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1 Introduction

Let X = (Xt, Px, x ∈ Rd) be a conservative strong Markov process on Rd. A nonnegative

Borel function h on Rd is said to be harmonic with respect to X in a domain (i.e., a connected

open set) D ⊂ Rd if it is not identically infinite in D and if for any bounded open subset

B ⊂ B ⊂ D,

h(x) = Ex[h(X(τB))1τB<∞], ∀x ∈ B,

where τB = inf{t > 0 : Xt /∈ B} is the first exit time of B.

We say that the Harnack inequality holds for X if for any domain D ⊂ Rd and any

compact subset K of D, there is a constant C > 0 depending only on D and K such that

for any nonnegative function h harmonic with respect to X in D,

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

The Harnack inequality is a very important tool in studying harmonic functions. For in-

stance, the Harnack inequality for diffusion processes is extremely important in the study

of partial differential equations. It is well known that, when X is a Brownian motion (or

a diffusion process satisfying certain conditions), the Harnack inequality holds. Until very

recently almost all results concerning the Harnack inequality were restricted to Markov pro-

cesses with continuous paths, i.e., to harmonic functions corresponding to local operators.

The only exception was the rotationally invariant α-stable process, α ∈ (0, 2), in which case

the Harnack inequality follows directly from the explicit form of the exit distribution from

a ball (i.e., the corresponding Poisson kernel).

The first result on the Harnack inequality for processes with jumps (other than rotation-

ally invariant stable processes) was obtained by Bass and Levin in [1]. They studied a jump

process whose jump kernel is symmetric and comparable to the jump kernel of the rotation-

ally invariant α-stable process and proved the Harnack inequality for bounded nonnegative

harmonic functions of this process. Vondraček [15] adapted the arguments of [1] and proved

that, when X is a (not necessarily rotationally invariant) strictly α-stable process, α ∈ (0, 2),

the Harnack inequality holds. In a recent preprint [3], the Harnack inequality was proved

by using a different method for symmetric α-stable processes under the assumptions that

α ∈ (0, 1) and the Lévy measure is comparable to the Lévy measure of the rotationally

invariant α-stable process. In [7] Kolokoltsov proved detailed estimates on the transition

density of symmetric α-stable processes whose Lévy measures are comparable to the Lévy

measure of the rotationally invariant α-stable process. The estimates of [7] could be used to

prove the Harnack inequality for the symmetric stable processes studied in [7]. We would

like to emphasize that the processes in [1], [3], [7] and [15] satisfy a scaling property, a fact

often used in the arguments of these papers.
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The goal of this paper is to extend Bass-Levin’s method and prove the Harnack inequality

for quite general classes of Markov processes. These classes include processes that need not

have any scaling property and are not necessarily symmetric. In Section 2, we extract the

essential ingredients of the Bass-Levin method by isolating three conditions that suffice to

prove a Harnack inequality. Then we prove that a Markov process satisfying those conditions

indeed satisfies the Harnack inequality. The rest of the paper is devoted to verifying that

various classes of processes satisfy those conditions. In Section 3 we study Lévy processes

and give sufficient conditions on the Lévy measure for a Harnack inequality to hold. In

particular, in Examples 3.6 – 3.10 we show that various mixtures of stable processes, as

well as relativistic stable processes, satisfy the Harnack inequality. In Section 4 we show

that the conditions are satisfied for a class of symmetric Markov processes with no diffusion

component. In Section 5 we deal with non-symmetric Markov processes with Lévy type

generators, again with no diffusion component.

For any subset A of Rd, we use τA and TA to denote the exit and hitting times of A

respectively.

In this paper, we use C2
c (Rd) to denote the family of C2 functions with compact support,

and C2
b (Rd) to denote the family of C2 functions f such that f and its partials up to order

2 are bounded.

2 General Results

Suppose that X = (Ω,M,Mt, Xt, Px, x ∈ Rd) is a conservative Borel right process such that

its sample paths have left limits (in the Euclidean topology of Rd) in (0,∞). We assume

that X admits a Lévy system (N,H), where N(x, dy) is a kernel on Rd and Ht is a positive

continuous additive functional of X with bounded 1-potential such that for any nonnegative

Borel function f on Rd × Rd vanishing on the diagonal and any x ∈ Rd,

Ex

(∑
s≤t

f(Xs−, Xs)

)
= Ex

(∫ t

0

∫
Rd

f(Xs, y)N(Xs, dy)dHs

)
.

In this paper we assume that N(x, dy) has a density j(x, y) with respect to the Lebesgue

measure and that Ht = t.

Now we state the conditions that are needed for the proof of the Harnack inequality:

(A1) There exists a constant C1 > 0 such that for any r ∈ (0, 1) and x ∈ Rd,

sup
z∈B(x,r)

EzτB(x,r) ≤ C1 inf
z∈B(x,r/2)

EzτB(x,r) <∞.
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(A2) There exists a constant C2 > 0 such that for all r ∈ (0, 1), x ∈ Rd and A ⊂ B(x, r)

we have

Py(TA < τB(x,3r)) ≥ C2
|A|

|B(x, r)|
, ∀y ∈ B(x, 2r).

(A3) There exist positive constants C3 and C4 such that for all x ∈ Rd, r ∈ (0, 1), z ∈
B(x, r/2) and every nonnegative bounded function H with support in B(x, 2r)c we

have

EzH(X(τB(x,r))) ≤ C3(EzτB(x,r))

∫
H(y)j(x, y)dy

and

EzH(X(τB(x,r))) ≥ C4(EzτB(x,r))

∫
H(y)j(x, y)dy.

Lemma 2.1 If a bounded nonnegative function h on Rd is harmonic with respect to X in a

domain D ⊂ Rd, then for any x ∈ D,

Px(h(Xt) is right continuous in [0, τD)) = 1.

Proof. For any bounded open set B ⊂ B ⊂ D, let XB = (XB
t ,Px, x ∈ B) be the process

obtained by killing the process X upon exiting from B, then it follows from Corollary (12.24)

of [14] that XB is a right process. Using the fact that h is harmonic in D and the strong

Markov property, one can see that for every x ∈ B,

h(X(t ∧ τB)) = h(X(t))1t<τB
+ h(X(τB))1t≥τB

= EX(t)[h(X(τB))1τB<∞]1t<τB
+ h(X(τB))1t≥τB

= Ex[(h(X(τB))1τB<∞) ◦ θ(t) |Mt]1t<τB
+ h(X(τB))1t≥τB

= Ex[h(X(τB))1t<τB<∞ |Mt] + Ex[h(X(τB))1t≥τB
|Mt]

= Ex[h(X(τB))1τB<∞ |Mt],

Thus (h(X(t ∧ τB))) is a Px-martingale for every x ∈ B. It follows that for any x ∈ B and

any t > 0,

Ex[h(X(τB))1τB<∞|Mt] ≥ Ex[h(X(τB))1t<τB<∞|Mt]

= Ex[h(X(τB))1τB<∞|Mt]1t<τB

= h(X(t))1t<τB
= h(XB

t ),

thus

h(x) ≥ Exh(X
B
t ).

Taking expectation we get

Ex[h(X
B
t )] = Ex[h(X(τB))1t<τB<∞].
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Since for any x ∈ B, we have limt↓0 Px(t < τB) = 1, it follows that

lim
t↓0

Ex[h(X
B
t )] = Ex[h(X(τB))1τB<∞] = h(x),

which implies that h is excessive with respect to XB. Therefore for any x ∈ B,

Px(h(Xt) is right continuous in [0, τB)) = 1.

2

Theorem 2.2 Suppose that the conditions (A1)–(A3) are satisfied. Then there exists C5 > 0

such that, for any r ∈ (0, 1/4), x0 ∈ Rd, and any function h which is nonnegative, bounded

on Rd, and harmonic with respect to X in B(x0, 16r), we have

h(x) ≤ C5h(y), ∀x, y ∈ B(x0, r).

Proof. This proof is basically the proof given in [1]. Without loss of generality we may

assume that h is strictly positive in B(x0, 16r). Using the harmonicity of h and the condition

(A2), one can show that h is bounded from below on B(x0, r) by a positive number. To see

this, let ε > 0 be such that F = {x ∈ B(x0, 3r) \B(x0, 2r) : h(x) > ε} has positive Lebesgue

measure. Take a compact subset K of F so that it has positive Lebesgue measure. Then by

condition (A2), for x ∈ B(x0, r), we have

h(x) = Ex

[
h(X(TK ∧ τB(x0,3r)))1{TK∧τB(x0,3r)<∞}

]
> εC2

|K|
|B(x0, 3r)|

.

By taking a constant multiple of h we may assume that infB(x0,r) h = 1/2. Choose z0 ∈
B(x0, r) such that h(z0) ≤ 1. We want to show that h is bounded above in B(x0, r) by a

constant C > 0 independent of h and r ∈ (0, 1/4). We will establish this by contradiction:

If there exists a point x ∈ B(x0, r) with h(x) = K where K is too large, we can obtain a

sequence of points in B(x0, 2r) along which h is unbounded.

Using conditions (A1) and (A3), one can see that there exists c1 > 0 such that if x ∈ Rd,

s ∈ (0, 1) and H is nonnegative bounded function with support in B(x, 2s)c, then for any

y, z ∈ B(x, s/2),

EzH(X(τB(x,s))) ≤ c1EyH(X(τB(x,s))). (2.1)

By (A2), there exists c2 > 0 such that if A ⊂ B(x0, 4r) then

Py(TA < τB(x0,16r)) ≥ c2
|A|

|B(x0, 4r)|
, ∀y ∈ B(x0, 8r). (2.2)
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Again by (A2), there exists c3 > 0 such that if x ∈ Rd, s ∈ (0, 1) and F ⊂ B(x, s/3) with

|F |/|B(x, s/3)| ≥ 1/3, then

Px(TF < τB(x,s)) ≥ c3. (2.3)

Let

η =
c3
3
, ζ = (

1

3
∧ 1

c1
)η. (2.4)

Now suppose there exists x ∈ B(x0, r) with h(x) = K for K > 2|B(x0,4r)|
c2ζ

∨ 2(12)d

c2ζ
. Let s be

chosen so that

|B(x,
s

3
)| = 2|B(x0, 4r)|

c2ζK
< 1. (2.5)

Note that this implies

s = 12(
2

c2ζ
)1/drK−1/d < r. (2.6)

Let us write Bs for B(x, s), τs for τB(x,s), and similarly for B2s and τ2s. Let A be a compact

subset of

A′ = {u ∈ B(x,
s

3
) : h(u) ≥ ζK}.

It follows from Lemma 2.1 that h(Xt) is right continuous in [0, τB(x0,16r)). Since z0 ∈ B(x0, r)

and A′ ⊂ B(x, s
3
) ⊂ B(x0, 2r), we can apply (2.2) to get

1 ≥ h(z0) ≥ Ez0 [h(X(TA ∧ τB(x0,16r)))1{TA<τB(x0,16r)}]

≥ ζKPz0 [TA < τB(x0,16r)]

≥ c2ζK
|A|

|B(x0, 4r)|
.

Hence
|A|

|B(x, s
3
)|
≤ |B(x0, 4r)|
c2ζK|B(x, s

3
)|

=
1

2
.

This implies that |A′|/|B(x, s/3)| ≤ 1/2. Let F be a compact subset of B(x, s/3) \ A′ such

that
|F |

|B(x, s
3
)|
≥ 1

3
. (2.7)

Let H = h · 1Bc
2s

. We claim that

Ex[h(X(τs));X(τs) /∈ B2s] ≤ ηK.

If not, ExH(X(τs)) > ηK, and by (2.1), for all y ∈ B(x, s/3), we have

h(y) = Eyh(X(τs)) ≥ Ey[h(X(τs));X(τs) /∈ B2s]

≥ c−1
1 ExH(X(τs)) ≥ c−1

1 ηK ≥ ζK,
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contradicting (2.7) and the definition of A′.

Let M = supB2s
h. We then have

K = h(x) = Exh(X(τs))

= Ex[h(X(TF ));TF < τs] + Ex[h(X(τs)); τs < TF ;X(τs) ∈ B2s]

+Ex[h(X(τs)); τs < TF ;X(τs) /∈ B2s]

≤ ζKPx(TF < τs) +MPx(τs < TF ) + ηK

= ζKPx(TF < τs) +M(1− Px(TF < τs)) + ηK,

or equivalently
M

K
≥ 1− η − ζPx(TF < τs)

1− Px(TF < τs)
.

Using (2.3) and (2.4) we see that there exists β > 0 such that M ≥ K(1 + 2β). Therefore

there exists x′ ∈ B(x, 2s) with h(x′) ≥ K(1 + β).

Now suppose there exists x1 ∈ B(x0, r) with h(x1) = K1. Define s1 in terms of K1

analogously to (2.5). Using the above argument (with x1 replacing x and x2 replacing x′),

there exists x2 ∈ B(x1, 2s1) with h(x2) = K2 ≥ (1 + β)K1. We continue and obtain s2 and

then x3, K3, s3, etc. Note that xi+1 ∈ B(xi, 2si) and Ki ≥ (1 + β)i−1K1. In view of (2.6),∑
i |xi+1 − xi| ≤ c4rK

−1/d
1 . So if K1 > cd4, then we have a sequence x1, x2, . . . contained in

B(x0, 2r) with h(xi) ≥ (1 + β)i−1K1 → ∞, a contradiction to h being bounded. Therefore

we can not take K1 larger than cd4, and thus supy∈B(x0,r) h(y) ≤ cd4, which is what we set out

to prove. 2

By using standard chain argument, we can easily get the following consequence of the

theorem above.

Corollary 2.3 Suppose that (A1)–(A3) are satisfied. For any domain D of Rd and any

compact subset K of D, there exists a constant C6 = C6(D,K) > 0 such that for any

function h which is nonnegative bounded in Rd and harmonic with respect to X in D, we

have

h(x) ≤ C6h(y), x, y ∈ K.

In the next result, we remove the boundedness assumption on the harmonic functions in

Corollary 2.3.

Theorem 2.4 Suppose that (A1)–(A3) are satisfied. For any domain D of Rd and any

compact subset K of D, there exists a constant C7 = C7(D,K) > 0 such that for any

function h which is nonnegative in Rd and harmonic with respect to X in D, we have

h(x) ≤ C7h(y), x, y ∈ K.
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Proof. Choose a bounded domain U such that K ⊂ U ⊂ U ⊂ D. If h is harmonic with

respect to X in D, then

h(x) = Ex[h(X(τU))1{τU<∞}], x ∈ U.

For any n ≥ 1, define

hn(x) = Ex[(h ∧ n)(X(τU))1{τU<∞}], x ∈ Rd.

Then hn is a bounded nonnegative function on Rd, harmonic with respect to X in U , and

lim
n↑∞

hn(x) = h(x), x ∈ Rd.

It follows from Corollary 2.3 that there exists a constant c = c(U,K) > 0 such that

hn(x) ≤ chn(y), x, y ∈ K,n ≥ 1.

Letting n ↑ ∞, we get that

h(x) ≤ ch(y), x, y ∈ K.
2

3 Lévy Processes

In this section we consider Lévy processes in Rd with no Gaussian component. Any Lévy

process is a conservative Feller process, so it is a Borel right process with left limits. Our goal

is to find conditions on the Lévy measure of the process that are sufficient for the Harnack

inequality.

Let X = (Xt,Px) be a Lévy process in Rd such that the characteristic function µ̂ of X1

is given by

µ̂(z) = exp

[∫
Rd

(ei〈z,x〉 − 1− i〈z, x〉1(|x|≤1)) ν(dx)

]
, z ∈ Rd .

Here ν is the Lévy measure of X, i. e., a measure on Rd satisfying ν({0}) = 0 and
∫

Rd(|x|2 ∧
1) ν(dx) <∞. Moreover, throughout this section we assume that ν(Rd) = ∞, thus excluding

the compound Poisson case. It is well known that (ν(x−dy), t) is a Lévy system for X. The

infinitesimal generator L of the corresponding semigroup is given by

Lf(x) =

∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1(|y|≤1)

)
ν(dy) (3.1)

for f ∈ C2
b (Rd). Moreover, for every f ∈ C2

b (Rd)

f(Xt)− f(X0)−
∫ t

0

Lf(Xs) ds

is a Px-martingale for every x ∈ Rd.
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3.1 Radially symmetric case

Assume that the Lévy measure ν has a radially symmetric non-increasing density j, i. e. ,

ν(dy) = j(|y|) dy. An important consequence of this assumption is the fact that for every

r ∈ (0, 1), ∫
(r≤|y|≤1)

y ν(dy) = 0 ,

implying that

Lf(x) =

∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1(|y|<r)

)
ν(dy) , (3.2)

for every r ∈ (0, 1), f ∈ C2
b (Rd).

We will assume that j satisfies the following hypotheses: There exists c > 0 such that

j(u) ≤ cj(2u) , for all u ∈ (0, 2) , (3.3)

j(u) ≤ cj(u+ 1) , for all u ≥ 1 . (3.4)

Note that these hypotheses imply that j(u) > 0 for all u > 0.

Let

φ1(r) = r−2

∫ r

0

ud+1j(u)du, φ2(r) =

∫ ∞

r

ud−1j(u)du , (3.5)

and let φ(r) = φ1(r) + φ2(r).

Lemma 3.1 There exists a constant C1 > 0 such that for every r ∈ (0, 1) and every t > 0,

Px(sup
s≤t

|Xs −X0| > r) ≤ C1φ(r)t .

Proof. It suffices to prove the lemma for x = 0. Let f ∈ C2
b (Rd), 0 ≤ f ≤ 1, f(0) = 0, and

f(y) = 1 for all |y| ≥ 1. Let c1 = supy

∑
j,k |(∂2/∂yj∂yk)f(y)|. Then |f(z + y) − f(z) − y ·

∇f(z)| ≤ (1/2)
∑

j,k |(∂2/∂yj∂yk)f(y)||y|2 ≤ c1|y|2. For r ∈ (0, 1), let fr(y) = f(y/r). Then

the following estimate is valid:

|fr(z + y)− fr(z)− y · ∇fr(z)1(|y|≤r)| ≤ c1
2

|y|2

r2
1(|y|≤r) + 1(|y|≥r)

≤ c2(1(|y|≤r)
|y|2

r2
+ 1(|y|≥r)) .

By using (3.2), we get the following estimate:

|Lfr(z)| ≤
∫

Rd

|fr(z + y)− fr(z)− y · ∇fr(z)1(|y|≤r)| ν(dy)

≤ c2

∫
Rd

(1(|y|≤r)
|y|2

r2
+ 1(|y|≥r)) ν(dy)

≤ c3(φ1(r) + φ2(r)) = c3φ(r) ,

9



where the constant c3 depends on f and dimension d, but not on r. Further, by the martingale

property,

E0fr(X(τB(0,r) ∧ t))− fr(0) = E0

∫ τB(0,r)∧t

0

Lfr(Xs) ds

implying the estimate

E0fr(X(τB(0,r) ∧ t)) ≤ c3φ(r)t .

If X exits B(0, r) before time t, then fr(X(τB(0,r) ∧ t)) = 1, so the left hand side is larger

than P0(τB(0,r) ≤ t). 2

Lemma 3.2 For every r ∈ (0, 1), and every x ∈ Rd,

inf
z∈B(x,r/2)

EzτB(x,r) ≥
1

4C1φ(r/2)
.

Proof. Let z ∈ B(x, r/2). Then

Pz(τB(x,r) ≤ t) ≤ Pz(τB(z,r/2) ≤ t) ≤ C1φ(r/2)t .

Therefore,

EzτB(x,r) ≥ tPz(τB(x,r) ≥ t) ≥ t(1− C1φ(r/2)t) .

Choose t = 1/(2C1φ(r/2)) so that 1− C1φ(r/2)t = 1/2. Then

EzτB(x,r) ≥
1

2C1φ(r/2)

1

2
=

1

4C1φ(r/2)
.

2

Lemma 3.3 There exists a constant C2 > 0 such that for every r ∈ (0, 1) and every x ∈ Rd,

sup
z∈B(x,r)

EzτB(x,r) ≤
C2

φ2(r)
.

Proof. Let r ∈ (0, 1), and let x ∈ Rd. By a well-known formula connecting the Lévy

measure and the harmonic measure (e. g. [6]), we have

1 ≥ Pz(|X(τB(x,r))− x| > r)

=

∫
B(x,r)

ν(B(x, r)c − y)GB(x,r)(z, y) dy

=

∫
B(x,r)

GB(x,r)(z, y)

∫
B(x,r)c

j(|u− y|) du dy ,
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where GB(x,r) denotes the Green function of the process X killed upon exiting B(x, r).

Now we estimate the inner integral. Let y ∈ B(x, r), u ∈ B(x, r)c. If u ∈ B(x, 2), then

|u− y| ≤ 2|u− x|, while for u /∈ B(x, 2) we use |u− y| ≤ |u− x|+ 1. Then∫
B(x,r)c

j(|u− y|) du =

∫
B(x,r)c∩B(x,2)

j(|u− y|) du+

∫
B(x,r)c∩B(x,2)c

j(|u− y|) du

≥
∫

B(x,r)c∩B(x,2)

j(2|u− x|) du+

∫
B(x,r)c∩B(x,2)c

j(|u− x|+ 1) du

≥
∫

B(x,r)c∩B(x,2)

c−1j(|u− x|) du+

∫
B(x,r)c∩B(x,2)c

c−1j(|u− x|) du

=

∫
B(x,r)c

c−1j(|u− x|) du ,

where in the next to last line we used hypotheses (3.3) and (3.4). It follows that

1 ≥
∫

B(x,r)

GB(x,r)(z, y) dy

∫
B(x,r)c

c−1j(|u− x|) du

= EzτB(x,r)c
−1c1

∫ ∞

r

vd−1j(v) dv

= c2EzτB(x,r)φ2(r)

which implies the lemma. 2

Lemma 3.4 There exists a constant C3 > 0 such that for every r ∈ (0, 1), every x ∈ Rd,

and any A ⊂ B(x, r)

Py(TA < τB(x,3r)) ≥ C3|A|
j(4r)

φ(r)
, for all y ∈ B(x, 2r) .

Proof. Note first that since

φ(r) ≥
∫ 4r

r

ud−1j(u)du ≥ c1r
dj(4r)

and |A| ≤ c2r
d for some constants c1 and c2, we get that

|A|j(4r)
φ(r)

≤ c2
c1
.

Therefore, by choosing C3 < c1/(4c2), we may assume without loss of generality that Py(TA <

τB(x,3r)) < 1/4. Set τ = τB(x,3r). By Lemma 3.1, Py(τ ≤ t) ≤ Py(τB(y,r) ≤ t) ≤ C1φ(r)t.
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Choose t0 = 1/(4C1φ(r)), so that Py(τ ≤ t0) ≤ 1/4. Further, if z ∈ B(x, 3r) and u ∈ A ⊂
B(x, r), then |u− z| ≤ 4r. Since j is decreasing, j(|u− z|) ≥ j(4r). Thus,

Py(TA < τ) ≥ Ey

∑
s≤TA∧τ∧t0

1{Xs− 6=Xs,Xs∈A}

= Ey

∫ TA∧τ∧t0

0

∫
A

j(|u−Xs|) du ds

≥ Ey

∫ TA∧τ∧t0

0

∫
A

j(4r) du ds

= j(4r)|A|Ey(TA ∧ τ ∧ t0) ,

where in the second line we used properties of the Lévy system. Next,

Ey(TA ∧ τ ∧ t0) ≥ Ey(t0; TA ≥ τ ≥ t0)

= t0Py(TA ≥ τ ≥ t0)

≥ t0[1− Py(TA < τ)− Py(τ < t0)]

≥ t0
2

=
1

8C1φ(r)
.

The last two displays give that

Py(TA < τ) ≥ j(4r)|A| 1

8C1φ(r)
=

1

8C1

|A|j(4r)
φ(r)

.

Hence the claim follows by choosing C3 = 1
8C1

∧ c1
4c2

. 2

Lemma 3.5 There exist positive constant C4 and C5, such that if r ∈ (0, 1), x ∈ Rd,

z ∈ B(x, r), and H is a bounded nonnegative function with support in B(x, 2r)c, then

EzH(X(τB(x,r))) ≤ C4(EzτB(x,r))

∫
H(y)j(|y − x|) dy ,

and

EzH(X(τB(x,r))) ≥ C5(EzτB(x,r))

∫
H(y)j(|y − x|) dy .

Proof. Let y ∈ B(x, r) and u ∈ B(x, 2r)c. If u ∈ B(x, 2) we use the estimates

2−1|u− x| ≤ |u− y| ≤ 2|u− x|, (3.6)

while if u /∈ B(x, 2) we use

|u− x| − 1 ≤ |u− y| ≤ |u− x|+ 1. (3.7)
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Let B ⊂ B(x, 2r)c. Then using the Lévy system we get

Ez1B(X(τB(x,r))) = Ez

∫ τB(x,r)

0

∫
B

j(|u−Xs|) du ds .

By use of (3.3), (3.4), (3.6), and (3.7), the inner integral is estimated as follows:∫
B

j(|u−Xs|) du =

∫
B∩B(x,2)

j(|u−Xs|) du+

∫
B∩B(x,2)c

j(|u−Xs|) du

≤
∫

B∩B(x,2)

j(2−1|u− x|) du+

∫
B∩B(x,2)c

j(|u− x| − 1) du

≤
∫

B∩B(x,2)

cj(|u− x|) du+

∫
B∩B(x,2)c

cj(|u− x|) du

= c

∫
B

j(|u− x|) du

Therefore

Ez1B(X(τB(x,r))) ≤ Ez

∫ τB(x,r)

0

c

∫
B

j(|u− x|) du

= cEz(τB(x,r))

∫
1B(u)j(|u− x|) du .

Using linearity we get the above inequality when 1B is replaced by a simple function. Ap-

proximating H by simple functions and taking limits we have the first inequality in the

statement of the lemma.

The second inequality is proved in the same way. 2

The last lemma shows that hypothesis (A3) is satisfied in the current setting. Therefore, it

remains to analyze hypotheses (A1) and (A2). By Lemmas 3.2 and 3.3, a sufficient condition

for (A1) to hold is that there exists a constant C6 > 0 such that for all r ∈ (0, 1),

φ(r/2) ≤ C6φ2(r) . (3.8)

Since φ = φ1 + φ2, this is equivalent to the condition that there exists a constant C7 > 0

such that for all r ∈ (0, 1), φ1(r/2) ≤ C7φ2(r).

From Lemma 3.4 it follows that a sufficient condition for (A2) to hold is that there exists

a constant C8 > 0 such that for all r ∈ (0, 1)

j(4r)

φ(r)
≥ C8r

−d (3.9)

We discuss now several examples satisfying all four hypotheses (A1)-(A3). Those exam-

ples are not covered by the paper [1].

13



Example 3.6 Assume that, in addition to (3.3) and (3.4), there exist α > 0 and two positive

constants C9 and C10 such that

C9r
−d−α ≤ j(r) ≤ C10r

−d−α, for all r > 0 sufficiently small. (3.10)

We write j(r) ∼ r−d−α as r → 0. The fact that ν is a Lévy measure implies that α < 2.

Therefore, in a neighborhood of zero in Rd, the Lévy measure looks like |x|−d−α which

corresponds to the rotationally invariant strictly stable process. It is easy to check that the

following is valid: φ1(r) ∼ r−α, φ2(r) ∼ r−α and j(r) ∼ r−d−α as r → 0. Therefore, both

(3.8) and (3.9) hold true.

(a) Mixture of symmetric strictly stable processes. Let m ∈ N, let 0 < α1 < α2 < · · · <
αm < 2, and let a1, a2, . . . , am be positive real numbers. Define j(r) =

∑m
i=1 air

−d−αi . Then

j satisfies assumptions (3.3), (3.4) and (3.10) (with α = αm). This case corresponds to the

Lévy measure of the form ν(dx) =
∑m

i=1 ai|x|−d−αi dx.

(b) Relativistic stable processes. Let m be a positive real number. A relativistic α-stable

process is a Lévy processes whose infinitesimal generator can be written as m − (−∆ +

m2/α)α/2, 0 < α < 2. We refer to [4] or [12] for details. The Lévy measure of this process

has the form ν(dx) = j(|x|) dx where j is given by

j(r) = c(α, d)r−d−αψ(m1/αr) ,

and

ψ(r) = c1

∫ ∞

0

s
d+α

2
−1e−

s
4
− r2

s ds .

Clearly, j is decreasing. Moreover, since

ψ(r) ∼ e−r(1 + r
d+α−1

2 ), r →∞ ,

and

ψ(r) = 1 +
ψ′′(0)

2
r2 + o(r4), near r = 0 ,

(see [4]), j satisfies (3.3), (3.4) and (3.10).

(c) Let j(r) = r−d−α(1 − e−r) with 1 < α < 3. This function also satisfies all the required

conditions.

Example 3.7 This example generalizes the mixture of symmetric stable processes and need

not satisfy (3.10).

Let κ be a finite measure on (0, 2) with supp(κ) ⊂ [a, b], 0 < a < b < 2. Define

j(r) =

∫
(0,2)

r−d−α κ(dα) = r−d

∫
(0,2)

r−α κ(dα) .

14



Note that j(r) ≤ 2d+2j(2r) for all r > 0 which implies (3.3) and (3.4). A simple computation

shows that

φ1(r) =

∫
(0,2)

r−α

2− α
κ(dα) ,

φ2(r) =

∫
(0,2)

r−α

α
κ(dα) .

Since the support of κ is contained in [a, b], both φ1(r) and φ2(r) are comparable with∫
(0,2)

r−α κ(dα). Therefore, we have both (3.8) and (3.9).

In case when κ is the Lebesgue measure on [a, b], we have

j(r) =
−r−a + r−b

rd log r

which does not satisfy (3.10).

3.2 Non-symmetric case

In this section we consider Lévy measures of the form ν(dy) = k(y)j(|y|) dy where j is a

non-increasing function satisfying (3.3) and (3.4), and k : Rd \ {0} → (0,∞) is a function

satisfying c̃−1 ≤ k(y) ≤ c̃, for all y 6= 0, for a positive constant c̃.

We will distinguish between two cases. In the first case we assume that for every r ∈ (0, 1)∫
(r≤|y|≤1)

y ν(dy) =

∫
(r≤|y|≤1)

yk(y)j(|y|) dy = 0 . (3.11)

This assumption will hold true if k(−y) = k(y) for each y ∈ B(0, 1). A consequence of this

assumption is that the infinitesimal generator L has the form (3.2) for every r ∈ (0, 1). A

careful reading of proofs of Lemmas 3.1-3.5 reveals that the proofs carry over to the current

setting. The only difference is that constants will change and will depend on c̃ as well. For

example, wherever we estimated the function j(|y|), we now estimate k(y)j(|y|) instead.

Example 3.8 Let j satisfy (3.10), and let k be bounded and bounded away from zero, such

that (3.11) is valid. Then (A1)-(A3) are satisfied for ν(dx) = k(x)j(|x|). In particular, if

j(r) = r−d−α and k is such that the corresponding process is strictly α-stable (not necessarily

symmetric), then (3.11) holds true (see, for example, [13]).

Similarly, let κ be a bounded measure on (0, 2) supported in [a, b], 0 < a < b < 2, let

j(r) =
∫

(0,2)
r−d−α κ(dα), and let k be bounded and bounded away from zero, such that

(3.11) is valid. Then again, (A1)-(A3) are satisfied for ν(dx) = k(x)j(|x|).
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The second case we consider is genuinely non-symmetric case when (3.11) does not hold.

Then the infinitesimal generator L has the following form for each r ∈ (0, 1):

Lf(x) =

∫
Rd

(
f(x+ y)− f(x)− y · ∇f(x)1(|y|<r)

)
ν(dy)−

∫
(r≤|y|≤1)

y · ∇f(x) ν(dy) . (3.12)

Both the statement and the proof of Lemma 3.1 should be modified so that the additional

term of the generator is taken into account. Let

φ3(r) = r−1

∫ 1

r

udj(u) du ,

and let φ(r) = φ1(r)+φ2(r)+φ3(r). Let f and fr be the functions from the proof of Lemma

3.1. Let c1 = supy

∑
j |(∂/∂yj)f(y)|. Then |y · ∇fr(y)| ≤ c1r

−1|y|. Hence, the estimate for

Lfr(z) will read

|Lfr(z)| ≤
∫

Rd

|fr(z + y)− fr(z)− y · ∇fr(z)1(|y|≤r)| ν(dy)

+

∫
Rd

|y · ∇fr(z)1(r≤|y|≤1)|

≤ c1

∫
Rd

(
1(|y|≤r)

|y|2

r2
+ 1(|y|≥r) + 1(r≤|y|≤1)

|y|
r

)
ν(dy)

≤ c2(φ1(r) + φ2(r) + φ3(r)) = c2φ(r) ,

The rest of the proof remains the same, with the new function φ. Similarly, statements of

Lemmas 3.2 and 3.4 now involve the modified function φ. The proofs of all lemmas carry

over with new constants depending on c̃. In order that (A1) and (A2) hold true, it suffices

to have conditions (3.8) and (3.9), but now with modified φ.

Example 3.9 This is analogous to Example 3.6. Assume, in addition to (3.3) and (3.4),

that j satisfies (3.10). Let k be bounded between two positive numbers. Then

φ3(r) ∼
r−α − r−1

α− 1
.

If α ∈ (1, 2) then (r−α − r−1)/(α − 1) is of the order r−α, same as the order of φ1(r), φ2(r)

and j(r)rd. Therefore, hypotheses (A1)-(A3) are valid in case 1 < α < 2. For α ∈ (0, 1] this

argument is no longer valid, and we cannot establish (A1) and (A2).

Example 3.10 This example generalizes Example 3.7. Let κ be a finite measure on (0, 2)

with support supp(κ) ⊂ [a, b], 1 < a < b < 2, and let j be defined as in Example 3.7. We

compute

φ3(r) =

∫
(0,2)

r−α − r−1

α− 1
κ(dα) =

∫
(0,2)

r−α

α− 1
κ(dα)−

∫
(0,2)

r−1

α− 1
κ(dα) .

Since supp(κ) ⊂ [a, b] ⊂ (1, 2), it easily follows that φ3(r) ∼
∫

(0,2)
r−α κ(dα). Therefore, the

analogue of (3.8) and (3.9) are true, hence (A1)-(A3) are also valid.
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4 Symmetric Markov Processes with no diffusion com-

ponent

In this section we are going to assume that 0 < α1 ≤ α2 < 2 and that k1(x, y) and k2(x, y)

are symmetric functions on Rd × Rd such that

κ̃i ≤ ki(x, y) ≤ κi, i = 1, 2, x, y ∈ Rd,

for some positive constants κ̃i ≤ κi, i = 1, 2. The symmetric form (E , C2
c (Rd)) on L2(Rd)

defined by

E(f, g) =

∫
Rd

∫
Rd

(f(x)− f(y))(g(x)− g(y))

(
k1(x, y)

|x− y|d+α1
+

k2(x, y)

|x− y|d+α2

)
dxdy

is closable, so its minimal extension (E ,F) is a regular Dirichlet form. Therefore by the

general theory of Dirichlet forms there is a symmetric Hunt process X on Rd, associated

with (E ,F), starting from every point in E := Rd \N , where N is a set of zero capacity. Put

j(x, y) =
k1(x, y)

|x− y|d+α1
+

k2(x, y)

|x− y|d+α2
,

then it is well known (see, for instance, [5]) that (j(x, y)dy, dt) is a Lévy system for X.

Throughout this section we assume that, for i = 1, 2, when αi ≥ 1, the first partials of ki

are bounded on Rd ×Rd. We are going to use Mi to denote the bounds on the first partials

of ki.

For any α ∈ (0, 2), any bounded function k(x, y) on Rd × Rd and any f ∈ C2
c (Rd), we

define

Lα,kf(x) =

∫
Rd

(f(x+ y)− f(x))
k(x, x+ y)

|y|d+α
dy, α ∈ (0, 1),

Lα,kf(x) =

∫
Rd

(f(x+ y)− f(x)− (y,∇f(x))1|y|<1)
k(x, x)

|y|d+α
dy

+

∫
Rd

(f(x+ y)− f(x))(k(x, x+ y)− k(x, x))
1

|y|d+α
dy, α ∈ [1, 2).

To make sure the last integral converges, we need to assume that, when α ∈ [1, 2), the

first partials of k are bounded on Rd × Rd. Using symmetry, one can easily see that, when

α ∈ [1, 2),

Lα,kf(x) =

∫
Rd

(f(x+ y)− f(x)− (y,∇f(x))1|y|<r)
k(x, x)

|y|d+α
dy

+

∫
Rd

(f(x+ y)− f(x))(k(x, x+ y)− k(x, x))
1

|y|d+α
dy
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for any r ∈ (0, 1).

If L stands for the generator of X in the L2 sense, then the following result is elementary.

See, for instance, [9].

Lemma 4.1 For any f ∈ C2
c (Rd), we have

Lf(x) = Lα1,k1f(x) + Lα2,k2f(x),

for almost every x ∈ Rd.

This lemma tells us that Lα1,k1f + Lα2,k2 is a representative of Lf for any f ∈ C2
c (Rd).

From now on we will always take this representative when dealing with Lf . It follows from

the proof of Theorem 5.2.2 of [5] that for any f ∈ C2
c (Rd),

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a Px-martingale for any x ∈ E.

Lemma 4.2 For any x ∈ E and any r ∈ (0, 1) we have

Px(sup
s≤t

|Xs −X0| > r) ≤ Cr−α2t,

where C is a positive constant depending on α1, α2, κ1, κ2,M1,M2 and d.

Proof. Suppose that x ∈ E is fixed. Let f be a C2 function on Rd taking values in [0, 1]

such that f(y) = 0 for |y| ≤ 1/2 and f(y) = 1 for |y| ≥ 1. Let fn be a sequence of C2

functions such that 0 ≤ fn ≤ 1,

fn(y) =

{
f(y), |y| ≤ n+ 1
0, |y| > n+ 2,

and that |
∑

j,k(∂
2/∂xj∂xk)fn| is uniformly bounded. Then there exist positive constants c1

and c2 such that

|∇fn(y)| ≤ c1, y ∈ Rd,

and

|fn(y + z)− fn(y)− (z · ∇fn(y))| ≤ c2|z|2, y, z ∈ Rd.

Put fr(y) = f((y − x)/r) and fn,r(y) = fn((y − x)/r).

We claim that for any r ∈ (0, 1), any y ∈ Rd and any n ≥ 1,

|Lfn,r(y)| ≤ C1r
−α2
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positive constant C1 depending on α1, α2, κ1, κ2,M1,M2 and d. We prove this claim by

dealing with Lα1,ki
i = 1, 2 separately.The proof of the two cases are identical, so we will

give a proof of the case i = 2 only, and we will do this by dealing separately with the cases

α2 ∈ (0, 1) and α2 ∈ [1, 2).

(i) α2 ∈ (0, 1). In this case we have for any r > 0 and any y ∈ Rd,

|Lα2,k2fn,r(y)| = |
∫

Rd

(fn,r(y + z)− fn,r(y))
k2(y, y + z)

|z − y|d+α2
dz|

≤ c1κ2r
−1

∫
|z|<r

|z|−(d+α2−1)dz + 2κ2

∫
|z|>r

|z|−(d+α2)dz

≤ c3κ2r
−1

∫ r

0

s−α2ds+ c4κ2

∫ ∞

r

s−α2−1ds

=
c3κ2

1− α2

r−α2 +
c4κ2

α2

r−α2 .

(ii) α2 ∈ [1, 2). In this case we have for any r ∈ (0, 1) and any y ∈ Rd,

|Lα2,k2fn,r(y)| ≤ |
∫

Rd

(fn,r(y + z)− fn,r(y)− (z,∇fn,r(y))1|z|<r)
k2(y, y)

|z|d+α2
dz|

+|
∫

Rd

(fn,r(y + z)− fn,r(y))(k2(y, y + z)− k2(y, y))
1

|z|d+α2
dz|

≤ c2κ2r
−2

∫
|z|<r

|z|−(d+α2−2)dz + 2κ2

∫
|z|≥r

|z|−(d+α2)dz

+c1M2κ2r
−1

∫
|z|<r

|z|−(d+α2−2)dz + κ2

∫
|z|≥r

|z|−(d+α2)dz

≤ c5κ2

2− α2

r−α2 +
c6M2κ2

2− α2

r−α2+1 +
c7κ2

α2

r−α2

≤ (
c8

2− α2

+
c9
α2

)κ2r
−α2 .

Thus we finished the proof of the claim.

Therefore we have for any r ∈ (0, 1) and any n ≥ 1,

Exfn,r(X(τB(x,r) ∧ t)) = Ex

∫ τB(x,r)∧t

0

Lfn,r(Xs)ds ≤ C1r
−α2t.

Letting n ↑ ∞, we get

Exfr(X(τB(x,r) ∧ t)) ≤ C1r
−α2t.

If X exits B(x, r) before time t, then fr(X(τB(x,r) ∧ t)) = 1, so the left hand side is greater

than Px(τB(x,r) ≤ t). 2
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For any λ > 0, we define

Gλf(x) = Ex

∫ ∞

0

e−λtf(Xt)dt, x ∈ E.

We use C0(Rd) to denote the collection of continuous functions f such that lim|x|→∞ f(x) = 0.

From the lemma above we immediately get the following result:

Corollary 4.3 If f ∈ C0(Rd), then Exf(Xt) tends to f(x) uniformly in x ∈ E as t ↓ 0 and

λGλf(x) tends to f(x) uniformly in x ∈ E as λ ↑ ∞.

Proof. Omitted. 2

Remark 4.4 Note that, for i = 1, 2, when αi ∈ [1, 2) we have for any r > 1,

|Lαi,ki
fn,r(y)| ≤ |

∫
Rd

(fn,r(y + z)− fn,r(y)− (z,∇fn,r(y))1|z|<r)
ki(y, y)

|z|d+αi
dz|

+|
∫

Rd

(fn,r(y + z)− fn,r(y))(ki(y, y + z)− ki(y, y))
1

|z|d+αi
dz|

≤ c2κir
−2

∫
|z|<r

|z|−(d+αi−2)dz + 2κi

∫
|z|≥r

|z|−(d+αi)dz

+c1Miκir
−1

∫
|z|<1

|z|−(d+αi−2)dz + 2c1κir
−1

∫
1≤|z|<r

|z|−(d+αi−1)dz

+κi

∫
|z|≥r

|z|−(d+αi)dz

≤ c3r
−1,

where c1 and c2 are the constants in the proof above, and c3 is a positive constant depending

on αi, κi,Mi and d. Combining this with (i) in the proof above we get for any r > 1, any

y ∈ Rd and any n ≥ 1,

|Lfn,r(y)| ≤ C1r
−(α1∧1)

for some positive constant C1 depending on α1, α2, κ1, κ2,M1,M2 and d. Repeating the ar-

gument in the last paragraph in the proof above we can show that for any x ∈ E, any r > 1

and any t > 0 we have

Px(sup
s≤t

|Xs −X0| > r) ≤ C2r
−(α1∧1)t,

for some positive constant C2 depending on α1, α2, κ1, κ2,M1,M2 and d. From this one can

easily see that for bounded function f with compact support, the function x 7→ Ex[f(Xt)]

tends to zero as |x| → ∞.
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Lemma 4.5 Suppose ε ∈ (0, 1) is a constant. Then for every x ∈ Rd and r ∈ (0, 1) we have

inf
z∈B(x,(1−ε)r)∩E

EzτB(x,r) ≥
εα2

4C
rα2 ,

where C is the constant in Lemma 4.2.

Proof. The proof is the same as that of Lemma 3.2. 2

Lemma 4.6 For any x ∈ Rd and any r > 0 we have

sup
z∈B(x,r)∩E

EzτB(x,r) ≤
α22

d+α2

κ̃2

rα2 .

Proof. It is elementary to show that, for any y ∈ B(x, r),∫
B(x,r)c

1

|y − u|d+α2
du ≥ 2−(d+α2)

∫
B(x,r)c

1

|x− u|d+α2
du =

1

α22d+α
r−α2 .

Thus for any z ∈ B(x, r) ∩ E,

1 ≥ Pz(|X(τB(x,r))− x| > r)

=

∫
B(x,r)

GB(x,r)(z, y)

∫
B(x,r)c

j(y, u)dudy

≥ κ̃2

∫
B(x,r)

GB(x,r)(z, y)

∫
B(x,r)c

1

|y − u|d+α2
du

≥ κ̃2

α22d+α2
r−α2

∫
B(x,r)

GB(x,r)(z, y)dy

=
κ̃2

α22d+α2
r−α2EzτB(x,r),

where GB(x,r) is the Green function of the process X killed upon exiting B(x, r). Therefore

EzτB(x,r) ≤
α22

d+α2

κ̃2

rα2 .

2

Lemmas 4.5 and 4.6 imply that X satisfies the analogue of condition (A1) on E. The

following Lemma implies that X satisfies the analogue of (A2) on E.

Lemma 4.7 For all r ∈ (0, 1) and A ⊂ B(x, r) we have

Py(TA < τB(x,3r)) ≥
κ̃2|B(0, 1)|
4d+α28C

|A|
|B(x, r)|

, ∀y ∈ B(x, 2r) ∩ E,

where C is the constant in Lemma 4.2.
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Proof. The proof is similar to that of Lemma 3.4 and we omit the details. 2

The following lemma says that X satisfies the analogue of (A3) on E.

Lemma 4.8 There exist positive constants C7 and C8 such that if x ∈ Rd, r > 0, z ∈
B(x, r) ∩ E and H is a bounded nonnegative function with support in B(x, 2r)c, then

EzH(X(τB(x,r))) ≤ C7(EzτB(x,r))

∫
H(y)j(x, y)dy

and

EzH(X(τB(x,r))) ≥ C8(EzτB(x,r))

∫
H(y)j(x, y)dy.

Proof. The proof is similar to that of Lemma 3.5. 2

Lemma 4.6 implies in particular that for any bounded open set B in Rd, τB is finite

almost surely. Let D be a domain in Rd. A function h defined on E is said to be harmonic in

D∩E if it is not identically infinite in D∩E and if for any bounded open subset B ⊂ B ⊂ D,

h(x) = Ex[h(X(τB))] ∀x ∈ B ∩ E.

It is clear that constant functions are harmonic on D ∩ E. Since X satisfies the analogue

of (A1)–(A3) on E, we can repeat the argument of Section 2 to show that X satisfies the

Harnack inequality on E. But our goal is to establish that X satisfies the Harnack inequality

on Rd. To do that we need to guarantee that we can start our process from every point in

Rd.

The result below is the analogue of Theorem 4.1 in [1].

Theorem 4.9 Let r ∈ (0, 1). If h is bounded in E and harmonic in B(x0, r) ∩ E for some

x0 ∈ Rd, then there exist positive constants C and β independent of x0 and r such that

|h(x)− h(y)| ≤ C‖h‖∞|x− y|β, ∀x, y ∈ B(x0, r/2) ∩ E.

Proof. By Lemma 4.7 there exists c1 > 0 such that if x ∈ E, s ∈ (0, 1/2), and A ⊂ B(x, s/3)

with |A|/|B(x, s/3)| ≥ 1/3, then

Px(TA < τB(x,s)) ≥ c1.

By Lemma 4.6 and Lemma 4.8 with H = 1B(x,s′)c with s′ ∈ (2s, 1) we get that

Px(X(τB(x,s)) /∈ B(x, s′)) ≤ c2
sα2

(s′)α2
.
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Let

γ = 1− c1
4
, ρ =

1

3
∧ (

γ

2
)1/α2 ∧ (

c1γ
2

8c2
)1/α2 .

Adding a constant to h if necessary we may assume 0 ≤ h ≤ M . Now we can repeat the

argument in the proof of Theorem 4.1 in [1] to get that

sup
B(x,ρkr)∩E

h− inf
B(x,ρkr)∩E

h ≤Mγk

for all k ≥ 0. If x, y ∈ B(x0, r/2) ∩ E, let k be the smallest integer such that |x − y| < ρk.

Then log |x− y| ≥ (k + 1) log ρ, y ∈ B(x, ρk), and

|h(y)− h(x)| ≤ Mγk = Mek log γ ≤ c3Melog |x−y|(log γ/ log ρ)

= c3M |x− y|log γ/ log ρ.

2

Recall that for any λ > 0,

Gλf(x) = Ex

∫ ∞

0

e−λtf(Xt)dt, x ∈ E.

It is obvious that λ‖Gλf‖∞ ≤ ‖f‖∞. Since the process X may be recurrent, G0f is not

defined in general. For any integer n ≥ 2 and λ ≥ 0, we define

G
(n)
λ f(x) = Ex

∫ τB(0,n)

0

e−λtf(Xt)dt, x ∈ E.

Lemma 4.10 There exist positive constants C and β > 0 such that for any n ≥ 2, any

bounded function f on Rd, and any x, y ∈ B(0, n− 1) ∩ E with |x− y| < 1/4,

|G(n)
0 f(x)−G

(n)
0 f(y)| ≤ C(‖G(n)

0 f‖∞ + ‖f‖∞)|x− y|β.

Proof. For any r ∈ (0, 1), we have

G
(n)
0 f(x) = Ex

∫ τB(x,r)

0

f(Xt)dt+ ExG
(n)
0 f(X(τB(x,r))),

G
(n)
0 f(y) = Ey

∫ τB(x,r)

0

f(Xt)dt+ EyG
(n)
0 f(X(τB(x,r))).

Using the theorem above and the fact that EzG
(n)
0 f(X(τB(x,r))) is harmonic in B(x, r) we

get

|G(n)
0 f(x)−G

(n)
0 f(y)| ≤ 2‖f‖∞ sup

z∈B(x,r)∩E

EzτB(x,r) + c1‖G(n)
0 f‖∞|x− y|β1 ,

where β1 is the constant β in the theorem above. Taking r = |x − y|1/2 and using Lemma

4.6 we get our result. 2
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Theorem 4.11 For any λ > 0, there exist positive constants C and β > 0 such that for any

bounded function f on Rd and any x, y ∈ E with |x− y| < 1/4,

|Gλf(x)−Gλf(y)| ≤ C‖f‖∞|x− y|β.

Proof. Without loss of generality we may assume that f ≥ 0. Assume that x, y ∈ B(0, n−1)

for some n. Let hn = f − λG
(n)
λ f . Note that ‖hn‖∞ ≤ 2‖f‖∞. By the resolvent equation

we have G
(n)
λ f = G

(n)
0 hn, thus ‖G(n)

0 hn‖∞ ≤ λ−1‖f‖∞. Consequently, ‖G(n)
0 hn‖∞ + ‖hn‖∞ ≤

(2 + λ−1)‖f‖∞. Now we can use the lemma above to conclude that

|G(n)
λ f(x)−G

(n)
λ f(y)| ≤ C(2 + λ−1)‖f‖∞|x− y|β,

where C and β are the constants from the lemma above. Letting n ↑ ∞ we get our result.

2

From the theorem above we know that for any bounded f , Gλf is Hölder continuous

in E. Thus we extend the resolvent Gλf(x) continuously to Rd. From Corollary 4.3 and

Remark 4.4 we can see that the extended resolvent on Rd is a Feller resolvent, that is, Gλ

maps C0(Rd) into C0(Rd) and for any f ∈ C0(Rd), λGλf converges to f in the L∞ norm on

Rd. Now we can use Hille-Yosida theorem to extend the semigroup of X continuously to Rd.

This semigroup is Feller and so we can start our process X from every point in Rd. Now we

can repeat the arguments in Lemmas 4.2–4.8 to check that X satisfies conditions (A1)–(A3)

on Rd.

Remark 4.12 So far in this section we have proved that the Harnack inequality holds when

the jumping measure is of the form(
k1(x, y)

|x− y|d+α1
+

k2(x, y)

|x− y|d+α2

)
dxdy.

We can easily generalize this to the case when the jumping measure is of the form(
n∑

i=1

ki(x, y)

|x− y|d+αi

)
dxdy,

where n ≥ 1 is an integer, 0 < α1 ≤ · · · ≤ αn < 2, and k1, . . . , kn satisfy the conditions posed

on k1 and k2 at the beginning of this section.

Remark 4.13 We can easily generalize the argument of this section to show that the Har-

nack inequality holds when the jumping measure is of the form

(k1(x, y)jα1(|y − x|) + k2(x, y)jα2(|y − x|))dxdy,

where jα1(|x|)dx and jα2(|x|)dx are the Lévy measures of the relativistic α1 and α2-stable

processes respectively.
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Remark 4.14 Assume that j : (0,∞) → (0,∞) is a non-increasing function such that

j(|x|)dx is the Lévy measure of a Lévy process and that conditions (3.3), (3.4), (3.8) and

(3.9) are satisfied. If k(x, y) is a symmetric function on Rd × Rd such that it is bounded by

two positive numbers and that its partials are bounded, the symmetric form (E , C2
c (Rd)) on

L2(Rd) defined by

E(f, g) =

∫
Rd

∫
Rd

(f(x)− f(y))(g(x)− g(y))k(x, y)j(|y − x|)dxdy

is closable, so its minimal extension (E ,F) is a regular Dirichlet form. We can easily modify

the argument of this section to show that the Harnack inequality holds for the symmetric

Markov process associated with (E ,F).

5 Non-symmetric Markov Processes with no diffusion

component

In this section we are going to show that for a wide class of non-symmetric Markov processes,

conditions (A1)–(A3) are satisfied and therefore the Harnack inequality holds.

Before we describe the process we are going to deal with, let us first recall some basic

facts about strictly stable processes. For any α ∈ (0, 2), the characteristic functions of a

strictly stable process on Rd is given by exp(−tΨ(z)) with the function Ψ specified below

Ψ(z) = −
∫

S

λ(dξ)

∫ ∞

0

(ei(z,rξ) − 1)r−(1+α)dr, α ∈ (0, 1),

Ψ(z) = −
∫

S

λ(dξ)

∫ ∞

0

(ei(z,rξ) − 1− i(z, rξ)1(0,1))r
−2dr − i(z, γ), α = 1,

Ψ(z) = −
∫

S

λ(dξ)

∫ ∞

0

(ei(z,rξ) − 1− i(z, rξ)1(0,1))r
−(1+α)dr, α ∈ (1, 2),

for some finite measure λ on the unit sphere S = {x ∈ Rd : |x| = 1}.
The Lévy measure ν of a strictly α-stable process is given by

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)r−(1+α)dr

for every Borel set B in Rd.

Suppose 0 < α1 < α2 < 2. In this section we assume that ki(x, y), i = 1, 2, are functions

on Rd × Rd bounded between two positive numbers and that bi(x), i = 1, 2, are bounded

Rd-valued functions on Rd. We are going to consider solutions to the martingale problem
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for the operator L = Lα2 + Lα1 , where

Lα1f(x) =

∫
Rd

(f(x+ y)− f(x))
k1(x, y)

|y|d+α1
dy, α1 ∈ (0, 1),

Lα1f(x) =

∫
Rd

(f(x+ y)− f(x)− (y,∇f(x))1|y|<1)
k1(x, y)

|y|d+α1
dy + (b1(x),∇f(x)), α1 ∈ [1, 2),

Lα2f(x) =

∫
Rd

(f(x+ y)− f(x))
k2(x, y)

|y|d+α2
dy, α2 ∈ (0, 1),

Lα2f(x) =

∫
Rd

(f(x+ y)− f(x)− (y,∇f(x))1|y|<1)
k2(x, y)

|y|d+α2
dy + (b2(x),∇f(x)), α2 = 1,

Lα2f(x) =

∫
Rd

(f(x+ y)− f(x)− (y,∇f(x))1|y|<1)
k2(x, y)

|y|d+α2
dy, α2 ∈ (1, 2).

Our assumptions on k2 and b are as follows:

(i) for each x ∈ Rd, k2(x,y)

|y|d+α2
is the density (with respect to the Lebesgue measure) of the

Lévy measure of a strictly α2-stable process ;

(ii) the partial derivatives of k2(x, y) with respect to y up to order d are bounded continuous

on Rd × S;

(iii) the function b2(x) is bounded on Rd.

It follows from [8] and [10] that, under the assumptions above, the martingale problem for

L is well-posed. That is, there is a conservative strong Markov process X = (Xt,Px, x ∈ Rd)

on (D([0,∞),Rd),B(D([0,∞),Rd))) such that for any f ∈ C∞
0 (Rd),

f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds

is a Px-martingale for each x ∈ Rd. Here D([0,∞),Rd) is the space of Rd-valued cadlag

functions on [0,∞), and B(D([0,∞),Rd)) is the Borel σ-field on D([0,∞),Rd).

Theorem 5.1 Under the assumptions above, the Harnack inequality holds for X.

Proof. It is routine to check that (k1(x, y)|y − x|−(d+α1)dy + k2(x, y)|y − x|−(d+α2)dy, dt)

is a Lévy system for X, see, for instance, the proof of Proposition 2.3 of [1]. Using the

same argument as in the last section, we can check that X is Feller process satisfying the

conditions (A1)–(A3) of Section 2, thus the Harnack inequality holds for X. We omit the

details. 2
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Remark 5.2 With the same argument, one can show that, for 0 < α1 < α2 < 2, if Y and Z

are independent and if they are respectively strictly α1 and α2-stable processes such that the

densities of their Lévy measures with respect to the Lebesgue measure are bounded between

two positive numbers, then the Harnack inequality holds for the process X = Y +Z. Here we

do need to assume that the density of the Lévy measure of Z to be smooth. The smoothness

assumptions on k2 made before Theorem 5.1 are to guarantee that the martingale problem

for L is well-posed.

Remark 5.3 Assume that j : (0,∞) → (0,∞) is a non-increasing function such that

j(|x|)dx is the Lévy measure of a Lévy process and that conditions (3.3), (3.4), (3.8) and

(3.9) are satisfied. Suppose that condition (3.10) is satisfied for some α ∈ (0, 2). Let k(x, y)

and b be functions on Rd × Rd and Rd respectively satisfying the following conditions:

(i) The function k is bounded between two positive numbers;

(ii) The partial derivatives with respect to x of k up to order 2 are bounded and continuous

on Rd × Rd;

(iii) b and its partial derivatives up to order 2 are bounded on Rd.

For any f ∈ C2
b (Rd), define

Lf(x) =

∫
Rd

(f(x+ y)− f(x))k(x, y)j(|y|)dy, α ∈ (0, 1)

Lf(x) =

∫
Rd

(f(x+ y)− f(x)− (y · ∇f(x))1|y|<1)k(x, y)j(|y|)dy + (b(x),∇f(x)), α ∈ [1, 2).

It follows from [11] that the martingale problem for L is well posed. Let X be the conservative

Markov process associated with L. Then by using the argument of this section we can show

that the Harnack inequality is valid for X.

Acknowledgment: We would like thank Z.-Q. Chen for his very helpful comments on the

first version of this paper, and in particular for pointing out that one of the conditions in

the first version of the paper is unnecessary. We also thank the referee for many helpful

comments.

27



References

[1] R. F. Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Analysis,
17(2002), 375–388.

[2] R. F. Bass and D. A. Levin, Transition probabilities for symmetric jump processes, Trans.
Amer. Math. Soc., 354(2002), 2933–2953.

[3] K. Bogdan, A. Stos and P. Sztonyk, Potential theory for Lévy stable processes, Bull. Polish
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measure for a certain class of Markov processes, J. Math. Kyoto Univ., 2 (1962), 79–95.

[7] V. Kolokoltsov, Symmetric stable laws and stable-like jump diffusions, Proc. London Math.
Soc., 80(2000), 725–768.

[8] T. Komatsu, Pseudo-differential operators and Markov processes, J. Math. Soc. Japan,
36(1984), 387–418.

[9] T. Komatsu, Continuity estimates for solutions of parabolic equations associated with jump
type Dirichlet forms, Osaka J. Math., 25(1988), 697–728.
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