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Abstract

Let X be a standard Markov process with state space E and let F be a closed subset of E.
A nonnegative function f on F is extended probabilistically to a function hf on the whole space
E. We show that the extension hf is harmonic with respect to X provided that f is harmonic
with respect to Y , the trace process on F of the process X. A consequence is that if the Harnack
inequality holds for X, it also holds for the trace process Y . Several examples illustrating the
usefulness of the result are given.
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1 Introduction

This paper is motivated by the recent work [5] which proposes to study d-dimensional non-local
operators by means of (d + 1)-dimensional local operators. A probabilistic interpretation of this
approach is to consider a d-dimensional subordinate Brownian motion Y as the trace of a (d+ 1)-
dimensional diffusion X on the hyperplane H = Rd × {0}. In this paper we consider the case
of a standard Markov process X on a locally compact separable metric space E and the trace of
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X on a closed subset F of E. Our main goal is to show that, under reasonable conditions, the
Harnack inequality holds for the trace process if it holds for X. The main tool consists of studying
the relationship between harmonic functions with respect to the trace process and their extensions
from F to the whole space E. To be more precise, let σF = inf{t > 0 : Xt ∈ F} be the hitting
time to F . For a nonnegative Borel function f on F we define its extension hf : E → [0,∞] by
hf (x) = Ex[f(XσF )], x ∈ E. It is a well-known fact that this extension is harmonic with respect to
X outside F . The first result we prove is Theorem 2.1 which states that (under certain reasonable
conditions) if f is harmonic in F ∩ D with respect to the trace process, then the extension hf is
harmonic with respect to X in D. Here D is an open subset of E. As an immediate consequence
of this result we record the following fact: If the Harnack inequality holds for X, then it also holds
for the trace process. We give several examples in which the Harnack inequality is established for
some processes which can be realized as traces of other processes. When all harmonic functions
with respect to X are continuous, we also prove a converse of Theorem 2.1.

The rest of the paper is organized as follows. In Section 2, we discuss trace processes of standard
Markov processes and the relation between harmonic functions with respect to the original process
and harmonic functions with respect to its trace process. Section 3 gives a few examples of trace
processes and applications of the results in Section 2. In Section 4, we prove the converse of the
Theorem 2.1.

In this paper, we denote “:=” to mean “is defined to be”. For two functions f and g, the notation
“f � g” means that there exist constants c2 > c1 > 0 such that c1g ≤ f ≤ c2g. For two real numbers
a and b, a ∧ b := min{a, b}. For a set K in a space E, we use Kc to denote its complement in
E, that is, Kc := E \K. We will use ∂ to denote a cemetery point and for every function f , we
extend its definition to ∂ by setting f(∂) = 0. For a topological space E, we use B(E) to denote
the Borel σ-field on E, Bµ(E) the µ-completion of B(E), and we define B∗(E) := ∩µ∈P(E)Bµ(E),
where P(E) is the collection of all probability measures on E. Each element of B∗(E) is called a
universally measurable subset of E. We use the notation Px(Xt ∈ · ) = P(Xt ∈ · |X0 = x) and for
µ ∈ P(E), Pµ(Xt ∈ · ) :=

∫
E Px(Xt ∈ · )µ(dx).

Throughout this paper, we use c, c1, c2, · · · to denote generic constants, whose exact values are
not important and can change from one appearance to another.

2 Setup and Main Result

Assume that (E, ρ) is a locally compact separable metric space with the metric ρ and that X =
(Ω,F ,Ft, Xt,Px, x ∈ E) is a standard process on E, that is, a normal right continuous Markov
process which is quasi-left continuous on (0, ζ), where ζ := inf{t ≥ 0 : Xt = ∂} is the lifetime of
the process. The shift operators θt, t ≥ 0, satisfy Xs ◦ θt = Xs+t identically for s, t ≥ 0.

The semigroup {Pt}t≥0 of X on the space of nonnegative Borel functions on E is defined by

Ptf(x) := Ex[f(Xt)] = Ex[f(Xt) : t < ζ ].
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{Pt}t≥0 can be extended to the space of nonnegative universally measurable functions on E.
Throughout this paper, ξ is an excessive measure of X with supp[ξ] = E; that is, ξ is a σ-finite

Borel measure on E with full support such that ξPt ≤ ξ for all t ≥ 0. Here ξPt denotes the measure
ν defined by

∫
E f(x)ν(dx) =

∫
E Ptf(x)ξ(dx) for any Borel function f ≥ 0 on E. Since X is right

continuous, we have limt→0 ξPt = ξ setwise.
Throughout this paper, A = (At : t ≥ 0) is a positive continuous additive functional of X in

the strict sense, i.e., in the sense of [3]. Then there exists a unique measure µ on E, which is called
the Revuz measure of A = (At : t ≥ 0), such that∫

E
f(x)µ(dx) = lim

t→0

1
t

Eξ
[∫ t

0
f(Xs)dAs

]
(2.1)

for all nonnegative Borel function f on E (see [7, Theorem A.3.5]). Let

R(ω) := inf{t > 0 : At(ω) > 0},

then the support of A is defined by

F := {x ∈ E : Px(R = 0) = 1}. (2.2)

Since t+R(θtω) ↓ R(ω) as t ↓ 0, F is a nearly Borel, finely closed set. Let σF := inf{t > 0 : Xt ∈ F}
be the first hitting time of F . Then Px(σF = R) = 1 for every x ∈ E (see [29, Section 64]).
Furthermore, each point of F is regular for F with respect to X, that is

Px(σF = 0) = 1, for every x ∈ F.

We are concerned with the trace of X on the subset F of E. We will use (τt : t ≥ 0) to denote
the right continuous inverse of (At : t ≥ 0) defined by

τt =

{
inf{s ≥ 0 : As > t} for t < Aζ− ,

∞ for t ≥ Aζ− .

Let ζ̂ := Aζ− . The time changed process Y = (Ω,F ,Fτt , Yt,Px, x ∈ F ) defined by

Yt =

{
Xτt for 0 ≤ t < ζ̂ ,

∂ for t ≥ ζ̂

is called the trace of X on F . It is known (cf. [7, Theorem A.3.11] and [29, (65.9)]) that Y is a right
process on (F,B∗(F )) with the life time ζ̂. Here, a right process on F is a right continuous, strong
Markov process with Yt(ω) = ∂ for t ≥ ζ̂(ω) and Pµ(lims↓t u(Ys) = u(Yt), ∀t ≥ 0) = 1 for any
µ ∈ P(F ) and any α-excessive function u with respect to Y and α ≥ 0. A [0,∞]-valued function u
on F is said to be α-excessive with respect to Y if u is B∗(F )-measurable and e−αtEx[u(Yt)] ↑ u(x) as
t ↓ 0 for all x ∈ F . For recent development on trace processes, we refer the readers to [7, 8, 9, 16, 18].
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We will make the following assumptions on X and F throughout this paper.

A1. Every semipolar set with respect to X is polar with respect to X.

A2. For every point x ∈ F c we have

Px(σF <∞) > 0.

For the definitions of semipolar set and polar set and their basic properties, we refer the readers to
[3] and [7].

Since Px(σF = R) = 1, the assumption A2 is simply saying that our positive continuous additive
functional A of X is not trivial.

We introduce the following notations: For U ⊂ E, let τU := inf{t > 0 : Xt /∈ U} be the exit
time of X from U and τ̂U := inf{t > 0 : Yt /∈ U ∩F} be the exit time of Y from U ∩F . The notions
pertinent to the process Y will be denoted by ̂.

Suppose that D is an open subset of E. A nonnegative Borel function h on E is said to be
harmonic in D with respect to X if for any x ∈ D and any open subset U ⊂ U ⊂ D we have

h(y) = Ey[h(XτU ) : τU < ζ], for all y ∈ U. (2.3)

Harmonic functions with respect to Y are defined in a similar fashion using the relative topology.
For any function f : F → [0,∞), we define a function hf : E → [0,∞] by

hf (x) = Ex[f(XσF )], x ∈ E.

Note that hf (x) = f(x) on F since every point on F is regular for F with respect to X. The
function hf is called the extension of f . Using the strong Markov property, it is easy to see, and is
well known, that hf is harmonic in E \ F with respect to X.

In the remainder of this section, we will prove the following theorem.

Theorem 2.1 Suppose that f is a nonnegative function on F and D is an open subset of E with
D ∩ F 6= ∅. If the function f is harmonic in F ∩ D with respect to Y , then its extension hf is
harmonic in D with respect to X.

Fix an arbitrary open subset U ⊂ U ⊂ D and let

T := inf{t > 0 : Xt ∈ U c ∩ F}

be the first time the process X hits the set F outside of U . For simplicity, we let τ := τU = inf{t >
0 : Xt /∈ U}, but retain the notation τ̂U for the first exit time of Y from U ∩ F . An easy, but
fundamental observation, is that YbτU = XT Px-a.s. for every x ∈ U ∩F . Therefore, if f is harmonic
in F ∩ U with respect to Y , we have

f(x) = Ex[f(YbτU )] = Ex[f(XT )] , for every x ∈ U ∩ F. (2.4)
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Note that τ ≤ T , Px-a.s. for every x ∈ U .
One simple, but important observation is that, since F is finely closed, XσF ∈ F and XT ∈

U c ∩ F , Px-a.s. for every x ∈ E. (See, for example, [7, (A.2.5)] and [29, (10,6)]).

Lemma 2.2 Suppose that f is a nonnegative function on F .
(a) Let g(x) = Ex[f(XT ) : T < ζ ], x ∈ E. Then g(x) = Ex[g(Xτ ) : τ < ζ ] for every x ∈ U .
(b) If f is harmonic in D ∩ F with respect to Y , then

Ex[f(XT );σF < T ] = Ex[f(XσF ) : σF < T ] , x ∈ U .

Proof. (a) First note that on {τ < T} we have XT ◦ θτ = Xτ+T◦θτ = XT , Px-a.s. for every x ∈ U .
Therefore, for x ∈ U ,

Ex[g(Xτ ) : τ < T ] = Ex[EXτ [f(XT )] : τ < T ] = Ex[f(XT ◦ θτ ) : τ < T ] = Ex[f(XT ) : τ < T ] .

Let N be the set of irregular points of U c ∩ F with respect to X. N is semi-polar with respect to
X by [3, Proposition II.3.3], hence polar with respect to X by the assumption A1. Thus

Px(XT ∈ N) = 0, x ∈ U. (2.5)

On the other hand, if XT is in the set of regular points of U c ∩ F with respect to X, then on
{τ = T},

g(Xτ ) = g(XT ) = EXT [f(XT )] = f(XT ). (2.6)

Thus, by (2.5)-(2.6), for x ∈ U ,

Ex[g(Xτ ) : τ < ζ ] = Ex[g(Xτ ) : τ < T < ζ ] + Ex[g(Xτ ) : τ = T < ζ ]

= Ex[g(Xτ ) : τ < T < ζ ] + Ex[g(Xτ )1(Uc∩F )\N (Xτ ) : τ = T < ζ ]

= Ex[f(XT ) : τ < T < ζ ] + Ex[f(XT )1(Uc∩F )\N (Xτ ) : τ = T < ζ ]

= Ex[f(XT ) : τ < T < ζ ] + Ex[f(XT ) : τ = T < ζ ]

= Ex[f(XT ) : T < ζ ] = g(x).

(b) Note that on {σF < T} it holds that XσF ∈ U . Since f is harmonic in D ∩ F with respect to
Y , we have by (2.4) that EXσF [f(XT )] = f(XσF ) for every XσF ∈ U ∩ F . Moreover, if XT is a
regular point of U c ∩ F with respect to X, EXσF [f(XT )] = f(XσF ). Hence, for x ∈ U ,

Ex[f(XT ) : σF < T ] = Ex[f(XT ◦ θσF ) : σF < T ]

= Ex[EXσF [f(XT )] : σF < T ]

= Ex[EXσF [f(XT )]1U∪((Uc∩F )\N)(XT ) : σF < T ]

= Ex[f(XσF )1U∪((Uc∩F )\N)(XT ) : σF < T ]

= Ex[f(XσF ) : σF < T ] .
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Proof of Theorem 2.1: Let x ∈ U . Then

Ex[f(XT )] = Ex[f(XT ) : σF < T ] + Ex[f(XT ) : σF = T ]

= Ex[f(XσF ) : σF < T ] + Ex[f(XσF ) : σF = T ]

= Ex[f(XσF )] = hf (x) ,

where the equality in the second line follows from Lemma 2.2 (b). By Lemma 2.2 (a) we obtain
that hf (x) = Ex[hf (Xτ ) : τ < ζ ]. 2

We say that the Harnack inequality holds for X if for any open subset D of E and any compact
subset K of D, there exists a constant C > 0 depending only on D and K such that for nonnegative
function h harmonic in D with respect to X,

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

The Harnack inequality for Y is defined in the same way using the relative topology.
We say that the scale invariant Harnack inequality holds for X if there exist R > 0 and C > 0

such that for any x0 ∈ E, any r ≤ R and any nonnegative function h harmonic in B(x0, r) := {x ∈
E : ρ(x, x0) < r} with respect to X,

sup
x∈B(x0,r/2)

h(x) ≤ C inf
x∈B(x0,r/2)

h(x).

As an immediate consequence of Theorem 2.1, we get

Theorem 2.3 If the Harnack inequality holds for X, then the Harnack inequality also holds for Y .
If the scale invariant Harnack inequality holds for X, then the scale invariant Harnack inequality
also holds for Y in the following sense: there exist R > 0 and C > 0 such that for any x0 ∈ F , any
r ≤ R and any nonnegative function h harmonic in B(x0, r) ∩ F with respect to Y ,

sup
x∈B(x0,r/2)∩F

h(x) ≤ C inf
x∈B(x0,r/2)∩F

h(x).

Remark 2.4 We did not use the quasi-left continuity of X in this section. Thus one can easily see
that our main results (Theorem 2.1 and Theorem 2.3) are also true for right processes. Moreover,
all results except the second statement of Theorem 2.3 are true for right processes on a Radon
space, i.e., a space that is homeomorphic to a universally measurable subset of a compact metric
space.

Remark 2.5 By the strong Markov property, under the following assumption A1′ instead of the
assumption A1, Theorem 2.1 and Theorem 2.3 are also true. We omit the details.
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A1′ : For every open sets O1 ⊂ O2 with Oc2 ∩F 6= ∅, there exists an open subset U with O1 ⊂ U ⊂
U ⊂ O2 such that every point x ∈ U c ∩ F is regular point of U c ∩ F with respect to X, that is

Px(σUc∩F = 0) = 1, for every x ∈ U c ∩ F,

where σUc∩F = inf{t > 0 : Xt ∈ U c ∩ F} is the hitting time of U c ∩ F for X.

3 Examples

The first example we give concerns subordinate Brownian motions.

Example 3.1 Suppose that X(1)
t is a Brownian motion on Rd and X(2)

t is an independent diffusion
on R. Let m be the speed measure of X(2). It is well known that m is an excessive reference
measure for X(2), and X(2) is a symmetric process with respect to m. Define a measure ξ on Rd+1

by ξ(dx) = dx(1) × m(dx(2)), x = (x(1), x(2)) ∈ Rd+1, where dx(1) stands for the d-dimensional
Lebesgue measure. Then ξ is an excessive reference measure for the process Xt = (X(1)

t , X
(2)
t ) on

Rd+1 and X is symmetric with respect to ξ. Suppose that 0 is regular for itself with respect to X(2),
that is, starting from 0, X(2) returns to 0 immediately with probability 1. Let L = (Lt : t ≥ 0) be
the local time of X(2) at 0. Then for any t > 0 and x ∈ R we have

Ex[Lt] =
∫ t

0
p(2)(s, x, 0)ds,

where p(2) stands for the transition density of X(2) with respect to m. Using this, one can easily
check that for any nonnegative Borel function f on Rd+1 we have

lim
t→0

1
t

∫
Rd+1

ξ(dx)Ex
[∫ t

0
f(Xs)dLs

]
=
∫

Rd
f(x(1), 0)dx(1), for all x = (x(1), x(2)) ∈ Rd+1,

that is to say, as a positive continuous additive functional of X, the Revuz measure of L is the
d-dimensional Lebesgue measure on the hyperplane H := Rd×{0}. Since the support of L is clearly
equal to H, we take F = H. Let (τt : t ≥ 0) be the right-continuous inverse of (Lt : t ≥ 0). It is
well known that (τt : t ≥ 0) is a subordinator. The process Y defined by Yt := X(τt) is the trace of
X on H and it is a subordinate Brownian motion.

Since X is symmetric, semi-polar sets are polar by [17, Theorem 4.1.2]. Thus F and X satisfy
the assumptions A1 and A2.

For α ∈ (0, 2), let Zt be a Bessel process of dimension 2−α, that is a diffusion process on [0,∞)
with infinitesimal generator

1
2
d2

dx2
+

1− α
2x

d

dx
.

Similar to [28, Exercise XII.2.16], by changing the sign of each excursion of Z with probability 1/2,
we obtain a diffusion process X(2) on R whose generator on R \ {0} is given by

1
2
d2

dx2
+

1− α
2|x|

d

dx
.
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In this case the trace of X = (X(1), X(2)) on H is a symmetric α-stable process. Using results from
[14] one can check (see [5]) that the scale invariant Harnack inequality holds for X. Thus it follows
from Theorem 2.3 that the scale invariant Harnack inequality holds for the symmetric α-stable
process Y .

Example 3.2 Suppose that d ≥ 2 and X is a symmetric diffusion in Rd whose infinitesimal
generator is

∑d
i,j=1 ∂i(aij(x)∂j) with (aij(x)) being measurable and uniformly elliptic. It is well

known that the transition density p(t, x, y) satisfies the following estimates:

c1t
−d/2e−c2|x−y|

2/t ≤ p(t, x, y) ≤ c3t−d/2e−c4|x−y|
2/t (3.1)

for some positive constants ci, i = 1, 2, 3, 4, (see [15].)
Let µ be a Radon measure on Rd satisfying

µ(B(x, r)) ≤ crβ, for all x ∈ Rd, 0 < r < 1,

for some c > 0 and β > d − 2. Then, using (3.1), one can follow the proof of [24, Proposition
2.3] line by line to conclude that µ is smooth in the strict sense (see [17, p.195] for the definition).
Therefore it follows from [17, Theorem 5.1.7] that there exists a unique positive continuous additive
functional A = (At : t ≥ 0) of X in the strict sense with Revuz measure µ. Let F be the support
of A as in (2.2), which is also the quasi support of µ (see [17, p.168] for the definition). Then by
[17, Theorem 6.2.1], the trace process Y is a Hunt process on F .

Since the scale invariant Harnack inequality holds for X by [15], in the case when F satisfies
A2, we know by Theorem 2.3 that the scale invariant Harnack inequality also holds for Y . In
particular, if F is a closed β-set (i.e., µ(B(x, r)) � rβ for all x ∈ F and 0 < r ≤ 1) and µ is the
restriction to F of the β-dimensional Hausdorff measure for some β > d − 2, then F is nonpolar
and A2 is satisfied.

Example 3.3 Suppose that d ≥ 3. We assume that D is a bounded domain whose boundary ∂D
has zero Lebesgue measure and there exists a bounded linear extension operator T : W 1,2(D) →
W 1,2(Rd) such that Tf = f a.e. on D for f ∈ W 1,2(D). Here W 1,2(D) is Sobolev space on D. In
particular, bounded uniform domains satisfy the above condition. (For the definition of uniform
domains, see [2, Definition 1.1].)

LetX be a symmetric reflecting diffusion inD whose infinitesimal generator is
∑d

i,j=1 ∂i(aij(x)∂j)
with (aij(x)) being measurable and uniformly elliptic. See [6] and [2] for the definition and prop-
erties of X. It is well-known that the transition density p(t, x, y) satisfies the following estimates:

c1t
−d/2e−c2|x−y|

2/t ≤ p(t, x, y) ≤ c3t−d/2e−c4|x−y|
2/t, for all (t, x, y) ∈ (0, 1]×D ×D (3.2)

for some positive constants ci, i = 1, 2, 3, 4. (See [2, p.3] and [2, (3.6)].) From the above inequality
and the semigroup property, we have

p(t, x, y) ≤ c5, for every (t, x, y) ∈ (1,∞)×D ×D
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for some c5 > 0. Using the two displays above we easily show that

G1(x, y) :=
∫ ∞

0
e−tp(t, x, y)dt ≤ c6

1
|x− y|d−2

, x, y ∈ D (3.3)

for some c6 > 0. Let µ be a Radon measure on D satisfying

µ(B(x, r)) ≤ crβ, for all x ∈ D , 0 < r < 1 ,

for some c > 0 and β > d− 2. Then, using (3.3), one can follow the proof of [24, Proposition 2.3]
line by line and conclude that µ is smooth in the strict sense. Therefore, as in Example 3.3, there
exists a unique positive continuous additive functional A = (At : t ≥ 0) of X in the strict sense
with Revuz measure µ and the trace process Y is a Hunt process on F , the support of A as in (2.2).

Since the scale invariant Harnack inequality for X follows easily from (3.2) (see [15]), in the
case when F satisfies A2, we know by Theorem 2.3 that the scale invariant Harnack inequality also
holds for Y . In particular, if F is a closed β-set contained in D and µ is restriction to F of the
β-dimensional Hausdorff measure for some β > d− 2, then F is nonpolar and A2 is satisfied.

Example 3.4 Let E be a closed n-set in Rd with d ≥ 2 and 0 < n ≤ d. That is, there is a positive
Borel measure ν on E such that ν(B(x, r)) � rn for all x ∈ E and 0 < r ≤ 1.

Fix an n-measure ν on E and 0 < α < 2. Define

F =
{
u ∈ L2(E, ν) :

∫
E×E

(u(x)− u(y))2

|x− y|n+α
ν(dx)ν(dy) <∞

}
E(u, v) =

1
2

∫
E×E

c(x, y)(u(x)− u(y))(v(x)− v(y))
|x− y|n+α

ν(dx)ν(dy)

for u, v ∈ F , where c(x, y) is a symmetric function on E×E that is bounded between two positive
constants. It is easy to check that (E ,F) is a regular Dirichlet form on L2(E, ν) and therefore there
is an associated ν-symmetric Hunt process X on E starting from every point in E except for an
exceptional set that has zero capacity. The process X is called a stable-like process on E.

We further assume that there exists c1 > 0 such that ν(B(x, r)) ≤ c1 r
n for every x ∈ E and

r > 0. Then, it is shown in [11] that, in fact X is a Feller process on E and it has a Hölder
continuous transition density function p(t, x, y). Furthermore,

p(t, x, y) �
(
t−n/α ∧ t

|x− y|n+α

)
, for all (t, x, y) ∈ (0, 1]× E × E. (3.4)

Using this and the semigroup property we can easily show that there exists c2 > 0 such that

p(t, x, y) ≤ c2, for every t ≥ 1 and x, y ∈ E with |x− y| < 1.

Using the two displays above we can show that there exists c3 > 0 such that

G1(x, y) :=
∫ ∞

0
e−tp(t, x, y)dt ≤ c3

1
|x− y|n−α

, for every x, y ∈ E with |x− y| < 1. (3.5)
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Let µ be a Radon measure on E satisfying

µ(B(x, r)) ≤ crβ, for all x ∈ E, 0 < r < 1

for some c > 0 and β > n−α. Using (3.5), one can follow the proof of [24, Proposition 2.3] line by
line and conclude that µ is smooth in the strict sense. Therefore, as in Example 3.3, there exists a
unique positive continuous additive functional A = (At : t ≥ 0) of X in the strict sense with Revuz
measure µ and the trace process Y is a Hunt process on F , the support of A as in (2.2). Since the
scale invariant Harnack inequality for X holds (see [11]), in the case when F satisfies A2, we know
by Theorem 2.3 that the scale invariant Harnack inequality also holds for Y .

When E is the Euclidean closure of an open d-set in Rd and ξ is the Lebesgue measure on Rd,
the corresponding process X is the reflected α-stable process on E studied in [4]. In this case, if
F is a closed β-set contained in E and µ is the restriction to F of the β-dimensional Hausdorff
measure for some β > d− 2, then F is nonpolar and A2 is satisfied.

We can give a lot more examples of symmetric Markov processes and their traces where the
(scale invariant) Harnack inequality holds for some trace processes. For instance, we can give
explicit examples of trace processes of the subordinate Brownian motions studied in [26] and [23]
satisfying the scale invariant Harnack inequality, and we can also give explicit examples of trace
processes of the jump processes of mixed type studied in [12] satisfying the scale invariant Harnack
inequality. Now we give an example of a non-symmetric Markov process X and its traces.

Example 3.5 Let d ≥ 3. We say that a signed Radon measure ν on Rd belongs to the Kato class
Kd,i if limr↓0 supx∈Rd

∫
|x−y|≤r |x− y|

−d+i|ν|(dy) = 0, for i = 1, 2. We assume that µ = (µ1, . . . , µd)
is fixed with each µi being a signed measure on Rd belonging to Kd,1. We also assume that the
operator L is either L1 or L2 where

L1 :=
1
2

d∑
i,j=1

∂i(aij(x)∂j) and L2 :=
1
2

d∑
i,j=1

aij(x)∂i∂j

with A := (aij(x)) being C1 and uniformly elliptic but not necessarily symmetric. Informally
speaking, a diffusion process in Rd with drift µ is a diffusion process in Rd with generator L+µ ·∇.
For the precise definition of the diffusion X with drift µ and its property, we refer the readers to
[1, 20, 21, 22]. In [20] (also see Section 6 in [21]), it was shown that X has a density q(t, x, y) which
is continuous on (0,∞)×Rd×Rd and that there exist positive constants ci, i = 1, · · · , 6, such that

c1e
−c2tt−

d
2 e−

c3|x−y|
2

2t ≤ q(t, x, y) ≤ c4ec5tt−
d
2 e−

c6|x−y|
2

2t . (3.6)

Thus the process X satisfies the conditions (R), (T1), (T2), (U1) and (U2) in Chapter 5 of [13].
It follows from [13, Theorem 5.4] and the Corollary to [13, Theorem 5.2] that X satisfies Hunt’s
Hypothesis (B) and the equilibrium principle (E). By repeating the argument in the proof of [25,
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Theorem 2.5.1] we know that X satisfies the maximum principle (M) in Chapter 5 of [13]. Thus
by [13, Theorem 5.3] it follows that every semipolar set of X is polar for X, that is, A1 is valid.

Let D be an arbitrary bounded domain and XD be the subprocess of X killed upon leaving D
with the transition density function qD(t, x, y) with respect to the Lebesgue measure. Define

hD(x) :=
∫
D
GD(y, x)dy and ξD(dx) := hD(x)dx,

where GD(x, y) :=
∫∞
0 qD(t, x, y)dt is the Green function of XD. Then ξD is an excessive measure

with respect to XD [22, Proposition 2.2] and qD(t, x, y)/hD(y) is the transition density function of
XD with respect to the reference measure ξD.

It is proved in [22] that for any measure ν ∈ Kd,2, the measure hDν is a smooth measure of
XD with respect to ξ. Thus for any measure ν in Kd,2, we can construct the trace process Y of
X on the support of ν. For example, if U is a Lipschitz domain with U ⊂ D and σ is the surface
measure of ∂U , then it is easy to check that σ ∈ Kd,2. Thus we can talk about the trace Y of XD

on ∂U . Since the scale invariant Harnack inequality is valid for XD (see [20]), the scale invariant
Harnack inequality is also valid for Y .

4 Converse of Theorem 2.1

In this section, we continue to assume that X = (Ω,F ,Ft, Xt,Px, x ∈ E) is a standard process on
a locally compact separable metric space (E, ρ).

Besides A1 and A2, we further assume that X satisfies the following

A3. Every harmonic function in D with respect to X is continuous in D.

Recall that, for any function f : F → [0,∞), the extension hf of f is hf (x) := Ex[f(XσF )], for
x ∈ E.

Theorem 4.1 Suppose that f is a nonnegative function on F . If the extension hf of f is harmonic
with respect to X in an open subset D̃ of E and

Px
(

inf{t > 0 : Xt ∈ D̃c ∩ F} <∞
)

= 1 for every x ∈ F, (4.1)

then f is harmonic with respect to Y in D := D̃ ∩ F .

In the remainder of this section, we will prove Theorem 4.1. We fix an open set D̃ in E and put
D = D̃∩F . We assume that f is nonnegative function on F such that its extension hf is harmonic
with respect to X in D̃.

We fix a bounded open set B in F such that the closure of B in F is contained in D, and let
B̃ be any bounded open set strictly contained in D̃ such that B̃ ∩ F = B. Let

S0 := σF = inf{t > 0 : Xt ∈ F}

11



be the first time the process X hits F ,

T := T eB = inf{t > 0 : Xt ∈ B̃c ∩ F} (4.2)

be the first time the process X hits the set F outside of B̃ and

τ1 := τ eB = inf{t > 0 : Xt ∈ B̃c}

the exit time of X from B̃. Note that, by (4.1)

Px (T <∞) = 1 for every x ∈ F. (4.3)

We use the notation τ̂B for the first exit time of Y from B = B ∩ F . Let us inductively introduce
two families of stopping times. For n ≥ 1 let

Sn :=
{
τn + S0 ◦ θτn , τn < T ,

T , τn = T ,
(4.4)

τn+1 :=
{
Sn + τ1 ◦ θSn , Sn < T ,

T , Sn = T .
(4.5)

Note that for n ≥ 1 we have

Sn+1(ω) = Sn(ω) + S1 ◦ θSn(ω) , for Sn(ω) <∞. (4.6)

Lemma 4.2 Let x ∈ B. Then

Ex
[
EXτ1 [f(XS0) : S0 = T ]

]
= Ex [f(XS1) : S1 = T ] ,

Ex
[
EXτ1 [f(XS0) : S0 < T ]

]
= Ex [f(XS1) : S1 < T ] .

Proof. By the strong Markov property it follows that

Ex
[
EXτ1 [f(XS0)1{S0=T}]

]
= Ex

[
f(XS0 ◦ θτ1) 1{S0=T} ◦ θτ1

]
= Ex

[
f(XT ◦ θτ1) 1{S0◦θτ1=T◦θτ1}

]
= Ex

[
f(Xτ1+T◦θτ1 ) 1{S0◦θτ1=T−τ1}

]
= Ex

[
f(XT ) 1{τ1+S0◦θτ1=T}

]
= Ex

[
f(XT )1{S1=T}] = Ex[f(XS1)1{S1=T}

]
.

The proof of the second equality is similar and uses that on {S1 < T} it holds that τ1 < T , and
hence XS0 ◦ θτ1 = XS1 . 2

Lemma 4.3 Assume that hf is harmonic with respect to X in D̃. Then for every n ≥ 1 and every
x ∈ B,

f(x) = Ex[f(XSn)] .

12



Proof. For n = 1 and x ∈ B the result follows from the following computation:

f(x) = hf (x) = Ex[hf (Xτ1)] = Ex[EXτ1 [f(XS0)]]

= Ex[EXτ1 [f(XS0) : S0 = T ]] + Ex[EXτ1 [f(XS0) : S0 < T ]]

= Ex[f(XS1) : S1 = T ] + Ex[f(XS1) : S1 < T ] = Ex[f(XS1)] ,

where the last line follows from the previous lemma. The proof for n ≥ 2 follows by induction. By
use of (4.6), we have

Ex[f(XSn+1)] = Ex[f(XSn+S1◦θSn )] = Ex[f(XS1 ◦ θSn)]

= Ex[EXSn [f(XS1)]] = Ex[f(XSn)] = f(x) .

2

Proof of Theorem 4.1: Define S = limn→∞ Sn ≤ T and ρ = limn→∞ τn. Note that {τ̂B < ζ̂} =
{T < ζ}. If Sn < T < ζ for every n ≥ 1, then it holds that S1 < S2 < · · · < T < ζ. Then also
τ1 < τ2 < · · · < T < ζ. By the quasi-left continuity of X, XS = limn→∞XSn = limn→∞Xτn = Xρ.
Since XSn ∈ B for all n ≥ 1, it follows that XS ∈ Cl(B) where Cl(B) is the closure of B in
F . Similarly, Xτn ∈ B̃c for all n ≥ 1, hence Xρ ∈ B̃c. Therefore, XS = Xρ ∈ Cl(B) ∩ B̃c ⊂
Cl(B) ∩Bc = ∂B where ∂B denotes the boundary of B in F . In particular, it follows that S = T ,
and XT = YbτB ∈ ∂B. Since hf is harmonic with respect to X in D̃, f is continuous in D by A3.
Thus by the Lebesgue dominated convergence theorem, we have

lim
k→∞

Ex[f(XSk) : ∩∞n=0{Sn < T < ζ}] = Ex[f(YbτB ) : ∩∞n=0{Sn < T < ζ}]. (4.7)

Secondly, we have

lim
k→∞

Ex[f(XSk) : ∪∞n=0{Sn = T < ζ}] = Ex[f(XT ) : ∪∞n=0{Sn = T < ζ}]

= Ex[f(YbτB ) : ∪∞n=0{Sn = T < ζ}]. (4.8)

Finally, by (4.3), Lemma 4.3, (4.7) and (4.8), it follows that

f(x) = lim
k→∞

Ex[f(XSk)]

= lim
k→∞

Ex[f(XSk) : ∩∞n=0{Sn < T < ζ}] + lim
k→∞

Ex[f(XSk) : ∪∞n=0{Sn = T < ζ}]

= Ex[f(YbτB ); τ̂B < ζ̂ ] .

Since B is an arbitrary bounded open set strictly contained in D, this proves that f is harmonic
with respect to Y in D. 2

In fact, it is easy to see that Theorem 4.1 is also true when X is a right process on a Radon
space.
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Remark 4.4 Many examples of the trace processes are pure jump processes. For a large class of
pure jump processes, the following is true:

A4 : For all open sets D1 and D2 in F with Cl(D1) ⊂ D2, there exists an open set B in F with
Cl(D1) ⊂ B ⊂ Cl(B) ⊂ D2 such that

Px(YbτB ∈ ∂B) = 0 for every x ∈ B. (4.9)

(See [10, 30, 31].) Here and below, Cl(B) denotes the closure of B in F and ∂B denotes the
boundary of B in F . For example, by [30, Corollary 4.3], the trace process we considered in
Example 3.1 satisfies A4 since (4.9) is true for every smooth open set in Rd. Recall that T , Sn and
τn are the stopping times in (4.2), (4.4)-(4.5) respectively. Then it is easy to see that if Y satisfies
(4.1) and (4.9), then

Px(∪∞n=0{Sn = T}) = 1 for every x ∈ B. (4.10)

In fact, suppose, on the contrary, that on a set of positive Px probability it holds that S1 < S2 <

· · · < T . Then also τ1 < τ2 < · · · < T . Define S = limn→∞ Sn ≤ T and ρ = limn→∞ τn. Note that
{τ̂B < ζ̂} = {T < ζ}. If Sn < T < ζ for every n ≥ 1, then it holds that S1 < S2 < · · · < T < ζ.
Then also τ1 < τ2 < · · · < T < ζ. By the quasi-left continuity of X, XS = limn→∞XSn =
limn→∞Xτn = Xρ. Since XSn ∈ B for all n ≥ 1, it follows that XS ∈ Cl(B). Similarly, Xτn ∈ B̃c

for all n ≥ 1, hence Xρ ∈ B̃c ⊂ Bc. Therefore, XS = Xρ ∈ ∂B. In particular, it follows that S = T ,
and XT = YτB ∈ ∂B. Hence, Px(YbτB ∈ ∂B) > 0, which contradicts (4.9).

Now suppose f is a nonnegative real-valued function on F with the harmonic extension hf in
an open subset D̃ of E. Instead of A3, we assume that f is locally bounded on D := D̃ ∩ F and
(4.10) is true. Then we get

lim
n→∞

Ex[f(XSn) : Sn < T ] ≤ c lim
n→∞

Px(Sn < T ) = 0. (4.11)

Moreover, by (4.10), ({Sn = T} : n ≥ 0) is a sequence of events which increases to a Px-a.s. event.
Therefore, by the monotone convergence theorem we have

lim
n→∞

Ex[f(XSn) : Sn = T ] = lim
n→∞

Ex[f(XT ) : Sn = T ]

= Ex[f(XT ) : ∪∞n=0{Sn = T}] = Ex[f(XT )] . (4.12)

Thus, by use of Lemma 4.3 and (4.11)-(4.12), it follows that

f(x) = lim
n→∞

Ex[f(XSn)]

= lim
n→∞

Ex[f(XSn) : Sn < T ] + lim
n→∞

Ex[f(XSn) : Sn = T ]

= Ex[f(XT )] = Ex[f(YbτB )] .

Therefore, by the strong Markov property, we can conclude that Theorem 4.1 is true for locally
bounded f without the assumption A3 if Y satisfies A4.
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