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Abstract
Let X be a Lévy process in Rd, d ≥ 3, obtained by subordinating Brownian motion

with a subordinator with a positive drift. Such a process has the same law as the sum
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We study the asymptotic behavior of the Green function of X near zero. Under the
assumption that the Laplace exponent of the subordinator is a complete Bernstein
function we also describe the asymptotic behavior of the Green function at infinity.
With an additional assumption on the Lévy measure of the subordinator we prove that
the Harnack inequality is valid for the nonnegative harmonic functions of X.
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1 Introduction

Let X = (Xt, Px, x ∈ Rd) be a conservative strong Markov process on Rd. A nonnegative

Borel function h on Rd is said to be harmonic with respect to X in a domain (i. e., a

connected open set) D ⊂ Rd if it is not identically infinite in D and if for any bounded open

subset B ⊂ B ⊂ D,

h(x) = Ex[h(X(τB))1τB<∞], ∀x ∈ B,

where τB = inf{t > 0 : Xt /∈ B} is the first exit time of B.

We say that the Harnack inequality holds for X if for any domain D ⊂ Rd and any

compact subset K of D, there is a constant C > 0 depending only on D and K such that

for any nonnegative function h harmonic with respect to X in D,

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

It is well known that the Harnack inequality holds true for many Markov processes with

continuous paths. A probabilistic proof for diffusions generated by elliptic operators in non-

divergence form was given by Krylov and Safonov in [15]. The proof is based on the fact

that the diffusion hits sets with positive Lebesgue measure with positive probability. Until

very recently almost all results concerning the Harnack inequality were restricted to Markov

processes with continuous paths, i. e., to harmonic functions corresponding to local operators.

The only exception was the rotationally invariant α-stable process, α ∈ (0, 2), in which case

the Harnack inequality follows directly from the explicit form of the exit distribution from

a ball (i. e., the corresponding Poisson kernel) and was proved in [17].

A serious study of the Harnack inequality for discontinuous Markov processes on Rd

began with the paper [3] by Bass and Levin. They proved the Harnack inequality for the

Markov process on Rd associated with the generator

Lf(x) =

∫

Rd\{0}
[f(x + y)− f(x)]

k(x, y)

|y|d+α
dy

where k(x,−y) = k(x, y) and k is a positive function bounded between two positive numbers.

Vondraček [27] adapted the arguments of [3] and proved that, when X is a (not necessarily

rotationally invariant) strictly α-stable process, α ∈ (0, 2), with a Lévy measure comparable

to the Lévy measure of the rotationally invariant α-stable process, the Harnack inequality

holds. In [8], the Harnack inequality was proved by using a different method for symmetric

α-stable processes under the assumptions that α ∈ (0, 1) and its Lévy measure is comparable

to the Lévy measure of the rotationally invariant α-stable process. In [4], Bass and Levin

established upper and lower bounds on the transition densities of symmetric Markov chains

on the integer lattice in d dimensions, where the conductance between x and y is comparable

to |x− y|d+α, α ∈ (0, 2). One of the key steps in proving the upper and lower bounds in [4]
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is the parabolic Harnack inequality. In [9], Chen and Kumagai showed that the parabolic

Harnack inequality holds for symmetric stable-like processes in d-sets and established upper

and lower bounds on the transition densities of these processes. All the processes mentioned

above satisfy a certain scaling property which was used crucially in the proofs of the Harnack

inequalities. In [24], Song and Vondraček extracted the essential ingredients of the Bass-Levin

method by isolating three conditions that suffice to prove the Harnack inequality and showed

that various classes of Markov processes, not necessarily having any scaling properties, satisfy

the Harnack inequality. In a recent paper [2], Bass and Kassmann proved the Harnack

inequality for a class of processes corresponding to non-local operators of variable order.

Their method is also based on [3], but the arguments are more delicate, yielding a weaker

form of the Harnack inequality for balls in the sense that the constant may depend on the

radius of the ball.

A common feature of all the papers mentioned above is that they all deal with purely

discontinuous processes. To the best of our knowledge, except for the very recent paper [25],

the Harnack inequality has not been established for discontinuous Markov processes with a

nondegenerate diffusion part. In this paper we try to fill this gap by considering subordinate

Brownian motion using a subordinator with a positive drift term.

Subordination of Markov processes has a long history going back to Bochner. The re-

newed interest in subordination in recent years has come from different directions. In [12]

(see also the references therein) it has been argued that asset price processes should be

modelled as subordinate Brownian motion instead of Brownian motion itself. With this ap-

plication comes the need to study properties of subordinate Brownian motions. Connections

of the subordinate Brownian motion (using stable subordinators) with pseudo differential

operators were explored by Jacob and Schilling [14]. Some potential-theoretic aspects of the

subordinate killed Brownian motion (using stable subordinators) were studied in [23] and

[22]. Connections of subordinate processes with jump processes on fractal were studied by

Kumagai and Stós in [16] and [26].

A subordinator T = (Tt : t ≥ 0) is a nondecreasing Lévy process with the state space

[0,∞). The law of T is characterized by its Laplace exponent φ through the relation

E[exp{−λTt}] = exp{−tφ(λ)}. In this paper we will consider Lévy processes X = (Xt :

t ≥ 0) in Rd, d ≥ 3, that can be obtained by subordinating a d-dimensional Brownian mo-

tion Y = (Yt : t ≥ 0) by the subordinator T . To be more precise, we define Xt := Y (Tt).

Our main interest will be in subordinators with a non-zero drift of the type Tt := bt + T̃t,

where b > 0 and T̃ is a pure jump subordinator. In this case the subordinate process X

has the same law as the independent sum of a Brownian motion and a Brownian motion

subordinate by T̃ . A prominent example of such a process is a sum of independent Brownian

motion and a rotationally invariant α-stable process.

It is well known that for the pure jump subordinator T̃t we have limt→0 T̃t/t = 0 a.s.
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Therefore, the small time behavior of the subordinator Tt = t+ T̃t is determined by the drift.

As a consequence, the small time behavior of the subordinate process Xt = Y (Tt) should be

similar to the small time behavior of Brownian motion Y . We make this statement precise by

showing that the Green function G(x, y) of X is asymptotically equal to the Green function

of the Brownian motion as |x− y| → 0. We obtain this result from the asymptotic behavior

of the Laplace exponent of T at infinity. Another advantage of subordination is that the

Lévy measure of X can be described explicitly in terms of the Lévy measure of T , leading

to properties of the former needed for the proof of the Harnack inequality.

The paper is organized as follows. In Section 2 we recall some properties of subordinators,

in particularly the connection with the Bernstein functions and complete Bernstein functions.

In Section 3 we introduce the subordinate process X and study the asymptotic behavior of

its Green function at 0 and at infinity. The subordinators that we use include subordinators

with drift, but are more general. As a consequence of the behavior of the Green function at

0, we obtain the asymptotics of the exit times from small balls as well as capacity of small

balls. In Section 4 we prove the Harnack inequality for the nonnegative harmonic functions

of X by use of a modified approach from [3]. In the last section we briefly indicate how

some of our results extend to the case in which Brownian motion is replaced by a uniformly

elliptic diffusion or a fractal diffusion.

In the paper we use following notation: If f and g are two functions, then f ∼ g as

x → 0 (respectively, x →∞), if (f/g)(x) converges to 1 as x converges to 0 (respectively, x

converges to ∞), and we write f ³ g if the quotient f/g stays bounded between two positive

constants.

2 Subordinators and Complete Bernstein Functions

Let T = (Tt : t ≥ 0) be a subordinator, i. e., a Lévy process taking values in [0,∞) and

having almost surely non-decreasing paths. The Laplace transform of the law of T is given

by the formula

E[exp(−λTt)] = exp(−tφ(λ)) , λ > 0 . (2.1)

The function φ : (0,∞) → R is called the Laplace exponent, and its form is given by

φ(λ) = bλ +

∫ ∞

0

(1− e−λt) ν(dt) . (2.2)

Here b ≥ 0, and ν is a σ-finite measure on (0,∞) satisfying

∫ ∞

0

(t ∧ 1) ν(dt) < ∞ . (2.3)

The constant b is called the drift and ν the Lévy measure of the subordinator T .
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Recall that a C∞ function φ : (0,∞) → [0,∞) is called a Bernstein function if (−1)nDnφ ≤
0 for every n ∈ N. It is well known that a function φ : (0,∞) → R is a Bernstein function if

and only if it has the representation given below

φ(λ) = a + bλ +

∫ ∞

0

(1− e−λt) ν(dt) , (2.4)

where a, b ≥ 0, and ν is a σ-finite measure on (0,∞) satisfying (2.3).

The potential measure of the subordinator T is defined by

U(A) = E
∫ ∞

0

1(Tt∈A) dt , (2.5)

and its Laplace transform is given by

LU(λ) = E
∫ ∞

0

exp(−λTt) dt =
1

φ(λ)
. (2.6)

We will be interested in subordinators with absolutely continuous potential measures.

Suppose that the drift coefficient b is positive. Then the potential measure is absolutely

continuous with a density u : (0,∞) → R that is continuous and positive, and u(0+) = 1/b

(e.g., [6], p.79).

Lemma 2.1 Let T = (Tt : t ≥ 0) be a subordinator with the Laplace exponent given by

(2.2). Suppose that b > 0, and let u be the potential density of T . Then u(0+) ≥ u(x) for

every x > 0.

Proof. Recall that x → U([0, x]) is subadditive ([6], p.74). Thus, for all x > 0, r > 0,

U([x, x + r]) = U([0, x + r])− U([0, x]) ≤ U([0, r]) ,

which can be rewritten as ∫ x+r

x

u(y)dy ≤
∫ r

0

u(y)dy .

Dividing by r, letting r → 0, and by using continuity of u, it follows that u(x) ≤ u(0+). 2

A function φ : (0,∞) → R is called a complete Bernstein function if there exists a

Bernstein function ψ such that

φ(λ) = λ2Lψ(λ), λ > 0,

where L stands for the Laplace transform. The following result is due to Schilling [20], and

its proof can also be found in [13], pp. 192-193.
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Lemma 2.2 Let φ be a complete Bernstein function with φ(λ) = λ2Lψ(λ). If the Bernstein

function ψ has the representation

ψ(λ) = a + bλ +

∫ ∞

0

(1− e−λt) µ(dt) ,

then φ has the representation

φ(λ) = b + aλ +

∫ ∞

0

(1− e−λt) ν(dt)

with an absolutely continuous Lévy measure ν. In particular, φ is a Bernstein function.

The family of all complete Bernstein functions is a convex cone containing positive con-

stants and it is closed under compositions. Most of the familiar Bernstein functions are

complete Bernstein functions. The following are some examples of complete Bernstein func-

tions ([13]):

λα, α ∈ (0, 1],

(λ + 1)α − 1,

log(1 + λ),

λ

λ + 1
,

√
λ arctan

1√
λ

.

The first family of complete Bernstein functions corresponds to α-stable subordinators when

α ∈ (0, 1) and to the pure drift when α = 1, the second family to relativistic α-stable

subordinators, and the third to gamma subordinators. An example of a Bernstein function

which is not a complete Bernstein function is 1− e−λ.

Suppose that T is a subordinator whose Laplace exponent is a complete Bernstein func-

tion. The following theorem shows that if the drift b of T is positive or the jumping measure ν

of T satisfies ν(0,∞) = ∞, the potential measure of T is absolutely continuous with respect

to the Lebesgue measure and the potential kernel is completely monotone. The theorem also

gives an explicit formula for the potential kernel. For results related to this theorem, see

Section 14 of [5].

Theorem 2.3 Suppose that T = (Tt : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = bλ +

∫ ∞

0

(1− e−λt) ν(dt)

is a complete Bernstein function. Assume that b > 0 or ν(0,∞) = ∞. Then the potential

measure U has a density u which is completely monotone on (0,∞).
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Proof. Since φ is a complete Bernstein function, φ̃(λ) := λ/φ(λ) is also a complete Bernstein

function ([13], pp. 193-194), so there is a Bernstein function ξ such that

λ

φ(λ)
= φ̃(λ) = λ2Lξ(λ) .

Therefore we have
1

φ(λ)
= λLξ(λ) . (2.7)

It follows easily that

lim
λ→0

φ̃(λ) = lim
λ→0

λ

φ(λ)
=

1

b +
∫∞
0

t ν(dt)
.

Also, since b > 0 or ν(0,∞) = ∞, we have that

lim
λ→∞

φ̃(λ)

λ
= lim

λ→∞
1

φ(λ)
= 0 .

Therefore, φ̃ must have a representation

φ̃(λ) =
1

b +
∫∞
0

t ν(dt)
+

∫ ∞

0

(1− e−λt) µ(dt)

for some Lévy measure µ on (0,∞). It follows from Lemma 2.2 that the Bernstein function

ξ must have the representation

ξ(λ) =
λ

b +
∫∞
0

t ν(dt)
+

∫ ∞

0

(1− e−λt) γ(dt)

for some Lévy measure γ on (0,∞). Consequently ξ(0+) = 0, and from (2.7),

1

φ(λ)
= (Lξ′)(λ) .

Together with (2.6) this gives

LU(λ) = Lξ′(λ) .

This equality of Laplace transforms implies that we can take u(x) := ξ′(x), x > 0, as a density

of the potential measure U . Since ξ is a Bernstein function, ξ′ is completely monotone. 2
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3 Green function estimates

Let Y = (Yt, t ≥ 0) be a d-dimensional Brownian motion, d ≥ 3, with the transition density

given by

p(t, x, y) = (4πt)−d/2 exp

(
−|x− y|2

4t

)
, x, y ∈ Rd, t > 0 .

The Green function of Y is

G(2)(x, y) =
Γ(d/2− 1)

4πd/2
|x− y|2−d .

Let T = (Tt : t ≥ 0) be a subordinator independent of the Brownian motion Y , and let

φ(λ) = bλ +

∫ ∞

0

(1− e−λt) ν(dt)

be the Laplace exponent of T . We assume that T is not a compound Poisson process. Denote

by µt the distribution of Tt: µt(ds) := P(Tt ∈ ds). The process X subordinate to Y by the

subordinator T is defined as Xt := Y (Tt), t ≥ 0. We call X a subordinate Brownian motion.

The transition density of X is

q(t, x, y) :=

∫ ∞

0

p(s, x, y) µt(ds)

The potential operator Gf(x) := Ex
∫∞
0

f(Xt) dt of X has a density given by

G(x, y) :=

∫ ∞

0

q(t, x, y) dt . (3.1)

We call G the Green function of X. When the potential measure U of the subordinator T

has a density u, we have

G(x, y) =

∫ ∞

0

∫ ∞

0

p(s, x, y) µt(ds) dt

=

∫ ∞

0

p(s, x, y) U(ds) (3.2)

=

∫ ∞

0

p(s, x, y)u(s) ds

In the rest of the paper the asymptotic behavior of the Laplace exponent at infinity will

play a crucial role. Note that if the drift b of the subordinator T is strictly positive, then

φ(λ) ∼ bλ as λ →∞. Conversely, if φ(λ) ∼ bλ as λ →∞ for some b > 0, then b is the drift

of the subordinator. We will be also interested in the case when the Laplace exponent of T

is a complete Bernstein function satisfying φ(λ) ∼ γ−1λα/2 as λ → ∞ for α ∈ (0, 2) and a
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positive constant γ. Note that in this case the drift of the subordinator must be zero. We

will put these two cases into the following assumption:

φ(λ) ∼ γ−1λα/2, λ →∞, α ∈ (0, 2] , (3.3)

where in the case α ∈ (0, 2) we always assume that the Laplace exponent is a complete

Bernstein function. Note that in the case α = 2, we have that γ−1 = b, the drift of the

subordinator.

Theorem 3.1 If the Laplace exponent of the subordinator T satisfies the assumption (3.3),

then

G(x, y) ∼ γ

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x− y|α−d

as |x− y| → 0.

Proof. Case α = 2. Since b > 0, the potential measure U has a density u. Note first that

by change of variables

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt =

|x|−d+2

4πd/2

∫ ∞

0

sd/2−2e−su

( |x|2
4s

)
ds . (3.4)

By Lemma 2.1, limx→0 u(|x|2/(4s)) = u(0+) = 1/b for all s > 0 and the convergence is

bounded by u(0+). Hence, by the bounded convergence theorem,

lim
x→0

1

|x|−d+2

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt =

Γ(d/2− 1)

4πd/2b
. (3.5)

Case 0 < α < 2. Note that by Theorem 2.3 the potential measure of the subordinator

has a decreasing density. By use of the Tauberian theorem and monotone density theorem

(e.g. [7]), the assumption φ(λ) ∼ γ−1λα/2 as λ →∞ implies that

u(t) ∼ γ

Γ(α/2)
tα/2−1, t → 0 + . (3.6)

Hence, there is a constant c > 0 such that

u(t)
γ

Γ(α/2)
tα/2−1

≤
{

c, t < 1
ct−α/2+1, t ≥ 1 .
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By use of (3.4) we have
∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt

=
|x|−d+2

4πd/2

∫ ∞

0

sd/2−2e−su

( |x|2
4s

)
ds

=
γ

4πd/2Γ(α/2)
|x|−d+α

∫ ∞

0

sd/2−2e−s
u

(
|x|2
4s

)

γ
Γ(α/2)

(
|x|2
4s

)α/2−1

(
1

4s

)α/2−1

ds

=
γ

2απd/2Γ(α/2)
|x|−d+α

∫ ∞

0

sd/2−α/2−1e−s
u

(
|x|2
4s

)

γ
Γ(α/2)

(
|x|2
4s

)α/2−1
ds

=
γ

2απd/2Γ(α/2)
|x|−d+α(I1 + I2) ,

where

I1 =

∫ |x|2/4

0

sd/2−α/2−1e−s
u

(
|x|2
4s

)

γ
Γ(α/2)

(
|x|2
4s

)α/2−1
ds,

I2 =

∫ ∞

|x|2/4

sd/2−α/2−1e−s
u

(
|x|2
4s

)

γ
Γ(α/2)

(
|x|2
4s

)α/2−1
ds.

In the second integral I2, the integrand is bounded by the integrable function s →
csd/2−α/2−1e−s, hence by the dominated convergence theorem and (3.6),

lim
|x|→0

I2 =

∫ ∞

0

sd/2−α/2−1e−s ds = Γ

(
d− α

2

)
.

For the first integral we have

I1 ≤
∫ |x|2/4

0

sd/2−α/2−1e−sc

( |x|2
4s

)−α/2+1

ds

= c4α/2−1|x|−α+2

∫ |x|2/4

0

sd/2−2e−s ds.

As |x| → 0, the right hand side above also converges to zero. Hence, lim|x|→0 I1 = 0.

Therefore,

lim
|x|→0

1

|x|α−d

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt = lim

|x|→0

γ

2απd/2Γ(α/2)
(I1 + I2)

=
γ

2απd/2

Γ(d−α
2

)

Γ(α
2
)

.
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2

Remark 3.2 Recall that the Green function G(α) of the rotationally invariant α-stable pro-

cess in Rd has the form

G(α)(x, y) =
1

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x− y|α−d, x, y ∈ Rd ,

with α ∈ (0, 2]. It follows from the theorem above that there exist two positive constants, c1

and c2 (depending on γ), such that for all x, y ∈ Rd satisfying |x− y| ≤ 2,

c1G
(α)(x, y) ≤ G(x, y) ≤ c2G

(α)(x, y) . (3.7)

We look now at the asymptotic behavior of the Green function G(x, y) for |x− y| → ∞.

Theorem 3.3 Suppose that T = (Tt : t ≥ 0) is a subordinator whose Laplace exponent

φ(λ) = bλ +

∫ ∞

0

(1− e−λt) ν(dt)

is a complete Bernstein function. If φ(λ) ∼ γ−1λα/2 as λ → 0+ for α ∈ (0, 2] and a positive

constant γ, then

G(x, y) ∼ γ

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x− y|α−d

as |x− y| → ∞.

Proof. Note that the assumption that φ(λ) ∼ γ−1λα/2 as λ → 0+ implies that either

b > 0 or ν(0,∞) = ∞. Thus by Theorem 2.3 the potential measure of the subordinator

has a decreasing density. By use of the Tauberian theorem and monotone density theorem

(e.g. [7]), the assumption φ(λ) ∼ γ−1λα/2 as λ → 0+ implies that

u(t) ∼ γ

Γ(α/2)
tα/2−1 , t →∞ .

Since u is decreasing and integrable near 0, it is easy to show that there exists t0 > 0 such

that u(t) ≤ t−1 for all t ∈ (0, t0). Hence, we can find a positive constant C such that

u(t) ≤ C(t−1 ∨ tα/2−1) . (3.8)

11



By use of (3.4) we have

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt

=
1

4πd/2
|x|−d+2

∫ ∞

0

sd/2−2e−su

( |x|2
4s

)
ds

=
γ

4πd/2Γ(α/2)
|x|−d+α

∫ ∞

0

sd/2−2e−s
u

(
|x|2
4s

)

γ
Γ(α/2)

(
|x|2
4s

)α/2−1

(
1

4s

)α/2−1

ds

=
γ

2απd/2Γ(α/2)
|x|−d+α

∫ ∞

0

sd/2−α/2−1e−s
u

(
|x|2
4s

)

γ
Γ(α/2)

(
|x|2
4s

)α/2−1
ds

Let |x| ≥ 2. Then by (3.8),

u
(
|x|2
4s

)

(
|x|2
4s

)α/2−1
≤ C

(( |x|2
4s

)−α/2

∨ 1

)

≤ C(sα/2 ∨ 1) .

It follows that the integrand in the last formula above is bounded by an integrable function,

so we may use the bounded convergence theorem to obtain

lim
|x|→∞

1

|x|−d+α

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(t) dt =

γ

2απd/2

Γ(d−α
2

)

Γ(α
2
)

, (3.9)

which proves the result. 2

Typical examples that satisfy the assumptions of the last theorem are subordinators of

the form Tt = bt+ T̃t where b is nonnegative, T̃ is a β/2-stable subordinator, or a relativistic

β/2-stable subordinator, or a gamma subordinator. In the first case the α in the theorem

above is equal to β, while in the last two cases we have α = 2. In fact, whenever T̃ is a

subordinator with finite expectation and such that the Laplace exponent of T is a complete

Bernstein function, the proposition will hold true with α = 2 and γ−1 = φ′(0+).

Remark 3.4 Suppose that Tt = bt+T̃t where b is positive and T̃t is a pure jump subordinator

with finite expectation and the Laplace exponent that is a complete Bernstein function. Then

φ(λ) ∼ bλ, λ → ∞, and φ(λ) ∼ φ′(0+)λ, λ → 0. This implies that the Green function of

the subordinate process X satisfies G(x, y) ³ G(2)(x, y) for all x, y ∈ Rd.
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For any Borel subset A of Rd, we use σA to denote the first hitting time of A:

σA = inf{t > 0 : Xt ∈ A}.
For any open set D in Rd, we use τD to denote the first exit time from D:

τD = inf{t > 0 : Xt /∈ D}.
In the remaining part of the paper we fix a constant c such that

c > (
c2

c1

)
1

d−α , (3.10)

where c1 and c2 are constants from (3.7). Note that c > 1.

Proposition 3.5 Assume that the Laplace exponent of the subordinator T satisfies the as-

sumption (3.3). Let c > 0 be as in (3.10). Then there exist positive constants c3 and c4 such

that for every r ∈ (0, 1)

c3r
α ≤ inf

z∈B(0,(7c)−1r)
EzτB(0,r) ≤ sup

z∈B(0,r)

EzτB(0,r) ≤ c4r
α . (3.11)

Proof. Recall that EzτB(0,r) =
∫

B(0,r)
GB(0,r)(z, y) dy, where GB(0,r) is the Green function

of the process X killed upon exiting the ball B(0, r) and it is given by GB(0,r)(z, y) =

G(z, y)− EzG(X(τB(0,r)), y), for y, z ∈ B(0, r).

The right-hand side estimate in (3.11) follows immediately from the estimate (3.7) and

the fact that GB(0,r)(z, y) ≤ G(z, y). For the left-hand side estimate, let y, z ∈ B(0, (7c)−1r).

Then |z − y| ≤ 2(7c)−1r and |X(τB(0,r)) − y| ≥ r − (7c)−1r ≥ r/2 (since c > 1). By use of

the estimate (3.7) and the fact that the radial part of G is decreasing, we get

GB(0,r)(z, y) ≥ c1(2(7c)−1r)α−d − c2(r/2)α−d

≥ rα−d(c1(7/2)d−α(c2/c1)− c22
d−α)

= c2r
α−d((7/2)d−α − 2d−α) .

Now for z ∈ B(0, (7c)−1) we have

EzτB(0,r) =

∫

B(0,r)

GB(0,r)(z, y) dy

≥
∫

B(0,(7c)−1r)

GB(0,r)(z, y) dy

≥ c2r
α−d((7/2)d−α − 2d−α)|B(0, r)|

= c3r
α .

2
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Remark 3.6 By use of a different argument, it is proved in [25] that under more general

assumptions on the underlying process there are positive constants c3 and c4 such that

c3r
α ≤ inf

z∈B(0,r/2)
EzτB(0,r) ≤ sup

z∈B(0,r)

EzτB(0,r) ≤ c4r
α .

In the sequel we will use Cap(A) to denote the 0-capacity of the set A with respect to X

and Cap(α)(A) to denote the 0-capacity of the set A with respect to the rotationally invariant

α-stable process.

Proposition 3.7 Assume that the Laplace exponent of the subordinator T satisfies the as-

sumption (3.3). Then for any Borel subset A ⊂ B(0, 1),

c−1
2 Cap(α)(A) ≤ Cap(A) ≤ c−1

1 Cap(α)(A) , (3.12)

with constants c1 and c2 from the estimate (3.7).

Proof. It is well known that

Cap(A) = sup{µ(A) : supp(µ) ⊂ A and Gµ ≤ 1 a. e. on Rd}

Using Remark 3.2 we get that if µ is a measure supported in A with Gµ ≤ 1 almost

everywhere on Rd, then the measure ν := c1µ is a measure supported in A with G(α)ν ≤ 1

almost everywhere on Rd. Here we also used the maximum principle for the potential of

measures. Thus we have

Cap(A) = sup{µ(A) : supp(µ) ⊂ A and Gµ ≤ 1 a. e. on Rd}
= c1

−1 sup{c1µ(A) : supp(µ) ⊂ A and Gµ ≤ 1 a. e. on Rd}
≤ c−1

1 sup{ν(A) : supp(ν) ⊂ A and G(α)ν ≤ 1 a. e. on Rd}
= c−1

1 Cap(α)(A).

The left hand side inequality is proved in the same way. 2

4 Harnack inequality

In this section we prove the Harnack inequality for the nonnegative harmonic functions of

X. The first necessary ingredient is the lower bound on the probability of X hitting sets of

positive capacity before exiting a small ball.

14



Lemma 4.1 Assume that the Laplace exponent of the subordinator T satisfies the assump-

tion (3.3). Let c > 0 be as in (3.10). Then there exist positive constants c5 and c6 such that

for any r ∈ (0, (7c)−1), any closed subset A of B(0, r) and any y ∈ B(0, r),

Py(σA < τB(0,7cr)) ≥ c5
Cap(α)(A)

Cap(α)(B(0, r))
,

Py(σA < τB(0,7cr)) ≥ c6
Cap(A)

Cap(B(0, r))
.

Proof. It follows from Proposition 3.7 that it is enough to prove one of the inequalities

above. We will only prove the first inequality.

Without loss of generality we may assume that Cap(α)(A) > 0. Let GB(0,7cr) be the

Green function of the process obtained by killing X upon exiting from B(0, 7cr). If ν is the

capacitary measure of A with respect to X, then we have for all y ∈ B(0, r),

GB(0,7cr)ν(y) = Ey[GB(0,7cr)ν(XσA
) : σA < τB(0,7cr)]

≤ sup
z∈Rd

GB(0,7cr)ν(z)Py(σA < τB(0,7cr))

≤ Py(σA < τB(0,7cr)).

On the other hand we have for all y ∈ B(0, r),

GB(0,7cr)ν(y) =

∫
GB(0,7cr)(y, z)ν(dz) ≥ ν(A) inf

z∈B(0,r)
GB(0,7cr)(y, z)

= Cap(A) inf
z∈B(0,r)

GB(0,7cr)(y, z)

≥ c−1
2 Cap(α)(A) inf

z∈B(0,r)
GB(0,7cr)(y, z).

Since GB(0,7cr)(y, z) = G(y, z)− Ey[G(XτB(0,7cr)
, z)], we have for all y, z ∈ B(0, r),

GB(0,7cr)(y, z) ≥ c1G
(α)(y, z)− c2Ey[G

(α)(XτB(0,7cr)
, z)] ≥ c1(2r)

α−d − c2(6cr)
α−d

≥ c7r
α−d =

c8

Cap(α)(B(0, r))
.

In the first inequality above we used the estimate (3.7) and the fact that the radial part of

G is decreasing. Therefore

Py(σA < τB(0,7cr)) ≥ c5
Cap(α)(A)

Cap(α)(B(0, r))
.

2
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The Lévy measure of the subordinate Brownian motion X has a density given by the

formula

ι(x) =

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
ν(dt) . (4.1)

(see for example [19], pp. 197-198). Here ν is the Lévy measure of the subordinator. In

this section we will assume that the Lévy measure has a density: ν(dt) = ν(t) dt. In order

to study the properties of the Lévy measure of X, we introduce the following function

j : [0,∞) → [0,∞):

j(u) :=

∫ ∞

0

t−d/2 exp

(
−u2

4t

)
ν(t) dt , u > 0 . (4.2)

Note that ι(x) = (4π)−d/2j(|x|) for all x ∈ Rd. In the following, rather technical, lemma we

give conditions on the density ν that imply properties of j described as (3.3) and (3.4) in

[24].

Lemma 4.2 Suppose that there exists a positive constant c9 > 0 such that

ν(t) ≤ c9ν(2t) for all t ∈ (0, 8) (4.3)

ν(t) ≤ c9ν(t + 1) for all t > 1 . (4.4)

Then there exists a positive constant c10 such that

j(u) ≤ c10j(2u) for all u ∈ (0, 2) , (4.5)

j(u) ≤ c10j(u + 1) for all u > 1 . (4.6)

Also, u 7→ j(u) is decreasing on (0,∞).

Proof. Let 0 < u < 2. We have

j(2u) =

∫ ∞

0

t−d/2 exp(−u2/t)ν(t) dt

=
1

2

(∫ 1/2

0

t−d/2 exp(−u2/t)ν(t) dt +

∫ ∞

1/2

t−d/2 exp(−u2/t)ν(t) dt

+

∫ 2

0

t−d/2 exp(−u2/t)ν(t) dt +

∫ ∞

2

t−d/2 exp(−u2/t)ν(t) dt

)

≥ 1

2

(∫ ∞

1/2

t−d/2 exp(−u2/t)ν(t) dt +

∫ 2

0

t−d/2 exp(−u2/t)ν(t) dt

)

=
1

2
(I1 + I2).
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Now,

I1 =

∫ ∞

1/2

t−d/2 exp(−u2/t)ν(t) dt

=

∫ ∞

1/2

t−d/2 exp(−u2

4t
) exp(−3u2

4t
)ν(t) dt

≥
∫ ∞

1/2

t−d/2 exp(−u2

4t
) exp(−3u2

2
)ν(t) dt

≥ e−6

∫ ∞

1/2

t−d/2 exp(−u2

4t
)ν(t) dt,

I2 =

∫ 2

0

t−d/2 exp(−u2/t)ν(t) dt

= 4−d/2+1

∫ 1/2

0

s−d/2 exp(−u2

4s
)ν(4s) ds

≥ c−2
9 4−d/2+1

∫ 1/2

0

s−d/2 exp(−u2

4s
)ν(s) ds.

Combining the three terms above we get that

j(2u) ≥ c11j(u), u ∈ (0, 2).

To prove (4.6) we first note that for all t ≥ 2 and all u ≥ 1 it holds that

(u + 1)2

t
− u2

t− 1
≤ 1 .

This implies that

exp(−(u + 1)2

4t
) ≥ e−1/4 exp(− u2

4(t− 1)
), for all u > 1, t > 2 . (4.7)

Now we have

j(u + 1) =

∫ ∞

0

t−d/2 exp(−(u + 1)2

4t
)ν(t) dt

≥ 1

2

(∫ 8

0

t−d/2 exp(−(u + 1)2

4t
)ν(t) dt +

∫ ∞

3

t−d/2 exp(−(u + 1)2

4t
)ν(t) dt

)

=
1

2
(I3 + I4).
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For I3 note that (u + 1)2 ≤ 4u2 for all u > 1. Thus

I3 =

∫ 8

0

t−d/2 exp(−(u + 1)2

4t
)ν(t) dt

≥
∫ 8

0

t−d/2 exp(−u2/t)ν(t) dt

= 4−d/2+1

∫ 2

0

s−d/2 exp(−u2

4s
)ν(4s) ds

≥ c−2
9 4−d/2+1

∫ 2

0

s−d/2 exp(−u2

4s
)ν(s) ds.

Next,

I4 =

∫ ∞

3

t−d/2 exp(−(u + 1)2

4t
)ν(t) dt

≥
∫ ∞

3

t−d/2 exp{−1/4} exp(− u2

4(t− 1)
)ν(t) dt

= e−1/4

∫ ∞

2

(s− 1)−d/2 exp(−u2

4s
)ν(s + 1) ds

≥ c−1
9 e−1/4

∫ ∞

2

s−d/2 exp(−u2

4s
)ν(s) ds.

Combining the three terms above we get

j(u + 1) ≥ c12j(u), u > 1.

2

Remark 4.3 Suppose that Tt = bt + T̃t, where b is nonnegative and T̃ is an α/2-stable

subordinator, or a gamma subordinator, or a relativistic α/2-stable subordinator. In the first

case the Lévy measure is given by ν(t) = c(α)t−1−α/2, in the second case by ν(t) = t−1e−t,

and in the third case by ν(t) = c(α)e−tt−1−α/2 (see, for instance, [10] or [18]), where c(α) =

(α/2)/Γ(1 − α/2). It is straightforward to verify that in all three cases ν(t) satisfies (4.3)

and (4.4).

Using the same argument as in the proof of Lemma 3.5 of [24], which is a modification

of the original argument from [3], we can easily get the following result.
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Lemma 4.4 Suppose that the Lévy measure of the subordinator T satisfies (4.3) and (4.4).

Then there exist positive constants c13 and c14 such that if r ∈ (0, 1), z ∈ B(0, r) and H is

a nonnegative function with support in B(0, 2r)c, then

EzH(X(τB(0,r))) ≤ c13(EzτB(0,r))

∫
H(y)j(|y|)dy

and

EzH(X(τB(0,r))) ≥ c14(EzτB(0,r))

∫
H(y)j(|y|)dy.

Theorem 4.5 Assume that the Laplace exponent of the subordinator T satisfies the assump-

tion (3.3) and that the Lévy measure of the subordinator T satisfies (4.3) and (4.4). Let c > 0

be as in (3.10). Then there exists a constant c15 > 0 such that, for any r ∈ (0, 1
49c

), x0 ∈ Rd

and any function h which is nonnegative and bounded on Rd, and harmonic with respect to

X in B(x0, 50cr), we have

h(x) ≤ c15h(y), x, y ∈ B(x0, r).

Proof. This proof is based on the proof given in [3]. By looking at h + ε and letting ε ↓ 0,

we may suppose that h is bounded from below by a positive constant. By looking at ah

for a suitable a > 0, we may suppose that infB(x0,r) h = 1/2. Choose z0 ∈ B(x0, r) such

that h(z0) ≤ 1. We want to show that h is bounded above in B(x0, r) by a constant C > 0

independent of h and r ∈ (0, 1
49c

). We will establish this by contradiction: If there exists a

point x ∈ B(x0, r) with h(x) = K where K is larger than a constant to be determined later

in the proof, we can obtain a sequence of points in B(x0, 2r) along which h is unbounded.

By Proposition 3.5 and Lemma 4.4, we can see that there exists c16 > 0 such that if

x ∈ Rd, s < r, and H is nonnegative bounded function with support in B(x, 2s)c, then for

any y, z ∈ B(x, (7c)−1s),

EzH(X(τB(x,s))) ≤ c16EyH(X(τB(x,s))). (4.8)

By Lemma 4.1, if A ⊂ B(x0, 7r) then

Py(σA < τB(x0,49cr)) ≥ c5
Cap(α)(A)

Cap(α)(B(x0, 7r))
, ∀y ∈ B(x0, 7r). (4.9)

Again by Lemma 4.1, there exists c17 > 0 such that if x ∈ Rd, s ∈ (0, 1) and F ⊂
B(x, (7c)−1s) with Cap(α)(F )/Cap(α)(B(x, (7c)−1s)) ≥ 1/3, then

Px(σF < τB(x,s)) ≥ c17. (4.10)

Let

η =
c17

3
, ζ = (

1

3
∧ 1

c16

)η. (4.11)
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Now suppose there exists x ∈ B(x0, r) with h(x) = K for K > 2Cap(α)(B(x0,7r))
c5ζ

∨ 2(49c)d−α

c5ζ
. Let

s be chosen so that

Cap(α)(B(x, (7c)−1s)) =
2Cap(α)(B(x0, 7r))

c5ζK
< 1. (4.12)

Note that this implies

s = 49cr(
2

c5ζ
)1/(d−α)K−1/(d−α) < r. (4.13)

Let us write Bs for B(x, s), τs for τB(x,s), and similarly for B2s and τ2s. Let A be a compact

subset of

A′ = {u ∈ B(x, (7c)−1s) : h(u) ≥ ζK}.
It is well known that h(Xt) is right continuous in [0, τB(x0,49cr)). Since z0 ∈ B(x0, r) and

A′ ⊂ B(x, (7c)−1s) ⊂ B(x0, 2r), we can apply (4.9) to get

1 ≥ h(z0) ≥ Ez0 [h(X(σA ∧ τB(x0,49cr)))1{σA<τB(x0,49cr)}]

≥ ζKPz0 [σA < τB(x0,49cr)]

≥ c5ζK
Cap(α)(A)

Cap(α)(B(x0, 7r))
.

Hence
Cap(α)(A)

Cap(α)(B(x, (7c)−1s))
≤ Cap(α)(B(x0, 7r))

c2ζKCap(α)(B(x, (7c)−1s))
=

1

2
.

This implies that Cap(α)(A′)/Cap(α)(B(x, (7c)−1s)) ≤ 1/2. By subadditivity of Cap(α) and

capacitability of Borel sets, there exists F , a compact subset of B(x, (7c)−1s) \A′, such that

Cap(α)(F )

Cap(α)(B(x, (7c)−1s))
≥ 1

3
. (4.14)

Let H = h · 1Bc
2s

. We claim that

Ex[h(X(τs)); X(τs) /∈ B2s] ≤ ηK.

If not, ExH(X(τs)) > ηK, and by (4.8), for all y ∈ B(x, (7c)−1s), we have

h(y) = Eyh(X(τs)) ≥ Ey[h(X(τs)); X(τs) /∈ B2s]

≥ c−1
16 ExH(X(τs)) ≥ c−1

16 ηK ≥ ζK,

contradicting (4.14) and the definition of A′.
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Let M = supB2s
h. We then have

K = h(x) = Exh(X(τs))

= Ex[h(X(σF )); σF < τs] + Ex[h(X(τs)); τs < σF ; X(τs) ∈ B2s]

+Ex[h(X(τs)); τs < σF ; X(τs) /∈ B2s]

≤ ζKPx(σF < τs) + MPx(τs < σF ) + ηK

= ζKPx(σF < τs) + M(1− Px(σF < τs)) + ηK,

or equivalently
M

K
≥ 1− η − ζPx(σF < τs)

1− Px(σF < τs)
.

Using (4.10) and (4.11) we see that there exists β > 0 such that M ≥ K(1 + 2β). Therefore

there exists x′ ∈ B(x, 2s) with h(x′) ≥ K(1 + β).

Now suppose there exists x1 ∈ B(x0, r) with h(x1) = K1. Define s1 in terms of K1

analogously to (4.12). Using the above argument (with x1 replacing x and x2 replacing x′),
there exists x2 ∈ B(x1, 2s1) with h(x2) = K2 ≥ (1 + β)K1. We continue and obtain s2

and then x3, K3, s3, etc. Note that xi+1 ∈ B(xi, 2si) and Ki ≥ (1 + β)i−1K1. In view of

(4.13),
∑

i |xi+1 − xi| ≤ c18rK
−1/(d−α)
1 . So if K1 > cd−α

18 , then we have a sequence x1, x2, . . .

contained in B(x0, 2r) with h(xi) ≥ (1+β)i−1K1 →∞, a contradiction to h being bounded.

Therefore we can not take K1 larger than cd−α
18 , and thus supy∈B(x0,r) h(y) ≤ cd−α

18 , which is

what we set out to prove. 2

By using standard chain argument, we can easily get the following consequence of the

theorem above.

Corollary 4.6 For any domain D of Rd and any compact subset K of D, there exists a

constant c19 > 0 such that for any function h which is nonnegative and bounded in Rd and

harmonic with respect to X in D, we have

h(x) ≤ c19h(y), x, y ∈ K.

In the next result, we remove the boundedness assumption on the harmonic functions in

Corollary 4.6.

Theorem 4.7 For any domain D of Rd and any compact subset K of D, there exists a

constant c20 > 0 such that for any function h which is nonnegative in Rd and harmonic with

respect to X in D, we have

h(x) ≤ c20h(y), x, y ∈ K.
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Proof. Choose a bounded domain U such that K ⊂ U ⊂ U ⊂ D. If h is harmonic with

respect to X in D, then

h(x) = Ex[h(X(τU))1{τU<∞}], x ∈ U.

For any n ≥ 1, define

hn(x) = Ex[(h ∧ n)(X(τU))1{τU<∞}], x ∈ Rd.

Then hn is a bounded nonnegative function on Rd, harmonic with respect to X in U , and

lim
n↑∞

hn(x) = h(x), x ∈ Rd.

It follows from Corollary 4.6 that there exists a constant c20 = c20(U,K) > 0 such that

hn(x) ≤ c20hn(y), x, y ∈ K, n ≥ 1.

Letting n ↑ ∞, we get that

h(x) ≤ c20h(y), x, y ∈ K.

2

5 Extension to subordinate diffusions

In this section we extend our results to subordinate diffusions. We will first consider elliptic

diffusions on Rd, d ≥ 3.

Let aij be Borel functions on Rd such that aij(x) = aji(x) for all i, j = 1, . . . , d and all

x ∈ Rd, and suppose there exists a constant c21 > 0 such that

c21|y|2 ≤
d∑
ij

aij(x)yiyj ≤ c−1
21 |y|2

for all x, y ∈ Rd. The operator L := 1
2

∑d
i,j ∂i(aij∂j) is called a uniformly elliptic operator in

divergence form. Let Y = (Yt,Px) be the corresponding diffusion in the sense that for every

f ∈ C2(Rd) and every x ∈ Rd, the process

f(Yt)− f(Y0)−
∫ t

0

Lf(Ys) ds

is a Px-martingale.

Let P Y
t f(x) := Ex[f(Yt)] be transition operators of Y . It is well known that there exists

a symmetric function pY (t, x, y) such that P Y
t f(x) =

∫
pY (t, x, y)f(y) dy. The function
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pY (t, x, y) is the heat kernel of the operator L and it satisfies the following Gaussian bounds:

There exists positive constants c22, c23, c24, c25 such that

c22t
−d/2 exp{−c23|x− y|2/t)} ≤ pY (t, x, y) ≤ c24t

−d/2 exp{−c25|x− y|2/t)} (5.1)

for all t > 0 and all x, y ∈ Rd (e.g., [11]). Let GY f(x) := Ex
∫∞
0

f(Ys) ds be the potential

operator of Y . Then

GY f(x) =

∫ ∞

0

∫

Rd

pY (t, x, y) dy dt =

∫

Rd

GY (x, y)f(y) dy ,

where GY (x, y) :=
∫∞
0

pY (t, x, y) dt is the Green function of Y . The function GY is symmet-

ric, and it follows immediately from (5.1) that there exists positive constants c26, c27 such

that

c26|x− y|2−d ≤ GY (x, y) ≤ c27|x− y|2−d (5.2)

for all x, y ∈ Rd.

Let T = (Tt : t ≥ 0) be a subordinator independent of the diffusion Y with Laplace

exponent φ, let Xt := Y (Tt), t ≥ 0, be the subordinate diffusion, and let G(x, y) denote the

Green function of X. By use of (5.1) we can easily obtain the following analogs of Theorem

3.1, respectively Theorem 3.3. If φ(λ) ∼ bλ, λ →∞, for b > 0, or if φ(λ) ∼ γ−1λα/2, λ →∞,

α ∈ (0, 2), and φ is a complete Bernstein function, then

G(x, y) ³ |x− y|α−d

when |x − y| → 0. If φ(λ) ∼ γ−1λα/2, λ → 0, α ∈ (0, 2], and φ is a complete Bernstein

function, then

G(x, y) ³ |x− y|α−d

when |x − y| → ∞. The asymptotic behavior of the Green function at zero implies that

Propositions 3.5 and 3.7 and Lemma 4.1 are valid. We note that in the case of α/2-stable

subordinator, Selmi [21] has established that the transition density of Y subordinate with

an α/2-stable subordinator is comparable to the transition density of symmetric stable pro-

cesses. This implies that G(x, y) ³ |x− y|α−d as |x− y| → 0 and |x− y| → ∞.

In order to obtain the analogs of (4.5) and (4.6), besides (4.4), we have to assume that

there is a positive constant c28 such that

ν(t) ≤ c28ν(2t) , 0 < t < ∞ .

(The assumption above is satisfied, for example, when Tt = bt + T̃t with T̃ being a stable

subordinator.) Moreover, instead of one function j, we have to work with two such functions,

because of different exponents in (5.1). Consequently, the proof of Lemma 4.4 requires minor

changes. Proof of the Harnack inequality remains the same.
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We further indicate extensions to some fractional diffusions. We refer the reader to [1]

for background information on fractional diffusions. Let F ⊂ Rd, d ≥ 3, be a nonempty

closed set such that diam(F ) = ∞, and let df ∈ (0, d ]. A Borel measure µ is a df -measure

on F if there are constants c29, c30 > 0 such that

c29r
df ≤ µ(B(x, r)) ≤ c30r

df , x ∈ F, r > 0 .

The set F is called a df -set if F = supp(µ) for some df -measure µ. A fractional diffusion

on F is a Feller process Y = (Yt,Px) with continuous paths and the state space F such that

Y has a symmetric transition density p(t, x, y) = p(t, y, x), t > 0, x, y ∈ F , which is jointly

continuous for each t > 0 and satisfies

c31t
−ds/2 exp

(
−c32

( |x− y|
t1/dw

)dw/(dw−1)
)
≤ p(t, x, y) (5.3)

≤ c33t
−ds/2 exp

(
−c34

( |x− y|
t1/dw

)dw/(dw−1)
)

for all t > 0 and all x, y ∈ F . Here c31, c32, c33, c34 are positive constants, dw > 0 and

ds = 2df/dw. We assume that ds > 2 which implies that the process Y is transient ([1],

p.40).

Let T = (Tt : t ≥ 0) be a subordinator, independent of Y , with a complete Bernstein

Laplace exponent φ. Let u denote the potential density of T . Let Xt := Y (Tt) be the

subordinate fractional diffusion. The case when T is an α/2-stable subordinator was studied

in [16] and [26]. The Green function of X can be written as

G(x, y) =

∫ ∞

0

p(t, x, y)u(t) dt . (5.4)

By using the lower bound (5.3) for p(t, x, y), and by change of variables, we can obtain the

following lower bound for G(x, y):

G(x, y) ≥ c35|x− y|dw−df

∫ ∞

0

s−ds/2+df−dwe−su

(
cdw−1
32 |x− y|dw

sdw−1

)
ds ,

where c35 > 0, and similarly for the upper bound.

Assume that φ satisfies (3.3), i.e., φ(λ) ∼ γ−1λα/2 as λ → ∞, α ∈ (0, 2]. Similarly as in

the proof of Theorem 3.1 we obtain that G(x, y) satisfies

G(x, y) ³ |x− y|α2 dw−df , |x− y| → 0 .

If φ(λ) ∼ γ−1λα/2, λ → 0, α ∈ (0, 2], and φ is a complete Bernstein function, the analog

estimate is valid for G as |x− y| → ∞.
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différentiels de type divergence, Potential Anal., 3 (1994), 15–45

[22] R. Song, Sharp bounds on the density, Green function and jumping function of subordinate
killed BM, Probab. Th. Rel. Fields, 128 (2004), 606-628.
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