
GD(anyl)

Recall that by (1.8) limps, .. Gp(z,y) = 0 for every z € 0D which is regular for D¢ with
respect to X. Since r < p/16 can be arbitrarily small, we see from (3.23) and (3.21) that

Mp(x, z) < = csGp(z,y1), x¢€ D*. (3.23)

impsy 2, u(z) = 0 for every z € 0D, z # 2, which is regular for D¢ with respect to X.
Assume D is bounded. Fix r < p/16. It follows from (1.7) that for all z € D*",

Gp(x,y) < c7. (3.24)

From (3.23) and (3.21) we conclude that u is bounded in z € D?". Similarly by (1.7), for
every x € D, s we have that Gp(z,yo) < cg (recall yo € DP). Hence by (3.22) and (3.20) we
see that u is bounded on D, 5. Thus u is bounded on D. Now it follows from Lemma 3.1(a)
that v =0 in D.

If D is unbounded, we argue as follows. It follows from (3.22) and the assumption (1.9)
that limps, oo Mp(x,29) = 0. Hence by (3.21) limps, oo u(z) = 0. Thus, there exists 7 > 2
such that u(z) <1 forallx € D"). Fix r < p/16 A1 and let x € D N (B(20,7) \ B(zp,2r)).
By (3.23) and (1.7),

Mp(x, 20) < csGp(z,y1) < i

It follows that u is bounded in D N (B(z,7) \ B(20,2r)). The proof that u is bounded on
D N B(z,p/16) is the same as in the case of a bounded D. Hence, u is bounded, and again
we conclude from Lemma 3.1 (b) that u =0 in D.

We see from (3.20) that v = k. = 0. Since € > 0 was arbitrary and Oy D \ {20} =
Ueso K20, it follows that fiys,, p\(zy = 0. Therefore h = u({z})Mp(-,20) showing that
Mp(+, zo) is minimal. O

Proof of Corollary 1.2 (a) We first note that since D is bounded, all Martin boundary
points are finite, hence 8}\}D = OyD. Let = : 0D — 8{4D so that Z(z) is the unique
Martin boundary point associated with z € 9D. Since every finite Martin boundary point is
associated with some z € 9D, we see that = is onto. We show now that = is 1-1. If not, there
are z,z' € 0D, z # 2/, such that Z(z) = Z(2') = w. Then Mp(-,z) = Mp(-,w) = Mp(-,2).
Choose 7 > 0 small enough and satisfying r < d(z,2')/4. By (3.23) and (3.24) we see that
there exists a constant ¢; = ¢;(z) such that Mp(z,z) < ¢ forall x € D\ B(z,2r). Similarly,
there exists ¢y = co(2’) such that Mp(x,2’) < ¢y for all x € D\ B(2/,2r). Since B(z,2r)
and B(z/,2r) are disjoint, we conclude that Mp(-,z) = Mp(-,2’) is bounded on D by ¢; V ¢s.
Again by (3.23), limps,—,c Mp(z, z) = 0 for all regular ( € 9D. In case of unbounded D, we
showed in the proof of Theorem 1.1(b) that lim, ,,, Mp(x,z) = 0. Hence by Lemma 3.1 we
conclude that Mp(-,z) = 0. This is a contradiction with Mp(z,z) = 1.
The statement about the minimal Martin boundary follows from Theorem 1.1(c).
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(b) We will show that Z : D — 8, D is actually a homeomorphism. Let zy € D and
z € D. Choose r < 1min{R,dist(z, z0), dist(zo, 20)} so that x € D\ B(z,2r). It follows
from Lemma 3.4 that for any s < 1 and y € D,,,

GD(x7y) GD(Iv )
— - M <M ROp, ———= —1]. 3.25
G l200) (2, 20)| < Mp(z, 2) { ROp,, Go(zo.-) (3.25)
Let s < 1and 2’ € DN B(zy, sr/2). It follows from Lemma 3.4 that there exists Mp(z, 2') =
limpsy—» Mp(x,y). Letting y — 2’ in (3.25) we get that

|Mp(x,2") — Mp(z, 20)| < Mp(z, 2) <RODST—GD(L ) _ 1) .
GD<J]0, )
Together with Proposition 2.11 we get that if (z,,),>1 is a sequence of points in D converging
to zp € 0D, then Mp(-, zp) = lim,, oo Mp(+, 2,).

In order to show that = is continuous we proceed as follows. Let z, — zy in 9D.
Since Oy D is compact, (2(z,))n>1 has a subsequence (Z(z,, ))r>1 converging in the Martin
topology to some w € 0y D. By property (M3), Mp(-,Z(zy,)) — Mp(-,w). On the other
hand, by the first part of the proof, Mp(-,Z(zn,)) = Mp(-, zn,) = Mp(-, z0), implying that
w = =(2p). This shows in fact that (2(z,)),>1 is convergent with the limit Z(zp). Using the
fact that 0D is compact, the proof of the continuity of the inverse is similar.

(c¢) The Martin representation for non-negative harmonic functions is now a consequence of
the general result from [28], cf. (3.1). O

Proof of Corollary 1.4 (a) Assume that w € 95D Nd7, D. Then there exist an unbounded
sequence (y,)n>1 C D and a bounded sequence (2,),>1 C D both converging to w in the
Martin topology. Since there is a subsequence (yy, )r>1 such that y,, — oo, we have that
w = 00, i.e., Mp(-,w) = Mp(-,00). Similarly, there is a subsequence (z,, )r>1 and z € 0D
such that z,, — z, hence Mp(-,w) = M(-,z). This implies that Mp(-,00) = Mp(-,2z). We
are going to show now that this is impossible. The proof of this fact is similar to the proof
of Corollary 1.2(a).

As in the proof of Theorem 1.1(c), choose r small enough so that Mp(z,z) < ¢ for

all z € D\ B(z,2r), cf. (3.23) and (3.24). Let zg € X be the point in the statement of
Theorem 1.3. As in the proof of Theorem 1.3(c), choose 7’ large enough satisfying r’ >
2(d(z, z0) + 4r) so that Mp(x,00) < ¢ for all x € D N B(zp,r'/2), cf. (3.12) and (3.13).
Since (D \ B(z,2r)) U B(z,7'/2) = D, we conclude that Mp(-,00) = Mp(-, 2) is bounded
on D by ¢; V ca. In the same way as in the proof of Corollary 1.2(a) we conclude that
Mp(+,z) = 0 which is a contradiction.
(b) In the proof of Corollary 1.2(a) we defined the mapping = : 9D — 8]]\}D and showed
that it is 1-1 and onto. By inspecting the proof of Corollary 1.2(b), we can see that it carries
over to the case when D is unbounded. Hence, = is a homeomorphism from 0D to 8]]:/[D.
Let 0D U{0} be the one-point compactification of dD. Extend = to this compactification
by defining =Z(0) = 0o € 057D. By part (a), = is 1-1 and onto.
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Let x € D. Choose r > 2max{R, dist(x, zo), dist(x¢, z0)} so that x € D N B(zo,7/2). It
follows from Lemma 3.2 that for any s > 1

G’D(:c,y) GD(Iv')
Gp(o,y) Gp(7o,")

Let s > 1 and 2’ € 9DNB(zp,2sr)°. It follows from Lemma 3.4 that there exists Mp(z,2") =
limpsy—.r Mp(x,y). Letting y — 2" in (3.26) we get that

— Mp(z,00)| < Mp(z,00) (RODST - 1) : y € D, (3.26)

Grlz. -
|Mp(z,2') — Mp(z,00)| < Mp(z,00) (RODSTM = 1) .
GD (.’L'(), )
Together with Proposition 2.5 we get that if (2,,),>1 is a sequence of points in 9D converging
to 0o, then Mp(+,00) = lim,, oo Mp(+, 2,). 1.2(b). The rest of the proof of (b) and the proof
of (c) is exactly the same as the proof of Corollary 1.2(b) and (c), respectively.

4 Examples

Several classes of Feller processes satisfying the assumptions of [26] were studied in that
paper. These examples include some symmetric and isotropic Lévy processes in R?, strictly
stable (not necessarily symmetric) processes in R? processes obtained by subordinating
a Feller diffusion on unbounded Ahlfors regular n-spaces, and space non-homogeneous pro-
cesses on R? whose Dirichlet form is comparable to the Dirichlet forms of certain subordinate
Brownian motions. Since the conditions of the present paper are implied by the conditions of
[26], we refer the readers to that paper for details. Here we will focus on certain symmetric
and isotropic Lévy processes where we can say more regarding accessible boundary points,
and a class of subordinate Brownian motions not covered by [15].

4.1 Symmetric and isotropic Lévy processes

Let X = (X;,P,) be a purely discontinuous symmetric Lévy process in R? with Lévy expo-
nent W(¢) so that

E, [eié(xt’XO)} = 1Y), t>0,zeR:E R

Thus the state space X = R¢, the measure m is the d-dimensional Lebesgue measure and the
localization radius Ry = oo. Assume that r — jo(r) is a strictly positive and nonincreasing
function on (0, 00) satisfying

Jo(r) < cjo(r + 1), r>1, (4.1)
for some ¢ > 1 and that the Lévy measure of X has a density j such that
v oyl <5) < violyl),  yeRS (4.2)
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for some v > 1. Since [~ jo(r)(1 A r?)r*tdr < co by (4.2), the function  — jo(|z|) is the
Lévy density of an isotropic unimodal Lévy process whose characteristic exponent is

wo(leh) = [ (1 = cost€ - u)inul) (4.3

The Lévy exponent W can be written as

W) = [ (1= cosls )ity
Rd
and, clearly by (4.2), it satisfies
VG (JE]) < W(E) < AT(l€]), for all € € BY. (4.4

Under the above assumptions, the process X satisfies Assumptions (A) and (C) (with
j(y,2) = j(y, 2) = j(z — 1)), It also satisfies the assumption (B), B1-a(0, R), B1-b(0, R),
B1-c(0, R), B2-a(0, R) of [26] (for some R > 0); see [26] for more details.

Assume further that W, satisfies the following scaling condition at infinity:

H1: There exist constants 0 < 0; < 0, < 1 and aq, as > 0 such that

2 Wt AN
al(—> < 0()§a2(—) L t>s>1. (4.5)

s Uy(s) s
Then by (15) and Corollary 22 in [5], for every R > 0, there exists ¢ = ¢(R) > 1 such that
() Wo(r™")
c! - <jr)<ec o for r € (0, R]. (4.6)

Let ®(r) = (¥o(r~'))~'. Using (4.1) and (4.6), one can easily see that there exists R > 0
such that Assumption C1(0, R) is satisfied. It is shown in Example 5.1 in [26] that X also
satisfies assumptions C1(0, R) and D1(0, R) of that paper (for some R > 0). Consequently,
Theorem 4.1 of [26] is valid which is precisely the assumption F1(0, R). Further, it follows
from Lemma 2.7 in [24] that (1.7) is also satisfied. Using F1(0, R) and the fact that open
balls are Greenian, we can apply Proposition 6.5 in [26]. Thus for any Greenian open set D,
lim,_,, Gp(z,y) = 0 for every regular point z € 9D, so (1.8) holds. In case of an unbounded
D we assume that X is transient. Then lim, .. Gp(z,y) = 0 by Lemma 2.10 in [24]. We
conclude that Theorem 1.1 and Corollary 1.2 apply.

Instead of H1, assume that W, satisfies the following scaling condition at zero:

H2: There exist constants 0 < 03 < 0, < 1 and a3, ay > 0 such that

as (2)263 < \1\112((?) <ay (E>254, s<t<1. (4.7)

It is shown in Example 5.1 of [26] that for every R > 0 there exists ¢ = ¢(R) > 1 such that
U (r? _ Wo(r!
c 1% < jo(r) < c% for r € [R, 00). (4.8)
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Together with (4.2) this implies that there is R > 0 such that C2(0, R) is true.

Let d > 3. Then X is transient and let G(z) = G(z,0) be its Green function. Then
by Lemma 2.10 of [24], (1.10) holds. Assume that there exists a non-increasing function
r +— Gp(r) and a constant ¢ > 1 such that

c'Go(|z]) < G(x) < cGo(|z)]), r e R (4.9)

It is shown in Example 5.1 of [26] that X also satisfies assumptions B2-b(0, R), C2(0, R)
and D2(0, R) of that paper (for some R > 0). Consequently, Theorem 2.1 of [26] is valid
which is precisely the assumption F2(0, R). If we assume that the Green function of X
is continuous then using the upper bound G(z) < c|lz|'¥y(|z|~!)~! in (5.16) in [26] and
the strong Markov property, the Green function of X is continuous for all open set D.
Thus by Proposition 6.2 of [26], (1.8) holds. Further, it follows from (5.16) in [26] that, if
d > 3, (1.11) is also satisfied. We conclude that Theorem 1.3 applies for d > 3 under the
assumption that G is continuous and satisfies (4.9). In fact, it is also shown in Example 5.1
of [26] that, if X is a subordinate Brownian motion whose Laplace exponent ¢ is a complete
Bernstein function and that & — ¢(|£[?) satisfies Assumption H2, then (1.11) is satisfied for
d > 244. Since G(z) = g(|z|) is continuous and r — ¢(r) is decreasing, in this case Theorem
1.3 applies for d > 24,.

In the next proposition we give a criterion for the accessibility of infinity and a finite
boundary point. Let B, = B(0,r) and for an open set D, D, = DN B, and D" = DN B..

Proposition 4.1 (a) Let D C R? be a Greenian open set such that 0 € 0D and assume that
H1 holds. Then 0 is inaccessible from D with respect to X if and only if

/D (Ey7p,)j(y) dy < oo. (4.10)

(b) Let D C R? be a Greenian open set and assume that H2 holds. Then oo is inaccessible
from D with respect to X if and only if

/ Pou(y,0)dy < oc. (4.11)
D1

Proof. (b) Recall that co is inaccessible from D if there exists © € D such that E,7p < co.
Let r = max(2|z|, R, 1) where R > 0 is the constant from C2(0, R) and F2(0, R). We write

D8r

E.7p —/ Gp(z,y) dy+/ Gp(z,y) dy+/ Gp(z,y)dy
B(z,4r) Dg,\B(z,4r)

= I+I11+1II.

Since XP is transient, I = Gplpar is bounded, hence finite. By (1.10) we have that
Gp(z,y) < c(r) for y € Dg, \ B(z,4r), hence I < ¢(r)|Ds,| < 0o. Since Gp(z,-) is regular
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harmonic in D7, it follows from F2(0, R) that Gp(x,y) =< Pp-(y,0) for all y € D®". Thus
ITT < [, Ppr(y,0)dy. Hence, E,7p < oo if and only if [, Ppr(y,0)dy < oo. Next,

/Ppl(yﬁ)dy = / PDl(y,O)dy+/ Ppi(y,0)dy
D1 D{1<|y|<8r} D8r

</ Poi(w0)dy+ [ Pon(,0)dy
Jpngi<iyi<sry D"
= IV+V.

By Proposition 3.1 of [26], Ppi(y,0) < ¢; for all y € B!, hence IV < ¢;|Bs,| < oo. Finally,
by repeatedly applying Lemma 3.9 of [26] we deduce that

PD"'(yvo) < PD1 (yvo) < CQPDT(:%O)’ RS D8T7

with a constant c; > 0 depending on r. Thus, V' is comparable to fDST Ppr(y,0) dy, proving
that [, Pp:(y,0)dy < oo if and only if [, Ppr(y,0)dy < co. This finishes the proof.
(a) This can be proved in the similar way, so we omit the proof. O

Remark 4.2 (a) Note that the criterion in Proposition 4.1 does not depend on = € D.
Hence, if E,7p < oo for one x € D, then E,mp < oo for all z € D. Similarly, if Pp(x,0) < oo
for one x € D, then Pp(x,0) < oo for all z € D.

(b) By inspecting the proof of Proposition 4.1 one can see that it carries over to the case
of the process satisfying the assumptions in [26]. In particular, x — E,7p (respectively
x +— Pp(z,2)) is either identically infinite or finite for all x € D.

For any open set V', let sy (x) = E, 7y and let wj, = P,(X,, € -) be the harmonic measure.
By the strong Markov property, for V- C D we have

spla) = sv(@)+ [ soly)ut (d).
D\V
If OV N D is Lipschitz, it follows from [31] that w{,(0V) = 0 and hence
sple) = sv(@)+ [ soly)Priz)dy. (112)

D\V

We now record the following lower bound on the expected exit time from a ball: There
exists a constant ¢ > 0 such that for every r > 0 and every = € R?

ExTB(:c,T) > (4.].3)

Uo(r=1) -

This follows, for example, from the last display in the proof of Theorem 2.2 of [8] and the
proof of Lemma 13.4.2 in [20].
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Let x € (0,1/2]. Recall that an open set D in R? is said to be s-fat at 2o € 9D if
there exists ro > 0 such that for every r € (0,r¢] there exists A, € D such that B(A,, kr) C
DN B(0,7). An open set D in R? is said to be x-fat at infinity if there exists ro > 0 such that
for every r > rq there exists A, € D such that B(A,,xr) C DN B(0,7)¢ and |A,| < s 'r,
cf. Definition 1.3 in [23].

Proposition 4.3 (a) Suppose that H1 holds. If D C R? is k-fat at zy € 0D, then 2z, is
accessible from D with respect to X.

(b) Suppose that H2 holds. If D C R? is k-fat at infinity, then infinity is accessible from D
with respect to X.

Proof. We prove part (b). The proof of (a) is similar.

Let Ag = A,, be a point in D such that B(Ay, kro) C DNB(0,70)¢ and |Ag| < k7. We
inductively define the sequence r, = 4k 'r,_1, n > 1, and a sequence of points A, = A,
such that B(A,,sr,) C DN B(0,r,)¢ and 7, < |A,| < x7'r,. It is easy to see that the
family of balls (B(A,, k7, )n>0 is pairwise disjoint.

Let U := Uy (B(A,,, kry,). Then by (4.12) with V = B(Ay, k1),

Esymp > / sp(Y) Pr(ag,rr)(A10,y) dy
D\B(Aom”o)

/ su(Y) Pp(agkro) (Ao, y) dy
D\B(Ao,kr0)

o0

Z / SB(AmWn)<y>PB(A0,I€T1)(A07 y) dy
(An,krn/2)

n=1

Vv

v

v

Z ( inf SB(An,krn) (y)) / PB(AQ,HT1)(AO7 y) dy
n=1

YEB(An,krn /2) B(Ayn,krn/2)
By (4.13),
SB(Anwrn) (Y) 2 1Po((Kra) )7 = 2 Wo(r, ")
for all y € B(A,, kr,,/2). Further, if y € B(Ay, my,), then r,/2 < |y — Ag| < 3x~'. Hence,
by Lemma 3.3 of [20], (4.13), (4.2) and (4.8), we have that for y € B(A,, k1,/2),
)

Wo(ly — Aol o(r, ')

PB(Ao,rm"o)(AOa y) > C3 |y A0|d ‘IJO((KTO) )71 > ¢y rg \IJO(Tl 1) ! .
Therefore,
> o ot i
Ea,m > 2205‘1’0(7}11) 1%@0(7& 1) 17"2 = 00.
By using Remark 4.2 we see that oo is accessible form D. a

In the next result we give a criterion for accessibility of infinity from a thorn-like domain.
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Let f:(2,00) — (0,00) be a positive non-decreasing function such that f(t) <t for all
t > 0 and define

D =D :={(y,y) e R :y1 > 2, |7 < f(y1)} .
Here y = (y1,9) with ¥ = (y2,...,vyq) € R L

Proposition 4.4 Suppose that H1 and H2 hold. Then infinity is accessible from D if and
only if

¥ W) f
/4 G L d = . (4.14)
Proof. Assume that the integral in (4.14) is infinite. Fix z € D and denote dp(x) by r. Let
U= {(50,5) € R s 1 > 4(1+ fal), [7] < ()2} Since [z —y| > ya—21 > A(1+ |o]) 21 >
221 > 2f(z1) > rforall y € U, we have U C D\ B(z,r).
Moreover, B(y, f(y1/2)/2) C D for ally € U. In fact, for z € B(y, f(y1/2)/2) withy € U
we have z; > y; — f(v1/2)/2 > y1/2, which implies that z; > 6 and f(y;/2) < f(z1). Using
the last inequality we see that |z] < |y —z| + |y| < f(v1/2) < f(z1). Thus for y € U,

sp(y) > SB(y,f(yl/Q)/Q)(w > \I’o((f(y1/12)/2)_1) )

where the last inequality follows from (4.13).

Notice that for y € U, |y| < y;. Thus, since |z — y| < |z| + |z — 2| + |y| < 6y, for

(y

-1
z € B(x,r), using j(y;) < %y—;) we have
1

: oy, !
PB(:L",T) (5673/) > CQEI[TB((E,T)]j (yl) = Og/dl )7 y e U.
1

Therefore

sp(z) > / 55() P (@, y)dy

> Volyi')  fly/2)*!
= /4(1+x|) Do((f(y1/2)/2)7Y)  of o
N /oo \110(2711571) f(t)dfl @t
2(1+|z|) Wo(2f(t)~) ¢
d—

o} t 1 )} t_l
> 05/ f()d ol )Idt:oo,
204yt Wolf(D)7)
where the last inequality follows from Lemma 1 of [14]. Thus oo is accessible from D.
Assume that the integral in (4.14) is finite. For r > 4, let D, := D N B(0,r). Then, by

Lemma 2.5 and (2.1) in [24], and considering the infinite cylinder, we get sup,, _, sp,, (z) <
c6Uo(f(4r)~H) 7L Thus, by (4.12), we have that for x € D with z; = r

sp() =sp,.(z) + /D . )P, (o) (4.15)
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<eaWo(f(4r) ) + / $p(4) Poy, (2 y)dy. (4.16)

D\ Dy

By the argument in the paragraph before Theorem 3.12 in [21], Lemma 5.4 in [22] is valid
for all » > 0. Hence

P (o) < erso ) |

Thus using (4.15)

3= Pow. (2, )dz +j<|y|>)

\B(0,2r)

/ sp(y)Pp,, (7, y)dy
D\ Dy,

< cospo(2) ( / sp(y) / J(12) Py (2, y)d=dy
D\ Dy, D\B(0,2r)

v/ - sD<y>j<|y|>dy)

J'(|Z|)(/ sp(y)Pp,, (2,y)dy)dz

= 85Dy, (93 ) (
D\B(0,2r)

< 2an,(0) [ jllaDso(e)ds
D\B(0,2r)

< eoes Vol f(4r) 1) / §(12])sp(2)dz.

D\B(0,2r)

Applying this to (4.16), we get

sp(x) < cogWo(f(4r) H! (1 —|—/D j(]z\)sD(z)dz) : (4.17)

\B(0,2r)

Let M(r) :=sup,,_, sp(z)Wo(f(4r)~"). From (4.17), for r > 4,
M(r cio | 1 h s, 2)|7 o (|(s, 2)| "M (s)Wo( f(4s) 1) tdzds
e (1 [ [ s ol D)Mol 45) ) s )

< (1 [ R (s s w(0s) ) )
<en (14 [ RO s Mol (5 s

Let m(r) = M(1/r); by a change of variable we have that for r < 1/4,

m(r) < en (1 . /°° f<s>dlsd%<s1>M<s>%<f<4s>1>1ds)
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= C11 (1+/ F™ D oMo (v)m(v) o (f (4o )~ _de).
0
By Gronwall’s inequality, for r < 1/4,

m(r) < ¢rpexp (/ F™ o ()W (f (o)1) ! —%w).

Therefore, under the assumption that the integral in (4.14) is finite, we have for all x € D
with zy =7r >4,

sp(x) < Wo(f(4r)~")M(r) (f(4r)"Yym(1/r)
< ciaWo(F(4r)1) exp / F(5) s (5~ W ( £ (45) ") 1ds)

(
< c19Uo(f exp(/ f(4s)4ts™ (s—l)\lfo(f(4s)—1)—1ds)
< el f exp(

C13 d lt_d\ljg(4t_1)\110(f(t)_1)_1d8)

S Clg\Ifo(f(16)_1) exp (014/ f(t)d_lt_d\l/()(t_l)\lfo(f(t)_l)_ld8> < Q.
16
Here the last inequality follows from Lemma 1 of [14]. Hence infinity is inaccessible. O

Suppose that f(t) = t(logt)~?, 3 > 0. Then

0o -1 d—1 —pB(d—1)
j / Wo(t™) t*(logt) dt
4 ol

t=1(logt)?) td
o0 Wo(t™) sy dt
_ log ¢)~Pld=1) =
| G e
o0 dt
s e [oga st
4

where the inequality follows from H2. When g < 1/(d — 1 4 244), the integral above is
divergent and hence infinity is accessible. Note that when § > 0, D is not s-fat at infinity
for any x € (0,1/2]. Similarly,
I<c /oo(log t)-ﬁ(%:»,-i—d—l)@.

4 t
When > 1/(d — 1 + 203), the integral above is convergent and hence the infinity is inac-
cessible.

A result analogous to Proposition 4.4 is valid for a finite boundary point. Let f : (0,1) —
(0,00) be a bounded increasing function such that f(¢) <t and define

Di:={x=(21,7): 0 <2y < 1,|2| < f(z1)}.
Proposition 4.5 Assume that H1 holds. Then the point 0 is accessible from D if and only
of
1 -1 d—1
Wo(t™)  f(¥)
dt = oo 4.18
J, watgn e
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4.2 Subordinate Brownian motions

Let Y = (Y;,P,) be a standard Brownian motion in R¢, and S = (5;) an independent
subordinator with the Laplace exponent ¢, E[e™*%] = e7**™). The subordinate Brownian
motion X = (X;,P,) is defined as X; = Y (S;). Assume that ¢ is a complete Bernstein
function with infinite Lévy measure u satisfying the following hypothesis

H: There exist constants o > 0, A\g > 0 and § € (0, 1] such that

(M) <ot forall t>1 and )\ > Ao -
¢'(A)
When d < 2, assume that d + 25 — 2 > 0 and there are ¢/ > 0 and
Fe(1-%,(1+9N(20+%52)) (4.19)
such that &0) /
oToN >co'z7 forallz>1 and A\ > \o; (4.20)

Assumption H was introduced and used in [17] and [18]. It is easy to check that if ¢ is
a complete Bernstein function satisfying a weak lower scaling condition at infinity

a X o(t) < p(M) < ag\2o(t), A>1,t>1, (4.21)

with aj,as > 0 and 61,02 € (0,1), then H is automatically satisfied. In that case the
process X belongs to the class of isotropic unimodal Lévy process considered in the previous
subsection. The reason for assuming hypothesis H here is to cover the case of geometric
stable and iterated geometric stable subordinators. Suppose that « € (0,2) for d > 2
and that a € (0,2] for d > 3. A geometric (a/2)-stable subordinator is a subordinator
with Laplace exponent ¢(A\) = log(1 + A*/2). Let ¢1()\) := log(1 + A\*/?), and for n >
2, &n(A) == ¢1(dp_1(N)). A subordinator with Laplace exponent ¢, is called an iterated
geometric subordinator. It is easy to check that the functions ¢ and ¢,, satisfy H, but they
do not satisfy (4.21).

The process X clearly satisfies assumption A and C, and by symmetry, every semipolar
set is polar. Suppose that X is transient. Then it follows from Lemma 5.4 of [18] that for
all zp € RY, C1(zg, R), F1(z9, R), and (1.7) (with a uniform constant) hold true. Moreover,
since all Green functions are continuous, by Proposition 6.2 of [26], lim,_,, Gp(z,y) = 0 for
every regular boundary point z of dD. Therefore the conclusions of Corollary 1.2 hold true.

Suppose now that X is an (iterated) geometric a-stable process with 0 < o < 2. Then
X satisfies condition H2 from the previous subsection (see Example 5.1 of [26]) and by the
same arguments we conclude that Theorem 1.3 is true.

5 Minimal thinness is a local property

The purpose of this section is to establish several results analogous to those in Section 9.5
of [1] and to conclude that minimal thinness is a local property.
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The setting is the following: (X,d,m) is a metric measure space with countable base
as before. Since bounded closed sets are compact, the topology of X is locally compact.
Let X = (X;,P,) be a Hunt process in X satisfying Assumption A. The cone of excessive
functions with respect to X is denoted by S(X). We assume that (X,S(X)) is a balayage
space in the sense of [2]. Let D C X be an open set, X? the killed process and S(X?) the
cone of excessive function with respect to X”. By Proposition V.1.1 and Proposition VI1.3.20
of [2], (D,S(X7P)) is also a balayage space in the sense of [2]. In particular, all functions in
S(XP) are lower semi-continuous (l.s.c.) Moreover, by definitions and results from p. 94 and
Lemma I1T 1.2 of [2], bounded harmonic functions on D with respect to X P are continuous.
Since we will be interested only in X?, all notions defined below are relative to XP.

For any (numerical) function f : D — (—o0,00] we define its lower semi-continuous
(Ls.c.) regularization f by

Fe) = fia)  (timint 1))

Yy—x
Then f is the largest l.s.c. function dominated by f: f < f. We remark that in this
section the hat ~— denotes the l.s.c regularization and not the notions related to the dual
process. For a Borel set A C D, let Sy = inf{t > 0 : X; € A} be the debut of A, and
Ty =inf{t > 0: X; € A} the hitting time of A. For u € S(XP), the reduced function of u
on A is defined as (see p.243 of [2]):

RY = inf{v € S(XP): v >uon A}
= inf{v € S(XP): v <wu,v=uon A}.

Its L.s.c. regularization R := }/224 is called the balayage of u on A. Then R4 € S(XP). The
probabilistic interpretations of the reduced function and the balayage are (cf. V1.3 of [2])

Ri(@) = Eofu(Xs,)],  Ri(z) = Efu(Xr,)].
We have the following properties of R4 and ﬁf: RA = w on A, E;‘ < RA < u (p.243

of [2]), R4 = R% on A° (Proposition VI1.2.3 of [2]), {R4 < R4} is semipolar (Proposition
VI.5.11 of [2]), hence polar by A.

Let u : D — [0,00) be continuous and harmonic in D with respect to X?, E C D an
open set, and w : E — [0, 00) harmonic in E with respect to X% such that w < u — RE\E.

Weset w=0on D\ E.
Lemma 5.1 For every bounded open set U C U C D, it holds that
w(z) =E;[w(Xs,.,)], z€UNEKE.

Proof. We first show that there exists a polar set N C dF N D such that for every z €
(OEND)\ N,
lim w(z)=0. (5.1)

r—z,x€F
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Note that Ry \E( ) = RY \E(x) for all x € E. Hence by continuity of u and lower semi-
continuity of RD\E

limsup w(z) < limsup (u(z) — fif\E(x))

r—z,2€E T—2z,2EH

= u(z) — liminf RD\E( ) < u(z) —ﬁf\E(z).

r—z,2€EFR

Let N = 0EN DN {R\¥ < RY \E}. Then N is polar and it follows from the last display
that for all z € (OE N D)\ N we have

limsup w(z) < u(z) — RP\E(2) = 0.

r—z,x€F

For each n > 1 define U, ;== {x € UNE : d(z, E°) > *}. Then U, is bounded and open
inE,U,cU,CUNE, Un+1 Cc U,,and UNE = U2 ,U,. By harmonicity of w, for any
xr € UN E and n large enough,

w(r) = Em[w(ijn)] = Ex[w(Xf]) . Tu,, = Tung for some m > 1]
—i—]Ex[w(XfJn) 1w, < Tung for all m > 1].

Since w is dominated by u which is continuous on D, it is bounded on the relatively compact
set U. Hence by the dominated convergence theorem and (5.1),

lim Ez[w(XfZ )@ 1y, < Tune for all m > 1]
n—00 n

= kK, [hm w(XE )1(XE €(OENDN\N) * TUn, < TUnge for all m > ]_} =0.

n—00 TUnE~
Further,
JLHSOEI[M(XE ) : Ty, = Tung for some m > 1}
= Lh_)n;o w(X . Ty, = Tung for some m > 1}}
= [ TUﬂE . Ty, = Tung for some m > 1}]
= E[w(X? ): 1w <7g].
This proves the lemma. g
Lemma 5.2 Let
v(x) = { w() + RD\E( ), T€L (5.2)
u(x), re€D\E.

For every bounded open set U C U C D it holds that
E.[v(X2)] < v(z), rel. (5.3)
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Proof. We first note that v < (u— RF) + RE =y in E, and clearly v = u in D\ E. Hence,
if € UN(D\ E), then E,[v(XP)] < E,[u(X2)] = u(z) = v(z).
Assume now that z € U N E. Since RY\¥ = v on D \ E, we have
Eo(X2)] = E.o(X2); X2 € E] + E,u(X2); X € D\ E]
= E,w(X2); X2 € E]+E,[RI\F(XP); XD € ]
+E[RDVF(XP); XP e D\ E]
= E,Jw(X2); XP € E|+E,[RI\V(XP) = A+ B.

Next, by using that w =0 on D \ E, and the fact that X = X7 for all t < 75,

A = Ew(XP); X2 € E,7p <75l +EJw(X2); XP € E,7p < 7]
Ew[w(ij)] —|—Em[w(X£J); TE < Ty]
Ex[w(Xme)] + Ex[w(ij); T < Ty
= w(z) + B [w(X2); 76 < 1] = w(z) + As.
In the last line we used Lemma 5.1. We split B into two parts:
B = Em[Rf\E(ng); TE < Ty| —i—Em[Rf\E(Xfé); v < Tg]:= By + Bs,
and combine By with A,:
As+ B, = Ex[w(Xg); TE < Ty| —i—Ex[Rf\E(Xg); TE < Ty
= E.[(w+ Rf\E)(Xg); TE < Ty|
< E[u(X2); 72 < 70
= E, [EXTQE (u(ng)) CTE < TU]
= Ez[u(Xl?E); T < TU).

T

In the penultimate line we used the strong Markov property at time 7z, and in the last line
harmonicity of v (note that X € U\ E on 75 < 7p).

Finally, for B, we use that N := {AE\E =+ Rf\E} is polar, hence P,(X? € N) = 0.
Therefore, by using that RY \E(y) = E,[u(X")] in the second line, and the strong Markov
property in the third,

By = Ex[ﬁf\E(Xﬁ,); v < Tg]

= Ex [EXPU (U(XTDE)) y TU < TE}
= Ex[u(XEE); v < Tg|.

Putting everything together we get
E.[o(X2)] = w(z)+ A+ B + B,
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w(x) "‘Ex[U(X%); e < TU] +Ex[U(X£3); v < Tg]
= w(z)+ ]%c[u(X@)] = w(z) + R\ (x)
= w(z) + RP\E(z) = v(z).

In the last line we used that Rl? \E _ Rf \E on F. O

Lemma 5.3 Let v be defined by (5.2) and let v(x) := liminf, ,, v(y) be its lower semi-
continuous reqularization. Then ¥ is excessive for XP. Moreover, ¥ < u and there exists a
polar set N C OE N D such that v =u on (D \ E)\ N.

Proof. First note that ¥ < v on D. Let U C U C D be open. Define
o(z) =E,0(X2)], ze€D.

By the proof of Lemma III.1.2 in [2], ¥ is lower semi-continuous in U. Moreover, by Lemma
5.2,
i(e) = E[0(X2)] S Eu(X2)] S v(z), weU.

Hence, by lower semi-continuity of v in U, for every x € U,

S0 < Timnf F) < T i _S(a)
o(z) < liminf ¥(y) < liminf v(y) =v(z)
This proves that
E.[0(X2)] < 0(x) forallz € U. (5.4)

Now, for any open U C U C D, let Hy(z,dy) = P,(X2 € dy). Then the family Hy(z, ")
(over all relatively compact open U C D) forms a family of harmonic kernels, cf. Chapter I
of [2]. In the notation of [2], (5.4) means that v € *H* (D). By Corollary II1.2.1 of [2], the
latter family is equal to S(X?). Hence, 7 is excessive with respect to X,

Clearly, v < v <wuon D. Recall that v =u on D\ E. Let z € 9E'N D. Then

liminf v(z) = liminf (w(z) + RP\P(z))

r—z,c€FE r—z,c€E

lim inf w(z) + liminf RP\E(x)
r—z,2€EFE r—z,2€FE

> liminf w(z) + RP\F(2)

r—z,2€E

v

(since RDVE is the Ls.c. regularization of RE\E). By (5.1), liminf, . ;epw(z) = 0 for all
z € (OEN D)\ Ny with N; being a polar set. Also, D\E _ RD\E except on a polar set Nj.
By setting N = Ny U Na, we see that for all z € (OEN D)\ N,

liminf v(z) > RP\E(2) = u(z).

r—z,0€F
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Clearly, for all z € 0E N D,

liminf v(z) = liminf wu(x) > u(z).
x—z,2€D\E z—z,2€D\E

Together the last two displays give that for all z € (OE N D)\ N,

0(z) = liminfo(z) > u(z).

T—z

O

We note that for every g : D\ E — [0,00) the function z — E,[¢(X,,)] = ﬁf\E(x)

is harmonic in F with respect to X?. Since Rf\E = ﬁf\E on I, it follows that Rf\E is

harmonic in E with respect to X,

In what follows, d);D denotes the Martin boundary of D with respect to X?, 9,,D
the minimal Martin boundary, and Dy, = D U 9y;D the Martin space (with the Martin
topology). For z € 0,,D let Mp(-, z) be the Martin kernel (based at xy € F). Then Mp(-, z)
is continuous and harmonic in D with respect to X?. We recall that £ C D is minimally
thin in D at z € 0,,D with respect to X7 if ﬁf@(.’z) # Mp(-, 2).

Proposition 5.4 Let E C D be an open set in D, z € 0,,D such that z is in the closure of
E in Dy;. Assume that D\ E is minimally thin at z in D with respect to XP. Let

D\E
h(z) == Mp(z,2) — Ry (), 2€E.
Then h is a minimal harmonic function in E with respect to X,

Proof. We first prove that h is harmonic with respect to X*. Let U C U C E be relatively
compact open in FE. Then
E, [(XE)] = E. [Mp(XE,2)] — B, [Exg, |Mp (X8,,.2)]]
= E, [MD(ij,z)} —E, [MD(XQJ,Z); T = Tp]
—E, :EXTDU [MD (XgD\E, z)} ; TU < TE]

= E, [Mp(X2,2)] —E, [Mp(X2,2); 7v = 7]
-E, -MD (XSDD\E, z) ; TU < TE]
= E, [Mp(XE,2)] — By [Mp(XD\ g, 2); v = Spg]

—-E, _MD (XBD\E,Z> s Ty < SD\E]

— Mp(z,2) —E, [MD (X?D\E,zﬂ = h(z).

Now suppose that w : E — [0,00) is harmonic in £ with respect to XZ and w < h.
Define v analogously to (5.2) by

D\E
ola) = { w(@) + Byt (), € B

Mp(z,z), re€D\F,
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and let ¥ be its Ls.c. regularization. By Lemma 5.3, © € S(X?), © < Mp(-,2) on D, and
U= Mp(-,z) on (D\ E)\ N, N polar. By the Riesz decomposition,

v=aMp(-,z)+ Gppu,

where 0 < a < 1 and p is a measure charging no polar set (since v is locally bounded, the

same holds for Gppu, hence p cannot charge polar sets). Note that v = w + RD\E. (,z) ON E.

The function Rﬁg,’z) is harmonic in £ with respect to X”. By assumption, w is harmonic
in £ with respect to XZ, and hence harmonic in E with respect to X? (we extend w = 0
on D\ E). Therefore, ¥ is harmonic in E with respect to X? which implies the same for
G&ML—-@——GA{D( )

Recall that D\ E is thin at y € D if and only if RD\E ) # Gp(-,y) (this can be proved
along the same lines as the corresponding proof for mmlmal thinness, cf. Proposition 6.2 of
[24]). Let

A={yedEND: Ry #Gp(y)}.

By Proposition VI.5.12 of [3], A is polar, and hence ,u(A) = 0.
Now consider Rg\]fb This function is harmonic in F with respect to X?. Moreover,

Rgl\j < Gpp on D. Hence, Gpu — RD\E

Note that Gpu — RD\E =0on D\ E. Hence, Gpu — RGW is harmonic in F with respect
to X¥. On the other hand, for x € F,

> 0 and is harmonic in F with respect to X7.

Gpul(x) — Roi(x) = Gpu(x) — Rok (x)

Gpp Gpp

= /D Gp(w,y) u(dy) — /D ROYC (@) pldy)

— [ [Gote.n) - R @] nlay)

= /E [Gn(fc,y)—ﬁgl\fi,y)@)} p(dy) + /A [Gp(x,y)—ﬁgj\jy)(x)] p(dy)
= /E Ge(z,y) pldy) = Gep(z) .

In the last line we used that u(A) = 0 and the formula for the Green function of X¥:
Gg(z,y) = Gp(z,y) — E.[Gp(X,,,y)]. This shows that Gpu — Rg\i is at the same time
harmonic in E (with respect to XF) and the potential of the measure pg. Hence, it is
identically zero in F, that is, Gpu = R 1n E hence in D.

Since v and v differ at most on a polar set, and v = Mp(-,2z) on D \ E, we see that
Gpp = (1 —a)Mp(-, z) outside a polar set. Therefore

D\E D\E
(1—a)RM\D( RG;M =Gplt.

Hence, on E we have

~  D\E D\E D\E
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=a (MD(-,Z) — RP\E ) =ah,

Mp(-,z)

which completes the proof. O

Remark 5.5 The assumption that D\ E is minimally thin at z in D with respect to X is
used to conclude that h # 0. If D\ E is not minimally thin at z in D with respect to X,
then RJI\D/I\DE(_,Z) = Mp(-, 2).

Proposition 5.6 Let E C D be an open set in D, z € 0,,D such that z is in the closure of
E in Dy;. Assume that D\ E is minimally thin at z in D with respect to XP and let
h(z) = Mp(z,z) — R°\ (2), a2€E.

MD(',Z)

Let ¢ = ((z) be the Martin boundary point of E associated with the minimal harmonic
function h. Assume that (x,),>1 is a sequence of points in E that converges to z in Dy and

also o
lim inf SEE0 ) o (5.5)
n—oo Gp(To, Tn)
Assume further that for every subsequence (zy, ), Gg(+, n,)/GE(xo, Ty, ) converges to a har-

monic function with respect to X¥. Then (z,)n>1 converges to ¢ in Ey (Martin space of

E).

Proof. Let (z,),>1 be a sequence in E converging to z in Dy, and such that (5.5) holds.
Assume that (z,,) does not converge to ¢ in F)y,. This implies that there exists a subsequence
(2, ) with the property that Gg(-, z,,)/Gg(xo, x,,) converges in E to a function v : £ —
[0, 00) such that u # h/h(zo). By assumption, u is harmonic with respect to X . It follows
from (5.5), that by choosing a further subsequence (if necessary) we can arrange that

hm GE('I07 wnk)

=a>0.
k—o0 GD('IOa xnk)

Therefore, on E we have that

k—oo Gp (o, xnk)

Since Gg(-,y) = Gp(-,y) — Rg]\f_w, and since

D\E
Rosta®) _pove )

Gplzo,y) — Motw

(which easily follows from the probabilistic representation of the reduced function), we get
by use of Fatou’s lemma in the last line that
D\E
| Go(@,ma)  Beptann@)
au(r) = lim -
k—oo \ Gp(z0, Tp,) Gp(xo, Tn, )
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= lim (MD(x,a:nk) — RPM\E (x))

k—o0 Mp(any)

< Mp(w,z) = Ry (@) = h(x).

Since u is harmonic for X ¥, it follows from Proposition 5.4 that au is proportional to h.
Since u(zg) = 1, that would imply u = h/h(zo) which contradicts the assumption. O

If FC EC D, and v € S(XF), let PRI denote the reduced function of v on F with
respect to X 7.

Lemma 5.7 Let F C E C D, u € S(XP), and define v :=u— RS\Y. Then v € S(XF) and
ERF — RD\F _ RD\E (5.6)

Proof. Since the excessiveness implies that u(z) > E,[u(XZ )], v is non-negative. If

Sp\E
x € F, by the strong Markov property,

E, [v(X})] = E.[u(Xf)] ~E, [Exp [ (x2,.)]]
= E, [u(X])] —E, [u(X]) : t > 5]
_E, [EXP [ (XSD\E>] < TE]
= E, [u(X])] —E; [w(X]"):t > 78] —E, [u (XSDD\E> < TE]
= E, [u(X])] - B, [u(X7,,)]

By the excessiveness of u for X?, E, [u(XP)] < u(z) and

B, [u (Xir,)] 2 B [u (X7)] -

TE

Thus
E, [v(X/)] <u(z) - E, [u <XSDD\E>} :

Moreover

imE, [v(X[)] = BmE, [u(X)] = HmE, [u (X7,,)]

=u(z) — E, [u <X§D\EH :

Note that for x € E,
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By strong Markov property,

B [u (X8, ) 5o < Sove] =B By [u(x5,,.)]]

SE\F
Thus
. [u (X5,
=5 [u(x8,,)] + B [ (%5,,)] -5 [y, [0 (45,,)]]
Therefore
B [u (35, )] =B [0 (38, )]+ Be [0 (%5,))
which is (5.6). O

Proposition 5.8 Let E C D be an open set in D, z € 0,,D such that z is in the closure of
E in Dy;. Assume that D\ E is minimally thin at z in D with respect to XP and let
h(z) = Mp(z,z) — RPN (2), =2€E.

MD('VZ)

Let ¢ = ((z) be the Martin boundary point of E associated with the minimal harmonic
function h. Let F C E. Then F is minimally thin at ¢ in E with respect to X¥ if and only
if Fis minimally thin at z in D with respect to XP.

Proof. The set F is minimally thin at ¢ with respect to X if and only if R # h. By
Lemma 5.7 (with F replaced by E'\ F' and v = Mp(-, 2)),

E pE\F _ D\(E\F) D\E __ (D\E)UF D\E
R," =R — By = Barpny — Ban

MD(~,Z) MD(~,Z ‘,Z) :

Since h = Mp(-,z) — RJ@DE(. .)» We see that “RJ” # h if and only if Rg\?gf’);)m # Mp(-,z). The
last condition is equivalent to (D \ E) U F being minimally thin at z in D with respect to
XP. Since D \ E is not minimally thin at z, the latter is equivalent to F' being minimally

thin at z in D with respect to XP. a
Remark 5.9 Proposition 5.8 does not depend on Proposition 5.6.

Let D C X be an open unbounded set. Suppose F is an open subset of D such that
for some R > 0 it holds that D N B(zy, R) = E N B(zy, R)°. Assume that oo is accessible
both from E and from D. Assume that the assumptions A, C, C2(z, R) and F2(z, R)
for X and X are satisfied. By Theorem 1.3 there is only one Martin boundary point of F
associated with oo, say oo, and this point is minimal, co® € 9,,E. In the same way, there
is only one Martin boundary point of D associated with oo, say oo®, and this point is also
minimal, co” € 9,,D. Hence, the concept of minimal thinness at co of a set F' C E makes
sense with respect to both X* and X?. In fact, we have the following result.
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Theorem 5.10 Suppose that A, C, C2(zy, R) and F2(zy, R) for X and X hold true. Let
D C X be an unbounded open set, and let E/ be an open subset of D such that for some R > 0
it holds that D N B(z, R)® = E N B(zy, R)¢. Assume that oo is accessible from E and from
D. Suppose that F C E. Then F is minimally thin at oo with respect to X if and only if
it is minimally thin at oo with respect to XP.

Proof. Let xg € F and choose g > 2(d(xg, E)AR). For every r € (0,rg), both Gp(zo, -) and
G (w0, ) are regular harmonic in DN B(zg, r)¢ with respect to X and vanish in B(zp,7)°\ D.
Let 2, € EN B(z,2r)¢ = DN B(z,2r)¢ be fixed. By the boundary Harnack principle,

GE(l’oaﬂf) > o1 GE('IO:ml)
Gp(zo,x) = Gplxo, 1)

This implies that

: for all z € D N Bz, 87)°.

liminf ZEE0T) (5.7)
E31—00 G p(T0, )
Let Mp(-,00) = Mp(-,00P), respectively Mg(-,00) = Mg(-,00F), be the Martin kernels at

oo for D, respectively E. Define
h(z) = Mp(z,00) — RO\ (2).

MD(7OO)

By Proposition 5.4, h is a minimal harmonic function with respect to X¥. Let ¢ € 9,,F be
the minimal Martin boundary point of E corresponding to h. Let (z,),>1 be a sequence of
points in E converging to co. By (5.7),

GE(xo,fn) <0

hggg)lf Gp(zo, xy)
Also, it follows from Lemma 3.4 and Theorem 1.3(b) that, for every subsequence (x,,),
Gg(- xn,)/Gr(zo, x,,) converges to the harmonic function Mg(-, 00). It follows from Propo-
sition 5.6 that (x,),>1 converges to ¢ in the Martin topology of Ey;. Thus, ( € 0,F is
associated to co. By uniqueness, ¢ = co® and therefore h = Mg(-,00”) = Mg(-,00). The
claim of the theorem now follows from Proposition 5.8. O

Remark 5.11 Suppose that oo is accessible from E. Since Gg(z,w) < Gp(z,w), z,w € E,
implies that E,7r < E,7p for x € E, we see that [E,7p = oo for all x € E. If the assumptions
of [26] are satisfied, it follows from Remark 4.2 that oo is also accessible from D.

One can similarly prove the following theorem saying that minimal thinness is a local
property at a finite boundary point.

Theorem 5.12 Suppose that A, C, C1(zy, R) and F1(zo, R) for X and X hold true. Let
D C X, zo € 0D, and let E be an open subset of D such that for some R > 0 it holds that
DN B(zy, R) = ENB(z0, R). Assume that 2y is accessible from E and from D. Suppose that
F C E. Then F is minimally thin at z, with respect to X if and only if it is minimally
thin at zy with respect to XP.
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