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Abstract

In this paper we study the potential theory of symmetric geometric stable processes
by realizing them as subordinate Brownian motions with geometric stable subordina-
tors. More precisely, we establish the asymptotic behaviors of the Green function and
the Lévy density of symmetric geometric stable processes. The asymptotics of these
functions near zero exhibit features that are very different from the ones for stable
processes. The Green function behaves near zero as 1/(|x|d log2 |x|), while the Lévy
density behaves like 1/|x|d. We also study the asymptotic behaviors of the Green func-
tion and Lévy density of subordinate Brownian motions with iterated geometric stable
subordinators. As an application, we establish estimates on the capacity of small balls
for these processes, as well as mean exit time estimates from small balls and a Harnack
inequality for these processes.
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1 Introduction

Geometric stable distributions and geometric infinitely divisible distributions were first in-

troduced in [12]. Since their introduction they have played an important role in heavy-tail

modeling of economic data, see [16] and the reference therein. Despite the wide spread ap-

plications of geometric stable processes in mathematical finance and other fields, there has

not been much study of the potential theory of these processes. In this paper we take up

this task. In particular, we will study the behaviors of the Green function and the Lévy den-

sity of symmetric geometric stable processes. The asymptotic behaviors of these functions

near zero exhibit some new features that are dramatically different from the ones for stable

processes. The Green function behaves near zero as 1/(|x|d log2 |x|), while the Lévy density

behaves like 1/|x|d.
Let α ∈ (0, 2]. A Lévy process X = (Xt,Px) is called a geometric strictly α-stable process

if its characteristic exponent Ψ(ξ) = − log(Ex(e
iξ·(X1−X0))) is given by

Ψ(ξ) = log(1 + Φ(ξ)), ξ ∈ Rd,

with exp(−Φ) being the characteristic function of some strictly α-stable distribution. In this

paper we will be mainly interested in the rotationally invariant geometric strictly α-stable

process in Rd, that is, in the case when

Ψ(ξ) = log(1 + |ξ|α), ξ ∈ Rd.

We will simply call these processes symmetric geometric α-stable processes. The symmetric

geometric 2-stable process also goes by the name of symmetric variance gamma process and

it is used by some researchers to study heavy-tailed financial models (see [15], [9] and the

references therein).

Our approach to the potential theory of symmetric geometric stable processes is to realize

them as subordinate Brownian motions with geometric stable subordinators, and then use

Tauberian-type theorems to establish behaviors of the Green function and the Lévy density.

To be more precise, for any α ∈ (0, 2], the subordinator S = (St : t ≥ 0) with the Laplace

exponent

φ(λ) = log(1 + λα/2), λ > 0

is called a geometric α/2-stable subordinator. Note that for α = 2 the corresponding geomet-

ric stable subordinator is in fact the well-known gamma subordinator. Let Y = (Yt : t ≥ 0)

be a Brownian motion in Rd, independent of the subordinator S. By computing the charac-

teristic exponent, it is easy to show that the subordinate process X = (Xt : t ≥ 0) defined

by Xt = Y (St), t ≥ 0, is a symmetric geometric α-stable process.

This approach has been used in [17] to study the Green function behavior of the sum

of a Brownian motion and an independent α-stable process. The Laplace exponent of the
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corresponding subordinator is the sum of two power functions. This fact allowed for the

use of Karamata’s Tauberian theorem ([4], Theorem 1.7.1) and monotone density theorem

([4], Theorem 1.7.2). However, in the present case the Laplace exponent of the geometric

stable subordinator is of the logarithmic type which calls for the use of more delicate de

Haan’s Tauberian theorem ([4], Theorem 3.7.3) and de Haan’s monotone density theorem

([4], Theorem 3.6.8).

The Lévy density of the geometric α/2-stable subordinator is of the order α/(2x) for

x near zero, which makes it almost integrable near zero. One consequence is that such a

subordinator is very slow. This implies that the subordinate process is also slow and spends

a large amount of time in a ball centered at the starting point. This fact is reflected in the

behavior of the Green function near the origin which is on the brink of integrability.

The approach described above is also applicable to subordinate Brownian motions with

n-iterated geometric stable subordinators, i.e., subordinators whose Laplace exponents are

n-fold compositions of that of geometric stable subordinators. Iterated geometric stable sub-

ordinators and subordinate Brownian motions with iterated geometric stable subordinators

give two families of very concrete Lévy processes with fat-tails and they could be very useful

in applications.

The results on asymptotic behaviors of the Green functions can be used to establish

estimates on the capacity of balls for the corresponding processes, as well as the exit time

estimates from small balls. We present these results as a consequence of the more general

results for certain symmetric Lévy processes. Finally, as an application we establish the

Harnack inequality for geometric stable processes.

The content of this paper is organized as follows. In the next section we study the

asymptotic behaviors of the potential density and the Lévy density at zero and infinity

of geometric stable subordinators. These results are applied in Section 3 to establish the

asymptotic behaviors at zero and infinity of the symmetric geometric stable processes. In

Section 4, we refine the results of the previous two sections to iterated geometric stable

subordinators and subordinate Brownian motions. The results of this section extend most

of those of Sections 2 and 3, but the details of proofs are more cumbersome. This is why we

have decided to present them separately, after the reader has become acquainted with basic

ideas and techniques. In Section 5, we prove capacity estimates and the exit time estimates

for Lévy processes with radially symmetric decreasing Green functions. In the last section

we present the Harnack inequality for symmetric geometric stable processes.

In the paper we use following notation: If f and g are two functions, then f ∼ g if f/g

converges to 1, and f � g if the quotient f/g stays bounded between two positive constants.
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2 Geometric Stable Subordinators

In this section we assume that α ∈ (0, 2] and that S = (St : t ≥ 0) is a geometric α/2-stable

subordinator, that is, an increasing Lévy process taking values in [0,∞) whose Laplace

exponent is given by

φ(λ) = log(1 + λα/2), λ > 0.

The function φ above can be written in the form

φ(λ) =

∫ ∞

0

(1− e−λt)µ(dt), λ > 0 ,

where µ is a σ-finite measure µ on (0,∞) satisfying∫ ∞

0

(t ∧ 1)µ(dt) <∞.

The measure µ is called the Lévy measure of S. Since the function φ is a complete Bernstein

function, the Lévy measure µ has a complete monotone density µ(t). For definition and

properties of complete Bernstein functions see, for instance, [10] or [17].

The potential measure of the subordinator S is defined by

U(A) = E
∫ ∞

0

1(St∈A) dt , (2.1)

and its Laplace transform is given by

LU(λ) = E
∫ ∞

0

exp(−λSt) dt =
1

φ(λ)
=

1

log(1 + λα/2)
. (2.2)

In the sequel we will also use U to denote the function on [0,∞) defined by U(x) = U([0, x]).

Since limλ→∞ φ(λ) = ∞, we must have µ((0,∞)) = ∞. Therefore by Theorem 2.3 of [17]

the potential measure U has a density u which is completely monotone on (0,∞). When

α = 2, the corresponding geometric stable subordinator is the gamma subordinator, and its

Lévy density is given by

µ(t) = t−1e−t, t > 0 ,

(see e.g. [18], p.45). Such an explicit formula for the Lévy density µ is not available for

other values of α. The purpose of this section is to study the behaviors of the functions u

and µ near zero and infinity. We will need the following versions of Tauberian and monotone

density theorems. The versions when x→∞ are proved in [4], Theorem 3.7.3 and Theorem

3.6.8. We have not found in the literature the statements of the versions when x → 0, but

they could be proven by applying techniques from Chapter 3 of [4].
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Theorem 2.1 (a) (de Haan’s Tauberian Theorem) Let U : (0,∞) → (0,∞) be an increasing

function. If ` is slowly varying at ∞ (resp. at 0+), c ≥ 0, the following are equivalent:

(i) As x→∞ (resp. x→ 0+)

U(λx)− U(x)

`(x)
→ c log λ, ∀λ > 0.

(ii) As x→∞ (resp. x→ 0+)

LU( 1
λx

)− LU( 1
x
)

`(x)
→ c log λ, ∀λ > 0.

(b) (de Haan’s Monotone Density Theorem) Let U : (0,∞) → (0,∞) be an increasing

function with dU(x) = u(x)dx, where u is monotone and nonnegative, and let ` be slowly

varying at ∞ (resp. at 0+). Assume that c > 0. Then the following are equivalent:

(i) As x→∞ (resp. x→ 0+)

U(λx)− U(x)

`(x)
→ c log λ, ∀λ > 0.

(ii) As x→∞ (resp. x→ 0+)

u(x) ∼ cx−1`(x).

Now we are going to apply this result to establish the asymptotic behavior of the potential

density at zero.

Theorem 2.2 For any α ∈ (0, 2], we have

u(x) ∼ 2

αx(log x)2
, x→ 0 + .

Proof. Recall that

LU(λ) = 1/φ(λ) = 1/ log(1 + λα/2).

Since
LU( 1

tλ
)− LU( 1

λ
)

(log λ)−2
→ 2

α
log t, ∀t > 0

as λ→ 0+, we have by (the 0+ version of) Theorem 2.1 (a) that

U(tx)− U(x)

(log x)−2
→ 2

α
log t, t > 0

as x→ 0+. Now we can apply (the 0+ version of) Theorem 2.1 (b) to get that

u(x) ∼ 2

αx(log x)2

as x→ 0+. 2
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Remark 2.3 One can easily show that

u(x) ∼ 1

Γ(α/2)
xα/2−1 , x→∞

(see, e.g. [17], proof of Theorem 3.3).

Theorem 2.4 For any α ∈ (0, 2], we have

µ(x) ∼ α

2x
, x→ 0 + . (2.3)

Proof. The distribution function Fα/2 of the random variable S1 is called by some authors

the Mittag-Leffler distribution (see [11], for example). It follows therefore from Theorem 2.2

of [11], that

µ(x) =
α

2x
(1− Fα/2(x)), x > 0.

Now the conclusion follows immediately. 2

Since φ(λ) = log(1 + λα/2) is a complete Bernstein function, the function ψ(λ) = λ/φ(λ)

is also a complete Bernstein function. Let T = (Tt : t ≥ 0) be the subordinator with

Laplace exponent ψ and let V be the potential measure of the subordinator T . Since

limλ→∞ ψ(λ)/λ = limλ→∞ 1/φ(λ) = 0 and limλ→∞ ψ(λ) = ∞, the Lévy measure ν of T

must satisfy ν((0,∞)) = ∞. Therefore by Theorem 2.3 of [17] we know that the potential

measure V of T has a density v which is completely monotone on (0,∞).

Theorem 2.5 For any α ∈ (0, 2), we have

µ(x) ∼ α

2xα/2+1Γ(1− α/2)
, x→∞.

Proof. Since
1

ψ(λ)
∼ λα/2−1, λ→ 0+,

we have, by Karamata’s Tauberian theorem, that the potential measure V of T satisfies

V (x) ∼ x1−α/2

Γ(2− α/2)
, x→∞.

Now using Karamata’s monotone density theorem we get that

v(x) ∼ 1

xα/2Γ(1− α/2)
, x→∞.

It follows from Corollary 2.4.8 of [21] that

µ((t,∞)) = v(t), t > 0,
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and so we have

µ((t,∞)) ∼ 1

tα/2Γ(1− α/2)
, t→∞.

Now applying Karamata’s monotone density theorem again we get

µ(t) ∼ α

2tα/2+1Γ(1− α/2)
, t→∞.

2

It is known (see for instance [13]) that the distribution Fα/2 of S1 is absolutely continuous

and the density fα/2 is decreasing on (0,∞). When α = 2 we have

f1(x) = e−x, x > 0.

In the next result we establish the asymptotic behaviors of fα/2 for α ∈ (0, 2). We will need

the following fact. Let Z = (Zt, t ≥ 0) be a Lévy process with characteristic exponent Φ and

let τ be an exponential random variable with parameter 1 which is independent of Z. Then

X = Z(τ) is a geometric infinitely divisible random variable with characteristic function

exp(−Ψ), where Ψ is given by Ψ(ξ) = log(1+Φ(ξ)). Therefore the distribution of X is equal

to the 1-potential of the process Z.

Theorem 2.6 For any α ∈ (0, 2), we have

fα/2(x) ∼
1

Γ(α/2)
x

α
2
−1, x→ 0+ , (2.4)

and

fα/2(x) ∼ 2πΓ(1 +
α

2
) sin(

απ

4
)x−1−α

2 , x→∞. (2.5)

Proof. We first prove (2.4). Since the Laplace transform of the distribution of S1 is given

by
1

1 + λα/2
, λ > 0,

we can easily get from Karamata’s Tauberian theorem that Fα/2 is regularly varying at 0

Fα/2(x) ∼
1

Γ(1 + α/2)
x

α
2 , x→ 0 + . (2.6)

Now we can apply Karamata’s monotone density theorem to get (2.4).

Now we establish (2.5). From the paragraph preceding the theorem we know that

fα/2(x) =

∫ ∞

0

e−tp̃α/2(t, x)dt =

∫ ∞

0

e−tt−
2
α p̃α/2(1,

x

t2/α
)dt
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where p̃α/2(t, x) is the transition density of the α/2-stable subordinator. It follows from [19]

that

p̃α/2(1, x) ∼ 2πΓ(1 +
α

2
) sin(

απ

4
)x−1−α

2 , x→∞

and that for all x > 0

p̃α/2(1, x) ≤ c(1 ∧ x−1−α
2 ),

for some positive constant c > 0. Now we can apply the dominated convergence theorem to

arrive at (2.5). 2

3 Green Functions and Jumping Functions of Symmet-

ric Geometric Stable Processes

Let Y = (Yt, t ≥ 0) be a d-dimensional Brownian motion with the transition density given

by

p2(t, x, y) = (4πt)−d/2 exp

(
−|x− y|2

4t

)
, x, y ∈ Rd, t > 0 .

Let S = (St , t ≥ 0) be a geometric α/2-stable subordinator with the Laplace exponent

log(1 + λα/2), α ∈ (0, 2], and let u(t) be the potential density of S. Then we know from

Theorem 2.2 that

u(t) ∼ 2

αt log2 t
, t→ 0 + . (3.1)

If we assume that Y and S are independent, the symmetric geometric α-stable processes

X = (Xt, t ≥ 0) can be obtained by Xt = Y (St).

Throughout this section we assume that d > α. This implies that the process X is

transient (see e.g., [3], p.33). The potential operator Gf(x) := Ex
∫∞

0
f(Xt) dt of X has a

density G(x, y) = G(y − x) with

G(x) =

∫ ∞

0

p2(t, 0, x)u(t) dt.

The Lévy density of X is given by

J(x) =

∫ ∞

0

p2(t, 0, x)µ(t)dt,

where µ(t) is the Lévy density of S.

In this section we will study the asymptotic behaviors of G and J . In order to establish

these asymptotic behaviors we start by defining an auxiliary function. For any slowly varying

function ` at infinity and any β > 0, let

f`,β(y, t) :=

{
`(1/y)
`(4t/y)

, y < t
β
,

0, y ≥ t
β
.
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The following technical lemma will be crucial in establishing the asymptotics of G and J .

Lemma 3.1 Suppose that w : (0,∞) → (0,∞) is a decreasing function satisfying the fol-

lowing two assumptions:

(i) There exist a constant c0 > 0 and a continuous functions ` : (0,∞) → (0,∞) slowly

varying at +∞ such that

w(t) ∼ c0
t`(1/t)

, t→ 0 + . (3.2)

(ii) If d = 1 or d = 2, then there exist a constant c∞ > 0 and a constant γ < d/2 such that

w(t) ∼ c∞t
γ−1 , t→ +∞ . (3.3)

Let g : (0,∞) → (0,∞) be a function such that∫ ∞

0

td/2−1e−tg(t) dt <∞ .

If there is β > 0 such that f`,β(y, t) ≤ g(t) for all y, t > 0, then

I(x) :=

∫ ∞

0

(4πt)−d/2e−
|x|2
4t w(t) dt ∼ c0Γ(d/2)

πd/2

1

|x|d`( 1
|x|2 )

, |x| → 0 .

Proof. Let us first note that the assumptions of the lemma guarantee that I(x) < ∞ for

every x 6= 0. By a change of variable we get∫ ∞

0

(4πt)−d/2e−
|x|2
4t w(t) dt =

|x|−d+2

4πd/2

∫ ∞

0

td/2−2e−tw

(
|x|2

4t

)
dt

=
1

4πd/2

(
|x|−d+2

∫ β|x|2

0

+|x|−d+2

∫ ∞

β|x|2

)
=

1

4πd/2

(
|x|−d+2I1 + |x|−d+2I2

)
.

We first consider I1 for the case d = 1 or d = 2. It follows from the assumptions that there

exists a positive constant c1 such that w(s) ≤ c1s
γ−1 for all s ≥ 1/(4β). Thus

I1 ≤
∫ β|x|2

0

td/2−2e−tc1

(
|x|2

4t

)γ−1

dt

≤ c2|x|2γ−2

∫ β|x|2

0

td/2−γ−1 dt

= c3|x|d−2 .
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It follows that

lim
|x|→0

|x|−d+2I1
1

|x|d`( 1
|x|2

)

= 0 . (3.4)

In the case d ≥ 3, we proceed similarly, using the bound w(s) ≤ w(1/(4β)) for s ≥ 1/(4β).

Now we consider I2:

|x|−d+2I2 =
1

|x|d−2

∫ ∞

β|x|2
td/2−2e−tw

(
|x|2

4t

)
dt

=
4

|x|d `( 1
|x|2 )

∫ ∞

β|x|2
td/2−1e−t

w
(
|x|2
4t

)
1

|x|2
4t

`( 4t
|x|2

)

`( 1
|x|2 )

`( 4t
|x|2 )

dt .

Using the assumption (3.2), we can see that there is a constant c > 0 such that

w
(
|x|2
4t

)
1

|x|2
4t

`( 4t
|x|2

)

< c ,

for all t and x satisfying |x|2/(4t) ≤ 1/(4β). Since ` is slowly varying at infinity,

lim
|x|→0

`( 1
|x|2 )

`( 4t
|x|2 )

= 1

for all t > 0. Note that
`( 1
|x|2 )

`( 4t
|x|2 )

= f`,β(|x|2, t) .

It follows from the assumption that

td/2−1e−t
w
(
|x|2
4t

)
1

|x|2
4t

`( 4t
|x|2

)

`( 1
|x|2 )

`( 4t
|x|2 )

≤ ctd/2−1e−tg(t) .

Therefore, by the dominated convergence theorem we have

lim
|x|→0

∫ ∞

β|x|2
td/2−1e−t

w
(
|x|2
4t

)
1

|x|2
4t

`( 4t
|x|2

)

`( 1
|x|2 )

`( 4t
|x|2 )

dt =

∫ ∞

0

c0t
d/2−1e−t dt = c0Γ(d/2) .

Hence,

lim
|x|→0

|x|−d+2I2
4

|x|dl( 1
|x|2

)

= c0Γ(d/2) . (3.5)
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Finally, combining (3.4) and (3.5) we get

lim
|x|→0

I(x)
1

|x|d`( 1
|x|2

)

=
c0Γ(d/2)

πd/2
.

2

Theorem 3.2 For any α ∈ (0, 2], we have

G(x) ∼ Γ(d/2)

2απd/2|x|d log2 1
|x|
, |x| → 0.

Proof. We apply Lemma 3.1 with w(t) = u(t), the potential density of S. By (3.1),

u(t) ∼ 2
αt log2 t

as t → 0+, so we take c0 = 2/α and `(t) = log2 t. Moreover, by Remark 2.3,

u(t) ∼ tα/2−1/(Γ(α)/2) as t→ +∞, so we can take γ = α/2 < d/2. Choose β = 1/2. Let

f(y, t) := f`,1/2(y, t) =

{
log2 y
log2 y

4t

, y < 2t, ,

0 , y ≥ 2t .

Define

g(t) :=

{
log2 2t
log2 2

, t < 1
4
,

1 , t ≥ 1
4
.

In order to show that f(y, t) ≤ g(t), first let t < 1/4. Then y 7→ f(y, t) is an increasing

function for 0 < y < 2t. Hence,

sup
0<y<2t

f(y, t) = f(2t, t) =
log2 2t

log2 2
.

Clearly, f(y, 1/4) = 1. For t > 1/4, y 7→ f(y, t) is a decreasing function for 0 < y < 1.

Hence

sup
0<y<(2t)∧1

f(y, t) = f(0, t) := lim
y→0

f(y, t) = 1 .

Clearly, ∫ ∞

0

td/2−1e−tg(t) dt <∞ .

2

Remark 3.3 The asymptotic behavior of G(x) as |x| → ∞ was proved in [17], Theorem 3.3

to be

G(x) ∼ 1

πd/22α

Γ(d−α
2

)

Γ(α
2
)
|x|α−d , |x| → ∞ .
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Now we establish the asymptotic behaviors of J .

Theorem 3.4 For every α ∈ (0, 2] we have

J(x) ∼ αΓ(d/2)

2|x|d
, |x| → 0.

Proof. We again apply Lemma 3.1, this time with w(t) = µ(t), the density of the Lévy

measure of S. By (2.3), µ(t) ∼ α
2t

as t→ 0+, so we take c0 = α/2 and `(t) = 1. By Theorem

2.5, µ(t) is of the order t−α/2−1 as t→ +∞, so we may take γ = −α/2. Choose β = 1/2 and

let g = 1. 2

Theorem 3.5 For every α ∈ (0, 2) we have

J(x) ∼ α

2α+1πd/2

Γ(d+α
2

)

Γ(1− α
2
)
|x|−d−α, |x| → ∞.

Proof. Theorem 2.5 tells us that

µ(t) ∼ α

2Γ(1− α/2)
t−α/2−1 , t→∞ .

Now combine this with Theorem 2.4 to get that

µ(t) ≤ C(t−1 ∨ t−α/2−1) . (3.6)

By a simple change of variable we have∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
µ(t) dt

=
1

4πd/2
|x|−d+2

∫ ∞

0

sd/2−2e−sµ

(
|x|2

4s

)
ds

=
α

8πd/2Γ(1− α/2)
|x|−d−α

∫ ∞

0

sd/2−2e−s
µ
(
|x|2
4s

)
α

2Γ(1−α/2)

(
|x|2
4s

)−α/2−1

(
1

4s

)−α/2−1

ds

=
α

2α+1πd/2Γ(1− α/2)
|x|−d−α

∫ ∞

0

sd/2+α/2−1e−s
µ
(
|x|2
4s

)
α

aΓ(1−α/2)

(
|x|2
4s

)−α/2−1
ds

Let |x| ≥ 2. Then by (3.6),

u
(
|x|2
4s

)
(
|x|2
4s

)−α/2−1
≤ C

((
|x|2

4s

)α/2

∨ 1

)

≤ C(s−α/2 ∨ 1) .

12



It follows that the integrand in the last display above is bounded by an integrable function,

so we may use the bounded convergence theorem to obtain

lim
|x|→∞

1

|x|−d−α

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
µ(t) dt =

α

2α+1πd/2

Γ(d+α
2

)

Γ(1− α
2
)
, (3.7)

which proves the result. 2

Theorem 3.6 When α = 2, we have

J(x) ∼ 2−d/2π−
d−1
2
e−|x|

|x| d+1
2

, |x| → ∞.

Proof. By making a simple change of variable we get that

J(x) =
1

2

∫ ∞

0

t−1e−t(4πt)−d/2 exp(−|x|
2

2
)dt

= 2−d−1π−d/2|x|−d

∫ ∞

0

s
d
2
−1e−

s
4
− |x|2

s ds

= 2−d−1π−d/2|x|−dI(|x|),

where

I(r) =

∫ ∞

0

s
d
2
−1e−

s
4
− r2

s ds.

Using the change of variable u =
√

s
2
− r√

s
we get

I(r) = e−r

∫ ∞

0

s
d
2
−1e

−(
√

s
2
− r√

s
)2
ds

= e−r

∫ ∞

−∞

2(u+
√
u2 + 2r)d

√
u2 + 2r

e−u2

du

= 2e−rr
d−1
2

∫ ∞

−∞

u+
√
u2 + 2r√

u2 + 2r
(
u√
r

+

√
u2

r
+ 2)d−1e−u2

du

Therefore by the dominated convergence theorem we get

I(r) ∼ 2
d
2
+1
√
πe−rr

d−1
2 , r →∞.

Now the assertion of the theorem follows immediately. 2

Now we are going to study the asymptotic behavior of the transition density qα(1, x, y) =

qα(1, y − x) at infinity of the process X. From the paragraph preceding Theorem 2.6 we

know that

qα(1, x) =

∫ ∞

0

e−tpα(t, x)dt , (3.8)

where pα(t, x) is the transition density of the symmetric α-stable process.
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Theorem 3.7 For α ∈ (0, 2) we have

qα(1, x) ∼
α2α−1 sin απ

2
Γ(d+α

2
)Γ(α

2
)

π
d
2
+1|x|d+α

, |x| → ∞.

For α = 2 we have

q2(1, x) ∼ 2−
d
2π−

d−1
2
e−|x|

|x| d−1
2

, |x| → ∞.

Proof. The proof of the case α = 2 is same as the proof of the previous theorem, so we only

give the proof of the case α ∈ (0, 2). Using the scaling property we get that

qα(1, x) =

∫ ∞

0

e−tt−
d
αpα(1,

x

t1/α
)dt.

Now we can use Theorem 2.1 of [5] and the dominated convergence theorem to arrive at our

conclusion. 2

4 Extension to iterated subordinators

In this section we extend some of the results of the previous section to iterated geomet-

ric stable subordinators and subordinate Brownian motion with iterated geometric stable

subordinators.

Let e0 = 0, and inductively, en = een−1 , n ≥ 1. For n ≥ 1 define ln : (en,∞) → (0,∞) by

ln(y) = log log . . . log y , n times .

Further, let L0(y) = 1, and for n ∈ N, define Ln : (en,∞) → (0,∞) by

Ln(y) = l1(y)l2(y) . . . ln(y) .

Note that l′n(y) = 1/(yLn−1(y)) for every n ≥ 1.

Let α ∈ (0, 2]. Define φ(y) = φ(1)(y) := log(1 + yα/2). For n ∈ N define inductively

φ(n)(y) := φ(φ(n−1)(y)). Let kn(y) := 1/φ(n)(y).

Lemma 4.1 Let t > 0. For every n ∈ N,

lim
y→∞

(kn(ty)− kn(y))Ln−1(y)ln(y)2 = − 2

α
log t .
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Proof. The proof for n = 1 is straightforward and is implicit in the proof of Theorem 2.2.

We only give the proof for n = 2, the proof for general n is similar. Using the fact that

log(1 + y) ∼ y, y → 0+, (4.1)

we can easily get that

lim
y→∞

(
log

log y

log(yt)

)
log y = − lim

y→∞

(
log

log y + log t

log y

)
log y = − log t. (4.2)

Using (4.1) and the elementary fact

log(1 + y) ∼ log y, y →∞,

we get that

lim
y→∞

(k2(ty)− k2(y))L1(y)l2(y)
2

=
α

2
lim
y→∞

(
log

log(1 + yα/2)

log(1 + (ty)α/2)

)
log y(log log y)2

(α
2
)2 log(log(1 + yα/2)) log(log(1 + (ty)α/2))

=
2

α
lim
y→∞

(
log

log y

log(yt)

)
log y

= − 2

α
log t .

2

We will assume that S(n) = (S
(n)
t : t ≥ 0) is a subordinator whose Laplace exponent is

given by φ(n)(λ). The function φ(n) can be written in the form

φ(n)(λ) =

∫ ∞

0

(1− e−λt)µ(n)(dt), λ > 0

for some σ-finite measure µ(n) on (0,∞) satisfying the∫ ∞

0

(t ∧ 1)µ(n)(dt) <∞.

The measure µ(n) is called the Lévy measure of S(n). Since the function φ(n) is a complete

Bernstein function, the Lévy measure µ(n) has a complete monotone density µ(n)(t) (see for

instance [10]).

Note that if S(n−1) and S are independent subordinators with Laplace exponents φ(n−1)

and φ, respectively, then the subordinator S(n−1)(St) has the same distribution as S
(n)
t . In

this way we may regard S(n) as an n-fold iteration of S by itself.
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The potential measure of the subordinator S(n) is defined by

U (n)(A) = E
∫ ∞

0

1
(S

(n)
t ∈A)

dt , (4.3)

and its Laplace transform is given by

LU (n)(λ) = E
∫ ∞

0

exp(−λS(n)
t ) dt =

1

φ(n)(λ)
. (4.4)

In the sequel we will also U (n) to denote the function on [0,∞) defined by U (n)(x) =

U (n)([0, x]). Since limλ→∞ φ(n)(λ) = ∞, we must have µ(n)((0,∞)) = ∞. Therefore by

Theorem 2.3 of [17] the potential measure U (n) has a density u(n) which is completely mono-

tone on (0,∞). One of the purpose of this section is to study the behaviors of the functions

u(n) and µ(n) near zero and infinity.

Theorem 4.2 For any α ∈ (0, 2], we have

u(n)(x) ∼ 2

αxLn−1(
1
x
)ln( 1

x
)2
, x→ 0 + . (4.5)

Proof. Using Lemma 4.1 we can easily see that

LU (n)( 1
tλ

)− LU (n)( 1
λ
)

(Ln−1(
1
λ
)ln( 1

λ
)2)−1

→ 2

α
log t, ∀t > 0

as λ→ 0+. Therefore, by (the 0+ version of) Theorem 2.1 (a) we have that

U (n)(tx)− U (n)(x)

(Ln−1(
1
x
)ln( 1

x
)2)−1

→ 2

α
log t, t > 0

as x→ 0+. Now we can apply (the 0+ version of) Theorem 2.1 (b) to get that

u(n)(x) ∼ 2

αxLn−1(
1
x
)ln( 1

x
)2

as x→ 0+. 2

Remark 4.3 One can easily show that

u(n)(x) ∼ 1

Γ((α/2)n)
x(α/2)n−1 , x→∞

(see, e.g. [17], proof of Theorem 3.3).
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Since φ(n)(λ) is a complete Bernstein function, the function ψ(n)(λ) = λ/φ(n)(λ) is

also a complete Bernstein function. Let T (n) = (T
(n)
t : t ≥ 0) be the subordinator with

Laplace exponent ψ(n) and let V (n) be the potential measure of the subordinator T (n). Since

limλ→∞ ψ(n)(λ)/λ = limλ→∞ 1/φ(n)(λ) = 0 and limλ→∞ ψ(n)(λ) = ∞, the Lévy measure ν(n)

of T must satisfy ν(n)((0,∞)) = ∞. Therefore by Theorem 2.3 of [17] the potential measure

V (n) of T (n) has a density v(n) which is completely monotone on (0,∞).

Theorem 4.4 For any α ∈ (0, 2), we have

µ(n)(x) ∼ (α/2)n

x(α/2)n+1Γ(1− (α/2)n)
, x→∞.

Proof. Since
1

ψ(n)(λ)
∼ λ(α/2)n−1, λ→ 0+,

we have, by Karamata’s Tauberian theorem, that the potential measure V (n) of T satisfies

V (n)(x) ∼ x1−(α/2)n

Γ(2− (α/2)n)
, x→∞.

Now using Karamata’s monotone density theorem we get that

v(n)(x) ∼ 1

x(α/2)nΓ(1− (α/2)n)
x→∞.

It follows from Corollary 2.4.8 of [21] that

µ((t,∞)) = v(t), t > 0,

and so we have

µ((t,∞)) ∼ 1

t(α/2)nΓ(1− (α/2)n)
t→∞.

Now applying Karamata’s monotone density theorem again we get

µ(t) ∼ (α/2)n

t(α/2)n+1Γ(1− (α/2)n)
t→∞.

2

Remark 4.5 Note that the previous theorem is proved for α ∈ (0, 2) only. We know that for

n = 1, the Lévy density µ(1)(x) is equal to e−x/x. We expect similar behavior for n ≥ 2 as

well. Unfortunately, we were unable to find precise asymptotic behavior of the Lévy density

µ(n)(x) as x→∞ in case α = 2 and n ≥ 2. One of the difficulties is that all functions φ(n)(λ)

are of the same order λ near zero. We were unable to find in the literature a Tauberian type

theorem that is applicable in this case.

17



Let Y = (Yt, t ≥ 0) be a d-dimensional Brownian motion as in the previous section. As-

sume that Y and S(n) are independent. We define the subordinate process X(n) = (X
(n)
t , t ≥

0) by X
(n)
t = Y (S

(n)
t ). The process X(n) has a transition density q

(n)
α (t, x, y) = q

(n)
α (t, y − x)

given by

q(n)
α (t, x) =

∫ ∞

0

p2(t, 0, x)f
(n)
α/2(t, s)ds (4.6)

where f
(n)
α/2(t, s) is the density of S

(n)
t . Note that q

(1)
α (1, x) = qα(1, x), where qα(1, x) was

introduced in Section 3.

Throughout this section we assume that d > 2(α/2)n. Similarly as in the previous

section, this implies that the process X(n) is transient. The potential operator G(n)f(x) :=

Ex
∫∞

0
f(X

(n)
t ) dt of X(n) has a density G(n)(x, y) = G(n)(y − x) = G(n)(|y − x|) with

G(n)(x) =

∫ ∞

0

(4πt)−d/2 exp

(
−|x|

2

4t

)
u(n)(t) dt,

where u(n) is the potential density of S(n). The Lévy density of X(n) is given by

J (n)(x) =

∫ ∞

0

p2(t, 0, x)µ
(n)(t)dt,

where µ(n)(t) is the Lévy density of S. Another expression for J (n) is as follows:

J (n)(x) =

∫ ∞

0

pα(t, 0, x)t−1e−tdt (4.7)

where pα is the transition density of the symmetric α-stable process in Rd. Note that J (n)(x)

depends only on |x|. Therefore, by slightly abusing notation we will define J (n)(r) := J (n)(x)

for r = |x| > 0. We want to study the asymptotic behavior of G(n) using Lemma 3.1. In

order to check the conditions of that lemma, we need some preparation.

For n ∈ N, define fn : (0, 1/en)× (0,∞) → [0,∞) by

fn(y, t) :=

{
Ln−1( 1

y
)ln( 1

y
)2

Ln−1( 4t
y

)ln( 4t
y

)2
, y < 2t

en
,

0 , y ≥ 2t
en
.

Note that fn is equal to the function f`,β, defined before Lemma 3.1, with `(y) = Ln−1(y)ln(y)2

and β = en/2. Also, for n ∈ N, let

gn(t) :=

{
fn( 2t

en
, t) , t < 1/4 ,

1 , t ≥ 1/4 .

Moreover, for n ∈ N, define hn : (0, 1/en)× (0,∞) → (0,∞) by

hn(y, t) :=
ln( 1

y
)

ln(4t
y
)
.
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Clearly, for 0 < y < 2t
en
∧ 1

en
we have that

fn(y, t) = h1(y, t) . . . hn−1(y, t)hn(y, t)2 . (4.8)

Lemma 4.6 For all y ∈ (0, 1/en) and all t > 0 we have fn(y, t) ≤ gn(t). Moreover,∫∞
0
td/2−1e−tgn(t) dt <∞.

Proof. A direct calculation of partial derivative gives

∂hn

∂y
(y, t) =

Ln( 1
y
)− Ln(4t

y
)

yLn−1(
1
y
)Ln−1(

4t
y
)ln(4t

y
)2
.

The denominator is always positive. Clearly, the numerator is positive if and only if t > 1/4.

Therefore, for t < 1/4, y 7→ hn(y, t) is increasing on (0, 2t/en), while for t > 1/4 it is

decreasing on (0, 2t/en).

Let t < 1/4. It follows from (4.8) and the fact that y 7→ hn(y, t) is increasing on (0, 2t/en)

that y 7→ fn(y, t) is increasing for 0 < y < 2t/en. Therefore,

sup
0<y<2t/en

fn(y, t) ≤ fn(2t/en, t) = gn(t) .

Clearly, fn(y, 1/4) = 1. For y ≥ 1/4, it follows from (4.8) and the fact that y 7→ hn(y, t) is

decreasing on (0, 2t/en) that y 7→ fn(y, t) is decreasing for 0 < y < 1/en. Hence

sup
0<y< 2t

en
∧ 1

en

fn(y, t) = f(0, t) := lim
y→0

fn(y, t) = 1 .

The integrability statement of the lemma is obvious. 2

Theorem 4.7 We have

G(n)(x) ∼ Γ(d/2)

2απd/2|x|dLn−1(1/|x|2)ln(1/|x|2)2
, |x| → 0.

Proof. We apply Lemma 3.1 with v(t) = u(n)(t), the potential density of S(n). By (4.5),

u(n)(t) ∼ 2

αtLn−1(1/t)ln(1/t)2
, t→ 0+,

so we take c0 = 2/α and `(t) = Ln−1(t)ln(t)2. By Remark 4.3, u(n)(t) is of order t(α/2)n−1 as

t→∞, so we may take γ = (α/2)n < d/2. Choose β = 1/2. The result follows from Lemma

3.1 and Lemma 4.6 2
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Remark 4.8 The asymptotic behavior of G(n)(x) as |x| → ∞ was proved in [17], Theorem

3.3. Denote αn = α(α/2)n−1. Then

G(n)(x) ∼ 1

πd/22αn

Γ(d−αn

2
)

Γ(αn

2
)
|x|αn−d , |x| → ∞ .

Although we could not get the exact asymptotic behaviors of J (n), the following result

about J (n) will be useful later.

Proposition 4.9 For any α ∈ (0, 2) and n ≥ 1, there exists a positive constant c such that

J (n)(r) ≤ cJ (n)(2r), for all r > 0 (4.9)

and

J (n)(r) ≤ cJ (n)(r + 1), for all r > 1. (4.10)

Proof. Using Theorem 4.4 and repeating the proof of (4.6) in [17], we can easily prove

(4.10). We omit the details. Now we prove (4.9). Recall that pα(t, x) is the transition

density of the symmetric α-stable process in Rd. It is well known (see Theorem 2.1 of [5])

that there exist positive constants C1 and C2 such that

C1(1 ∧ |x|−(d+α)) ≤ pα(1, x) ≤ C2(1 ∧ |x|−(d+α)), for all t > 0 and x ∈ Rd.

Using this one can easily see that there exists C3 > 0 such that

pα(t, x) ≤ c3pα(t, 2x), for all t > 0 and x ∈ Rd. (4.11)

Recall that

J (1)(x) =
1

2

∫ ∞

0

pα(t, x)t−1e−tdt, for all t > 0 and x ∈ Rd .

Similarly as in (3.8) we have

q(1)
α (t, x) =

∫ ∞

0

pα(s, x)
1

Γ(t)
st−1e−sds, for all t > 0 and x ∈ Rd.

Combining the two displays above with (4.11) we immediately get that

J (1)(x) ≤ C3J
(1)(2x), for all x ∈ Rd, (4.12)

q(1)
α (t, x) ≤ C3q

(1)
α (t, 2x), for all t > 0 and x ∈ Rd (4.13)

We have further that

J (2)(x) =
1

2

∫ ∞

0

p(1)(t, x)µα/2(t)dt, for all > 0 and x ∈ Rd
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and

q(2)
α (t, x) =

∫ ∞

0

pα(s, x)fα/2(t, s)ds, for all t > 0 and x ∈ Rd,

where µα/2(t) is the Levy density of the geometric α/2-subordinator. Combining the two

displays above with (4.13) we immediately get that

J (2)(x) ≤ C3J
(2)(2x), for all x ∈ Rd, (4.14)

q(2)
α (t, x) ≤ C3q

(2)
α (t, 2x), for all t > 0 and x ∈ Rd (4.15)

Now we can use induction to get that

J (n)(x) ≤ C3J
(n)(2x), for all x ∈ Rd, (4.16)

q(n)
α (t, x) ≤ C3q

(n)
α (t, 2x), for all t > 0 and x ∈ Rd. (4.17)

2

5 Capacity and Exit Time Estimates for Some Sym-

metric Lévy Processes

The purpose of this section is to establish lower and upper estimates for the capacity of balls

and the exit time from balls, with respect to a class of general symmetric Lévy processes.

Suppose that X = (Xt,Px) is a transient symmetric Lévy process on Rd. We will assume

that the potential kernel of X is absolutely continuous with a density G(x, y) = G(|y − x|)
with respect to the Lebesgue measure. This implies that (see Theorem 4.1.2 of [8]) the

transition semigroup of X has a density with respect to the Lebesgue measure. We will

assume the following conditions: G : [0,∞) → (0,∞] is a positive and decreasing function

satisfying G(0) = ∞. We will have need of the following elementary lemma.

Lemma 5.1 There exist a positive constant C1 = C1(d) such that for every r > 0 and all

x ∈ B(0, r),

C1

∫
B(0,r)

G(|y|) dy ≤
∫

B(0,r)

G(x, y) dy ≤
∫

B(0,r)

G(|y|) dy .

Moreover, the supremum of
∫

B(0,r)
G(x, y) dy is attained at x = 0, while the infimum is

attained at any point on the boundary of B(0, r).

Proof. The proof is elementary. We only present the proof of the left-hand side inequality

for d ≥ 2. Consider the intersection of B(0, r) and B(x, r). This intersection contains the
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intersection of B(x, r) and the cone with vertex x of aperture equal to π/3 pointing towards

the origin. Let C(x) be that intersection. Then∫
B(0,r)

G(|y − x|) dy ≥
∫

C(x)

G(|y − x|) dy ≥ c1

∫
B(x,r)

G(|y − x|) dy = c1

∫
B(0,r)

G(|y|) dy

where the constant c1 depends only on the dimension d. It is easy to see that the infimum

of
∫

B(0,r)
G(x, y) dy is attained at any point on the boundary of B(0, r). 2

Let Cap denote the (0-order) capacity with respect to X. For a measure µ denote

Gµ(x) :=

∫
G(x, y)µ(dy) .

For any compact subset K of Rd, let PK be the set of probability measures supported by

K. Define

e(K) := inf
µ∈PK

∫
Gµ(x)µ(dx) .

Since the kernel G satisfies the maximum principle (see, for example, Theorem 5.2.2 in [6]),

it follows from ([7], page 159) that for any compact subset K of Rd

Cap(K) =
1

infµ∈PK
supx∈Supp(µ)Gµ(x)

=
1

e(K)
. (5.1)

Furthermore, the infimum is attained at the capacitary measure µK . The following lemma

is essentially proved in [14].

Lemma 5.2 Let K be a compact subset of Rd. For any probability measure µ on K, it holds

that

inf
x∈Supp(µ)

Gµ(x) ≤ e(K) ≤ sup
x∈Supp(µ)

Gµ(x) . (5.2)

Proof. The right-hand side inequality follows immediately from (5.1). In order to prove the

left-hand side inequality, suppose that for some probability measure µ on K it holds that

e(K) < infx∈Supp(µ)Gµ(x). Then e(K)+ ε < infx∈Supp(µ)Gµ(x) for some ε > 0. We first have∫
K

Gµ(x)µK(dx) >

∫
K

(e(K) + ε)µK(dx) = e(K) + ε .

On the other hand,∫
K

Gµ(x)µK(dx) =

∫
K

GµK(x)µ(dx) =

∫
K

e(K)µ(dx) = e(K) ,

where we have used the fact that GµK = e(K) quasi everywhere in K, and the measure of

finite energy does not charge sets of capacity zero. This contradiction proves the lemma. 2
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Proposition 5.3 There exist positive constants C2 < C3 depending only on d, such that for

all r > 0
C2r

d∫
B(0,r)

G(|y|) dy
≤ Cap(B(0, r)) ≤ C3r

d∫
B(0,r)

G(|y|) dy
.

Proof. Let mr(dy) be the normalized Lebesgue measure on B(0, r). Thus, mr(dy) =

dy/(c1r
d), where c1 is the volume of the unit ball. Consider Gmr = supx∈B(0,r)Gmr(x). By

Lemma 5.1, the supremum is attained at x = 0, and so

Gmr =
1

c1rd

∫
B(0,r)

G(|y|)dy

Therefore from Lemma 5.2

Cap(B(0, r)) ≥ c1r
d∫

B(0,r)
G(|y|)dy

(5.3)

For the right-hand side of (5.2), it follows from Lemma 5.1 and Lemma 5.2 that

Cap(B(0, r)) ≤ 1

Gmr(z)
=

c1r
d∫

B(0,r)
G(z, y)

dy ≤ c1r
d

C1

∫
B(0,r)

G(|y|)
dy ,

where in the first line, z ∈ ∂B(0, r). 2

In the remaining part of this section we assume in addition that G is regularly varying

at 0 with index β < 0. This implies that

lim
u→0

G(2u)

G(u)
= 2β .

Therefore, there exists a constant r0 such that

1

2
(2β + 1)G(u) ≥ G(2u) , 0 < u < r0 . (5.4)

Proposition 5.4 There exists a positive constants C4 such that for all r ∈ (0, r0/2)

C4

∫
B(0,r/6)

G(|y|) dy ≤ inf
x∈B(0,r/6)

ExτB(0,r) ≤ sup
x∈B(0,r)

ExτB(0,r) ≤
∫

B(0,r)

G(|y|) dy . (5.5)

Proof. Let GB(0,r)(x, y) denote the Green function of the process X killed upon exiting

B(0, r). Clearly, GB(0,r)(x, y) ≤ G(x, y), for x, y ∈ B(0, r). Therefore,

ExτB(0,r) =

∫
B(0,r)

GB(0,r)(x, y) dy

≤
∫

B(0,r)

G(x, y) dy ≤
∫

B(0,r)

G(|y|) dy .
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For the left-hand side inequality, let r ∈ (0, r0/2), and let x, y ∈ B(0, r/6). Then,

GB(0,r)(x, y) = G(x, y)− ExG(X(τB(0,r)), y)

≥ G(|y − x|)−G(2|y − x|) .

The last inequality follows because |y−X(τB(0,r))| ≥ 2
3
r ≥ 2|y− x|. Let c1 = (1− 2β)/2. By

(5.4) we have that for all u ∈ (0, r0), G(u)−G(2u) ≥ c1G(u). Hence, G(|y−x|)−G(2|y−x|) ≥
c1G(|y − x|), which implies that GB(0,r)(x, y) ≥ c1G(x, y) for all x, y ∈ B(0, r/6). Now, for

x ∈ B(0, r/6),

ExτB(0,r) =

∫
B(0,r)

GB(0,r)(x, y) dy

≥
∫

B(0,r/6)

GB(0,r)(x, y) dy

≥ c1

∫
B(0,r/6)

G(x, y) dy

≥ c1C1

∫
B(0,r/6)

G(|y|) dy ,

where the last inequality follows from Lemma 5.1. 2

Example 5.5 We illustrate the last two propositions for the process X(n) studied in Section

4. Hence, we assume that d > 2(α/2)n. By a slight abuse of notation we define a function

G(n) : [0,∞) → (0,∞] by G(n)(|x|) = G(n)(x). Note that by Theorem 4.7, G is regularly

varying at zero with index β = −d. Let r0 be the constant from (5.4) with this β. Let us

first look at the asymptotic behavior of
∫

B(0,r)
G(n)(|y|) dy for small r. We have∫

B(0,r)

G(n)(|y|) dy = cd

∫ r

0

ud−1G(n)(u) du

∼ cdΓ(d/2)

απd/2

∫ r

0

ud−1

udLn−1(1/u)ln(1/u)2
du

=
cdΓ(d/2)

απd/2

∫ r

0

1

uLn−1(1/u)ln(1/u)2
du

=
cdΓ(d/2)

απd/2

1

ln(1/r)
, r → 0 .

It follows from Proposition 5.3 that there exist positive constants C5 ≤ C6 such that for all

r ∈ (0, 1/en),

C5r
dln(1/r) ≤ Cap(B(0, r)) ≤ C6r

dln(1/r) .
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Similarly, it follows from Proposition 5.4 that there exist positive constants C7 ≤ C8 such

that for all r ∈ (0, (1/en) ∧ (r0/2)),

C7

ln(1/r)
≤ inf

x∈B(0,r/6)
ExτB(0,r) ≤ sup

x∈B(0,r)

ExτB(0,r) ≤
C8

ln(1/r)
. (5.6)

Here we also used the fact that ln is slowly varying.

By use of Remark 4.8 and Proposition 5.3, we can estimate capacity of large balls. It

easily follows that as r →∞, Cap(B(0, r) is of the order rα(α/2)n−1
.

6 Harnack inequality

In this section we indicate the main steps in the proof of Harnack inequality for nonnegative

harmonic functions for the subordinate process. We do not provide all of the details, because

they have already appeared in some other papers. The methodology was introduced in [2]

and refined in [1]. We are going to use the notation and the approach from [20], combined

with some results and ideas from [17] and [22].

Let S(n) be a subordinator whose Laplace exponent φ(n) is defined in Section 4. For the

case α = 2 we assume that n = 1. Let Y be a d-dimensional Brownian motion independent

of S(n), and let X(n)(t) = Y (S
(n)
t ). As in Section 4, we assume that d > 2(α/2)n. A

nonnegative Borel function h on Rd is said to be harmonic with respect to X(n) in a domain

(i. e., a connected open set) D ⊂ Rd if it is not identically infinite in D and if for any

bounded open subset B ⊂ B ⊂ D,

h(x) = Ex[h(X
(n)(τB))1τB<∞], ∀x ∈ B,

where τB = inf{t > 0 : X
(n)
t /∈ B} is the first exit time of B.

We say that the Harnack inequality holds for X(n) if for any domain D ⊂ Rd and any

compact subset K of D, there is a constant C > 0 depending only on D and K such that

for any nonnegative function h harmonic with respect to X(n) in D,

sup
x∈K

h(x) ≤ C inf
x∈K

h(x).

The following auxiliary results are needed for the proof of Harnack inequality. Let r0 be

the constant from Example 5.5.

Lemma 6.1 There exists a positive constant C1 such that for any r ∈ (0, (1/en) ∧ (r0/2))

we have

sup
z∈B(0,r)

EzτB(0,r) ≤ C1 inf
z∈B(0,r/6)

EzτB(0,r) .
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Proof. This follows immediately from the estimate (5.6). 2

Note that it follows from Theorem 4.7 that there exist two positive constants C2 and C3

such that

C2

|x|dLn−1(1/|x|2)ln(1/|x|2)2
≤ G(n)(x) ≤ C3

|x|dLn−1(1/|x|2)ln(1/|x|2)2
, |x| < 1

en+1

(6.1)

Let us define

g(n)(u) :=
1

udLn−1(1/u2)ln(1/u2)2
, u <

1

en+1

.

It follows by calculus that there exists ρn, 0 < ρn < 1/en+1, such that u → g(n)(u) is

decreasing on (0, ρn). Define

c := max

{
1

3

(
4C3

C2

)1/d

, 1

}
. (6.2)

Since u→ Ln−1(1/u
2)ln(1/u2)2 is slowly varying as u→ 0, there exists ρ̃n, 0 < ρ̃n < 1/en+1,

such that
1

2
≤

Ln−1(
1
u2 )ln( 1

u2 )
2

Ln−1(
1

36c2u2 )ln( 1
36c2u2 )2

≤ 2 , u < ρ̃n . (6.3)

Let

Rn := min

{
1

en+1

, ρn, ρ̃n,
r0
2

}
. (6.4)

Then u → g(n)(u) is decreasing on (0, Rn), and both (6.1) and (6.3) are valid for |x| < Rn

and u < Rn respectively.

Lemma 6.2 Let β ∈ (0, 1). There exists C4 > 0 such that for any r ∈ (0, (7c)−1Rn), any

closed subset A of B(0, r), and any y ∈ B(0, r)

Py(TA < τB(0,7cr)) ≥ C4r
β Cap(A)

Cap(B(0, r))
.

Proof. Without loss of generality we may assume that Cap(A) > 0. Let G
(n)
B(0,7cr) be the

Green function of the process obtained by killing X(n) upon exiting from B(0, 7cr). If ν is

the capacitary measure of A with respect to X(n), then we have for all y ∈ B(0, r),

G
(n)
B(0,7cr)ν(y) = Ey[G

(n)
B(0,7cr)ν(X

(n)
TA

) : TA < τB(0,7cr)]

≤ sup
z∈Rd

G
(n)
B(0,7cr)ν(z)Py(TA < τB(0,7cr))

≤ Py(TA < τB(0,7cr)).
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On the other hand we have for all y ∈ B(0, r),

G
(n)
B(0,7cr)ν(y) =

∫
G

(n)
B(0,7cr)(y, z)ν(dz) ≥ ν(A) inf

z∈B(0,r)
G

(n)
B(0,7cr)(y, z)

= Cap(A) inf
z∈B(0,r)

G
(n)
B(0,7cr)(y, z) .

In order to estimate the infimum in the last display, note that G
(n)
B(0,7cr)(y, z) = G(n)(y, z)−

Ey[G
(n)(X

(n)
τB(0,7cr) , z)]. Since |y − z| < 2r < Rn, it follows by (6.1) and the monotonicity of

g(n) that

G(n)(y, z) ≥ C2g
(n)(|z − y|) ≥ C2g

(n)(2r) . (6.5)

Now we consider G(n)(X
(n)
τB(0,7cr) , z). First note that |X(n)

τB(0,7cr) − z| ≥ 7cr − r ≥ 6cr. If

|X(n)
τB(0,7cr) − z| ≤ Rn, then by (6.1) and the monotonicity of g(n)

G(n)(X(n)
τB(0,7cr)

, z) ≤ C3g
(n)(|z −X(n)

τB(0,7cr)
|) ≤ C3g

(n)(6cr) .

If, on the other hand, |X(n)
τB(0,7cr) − z| ≥ Rn, then G(n)(X

(n)
τB(0,7cr) , z) ≤ G(n)(w), where w ∈ Rd

is any point such that |w| = Rn. Here we have used the monotonicity of G(n). For |w| = Rn

we have that G(n)(w) ≤ C3g
(n)(|w|) = C3g

(n)(Rn) ≤ C3g
(n)(6cr). Therefore

Ey[G
(n)(X(n)

τB(0,7cr)
, z)] ≤ C3g

(n)(6cr) . (6.6)

By use of (6.5) and (6.6) we obtain

G(n)(y, z) ≥ C2g
(n)(2r)− g(n)(6cr)

= g(n)(2r)

(
C2 − C3

(2r)dLn−1(1/4r
2)ln(1/4r2)2

(6cr)dLn−1(1/36c2r2)ln(1/36c2r2)2

)
= g(n)(2r)

(
C2 − C3

(
1

3c

)d
Ln−1(1/4r

2)ln(1/4r2)2

Ln−1(1/36c2r2)ln(1/36c2r2)2

)

≥ g(n)(2r)

(
C2 − C3

(
1

3c

)d

2

)

≥ g(n)(2r)

(
C2 − 2C3

C2

4C3

)
=

C2

2
g(n)(2r) =

C2

2

1

4rdLn−1(1/4r2)ln(1/4r2)2
,

where in the fourth line we used (6.3). From Example 5.5 we have that Cap(B(0, r)) ≥
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c5r
d/ln(1/r). By using this in the previous display, we get

G(n)(y, z) ≥ C2

8

1

Ln−1(1/4r2)ln(1/4r2)2

c5
ln(1/r)

1

Cap(B(0, r))

=
C2c5

8

1

Ln−1(1/4r2)ln(1/4r2)2ln(1/r)

1

Cap(B(0, r))

≥ C4r
β 1

Cap(B(0, r))

To finish the proof, note that

Py(TA < τB(0,7cr)) ≥ G
(n)
B(0,7cr)ν(y) ≥ C4r

β Cap(A)

Cap(B(0, r))
.

2

Remark 6.3 It is clear from the proof that the function r → rβ can be replaced by a function

which approaches zero more slowly.

Using Proposition 4.9 and Lemma 3.5 of [20] we immediately get the following result.

Lemma 6.4 There exist positive constants C5 and C6 such that if r ∈ (0, r0/2), z ∈ B(0, r)

and H is a nonnegative function with support in B(0, 2r)c, then

EzH(X(n)(τB(0,r))) ≤ C5(EzτB(0,r))

∫
H(y)J (n)(y)dy

and

EzH(X(n)(τB(0,r))) ≥ C6(EzτB(0,r))

∫
H(y)J (n)(y)dy.

It follows from Lemma 6.1 and Lemma 6.4 that there exists a positive constant C7 such

that for any r ∈ (0, Rn), any y, z ∈ B(0, r/2) and any nonnegative function H supported in

B(0, 2r)c

EzH(X(n)(τB(0,r))) ≤ C7EyH(X(n)(τB(0,r))) . (6.7)

Lemma 6.5 Let β ∈ (0, 1). There exists a positive constant C8 such that for all 0 < ρ <

r < 1/en+1

Cap(B(0, ρ))

Cap(B(0, r))
≥ C8

(ρ
r

)d

ρβ .
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Proof. By Example 5.5
c5r

d

ln(1/r)
≤ Cap(B(0, r)) ≤ c6r

d

ln(1/r)

for every r < 1/en+1. Therefore,

Cap(B(0, ρ))

Cap(B(0, r))
≥ c5ρ

d(ln(1/ρ)

c6rd/ln(1/r)
=
c5
c6

(ρ
r

)d ln(1/r)

ln(1/ρ)
.

Note that 1/r > en+1 and hence ln(1/r) > ln(en+1) = 1. Further, there exists a constant

c7 > 0 such that
1

ln(1/ρ)
≥ c7ρ

β for all ρ ∈ (0, 1/en+1) .

The lemma is proved by taking C8 = c5c7/c6. 2

The following Harnack inequality is proved along the same lines as the ones in Theorem

3.1 in [22] and Theorem 4.5 in [17]. We omit the details.

Theorem 6.6 Let Rn and c be defined by (6.4) and (6.2) respectively. Let r ∈ (0, (14c)−1Rn).

There exists a constant C9 > 0 such that for every z0 ∈ Rd and every nonnegative bounded

function u in Rd which is harmonic with respect to X(n) in B(z0, 14cr) we have

h(x) ≤ C9h(y), x, y ∈ B(z0, r/2).

Following the well-known arguments, this theorem can be improved to

Theorem 6.7 For any domain D of Rd and any compact subset K of D, there exists a

constant C10 > 0 such that for any function h which is nonnegative in Rd and harmonic with

respect to X(n) in D, we have

h(x) ≤ C10h(y), x, y ∈ K.
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comments.
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