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Abstract

In this paper we study harmonic functions of subordinate killed Brownian motion
in a domain D. We first prove that, when the killed Brownian semigroup in D is
intrinsic ultracontractive, all nonnegative harmonic functions of the subordinate killed
Brownian motion in D are continuous and then we establish a Harnack inequality for
these harmonic functions. We then show that, when D is a bounded Lipschitz domain,
both the Martin boundary and the minimal Martin boundary of the subordinate killed
Brownian motion in D coincide with the Euclidean boundary ∂D. We also show that,
when D is a bounded Lipschitz domain, a boundary Harnack principle holds for positive
harmonic functions of the subordinate killed Brownian motion in D.
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1 Introduction

Suppose that Xt and Tt are two independent processes, where Xt is a Brownian motion

in Rd and Tt is an α/2-stable subordinator starting at zero, 0 < α < 2. It is well known

that Y α
t = XTt is a rotationally invariant α-stable process whose generator is −(−∆)α/2,

the fractional power of the negative Laplacian. The potential theory corresponding to the

process Y is the Riesz potential theory of order α.

Suppose that D is a domain in Rd, that is, an open connected subset of Rd. We can kill

the process Yα(t) upon exiting D. The killed process Y D
α (t) has been extensively studied in

recent years and various deep properties have been obtained.

Let ∆|D be the Dirichlet Laplacian in D. The fractional power −(−∆|D)α/2 of the nega-

tive Dirichlet Laplacian is a very useful object in analysis and partial differential equations,

see, for instance, [20] and [14]. There is a Markov process ZD
α corresponding to −(−∆|D)α/2

which can be obtained as follows: We first kill the Brownian motion X at τD, the first exit

time of X from the domain D, and then we subordinate the killed Brownian motion using

the α/2-stable subordinator Tt. Note that in comparison with Y D
α (t) the order of killing

and subordination has been reversed. For the differences between the processes Y D
α (t) and

ZD
α (t), please see [19].

Until recently the process ZD
α (t) had not been studied much. This process was first

studied in [12], where, among other things, a relation between the harmonic functions of

ZD
α (t) and the classical harmonic functions in D was established. In [13] (see also [10]) the

domain of the Dirichlet form of ZD
α (t) was identified when D is a bounded smooth domain

and α 6= 1. In [19], the process ZD
α (t) was studied in detail and upper and lower bounds on

the jumping function JD
α and the Green function GD

α of ZD
α (t) were established when D is a

bounded C1,1 domain. However the upper and lower bounds provided in [19] are drastically

different near the boundary. In [17], new lower bounds for JD
α and GD

α were established

when D is a bounded C1,1 domain. These lower bounds differ from the upper bounds of [19]

only by multiplicative constants and in this sense the bounds are sharp. Sharp bounds for

JD
α and GD

α were also established in [17] when D is an exterior C1,1 domain. In [18] sharp

bounds for JD
α and GD

α were established when D is the domain above a C1,1 function.

Despite of the recent progress, there are still a lot of unanswered questions about the

potential theory of ZD
α . For instance, are all nonnegative harmonic functions of ZD

α contin-

uous? Does the Harnack inequality hold for nonnegative harmonic functions of ZD
α ? What

can one say about the Martin boundary of the process ZD
α ? Is there a boundary Harnack
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principle for positive harmonic functions of ZD
α ?

In this paper we will study the potential theory of ZD
α and we will, among other things,

answer the four questions above.

The content of this paper is organized as follows. In section 2 we introduce the notations

and recall the main results from [12]. In section 3 we improve the results of [12] and establish,

under the assumption of intrinsic ultracontractivity, an one-to-one correspondence between

the family of positive harmonic functions of killed Brownian motion and the family of positive

harmonic functions of subordinate killed Brownian motion ZD
α . We prove that the Harnack

inequality holds for ZD
α in section 4. Our proof of the Harnack inequality uses the intrinsic

ultracontractivity in an essential way and differs from the existing proofs of the Harnack

inequality in other settings. In section 5 we prove that, when D is a bounded Lipschitz

domain, the Martin boundary and minimal Martin boundary of ZD
α both coincide with the

Euclidean boundary ∂D. In the last section we use the result from Section 5 to show that,

when D is a bounded Lipschitz domain, a boundary Harnack principle holds for positive

harmonic functions of ZD
α .

2 Notation and setting

Let Xt be the Brownian motion in Rd, which runs twice as fast as the standard d-dimensional

Brownian motion, and let Tt be an α/2-stable subordinator starting at zero, 0 < α < 2.

We assume that X and T are independent. We are going to use Px and Ex to stand for

the probability and expectation with respect to the Brownian motion X starting from x

respectively, (Pt)t≥0 to stand for the transition semigroup of X, and u
α/2
t (s) to denote the

density of Tt.

Let D ⊂ Rd be a bounded domain, and let XD
t be the Brownian motion killed upon exiting

D. We define now the subordinate killed Brownian motion ZD
t as the process obtained by

subordinating XD via the α/2-stable subordinator Tt. More precisely, let ZD
α (t) = XD(Tt),

t ≥ 0. Then ZD
α (t) is a symmetric Hunt process on D. If we use (PD

t )t≥0 and GD to

denote the semigroup and potential operator of XD respectively, then the semigroup Qα
t and

potential operator GD
α of ZD

α are as follows:

Qα
t f(x) =

∫ ∞

0

PD
s f(x)u

α/2
t (s)ds

GD
α f(x) =

1

Γ(α/2)

∫ ∞

0

tα/2−1PD
t f(x)dt.
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Obviously Qα
t has a density given by

qα(t, x, y) =

∫ ∞

0

pD(s, x, y)u
α/2
t (s)ds

and GD
α has a density

GD
α (x, y) =

∫ ∞

0

qα(t, x, y)dt =
1

Γ(α/2)

∫ ∞

0

pD(t, x, y)tα/2−1dt

where pD(t, x, y) is the transition density of XD. We call GD
α (x, y) the Green function of ZD

α .

We are going to use Ẽx to stand for the expectation with respect to ZD
α starting from x.

Recall that a real-valued Borel function h on D is said to be harmonic with respect to

ZD
α if for every relatively compact open subset U ⊂ U ⊂ D,

h(x) = Ẽx[h(ZD
α (τ̃U))], ∀x ∈ U,

where τ̃U = inf{t : ZD
α (t) /∈ U} is the first exit time of U . We are going to use H+

α to denote

the collection of all the nonnegative functions on D which are harmonic with respect to ZD
α .

A nonnegative function which is not identically infinite on D is said to be excessive with

respect to ZD
α if (i) Qα

t f(x) ≤ f(x) for every t > 0 and x ∈ D; and (ii) limt↓0 Qα
t f(x) = f(x)

for every x ∈ D. We are going to use Sα to denote the collection of all the excessive functions

with respect to ZD
α . Denote by H+ and S the collections of nonnegative harmonic functions

and excessive functions with respect to XD respectively. Recall that H+
α ⊂ Sα and H+ ⊂ S.

An important connection between S2−α and S was established in [12]. The underlying

assumption in that paper was that every excessive function for XD is purely excessive, i.e.,

for every s ∈ S it holds that limt→∞ PD
t s = 0. The relationship between S2−α and S, as well

as H+
2−α and H+, can be summarized as follows (see [12], Theorems 2 and 3, and formula

(17)):

Theorem 2.1 If s ∈ S, there exists a function g ∈ S2−α such that s(x) = GD
α g(x) on D.

The function g is given by the formula

g(x) =
α

2Γ(1− α/2)

∫ ∞

0

t−α/2−1(s(x)− PD
t s(x))dt. (2.1)

If, moreover, s ∈ H+, then g ∈ H+
2−α.

Conversely if g ∈ S2−α, and the function s := GD
α g is not identically infinite, then s ∈ S.

If, moreover, g ∈ H+
2−α and s is not identically infinite, then s ∈ H+.

Further, if g ∈ H+
2−α is such that GD

α g is not identically infinite, then g is continuous.
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The first goal of this paper is to improve Theorem 2.1 by showing that if g ∈ S2−α, then

s := GD
α g is not identically infinite, implying the full converse. This will be proved under the

condition that the semigroup (PD
t )t≥0 is intrinsic ultracontractive. Intrinsic ultracontractiv-

ity plays a fundamental role in this paper: (i) It implies that every excessive function of XD

is purely excessive , thus enabling us to use results from [12], and (ii) It is essentially used

in the proof of Harnack inequality.

Let φ0 denote the positive eigenfunction corresponding to the smallest eigenvalue λ0 of

the Dirichlet Laplacian −∆|D such that
∫

D
φ2

0(x)dx = 1. Recall that the semigroup (PD
t )t≥0

is said to be intrinsic ultracontractive if there exists C(t) > 0 such that

pD(t, x, y) ≤ C(t)φ0(x)φ0(y), ∀t > 0, x, y ∈ D. (2.2)

It is well known that (see, for instance, [7]) when (PD
t )t≥0 is intrinsic ultracontractive, there

exists C̃(t) > 0 such that

pD(t, x, y) ≥ C̃(t)φ0(x)φ0(y), ∀t > 0, x, y ∈ D. (2.3)

The assumption that (PD
t )t≥0 is intrinsic ultracontractive is a mild geometric assumption on

D. It is well known that (see, for instance, [1]), when D is a bounded Lipschitz domain, or

a Hölder domain of order 0, or a uniformly Hölder domain of order β ∈ (0, 2), (PD
t )t≥0 is

intrinsic ultracontractive. We show now that it implies that every excessive function of XD

is purely excessive. To see this, let us recall the concept of s-conditioned Brownian motion.

For any s ∈ S,

ps(t, x, y) =
pD(t, x, y)s(y)

s(x)

determines a Markov semigroup. The Markov process corresponding to this semigroup is

called the s-conditioned Brownian motion and we use Xs to denote this process. We are

going to use Es
x to denote the expectation with respect to the law of this process starting from

x and ζs to denote the lifetime of this process. When s = GD(·, y) for some y ∈ D, we use Ey
x

to stand for Es
x and ζy to stand for ζs. As a consequence of the intrinsic ultracontractivity

of (PD
t )t≥0 we get that for any s ∈ S,

lim
t↑∞

eλ0tPs
x(ζ

s > t) =
φ0(x)

s(x)

∫
D

φ0(y)s(y)dy. (2.4)

For the above facts on intrinsic ultracontractivity, one can refer, for instance, to [7] and [1].

Since s is not identically infinite in D, we have s(x) < ∞ for some x ∈ D, and so

∞ > s(x) >

∫
D

pD(t, x, y)s(y)dy ≥ C̃(t)φ0(x)

∫
D

φ0(y)s(y)dy,
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implying ∫
D

φ0(y)s(y)dy < ∞.

Consequently, it follows from (2.4) that Ps
x(ζ

s = ∞) = 0, which implies that limt↑∞ PD
t s(x) =

0 for every x ∈ D. Therefore under the assumption that (PD
t ) is intrinsic ultracontractive,

every excessive function s of XD is purely excessive, which is the basic assumption in [12].

3 Correspondence between H+
α and H+

In this section we always assume that D is a bounded domain such that (PD
t ) is intrinsic

ultracontractive. We start this section with the following improvement of Theorem 2.1.

Theorem 3.1 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracon-

tractive. If s ∈ S, there exists a function g ∈ S2−α such that s(x) = GD
α g(x) on D. The

function g is given by the formula

g(x) =
α

2Γ(1− α/2)

∫ ∞

0

t−α/2−1(s(x)− PD
t s(x))dt.

If, moreover, s ∈ H+, then g ∈ H+
2−α.

Conversely if g ∈ S2−α, then the function s defined by s = GD
α g is in S. If, moreover,

g ∈ H+
2−α, then s ∈ H+.

Proof. In view of Theorem 2.1 we only need to show that, whenever g ∈ S2−α, the function

s = GD
α g is not identically infinite on D.

Since g is in S2−α, there exists x0 ∈ D such that for every t > 0,

∞ > g(x0) ≥ Q2−α
t g(x0) =

∫ ∞

0

PD
s g(x0)u

1−α/2
t (s)ds

Thus PD
s g(x0) is finite for almost every s ∈ (0,∞). Since (PD

t )t≥0 is intrinsic ultracontractive,

by Theorem 4.2.5 of [6] there exists T > 0 such that

1

2
e−λ0tφ0(x)φ0(y) ≤ pD(t, x, y) ≤ 3

2
e−λ0tφ0(x)φ0(y), t ≥ T, x, y ∈ D. (3.1)

Take a t ≥ T such that PD
t g(x0) < ∞. Then

∞ > PD
t g(x0) =

∫
D

pD(t, x, y)g(y)dy ≥ 1

2
e−λ0tφ0(x0)

∫
D

φ0(y)g(y)dy,
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so we have
∫

D
φ0(y)g(y)dy < ∞. Consequently∫

D

GD
α g(x)φ0(x)dx =

∫
D

g(x)GD
α φ0(x)dx

=
1

Γ(α/2)

∫
D

g(x)

∫ ∞

0

tα/2−1PD
t φ0(x)dtdx

=
1

Γ(α/2)

∫
D

g(x)

∫ ∞

0

tα/2−1e−λ0tφ0(x)dtdx

=
1

Γ(α/2)

∫
D

φ0(y)g(y)dy

∫ ∞

0

tα/2−1e−λ0tdt < ∞.

Therefore s = GD
α g is not identically infinite in D. 2

It follows from Theorem 3.1 that, when D is a bounded domain such that (PD
t ) is intrinsic

ultracontractive, GD
α is a bijection from S2−α to S, and is also a bijection from H+

2−α to H+.

We are going to use (GD
α )−1 to denote the inverse map and so we have for any s ∈ S

(GD
α )−1s(x) =

α

2Γ(1− α/2)

∫ ∞

0

t−α/2−1(s(x)− PD
t s(x))dt .

Although the map GD
α is order preserving, we do not know if the inverse map (GD

α )−1 is order

preserving on S. But from the formula above we can see that (GD
α )−1 is order preserving on

H+.

Theorem 3.2 If D is a bounded domain such that (PD
t ) is intrinsic ultracontractive, then

every h ∈ H+
α is continuous in D.

Proof. From Theorem 3.1 we know that GD
2−αh is not identically infinite in D. Now the

conclusion follows from Theorem 2.1. 2

In the remaining part of this section we prove several results that complement the results

from [12]. We start with another form of formula (2.1).

Proposition 3.3 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracon-

tractive. If s ∈ S, then s = GD
α g, where

g(x) =
1

Γ(1− α/2)
s(x)Es

x[(ζ
s)−α/2]. (3.2)
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Proof. From Theorem 2.1, if s ∈ S, then s = GD
α g, where g is given by (2.1). By the

definition of s-conditioned Brownian motion we know that

Ps
x(ζ

s ≤ t) = 1− 1

s(x)

∫
D

pD(t, x, y)s(y)dy,

thus

s(x)P s
x(ζs ≤ t) = s(x)−

∫
D

pD(t, x, y)s(y)dy.

Therefore we have

g(x) =
α

2Γ(1− α/2)

∫ ∞

0

t−α/2−1s(x)P s
x(ζs ≤ t)dt

=
1

Γ(1− α/2)
s(x)Es

x[(ζ
s)−α/2].

2

As a consequence of this result, we immediately get the following corollaries.

Corollary 3.4 When D is a bounded domain such that (PD
t ) is intrinsic ultracontractive,

the Green function GD
2−α of ZD

2−α can be written in the following form

GD
2−α(x, y) = (GD

α )−1(GD(·, y))(x) =
1

Γ(1− α/2)
GD(x, y)Ey

x[(ζ
y)−α/2] ,

where GD(x, y) denotes the Green function of XD.

Proof. Using the Markov property and Fubini’s theorem we can easily get that for any

nonnegative function f on D,

GD
α GD

2−αf(x) = GDf(x), x ∈ D.

Now the conclusion of this corollary follows immediately from Proposition 3.3. 2

Recall that τD := inf{t : Xt /∈ D} is the first exit time of D for the Brownian motion X.

Corollary 3.5 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracon-

tractive. If h(x) = Ex[f(XτD
)] for some bounded function f on ∂D, then h = GD

α g, where

g(x) =
1

Γ(1− α/2)
Ex[f(XτD

) · τ−α/2
D ], x ∈ D.
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Proof. When f is nonnegative, the conclusion follows immediately from Proposition 3.3.

For the general case we decompose f into its positive and negative parts. 2

Repeating the proof of (19) in [12] we immediately get the following corollary of the result

above.

Corollary 3.6 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracon-

tractive. Then for any nonnegative function f on on ∂D and any α ∈ (0, 2) we have

αΓ(α/2)Γ(1− α/2)

2

∫
D

Ex[f(XτD
)]dx =

∫
D

Ex[f(XτD
)τ
−α/2
D ] · Ex[τ

α/2
D ]dx.

Proposition 3.7 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultra-

contractive and that D is regular in the sense that Pz(τD = 0) = 1 for every z ∈ ∂D. If

h = h1 − h2 where hi ∈ H+
2−α, i = 1, 2, is such that for every z ∈ ∂D,

lim
D3x→z

h(x)

Ex[τD
−α/2]

= 0 ,

then h ≡ 0.

Proof. Put

κD
α (x) =

1

Γ(1− α/2))
Ex[τD

−α/2], x ∈ D. (3.3)

Then it follows from Example 1 of [12] and Theorem 3.1 that GD
α κD

α (x) = 1 for every

x ∈ D. For any x ∈ D, let δ(x) be the distance between x and ∂D. For any δ > 0, let

Dδ := {x ∈ D : δ(x) < δ}. For any ε > 0, there exists δ > 0 such that

|h(x)| ≤ εκD
α (x), x ∈ D \Dδ.

For any x ∈ D \Dδ,

GD
α |h(x)| ≤ GD

α (|h|1Dδ
)(x) + εGD

α κD
α (x) ≤ GD

α (|h|1Dδ
)(x) + ε.

Since GD
α (x, y) is bounded on (D\Dδ/2)×Dδ and limx→∂D GD

α (x, y) = 0 for any y ∈ D, we get

by the dominated convergence theorem that limx→∂D GD
α (|h|1Dδ

)(x) = 0. This shows that

limx→∂D GD
α h(x) = 0. Since GD

α h(x) = GD
α h1(x) − GD

α h2(x) is a difference of two functions

in H+, it is a harmonic function for XD. Therefore, GD
α h = 0, which implies that h = 0

almost everywhere in D. Since h is continuous by Theorem 3.2, we get h ≡ 0. 2

The proposition above implies in particular that there are no non-trivial bounded func-

tions in H+
α − H+

α . The following proposition says that there are no non-trivial bounded

functions in Hα.
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Proposition 3.8 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracon-

tractive. If h ∈ Hα is bounded, then h ≡ 0.

Proof. It was shown in [19] that the function defined in (3.3) is the killing function of the

process ZD
α . Therefore for any compact subset K of D we have

P̃x(Z
D
α (ζ̃−) ∈ K) = GD

α (κD
α · 1K)(x), x ∈ D.

Recall that GD
α κD

α (x) = 1 for every x ∈ D. By taking an increasing sequence of compact

sets Kn with Kn ↑ D, we get

P̃x(Z
D
α (ζ̃−) ∈ D) = 1, x ∈ D,

where ζ̃ is the lifetime of ZD
α . Take an increasing sequence of open sets Dn such that

Dn ⊂ Dn ⊂ Dn+1 ⊂ Dn+1 ⊂ D for all n ≥ 1 and Dn ↑ D. Let τ̃n = inf{t : ZD
t /∈ Dn}, then

τ̃n ↑ ζ̃ and from the display above we know that P̃x(ζ̃ = τ̃n for some n ≥ 1) = 1 for every

x ∈ D. Therefore for every x ∈ D,

|h(x)| = |Ẽx[h(ZD
α (τn))]| ≤ ‖h‖∞P̃x(τ̃n < ζ̃) → 0.

The proof is now complete. 2

The function in H+
2−α playing the role of a constant function 1 ∈ H+ is (GD

α )−11. It is

shown in [12] (Example 1) that this function is equal to κD
α (x) = 1/(Γ(1− α/2))Ex(τ

−α/2
D ).

While the classical formulation of the Dirichlet problem for harmonic functions for ZD
2−α is

impossible in view of the last proposition, the following reformulation seems appropriate: for

any given bounded function f on ∂D, find a function h ∈ H2−α such that

lim
D3x→z

h(x)

Ex[τ
−α/2
D ]

= f(z) .

The following two propositions show that classical conditions for solvability of the Dirichlet

problem are sufficient for this reformulated Dirichlet problem as well.

Proposition 3.9 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracon-

tractive and that z ∈ ∂D is regular for Dc, that is, Pz(τD = 0) = 1. Then for any bounded

function f on ∂D which is continuous at z, we have

lim
D3x→z

Ex[f(XτD
) · τ−α/2

D ]

Ex[τ
−α/2
D ]

= f(z).
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Proof. It is easy to see that

lim
D3x→z

Ex[τ
−α/2
D ] = ∞. (3.4)

In fact, since the function x 7→ Px(s > τD) is upper semicontinuous in RD for any s > 0, we

have

lim sup
x→z

Px(τD > s) ≤ Pz(τD > s) = 0.

Hence there exists δ > 0 such that

Px(τD > s) <
1

2
, x ∈ B(z, δ),

consequently

Ex[τ
−α/2
D ] ≥ Ex[τ

−α/2
D ; s > τD] ≥ s−α/2Px(s > τD) ≥ 1

2
s−α/2

whenever x ∈ B(z, δ) ∩D. Therefore (3.4) is valid.

Now for any ε > 0, there exists δ > 0 such that

|f(w)− f(z)| < ε

2
, w ∈ B(z, δ) ∩ ∂D.

For any x ∈ B(z, δ/2) we have τB(x,δ/2) ≤ τB(z,δ). Therefore

Ex[|f(X(τD))− f(z)|τ−α/2
D ]

= Ex[|f(X(τD))− f(z)|τ−α/2
D ; τD < τB(z,δ)]

+Ex[|f(X(τD))− f(z)|τ−α/2
D ; τB(z,δ) ≤ τD]

≤ Ex[|f(X(τD))− f(z)|τ−α/2
D ; τD < τB(z,δ)]

+Ex[|f(X(τD))− f(z)|τ−α/2
D ; τB(x,δ/2) ≤ τD]

≤ ε

2
Ex[τ

−α/2
D ] + 2‖f‖∞Ex[τ

−α/2
B(x,δ/2)]

=
ε

2
Ex[τ

−α/2
D ] + 2‖f‖∞E0[τ

−α/2
B(0,δ/2)]

By (3.4) we can take η > 0 such that

Ex[τ
−α/2
D ] ≥ 2

ε
2‖f‖∞E0[τ

−α/2
B(0,δ/2)], x ∈ B(z, η) ∩D.

Then whenever x ∈ B(z, η ∧ δ
2
) ∩D, we have

2‖f‖∞E0[τ
−α/2
B(0,δ)/2]

Ex[τ
−α/2
D ]

≤ ε

2
.
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Therefore we have

Ex[|f(X(τD))− f(z)|τ−α/2
D ]

Ex[τ
−α/2
D ]

≤ ε, x ∈ B(z, η ∧ δ

2
) ∩D.

The proof is now complete. 2

Proposition 3.10 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultra-

contractive and that D is regular in the sense that Pz(τD = 0) = 1 for every z ∈ ∂D. Let

f be a continuous function on ∂D. The function Ex[f(XτD
) · τ−α/2

D ] is the unique function

h ∈ H2−α such that

lim
D3x→z

h(x)

Ex[τ
−α/2
D ]

= f(z) .

Proof. Without loss of generality we may assume that f ≥ 0. The last proposition and

Corollary 3.5 show that Ex[f(XτD
)τ
−α/
D ] is a solution of the problem. To prove uniqueness,

suppose that h1 and h2 are two solutions. Then h1, h2 ∈ H+
2−α, and h = h1 − h2 satisfies

lim
D3x→z

h(x)

Ex[τD
−α/2]

= 0 ,

By Proposition 3.7, h ≡ 0. 2

Using the fact that GD
2−αh is not identically infinite in D for any h ∈ H+

α , we have the

following improvement of Theorem 4 in [12].

Proposition 3.11 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultra-

contractive. For α ∈ (0, 2), if h ∈ H+
α , then for any φ ∈ C∞

0 (D),∫
D

f(x)(−∆|D)α/2φ(x)dx = 0.

4 Harnack inequality

In this section we are going to prove the Harnack inequality for positive harmonic functions

for the process ZD
α under the assumption that D is a bounded domain such that (PD

t )

is intrinsic ultracontractive. The proof we offer uses the intrinsic ultracontractivity in an

essential way, and differs from the existing proofs of Harnack inequalities in other settings.
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Lemma 4.1 Suppose that D is a bounded domain such that (PD
t ) is intrinsic ultracontrac-

tive. If s ∈ S, then GD
2−αs ≤ C3s with

C3 = Γ(α/2)(1 + T +
3

λ0

), (4.1)

where T is the constant in (3.1).

Proof. For any nonnegative function f ,

GDf(x) =

∫ ∞

0

PD
t f(x)dt = Ex[

∫ ∞

0

f(XD
t )dt]

≤
(

Ex[

∫ ∞

0

tα/2−1f(XD
t )dt]

)1/2 (
Ex[

∫ ∞

0

t1−α/2f(XD
t )dt]

)1/2

. (4.2)

Now

Ex[

∫ ∞

0

t1−α/2f(XD
t )dt] =

∫ ∞

0

t1−α/2PD
t f(x)dt

≤
∫ 1

0

PD
t f(x)dt +

∫ ∞

1

tPD
t f(x)dt

≤
∫ ∞

0

PD
t f(x)dt +

∫ ∞

0

tPD
t f(x)dt

= GDf + GD(GDf)(x).

Since GDf ∈ S, we have by (3.1)

GD(GDf)(x) =

∫ ∞

0

PD
t GDf(x)dt

=

∫ T

0

PD
t GDf(x)dt +

∫ ∞

T

PD
t GDf(x)dt

≤ TGDf(x) +
3

2
φ0(x)

∫
D

φ0(y)GDf(y)dy

∫ ∞

T

e−λ0tdt

≤ TGDf(x) +
3

2
φ0(x)

∫
D

pD(T, x, y)
1
2
e−λ0T φ0(x)

GDf(y)dy

∫ ∞

T

e−λ0tdt

≤ TGDf(x) + 3GDf(x)eλ0T

∫ ∞

T

e−λ0tdt

= TGDf(x) +
3

λ0

GDf(x) = (T +
3

λ0

)GDf(x).

Hence we have

Ex[

∫ ∞

0

t1−α/2f(Xt)1(t<τD)dt] ≤ (1 + T +
3

λ0

)GDf(x),

13



and so by (4.2) we get

GDf(x) ≤ (Γ(α/2)GD
α f(x))1/2(1 + T +

3

λ0

)1/2(GDf(x))1/2,

that is,

GDf(x) ≤ CGD
α f(x) (4.3)

with

C = Γ(α/2)(1 + T +
3

λ0

).

Since GDf(x) = GD
2−αGD

α f(x), (4.3) can be rewritten as

GD
2−α(GD

α f)(x) ≤ CGD
α f(x).

Since any s ∈ Sα is the limit of an increasing sequence of functions of the form GD
α f , the

lemma follows. 2

Lemma 4.2 Suppose D is a bounded domain such that (PD
t ) is intrinsic ultracontractive.

If s ∈ Sα, then for any x ∈ D,

s(x) ≥ 1

2C3

e−λ0T λ
−α/2
0 φ0(x)

∫
D

s(y)φ0(y)dy,

where T is the constant in (3.1) and C3 is the constant defined by (4.1).

Proof. From the lemma above we know that, for every x ∈ D, GD
2−αs(x) ≤ C3s(x), where

C3 is the constant in (4.1). Since GD
2−αs is in S, we have

GD
2−αs(x) ≥

∫
D

pD(T, x, y)GD
2−αs(y)dy ≥ 1

2
e−λ0T φ0(x)

∫
D

φ0(y)GD
2−αs(y)dy.

Hence

C3s(x) ≥ GD
2−αs(x) ≥ 1

2
e−λ0T φ0(x)

∫
D

φ0(y)GD
2−αs(y)dy

=
1

2
e−λ0T φ0(x)

∫
D

s(y)GD
2−αφ0(y)dy

=
1

2
e−λ0T λ

−α/2
0 φ0(x)

∫
D

s(y)φ0(y)dy.

2
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Theorem 4.3 Suppose D is a bounded domain such that (PD
t ) is intrinsic ultracontractive.

For any compact subset K of D, there exists a constant C depending on α, K and D such

that for any h ∈ H+
α ,

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

Proof. If the conclusion of the theorem were not true, for any n ≥ 1, there exist hn ∈ H+
α

such that

sup
x∈K

hn(x) ≥ n2n inf
x∈K

hn(x). (4.4)

By the lemma above, we may assume without loss of generality that∫
D

hn(y)φ0(y)dy = 1, n ≥ 1.

Define

h(x) =
∞∑

n=1

2−nhn(x), x ∈ D.

Then ∫
D

h(y)φ0(y)dy = 1

and so h ∈ H+
α . By (4.4) and the lemma above, for every n ≥ 1, there exists xn ∈ K such

that hn(xn) ≥ n2nc1 where

c1 =
1

2C3

e−λ0T λ
−α/2
0 inf

x∈K
φ0(x)

with T as in (3.1) and C3 defined in (4.1). Therefore we have h(xn) ≥ nc1. Since K is

compact, there is a convergent subsequence of xn. Let x0 be the limit of this convergent

subsequence. Theorem 3.2 implies that h is continuous, and so we have h(x0) = ∞. This is

a contradiction. So the conclusion of the theorem is valid. 2

5 Martin Boundary

In this section we are going to assume that D is a bounded Lipschitz domain. Fix a point

x0 ∈ D and set

MD(x, y) =
GD(x, y)

GD(x0, y)
, x, y ∈ D.

It is well known that the limit

lim
D3y→z

MD(x, y)
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exists for every x ∈ D and z ∈ ∂D. The function MD(x, z) := limD3y→z MD(x, y) on

D× ∂D defined above is called the Martin kernel of XD based at x0. The Martin boundary

and minimal Martin boundary of XD both coincide with the Euclidean boundary ∂D. For

these and other results about the Martin boundary of XD, one can see [2]. One of the goals

of this section is to determine the Martin boundary of ZD
α .

By using the Harnack inequality, one can easily show that (see, for instance, page 17 of

[9]), if hn is a sequence of functions in H+ converging pointwise to a function h ∈ H+, then

(hn) is locally uniformly bounded in D and equicontinuous at every point in D. Using this

one can get that, if hn is a sequence of functions in H+ converging pointwise to a function

h ∈ H+, then (hn) converges to h uniformly on compact subsets of D. We are going to use

this fact below.

Lemma 5.1 Suppose that D is a bounded Lipschitz domain, x0 ∈ D is a fixed point.

(a) Let (xn) be a sequence of points in D converging to x ∈ D and (hn) be a sequence of

functions in H+ with hn(x0) = 1 for all n. If the sequence (hn) converges to a function

h ∈ H+, then for each t > 0

lim
n

PD
t hn(xn) = PD

t h(x) .

(b) If (yn, n ≥ 1) is a sequence of points in D such that limn yn = z ∈ ∂D, then for each

t > 0 and for each x ∈ D

lim
n

PD
t

(
GD(·, yn)

GD(x0, yn)

)
(x) = PD

t (MD(·, z))(x) .

Proof. (a) For each n ∈ N there exists a probability measure µn on ∂D such that

hn(x) =

∫
∂D

MD(x, z)µn(dz), x ∈ D.

Similarly, there exists a probability measure µ on ∂D such that

h(x) =

∫
∂D

MD(x, z)µ(dz), x ∈ D.

16



Let D0 be a relatively compact open subset of D, x0 ∈ D0, and also x, xn ∈ D0. Then

|PD
t hn(xn)− PD

t h(x)|

= |
∫

D

pD(t, xn, y)hn(y)dy −
∫

D

pD(t, x, y)h(y)dy|

≤ |
∫

D0

pD(t, xn, y)hn(y)dy −
∫

D0

pD(t, x, y)h(y)dy|

+

∫
D\D0

pD(t, xn, y)hn(y) dy +

∫
D\D0

pD(t, x, y)h(y) dy .

Recall that (see Section 6.2 of [5], for instance) there exists a constant c > 0 such that

GD(x, y)GD(y, w)

GD(x, w)
≤ c(

1

|x− y|d−2
+

1

|y − w|d−2
), x, y, w ∈ D. (5.1)

From this and the definition of the Martin kernel we immediately get

GD(x0, y)MD(y, z) ≤ c(
1

|x0 − y|d−2
+

1

|y − z|d−2
), y ∈ D, z ∈ ∂D.

Now using (2.1), the inequality above and the fact (see [6], p.131, Theorem 4.6.11) that

φ0(y) ≤ c
GD(x0, y)

φ0(x0)
, y ∈ D, (5.2)

we get that for any u ∈ D,∫
D\D0

pD(t, u, y)h(y) dy

≤ C(t)φ0(u)

∫
D\D0

φ0(y)h(y) dy

= C(t)φ0(u)

∫
D\D0

dy φ0(y)

∫
∂D

MD(y, z)µ(dz)

= C(t)φ0(u)

∫
∂D

µ(dz)

∫
D\D0

φ0(y)MD(y, z) dy

≤ C(t)c

∫
∂D

µ(dz)

∫
D\D0

GD(x0, y)MD(y, z) dy

≤ C(t)c

∫
∂D

µ(dz)

∫
D\D0

(
1

|y − z|d−2
+

1

|x0 − y|d−2
) dy

≤ C(t)c

∫
∂D

µ(dz) sup
z∈∂D

∫
D\D0

(
1

|y − z|d−2
+

1

|x0 − y|d−2
) dy

= C(t)c sup
z∈∂D

∫
D\D0

(
1

|y − z|d−2
+

1

|x0 − y|d−2
) dy
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The same estimate holds with hn instead of h. For a given ε > 0 choose D0 large enough so

that the last line in the display above is less than ε. Put A = supD0
h. Take n0 ∈ N large

enough so that for all n ≥ n0 we have

|pD(t, xn, y)− pD(t, x, y)| ≤ ε and |hn(y)− h(y)| < ε

for all y ∈ D0. Then

|
∫

D0

pD(t, xn, y)hn(y)dy −
∫

D0

pD(t, x, y)h(y)dy|

≤
∫

D0

pD(t, xn, y)|hn(y)− h(y)|dy +

∫
D0

|pD(t, xn, y)− pD(t, x, y)|h(y)dy

≤ ε + A|D0|ε,

where |D0| stands for the Lebesgue measure of D0. This proves the first part.

(b) We proceed similarly as in the proof of the first part. The only difference is that we use

(5.1) to get the following estimate:∫
D\D0

pD(t, x, y)
GD(y, yn)

GD(x0, yn)
dy

≤ C(t)φ0(x)

∫
D\D0

φ0(y)
GD(y, yn)

GD(x0, yn)
dy

≤ cC(t)

∫
D\D0

GD(x0, y)GD(y, yn)

GD(x0, yn)
dy

≤ cC(t)

∫
D\D0

(|x0 − y|2−d + |y − yn|2−d) dy

≤ cC(t) sup
n

∫
D\D0

(|x0 − y|2−d + |y − yn|2−d) dy

The corresponding estimate for MD(·, z) is given in part (a) of the lemma. For a given ε > 0

find D0 large enough so that the last line in the display above is less than ε. Then find

n0 ∈ N such that for all n ≥ n0,

| GD(y, yn)

GD(x0, yn)
−MD(y, z)| < ε, y ∈ D0.

Then ∫
D0

pD(t, x, y)| GD(y, yn)

GD(x0, yn)
−MD(y, z)| dy < ε for all n ≥ n0 .

This proves the second part. 2
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Theorem 5.2 Suppose that D is a bounded Lipschitz domain and x0 ∈ D is a fixed point.

(a) If (xn) is a sequence of points in D converging to x ∈ D and (hn) is a sequence of

functions in H+ converging to a function h ∈ H+, then

lim
n

(GD
α )−1hn(xn) = (GD

α )−1h(x) .

(b) If (yn) is a sequence of points in D converging to z ∈ ∂D, then for every x ∈ D,

lim
n

(GD
α )−1(

GD(·, yn)

GD(x0, yn)
)(x) = lim

n

(GD
α )−1(GD(·, yn))(x)

GD(x0, yn)
= (GD

α )−1MD(·, z)(x) .

Proof. (a) Normalizing by hn(x0) if necessary, we may assume without loss of generality

that hn(x0) = 1 for all n ≥ 1. Let ε > 0. We have

|(GD
α )−1hn(xn)− (GD

α )−1h(x)|

= c(α)|
∫ ∞

0

t−(α/2+1)(hn(xn)− PD
t hn(xn))dt−

∫ ∞

0

t−(α/2+1)(h(x)− PD
t h(x))dt|

≤ c(α)

∫ ε

0

t−(α/2+1)(hn(xn)− PD
t hn(xn))dt + c

∫ ε

0

t−(α/2+1)(h(x)− PD
t h(x))dt

+c(α)|
∫ ∞

ε

t−(α/2+1)(hn(xn)− PD
t hn(xn))dt−

∫ ∞

ε

t−(α/2+1)(h(x)− PD
t h(x))dt|,

where c(α) = α/(2Γ(1−α/2)). Let K and L be compact subsets of D such that (xn) ⊂ K ⊂
L◦ ⊂ L. Since hn → h locally uniformly, there exists a constant M such that hn, h ≤ M on

L. The estimate at the end of the proof of Theorem 3 in [12] gives that∫ ε

0

t−(α/2+1)(hn − PD
t hn)(xn) dt ≤ 2Md

(1− α/2)ρ2
ε1−α/2, n ≥ 1

and ∫ ε

0

t−(α/2+1)(h− PD
t h)(x) dt ≤ 2Md

(1− α/2)ρ2
ε1−α/2.

Here ρ = dist(K, L̄c). Further,

|
∫ ∞

ε

t−(α/2+1)(hn(xn)− PD
t hn(xn))dt−

∫ ∞

ε

t−(α/2+1)(h(x)− PD
t h(x))dt|

≤
∫ ∞

ε

t−(α/2+1)(|hn(xn)− h(xn)|+ |h(xn)− h(x)|)dt

+

∫ ∞

ε

t−(α/2+1)|PD
t hn(xn)− PD

t h(x)|dt .
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Since |hn(xn)−h(xn)|+ |h(xn)−h(x)| ≤ 2M and |PD
t hn(xn)−PD

t h(x)| ≤ M , we can apply

Lemma 5.1(a) and the dominated convergence theorem to get

lim
n

∫ ∞

ε

t−(α/2+1)(|hn(xn)− h(xn)|+ |h(xn)− h(x)|)dt = 0

and

lim
n

∫ ∞

ε

t−(α/2+1)|PD
t hn(xn)− PD

t h(x)|dt = 0.

Hence

lim sup
n

|(GD
α )−1hn(xn)− (GD

α )−1h(x)| ≤ 4cMd

(1− α/2)ρ2
ε1−α/2

for every ε > 0. The proof of (a) is now complete.

(b) The proof of (b) is similar to (a). The only difference is that we use 5.1(b) in this case.

We omit the details. 2

Let us define the function KD
2−α(x, z) := (GD

α )−1MD(·, z)(x) on D× ∂D. For each fixed

z ∈ ∂D, KD
2−α(·, z) ∈ H+

2−α. By the first part of Theorem 5.2, we know that KD
2−α(x, z) is

continuous on D × ∂D. Let (yn) be a sequence of points in D converging to z ∈ ∂D, then

from Theorem 5.2(b) we get that

KD
2−α(x, z) = lim

n→∞
(GD

α )−1

(
GD(·, yn)

GD(x0, yn)

)
(x)

= lim
n→∞

(GD
α )−1(GD(·, yn))(x)

GD(x0, yn)

= lim
n→∞

GD
2−α(x, yn)

GD(x0, yn)
(5.3)

where the last line follows from Proposition 3.4. In particular, there exists the limit

lim
n→∞

GD
2−α(x0, yn)

GD(x0, yn)
= KD

2−α(x0, z) . (5.4)

Now we define a function MD
2−α on D × ∂D by

MD
2−α(x, z) :=

KD
2−α(x, z)

KD
2−α(x0, z)

, x ∈ D, z ∈ ∂D. (5.5)

For each z ∈ ∂D, MD
2−α(·, z) ∈ H+

2−α. Moreover, MD
2−α is jointly continuous on D × ∂D.

From the definition above and (5.3) we can easily see that

lim
D3y→z

GD
2−α(x, y)

GD
2−α(x0, y)

= MD
2−α(x, z), x ∈ D, z ∈ ∂D. (5.6)

20



Theorem 5.3 Suppose that D is a bounded Lipschitz domain. The Martin boundary and

the minimal Martin boundary of ZD
2−α both coincide with the Euclidean boundary ∂D, and

the Martin kernel based at x0 is given by the function MD
2−α.

Proof. The fact that MD
2−α is the Martin kernel of ZD

2−α based at x0 has been proven in

the paragraph above. It follows from Theorem 3.1 that when z1 and z2 are two distinct

points on ∂D, the functions MD
2−α(·, z1) and MD

2−α(·, z2) are not identical. Therefore the

Martin boundary of ZD
2−α coincides with the Euclidean boundary ∂D. Since MD(·, z) ∈ H+

is minimal, by the order preserving property of (GD
α )−1 we know that MD

2−α(·, z) ∈ H2−α

is also minimal. Therefore the minimal Martin boundary of Z2−α
D also coincides with the

Euclidean boundary ∂D. 2

Corollary 5.4 If D is a bounded C1,1 domain, then there exists a constant C > 0 such that

C−1 δ(x)

|x− z|d+2−α
≤ MD

α (x, z) ≤ C
δ(x)

|x− z|d+2−α
, x ∈ D, z ∈ ∂D.

Proof. The conclusion of this corollary follows immediately from the theorem above and

the sharp estimates on the Green function GD
α in [17] and we omit the details. 2

It follows from Theorem 5.3 and the general theory of Martin boundary that for any

u ∈ H+
2−α there exists a finite measure ν on ∂D such that

u(x) =

∫
∂D

MD
2−α(x, z)ν(dz), x ∈ D.

The measure ν is sometimes called the Martin measure of u. The following result gives the

relation between the Martin measure of h ∈ H+ and the Martin measure of (GD
α )−1h ∈ H+

2−α.

Proposition 5.5 Suppose that D is a bounded Lipschitz domain. If h ∈ H+ can be written

as

h(x) =

∫
∂D

MD(x, z)µ(dz), x ∈ D,

then

(GD
α )−1h(x) =

∫
∂D

MD
2−α(x, z)ν(dz), x ∈ D

with ν(dz) = KD
2−α(x0, z)µ(dz).
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Proof. By assumption we know that

h(x) =

∫
∂D

MD(x, z)µ(dz), x ∈ D.

Using (2.1) and Fubini’s theorem we get

(GD
α )−1h(x) =

∫
∂D

(GD
α )−1(MD(·, z))(x)µ(dz)

=

∫
∂D

MD
2−α(x, z)KD

2−α(x0, z)µ(dz)

=

∫
∂D

MD
2−α(x, z)ν(dz) ,

with ν(dz) = KD
2−α(x0, z)µ(dz). The proof is now complete. 2

For z ∈ ∂D, n ∈ N, let ∆n(z) = B(z, 2−n)∩∂D, and let ω(x, ∆(z)) = Px(XτD
∈ ∆n(z)).

It is well known (see, for instance, [2]) that for a Lipschitz domain D,

MD(x, z) = lim
n→∞

ω(x, ∆n(z))

ω(x0, ∆n(z))
. (5.7)

We are going to prove two analogous results for the Martin kernel MD
2−α.

Proposition 5.6 Let D be a Lipschitz domain. For z ∈ ∂D, n ∈ N, let ∆n(z) = B(z, 2−n)∩
∂D and Bn(z) = B(z, 2−n) ∩D. Then

MD
2−α(x, z) = lim

n→∞

Ex[1(XτD
∈∆n(z))τ

−α/2
D ]

Ex0 [1(XτD
∈∆n(z))τ

−α/2
D ]

= lim
n→∞

P̃x[Z
D
2−α(ζ−) ∈ Bn(z)]

P̃x0 [Z
D
2−α(ζ−) ∈ Bn(z)]

Proof. According to Corollary 3.5, we have

(GD
2−α)−1(ω(·, ∆n(z))(x) =

1

Γ(1− α/2)
Ex[1(XτD

∈∆n(z))τ
−α/2
D ].

Hence,

Ex[1(XτD
∈∆n(z))τ

−α/2
D ]

Ex0 [1(XτD
∈∆n(z))τ

−α/2
D ]

=
(GD

2−α)−1(ω(·, ∆n(z))(x)

(GD
2−α)−1(ω(·, ∆n(z))(x0)

=
(GD

2−α)−1
(

ω(·,∆n(z))
ω(x0,∆n(z)

)
(x)

(GD
2−α)−1

(
ω(·,∆n(z))
ω(x0,∆n(z)

)
(x0)
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The first equality follows by (5.7), Theorem 5.2 and (5.5).

For the second equation we are going to use the following formula (see (2.11) in [4]):

For x ∈ D and A ⊂ D,

P̃x(Z
D
2−α(ζ−) ∈ A) =

∫
A

GD
2−α(x, y)κD

2−α(y) dy (5.8)

where κD
2−α is the killing function of ZD

2−α. For given ε > 0 find n0 ∈ N such that for all

n ≥ n0

MD
2−α(x, z)− ε ≤

GD
2−α(x, y)

GD
2−α(x0, y)

≤ MD
2−α(x, z) + ε ,

for all y ∈ Bn(z). Then

MD
2−α(x, z)− ε ≤

∫
Bn(z)

GD
2−α(x, y)κD

2−α(y) dy∫
Bn(z)

GD
2−α(x0, y)κD

2−α(y) dy
≤ MD

2−α(x, z) + ε ,

which proves the result. 2

From Theorem 5.2 we know that (GD
α )−1 : H+ → H+

2−α is continuous with respect to

topologies of locally uniform convergence. In the next result we show that GD
α : H+

2−α → H+

is also continuous.

Proposition 5.7 Suppose that D is a bounded Lipschitz domain. Let (gn, n ≥ 0) be

a sequence of functions in H+
2−α converging pointwise to the function g ∈ H+

2−α. Then

limn→∞ GD
α gn(x) = GD

α g(x) for every x ∈ D.

Proof. Without loss of generality we may assume that gn(x0) = 1 for all n ∈ N. Then there

exist probability measures νn, n ∈ N, and ν on ∂D such that gn(x) =
∫

∂D
MD

2−α(x, z)νn(dz),

n ∈ N, and g(x) =
∫

∂D
MD

2−α(x, z)ν(dz). It is easy to show that the convergence of the

harmonic functions hn implies that νn → ν weakly. Let GD
α gn(x) =

∫
∂D

MD(x, z)µn(dz) and

GD
α g(x) =

∫
∂D

MD(x, z)µ(dz). Then νn(dz) = KD
2−α(x0, z)µn(dz) and ν(dz) = KD

2−α(x0, z)µ(dz).

Since the density KD
2−α(x0, ·) is bounded away from zero and bounded from above, it follows

that µn → µ weakly. From this the claim of proposition follows immediately. 2

6 Boundary Harnack Principle

The boundary Harnack principle is a very important result in potential theory and harmonic

analysis. For example, it is usually used to prove that, when D is a bounded Lipschitz
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domain, both the Martin boundary and the minimal Martin boundary of XD coincide with

the Euclidean boundary ∂D. We have already proved in Theorem 5.3 that for ZD
α , both the

Martin boundary and the minimal Martin boundary coincide with the Euclidean boundary

∂D. By using this we are going to prove a boundary Harnack principle for functions in H+
α .

In this section we will always assume that D is a bounded Lipschitz domain and x0 ∈ D

is fixed. Recall that φ0 is the eigenfunction corresponding to the smallest eigenvalue λ0 of

−∆|D.

Proposition 6.1 Suppose that D is a bounded Lipschitz domain. There exist C > 0 and

m > d such that

GD
α (x, y) ≤ C

φ0(x)φ0(y)

|x− y|m−α
, x, y ∈ D.

Proof. It follows from Theorem 4.6.9 of [6] that the density pD of the killed Brownian

motion on D satisfies the following estimate

pD(t, x, y) ≤ c1t
−m/2φ0(x)φ0(y)e−

|x−y|2
6t , t > 0, x, y ∈ D,

for some m > d and c > 0. Now we have

GD
α (x, y) =

1

Γ(α/2)

∫ ∞

0

tα/2−1pD(t, x, y)dt

≤ c1

Γ(α/2)

∫ ∞

0

tα/2−1t−m/2φ0(x)φ0(y)e−
|x−y|2

6t dt

≤ c2
φ0(x)φ0(y)

|x− y|m−α
.

The proof is now finished. 2

Lemma 6.2 Suppose that D is a bounded Lipschitz domain and V is an open subset of Rd

such that V ∩ ∂D is non-empty. If h ∈ H+
2−α satisfies

lim
x→z

h(x)

κD
α (x)

= 0, ∀z ∈ V ∩ ∂D,

then

lim
x→z

GD
α h(x) = 0, ∀z ∈ V ∩ ∂D
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Proof. Fix z ∈ V ∩ ∂D. For any ε > 0, there exists δ > 0 such that

h(x) ≤ εκD
α (x), x ∈ B(z, δ) ∩D.

Thus we have

GD
α h(x) ≤ GD

α (h · 1D\B(z,δ))(x) + εGD
α κD

α (x) = GD
α (h · 1D\B(z,δ))(x) + ε, x ∈ D.

By Proposition 6.1 we get that there exists c > 0 such that for any x ∈ B(z, δ/2) ∩D,

GD
α h(x) ≤ cφ0(x)

∫
D

φ0(y)h(y)dy + ε.

From the proof of Theorem 3.1 we know that
∫

D
φ0(y)h(y)dy < ∞. Now the conclusion of

the lemma follows easily from the fact that limx→z φ0(x) = 0. 2

Now we can prove the main result of this section: the boundary Harnack principle.

Theorem 6.3 Suppose that D is a bounded Lipschitz domain, V is an open subset of Rd

such that V ∩∂D is non-empty, and that K is a compact subset of V . There exists a constant

c > 0 such that for any two functions h1 and h2 in H+
2−α satisfying

lim
x→z

hi(x)

κD
α (x)

= 0, z ∈ V ∩ ∂D, i = 1, 2,

we have
h1(x)

h2(x)
≤ c

h1(y)

h2(y)
, x, y ∈ K ∩D.

Proof. It follows from Corollary 4.7 of [19] and Proposition 6.1 that there exist positive

constants c1 and c2 such that

c1φ0(x)φ0(y) ≤ GD
2−α(x, y) ≤ c2

φ0(x)φ0(y)

|x− y|m−2+α
, x, y ∈ D,

where m > d is given in Proposition 6.1. Therefore by (5.6) we get that there exist positive

constants c3 and c4 such that

c3φ0(x) ≤ MD
2−α(x, z) ≤ c4φ0(x), x ∈ K ∩D, z ∈ ∂D \ V. (6.1)

Suppose that h1 and h2 are two functions in H+
2−α such that

lim
x→z

hi(x)

κD
α (x)

= 0, z ∈ V ∩ ∂D, i = 1, 2,
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then by Lemma 6.2 we know that

lim
x→z

GD
α hi(x) = 0, z ∈ V ∩ ∂D, i = 1, 2.

Now by Corollary 8.1.6 of [15] we know that the Martin measures µ1 and µ2 of GD
α h1 and

GD
α h2 are supported by ∂D \ V and so we have

GD
α hi(x) =

∫
∂D\V

MD(x, z)µi(dz), x ∈ D, i = 1, 2.

Using Proposition 5.5 we get that

hi(x) =

∫
∂D\V

MD
2−α(x, z)νi(dz), x ∈ D, i = 1, 2,

where νi(dz) = KD
2−α(x0, z)µi(dz), i = 1, 2. Now using (6.1) we get that

c3φ0(x)νi(∂D \ V ) ≤ hi(x) ≤ c4φ0(x)νi(∂D \ V ), x ∈ K ∩D, i = 1, 2.

The conclusion of the theorem follows immediately. 2

From the proof of Theorem 6.3 we can see that the following result is true.

Proposition 6.4 Suppose that D is a bounded Lipschitz domain and V an open subset of

Rd such that V ∩ ∂D is non-empty. If h ∈ H+
2−α satisfies

lim
x→z

h(x)

κD
α (x)

= 0, z ∈ V ∩ ∂D,

then

lim
x→z

h(x) = 0, z ∈ V ∩ ∂D.

Proof. From the proof of Theorem 6.3 we know that the Martin measure ν of h is supported

by ∂D \ V and so we have

h(x) =

∫
∂D\V

MD
2−α(x, z)ν(dz), x ∈ D.

For any z0 ∈ V ∩ ∂D, take δ > 0 small enough so that B(z0, δ) ⊂ B(z0, δ) ⊂ V . Then by

(6.1) we get that

c1φ0(x) ≤ MD
2−α(x, z) ≤ c2φ0(x), x ∈ B(z0, δ) ∩D, z ∈ ∂D \ V
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for some positive constants c1 and c2. Thus

h(x) ≤ c2φ0(x)ν(∂D \ V ), x ∈ B(z0, δ) ∩D,

from which the assertion of the proposition follows immediately. 2

Remark All the results in this paper remain valid when we replace the Brownian motion

Xt by an elliptic diffusion whose generator is given by

L =
d∑

i,j=1

∂i(aij∂j)

where (aij) satisfies

λ−1‖ξ‖2 ≤
d∑

i,j=1

aijξiξj ≤ λ‖ξ‖2, x, ξ ∈ Rd

for some constant λ > 0.
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[19] R. Song and Z. Vondraček, Potential Theory of Subordinate Killed Brownian Motion in a
Domain, Probab. Th. Rel. Fields, 125(2003), 578–592.

[20] K. Yosida, Functional Analysis, 6th edition, Springer-Verlag, Berlin, 1980.

[21] Z. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J.
Math. Anal. Appl., 116(1986), 309–334.

Joseph Glover, Department of Mathematics, University of Florida, Gainesville, FL 32611,

USA. Email: glover@math.ufl.edu

28



Zoran Pop-Stojanovic, Department of Mathematics, University of Florida, Gainesville, FL

32611, USA. Email: zps@math.ufl.edu

Murali Rao, Department of Mathematics, University of Florida, Gainesville, FL 32611, USA.

Email: rao@math.ufl.edu
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