Heat kernels of non-symmetric jump processes:
beyond the stable case
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Abstract

Let J be the Lévy density of a symmetric Lévy process in R¢ with its Lévy exponent
satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and
non-local operator

LEf(x) :=lim (flx+z) — f(z))r(x, 2)J(2) dz,
el J{zeRd:|z|>e}
where k(z, 2) is a Borel function on RY x R? satisfying 0 < ko < k(z, 2) < k1, k(z,2) =
k(z, —2) and |k(x, 2) — K(y, 2)| < Ka|z —y|® for some B € (0,1]. We construct the heat
kernel p*(t,z,y) of L", establish its upper bound as well as its fractional derivative
and gradient estimates. Under an additional weak upper scaling condition at infinity,
we also establish a lower bound for the heat kernel p”.
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1 Introduction

Suppose that d > 1, a € (0,2) and k(z, 2) is a Borel function on R? x R? such that

0 < ko <h(x,2) <k, H(x,2) =Kz, —2), (1.1)
and for some g € (0, 1],
k(. 2) = K(y, 2)| < Rz —y|”. (1.2)
The operator
. k(, 2)
L5f(x) = lim (f(z+2) = f(z)) dz (1.3)
€40 {z€R%:|z|>¢} |Z|d+a
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is a non-symmetric and non-local stable-like operator. In the recent paper [6], Chen and
Zhang studied the heat kernel of £ and its sharp two-sided estimates. As the main result
of the paper, they proved the existence and uniqueness of a non-negative jointly continuous
function p% (¢, z,y) in (t,z,y) € (0,1] x R x R? solving the equation

Ope(t,x,y) = Lopa(t,y)(x), T#y,

and satisfying four properties - an upper bound, Holder’s estimate, fractional derivative esti-
mate and continuity, cf. [6, Theorem 1.1] for details. They also proved some other properties
of the heat kernel pf (¢, x, y) such as conservativeness, Chapman-Kolmogorov equation, lower
bound, gradient estimate and studied the corresponding semigroup. Their paper is the first
one to address these questions for not necessarily symmetric non-local stable-like opera-
tors. These operators can be regarded as the non-local counterpart of elliptic operators in
non-divergence form. In this context the Holder continuity of (-, z) in (1.2) is a natural
assumption.

The goal of this paper is to extend the results of [6] to more general operators than the
ones defined in (1.3). These operators will be non-symmetric and not necessarily stable-like.
We will replace the kernel x(z, 2)|z|~%~* with a kernel k(z, 2)J(z) where  still satisfies (1.1)
and (1.2), but J(z) is the Lévy density of a rather general symmetric Lévy process. Here
are the precise assumptions that we make.

Let ¢ : (0,00) — (0,00) be a Bernstein function without drift and killing. Then

o0\ = /( () ),

where 1 is a measure on (0, 00) satisfying f(o,oo) (t A 1)u(dt) < oo. Here and throughout
this paper, we use the notation a A b := min{a, b} and a V b := max{a,b}. Without loss of
generality we assume that ¢(1) = 1. Define ® : (0,00) — (0,00) by ®(r) = ¢(r?) and let
®~! be its inverse. The function z + ®(|z|) =: ®(z), x € R% d > 1, is negative definite
and hence it is the characteristic exponent of an isotropic Lévy process on R?. This process
can be obtained by subordinating a d-dimensional Brownian motion by an independent
subordinator with Laplace exponent ¢. The Lévy measure of this process has a density
J(ly|) where j: (0,00) — (0, 00) is the function given by

j(r) = / (4t) e pu(dr)
(O7m)

Thus we have

0@ = [ e )i iy

Note that when ¢(\) = A2, 0 < a < 2, we have ®(r) = r®, the corresponding subordi-

nate Brownian motion is an isotropic a-stable process and j(r) = c(d, ) r=4-.



Our main assumption is the following weak lower scaling condition at infinity: There
exist 01 € (0,2] and a; € (0, 1) such that

G\ O(r) < d(N\r), A>1,r>1. (1.4)

This condition implies that limy . ®(A) = oo and hence [4,(, 7(ly))dy = oo (i.e., the
subordinate Brownian motion is not a compound Poisson process). The weak lower scaling
condition at infinity governs the short-time small-space behavior of the subordinate Brownian
motion. We also need a weak condition on the behavior of ® near zero. We assume that

/1@dr—0*<oo. (1.5)

r

The following function will play a prominent role in the paper. For ¢t > 0 and z € R? we

define
ot 7) = pD(t,z) = @ ((ﬁ + |x|> _1> <ﬁ + m) DT

In case when ®(r) = r® we see that p(t,z) = (t'/* + |2[)~**. It is well known that
t(tY* 4 |x|)~9 is comparable to the heat kernel p(¢,z) of the isotropic a-stable process in
R?. We will prove later in this paper (see Proposition 3.2) that tp(¢,z) is an upper bound
of the heat kernel of the subordinate Brownian motion with characteristic exponent .

We assume that J : R? — (0,00) is symmetric in the sense that J(z) = J(—z) for all
x € R? and there exists 7o > 0 such that

Yo () < () < i(lyl), for all y € RY. (1.7)

Following (1.3), we define a non-symmetric and non-local operator

Lif(z) =L f(x) = p.v./ (flx+2)— f(x)k(z,2)J(2)dz :== leiﬂ[)l L f(x), (1.8)

where
£ f(z) = /|> (Flz+2) — F2))k(w, 2)J (=) dz, &> 0.

The following theorem is the main result of this paper.

Theorem 1.1 Assume that ® satisfies (1.4) and (1.5), that J satisfies (1.7), and that k
satisfies (1.1) and (1.2). Suppose there exists a function g : R — (0,00) such that

lim g(z) =00 and L%g(z)/g(x) is bounded from above. (1.9)

T—r00

Then there exists a unique non-negative jointly continuous function p"(t,x,y) on (0,00) X
R? x R solving
atpﬁ<t7$ay) :‘Cnpﬁ(ta'vy)(aj)a x %ya (110)
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and satisfying the following properties:
(i) (Upper bound) For every T > 1, there is a constant ¢; > 0 so that for all t € (0,T] and
r,y € RY,
Ptz y) < atp(t,x —y). (1.11)

(ii) (Fractional derivative estimate) For any x,y € RY, x # y, the map t — LEp*(t, -, y)(z) is
continuous in (0,00), and, for each T > 1 there is a constant ca > 0 so that for allt € (0,T],
e €[0,1] and z,y € R4,

[L55p"(t, - y) ()] < cap(t,x —y) - (1.12)

i) (Continuity) For any bounded and uniformly continuous function f : R? — R
(ii) ( y Y y :

lim sup
t0 peRrd

[ tan = @) =o. (113)

Moreover, the constants ¢; and cy can be chosen so that they depend only on T, ®~1(T71),
d, ar, 01, Cs, B, Y0, Ko, K1 and Ks.

The assumption (1.9) is a quite mild one. For example, if f|z|>1 |z|°5(]2])dz < oo for some
e > 0, then (1.9) holds, see Remark 5.2 below.
Some further properties of the heat kernel p*(t, z,y) are listed in the following result.

Theorem 1.2 Suppose that the assumptions of Theorem 1.1 are satisfied.
(1) (Conservativeness) For all (t,z) € (0,00) x R,

/de”(t,m,y) dy =1. (1.14)

(2) (Chapman-Kolmogorov equation) For all s,t > 0 and all x,y € RY,

/ﬁ@%@%%wﬁzﬂH&%w (1.15)
Rd

(3) (Joint Hélder continuity) For every T > 1 and v € (0,d1) N (0, 1], there is a constant
c3 = c3(T,d, 01,a1, 3,Cy, @ YT 1), v0, Ko, K1, K2) > 0 such that for all0 < s <t < T and
r, 7',y € RY,

|p”(3,x,y)—p”(t,x’,y)] S C3 (’t - S| + |‘r - x/”yt (I)71<t71>) (p(s,x—y)\/p(s,a:’—y)) . (116>

Furthermore, if the constant 8, in (1.4) belongs to (2/3,2) and the constant 5 in (1.2) satisfies
B+ 1 > 1 then (1.16) holds with v = 1.
(4) (Gradient estimate) If 6, € (2/3,2), and 5+ 6; > 1, then for every T > 1, there exists
cy = cu(T,d, 01,01, ,C,, @ HT™Y), Yo, ko, K1, ko) > 0 so that for all z,y € R, x # y, and
t € (0,77,

Vap™(t, 2, y)| < ca®@ (¢ )ip(t, |2 — yl) . (1.17)



Note that the gradient estimate (1.17) is an improvement of the corresponding estimate
[6, (4.19)] in the sense that the parameter d; could be smaller than one as long as it is still
larger than 2/3 and 5+ §; > 1.

For t > 0, define the operator P} by

PEf@) = [ e f)dy, e R (1.15)

where f is a non-negative (or bounded) Borel function on R¢, and let P§ = Id. Then by
Theorems 1.1 and 1.2, (Pf):>o is a Feller semigroup with the strong Feller property. Let
05 “(R?) be the space of bounded twice differentiable functions in R? whose second derivatives
are uniformly Holder continuous. We further have

Theorem 1.3 Suppose that the assumptions of Theorem 1.1 are satisfied.
(1) (Generator) Let ¢ > 0. For any f € C2°(RY), we have

lim (P f (@) — F(x)) = £5f(2), (1.19)

tl0

and the convergence is uniform.
(2) (Analyticity) The semigroup (PF)eso of L is analytic in LP(R?) for every p € [1,00).

Finally, under an additional assumption, we prove by probabilistic methods a lower bound
for the heat kernel p*(t,z,y). The weak upper scaling condition means that there exist
d2 € (0,2) and as > 0 such that

D) < apA\20(r), A>1,r>1. (1.20)

Theorem 1.4 Suppose that © satisfies (1.4), (1.20) and (1.5), that J satisfies (1.7), and
that k satisfies (1.1) and (1.2). Suppose also that there exists a function g : R — (0, 00) such
that (1.9) holds. For every T > 1, there exists c5 = c5(T,d, 81,02, %, Ce, @ 1T 1), ay, as,
B, Ko, K1, ko) > 0 such that for all t € (0,T],

O if fr -yl < 307N

‘ , o (1.21)
tile—yl) if v —yl >3 ()

Pt w,y) = cs {

In particular, for all T, M > 1, there exists cs = c¢(T,d, 1, 02,70, Cx, @H(T™1), a1, as, B, ko,
K1, ko) > 0 for all t € (0,T] and z,y € R? with |z —y| < M,

Pt z,y) > cetp(t,x —y). (1.22)

Theorems 1.1-1.4 generalize [6, Theorem 1.1]. Note that the lower bound (1.22) of
p(t,x,y) is stated only for |z — y| < M. This is natural in view of the fact that (1.4)
and (1.20) only give information about short-time small-space behavior of the underlying
subordinate Brownian motion. We remark in passing that, the upper bound (1.11) may not
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be sharp under the assumptions (1.4) and (1.5). When & satisfies scaling conditions both
near infinity and near the origin, see [11, (H1) and (H2)|, the upper bound (1.11) is sharp
in the sense that the lower bound (1.22) is valid for all z,y € R%.

The assumptions (1.4), (1.5), (1.9) and (1.20) are very weak conditions and they are
satisfied by many subordinate Brownian motions. For the reader’s convenience, we list
some examples of ¢, besides the Laplace exponent of the stable subordinator, such that
O(r) = ¢(r?) satisfies these assumptions.
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(6) () = A/log(l+ %), a € (0,1).

The functions in (1)—(5) satisfy (1.4), (1.5), (1.20) and (1.9) (see (3.1) and Remark 5.2);
while the function in (6) satisfies (1.4), (1.5) and (1.9), but does not satisfy (1.20). The
function ¢(N\) = A/log(1 + A) satisfies (1.4), but does not satisfy the other two conditions.

In order to prove our main results, we follow the ideas and the road-map from [6]. At
many stages we encounter substantial technical difficulties due to the fact that in the stable-
like case one deals with power functions while in the present situation the power functions
are replaced with a quite general ® and its variants. We also strive to simplify the proofs
and streamline the presentation. In some places we provide full proofs where in [6] only an
indication is given. On the other hand, we skip some proofs which would be almost identical
to the corresponding ones in [6]. Below is a detailed outline of the paper with emphasis on
the main differences from [6].

In Section 2 we start by introducing the basic setup, state again the assumptions, and
derive some of the consequences. In Subsection 2.1 we discuss convolution inequalities,
cf. Lemma 2.6. While in [6] these involve power functions, the most challenging task in the
present setting was to find appropriate versions of these inequalities. The main new technical
result here is Lemma 2.6.

In Section 3 we first study the heat kernel p(¢,z) of a symmetric Lévy process Z with
Lévy density j; comparable to the Lévy density j of the subordinate Brownian motion with
characteristic exponent ®. We prove the joint Lipschitz continuity of p(t,x) and then, based
on a result from [10], that tp(¢, z) is the upper bound of p(t,z) for all x € R? and small
t, cf. Proposition 3.2. In Subsection 3.1, we provide some useful estimates on functions of
p(t,z). In Subsection 3.2, we specify jz by assuming jz(z) = £(2)J(z), with 8 being sym-
metric and bounded between two positive constants. Let £* be the infinitesimal generator



of the corresponding process and let p® be its heat kernel. We look at the continuous de-
pendence of p® with respect to £ This subsection follows the ideas and proofs from [6] with
additional technical difficulties.

Given a function r satisfying (1.1) and (1.2), we define, for a fixed y € RY, &, = k(y, ")
and denote by p,(t,z) the heat kernel of the freezing operator £%. Various estimates and
joint continuity of p, (¢, z) are shown in Subsection 4.1. The rest of Section 4 is devoted to
constructing the heat kernel p*(t, x,y) of the operator L£". The heat kernel should have the
form

t
p”(t,l’,y) —py(t,x—y)—i-/ / pz(t—S,I—Z)q(S,Z,y) dZdS7 (12?))
0 JR4

where according to Levi’s method the function ¢(¢, z,y) solves the integral equation

t
ttr) =aitr)+ [ [ s als. ) dzds, (1.2)
0 JR

with qo(¢, z,y) = (L% — L%)p,(¢t,2 — y). The main result is Theorem 4.5 showing existence
and joint continuity of ¢(t,x,y) satisfying (1.24). We follow [6, Theorem 3.1], and give a
full proof. Joint continuity and various estimates of p*(t, z,y) defined by (1.23) are given in
Subsection 4.3.

Section 5 contains proofs of Theorems 1.1-1.4. We start with a version of a non-local
maximum principle in Theorem 5.1 which is somewhat different from the one in [6, Theorem
4.1], continue with two results about the semigroup (P/f);>¢ and then complete the proofs.

In this paper, we use the following notations. We will use “

:=" to denote a definition,
which is read as “is defined to be”. For any two positive functions f and ¢, f < ¢ means
that there is a positive constant ¢ > 1 so that ¢! g < f < cg on their common domain of
definition. For a set W in R?, |[IW| denotes the Lebesgue measure of W in RY. For a function
space H(U) on an open set U in R? we let H.(U) := {f € H(U) : f has compact support},
Ho(U) :={f € H(U) : f vanishes at infinity} and H,(U) := {f € H(U) : f is bounded}.
Throughout the rest of this paper, the positive constants d1, d2, Y9, a1, as, 5, ko, K1, k2, C;,
1 =0,1,2,..., can be regarded as fixed. In the statements of results and the proofs, the
constants ¢; = ¢;(a,b,c,...),1=0,1,2,..., denote generic constants depending on a, b, ¢, .. .,
whose exact values are unimportant. They start anew in each statement and each proof.
The dependence of the constants on the dimension d > 1, C,, @ 1((27)~!), @ (T!) and

Yo may not be mentioned explicitly.

2 Preliminaries

It is well known that the Laplace exponent ¢ of a subordinator is a Bernstein function and
d(At) < Ao(t) forall A\ >1,£>0. (2.1)

For notational convenience, in this paper, we denote ®(r) = ¢(r?) and without loss of
generality we assume that ®(1) = 1.



Throughout this paper ¢ is the Laplace exponent of a subordinator and ®(r) = ¢(r?)
satisfies the weak lower scaling condition (1.4) at infinity. This can be reformulated as follows:
There exist §; € (0,2] and a positive constant a; € (0, 1] such that for any rq € (0, 1],

a N d(r) < (W), A>1,r>1g. (2.2)

In fact, suppose 79 < r < 1 and A > 1. Then, ®(\r) > a; 73 ®(1) > a1 rd d(r) if
Ar > 1, and ®(\r) > (r) > ar N d(r) if M < 1.
Since ¢ is a Bernstein function and we assume (2.2), it follows that ® is strictly increasing
and limy_,, ®(\) = co. We denote by @' : (0,00) — (0, 00) the inverse function of ®.
From (2.1) we have

L) > N2 (), A>1,r>0. (2.3)

Moreover, by (2.2), ®~! satisfies the following weak upper scaling condition at infinity: For
any 1o € (0, 1],

) < a; Ve ) AV DT ), A 1 > 1. (2.4)

In fact, from (2.2) we get ®'(Ar) < a; /" AY3®~1(r) for A > 1 and r > 1. Suppose
ro <7 < 1. Then, ®'(Ar) < 1 < a; /& (re) AV D=1 (r) if Mr < 1, and O~1(Ar) <
al_l/él)\l/‘;lrl/‘sl < al_l/él)\l/‘sl<I>_1(7"0)_1(I>_1(7’) if \r > 1.

For t > 0 and x € R?, we define functions r(¢,z) and p(t,z) by

1o (||
||

p(t,x) = pD(t,x) =P ((ﬁ + |x|)_1> (ﬁ + \xy>_d : (2.5)

Note that, by [2, Lemma 17],

r(t,r) = d ()4 A

and

t®(|z|™H|z|~ > & 1t H)? if and only if  td(|z|7) > 1. (2.6)
Proposition 2.1 For allt > 0 and x € R?, tp(t,x) < r(t,x) < 29 2p(t, x).

Proof. Case 1: t®(|z|~') > 1. In this case, by (2.6) we have that r(¢,z) = ®~1(¢71)? Since

2| < 5=

=1y, we have

< + || (2.7)

2
) S e S )

This and (2.1) imply that
t =@ '(t") > <<—¢‘1Et‘1) + |x\)_ ) > @27 'o7 () > i@(@l(tl)) = ¢!
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and

274t )l < ( ) +—hﬂ>_ﬁl§ O (A

1

H
The last two displays imply that 2797201 (t=1)? < ¢p(t,z) < (¢4
Case 2: t®(|z|7') < 1. In this case, by (2.6) we have that r(t,z) = tq)ﬁf'ld_l). Since |z| >

1
11y we have

- 1 T
ol 2 (o +lal) 227k

This with (2.1) implies that

1 - 1
-1 —1),.1-1 -1
D] 1) > ((mm) ) > B2 ol ) > 10 (Ja] )
The last two displays imply the conclusion of the proposition in Case 2. a
Lemma 2.2 Let T > 1 and ¢ = (2(2/a1)"/% /&~ 1((2T)71))4+2.
(a) For all0 < s <t<T and x,z € R?,
p(t —s,x—2)p(s,2) < c(pl(t — 5,0 —2) + p(s,2)) p(t, x) . (2.8)

(b) For every x € R  and 0 < t/2 < s <t < T, p(t,x) < p(s,z) < 2cp(t,z).

Proof. (a) By (2.4) we have that for all 0 < ¢,s < T,

1 1 1
O-1((t+s)71) = O-1(2-1(t v s)h) =a (@1(151) + @1(31)) ; (2.9)
where ¢; = (2/a1)1/51/<b—1((2T)—1) > 1.

Define ¢ : (0,00) — (0,00) by o(r) := r¢/®(r~1), so that p(t,z) = (Q(% + |x])) 7t

T
For all a,b > 0, (a + b)¢ < 2%(a Vv b)? and, by (2.1), ®((a + b)) > &2 a VvV b)~!) >
471®((a VvV b)~!). Therefore, for all a,b > 0,

o(a+1b) < 27g(a Vv b) < 27(g(a) + o(b)) - (2.10)

Moreover, (2.1) implies that for r > 0,

<
sH

d
(Clr) < Cd+2

St = B T = o(r). (2.11)

olar) =

By using (2.9)-(2.11), we have

o (g ) = e (o (g =) + GG + 1))




<t (e o )+ (e +14)
g@qﬂﬂ<g(®l«;_$U+wx—z0-+g<57%r§4¢4)>. (2.12)

Thus we have that for 0 < s < ¢ < 7T and z,z € R,

(p(t = s, = 2) + p(s, 2)) p(t, 7)

B Q(W+|$—Z|)+Q<ﬁ+|z|> 1
Q(l((t—s+’1’—z|> ( - ( T1(s—1) +|Z|) <41>—1%t—1) +|l‘|)
1
Z (2cl)fd72

o (i + o = #1) ¢ (=t + 141

= (2e1) " 2p(t — 5,2 — 2)p(s, 2).

(b) This follows from (2.12) by taking s = ¢/2, z = 0 and by using that g is increasing. O

2.1 Convolution inequalities

Let B(a,b) be the beta function, i.e., B(a,b) = fol 5711 — )" tds, a,b > 0.

Lemma 2.3 Let 5,v,n,0 € R be such that 150(8/2) + 1s<0(5/01) +1 —6 > 0 and
1,50(7/2) + 1,<0(7v/01) +1 —n > 0. Then for every t > 0, we have

/ t w10 ()Tt — w) PN ((t — w) L) P du < CH 0B ()8 (2.13)

Moreover, if 5> 0 and v > 0 then (2.13) holds for allt > 0 with C = B(8/2+1—60,v/2+
1—mn).

Proof. Let I denote the integral in (2.13). By the change of variables s = u/t we get that
1
I— tl_"‘e/ s (1L ) (1 — ) 0D (41 (1 — 5)1) P ds.
0

Since s~' > 1 and (1 — s)~! > 1, we have by (2.3) that ®~*(¢t"'s71) > s~ 1/2¢"1(¢"!) and
Ot (1 —5)7Y) > (1 — 5)"2071(¢t71). Moreover, when t € (0,7], by (2.4) we have

SNt <o e T s e ()
and

O (1 -5 < BT (1 - ) e ),
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Hence,

1
I < Cltlﬂa@l(tl)Wﬂ/ 81720(7/2)+1'y<0(“//51)*7l(1 S)1B>0(5/2)+1ﬂ<0 B/61)-0 4g
0

= CO'(t P,
When f > 0 and v > 0 then the above inequality holds for all ¢ > 0 with ¢; = 1 so
C=Bp/2+1-0,v/2+1—n). O

Lemma 2.4 Suppose that 0 < t; <ty < co. Under the assumptions of Lemma 2.3, we have

flz%tesﬁliQ](/ /) ™)t — w) 0D (t — w) )P du = 0.

Proof. Under the assumptions of this lemma, by repeating the argument in the proof of
Lemma 2.3, we have that for all t € [t, 5],

</ . / th) wTH ) Tt — )TN (E — w) ) du

< (B v (@) Ve i) )

h/t 1
" ( / L / ) S0 (/DL 0(1/B)=n(] _ g)bazo(8/D+ Lo /51)=0 g
0 l—h/tl

Now the conclusion of the lemma follows immediately. O

For v, 5 € R, we define
pf(t,x) =0t (|z|P ADp(t,z), t>0,2€R?.
Note that p(t,z) = p(t, z).

Remark 2.5 Recall that ® is increasing. Thus it is straightforward to see that the following
inequalities are true: for 7' > 1,
pw1 (t,x) < ®HT 1) leﬁ (t,x), (t,r) € (0,T] x R, 45 <y, (2.14)
p7 Yt x) < plP(tx), (t,z) € (0,00) x R, 0< By < fBy. (2.15)

We record the following inequality: for every T'> 1, t € (0,7] and 8 < 4,

1 1 & 1T-H\?  @l(+!
/ P (r N dr < ( _1( — )> @(%)
®-1(T-1)/-1(t-1) ai(01 — B) \ 71(t71) o-1(T1)
-1 (T-1)p-2
a1 (01 — B)
The first inequality follows immediately by using the lower scaling to get that for 1 > r > A1,
O(r~') < a;'A7r =% ®(\). The second inequality follows from (2.1).
For the remainder of this paper we always assume that (1.5) holds. The following result

o7 (P (2.16)

is a generalization of [6, Lemma 2.1].
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Lemma 2.6 (a) For every T > 1, there exists ¢; = c1(d, 61, a1,C,, T, 1 (T71)) > 0 such
that for 0 <t < T, all 8 € [0,61) and vy € R,

/R Pt ) dr < 516_1 Bt—lcp—l(t—l)—v—ﬁ. (2.17)

(b) For every T > 1, there exists Co = Co(T) = Cy(d, 61, a1,Cy, T, H(T™1)) > 0 such that
for all By, Po > 0 with By + By < 01, 1,12 €E R and 0 < s <t < T,

e (e
[ o= s.o =i )a

< ﬁ ((t — 5)71(1)*1<<t — S)*l)*’h*,@l*ﬁz@fl(Sfl),w
‘I‘q)_l((t—s) 1) Y1 —1Q) ( ) Yo—PB1— BQ)p(t,x)
G e e
M Gt )T (s T (¢, 1)
thomop T ™) pg! (1 ). (2.18)

(c) Let T'> 1. For all By, Ps > 0 with By + P2 < d1, and all 0,1 € [0, 1], 71,72 € R satisfying

Ly>0(711/2)+ 1y <0(71/01)+581/2+1=0 > 0 and 1,,50(72/2) +14,<0(72/01) + B2/24+1—n > 0,
there exists co > 0 such that for all0 <t < T and x € RY,

//d ) epfit— ,:c—z)l”pfj,j(s z)dzds
R
2—6— B B
< cot ! <p’Y1+72+/31+ﬂ2 + p’)’11+’)/2+ﬁ2 + p"/f+’72+51) (t’ ilf) ) (219)
Moreover, when we further assume that v,,7v2 > 0, we can take that

Co(T)
01— P — Po

Proof. (a) Let ¢; = ¢1(d) = d|B(0,1)] and T} = & 1(T~!) < 1. We have that for all
0<t<T,

Oty /Rd pf(t,x) dr = /Rd (|z|° A1) p(t, z) dz

-1
Tije-1() ¢ <<ﬁ) )
S Cl/ 7,/3+d71 y
0 < T >
-1t 1)
1 o0 (D
+ cl/ P8 1(I> dr + /
Ty /®-1(t=1)

Tﬁ 1 1 P
< 1 y-ige L=t (t= )P 4 ¢ rﬁlé(rl)dr—i—cl/ ﬁdr (2.21)
B +d Ty /®—1(t1) 0 T

o =4 B((m+5)/2+1=0,72+B/24+1—n). (2.20)

dr+
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ClT{JiZ
a1(51 - 5)
<e(d7 T a0 (00— B) 7 4 Cua P T (1) P,

<cd MO ()T 4 tr ()P 4 ¢ C,

where in the second to last line we used (2.16) to estimate the second term in (2.21) and
used (1.5) to estimate the last term in (2.21), and in the last line we used the assumption
B € [0,6,) and the inequality t®~1(t=1) < t(a; /™ (T/t)/")? < a;”"T < a7'T which
follows from (2.4) with A =T/t and rg =r =T~ %,

(b) Let ¢ = (2(2/a1)"/% /®~1((2T)71))4*2. As in the display after [6, (2.5)], we have that

(Jz =2/ A1) (J2]2 A1) < (Jo— 2|2 A1) + (Jo — 2|7 A1) (J2|2 A L)

By using this and (2.8), we have

,ofi (t—s,x— z)pfj(s, 2)
=07 ((t—s) )@ (s7) T2 (Jo — 2| A L) (2] A L) p(t — 5,2 — 2)p(s, 2)
<@ M (t—s)) e (s T (o — 2Pr A 1) (|Z|52 A1) (p(t — s,z — z) + p(s, 2)) p(t, )
<@ (1 = 5) )07 (s (27 A+ (f— 2l A ) (Jal A1) )

X p(t—s,z— z)p(t,x)
Fea® (=) e s ) (A D+ () A1) (1A% A1) bls. 2)e(t )

:c2®_1(3_1)_72{p§;+ﬂ2 (t— s, —2)p(t,x) + pli(t — s,z — 2 (t, a:)}

7N (E— ) )T P (s, 2)plt, ) + (s, 2 (1)

Since 1 + B2 < 01, now (2.18) follows by integrating the above and using (2.17).

(c) By integrating (2.18) and using Lemma 2.3, we get (2.19). When we further assume that
7,72 > 0, by integrating (2.18) and using the last part of Lemma 2.3, we get (2.19) with
the constant

2 2
Q(B(WJ@—H,%; +1—n)+B(W+1—n,%+l—e>

2 2
+B(71;ﬁl+1—9,72; +1—n)+B<72;62+1—n,71; +1—0)),

which is, using that the beta function B is symmetric and non-increasing in each variable,
less than or equal to 4CoB (71 + $1)/2+1 = 0,72 + B2/2+ 1 —n). O

Lemma 2.7 Suppose 0 < t; <ty < co. For € (0,0,/2),

h ¢
lim  sup (/ +/ ) / pg(t—s,x—z)(p'g(s,z—y)—|—pg(5,z—y))dzds:0.
0 t—h R4

b0 5 yeRd tefty ts]
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Proof. We first apply Lemma 2.6(b) and then use Remark 2.5, to get that for ¢ € [ty,ts],
ot —s,x— 2)(pl(s, 2 —y) + p5(s, 2 — y))dz
R Po ) Po S, Yy p,B ) Yy
<c((t—s) et —s) )P+ s7Ie (s ) p(ty,0).

Now the conclusion of the lemma follows immediately from Lemma 2.4. O

3 Analysis of the heat kernel of £*

Throughout this paper, Y = (Y;,P,) is a subordinate Brownian motion via an independent
subordinator with Laplace exponent ¢ and Lévy measure pu. The Lévy density of Y, denoted
by j, is given by

j(@) = j(le]) = / " sy e R ()

It is well known that there exists ¢ = ¢(d) depending only on d such that

, r>0 (3.1)

(see [2, (15)]). The function r + j(r) is non-decreasing. Recall that we have assumed that
r— ®(r)(= ¢(r?)), the radial part of the characteristic exponent ® of Y, satisfies the weak
lower scaling condition at infinity in (2.2).

Suppose that Z = (Z;,P,) is a purely discontinuous symmetric Lévy process with char-
acteristic exponent 1, such that its Lévy measure admits a density j satisfying

Yo d(lzl) < jz(2) < Foj(lzl), 2 eRY, (3.2)

for some 7, > 1. Hence, fRd jz(x)dx = oo. The characteristic exponents of Z, respectively
Y, are given by

val€) = [ (= cosl6 - izwdy,  0(©) = [ (1= cos(e-u)illl) do.

and satisfy
Yo @€ < vz(€) <F@(E]), € E€R?. (3.3)

Let ¢ denote the radial nondecreasing majorant of the characteristic exponent of 7, i.e.,
Y(r) == supy, <, ¥z(z). Clearly

o 'e(r) <v(r) <F®(r), r>0, and F*(lE]) <vz(€) <¥(l€]), ¢ eRY,

and thus v also satisfies the weak lower scaling condition at infinity in (2.2).

14



By (3.1) and (3.2),

jz(z) < 70w- (3.4)

Moreover, for every n € Z,

/ [B [ ]| ler™ € = / = / e %0 D¢ dg
R4 R4 R4

1 e}
<c (/ rd= gy —|—/ pd=1tn =y tarr®t dr) < 0. (3.5)
0 1

It follows from [13, Proposition 2.5(xii) and Proposition 28.1] that Z; has a density

plt.a) = (22 |

Rd

o€ o1z (8) d¢ = (27r)d/2/ cos(z - 5)67“/)2(5) dg,

R4

which is infinitely differentiable in x. Let £ be the infinitesimal generator of Z.

Lemma 3.1 (a) For every x € R?, the function t — p(t, z) is differentiable and

op(t, x)

T G /R cos( - )z (€)e™"7 1V d = Lp(t, ).

(b) For every e > 0 there exists a constant ¢ = ¢(d, 01, a1,70,€) > 0 such that for all s,t > ¢
and all x,y € R?,

Ip(t,z) — p(s,y)| < c(|t —s[+ |z —yl) .
Proof. (a) Note that for any ¢t > 0 and any h € R such that ¢ + h > 0,

fh (¢ —hpz(§) _q
p( + ’x]’)L p( 71:) _ (27T)7d/2 /Rd COS(I . f)e*th(i)erg

The absolute value of the integrand is bounded by 27,®(|¢])e o '2(€) which is integrable
since ®(|¢]) < |€]%. The claim follows from the dominated convergence theorem by letting
h — 0. The last equality in the statement of the lemma follows from [9, Example 4.5.5].
(b) By the triangle inequality we have that

p(t.) = plsv)] < [ leos(ar-€) = costy- O] 40
4 /Rd cos(y - €)] ’e—th@) _ e—swz(€)| dE=1+1,.
Clearly, |cos(z - &) —cos(y - &)| < |z - & —y- & < |z —y||¢], which implies that, by (3.5),
h<lo—yl [ IO de < o=yl [ Jle "D d = 1Go. )l — 1.
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In order to estimate I, without loss of generality we assume that s < ¢. Then by the mean
value theorem we have that

|6—th(£) — e—swz(£)| < |t — s|ihy(€)e™V2 O < F|t — 3|@(|§|)e—8%1¢(\£|).

Therefore, by (3.5),

Iy <Aolt — Sl/ €260 2D de = ¢y(Fp, )|t — 5.
Ra
The claim follows by taking ¢ = ¢; V ¢s. a

Define the Pruitt function P by

P(r) = /Rd (’i—l A 1) j(x)dx. (3.6)
By [2, (6) and Lemma 1],
1 . 1. dm iy vodm?
20 < 3807 < Pl < e < M p) 3.7

In this paper we will use (3.7) several times.
We next discuss the upper estimate of p(t,x) and its derivatives for 0 < ¢ < T and all
r € R? using [10, Theorem 3].

Proposition 3.2 ForeachT > 1 and k € Z., there is a constant ¢ = ¢(k, T, 7, d, 01,a1) > 1
such that

(VEp(t,2)| < et (@) p(t, z), 0<t<T,zeR
where V¥ stands for the k-th order gradient with respect to the spatial variable x.
Proof. First, we recall that [, jz(z)dz = co. Let f(s) := (P(j;l). Then by (3.4) we have
Jz(x) < Cf(|z]). Thus for A € B(R?),

_ [ (|2 __ ®(dist(0, A)~1) ~ .
/Ajz(ﬂf)dﬂf < C’YO/AWCUU < o dist(0, A)d |A] < CFof(dist(0, A))(diam(A))“.

Therefore, [10, (1)] holds with v = d and M; = C7j.
Since (s V |y|) — (ly|/2) > s/2 for s > 0, using (3.7) in the last inequality we have that
for s,r > 0,

F((s v lol) = (lyl/2) )y < 22227 / ey

S

— (/D7) / (hi—f A1)jz(y)dy < 2d+2¥d_1)73(r) < 2 50dm? f(s)0(rh). (3.8)
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Therefore, [10, (2)] holds with M; = 2¢F15,dr?2.
Furthermore, by (3.3) and (2.2), for k € Z,

[t < [ e gt as = dpo.n) [t
0
= d|B(0,1) |/ (s /t)) TR Le 0 s (@YY (/) ds

< d|B(0, 1) |/ (@1 (/)51 (D) (s 1) dis

[e.9] 2n

+d|B(0,1) |Ze—% 2 /2( (s /1) (@YY (s /)t ds
d|B (0,1)] 1 d+k d|B (0,1)] - 7y tan—t * -1 d+ky/
= A oy s+ SRS | @iy as

< d|§:(_)7k1)| <(®1<t1>>d+k + ;€§012”_1(®1<2n/t))d+k> _

Since t < T, by (2.4) we have ®~1(2"/t) < ¢,2"/%*®~(¢+~1). Thus we see that

_ dBO, )| __, _ = algno1
tz (&) ||k de < ) d 1 t 1\\d+k 1 2n(d+k)/51 o 2
[0l de < AT @ (L g 3o 2

S Clq)_l(t_1>d+k S 02¢_(t_1)d+k,

n=1

where ¢y = c2(k) > 0 and ¢~ is the generalized inverse of ¥: ¢~ (s) = inf{u > 0: (u) > s}.
Therefore, [10, (8)] holds with the set (0, 7.

We have checked that the conditions in [10, Theorem 3] hold for all k € Z,. Thus by [10,
Theorem 3] (with n = d + 2 in [10, Theorem 3)), there exists c3(k) > 0 such that for t < T

k — =1k [ =41\ t@ (=) ()
e < ) (o (S ) )

<@t (<I>‘1(t‘l)d A (t@(‘gr) T +q\):;qu(>t(:>1§)d+2>> '

When |z|®~1(t7!) > 1 (so that t®(|z|™) < 1),

ol ety L (e7N(@(el )
(L4 [e]@(t1)%2 = (jal@1 ()52 O (Gaier)

) < [e[ (@ (la| ).

In the last inequality we have used (2.3). Therefore using Proposition 2.1 we conclude that
forall0 <t < T and z € R¢,

k < eV [ @11y to(|z|™") < 0221 (4 1)k
Vip(t, )| < es®  (t77) (t )A—|l‘|d <270 () p(t, @)
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3.1 Further properties of p(t, )

We will need the following simple inequality, cf. [6, (2.9)]: Let a > 0 and z € R?. For every
z € R? such that |z| < (2a) V (]z|/2), we have

(a+]z+2)7 <4(a+|2)7". (3.9)

Indeed, if |z] < 2a, then a + |z| < a+ |z + 2|+ |2] <a+ |z + 2|+ 2a < 4(a+ |z +2|). If
|z| < |x|/2, then 4(a + |x + z|) > 4a + 4]z| — 4|z| > 4a + 4|z| — 2|z| > a + |z|.
For a function f: Ry x R? — R, we define

Op(t,x;2) = f(t,x +2)+ f(t,x —2) — 2f(t, x). (3.10)

Also, f(x + z) is an abbreviation for f(z + z) + f(x — 2).
The following result is the counterpart of [6, Lemma 2.3].

Proposition 3.3 For every T > 1, there exists a constant ¢ = ¢(T,d, 7o, d, d1,a1) > 0 such
that for every t € (0,T] and z,2’', 2z € R,

p(t, ) —p(t,2)| < c (@71 (¢ )| — ') A1) t(p(t,2) + p(t,2")) (3.11)

[0p(t, 23 2)] < e (27 (¢ D)2 A1)t (p(t, z £ 2) + p(t, 7)), (3.12)

and

[0(t, 252) = 8p(t, ' 2)[ < e (@71 )z — 2P AL) (@7 (EH)[=])* AT
Xt (p(t,x £ 2) + p(t,x) + p(t, 2" £ 2) + p(t,2)) . (3.13)

Proof. (1) Note that, by Proposition 3.2 with & = 0, (3.11) is clearly true if =1 (¢t71)|z—y| >
1. Thus we assume that ®~!(¢t71)|z — y| < 1. We use Proposition 3.2 for k = 1 and

plt.o) = pit) = (=) - [ btz + 0y — ) do (3.14)

to estimate |p(t,x) — p(t,y)| < cit®@ (¢t |z — 9 fo (t,x 4+ 0(y — x))dl . Since Oly — x| <
1/~ 1(t71), we get from (3.9) that

(st veroo=a) <4 (o)

Therefore using (2.1) we have [p(t,z) — p(t,y)| < co|z — y|@ (¢ V) ip(t, x), t € (0,T).
(2) Note that (3.12) is clearly true if ®~'(¢t71)|z| > 1. In order to prove (3.12) when
Ot 1)|z| <1 we use (3.14) twice to obtain

1
ot,x;z) = =z- / (Vp(t,z + 0z) — Vp(t,z — 0z)) db
0
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1 1
— @2 / / OV2p(t,z+ (1 — 20')02) d¢/ b (3.15)
0 0

Note that |(1 —26")0z| < |z] < ﬁ. Hence, by Proposition 3.2 and (3.9) we get the
estimate

16V2p(t, @ + (1 — 26")02)| < 5 (91 (¢Y) tp(t, ).

Therefore, 6,(t,z;2) < ¢4 (@1t )2 tp(t, z), t € (0,T).

(3) It follows from (3.12) that it suffices to prove (3.13) in the case when @1 (¢~ 1)z —y| < 1.
To do this, we start with the subcase when ®~1(t71)|2| <1 and ®~1(¢t7!)|x — y| < 1. Then
by (3.15),

10p(E, 23 2) = (¢, y; 2))|
11l
< oslr—y|- |z|2/ / / IV3p(t,z + (1 — 200z + 0" (y — x))| dOdo'de".
o Jo Jo
Note that |(1 —20")0z + 0" (y — x))| < ﬁ. Hence, by Proposition 3.2 and (3.9) we get
[0t 252) = 0,8, y32)] < ce®H(E )| —yl(@7H(ET)]2])*tp(t 7).
If ®1(¢t71)|2] > 1 and @' (¢t7')|z — y| < 1, then again by Proposition 3.2 and (3.9),

|0p(t, 73 2) = 0p(t, y; )]
1 1
< ar ko=l [ 19ptat st 00— Dl abJo =l [ V0004 80— )]s )
0 0
< @t Y| —y| (tp(t,x £ 2) +tp(t,x)), te(0,T].

The following result is the counterpart of [6, Theorem 2.4].

Theorem 3.4 For every T > 1, there exists a constant ¢ = ¢(T,d, 7, d,d1,a1) > 0 such
that for all t € (0,T)] and all z,2" € R?,

[ utt )1 = < o) (3.10)

and
/Rd 10,(t, 75 2) = 0p(t, 2" 2) 5 (12]) dz < e (@7 (¢ )|z — 2/[) A1) (p(t, ) + p(t, 2)) . (3.17)

Proof. By (3.12) we have
/ 16,(t, 73 2)| (|21 d=
Rd
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< o [ (@D A it )+ 0) 2]
= ¢ (/Rd ((CD’l(t’l)]z])Q A 1) tp(t,x £+ 2)j(|z|) dz + tp(t, x)P(l/@l(tl)))

= (O (Il —+ IQ) .

Clearly by (3.7), I, < citp(t,x)®(®~1(t71)) = e1p(t, z) . Next,

(3.18)

L= @1@1y/‘ VHMtxia<mwu+/“ tplt, z = 2)j(|2]) d
d-1(t—1)|2|<1

d1(t1)|2|>1

= I+ 1.

By using (3.9) in the first inequality below and (3.7) in the third, we further have

I < Mﬂwmm/’ (@ ()] A 1)7(]]) d=

S

< ANt 2)P(1/D71 (1)) < eaplt, ).
Next, we have

Y R (T TR

= <1>‘1(t‘1)d/||> (@7t HIzD* A D)s(l2) d=

> l(t Ty

IA

where in the last line we used (3.7). If |z| < 2/®71(t71), we have that

implying that I15 < c5p(t, x).
If |z| > 2/®~1(¢t7'), then by (3.7),

zu=</5w> +/¥ﬂ>wwxiwﬂmm2

m
< < '“'>|z\>ﬁ J(lz) dz + j(|z]/2) [Zblgltp(t,xi—z) dz)
P (2[x )
< z|)dz + ————= .ot z)dz
R <tp o TP T /Rdt”(t ) )
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< cg (p(t,x) - %) < cop(t, ),

where in the last line the second term is estimated by a constant times the first term in view
of the assumption that |z| > 2/®~1(¢~1). This finishes the proof of (3.16).
Next, by (3.13) we have

| 1onlt72) = 6y, ' 2)]j(|2]) dz < eo (271 (¢ )| — 2') A1)

X {/Rd (@' (D[] A1) (tpt, £ 2) + tp(t, o' £ 2))j(|2]) d=
Faptt.o) + op(t2) [ (@I A (2D

< o (@' Y|z =) A1)t (tp(t, z) + tp(t,2)),

where the last line follows by using the estimates of the integrals I; and I from the first
part of the proof. O

3.2 Continuous dependence of heat kernels with respect to |

Recall that J : RY — (0,00) is a symmetric function satisfying (1.7). We now specify the
jumping kernel j;. Let & : R? — (0,00) be a symmetric function, that is, £(z) = &(—z).
Assume that there are 0 < kg < k1 < 00 such that

ko < R(z2) < Ky, for all z € R?. (3.19)

Let j%(2) = R(2)J(z), 2 € R Then j*% satisfies (3.2) with 7y = 7o(k1 V k5'). The
infinitesimal generator of the corresponding symmetric Lévy process Z# is given by

@) = v [ (Flaot2) = F)REIE) d:
= %p.v. /Rd df(z;2)R(2)J (=) d= . (3.20)

We note in passing that, when f € CZ(RY), it is not necessary to take the principal value in
the last line above. The transition density of Z* (i.e., the heat kernel of £?) will be denoted
by p*(t,z). Then by Lemma 3.1,

op(t, x)

T LR, ), lii%pﬁ(t, x) = dp(z). (3.21)

We will need the following observation for the next result. The inequality (2.4) implies
that there exists a constant c¢(kg) > 1 such that

O N(kot/2)™) < a7 O T Y LAV (ko/2) Y0 d (¢ for all ¢ € (0, 7).
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Consequently, for all z € R? and ¢ € (0, 7],

(@ ((kot/2) M|2]) AL < a; @ H T IV (ko/2)V (@71t H)|2]) A1) . (3.22)

The following result is the counterpart of [6, Theorem 2.5], and in its proof we follow the
proof of [6, Theorem 2.5] with some modifications.

Theorem 3.5 For everyT' > 1, there exists a constant ¢ > 0 depending on T, d, ko, k1, Yo, 41
and 8y such that for any two symmetric functions &1 and Ry in R? satisfying (3.19), every
t € (0,T] and x € RY, we have

P ()~ p ()| < - Sl tolt.a), (3.23)
(Vph(t,z) — VpR(t,z)| < cf|f — Kl @'t tp(t, 2) (3.24)

and
/ |81 (8, @3 2) — 6,0 (8,25 2)| 5(|2]) d2 < || Ry — Raloop(t, @) . (3.25)

Proof. (i) Using (3.21) in the second line, the fact £% is self-adjoint in the third and fourth
lines, we have

ph(tx) —p(t,x) = /Otd% (/Rd P (s, y)p™(t — s,y — x) dy) ds
= /Ot (/Rd (L9p™ (s, ) W)™ (t = 5,y — ) = p™ (s,y) L2p™(t — 5,-)(y — 7)) dy) ds

_ / " ( [ s (£ = %)= sy — ) s
2 </ (L5 = L) p" (5, ) )P (¢ = sy - x>dy) ds
_ %/m (/de (/ 5t — 5,0 — i 2)(Ra(z) ﬁg(z))J(z)dz) dy) ds
/ (/de (t—s,x—y) (/Rd Oy (5,15 2) (Ra(2) — ﬁﬂz))J(z)dz) dy) ds.
By using (3.16), Proposition 3.2 and the convolution inequality (2.19), we have
[T (L ([t se-wae - s a)
+ /Ot/Q (/Rd p*2(s,x —y) (/Rd Opm (t — 5,93 2)(Ra(2) — ﬁg(z))J(z)dz) dy) ds
<l - ﬁ2|roo< [ (Lo ([t = sa -2l i) ar) as

22



+/t/2</ P (s, 2 — ) </ |6, (t — s,y; 2 \]||dz)dy)ds>

t/2
<erllf) — Ralla / / plt = .2 — y) + pls,z — y)pl(t — 5,y)) dy ds

<2181 — oot / / (= 5) (ol plt = 5,7~ 9) + (s, — )plt — 5.9)) dyds
0 R

<co||R1 — Ralleo to(t, ), for all t € (0,7), x € R?.

(i) Set Ri(z) = Ki(z) — ko/2, i = 1,2. It is straightforward to see that pr/2(t,z) =
p(kot/2,z). Thus, by the construction of the Lévy process we have that for i = 1,2,

phi(t,z) = /dp“°/2(t, z—y)phi(t,y) dy = /dpl(ffot/l x—y)pt(ty)dy. (3.26)
R R

By (3.26), Proposition 3.2, (3.23), (2.18) in the penultimate line (with ¢,2¢ instead of
s,t), and Lemma 2.2(b) in the last line, we have that for all ¢ € (0,T] and x € R?,

() i

VP (t,a) — VP (ta)| =

/ Vp! (Kot /2,2 —y) (pﬁl(t, y) -
R4

<8~ Rall® D [t = )t v)dy

R

<col[ 1 — Kol @ () tp(t,y) -

(ili) By using (3.26), (3.12), Lemma 2.6(b) and (3.23), we have
|6, (t, @3 2) — 6,0 (, @5 2)|
= ‘/ Gt (Kot /2,7 — 3 2) (pﬁl (t.y) —p™ (t,y)> dy‘
R4

<ar]|R — Kol (@71 1|22 AL) 2 Rd(p(t, x—yx2)+pt,x —y)p(t,y)dy

<eol| Ry — Ralloo (271 (E |22 AL) E(p(t, 2 £ 2) + p(t,x)) -
Now we have

/ |6 s (t, 25 2) — Opme (T, 5 2 ‘] 1z])dz < el R1 — Ra|so
x /Rd (@ DD A L)t (p(t,x £ 2) + plt, ) j(|2]) dz
=c2[| 1 — Koo /Rd (@7 (EDID* AL) t(p(t, 2 £ 2) + p(t, ) j(|2]) dz

which is the same as (3.18) and was estimated in the proof of Theorem 3.4 by c¢3p(t, ). This
finishes the proof. O
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4 Levi’s construction of heat kernels

For the remainder of this paper, we always assume that x : R? x RY — (0,00) is a Borel
function satisfying (1.1) and (1.2), that ® satisfies (1.4) and (1.5) and that J satisfies (1.7).
Throughout the remaining part of this paper, 8 is the constant in (1.2).

For a fixed y € R, let &,(2) = k(y, 2) and let L% be the freezing operator

LY f(x) = LY f(x) = liﬁ)l L% f(z), where L% f(x) = / dp(x; 2)k(y, 2)J (2)dz.
€ |z|>e
(4.1)
Let p,(t,x) = p™ (¢, x) be the heat kernel of the operator £L%. Note that = — p,(¢,z) is in
C5°(R?) and satisfies (3.21).
4.1 Estimates on p,(t,z —y)

The following result is the counterpart of [6, Lemmas 3.2 and 3.3].

Lemma 4.1 For every T > 1 and 51 € (0,61) N (0, 5], there exists a constant ¢ = ¢(T,d,
91, P1, Ko,K1, K2,%0) > 0 such that for all x € R¢ and t € (0,77,

/ L%, (t, ) (z —y) dy‘ < ctP oY) for all e € )0, 1], (4.2)
Rd
Opy(t,x —y) dy' < cttoTlh) A (4.3)
Rd
Vpy(t,)(z —y) dy‘ <cdTH(hHA (4.4)
R4
Furthermore, we have
lim sup / py(t,x —y)dy — 1‘ =0. (4.5)
HO zerd | Jrd

Proof. Choose v € (0,01 — f1) N (0,1]. Since [p,p.(t,§ —y)dy = 1 for every &,z € R, by
the definition of d,, we have [, d,, (t,z —y; w)dy = 0. Therefore, using this, (1.1), (1.7) and
(3.25), for e € [0,1] and ¢ € (0,77,

[ ntae - naf

/Rd (/w|>s (8p, (t, 2 — ysw) = b, (8, @ — y;w)) Kz, w)J (w) dw) dy’
< K1 /Rd (/Mx |0, (t, & — y;w) — 0, (£, 2 — y; w)] j(|w]) dw) dy

I

v [ () = e plt.o = ) dy

IA
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< cmg/ (\x —y/* A 1) p(t,x —y)dy < cpt 1@t 1) H
R4

Here the last line follows from (1.2) and (2.17) since f; + v € (0, ).
For (4.3), by using (3.16) and (4.2) in the third line, we get, for ¢ € (0,77,

Oipy(t,x —y)dy| = | [ LYpy(t,)(z —y)dy
J. 1L
/Rd (L% = L%) py(t, )z —y) dy‘ + /R Lo, (L) (x — y) dy'

< 03/ P (t,x —y) dy + et O < et () A
Rd

<

Here we have used (2.17) in the last inequality.
For (4.4), by (3.24) we have

/Rd (Vpy(t,-) — Vpu(t,-) (z —y) dy‘

It = )y =

R
<cs [ In(e) = )t (¢ ol — ) dy
R
< [ (o=l A1) 07 plta - ) dy
R4

0 () [ it - y)dy
R4
<@ M e () T = o (e

In the last inequality we used Lemma 2.6(a) which requires that 5, + v € (0, d;).
Finally, by using (3.23) in the second line and (2.17) in the last inequality, we get

sup

/ py(t,x —y)dy — 1‘ <sup [ |py(t,z—y)—p.(t,x—y)|dy
z€R4 | JRE

zeRd JRd

<cgsup | ||K(y,-) — Kz, ) ||lotp(t,z —y) dy
z€R4 J R4

< ¢yl sup / o (tr —y)dy < i@ ()P te (0,T].
z€R? J R4

Lemma 4.2 The function p,(t,x) is jointly continuous in (t,z,y).
Proof. By the triangle inequality, we have

Dy, (t1, 1) — Pyo (L2, 22)| < |y, (1, 1) — Pyo (t1, 21)| 4 [Pys (E1, 1) — Py, (t2, 22)].

Applying (3.23) and (1.2) to the first term on the right hand side and Lemma 3.1(b) to the
second term on the right hand side, we immediately get the desired joint continuity. O
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4.2 Construction of ¢(¢,x,y)

For (t,z,y) € (0,00) x R? x R? define

2
= (L% = LY)py(t, )z — ). (4.6)

qQo(t,z,y) = 1 /Rd Op, (L —y; 2) (K, 2) — K(y, 2)) J(2) dz

In the next lemma we collect several estimates on gy that will be needed later on.

Lemma 4.3 For every T' > 1 and 5y € (0, 5], there is a constant C; > 1 depending on
d, b1, Ko, K1, ka,7, T and ®~Y(T~') such that for t € (0,T] and x,2',y,y € RY,

lao(t, 2. y)| < Cillz —y|™ ADp(t,x —y) = Cipy’ (2 — y), (4.7)
and for all v € (0, By),

|q0(t, 7,y) — qo(t, 2", y)]
<O (| — 21 A1) {(p3 + pf‘),ﬁO) (t,z —y) + (pg + pf‘iﬁo) (t, 2 — y)} (4.8)

and
go(t, 7, y) — qo(t,z,y)| < CLo () (ly — /| A L) (p(t, 2 —y) + p(t,z —¥)) . (4.9)

Proof. (a) (4.7) follows from (3.16) and (1.2).
(b) By (4.7) and (2.14), we have that for ¢ € (0,77,

|Q[)(t, €, y)l < Copgo (tv L= y) < CO(I)_l(T_l)W_BOpfofﬁo (t’ L= y)’

which proves (4.8) for |x — 2’| > 1. Now suppose that 1 > |z —2/| > ®~1(¢7!)~!. Then, by
(4.7), for t € (0, T,

_ _ —(Bo— _
oty z,y)| < e (D7) T L (hr —y) S el — 2P0 (1 — ),

and the same estimate is valid for |gy(t,2’, y)|. By adding we get (4.8) for this case. Finally,
assume that |z — 2'| < 1A ®71(t71) 7L Then, by (1.7), (1.2) and (3.17), for ¢ € (0,T],

lgo(t, 2, y) — qo(t, 2, y)| =

[ 8otz = 32}, =ty )T 2)
~ [ Bt = (el 2) = k(2 () s

<0 [t = 52) = 8, (05 = )] In(e,2) = (o 1)
0 [ 1Bt = 932w, 2) = wla!, 21D
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<ol =1 A1) [ 18, (60— yi2) = b (0’ = (1)
R

T roks (ja — 2/ A 1) / (12" = g3 2)lj(12D) d
R

<es (Jo =yl A1) (p(t,x —y) + p(t, 2" = y)) + colr — 2'|Pp(t 2" — ).

By using the definition of p(¢, 2z’ — y), the obvious equality ' — y = (x — y) + (z/ — ), the
assumption that [z—2/| < ®~1(t~1)~! and (3.9), we conclude that pl (¢, 2’ —y) < 4p0 (¢, z—y)
Thus, it follows that for ¢ € (0,77,
[0(t, 2, y) — qolt, 2, y)| < 5eapp’ (v —y) + calw — 2’| Pp(t, " —y)
< By lr— 2|0 (8w —y) + colw — 2| (8,2 — ).
(c) First note that
Qo(t, 2, y) — qolt, 2, Y)
1
5 5 ) (K’(ylv Z) - K’(ya 2)) J(Z) dz
Rd
1
+3 / (Op(t,x —y;2) — O (t,x — 5 2)) (R(z, 2) — k(Y 2)) J(2) dz
1
5 [ Gt =)~ bl = 2)) (0,2) =l ) T(e)
R
:I[1 + [2 + [3 .
It follows from (1.2), (1.7) and (3.16) that for ¢ € (0,77,
Ll <a(y-yI* A1) /d [0 (.2 — 3 )] (l2]) dz < e (ly = y/1* A1) p(t 2 — )
R
which is smaller than or equal to the right-hand side in (4.9) since ®~!(¢71) > &~1(T1).
By (1.1), (1.7) and (3.17) we get that
bl < / Byt = 432) = Oy (1,2 =3/ 2) (| =
<e (@ (- yI)Al) (p(t,z —y) +p(t.x —y))
< e @ (T DR (ly =y A1) (ot —y) + p(t 2 — o).
Finally, by (1.1), (1.2), (1.7) and (3.25), for ¢ € (0,77,
Bl <er [ ol —52) =t —i2)| (=D ds
<esllay, ) = 6y )leoptz — o) < ca(ly —y'1* A1) plt,z =)
U
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Lemma 4.4 The function qo(t, z,y) is jointly continuous in (t,x,y).

Proof. It follows from Lemma 4.2 that (¢,z,y) — p,(t,x — y) is jointly continuous and
hence also that d,, (¢, z — y; ) is jointly continuous in (¢,z,y). To prove the joint continuity
of qo(t,x,y), let (t,, T, yn) — (£, z,y) € (0,T] x R? x R? and assume that 0 < e <t, <T.
The integrands will converge because of the joint continuity of d,, and continuity of x in the
first variable. Moreover, by (3.12),

|5pyn (tn, Tn — Yn; 2){ |K(Tn, 2) — K(Yns 2)]7(|2])
< (((I)_l(tgl)|z|2> A 1) T (p(tm Tp — Yn T Z) + p(tn,xn,yn))j(|z|)
< ap(e.0) (=) =) A1) 2],

Since the right-hand side is integrable on R? the joint continuity follows by use of the
dominated convergence theorem. a

For n € N, we inductively define

t
qn(taxay) = / / QO(t - Saxaz)Qn—l(sazvy) dsta (taxay) € (Oa OO) X Rd X Rd' (410)
0 JRd

The following result is the counterpart of [6, Theorem 3.1].

Theorem 4.5 The series q(t,x,y) = Y o qn(t,z,y) is absolutely and locally uniformly
convergent on (0,00) x R? x RY and solves the integral equation

t
Q(tuxvy) ZQO(tax7y>+/ /d QO(t_S7x7Z)Q(87Z7y) dzds. (411)
0 JR

Moreover, q(t,z,y) is jointly continuous in (t,z,y) € (0,00) x R? x R? and has the fol-
lowing estimates: for every T > 1 and [y € (0,8] N (0,0,/2) there is a constant Cy =
Cy(T,d, 01, Ko, K1, K2, B2,7) > 0 such that

gt o) < Colpf +0%) (tr —y),  (Lay) € (0.T) xR xRY,  (4.12)

and for any vy € (0, B2) andT > 1 there is a constant C3 = C5(T, d, 01,7, Ko, K1, K2, Yo, P2) > 0
such that for all (0,T] x R¢ x R?,

|Q(t7 Z, y) - Q(t7 xla y)|
< Cy(jo =P A1) (004 o) (b — ) + () + o) (b2 =)+ (4.13)
Proof. This proof follows the main idea of the proof of [6, Theorem 3.1], except that we give

a full proof of the joint continuity in Step 2. We give the details for the readers’ convenience.
In this proof, T' > 1 is arbitrary.
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Step 1: By (4.7), (2.19) and (2.20), we have that

|q1ta:y|<02//d (t — s,z —y — u)p?(s,u) duds
R
<8CyCYB (B2/2, B2/2) (p9s, + Pg;)(t,x —y), t<T.
Let C' = 21CyC? and we claim that forn > 1 and t < T,
(@t 2,9)| < A (Psnys, + Pns,) (B2 = ) (4.14)
with

Yo = C" ] B (B2/2,382/2) -

We have seen that (4.14) is valid for n = 1. Suppose that it is valid for n. Then by using
(2.19), (2.20), (2.14) and (2.15), we have that for t < T,

t
g (£, )] < / / g0t — 5,2, 2)| ga(s, 2, y)| d= ds

<017n/ /Rd t — 5T — )(p(nH) + ’0”52)(8’ z— y) dzds

B2 (n+1)B,
<2 CoCiym B ( 5 o9 (P(()n+2)52 + P?Z+1)ﬁ2)(t,$ - y)

St <p<n+2) T P(n+1)32> (t,z—y).
Thus (4.14) is valid. Since

“yeer (3)"

> > (ID_l(T
11\~ (n+1)B2 _ ( .
E_O Y@ (T77) = g - ((n+1)62> =: (5 < 0,

2

by using (2.14) and (2.15) in the second line, it follows that for t < T,

Z |qn(t’x’y)‘ < Z’y”(p(()n-i-l)ﬁg +p5252)(tax - y)
n=0 n=0

< Z% ~ DR (0 + p0?) (tx — y) = Ca(ph, + o) (L — ).

This proves that >~ ¢,(t, 2, y) is absolutely and uniformly convergent on [e, T] x R? x R¢
for all e € (0,1) and T' > 1, hence ¢(t, x,y) is well defined. Further, by (4.10),

m—+1

antxy—thxy //qo stZQ(s,z,y)dzds,
Rd

and (4.11) follows by taking the limit of both sides as m — 0.
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Step 2: The joint continuity of qo(t, z,y) was shown in Lemma 4.4. We now prove the joint
continuity of ¢;(¢,z,y). For any 2,y € R? and ¢, h > 0, we have

Q1(t + h7 x>y) - Q1(t7 xay)
t+h

:/ / QO(t+h_Sal’aZ)QO(Sazay)dZdS
t R4

¢
+/ / (qo(t+h—s,2,2) —qo(t — s,2,2)) q(s, z,y)dzds. (4.15)
0 JRrd

It follows from (4.7) that, there exists ¢; = ¢1(T) > 0 such that, for 0 < h < t/4 and
t+h<T,

t+h
sup | / qQo(t+h —s,x,2)q(s, z,y)dzds|
t

z,ycRd
t+h

< ¢ sup / / 2(t4+h—s,2—2)pi (s, 2 — y)dzds

z,yeR Jt R4
= sup// (ryx — 2)p(t+ h —r,z — y)dzdr

z,yeR? Rd

h
§C1/ sup / rox— 2)p(t —r, z — y)dzdr.
0 zyeRkd JRd

Now applying Lemma 2.6(b), we get

sup / P (r,x — 2)p(t — 1, 2 — y)d=
z,yeRe J R4

<t —r) 7T ((t 1)) TR TR () TR)p(t, 0).
It follows from Lemma 2.3 that the right-hand side of the display above is integrable in

r € (0,t), so by the dominated convergence theorem, we get

t+h
lim sup | / qQo(t+h —s,x,2)q(s, z,y)dzds| = 0. (4.16)
hl0 oy yerd  Ji Rd

Using (4.7) again, we get that for s € (0, 1],

‘ (QO(t_'_ h — 873:7’2) - QO(t - S,LE',Z)) %(57279)‘
<3 (p?(t—i—h — s, —2)+pP(t—s,x — z)) PR (s, 2 —y)
< 04/)02(t - 5% = Z)ng(S,Z - y)

It follows from Lemma 2.6(c) that
[ [ st = s = 22— phtads < e (1.0) + 5(1.0) < o
R

30



thus we can use the dominated convergence theorem to get that, by the continuity of qq,

t
lim/ / (qo(t+h—s,z,2) —qo(t — s,2,2)) q(s, z,y)dzds = 0. (4.17)
hi0 Jo Jrd

It follows from (4.9) that for s € (0,77,
|90(s, 2,y) — qo(s, 2,9/)]
<cs (27 (s )ly = '™ A1) (p(s, 2 = y) + pls, 2 = y/)).
Now we fix 0 < t; <ty <T. Then for any ¢ € (0,t1/4), t € [t1,t] and s € [e, ],
|QO(t - 5,7, Z) (CZO(Sa Za?/) - q0(37 <, y/)) |
< e (@7 Ny —y'D® AL po(t = 5,2,2) (p(s,2 = y) + pls, 2 = ) .

By Lemma 2.6(c), we have

t
sup / / PRt —s,1,2) (p(s, 2 — y) + p(s, 2 — y')) dzds < .
z,y,y ERA te(t,t2] JO JRI

Thus .
lm  sup / 90(t = 5,2, ) (qo(5, 2, 9) — do(s, 2, 4')) |d=ds = 0.
] R4

Y' U peRd ety by

Consequently, for each 0 < t; <ty < T and ¢ € (0,t,/4), the family of functions

¢
{/ / qo(t — s,2,2)qo(s, 2z, )dzds : x € R% ¢t € [tl,tQ]}
e JRA

is equi-continuous. By combining (4.7) and Lemma 2.7, we get that

lim sup </ / ) / qo(t — s,x,2)qo(s, z,y)dzds = 0. (4.18)
=0 z,y€ER te(t1,t2] R4

Therefore the family

t
{/ / qQo(t — s,x,2)qo(s, z,-)dzds : x € Rt e [tl,tz]} (4.19)
0 JRrd

is equi-continuous.
Similarly, by using (4.8), we can show that, for each 0 < t; <t < T and € € (0,t1/4),
the family of functions

{/ /quo 2)qo(s, 2, y)dzds 1 y € RY, te[tl,tg]}

is equi-continuous. Combining this with (4.18), we get the family of functions

t
{/ / QO(t — S5, Z)q0(37 Z, y)dZdS 1y € Rdat S [tlth]} (420)
0 R4
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is equi-continuous.
Now combining the continuity of ¢ — ¢ (¢,z,y) (by (4.16) and (4.17)) and the equi-
continuities of the families (4.19) and (4.20), we immediately get the joint continuity of

q1-

The joint continuity of ¢, (¢, z,y) can be proved by induction by using the estimate (4.14)
of ¢, and Lemma 2.7. The joint continuity of ¢(t, z,y) follows immediately.
Step 3: By replacing « by 2 and 3 by s, this step is exactly the same as Step 4 in [6]. O

4.3 Properties of ¢,(t, z)

Let
oy(t,x,s) = / p(t —s,2 —2)q(s,z,y)dz, r€R 0<s<t (4.21)
Rd

and
y(t, ) = /%txsds-//pz —s,x —z2)q(s,z,y)dzds. (4.22)
Rd

The following result is the counterpart of [6, Lemma 3.5].

Lemma 4.6 For all x,y € R, x # y, the mapping t — ¢,(t, ) is absolutely continuous on
(0,00) and

t
00,(t.0) =ata) + [ [ Lt - Dalszpdeds, te(0.00). (429
0 Jrd
Proof. Step 1: Here we prove that for any T'> 1, ¢ € (0, 7] and s € (0,1),

Orpy(t, . s) / 0. (t — s,x — 2)q(s, z,y) dz . (4.24)

Let |e| < (t — s)/2. We have that

1
¢yt +e,2,8) — Pyt x, 5) :/ (/ O (t + 0z — s, 1, 2) d9> q(s,z,y)dz.
R4 0

€

By using (1.7), (3.21), (3.16) and (3.20), we have,
|0ip.(t + O — s,x — 2)| = }Eﬁzpz(t +0c — s, )(x — z)}

1
< 0 [ 1Bt 0 = s = sz w)i(fu] du
Rd

< ep(t+be —s,0—2) < cop(t — s,z —2).

In the last inequality we used that |¢| < (¢ —s)/2 and applied Lemma 2.2(b). Together with
(4.12) this gives that for any £y € (0,3) N (0,d1/2) and t € (0, 7]

0 (t + 02 — 5,2 — 2)q(s, 2,y)| < cs(T)p(t — 5,2 — 2) (b5, + po°) (5,2 — y) = g(2).
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By (2.18), we see that fRd g(z)dz < co. Thus, by the dominated convergence theorem,

lim ¢y(t + E,SB,S) — gby(taxv 5) _

Ot — 5,5 — 2)als, ) dz,
e—0 g Rd

proving (4.24).
Step 2: Here we prove that for all z 42y and t € (0,7], T > 1,

Oz —ylI™)

7=y < +o00. (4.25)

t s
/ / |00y (1,2, 8)| dsdr < ¢;(T)t
o Jo

By (4.24) we have

(e < [ opalr = sz =) lals.z20) — als.)]| d
R

+1q(s, z,y)|

. 1 2
[ opr = 5.2 = 2)dz| = Q1w 5) + QP . 5).

For Q" (r, z, s), by (4.13), (3.20), (3.16) and Lemma 2.6(a) and (c), for 85 € (0,6 /2)N (0, ]
and v € ((2 — 61)B2/2, P2),

t r
//Q(l)(r,x,s)dsdr
/// ‘Eﬁzpzr—sx—z)’(\x—z]@7/\1)
0 Rd

{(pg%—p7 ﬁ2> s x—y)+<p7+,07 52) (s,z—y)}dzdsdr

t
< 03// (/ Bzv s,x—z)dz) <pg+p5352>(3,g;_y)d5dr
0o Jo
+03/// By S’x_z)<pg+P5352>(S,Z—y)dzdsdr
0 Jo Jrd

t T
/ / (=) (g2, ) (s — ) dsdr
0 0
Cq (,0/32 + 07 + PﬁQ V) (r,x —y)dr
0
CID
ﬂ';” e / / =)@ (s T @ )R ) dsdr

c O(|lz —y[) - —Ba “Ndr
T /O(fb )B4 1 e () )d

16)) _ —1 t d N -1
<o 2lr—yl) y|d ) / (@) 1+ <I>_1(r_1)_7>dr < et 2 =yl) y|d ) < oo,
|z —y 0 |z — |

The second to last inequality follows from Lemma 2.3.
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For QéQ), by (4.3), (4.12) and Lemma 2.3 we have

//Q TZL‘SdeS<C7// 0524',002 s,2 —y)(r —s)” 11 ((r — )_1)_62dsdr
=% M/o </0 (r—s)"' @7 ((r—s)" )62d8) dr§08t<1>(||x:—§||dl)<+oo.

|z — y|4

Step 3: We claim that for fixed s > 0 and z,y € R?,

lim ¢, (t, z, s) = q(s,2,y) - (4.26)

Assume t < T, T > 1. For any § > 0 we have

/dpz(t —s,x—2)(q(s,2,y) —q(s,2,y)) dz

R

s/ e s = 2)lals, ) ~ s, d
x—z|<8

+/ pz(t — 5T = Z) (|q<8,2,y)‘ + ‘Q(Sax>y)‘) dz =: J1(67 t? S) + J2(57t78) .
lx—z|>6

By (4.13), for any € > 0 there exists § = (s, x,y,T) > 0 such that if |z — x| < ¢, then
lq(s, z,y) — q(s,z,y)| < e. Therefore, by Proposition 3.2 and Lemma 2.6(a),

Ji(d,t,s) < 5/ Pt —s,0—2)dz < e(t — s)/ p(t —s,2)dz < ¢e.
R4 R4
For J5(0,t,s), since p,(t —s,x —2) < co(t — s)p(t — s, 2 — 2) < ca(t — s)p(0,x — z), by (4.12)
we have

where ¢3 = ¢3(T") > 0 is independent of ¢. By (2.17), the term in parenthesis is finite. Hence,
the last line converges to 0 as ¢ | s. This and (4.5) prove (4.26).
Step 4: By (4.26), we have that

oy(t,x,s) —q(s,z,y) = / Ordy(r, x, s)dr

Integrating both sides with respect to s from 0 to ¢, using first (4.25) and Fubini’s theorem,
and then (4.24) and (3.21), we get

gby(t,x)—/otq(s,x,y)ds - /Ot/:arqﬁy(r,x,s)drds:/Ot/orc‘?rqby(r,m,s)dsdr

t r
= / / L%p,(r — s, )(x — 2)q(s, z,y) dzds dr .
0o Jo Jrd
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This proves that ¢ — ¢, (¢, z) is absolutely continuous and gives its Radon-Nykodim deriva-
tive (4.23). O

The following result is the counterpart of [6, Lemma 3.6].

Lemma 4.7 For allt >0, x # y and € € [0, 1], we have

t
gy ftn) = [ L5t =)o - Dals, 2 deds (4.27)
0 R4

and
ts L%p,(t,x —y) and t — L%¢,(t,z) are continuous on (0,00). (4.28)

Furthermore, if B+ 61 > 1 and 0, € (2/3,2) we also have

t
Voo, (t,z) = / Vp.(t — s, )(x — 2)q(s, z,y) dz ds. (4.29)

0 JRd
Proof. Fix x # y and T > 1. In this proof we assume 0 < ¢ < T and all the constants will

depend on T', but independent of s and t.
(a) By (1.7), (1.1), (3.16), (4.12) and Lemma 2.6(b), for each s € (0,1),

[ nte = s = z5w)nte w)Iwhdula(s. ) s
Re JRd
< 01/ p(t —s,x— 2)p(s,z —y)dz < oo. (4.30)
R4
Thus we can use Fubini’s theorem so that from (4.21) we have that for s € (0,1),
Lﬁw,eéy(tv " S)([E) = / Eﬁz7spz(t -5 )(ZL’ - Z)Q(Sa 2y y) dZ, €€ [Oa 1] : (431)
Rd

Let By € (0,01/2) N (0,6] and v € (0,f2). By the definition of ¢,, (4.21), and Fubini’s
theorem, using the notation (3.10) we have for ¢ € (0, 1] and s € (0,1),

|L%56,(t, -, ><x>\
- 4 [ ([t s = swato. ) ) o ) ]

3 /Rd (/w>€ Op. (t — 8,0 — z;w)k(z, w)J (w) dw) q(s, z,y)dz
%/R </|w|>€ 16,.(t — 8,2 — 2z w)|k(2, w)J (w) dw) la(s, 2, 9) — als, )| d=

! /Rd (/wa Op. (t = 8,7 = zyw)k(z, w)J (w) dw) dz

+_
35
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lg(s,z,y)|.
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By using (1.7), (3.16), (4.2), (4.12) and (4.13) first and then using Lemma 2.6(a)—(b), we
have that for ¢ € (0,1] and s € (0,1),

|£5%6,(t, -, 5)(2)]
< / B2t — sx—z)<pg+pf2_52)(s,z—y)dz

(/ oy m_zmz) (0 + ) (5,2 =)

teat =)0 (L= 9) ) (o (5.2 = ) + (s, — )

< o AT sE =22 —y)de o / 0= s 2)pi (s, — y) dz
st =)0 (E = )7 () + o, ) (5.0~ )
teslt =)0t = ) (s, — ) + ol (s, — )
< e((t—s) 0T ((E— )RR (5T
H(t = 5) T (t = ) )R (5T
(= )TN (t = 5) )R (T T 4 (- )TN (- 5) )
5707 (s7) T 4 570 (s7) ) (0, — )
< et —8) O ((t—5) ) s T (5T (0,2 — ). (4.32)

In the last inequality above we have used the inequality
@71(871),82 < a;ﬁ2/51(I)*l(Tfl)*ﬁzS*ﬁz/(ﬁ < a;52/51(I)fl(Tfl)—Ble*/J’Q/&sfl'

Using the fact that © # y and Lemma 2.3 we see that the term on the right hand side of
(4.32) is integrable in s € (0,t). Moreover, by (1.1), (1.7), (4.12) and Proposition 3.2,

/ / 106, (t, 2, 8;w) |k (2, w) J(w) ds dw

|w|>e

<2r17C / /dpz(t — 5,2 —2)(p(s, 2 —y) + )0%2(3, 2 —y))dzj(|w|) ds dw
|w|>e R

¢
+ /<;170C'2/ / /dpz(t —s,xtw— z)(pgz(s, z—y)+ pgz(s, 2z —y))dzj(|Jw|) ds dw
w|>e R

<co [ attulitw [[(¢=5) ([ ot=sio= 2 m— )+ 2 = ) s

rai@) [ [ =9 ([ ot st w—aw) (s - )+ oz - p)dds,
(4.33)

which is, by Lemma 2.6(a)—(b), less than or equal to

()(/ s (s Pt —y ds+//Rd (s,2—y +p%2(s,z—y))dzds)



< cs(e) </0t s O (s P2dsp(t, x — y) + /Ot s—lcb—l(s—l)—ﬂzczs) < o0. (4.34)

Thus we can apply Fubini’s theorem to see that, by (4.31), (4.27) holds for ¢ € (0,1].
Moreover, by Fubini’s theorem and the dominated convergence theorem in the first equality
and the second equality below respectively:

t ¢
LR, (t,x) = 1iﬁ)l/ L%, (t,-, 8)(x)ds = / lim £%<¢,(t, -, s)(z) ds,
&Y Jo 0

el0

which together with (4.31) yields (4.27) for e = 0.
(b) Now we prove (4.28). Note that, by Lemma 3.1(b), t + 6, (t,x — y;2) = py(t,x —y +
2) +py(t,x —y — 2z) — 2p,(t,x — y) is continuous. Let € € (0,¢). By (3.12),

’(spy(tﬂ r—Y; 2)’ < cn (q)il(til)‘zp A 1) t (p(tam —y=£ Z) + p(t7 L= y))
< cmé (@ e Y|P A1) e (plesa —y+ 2) + ple,a — y)) .

By (1.7) and the proof of (3.16) we see that the right-hand side multiplied by (z, 2)J(z) is
integrable with respect to dz. This shows that the family {0, (t,x — y;2)r(z,2)J(2) : t €
(e,T)} is dominated by an integrable function. Now by the dominated convergence theorem
we see that ¢ — L%p, (t,2 — y) is continuous on (0, 7T].

Let 85 € (0,01/2) N (0, 5] and v € (0, 52). By (4.32),

‘Eﬁzqﬁy(t, x, s)} <cs(t—s) e ((t — s)_l)“*_ﬁ?s_lq)_l(3_1)_Vp(0, T —1). (4.35)
Note that for 0 <t <t+h <T,
LY ¢,(t+ h,x) — L%¢,(t, 1)

t+h t
= / L@, (t+ h,x,8)ds + / (L% ¢y (t + h,z,5) — LYy (t,x,5)) ds. (4.36)
¢ 0
When h <t/2, by (2.3) and (2.4), we have
t+h
/ (t+h—s) 07 ((t+h—s5)") 27107 (s71)ds
t
h
_ / PS4 = ) N (b))
0
h
< 013/ r e ) 2t — )T T (¢ — )Y ar
0
and so by Lemma 2.4 and (4.35) we get

t+h
lim L@, (t + h,x,8)ds = 0. (4.37)

h—0 t
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Note that, by (4.30) we can apply the dominated convergence theorem and use the continuity
of t — L% p,(t,x — y) so that for each s € (0,t),

: Ra _ R
ilzl—%(ﬁ ¢y<t+h>$as) L Qﬁy(f,ﬁﬁ,S))

:/ lim (L%p.(t+h —s,-)(x —2) — LYp.(t — 5,-)(x — 2))q(s,2,9) dz = 0. (4.38)
Rd h—0

By Lemma 2.3, s > (t —s) 107 ((t — s)71) P25~ 1D~ (s71) 7 is integrable in (0, 1), so using
(4.35), we can apply the dominated convergence theorem and use (4.38) to get that

t
}lliir(l) i (L% ¢, (t + h,x,8) — L@, (t,7,5))ds = 0. (4.39)

Combining (4.37)—(4.39) we get the desired continuity.
(c) Finally we show (4.29). Since 8+ 6, > 1 and 0; € (2/3,2), we can and will choose
Ba € (0V(1—=101),01/2)N(0,5] and v € (0, Ba A (B2 + 61 — 1) A (61 — 202)). For example, one
can take By = 5 A (1/3).

For each fixed 0 < s < t and he; = (0,...,h,...,0) € R with |h] < 1/(207((t —s)71)),
by (3.11), (3.9), (2.1) and (4.12) we have

%‘pz(t - ST —z+ hez) _pz(t — 5T = Z)|’Q<S7zay)|
= C% (@Mt = s)™)R) AL) (= 5) (p(t = 5,2 — 2+ he;) + p(t — 5,2 — 2)) |a(s, 2,9)]
< 282¢(t — )07 (¢ —5) 7)ot — s, — 2)(pg" + pB,) (5,2 — ) (4.40)

which is integrable in z € R? by Lemma 2.6(b). Thus we can use the dominated convergence
theorem and (4.21) to get that for s € (0,1),

9,6,(t, -, s)(z) = /R Bip-(t — 5, )(x — 2)q(s, 2, y) dz (4.41)
Let
o0nfts)w) = [ At = s w2, de
= Tyans) [ Ot = 5w =) s, 9) = als w.g)d:
Lan(e) [ 0t =) = 2 als,w.p)ds

L) [ Ot = 5w - 2) gls, 2 )z
R

=t Lppn(s)Ri(t, s, w,y) + Lo (s)Ra(t, s, w, y)
+ Lio,2)(s) Rs(t, 5,w,9) - (4.42)
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Let ' € B(x,|x — y|/4). Then it follows from Proposition 3.2 and (4.13) that for
s € [t/2,t),

|Ri(t, s, 2", y)|
< [ 10wt =596 = 2)lats, 2.0 — (s, )l
</ (<t—s><1> (=)ol = 5.0’ = 2) (ja' — 27 A1) () +02,) (07— )
(= )= 5) ol = s,0" = 2) (|2 = 22T ALY (4 p,) (52— ) dz
=(—s) (/ PPt = s,2' — 2)dz ) (pﬁp7 ﬂ2>( ;o' —y).
+ (t — ) /R PPt — s, — 2)p0(s, 2 — y)dz
=) [ s = 2 (52— )

<o (@7 =) (4 g, ) (5,0 — )
+ (@‘1((75 _ S)—1)1—2B2+7¢)—1(S—l)—wﬂg + <I>_1((t _ S)—l)l—ﬂzﬂ@—l(s—l)—v
H(t—s)sTOTH(sT)(@TI(sT) T 2T (sT) ™)) plt, 2’ — )

< ¢1o (@71((15 _ S)fl)lfﬁzﬂ@fl( *1)*'Y+52

(1= ) ) () )

HE—s)s T ((t—5) )TN (sT) ) p(t, (2 — y)/2). (4.43)
Here the third inequality follows from Lemma 2.6(a)—(b). Since §; > 2/3 > 1/2 and v <
81+ B2 —1, using Lemma 2.3 (so that ft , P ((t—s)™1) P ds and ﬁ%(t—s)@‘l((t—s)_l)ds
are finite) it is straightforward to see that the function on the right-hand side above is
integrable in s over [t/2,1).

Next, for s € [t/2,t), using (4.12) in the second and (4.4) in the third line below,

|Ra(t, s, 2" y)| = ’/ Oip(t — 5,-)(2' — 2) dz| q(s,2",y)
R4

zpz -5, )dZ

(p§2 + p%2> (s,2",y)

< cd7H((t—s)” 1) 2p(t, 2’ —y)
< c@7H((t—5)7)! T Pp(t, (v~ y)/2). (4.44)
Since ft/2 ((t —s)™)1P2ds < oo because (B, + d; > 1, the right-hand side above is

integrable in s over [t/2,1).
Finally for s € (0,t/2], since fy < 01/2,

Roltos o’ )] < [ 10ale = 5.0 = 2lats. )l
Rd
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= c(t — s) /de Wt —s, 2 )(p%2+p02) (5,2 —y)dz
t—s((t (t—s)" D)2 (t—s) o7 ((t—s)7)
— )= ) )T ) T 07 (= ) s T ) R plt 0! — )
gc( (=5 )+ 07— 5) e (s7)
L (R R Bt Ep e PR (4.45)

which is integrable using Lemma 2.3.
Hence we can use the dominated convergence theorem and (4.41) to conclude that

]1113(1) (gby(t T+ w)— —}LliI(l)/ / 0;py(t, -, 8)(z + Ow) dfdsds
:/ 0ipy(t, -, s ds-/ / Oip-(t — s, )(x — 2)q(s, 2z,y) dzds,
0 R4
which gives (4.29). O

4.4 Estimates and Smoothness of p"(¢,z,y)
Now we define and study the function
t
PE(t, x,y) == py(t,x—y)+o,(t, x) :py(t,x—y)—l—/ /dpz(t—s,x—z)q(s,z,y) dzds. (4.46)
0o Jr
Lemma 4.8 (1) For every T > 1 and Py € (0,5] N (0,81/2), there is a constant ¢; =
c1(T,d, 61, B2, 7, Ko, k1, k2) > 0 so that for allt € (0,T] and z,y € RY, p*(t,x,y) < citp(t, v —

y). (2) For any v € (0,61)N(0,1] and T > 1 there ezists ¢y = co(T, d, 61, 2,7, Ko, K1, k2) > 0
such that for all z,2',y € R and t € (0,T),

"t @, y) — p*(t. 2, y)| < colw — 2 t(p(ly(t, r—y)+p°, (2 — y))-

Proof. Throughout this proof we assume that z,2’,y € R? and t € (0, T].
(1) By the estimate of p, (Proposition 3.2), (4.12), Lemma 2.6(c), (2.14) and (2.15), we have

//dez — s, — 2)|q(s, z,y)| dz ds
- //Rdt_s (t=so- )<p52+p0><’ —y)dzds

< oot <pﬁ2 + o ) (t,z—y) (4.47)
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< 20T Pecgtp(t, —y), forallt e (0,7].

Therefore, p*(t, z,y) < p,(t,x —y) + |y (t, 2)| < catp(t, z — y).
(2) We have by (3.11) and the fact that v < 1,

p.(t,x —2) —p.(t,2’ — 2)| < elr =2/t (p(t, x — 2) + p(t, 2’ — 2))
= alz =2t (tx—2)+p° (t2' —2)).

Thus, by (4.12) and a change of the variables, we further have
t
ou(t.2) = oy65) < [ [t = 5.0 = 2) < palt = s = 2 las, 2 )l dds
o Jr

t
<colx — az’\'y/ / (t—s) <pgw(t —s,x—z)+p0 (t—s,2' — z)) (p€2 +0%,) (s, 2 —y)dzds
0 JRrd

<esle = /(% (L = p) + o2 (6w — ) + P (80— ) + P2 (10— )
<2e3@ (T 2w — 2Pt (0° (t,x —y) + p°,(t, 2" —y)), forallte (0,7].

Since 7 € (0,07), the penultimate line follows from (2.19) (with § = 0), and the last line by
(2.14) and (2.15). The claim of the lemma follows by combining the two estimates. a

The following result is the counterpart of [6, Lemma 3.7].
Lemma 4.9 The function p*(t,z,y) defined in (4.46) is jointly continuous on (0,00) x R% x
R4,

Proof. The joint continuity of p,(¢,z — y) was shown in Lemma 4.2. For ¢,(¢, ) we use
(4.22) and the joint continuity of ¢(s, z,4) on (0,00) x R? x R? together with the dominated
convergence theorem. This is justified by the estimates p,(t—s,z—2) < ¢1(t—s)p(t—s,x—2)
and (4.12) which yield that |p,(t — s,z — 2)q(s, z,y)| < co(t — $)p(t — s) <p€2 + p%Q) (s,2—1v)
for By € (0,8] N (0,6,/2). The latter function is integrable over (0,¢] x R? with respect to
ds dz by Lemma 2.6. O

Now we define the operator £* as in (1.8) which can be rewritten as

Lrf(z) =Lf(x) = lii(r)l L f(x), where L™ f(z) = l/ d¢(z; 2)k(x, 2)J (%) dz.
€ |z|>e

2
(4.48)

Note that for a fixed x € R?, it holds that £~ f(x) = L% f(x). This will be used later on.
The following result is the counterpart of [6, Lemma 4.2].

Lemma 4.10 For every T > 1, there is a constant ¢y = ¢1(T, d, 1, a1, 8, Cs, Yo, Ko, K1, K2) >
0 such that for all € € [0, 1],

’ﬁﬁ’epﬁ(t? K y)(x)l < Clp(ta T — y)a fO’l” all t € (O7T] and xr,y € Rd?'r 7é ) (449)
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and if B+ 61 > 1 and 6, € (2/3,2) we also have
IVep®(t,z,y)| < citd(tp(t,x —y)  forallt € (0,T] and x,y € R* 2 #£y. (4.50)

Proof. By (3.16) and the fact that for fixed z, L% f(x) = L% f(z) for € € [0,1], we see
that
|L%py(t, ) (x —y)| < erp(t,z —y), for all ¢ € (0, 7] and € € [0, 1].

Let € € [0,1]. By recalling the definition (4.22) of ¢, and using (4.27), we have

o) = [ ] £Vl s =) o) = ) de

+/t/2 </Rd L8 (t— s, )(x — 2) dz) q(s,x,y)ds

t/2
+ / Coep,(t — 5,)(x — 2)a(s, 2,y) dz ds
0 Rd
= Ql(tvxa y) + QQ(tvxa y) + Qi’)(taxa y) .

Let By € (0,61/2) N (0, B]. For Q1(t,x,y) we use (3.16), Lemmas 2.2(b), 2.3 and 2.6(a) and
(c) to get that for any v € ((2 — 61)52/2, B2),

t
el < o[ ([ s =) (84 00) e - s
t

t
cl/ / PRt — 5,0 — 2) <p2+pf2_ﬁ2) (s,z—y)dzds
t/2 JRA

< 02<p2+p§252 (t,x —y // PRt — 5,0 — 2) dzds
R4
/ /Rd B —2) <p9y+pf_ﬁ2> (5,2 —y)dzds
< ol (b — )0 )T e (), + 02 4 ) (e — )

< ap(t,r—vy), forallte (0,77,

where the last two lines follow from (2.14) and (2.15).
For )s(t, x,y), by (4.2), (4.12), Lemmas 2.2(b), 2.3, (2.14) and (2.15),

t

@t <as [ (=510 (=) (ol 4 407 (52— ) ds

t/2
t
< cg (p%Q + p02> (t,z — y)/ (t — 3)—161)—1((t — s)—l)—ﬁ2 ds
0
<erplt,r —y)d ()2 < e @H (T P2p(t,x —y),  forallt € (0,7T).
For Qs(t, z,y), by (3.16), (4.12), Lemma 2.6(c), (2.14) and (2.15),

t/2
1Qs(t, x,y)| < 07/ /d (t—s,z— )<p%2+,0€2) (s,z—y)dzds
R
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t

< 2% [ [ -9t — 5o =) (o + ) (512 - v dzds
t 0 Ra

< ¢ (,0%2 + p€2> (t,x —y) < 2@ (TN Pp(t,x —y).

Combining the above calculations and (4.46) we obtain (4.49).
(ii) Since S+ 3d; > 1 and 6, € (2/3,2), we can and will choose 55 € (0V (1 —461),51/2)N (0, 5]
and vy € (0,82 A (B2 + 01 — 1) A (61 — 262)). By (4.29) and (4.42)—(4.45) we have

t/2
Vaty(t, 2)] < crp(t, z — y) (/O Nt =)+ O ((t— )T (s
+(t=s)0 7 ((t—s) s D (s71) P2ds

[ = e (e s e ()
t/2

+ 07 ((t —s) O (5T T2 4 (t— )T T ((E — s)_l)q)_l(s_l)_”ds) . (4.51)
Since B+ 61 > 1, 6; > 2/3 > 1/2 and 7 < §; + B2 — 1, using Lemma 2.3 we see that
S @ (= 8) ™) P ds < opt® (T, [, @7 (E— 8) T s < opt @ (1Y)
and [J(t—s)® ' ((t—s)"")ds < cst>®~1(t1). Thus, by Lemma 2.3, (4.51) is bounded above

by cst® 1t p(t,z — y). Now, (4.50) follows immediately from this, (4.46), (4.29) and
Proposition 3.2. O

We will also need the following corollary, which follows from (4.28).

Corollary 4.11 For x # vy, the function t — Lp*(t,z,y) is continuous on (0, 00).

5 Proofs of main results

5.1 A nonlocal maximum principle
We first establish a somewhat different version of [6, Theorem 4.1].

Theorem 5.1 Suppose there exists a function g : RY — (0,00) such that (1.9) holds. Let
T >0 and u € Cy([0,T] x RY) be such that

lim sup |u(t,z) — u(0,2)| =0, (5.1)
t0 peRrd
and for each v € RY,
t— LM(t, ) is continuous on (0,T]. (5.2)

Suppose that u(t,x) satisfies the following inequality: for all (t,x) € (0,T] x R,
Owu(t, z) < Lfu(t, z) . (5.3)
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Then for allt € (0,T),

sup u(t, z) < sup u(0, ). (5.4)
zeRd zeRd
Proof. Choose a > 0 such that
Lg(z) < ag(x), for all z € R (5.5)

Let 0, > 0 and wl(t,z) := u(t,z) — 6(t — € + e*g(z)). Then by (5.3) and (5.5), for all
(t,z) € (0,T] x R we have

Ol (t, x) = du(t, x) — 0(1 + ae™g(x)) < Lu(t, x) — § — dae™g(x)

= LUl (t, 1) — 6 + 0 (Lrg(x) — ag(x)) < LU (t, ) — 6. (5.6)

Since u € Cy([0,T] x R?), by letting 6 — 0 and & — 0, it suffices to show that

sup ud(t,z) < sup ul(e,x), t€ (g,T]. (5.7)
zeRd zeR4
Fix §,¢ > 0 and suppose that (5.7) does not hold. Then, by the continuity of u® and the

fact that lim, . u’(t,2) = —oo (which is a consequence of (1.9)), there exist ¢y € (g, T] and
zo € R% such that

sup Ug(t, SL’) = ug(t(]? 130)- (58)
te(e,T),z€R4
Thus by (5.6), for h € (0,ty — ¢),
1 1 [t 1 [l
0< —(ug(to, xo) — ug(to —h,x9)) = — 8tug(s,xo)ds < —/ E“ug(s, xg)ds — 9.
h‘ h to—h h to—h

Letting h — 0 and using (5.2) and (5.8) we get
0 S E’iug(to,xo) -0

= p.v./ (wd(to, o + 2) — ul(to, 20)) K(x0, 2)J (2) dz — § < —4,
Rd

which gives a contradiction. Therefore (5.7) holds. O

Remark 5.2 Suppose that flz
Note that

51 12|°7(|2])dz < oo for some & > 0. Let g(z) = (1 + |x|?)*/2.

0, ;9()] < er(L+ |27 d,5=1,...,d (5.9)

By (5.9) and (3.7), we have that for |z| < 1,

wAa@uuﬂmZ+mwuy/

|z|>1

mmm+%/’gmi@mwm

|z|>1
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< e, ( [ eRitend+ [ gzpas+ [ |z|€j<|z|>dz) <o <) (5.10)
|z|<1 |z|>1 |z]>1
If |z| > 1, then by (5.9) and (3.7),

59 <0 |

|2[<[z|

16,25 2)1(12])d= + 70g(x) /

|2[>[z]

<o ([ R o) [ iz [ rigepa:)
< (1ol [ et/ A DS + o) +1) < sl (5.11)

J(12)dz + % / gz % 2)j(2])d=

|2|>x]

Therefore g satisfies (1.9).

5.2 Properties of the semigroup (P});>¢

Define
PEfa) = [ ot s

Lemma 5.3 For any bounded function f, we have
L) = [ L )@ ). (512)
R

Proof. By the same computation as in the proof of (3.16) we have that for allt < T, T > 1,
and € > 0,

" / plt, x % 2)j(|2]) dz
|z|>e
< / tplt, x & 2)j(|=]) dz + / tplt, x = 2)j(|2]) d
O-1(t—1)|2|<1,|z]>e

d-1(t-1)|2|>1

< 4™ p(t, ) / J(|z]) dz + eip(t.z),

|z|>e
thus by Lemma 4.8(1),
/ (/ Ip™(t,z £ w,y) — 2p"(t, z,y)| k(z, w)J(w) dw> dy
Rd |lw|>e

<20 / / 195t 2, )1 (fol) dewdy + o / / (1, 2 % w, )] (] duwdy
Rd J|w|>e Rd J|w|>e

<e ([ atwohaw) [ otto—atuson [ ([ ptterw—nidul)an) a

<0oQ.
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Thus by Fubini’s theorem, for all for bounded function f and € € (0, 1],

LU f(a) = | L%P(E - y) (@) f(y)dy.

Rd

Now, (5.12) follows from this, (4.49) and the dominated convergence theorem. O
The following result is the counterpart of [6, Lemma 4.4].

Lemma 5.4 (a) For any p € [1, 00|, there exists a constant ¢ = ¢(p,d, 01, B, Ko, K1, k2) > 0
such that for all f € LP(RY) and t > 0,

”'CHPtHpr < Ct_1Hf||p' (5.13)

(b) If f € L®(RY), t = LEPFf is a continuous function on (0,00).
(¢c) For any p € [1,00) and f € LP(R?), t — LXPFf is continuous from (0,00) into LP(R?).

Proof. (a) Let p € [1,00]. By (5.12), Lemma 4.10, Young’s inequality and Lemma 2.6(a),
we have that for all f € LP(R?) N L*°(RY),
P 1/p
eresly < e ([ |[ ot - i a)
Ré | JRd
< alot ) 1fllp < et £l
Inequality (5.13) for f € LP(RY) now follows by a standard density argument.
(b) For any ¢ € (0,1), by Lemma 4.10 we have for x # y,

sup [L"p"(t,z,y)| <c sup p(t,x —y) <cple,x —y).

te(e,T) te(e,T)
Assume that f is bounded and measurable. By Corollary 4.11, ¢ — Lp"(t,z,y)f(y) is
continuous for x # y. By the above display, the family {L"p"(¢t,z,y)f(y) : t € (¢,1)} is
bounded by the integrable function p(e,z — y)|f(y)|. Now it follows from the dominated
convergence theorem and (5.12) that ¢t — L"P; f(x) is continuous.
(c) Let p € [1,00). When f € LP(RY) N L>°(R?), the claim follows similarly as (b) by
using (5.12) and the domination by the LP-function [, p(e,x —y)f(y)dy. The claim for
f € LP(R?) now follows by standard density argument and (5.13). O

Remark 5.5 Note that Lemma 5.4 uses only the following properties of p*(t, z,y): (5.12),
|Lrpt(t, - y)(x)] < er(T)p(t,x —y) for t € (0,7] and t — Lp"(t,-,y)(z) is continuous on
(0,T]. Moreover, Lemma 5.3 uses only the following properties of p"(t,z,y): p*(t,-,y)(z) <
co(T)tp(t,x —y) and |L%p"(t, -, y)(x)| < c3(T)p(t,x —y) for e € [0,1] and ¢ € (0, T].

The following result is the counterpart of [6, Lemma 4.3].
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Lemma 5.6 For any bounded Hdlder continuous function f € C}'(R?), we have

Lr (/0 P:f(~)ds) (x) :/o LEPFf(x)ds, x€R%. (5.14)
Proof. Define
150 = [ it =iy Sif@) = [tz s

and .
Rtf(x):/o Ti_sSsf(x)ds.

Then, by Fubini’s theorem and (4.12), for all for bounded function f,
Prf(z) =T f(z) + R f (). (5.15)

We now assume ¢ € (0,1] and 0 < s <t < T, T > 1. Suppose that |f(z) — f(y)] <
c1(lx —y|" A 1). Without loss of generality we may and will assume that n < 8. By Fubini’s
theorem, (1.7), (1.1) and (3.16),

LT f(x) = / L. (s, )(x — 2)f(2) dz.

R4

Thus,

enp@) < [ ([ tates = swla s dn) 176) - f0)d:

/( [t = s s i) d:

By using (1.7), (3.16), (4.2) and (2.17), for any 1 € (0,91) N (0, 5], |[L"*Tf(z)| is bounded
by

+

|f ()]

¢l / p(s,x—2)(Jo — 2" A1) dz +c; s D7 (s7H) ™
R4
< st (s 4oy s (s A

and the right hand side is integrable by Lemma 2.3. Thus by the dominated convergence
theorem and Fubini’s theorem,

t t ¢ t
L /OTSf(x)ds:lgﬁ)lﬁ’/OTSf(x)ds:/Oth’Tsf(a:)ds:/ﬁTsf(x)ds. (5.16)

el0 0

It follows from (4.13), (2.17) and the boundedness of f that for any 55 € (0, 5]N (0, d,/2)
and v € (0, 53), we have

1S5 f(z) = S f(2)| < ezs @7 H(s™H) T (Jo — 2|77 AL (5.17)
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It follows from (4.12), (2.17) and the boundedness of f that
1Sof ()| < cys 1D (s7H) 2, (5.18)

We use Lemma 4.8(1) and Fubini’s theorem in the first line below, which can be justified by
an argument similar to (4.33) and (4.34):

W‘ER ()]

IN

| |> o — zyw)k(x, w)J (w) dw) Sy f(z)dz|dr

/0 /R (/ e = zw)|k(z, w)J (w) dw) 1S, £(2) — S, f(2)| dzdr

—|—/ / (/ Op. (s — 1o — zyw)k(x, w)J(w) dw) dz||S,f(z)|dr.
0 R4 |w|>e
By using (1.7), (3.16), (4.2), (2.17), (5.17), (5.18) and Lemma 2.3, we further have that

IN

L% Ry f(z)] < 65/ / p(s—r,x—2)r '@ (r )7 (Jlo — 2|77 A1) dedr
0 Jrd
+ 05/ O (r ) P2y
0
< 06/ (s —7) 0 (s — 7“)’1)’(52’7)7"’1@’1(7”1)’7037“ + 05/ r e (rm ) Py
0 0
<ers tOTHsT) T2 p ey d (5T T2 = 2005 T (57 T

and the right hand side is integrable by Lemma 2.3. This justifies the use of the dominated
convergence theorem in the second line of the following calculation:

t t t t
E”/ R, f(x) ds:limﬁn’e/ R, f(z) d3:/ lim L% R, f(x) dS:/ LRy f(x) ds
0 el0 0 0 40 0
(5.19)

Combining (5.19) with (5.16) and (5.15), we arrive at the conclusion of this lemma. 0O

5.3 Proofs of Theorems 1.1-1.3

Proof of Theorem 1.1. By using Lemma 4.6 in the second equality, (4.6) in the third,
(4.11) in the fourth, (4.6) in the fifth, and Lemma 4.7 in the sixth equality, we have

atpn(ta x, y) = atpy<t7 xr — y) + 8t¢y<t7 .CL’)
t
= LY%p,(t,x —y)+ ((J(t, z,y) +/ / L%p.(t —s,)(x — 2)q(s, 2,y) dz dS)
0 Rd
= (L%py(t,x —y) — wlt,z,y))
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+ (q(t, z,y) + /t /Rd L%p.(t — s, )(x — 2)q(s, 2,y) dz ds)

= L%, (t,x — //qot—sx—z) (s,2,y)dzds
[ [ et =tz ) d s
0 JRrd

= L%p,(t,z — // LAp,(t — s, )(x — 2)q(s,2,y) dzds
Rd
= Lp"(t,z,y).

Thus (1.10) holds. The joint continuity of p*(t, z,y) is proved in Lemma 4.9. Further, if we
apply the maximum principle, Theorem 5.1, to us(¢,z) := Pff(x) with f € C*(R?Y) and
f <0, we get us(t,z) <0 for all t € (0,7] and all x € R?. This implies that p*(t,z,y) > 0.
(i) (1.11) is proved in Lemma 4.8(1).

(ii) The estimate (1.12) is given in (4.49), while continuity of ¢ — L*p"(t,-,y)(z) is proven
in Corollary 4.11.

(iii) Let f be a bounded and uniformly continuous function. For any ¢ > 0, there exists
d > 0 such that |f(z) — f(y)| < € for all |x —y| < . By (4.5), (1.5), (2.17) and the estimate
for p,(t,z — y) in Proposition 3.2 we have

i s / pultr = 9) () dy — f(2)
= ltlfglsup / py(t,z —y)f(y)dy — py(t,x—y)f(x)dy‘
zeR? | JRd R4
< alimsw [ tnlt.o—)116) - @) dy

< ecp lim sup / tp(t,x —y)dy + 2¢1| fl oo hm sup / tp(t,x —y)dy
t0 gerd lz—y|<d 0 zerd lz—y|>8

P _ -1
< CQSIimsup/ tp(t,x — )dy+201||f||oohmt sup/ W—y’cl)dy
t0 yerd JRd 0 perd Jjg—y>s [T — Yl
o(l=[)

2|

dz = co€ .

< e+ QCIHfHOOIEglt/H
z|>6
This implies that

lim sup
10 z€eR4

(5.20)

[ pitr =1y = 1) -

Further, by (4.47) and (2.17), for any 5 € (0, 5] N (0,6;), we have

/Rd /0 /R p:(t = 5,2 = 2)q(s, 2,y) dz ds f(y)dy'
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< alflt [ (o4 68) (hx =) dy < @) > 0, ¢,
R4

The claim now follows from this, (4.46) and (5.20).

Uniqueness of the kernel satisfying (1.10)-(1.13): Let p*(t,z,y) be another non-negative
jointly continuous kernel satisfying (1.10)-(1.13). For any function f € C>°(R?), define
ug(t,x) == [paD"(t,x,y)f(y)dy. By the joint continuity of p*(t,z,y), (i) and (iii) we have
that

Uy € Cy([0,T] x RY), ltim sup |us(t,z) — f(z)] =0.

0 zcRrd

By Lemma 5.3 and Remark 5.5,

ﬁ”ﬂf(tafv)Z/Rdﬁ”ﬁ“(t,x,y)f(y)dy and E“Uf(w)Zédﬁ”p“(t7x,y)f(y)dy- (5.21)

Moreover, by Lemma 5.4 and Remark 5.5, t — L%us(t,z) and t — L5Us(t, x) are continuous
on (0,7]. Here and in (5.21) we use that p" satisfies (i)—(ii).

Let w(t, x) :== us(t,x) — uys(t,z). Then w(0,x) =0, limy g sup,ega |w(t, x) —w(0,2)| =0,
and ¢t — L"w(t,x) is continuous on (0,7]. Note that by (1.12) and (1.10),

0" (L, 2, y)| + 10" (2, y)| < esp(t,x —y), e (0,T].

Thus, by the dominated convergence theorem,

Owus(t,x) = /Rd o™ (t,z,y)f(y)dy and Ouy(t,z) = /Rd op™(t,z,y) f(y) dy.

By this, (1.10) and (5.21), we have duw(t,z) = Lw(t,z). Hence, all the assumptions of
Theorem 5.1 are satisfied and we can conclude that for every ¢ € (0,7, sup,cpa w(t,z) <
sup,cre w(0, z) = 0. By applying the theorem to —w we get that w(t,z) = 0 for all ¢ € (0,7
and every x € R%. Hence, u; = uy for every f € C°(R?Y), which implies that p*(¢, z,y) =
Pt @, y).

The last statement of the theorem about the dependence of constants ¢; and ¢, has been
already proved in the results above. O

Proof of Theorem 1.2. (1) The constant function u(t,z) = 1 solves dyu(t, x) = Lru(t, x),
hence applying Theorem 5.1 to £(Pf1(z) — 1) we get that Pf1(z) = 1 proving (1.14).
(2) Same as the proof of [6, Theorem 1.1(3)].
(3) By (1.10) and (1.12) we see that |0p"(t,x,y)| < cop(t,x —y) for t € (0,7] and = # y.
Hence by the mean value theorem, for 0 < s <t < T and = # v,

Ip(s,z,y) —p(t,z,y)| < ot — s|p(s,xz —y). (5.22)
Let v € (0,6,) N (0,1]. By Lemma 4.8 and by the definition of p° |, we have that for every
te (0,77,

"t 2,y) = p(t 2 y)| < e — 2P (ot — y) + p(t, 2 —y)
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< 2elx =2 POt Nt (p(t,x —y) Vot 2’ —y)) . (5.23)

By use of the triangle inequality, this together with (5.22) implies the first claim.
By (1.11), if @71 (t Y|z — 2’| > 1,

’Pﬁ(ﬂ T, y) - pﬁ(ta xla y)| < pn(t Z, y) +pﬁ(t7 xla y) <ot (p<t7 T —= y) + p(ta x’ — y))
< 2ci|lz — |07 (p(t, x —y) V (L, 2 —y)) - (5.24)

Suppose @1 (¢t Y|z —2'| > 1, B+ 8, > 1 and &; € (2/3,2). Then by (4.50)

1
< td (t Yz — o / ot (x — ) + 0(x' — z))db. (5.25)
0
Since 0|2’ — x| < 1/®7(t71), from (5.25) we have
p"(t, 2, y) = p(t. 2, y)| < @t — 2'p(t,x — y)
<@t — 2| (p(t,x —y) V plt, 2" —y)) . (5.26)

(5.22), (5.24) and (5.26) imply the second claim.
(4) This follows immediately from the second part of Lemma 4.10. a

Proof of Theorem 1.3. (1) We first claim that for f € C°(R%), £*f is bounded Holder
continuous. We will use results from [1]. For f € C2*(R%) and z, z € R, let

E.f(x) = f(z+2) - f(x) and F.f(z)=f(z+2)— f(x) - Vf(z)- 2
Using the assumption that x(y, z) = k(y, —z), we have
cus@)= [ Rty ) [ By )G
Thus, £*f is bounded by (1.7) and (1.1). Moreover, using (1.2), (1.7) and [1, Theorem 5.1
(b) and (e)] with v =2 + ¢,
1£5f(x) = L f(y)]
<| | Op(s2)(k(x, 2) — Ky, 2) I (2)dz] + [L™ f(z) = L f(y)]

Rd

smm—yWAw/

R

(2P A1)j(lzDd= + 01/ |F.f(z) = Fof(y)|k(y, 2)5(2])d=

|z|<1

+q/’y@ﬂm—@ﬂww%ammw
21>1

<ale =l +er ([ JRilebaz)ho =yt ter ([ idebaz)ho -l
|z]<1 |z|>1

o1



Thus we have proved the claim.
For f € C2¢(R?), we define u(t, z) := f(x) + f(f PrLY f(x)ds. Note that

Ju(t, ) — u(0, )| S/O |PELYf () ]ds < L5 f]loo-

Thus (5.1) holds. Since £* f is bounded Hélder continuous, we can use (5.14) (together with
(1.12), (1.10) and (5.21)) to get LEPFLE f(x) = 05 (PFLFf) (x)) and obtain

Lrhut,z) = Lof(z)+ / tﬁ"“Pfﬁ“f(a:)ds
0

= Lf(x) —I—/O s (PELEf) (z)ds = P,LYf(x) = Oyul(t, x) .

Therefore u(t, x) satisfies the assumptions of Theorem 5.1. Since u(0,z) = f(z), it follows
from the maximum principle that

t
PES() = ult.) = @) + | PEL*f(a)ds. (527
0
Since L f is bounded and uniformly continuous, we can use (1.13) to get
i L (PEf() — (@) = tim L [ PR fe)ds = £ 7 ()
iy (FEF0) = o) =i g || PrC @)l = 224

and the convergence is uniform.
(2) Using our Theorem 1.1(iii), Theorem 1.2(1) and Lemma 5.4, the proof of this part is the
same as in [6]. O

5.4 Lower bound estimate of p"(t,z,y)

By Theorem 1.3, we have that (P)*);>o is a Feller semigroup and there exists a Feller process
X = (X, P,) corresponding to (P);so. Moreover, by (5.27) for f € C2°(R?),

F(X) — fl) - /0 £FF(X,) ds (5.28)

is a martingale with respect to the filtration o(X, s < t). Therefore by the same argument
as that in [6, Section 4.4], we have the following Lévy system formula: for every function
f:R? x R?Y — [0, 00) vanishing on the diagonal and every stopping time S,

S
B, 30 f(Xe X0 =B, [ (X)X dy)ds, (5.29)
0<s<S 0

where Jx(z,y) = k(z,y — x)J(x — y).
For A € B(R?) we define 74 := inf{t > 0: X, ¢ A}.
The following result is the counterpart of [6, Lemma 4.6].

52



Lemma 5.7 For each v € (0,1) there exists A = A(vy) > 0 such that for every r > 0,

sup Py (Tpn < (A®(1/(4r))) ") <. (5.30)

zcRd

Proof. Without loss of generality, we take = 0. The constant A will be chosen later. Let
f € CX(RY) with £(0) =0 and f(y) =1 for |y| > 1. For any r > 0 set f,(y) = f(y/r). By
the definition of f, and the martingale property in (5.28) we have

Po (50) < (AB(1/(4r) ) < Bo[fr (Xnyyncantann- )]
TB(0,m NAB(1/(4r))) !
_ E, / Lof(X,)ds | . (5.31)

0

By the definition of £*, (1.1) and (1.7) we have

L8 = 5| [ (Gl 2) + Sy = 2) = 26,0 sl ()
< SR [ e dz monl il [ (e a:

< o (l=rp) 1 171 < cane ),

where ¢o = co(k1,70, f). Here the last inequality is a consequence of (3.7). Substituting in
(5.31) we get that

Py (Ta0m) < (AD(1/(47))) ") < co®@(r ) (AD(1/(4r))) " <4 A7

With A = 4c¢y/v the lemma is proved. O

Proof of Theorem 1.4. Throughout the proof, we fix T, M > 1 and, without loss of
generality, we assume that ®~1(T-1)~1 = M.

By [4, Theorem 2.4] and the same argument as the one in [5, Proposition 2.2] (see also
[7, Proposition 6.4(1)] or [3, Proposition 6.2]), (1.4), (1.20), (1.1) and (1.7) imply that there
exists a constant ¢y > 0 such that

py(t,x) > co (D' () Ati(|2]))  (tz,y) € (0,T) x B(0,4M) x R?. (5.32)
Since by [11, Lemma 3.2(a)],
g (J2]) = erle[@(j2] ™), o] < 4M (5.33)
for some ¢; € (0,1), by Proposition 2.1 we have

py(t, ) > coertp(t,x) (t,z,y) € (0,T] x B(0,4M) x R?. (5.34)
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(1) Let A = 1/A where A is the constant from Lemma 5.7 for v = 1/2. Then for every t > 0,

(5.35)

N —

sup PZ(TB(ZQqu)fl(tfl)fl) S )\t) S
2€R4

Let t € (0,T] and |z —y| < 301 (¢1)~!( so that |z — y| < 3M). By (4.47) we have that
there exists a constant ¢y > 0 such that

t
| [t = 5o = s,z dzds = —eat (84 8) (0~ 0
0 JR4
= —ct (') P+ |z —ylP AL) p(t,z —y)
> —ept (@73 () ) ptx —y).

We choose ty € (0,1) so that for all t € (0,t), c2(1 + 32)@1(t71)"# < ¢;/2. Together
with (5.34) and (4.46) we conclude that for all t+ € (0,¢y) and all 2,y € R? satisfying
|z —y| <3071 (t71)~! we have

o (@—11 — + @—13 —1 )
) Z Cgt (t ) (t )d 2 C4@71(t71)d.
1 + 3
<<I>*1(t*1) @*1(15*1))

By (1.15) and iterating |7'/to] + 1 times, we obtain the following near-diagonal lower bound

C
p”(t,a;,y) Z Eltp(twr -y

Pt z,y) > @ (t7H)? forallt € (0,7 and |z —y| <3071t ). (5.36)
Now we assume |z —y| > 3®7 (™)t and let 0 = inf{t > 0: X; € B(y,27' ¢~ 1 (+~1)~H)}.
By the strong Markov property and (5.35) we have

P, (X € By, @ '(t7")7") > P, <a <M, sup |X,— X,| < 2—1c1>—1(t—1)—1>

s€lo,0+At]

= E, (IP’XU< sup | X5 — Xo| < 2_1(13_1(75_1)_1);0 < )\t)

s€[0,At]

v

zeB(y,Q—liggl(t—l)—l)]P)Z (TB(z’Q—l‘bfl(tfl)fl) > )\t)Pa; (0‘ < )\t)

1 1 11—
E]P)x<0- S )\t) 2 _Pz <XAt/\TB<z’q>71(t71)71) € B(y72 1(I) l(t 1) 1)) . (537>

v
DO

Since
X; ¢ B (y72_161>_1(t_1)_1) Cc B (x, @_l(t_l)_l)c ;S < MATBEa-1(t-1)-1),
we have

€B(y,2-1d-1(t-1)-1) = Z 1XS€B(y,2*1<1>*1(t*1)*1 .

SSANT (2 0= 11— 1)1

1
KNS (o a1 =11
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Thus, by the Lévy system formula in (5.29) we have

Px <X)‘t/\TB(:c,<I>_1(t_1)_1) € B(ya 2_1(1)_1(t_1)_1)>

At/\TB(z,c}*l(tfl)fl)
=E, [/ / JIx (X5, u) duds}
0 B(y,2_1‘1>_1(t_1)_1)

MATR (5 6.2-4a—1(—1)—1) _
Z Ez |:/ / Hoj(‘XS - u])l{u;‘xs_u|<|z_y‘} duds]| . (5.38)
0 B(y,2=1®o—-1(t—1)-1)

Let w be the point on the line connecting x and y (i.e., |[xr — y| = |x — w| + |w — y|)
such that |w —y| = 7-271®71(t71)~'. Then B(w,27*®~1(¢t~1)~1) C B(y, 27 '@~ (¢t~ 1)71).
Moreover, for every (z,u) € B(x,6-271®~1(¢t71)71) x B(w,271®~1(¢t71)~1), we have

lz—u| <|z—z|+|w—ul+ |z —w|l=|z—2|+ |w—u|+ |r —y| — |w—1y]
<627t 42 et rlr—yl—7-27% ) =z —y).

Thus
Bw,27*® 't Y Y c{u:|z—u|<|vr—y|} forze€ B(x,6-27%@ ¢, (5.39)

(5.39) and (5.35) imply that

MATR(5,6.2— 40— 1 (t—1)—1) .
E, U / 31X = ) Lw)x, —ul<|a—y)y du ds
0 B(y,2~1e-1(t=1)-1)

SE, [M A T50.65-40-10-1) 1) / i (le—yl) du

B(w2-13-1(t-1)-1)
>MP, (Th@s2-10-10-1)-1) = At) |[B(w, 27 @7 (1)) j |z — yl)
>cet® () g (lr — ) (5.40)

By combining (5.37), (5.38) and (5.40) we get that
1
P, (Xu € By, @' (t71) 7)) = eat® ' (¢71) "5 (o = y]) (5.41)

By (1.15), (5.36) and (5.41) we have

P(ha,y) > / PO (1= N, 2,y) de
B(y,®~1(t~1)~1)

> PNtz [ P2, 2) dz

inf
z€B(y,®~1(t71)~1) B(y,®-1(t—1)-1)
> @' ) G (|lx —yl) = ertg (Jz —yl) -

Combining this estimate with (5.36) we obtain (1.21). Inequality (1.22) follows from (1.21),
Proposition 2.1 and (5.33). O
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