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1 Introduction

Let D be a bounded open set in Rd, d ≥ 3, and let ∆|D be the Dirichlet Laplacian in D.

This operator is the infinitesimal generator of the semigroup (PD
t : t ≥ 0) corresponding

to the process XD = (XD
t : t ≥ 0), the Brownian motion killed upon exiting D. Let

S = (St : t ≥ 0) be an α/2-stable subordinator independent of XD, where 0 < α < 2,

and let ZD
α = (ZD

α (t) : t ≥ 0) be the process XD subordinate by S: ZD
α (t) := XD(St).

The infinitesimal generator of the semigroup of ZD
α is the fractional power −(−∆|D)α/2 of

the negative Dirichlet Laplacian. Despite the importance of this operator in analysis, the

probabilistic and potential-theoretic properties of the corresponding process ZD
α began to be

studied only recently. The study of the process ZD
α was initiated in [16]. In [18] (see also

[14]) the domain of the Dirichlet form of ZD
α was identified when D is a bounded smooth

domain and α 6= 1. In [23] and [22], the process ZD
α was studied in detail and sharp upper

and lower bounds on the jumping function and the Green function of ZD
α were established

when D is a bounded C1,1 domain.

One of the most intriguing aspects of the potential theory of ZD
α was discovered in

[16], and completely described in [15]. Let us introduce another subordinate process, ZD
2−α,

obtained by subordinating killed Brownian motion XD by an independent (1− α/2)-stable

subordinator. Let GD, GD
α and GD

2−α denote the potential operators of XD, ZD
α and ZD

2−α,

respectively. Then the following factorization identity holds true:

GD = GD
αG

D
2−α = GD

2−αG
D
α . (1.1)

If it is assumed that the semigroup (PD
t : t ≥ 0) of XD is intrinsically ultracontractive (a

rather mild assumption on the domain D), then (1.1) has the following important conse-

quence: the operator GD
α is a one-to-one mapping from the set of excessive (respectively,

nonnegative harmonic) functions of ZD
2−α onto the set of excessive (respectively, nonnegative

harmonic) functions of XD. Moreover, the inverse mapping is given by the following explicit

formula:

(GD
α )−1s(x) =

α

2Γ(1− α/2)

∫ ∞

0

t−α/2−1(s(x)− PD
t s(x))dt , (1.2)

where s is excessive (respectively, nonnegative harmonic) for XD. This formula is used to

prove that all nonnegative harmonic functions of ZD
α are continuous, which together with

(1.1) and the intrinsic ultracontractivity of (PD
t ) enables a novel proof of Harnack inequality.

Another consequence of (1.2) is the identification of the Martin boundary with respect to

ZD
α of a Lipschitz domain D with its Euclidean boundary ∂D.

The Laplace exponent of the α/2-stable subordinator is φ(λ) = λα/2, λ > 0. Clearly,

λ/λα/2 = λ1−α/2 is the Laplace exponent of the (1−α/2)-stable subordinator. This existence

of a “dual” subordinator is the key for the factorization (1.1). Motivated by this fact, we

introduce in this paper subordinators whose Laplace exponent φ(λ) has the property that
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λ/φ(λ) is again the Laplace exponent of a subordinator. We call such subordinators special,

and argue in Section 2 that they comprise a large subclass of subordinators. We show

that special subordinators can be characterized by the following very useful property: a

subordinator S = (St, t ≥ 0) is special if and only if its potential measure restricted to

(0,∞) has a decreasing density.

The main contribution of this paper, besides introducing the concepts of special Bern-

stein functions and special subordinators, is the realization that the key point for the main

results of [16] and [15] is the fact that stable subordinators are special. We will show in this

paper that the main results of [16] and [15] remain valid for the killed Brownian motion XD

subordinate by a special subordinator with infinite Lévy measure or positive drift (or both).

The resulting class of subordinate processes is a significant extension of the one studied in

[15]. In particular, this class contains discontinuous processes with a continuous component.

Moreover, if the Lévy measure of the subordinator is finite, the jumping times of the sub-

ordinate process will be discrete. The Harnack inequality that we prove for nonnegative

harmonic functions of such processes is to the best of our knowledge the first one in the

literature.

Another generalization that we introduce consists of replacing the underlying killed Brow-

nian motion XD by a rotationally invariant α-stable process, 0 < α ≤ 2, killed upon exiting

D. For 0 < α < 2, this process is discontinuous which introduces some technical, but not

essential, difficulties. For simplicity, from now on we will use the term symmetric α-stable

process, instead of the more precise one - rotationally invariant. So, the process that we are

going to study is the symmetric α-stable process killed upon exiting D, subordinate by a

special subordinator with infinite Lévy measure or positive drift.

The content of this paper is organized as follows. In Section 2 we first introduce the

concepts of special Bernstein functions and special subordinators, show that this class is large

and contains most of the known subordinators. Then we study some potential theoretical

properties of special subordinators. In particular, we characterize special subordinators in

terms of their potential measures. In Section 3 we introduce killed symmetric stable processes

in a bounded open set subordinate by special subordinators “dual” to each other. One of the

subordinators is assumed to have an infinite Lévy measure or positive drift, while the other

subordinator may be a compound Poisson process. Clearly, these two subordinate processes

do not have symmetric roles. We are interested in the potential theory of the process XD

subordinate by special subordinators having an infinite Lévy measure or positive drift. The

main result that we establish is a one-to-one correspondence between the family of excessive

(respectively nonnegative harmonic) functions of killed symmetric stable processes and the

family of excessive (respectively nonnegative harmonic) functions of the subordinate process.

We are in particular interested in nonnegative harmonic functions of the subordinate process.

We prove that they are continuous and present the Harnack inequality. In Section 4 we show
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that when D is a bounded κ-fat set, the Martin boundary and minimal Martin boundary of

the subordinate killed symmetric stable process both coincide with the Euclidean boundary

∂D.

In the remainder of this section we shall recall the definitions of harmonic functions and

excessive functions with respect to a standard process X = (Xt,Px) in a domain D in Rd. A

Borel function h on D is said to be harmonic with respect to X if h is not identically infinite

in D and if for every relatively compact open subset U ⊂ U ⊂ D,

h(x) = Ex[h(X(τU))], ∀x ∈ U,

where τU = inf{t : Xt /∈ U} is the first exit time of U . We are going to use H(X) to

denote the collection of all the functions on D which are harmonic with respect to X and

H+(X) to denote the collection of all the nonnegative functions on D which are harmonic

with respect to X. A nonnegative function which is not identically infinite on D is said to be

excessive with respect to X if (i) Ex[f(Xt)] ≤ f(x) for every t > 0 and every x ∈ D; and (ii)

limt↓0 Ex[f(Xt)] = f(x) for every x ∈ D. We are going to use S(X) to denote the collection

of all the excessive functions with respect to X. It is well known that H+(X) ⊂ S(X).

2 Special subordinators and complete Bernstein func-

tions

Let S = (St : t ≥ 0) be a subordinator, that is, an increasing Lévy process taking values

in [0,∞] with S0 = 0. We remark that our subordinators are what some authors call killed

subordinators. The Laplace transform of the law of S is given by the formula

E[exp(−λSt)] = exp(−tφ(λ)) , λ > 0. (2.1)

The function φ : (0,∞) → R is called the Laplace exponent of S, and it can be written in

the form

φ(λ) = a+ bλ+

∫ ∞

0

(1− e−λt)µ(dt) . (2.2)

Here a, b ≥ 0, and µ is a σ-finite measure on (0,∞) satisfying∫ ∞

0

(t ∧ 1)µ(dt) <∞ . (2.3)

The constant a is called the killing rate, b the drift, and µ the Lévy measure of the subordi-

nator S. By using condition (2.3) above one can easily check that

lim
t→0

t µ(t,∞) = 0 (2.4)∫ 1

0

µ(t,∞) dt <∞ . (2.5)
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Recall that a C∞ function φ : (0,∞) → [0,∞) is called a Bernstein function if (−1)nDnφ ≤
0 for every n ∈ N. It is well known that a function φ : (0,∞) → R is a Bernstein function if

and only if it has the representation given by (2.2).

We now introduce the concepts of special Bernstein functions and special subordinators.

Definition 2.1 A Bernstein function φ is called a special Bernstein function if λ/φ(λ) is

also a Bernstein function. A subordinator S is called a special subordinator if its Laplace

exponent is a special Bernstein function.

Special subordinators occur naturally in various situations. For instance, they appear as

the ladder time process for a Lévy process which is not a compound Poisson process, see

page 166 of [3]. Yet another situation in which they appear naturally is in connection with

the exponential functional of subordinators (see [4]).

Our prime example of special Bernstein functions are complete Bernstein functions, also

called operator monotone functions in some literature. A function φ : (0,∞) → R is called

a complete Bernstein function if there exists a Bernstein function η such that

φ(λ) = λ2Lη(λ), λ > 0,

where L stands for the Laplace transform. It is known (see, for instance, Remark 3.9.28 and

Theorem 3.9.29 of [17]) that every complete Bernstein function is a Bernstein function and

that the following three conditions are equivalent:

(i) φ is a complete Bernstein function;

(ii) ψ(λ) := λ/φ(λ) is a complete Bernstein function;

(iii) φ is a Bernstein function whose Lévy measure µ is given by

µ(dt) =

∫ ∞

0

e−stγ(ds)dt

where γ is a measure on (0,∞) satisfying∫ 1

0

1

s
γ(ds) +

∫ ∞

1

1

s2
γ(ds) <∞.

The equivalence of (i) and (ii) says that every complete Bernstein function is a special

Bernstein function. Note also that it follows from the condition (iii) above that being a

complete Bernstein function only depends on the Lévy measure and that the Lévy measure

µ(dt) of any complete Bernstein function has a completely monotone density.

The family of all complete Bernstein functions is a closed convex cone containing positive

constants. The following properties of complete Bernstein functions are well known, see, for
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instance, [20]: (i) If φ is a nonzero complete Bernstein function, then so are φ(λ−1)−1 and

λφ(λ−1); (ii) if φ1 and φ2 are nonzero complete Bernstein functions and β ∈ (0, 1), then

φβ
1 (λ)φ1−β

2 (λ) is also a complete Bernstein function; (iii) if φ1 and φ2 are nonzero complete

Bernstein functions and β ∈ (−1, 0) ∪ (0, 1), then (φβ
1 (λ) + φβ

2 (λ))1/β is also a complete

Bernstein function.

Recall that a probability distribution function on [0,∞) is called a generalized Gamma

convolution (GGC for short) if it is infinitely divisible and its Lévy measure has a density l

such that the function

x→ xl(x), x > 0

is completely monotone. The class of GGC distribution can be characterized as the smallest

class of distributions on [0,∞) that contains the Gamma distributions and is closed with

respect to convolutions and weak limits. It is known that if a probability distribution function

on [0,∞) is a GGC, then its Laplace exponent must be a complete Bernstein function. For

these and other results about GGC, please see [8].

Most of the familiar Bernstein functions are complete Bernstein functions. The following

are some examples of complete Bernstein functions ([17]): (i) λα, α ∈ (0, 1]; (ii) (λ + 1)α −
1, α ∈ (0, 1); (iii) log(1+λ); (iv) λ

λ+1
. The first family corresponds to α-stable subordinators

(0 < α < 1), i.e., pure drift (α = 1), the second family corresponds to relativistic α-stable

subordinators, and the third corresponds to the gamma subordinator. The distributions

corresponding to the complete Bernstein functions in the first three families are GGC. An

example of a Bernstein function which is not a complete Bernstein function is 1− e−λ. One

can also check that 1− e−λ is not a special Bernstein function as well.

After showing that the family of special Bernstein functions is indeed large and that it

contains other important classes of Bernstein functions from the literature, we come back

to the main development of this section. The potential measure of the subordinator S is

defined by

U(A) = E
∫ ∞

0

1(St∈A) dt , (2.6)

and its Laplace transform is given by

LU(λ) =

∫ ∞

0

e−λt dU(t) = E
∫ ∞

0

exp(−λSt) dt =
1

φ(λ)
. (2.7)

We are going to derive a characterization of special subordinators in terms of their po-

tential measures. Roughly, a subordinator S is special if and only if its potential measure

U restricted to (0,∞) has a decreasing density. To be more precise, let S be a special

subordinator with the Laplace exponent φ given by

φ(λ) = a+ bλ+

∫ ∞

0

(1− e−λt)µ(dt) .
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Then

lim
λ→0

λ

φ(λ)
=

{
0 , a > 0
1

b+
∫∞
0 t µ(dt)

, a = 0

lim
λ→∞

1

φ(λ)
=

{
0 , b > 0 or µ(0,∞) = ∞
1

a+µ(0,∞)
, b = 0 and µ(0,∞) <∞ .

Since λ/φ(λ) is a Bernstein function, we must have

λ

φ(λ)
= ã+ b̃λ+

∫ ∞

0

(1− e−λt) ν(dt) , (2.8)

for some Lévy measure ν, and

ã =

{
0 , a > 0
1

b+
∫∞
0 t µ(dt)

, a = 0 (2.9)

b̃ =

{
0 , b > 0 or µ(0,∞) = ∞
1

a+µ(0,∞)
, b = 0 and µ(0,∞) <∞ .

(2.10)

Equivalently,
1

φ(λ)
= b̃+

∫ ∞

0

e−λtΠ̃(t) dt (2.11)

with

Π̃(t) = ã+ ν(t,∞) , t > 0 .

Let τ(dt) := b̃ε0(dt) + Π̃(t) dt. Then the right-hand side in (2.11) is the Laplace transform

of the measure τ . Since 1/φ(λ) = LU(λ), the Laplace transform of the potential measure U

of S, we have that

LU(λ) = Lτ(λ) .

Therefore,

U(dt) = b̃ε0(dt) + u(t) dt ,

with a decreasing function u(t) = Π̃(t).

Conversely, suppose that S is a subordinator with potential measure given by

U(dt) = cε0(dt) + u(t) dt ,

for some c ≥ 0 and some decreasing function u : (0,∞) → (0,∞) satisfying
∫ 1

0
u(t) dt <∞.

Then
1

φ(λ)
= LU(λ) = c+

∫ ∞

0

e−λtu(t) dt .
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It follows that

λ

φ(λ)
= cλ+

∫ ∞

0

u(t) d(1− e−λt)

= cλ+ u(t)(1− e−λt) |∞0 −
∫ ∞

0

(1− e−λt)u(dt)

= cλ+ u(∞) +

∫ ∞

0

(1− e−λt) γ(dt) , (2.12)

with γ(dt) = −u(dt). In the last equality we used that limt→0 u(t)(1 − e−λt) = 0. This

is a consequence of the assumption
∫ 1

0
u(t) dt < ∞. It is easy to check, by using the same

integrability condition on u, that
∫∞

0
(1∧t) γ(dt) <∞, so that γ is a Lévy measure. Therefore,

λ/φ(λ) is a Bernstein function, implying that S is a special subordinator.

In this way we have proved the following

Theorem 2.1 Let S be a subordinator with potential measure U . Then S is special if and

only if

U(dt) = cε0(dt) + u(t) dt

for some c ≥ 0 and some decreasing function u : (0,∞) → (0,∞) satisfying
∫ 1

0
u(t) dt <∞.

Remark 2.2 Note that from the proof above we have the explicit form of the density u:

u(t) = Π̃(t) where Π̃(t) = ã + ν(t,∞). Here ν is the Lévy measure of λ/φ(λ). In case

when φ(λ) (and therefore also λ/φ(λ)) is a complete Bernstein function, it follows from the

property (iii) of complete Bernstein function that the tail t 7→ ν(t,∞) of Lévy measure ν

is a complete monotone function. Therefore, the potential density u of S is also completely

monotone. This was first proved in [25].

Note that by comparing expressions (2.8) and (2.12) for λ/φ(λ), and by using formulae

(2.9) and (2.10), it immediately follows that

c = b̃ =

{
0 , b > 0 or µ(0,∞) = ∞
1

a+µ(0,∞)
, b = 0 and µ(0,∞) <∞

u(∞) = ã =

{
0 , a > 0
1

b+
∫∞
0 t µ(dt)

, a = 0

u(t) = ã+ ν(t,∞) .

In particular, it cannot happen that both a and ã are positive, and similarly, that both b

and b̃ are positive. Moreover, it is clear from the definition of b̃ that b̃ > 0 if and only if

b = 0 and µ(0,∞) <∞.

We record now some consequences of Theorem 2.1 and the formulae above.
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Corollary 2.3 Suppose that S = (St : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = a+ bλ+

∫ ∞

0

(1− e−λt)µ(dt)

is a special Bernstein function with b > 0 or µ(0,∞) = ∞. Then the potential measure U

of S has a decreasing density u satisfying

lim
t→0

t u(t) = 0 (2.13)

lim
t→0

∫ t

0

s du(s) = 0 . (2.14)

Proof. The formulae follow immediately from u(t) = ã+ ν(t,∞) and (2.4), (2.5) applied to

ν. 2

Corollary 2.4 Suppose that S = (St : t ≥ 0) is a special subordinator with the Laplace

exponent given by

φ(λ) = a+

∫ ∞

0

(1− e−λt)µ(dt)

where µ satisfies µ(0,∞) = ∞. Then

ψ(λ) :=
λ

φ(λ)
= ã+

∫ ∞

0

(1− e−λt) ν(dt) (2.15)

where the Lévy measure ν satisfies ν(0,∞) = ∞.

Let T be the subordinator with the Laplace exponent ψ. If u and v denote the potential

density of S and T respectively, then

v(t) = a+ µ(t,∞) . (2.16)

In particular, a = v(∞) and ã = u(∞). Moreover, a and ã cannot be both positive.

In the rest of the paper we will assume that φ is a special Bernstein function with

the representation (2.2) where b > 0 or µ(0,∞) = ∞. Let S be a subordinator with the

Laplace exponent φ, and let U denote its potential measure. By Corollary 2.3, U has a

decreasing density u : (0,∞) → (0,∞). Let T be a subordinator with the Laplace exponent

ψ(λ) = λ/φ(λ) and let V denote its potential measure. Then V (dt) = bε0(dt)+v(t) dt where

v : (0,∞) → (0,∞) is a decreasing function. If b > 0, the potential measure V has an atom

at zero, and hence the subordinator T is a compound Poisson process (this can be also seen

as follows: since b > 0, we have u(0+) < ∞, and hence ν(0,∞) = u(0+) − ã < ∞). Note

that in case b > 0, the Lévy measure µ can be finite. If b = 0, we require that µ(0,∞) = ∞,

and then, by Corollary 2.4, ψ(λ) = λ/φ(λ) has the same form as φ, namely b̃ = 0 and

ν(0,∞) = ∞. In this case, subordinators S and T play symmetric roles.

The following result is crucial for the development in the remainder of this paper.
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Theorem 2.5 Let φ be a special Bernstein function with representation (2.2) satisfying

b > 0 or µ(0,∞) = ∞. Then

bu(t) +

∫ t

0

u(s)v(t− s)ds = bu(t) +

∫ t

0

v(s)u(t− s)ds = 1, t > 0.

Proof. Since for all λ > 0 we have

1

φ(λ)
= Lu(λ)

φ(λ)

λ
= b+ Lv(λ) ,

after multiplying we get

1

λ
= bLu(λ) + Lu(λ)Lv(λ)

= bLu(λ) + L(u ∗ v)(λ) .

Inverting this equality gives

1 = bu(t) +

∫ t

0

u(s)v(t− s) ds , t > 0.

2

3 Nonnegative harmonic functions of the subordinate

process

Suppose that α ∈ (0, 2] and let X = (Xt : t ≥ 0) be a symmetric α-stable process in Rd

with characteristic function

E[exp(iξ · (Xt −X0))] = e−t|ξ|α , ξ ∈ Rd, t ≥ 0.

Let D be a bounded open set in Rd which is further assumed to be connected when α = 2,

and let τD = inf{t > 0 : Xt /∈ D} be the exit time of X from D. Define

XD
t =

{
Xt, t < τD ,
∂ , t ≥ τD ,

where ∂ is the cemetery. We call XD the symmetric α-stable process killed upon exiting D.

The semigroup of XD will be denoted by (PD
t )t≥0, and its transition density by pD(t, x, y),

t ≥ 0, x, y ∈ Rd. The transition density pD(t, x, y) is strictly positive, and hence the
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eigenfunction ϕ0 of the operator (−∆)
α
2 |D corresponding to the smallest eigenvalue λ0 can

be chosen to be strictly positive, see, for instance, [11]. The potential operator of XD is

given by

GDf(x) =

∫ ∞

0

PD
t f(x) dt ,

and has a density GD(x, y), x, y ∈ D. Here, and further below, f denotes a nonnegative Borel

function on D. The potential theory of the killed symmetric α-stable process, 0 < α < 2,

has been studied extensively in the late nineties. We will need the following two facts: If

h is a nonnegative harmonic function for XD, then h and PD
t h are harmonic in D. The

continuity of harmonic functions is proved in [7]. To show the second fact, note that from

the explicit formula for the Poisson kernel for the ball, it follows that
∫

D\B h(y) dy <∞ for

every ball B contained in D. Since h is bounded on B, it follows that h ∈ L1(D). By use

of the boundedness and the joint continuity of (x, y) 7→ pD(t, x, y) (see [9]), it follows by the

dominated convergence theorem that PD
t h(x) is continuous. For α = 2, these facts are well

known.

In this paper we always assume that (PD
t )t≥0 is intrinsically ultracontractive, that is, for

each t > 0 there exists a constant ct such that

pD(t, x, y) ≤ ctϕ0(x)ϕ0(y), x, y ∈ D,

where ϕ0 is the positive eigenfunction corresponding to the smallest eigenvalue λ0 of the

Dirichlet Laplacian (−∆)α/2|D. It is well known that (see, for instance, [12]) when (PD
t )t≥0

is intrinsically ultracontractive there is c̃(t) > 0 such that

pD(t, x, y) ≥ c̃tϕ0(x)ϕ0(y), x, y ∈ D.

Intrinsic ultracontractivity was introduced by Davies and Simon in [12]. It is well known

that (see, for instance, [1]), in the case of α = 2, (PD
t )t≥0 is intrinsically ultracontractive

when D is a bounded Lipschitz domain, or a Hölder domain of order 0, or a uniformly Hölder

domain of order β ∈ (0, 2). The intrinsic ultracontractivity of (PD
t )t≥0 when α ∈ (0, 2) was

first studied in [9]. From [19] we know that, in the case of α ∈ (0, 2), (PD
t )t≥0 is intrinsically

ultracontractive for any bounded open set D in Rd.

Let S = (St : t ≥ 0) and T = (Tt : t ≥ 0) be two special subordinators. Suppose that

X, S and T are independent. We assume that the Laplace exponents of S and T , denoted

by φ and ψ respectively, are related by

λ = φ(λ)ψ(λ) .

We also assume that φ has the representation (2.2) with b > 0 or µ(0,∞) = ∞. We define

subordinate processes by

Y D
t = XD(St), t ≥ 0

ZD
t = XD(Tt), t ≥ 0.
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Then Y D = (Y D
t : t ≥ 0) and ZD = (ZD

t : t ≥ 0) are symmetric Hunt processes on D. If we

use ρt(ds) and θt(ds) to denote the distributions of St and Tt respectively, the semigroups of

Y D and ZD are given by

QD
t f(x) =

∫ ∞

0

PD
s f(x)ρt(ds),

RD
t f(x) =

∫ ∞

0

PD
s f(x)θt(ds),

respectively. The semigroup QD
t has a density given by

qD(t, x, y) =

∫ ∞

0

pD(s, x, y)ρt(ds) .

The semigroup RD
t will have a density

rD(t, x, y) =

∫ ∞

0

pD(s, x, y)θt(ds)

in case b = 0, while for b > 0, RD
t is not absolutely continuous with respect to the Lebesgue

measure. Let U and V denote the potential measures of S and T , respectively. Then

there are decreasing functions on u and v defined on (0,∞) such that U(dt) = u(t) dt and

V (dt) = bε0(dt) + v(t) dt. The potential kernels of Y D and ZD are given by

UDf(x) =

∫ ∞

0

PD
t f(x)U(dt) =

∫ ∞

0

PD
t f(x)u(t) dt,

V Df(x) =

∫ ∞

0

PD
t f(x)V (dt) = bf(x) +

∫ ∞

0

PD
t f(x) v(t)dt

respectively. The potential kernel UD has a density given by

UD(x, y) =

∫ ∞

0

pD(t, x, y)u(t)dt ,

while V D need not be absolutely continuous with respect to the Lebesgue measure. For the

process Y D we define the potential of a Borel measure m on D by

UDm(x) :=

∫
D

UD(x, y)m(dy) =

∫ ∞

0

PD
t m(x)u(t) dt .

Let (UD
λ , λ > 0) be the resolvent of the semigroup (QD

t , t ≥ 0). Then UD
λ is given by a

kernel which is absolutely continuous with respect to the Lebesgue measure. Moreover, one

can easily show that for a bounded Borel function f vanishing outside a compact subset of

D, the functions x 7→ UD
λ f(x), λ > 0, and x 7→ UDf(x) are continuous. This implies (e.g.,

[6], p.266) that excessive functions of Y D are lower semicontinuous.

The factorization in the next proposition is similar in spirit to Theorem 4.1 (5) in [21].

12



Proposition 3.1 (a) For any nonnegative Borel function f on D we have

UDV Df(x) = V DUDf(x) = GDf(x), x ∈ D.

(b) For any Borel measure m on D we have

V DUDm(x) = GDm(x)

Proof. (a) We are only going to show that UDV Df(x) = GDf(x) for all x ∈ D. For the

proof of V DUDf(x) = GDf(x) see part (b). For any nonnegative Borel function f on D, by

using the Markov property and Theorem 2.5 we get that

UDV Df(x) =

∫ ∞

0

PD
t V

Df(x)u(t)dt

=

∫ ∞

0

PD
t

(
bf(x) +

∫ ∞

0

PD
s f(x)v(s)ds

)
u(t)dt

= bUDf(x) +

∫ ∞

0

PD
t

(∫ ∞

0

PD
s f(x)v(s)ds

)
u(t)dt

= bUDf(x) +

∫ ∞

0

∫ ∞

0

PD
t+sf(x)v(s)ds u(t)dt

= bUDf(x) +

∫ ∞

0

∫ ∞

t

PD
r f(x)v(r − t)dr u(t)dt

= bUDf(x) +

∫ ∞

0

(∫ r

0

u(t)v(r − t)dt

)
PD

r f(x)dr

=

∫ ∞

0

(
bu(r) +

∫ r

0

u(t)v(r − t)dt

)
PD

r f(x)dr

=

∫ ∞

0

PD
r f(x)dr = GDf(x).

13



(b) Similarly as above,

V DUDm(x) = bUDm(x) +

∫ ∞

0

PD
t U

Dm(x)v(t) dt

= bUDm(x) +

∫ ∞

0

PD
t

(∫ ∞

0

PD
s m(x)u(s) ds

)
v(t) dt

= bUDm(x) +

∫ ∞

0

∫ ∞

0

PD
t+sm(x)u(s) ds v(t) dt

= bUDm(x) +

∫ ∞

0

∫ ∞

r

PD
r m(x)u(r − t) dr v(t) dt

= bUDm(x) +

∫ ∞

0

(∫ r

0

u(r − t)v(t) dt

)
PD

r m(x) dr

=

∫ ∞

0

(
b+

∫ r

0

u(r − t)v(t) dt

)
PD

r m(x) dr

=

∫ ∞

0

PD
r m(x) dr = GDm(x)

2

Proposition 3.2 Let g be an excessive function for Y D. Then V Dg is excessive for XD.

Proof. We first observe that if g is excessive with respect to Y D, then g is the increasing

limit of UDfn for some fn. Hence it follows from Proposition 3.1 that

V Dg = lim
n→∞

V DUDfn = lim
n→∞

GDfn,

which implies that V Dg is either identically infinite or excessive with respect to XD. We

prove now that V Dg is not identically infinite. In fact, since g is excessive with respect to

Y D, there exists x0 ∈ D such that for every t > 0,

∞ > g(x0) ≥ QD
t g(x0) =

∫ ∞

0

PD
s g(x0)ρt(ds).

Thus there is s > 0 such that PD
s g(x0) is finite. Hence

∞ > PD
s g(x0) =

∫
D

pD(s, x0, y)g(y) dy ≥ c̃sϕ0(x0)

∫
D

ϕ0(y)g(y) dy,

so we have
∫

D
ϕ0(y)g(y) dy <∞. Since (PD

t )t≥0 is intrinsically ultracontractive, by Theorem

4.2.5 of [11] there exists T > 0 such that

pD(t, x, y) ≤ 3

2
e−λ0tϕ0(x)ϕ0(y), t ≥ T, x, y ∈ D. (3.1)

14



Consequently ∫
D

V Dg(x)ϕ0(x) dx =

∫
D

g(x)V Dϕ0(x) dx

=

∫
D

g(x)

(
bϕ0(x) +

∫ ∞

0

PD
t ϕ0(x)v(t) dt

)
dx

=

∫
D

g(x)

(
bϕ0(x) +

∫ ∞

0

e−λ0tϕ0(x)v(t) dt

)
dx

=

∫
D

ϕ0(x)g(x)dy

(
b+

∫ ∞

0

e−λ0tv(t) dt

)
<∞.

Therefore s = V Dg is not identically infinite in D. 2

Remark 3.3 Note that the proposition above is valid with Y D and ZD interchanged: if g is

excessive for ZD, then UDg is excessive for XD. Using this we can easily get the following

simple fact: if f and g are two nonnegative Borel functions on D such that V Df and V Dg are

not identically infinite, and that V Df = V Dg a.e., then f = g a.e. In fact, since V Df and

V Dg are excessive for ZD, we know that GDf = UDV Df and GDg = UDV Dg are excessive

for XD. Moreover, by the absolute continuity of UD, we have that GDf = GDg. The a. e.

equality of f and g follows from the uniqueness principle for GD.

The second part of Proposition 3.1 shows that if s = GDm is the potential of a measure,

then s = V Dg where g = UDm is excessive for Y D. The function g can be written in the

following way:

g(x) =

∫ ∞

0

PD
s m(x)u(s) ds

=

∫ ∞

0

PD
s m(x)

(
u(∞) +

∫ ∞

s

−du(t)
)
ds

=

∫ ∞

0

PD
s m(x)u(∞) ds+

∫ ∞

0

PD
s m(x)

(∫ ∞

s

−du(t)
)
ds

= u(∞)s(x) +

∫ ∞

0

(∫ t

0

PD
s m(x) ds

)
(−du(t))

= u(∞)s(x) +

∫ ∞

0

(PD
t s(x)− s(x)) du(t) (3.2)

In the next proposition we will show that every excessive function s for XD can be

represented as a potential V Dg, where g, given by (3.2), is excessive for Y D. This result

was first stated in [16] as Theorem 2 for the case of stable subordinators and used in [15].

However, the proof given in [16] does not seem to be complete because of the following two

15



reasons. First, it is only shown that g is almost everywhere equal to an excessive function,

while for later applications it is essential that g itself is excessive. Secondly, the use of Lemma

1 in that proof does not seem to be justified. We therefore give a complete proof here which

is based on the approach in [16].

We need the following important lemma.

Lemma 3.4 Let h be a nonnegative harmonic function for XD, and let

g(x) = u(∞)h(x) +

∫ ∞

0

(PD
t h(x)− h(x)) du(t) . (3.3)

Then g is continuous.

Proof. We only give the proof in the case when α ∈ (0, 2), the proof in the case α = 2 is

similar and essentially given in [16]. Since the first term in the formula (3.3) is continuous,

we have to prove that the second term is also continuous. Let us extend h to Rd \ D by

setting h(x) = 0 for all x ∈ Rd \D. This extended h is harmonic for X in D.

For any ε > 0 we have

|
∫ ∞

ε

du(t)| ≤ u(ε).

We first note that from continuity of h and PD
t h it follows by the dominated convergence

theorem that the function

x 7→
∫ ∞

ε

(PD
t h(x)− h(x)) du(t), x ∈ D,

is continuous. Hence we only need to prove that the function

x 7→
∫ ε

0

(PD
t h(x)− h(x)) du(t), x ∈ D,

is continuous. For any x0 ∈ D choose r > 0 such that B(x0, 5r) ⊂ D. Put Bi = B(x0, ir)

for i = 1, . . . , 4, and let τBi
be the exit time of X from Bi, i = 1, . . . , 4. It is enough to show

that

lim
ε↓0

∫ ε

0

(PD
t h(x)− h(x)) du(t) = 0

uniformly on B1. For any x ∈ B2, h(Xt∧τB2
) is a Px-martingale. Therefore,

0 ≤ h(x)− PD
t h(x) = Ex[h(Xt∧τB2

)]− Ex[h(Xt), t < τD]

= Ex[h(Xt), t < τB2 ] + Ex[h(XτB2
), τB2 ≤ t]

−Ex[h(Xt), t < τB2 ]− Ex[h(Xt), τB2 ≤ t < τD]

= Ex[h(XτB2
), τB2 ≤ t]− Ex[h(Xt), τB2 ≤ t < τD]

≤ Ex[h(XτB2
), τB2 ≤ t]

= Ex[h(XτB2
)1{X(τB2

)∈B4}, τB2 ≤ t] + Ex[h(XτB2
)1{X(τB2

)∈Bc
4}, τB2 ≤ t]
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Since h is continuous, there exists a constant M > 0 such that h(y) ≤ M for all y ∈ B4.

Therefore, we get

Ex[h(XτB2
)1{X(τB2

)∈B4}, τB2 ≤ t] ≤MPx(τB2 ≤ t) .

For every x ∈ B1, we have

{τB2 ≤ t} ⊂ { sup
0≤s≤t

|Xs − x| ≥ r}

almost surely with respect to Px. Therefore one can easily show (see, for instance, Lemma

3.1 of [24]) that there exists c1 > 0 such that

Px(τB2 ≤ t) ≤ c1t, x ∈ B1.

Thus we have shown that

Ex[h(XτB2
)1{X(τB2

)∈B4}, τB2 ≤ t] ≤ c1Mt, x ∈ B1.

Now let us deal with the term Ex[h(XτB2
)1{X(τB2

)∈Bc
4}, τB2 ≤ t]. Using the definition

of harmonicity and the explicit formula for the Poisson kernel for a ball we can see that

c2 :=
∫

D\B4
h(y)dy is finite. Therefore for every x ∈ B1,

Ex[h(XτB2
)1{X(τB2

)∈Bc
4}, τB2 ≤ t]

≤ C(d, α)Ex

∫ τB2
∧t

0

∫
D\B4

h(y)

|Xs − y|d+α
dy ds

≤ c2c3C(d, α)t.

Hence we have

0 ≤ h(x)− PD
t h(x) ≤ c4t, x ∈ B1.

Therefore we have for every x ∈ B1,

|
∫ ε

0

(PD
t h− h)(x) du(t)| ≤ c4|

∫ ε

0

t du(t)| .

By use of (2.14) we get that

lim
ε↓0

∫ ε

0

(PD
t h(x)− h(x)) du(t) = 0

uniformly on B1. The proof is now complete. 2
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Proposition 3.5 If s is an excessive function with respect to XD, then

s(x) = V Dg(x), x ∈ D ,

where g is the excessive function for Y D given by the formula

g(x) = u(∞)s(x) +

∫ ∞

0

(PD
t s(x)− s(x)) du(t) (3.4)

= ψ(0)s(x) +

∫ ∞

0

(s(x)− PD
t s(x)) dν(t) . (3.5)

Proof. We know that the result is true when s is the potential of a measure. Let s be an

arbitrary excessive function of XD. By the Riesz decomposition theorem (see, for instance,

Chapter 6 of [6]), s = GDm + h, where m is a measure on D, and h is a nonnegative har-

monic function for XD. By linearity, it suffices to prove the result for nonnegative harmonic

functions.

In the rest of the proof we assume therefore that s is a nonnegative harmonic function

for XD. Define the function g by formula (3.4). We have to prove that g is excessive for Y D

and s = V Dg. By Lemma 3.4, we know that g is continuous.

Further, since s is excessive, there exists a sequence of nonnegative functions fn such that

sn := GDfn increases to s. Then also PD
t sn ↑ PD

t s, implying sn − PD
t sn → s− PD

t s. If

gn = u(∞)sn +

∫ ∞

0

(sn − PD
t sn)(−du(t)) ,

then we know that sn = V Dgn and gn is excessive for Y D. By use of Fatou’s lemma we get

that

g = u(∞)s+

∫ ∞

0

(s− PD
t s)(−du(t))

= lim
n
u(∞)sn +

∫ ∞

0

lim
n

(sn − PD
t sn)(−du(t))

≤ lim inf
n

(
u(∞)sn +

∫ ∞

0

(sn − PD
t sn)(−du(t))

)
= lim inf

n
gn .

This implies (again by Fatou’s lemma) that

V Dg ≤ V D(lim inf gn) (3.6)

≤ lim inf V Dgn = lim inf
n

sn = s

For any nonnegative function f , put GD
1 f(x) :=

∫∞
0
e−tPD

t f(x) dt. Using the excessivity

of s, we can easily check that s1 := s−GD
1 s is an excessive function ofXD. Using an argument
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similar to that of the proof of Proposition 3.2 we can show that GDs is not identically infinite.

Thus by the resolvent equation we get GDs1 = GDs−GDGD
1 s = GD

1 s, or equivalently,

s(x) = s1(x) +GD
1 s(x) = s1(x) +GDs1(x), x ∈ D,

By use of formula (3.2) for the potential GDs1 and the easy fact that V D and GD
1 commute,

we have

GD
1 s = GDs1 = V D

(
u(∞)GDs1 +

∫ ∞

0

(PD
t G

Ds1 −GDs1) du(t)

)
= V D

(
u(∞)GD

1 s+

∫ ∞

0

(PD
t G

D
1 s−GD

1 s) du(t)

)
= GD

1 V
D

(
u(∞)s+

∫ ∞

0

(PD
t s− s) du(t)

)
.

By the uniqueness principle it follows that

s = V D

(
u(∞)s+

∫ ∞

0

(PD
t s− s) du(t)

)
= V Dg a.e. in D .

Together with (3.6), this implies that V Dg = V D(lim infn gn) a.e. From Remark 3.3 it follows

that

g = lim inf
n

gn a.e. (3.7)

By Fatou’s lemma and Y D-excessiveness of gn we get that,

λUD
λ g = λUD

λ (lim inf gn) ≤ lim inf
n

λUD
λ gn ≤ lim inf gn = g a.e .

We want to show that, in fact, λUD
λ g ≤ g everywhere, i.e., that g is supermedian. In order

to do this we define g̃ := supn∈N nU
D
n g. Then g̃ ≤ g a.e., hence, by the absolute continuity

of UD
n , nUD

n g̃ ≤ nUD
n g ≤ g̃ everywhere. This implies that λ 7→ λUD

λ g̃ is increasing (see, e.g.,

Lemma 3.6 in [5]), hence g̃ is supermedian. The same argument gives that n 7→ nUD
n g is

increasing a.e. Define
˜̃g := sup

λ>0
λUD

λ g̃ = sup
n
nUD

n g̃ .

Then ˜̃g is excessive, and therefore lower semicontinuous. Moreover,

˜̃g = sup
n
nUD

n g̃ ≤ g̃ ≤ g a.e.

Combining this with the continuity of g and the lower semicontinuity of ˜̃g, we can get

that ˜̃g ≤ g everywhere. Further, for x ∈ D such that g̃(x) < ∞, we have by the monotone
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convergence theorem and the resolvent equation

λUD
λ g̃(x) = lim

n→∞
λUD

λ (nUD
n )g(x)

= lim
n→∞

nλ

n− λ
(UD

λ g(x)− UD
n g(x)

= λUD
λ g(x) .

Since g̃ <∞ a.e., we have

λUD
λ g̃ = λUD

λ g a.e.

Together with the definition of g̃ this implies that

˜̃g = g̃ a.e. (3.8)

By the continuity of g and the fact that the measures nUD
n (x, ·) converge weakly to the point

mass at x, we have that for every x ∈ D

g(x) ≤ lim inf
n→∞

g(x) ≤ g̃(x) .

Hence, by using (3.8), it follows that g ≤ ˜̃g a.e. Since we already proved that ˜̃g ≤ g, it holds

that g = ˜̃g a.e. By the absolute continuity of UD
λ , g ≥ ˜̃g ≥ λUD

λ
˜̃g = λUD

λ g everywhere, i.e.,

g is supermedian.

Since it is well known (see e.g. [10]) that a supermedian function which is lower semi-

continuous is in fact excessive, this proves that g is excessive for Y D. By Proposition 3.2 we

then have that V Dg ≤ s is excessive for XD. Moreover, V Dg = s a.e., and both functions

being excessive for XD, they are equal everywhere.

It remains to notice that the formula (3.5) follows immediately from (3.4) by noting that

u(∞) = ψ(0) and du(t) = −dν(t). 2

Propositions 3.1 and 3.5 can be combined in the following theorem containing additional

information on harmonic functions.

Theorem 3.6 If s is excessive with respect to XD, then there is a function g excessive with

respect to Y D such that s = V Dg. The function g is given by the formula (3.2). Furthermore,

if s is harmonic with respect to XD, then g is harmonic with respect to Y D.

Conversely, if g is excessive with respect to Y D, then the function s defined by s = V Dg

is excessive with respect to XD. If, moreover, g is harmonic with respect to Y D, then s is

harmonic with respect to XD.

Every nonnegative harmonic function for Y D is continuous.
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Proof. It remains to show the statements about harmonic functions. First note that every

excessive functions g for Y D admits the Riesz decomposition g = UDm + h where m is a

Borel measure on D and h is harmonic function of Y D (see Chapter 6 of [6] and note that

the assumptions on pp. 265, 266 are satisfied). We have already mentioned that excessive

functions of XD admit such decomposition. Since excessive functions of XD and Y D are in 1-

1 correspondence, and since potentials of measures of XD and Y D are in 1-1 correspondence,

the same must hold for nonnegative harmonic functions of XD and Y D.

The continuity of nonnegative harmonic functions for Y D follows from Lemma 3.4 and

Proposition 3.5. 2

It follows from the theorem above that V D is a bijection from S(Y D) to S(XD), and is

also a bijection from H+(Y D) to H+(XD). We are going to use (V D)−1 to denote the inverse

map and so we have for any s ∈ S(Y D),

(V D)−1s(x) = u(∞)s(x) +

∫ ∞

0

(PD
t s(x)− s(x)) du(t) (3.9)

= ψ(0)s(x) +

∫ ∞

0

(s(x)− PD
t s(x)) dν(t)

Although the map V D is order preserving, we do not know if the inverse map (V D)−1 is

order preserving on S(XD). However from the formula above we can see that (V D)−1 is

order preserving on H+(XD).

By combining Proposition 3.1 and Theorem 3.6 we get the following relation which we

are going to use later.

Proposition 3.7 For any x, y ∈ D, we have

UD(x, y) = (V D)−1(GD(·, y))(x).

The continuity of harmonic functions, together with the intrinsic ultracontractivity of

the semigroup (PD
t ), is sufficient to prove the Harnack inequality for nonnegative harmonic

functions for the process Y D. Here we will only state two necessary lemmas and the theorem.

For arguments of proofs we refer the reader to Section 4 of [15].

Lemma 3.8 Suppose that (PD
t ) is intrinsically ultracontractive. There exists a constant

C > 0 such that

V Ds ≤ Cs, ∀s ∈ S(Y D) . (3.10)

Lemma 3.9 Suppose (PD
t ) is intrinsically ultracontractive. If s ∈ S(Y D), then for any

x ∈ D,

s(x) ≥ 1

2C
e−λ0T 1

ψ(λ0)
φ0(x)

∫
D

s(y)φ0(y) dy,

where T is the constant in (3.1) and C is the constant in (3.10).
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Theorem 3.10 Suppose that (PD
t ) is intrinsically ultracontractive. For any compact subset

K of D, there exists a constant C depending on K and D such that for any h ∈ H+(Y D),

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

4 Martin boundary of the subordinate process

In this section we will always assume the following

Assumption A: D is a bounded κ-fat set for some κ ∈ (0, 1) when α ∈ (0, 2), and D is a

bounded Lipschitz domain when α = 2.

Recall (see [26]) that, for κ ∈ (0, 1), an open set D in Rd is called a κ-fat set if there exists

R > 0 such that for every z ∈ ∂D and r ∈ (0, R), D ∩B(z, r) contains a ball B(Ar(z), κr).

Fix a point x0 ∈ D and set

MD(x, y) =
GD(x, y)

GD(x0, y)
, x, y ∈ D.

It is well known that the limit

lim
D3y→z

MD(x, y)

exists for every x ∈ D and z ∈ ∂D. The function MD(x, z) := limD3y→z M
D(x, y) on

D× ∂D defined above is called the Martin kernel of XD based at x0. The Martin boundary

and minimal Martin boundary of XD both coincide with the Euclidean boundary ∂D. For

these and other results about the Martin boundary of XD in the case α = 2, one can see

[2]; For these and other results about the Martin boundary of XD in the case α ∈ (0, 2), one

can see [26]. One of the goals of this section is to determine the Martin boundary of Y D.

By using the Harnack inequality (in the case α ∈ (0, 2), we need to use the version in

[7]), one can easily show that (see, for instance, pages 17–18 of [13]), if (hj) is a sequence of

functions in H+(XD) converging pointwise to a function h ∈ H+(XD), then (hj) is locally

uniformly bounded in D and equicontinuous at every point in D. Using this one can get that,

if (hj) is a sequence of functions in H+(XD) converging pointwise to a function h ∈ H+(XD),

then (hj) converges to h uniformly on compact subsets of D. We are going to use this fact

below.

Lemma 4.1 Suppose that x0 ∈ D is a fixed point.

(a) Let (xj) be a sequence of points in D converging to x ∈ D and let (hj) be a sequence

of functions in H+(XD) with hj(x0) = 1 for all j. If the sequence (hj) converges to a

function h ∈ H+(XD), then for each t > 0

lim
j
PD

t hj(xj) = PD
t h(x) .
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(b) If (yj, j ≥ 1) is a sequence of points in D such that limj yj = z ∈ ∂D, then for each

t > 0 and for each x ∈ D

lim
j
PD

t

(
GD(·, yj)

GD(x0, yj)

)
(x) = PD

t (MD(·, z))(x) .

Proof. In the case α = 2, this lemma is just Lemma 5.1 of [15]. The proof of the case

when α ∈ (0, 2) is similar to that of Lemma 5.1 of [15], only now we use the result on the

identification of Martin boundaries for κ-fat sets in [26] and the 3G inequality there. We

omit the details. 2

Theorem 4.2 Suppose that x0 ∈ D is a fixed point.

(a) If (xj) is a sequence of points in D converging to x ∈ D and (hj) is a sequence of

functions in H+(XD) converging to a function h ∈ H+(XD), then

lim
j

(V D)−1hj(xj) = (V D)−1h(x) .

(b) If (yj) is a sequence of points in D converging to z ∈ ∂D, then for every x ∈ D,

lim
j

(V D)−1(
GD(·, yj)

GD(x0, yj)
)(x) = lim

j

(V D)−1(GD(·, yj))(x)

GD(x0, yj)
= (V D)−1MD(·, z)(x) .

Proof. We only give the proof in the case when α ∈ (0, 2), the proof in the case α = 2 is

similar.

(a) Normalizing by hj(x0) if necessary, we may assume without loss of generality that

hj(x0) = 1 for all j ≥ 1. Let ε > 0. We have

|(V D)−1hj(xj)− (V D)−1h(x)|

= |
∫ ∞

0

(PD
t hj(xj)− hj(xj) du(t)−

∫ ∞

0

(PD
t h(x)− h(x)) du(t) + u(∞)(hj(xj)− h(x))|

≤
∫ ε

0

(PD
t hj(xj)− hj(xj)) du(t) +

∫ ε

0

(PD
t h(x)− h(x)) du(t)

+ |
∫ ∞

ε

(PD
t hj(xj)− hj(xj)) du(t)−

∫ ∞

ε

(PD
t h(x)− h(x)) du(t)|

+u(∞)|hj(xj)− h(x)| .

The last term clearly converges to zero as j →∞.

For any x ∈ D choose r > 0 such that B(x, 5r) ⊂ D. Put Bi = B(x, ir) for i = 1, . . . , 4.

Without loss of generality we may and do assume that xj ∈ B1 for all j ≥ 1. Similarly as
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in the proof of Lemma 3.4, we extend functions h and hj to be identically zero outside D.

Since h and hj are continuous in D and (hj) is locally uniformly bounded in D, there is a

constant M > 0 such that h and hj, j = 1, 2, . . . , are all bounded from above by M on B4.

Now from the proof of Lemma 3.4 we know that there is a constant c1 > 0 such that

Ey[h(XτB2
)1{X(τB2

)∈B4}, τB2 ≤ t] ≤ c1Mt, y ∈ B1,

and

Ey[hj(XτB2
)1{X(τB2

)∈B4}, τB2 ≤ t] ≤ c1Mt, y ∈ B1, j ≥ 1.

Using the boundedness of (hj(x)), the definition of harmonicity and the explicit formula for

the Poisson kernel of a ball one can show that

c2 := (

∫
D\B4

h(z)dz) ∨ (sup
j

∫
D\B4

hj(z) dz) <∞.

Therefore we have for every y ∈ B1,

Ey[h(XτB2
)1{X(τB2

)∈Bc
4}, τB2 ≤ t] ≤ C(d, α)Ey

∫ τB2
∧t

0

∫
D\B4

h(y)

|Xs − y|d+α
dy ds ≤ c2c3C(d, α)t ,

and for every j ≥ 1,

Ey[hj(XτB2
)1{X(τB2

)∈Bc
4}, τB2 ≤ t] ≤ C(d, α)Ey

∫ τB2
∧t

0

∫
D\B4

hj(y)

|Xs − y|d+α
dy ds ≤ c2c3C(d, α)t .

Hence we have

0 ≤ h(y)− PD
t h(y) ≤ c4t, y ∈ B1 ,

and

0 ≤ hj(y)− PD
t hj(y) ≤ c4t, y ∈ B1, j ≥ 1 .

Therefore we have,

|
∫ ε

0

(PD
t h− h)(y) du(t)| ≤ c4|

∫ ε

0

t du(t)|, y ∈ B1

and

|
∫ ε

0

(PD
t hj − hj)(y) du(t)| ≤ c4|

∫ ε

0

t du(t)|, y ∈ B1, j ≥ 1.

Using (2.14) we get that

lim
ε↓0

∫ ε

0

(PD
t h(x)− h(x)) du(t) = 0,

and

lim
ε↓0

∫ ε

0

(PD
t hj(xj)− hj(xj)) du(t) = 0,
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Further,

|
∫ ∞

ε

(PD
t hj(xj)− hj(xj)) du(t)−

∫ ∞

ε

(PD
t h(x)− h(x)) du(t)|

≤
∫ ∞

ε

(|hj(xj)− h(xj)|+ |h(xj)− h(x)|) du(t)

+

∫ ∞

ε

|PD
t hj(xj)− PD

t h(x)| du(t) .

Since |hj(xj) − h(xj)| + |h(xj) − h(x)| ≤ 2M and |PD
t hj(xj) − PD

t h(x)| ≤ M for all j ≥ 1

and all x ∈ B1, we can apply Lemma 4.1(a) and the dominated convergence theorem to get

lim
j

∫ ∞

ε

(|hj(xj)− h(xj)|+ |h(xj)− h(x)|) du(t) = 0

and

lim
j

∫ ∞

ε

|PD
t hj(xj)− PD

t h(x)|v(t) = 0.

The proof of (a) is now complete.

(b) The proof of (b) is similar to (a). The only difference is that we use 4.1(b) in this

case. We omit the details. 2

Let us define the function KD
Y (x, z) := (V D)−1MD(·, z)(x) on D × ∂D. For each fixed

z ∈ ∂D, KD
Y (·, z) ∈ H+(Y D). By the first part of Theorem 4.2, we know that KD

Y (x, z) is

continuous on D × ∂D. Let (yj) be a sequence of points in D converging to z ∈ ∂D, then

from Theorem 4.2(b) we get that

KD
Y (x, z) = lim

j→∞
(V D)−1

(
GD(·, yj)

GD(x0, yj)

)
(x)

= lim
j→∞

(V D)−1(GD(·, yj))(x)

GD(x0, yj)

= lim
j→∞

UD(x, yj)

GD(x0, yj)
(4.1)

where the last line follows from Proposition 3.7. In particular, there exists the limit

lim
j→∞

UD(x0, yj)

GD(x0, yj)
= KD

Z (x0, z) . (4.2)

Now we define a function MD
Y on D × ∂D by

MD
Y (x, z) :=

KD
Y (x, z)

KD
Y (x0, z)

, x ∈ D, z ∈ ∂D. (4.3)
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For each z ∈ ∂D, MD
Y (·, z) ∈ H+(Y D). Moreover, MD

Y is jointly continuous on D × ∂D.

From the definition above and (4.1) we can easily see that

lim
D3y→z

UD(x, y)

UD(x0, y)
= MD

Y (x, z), x ∈ D, z ∈ ∂D. (4.4)

Theorem 4.3 The Martin boundary and the minimal Martin boundary of Y D both coincide

with the Euclidean boundary ∂D, and the Martin kernel based at x0 is given by the function

MD
Y .

Proof. The fact that MD
Y is the Martin kernel of Y D based at x0 has been proven in the

paragraph above. It follows from Theorem 3.6 that when z1 and z2 are two distinct points on

∂D, the functions MD
Y (·, z1) and MD

Y (·, z2) are not identical. Therefore the Martin boundary

of Y D coincides with the Euclidean boundary ∂D. Since MD(·, z) ∈ H+(XD) is minimal, by

the order preserving property of (Y D)−1 we know that MD
Y (·, z) ∈ H+(Y D) is also minimal.

Therefore the minimal Martin boundary of YD also coincides with the Euclidean boundary

∂D. 2

It follows from Theorem 4.3 and the general theory of Martin boundary that for any

g ∈ H+(Y D) there exists a finite measure n on ∂D such that

g(x) =

∫
∂D

MD
Y (x, z)n(dz), x ∈ D.

The measure n is sometimes called the Martin measure of g. The following result gives the

relation between the Martin measure of h ∈ H+(XD) and the Martin measure of (V D)−1h ∈
H+(Y D).

Proposition 4.4 If h ∈ H+(XD) has the representation

h(x) =

∫
∂D

MD(x, z)m(dz), x ∈ D,

then

(V D)−1h(x) =

∫
∂D

MD
Y (x, z)n(dz), x ∈ D

with n(dz) = KD
Y (x0, z)m(dz).

Proof. By assumption we know that

h(x) =

∫
∂D

MD(x, z)m(dz), x ∈ D.
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Using (3.4) and Fubini’s theorem we get

(V D)−1h(x) =

∫
∂D

(V D)−1(MD(·, z))(x)m(dz)

=

∫
∂D

MD
Y (x, z)KD

Y (x0, z)m(dz)

=

∫
∂D

MD
Y (x, z)n(dz) ,

with n(dz) = KD
Y (x0, z)m(dz). The proof is now complete. 2

From Theorem 4.2 we know that (V D)−1 : H+(XD) → H+(Y D) is continuous with

respect to topologies of locally uniform convergence. In the next result we show that V D :

H+(Y D) → H+(XD) is also continuous.

Proposition 4.5 Let (gj, j ≥ 0) be a sequence of functions in H+(Y D) converging pointwise

to the function g ∈ H+(Y D). Then limj→∞ V Dgj(x) = V Dg(x) for every x ∈ D.

Proof. Without loss of generality we may assume that gj(x0) = 1 for all j ∈ N. Then there

exist probability measures nj, j ∈ N, and n on ∂D such that gj(x) =
∫

∂D
MD

Y (x, z)nj(dz), j ∈
N, and g(x) =

∫
∂D
MD

Y (x, z)n(dz). It is easy to show that the convergence of the harmonic

functions hj implies that nj → n weakly. Let V Dgj(x) =
∫

∂D
MD(x, z)mj(dz) and V Dg(x) =∫

∂D
MD(x, z)m(dz). Then nj(dz) = KD

Y (x0, z)mj(dz) and n(dz) = KD
Y (x0, z)m(dz). Since

the density KD
Y (x0, ·) is bounded away from zero and bounded from above, it follows that

mj → m weakly. From this the claim of proposition follows immediately. 2
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[25] R. Song and Z. Vondraček, Green function estimates and Harnack inequality for subordinate
Brownian motions, Preprint, 2004.

[26] R. Song and J.-M. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct.
Anal., 168 (1999), 403–427.

29


