
UNAVOIDABLE COLLECTIONS OF BALLS FOR ISOTROPIC
LÉVY PROCESSES

ANTE MIMICA AND ZORAN VONDRAČEK

Abstract. A collection tBpxn, rnqun¥1 of pairwise disjoint balls in the Euclidean
space Rd is said to be avoidable with respect to a transient process X if the process
with positive probability escapes to infinity without hitting any ball. In this
paper we study sufficient and necessary conditions for avoidability with respect to
unimodal isotropic Lévy processes satisfying a certain scaling hypothesis. These
conditions are expressed in terms of the characteristic exponent of the process, or
alternatively, in terms of the corresponding Green function. We also discuss the
same problem for a random collection of balls. The results are generalization of
several recent results for the case of Brownian motion.

1. Introduction

Let tBpxn, rnqun¥1 be a collection of pairwise disjoint balls in the Euclidean space
Rd, d ¥ 3. For convenience we assume that none of the balls contains the origin.
This collection of balls is said to be avoidable (with respect to Brownian motion) if
Brownian motion started at the origin with positive probability escapes to infinity
without hitting any of the balls. More precisely, if X � pXt,Pxq denotes a standard
Brownian motion in Rd, A � �

n¥1Bpxn, rnq is the union of all balls, and TA �
inftt ¡ 0 : Xt P Au the hitting time to A, then A is avoidable if P0pTA   8q   1.
If the last probability is equal to 1, then we say that the collection of balls is
unavoidable. The restriction on dimension d ¥ 3 comes from the fact that for d � 1
and d � 2 any single ball is unavoidable.

The problem of determining when the collection of closed balls is avoidable has been
studied in [8] and [13]. In particular, the following result was proved in [13].
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Theorem A. If A is unavoidable, then¸
n¥1

�
rn
|xn|


d�2

� 8 . (1.1)

Conversely, if (1.1) and the separation condition

inf
m�n

|xm � xn|
r
1�2{d
n |xn|2{d

¡ 0 (1.2)

hold, then A is unavoidable.

The same result with a stronger separation condition was proved in [8, Theorem 1].
It is shown in [8, Theorem 3] that a separation condition is not redundant – there
exists an avoidable collection of balls tBpxn, rnqun¥1 (satisfying infm�n |xm�xn| ¡ 0)
such that (1.1) holds.

The family of balls tBpxn, rnqun¥1 is said to be regularly located if the following three
conditions are satisfied:

(i) There exists ε ¡ 0 such that |xm � xn| ¡ 2ε for m � n (ε separation);
(ii) There exists R ¡ 0 such that any ball Bpx,Rq contains at least one center

xn (uniform density);
(iii) There is a decreasing function φ : p0,8q Ñ p0,8q such that rn � φp|xn|q for

each n ¥ 1 (the radius of the ball is the function of the distance of its center
from the origin).

The following sufficient and necessary condition for avoidability of a regularly located
collection of balls is proved in [8, Theorem 2].

Theorem B. Suppose that the collection of balls tBpxn, rnqun¥1 is regularly located.
Then this collection is avoidable if and only if» 8

1

rφprqd�2 dr   8 . (1.3)

The main goal of this paper is to extend these two theorems to a class of isotropic
Lévy processes which, as a very special case, includes isotropic α-stable processes.
The extension is possible due to some very recent results in the potential theory of
such Lévy processes, cf. [14, 17]. We first note that since a Lévy process can be
transient in dimensions d � 1 and d � 2, the problem of avoidability can be studied
in all dimensions. Still, throughout most of the paper we will focus on the case
d ¥ 3. The reason is that in this case we need to impose minimal assumptions on
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the Lévy process. In Section 6 we will briefly discuss what can be said in case d ¤ 2
under somewhat stronger assumptions on the process.

Let d ¥ 3 and let X � pXt,Pxq be an isotropic unimodal Lévy process in Rd. This
means that for each t ¡ 0 there is a decreasing function pt : p0,8q Ñ p0,8q such
that

P0pXt P Aq �
»
A

ptp|x|q dx , A � Rd Borel .

That is, transition probabilities of X admit radial decreasing densities. Subordinate
Brownian motions are typical examples of isotropic unimodal Lévy processes. The
characteristic exponent ψ of X is defined by

E0

�
eixx,Xty

� � e�tψpxq , x P Rd ,

and is given by the Lévy-Khintchine formula

ψpxq � a|x|2 �
»
Rdzt0u

�
1 � eixx,yy � ixx, yy1|y|¤1

�
νpdyq ,

where a ¥ 0 and ν is the Lévy measure having a radial decreasing density (see [22]).
The characteristic exponent ψ is a radial function: there exists ψ0 : p0,8q Ñ p0,8q
such that ψpxq � ψ0p|x|q. In order not to overburden the notation, we will simply
write ψp|x|q instead of ψ0p|x|q. The same convention will be used for all radial
functions on Rd, e.g. we write interchangeably ptpxq and ptp|x|q.
The main assumption we impose on the process X is the following weak lower scaling
condition: There are CL ¡ 0 and α ¡ 0 such that

ψpλξq ¥ CLλ
αψpξq, for λ ¥ 1, ξ P Rd . (1.4)

Without loss of generality, we will assume that CL ¤ 1. Isotropic unimodal Lévy
processes satisfying the weak lower scaling condition were recently studied in [14].

We list several examples of such processes: (a) Brownian motion, ψpxq � |x|2; (b)
Isotropic β-stable process; ψpxq � |x|β, β P p0, 2q; (c) Independent sum of Brownian
motion and isotropic β-stable process, ψpxq � |x|2 � |x|β; (d) Independent sum of
two isotropic stable processes; ψpxq � |x|α � |x|β, α, β P p0, 2q; (e) Subordinate
Brownian motion via subordinator whose Laplace exponent is comparable to a reg-
ularly varying function at zero and at infinity with (not necessarily same) indices
from p0, 2q. For this class of examples see [17]; (f) Truncated β-stable process – the
Lévy process with the Lévy measure νpdxq � |x|�d�β1|x|¤1 dx. For other examples
see [14, Examples 1-4] and [17].

By letting λÑ 8 in (1.4) we see that ψ is unbounded. This implies that the Lévy
measure ν is infinite (unless it is zero). A consequence of this fact and transience of
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the process is that the Green function of X is well defined and is given by

Gpxq �
» 8

0

ptpxq dt , x P Rd .

The occupation measure of the process X started at x P Rd is defined by Gpx,Bq :�
Ex

8³
0

1tXtPBu dt. The Green function is the density of the occupation measure of the

process started at the origin. Note that G is radial and decreasing.

Now we are ready to state our main results which are generalizations of Theorems A
and B. Recall that A � �

n¥1Bpxn, rnq where the closed balls are pairwise disjoint
and 0 R A. Again, we say that A is avoidable (with respect to X) if P0pTA   8q   1
where TA � inftt ¡ 0 : Xt P Au.
Theorem 1.1. Let d ¥ 3 and suppose that X � pXt,Pxq is an isotropic unimodal
Lévy process in Rd satisfying the weak scaling condition (1.4).

(a) If A is unavoidable, then ¸
n¥1

Gp|xn|q
Gprnq � 8 . (1.5)

(b) Conversely, if (1.5) and the separation condition

inf
m��n

|xm � xn|d ψp|xn|�1qGprnq ¡ 0 (1.6)

hold, then A is unavoidable.

One of the key results proved in [14] states that the Green function Gp|x|q is com-
parable with |x|�dψp|x|�1q�1 (see Section 2 for more details). This means that
condition (1.5) can be written solely in terms of the given characteristic exponent
ψ: the series in (1.5) is divergent if and only if¸

n¥1

rdnψpr�1
n q

|xn|dψp|xn|�1q � 8 .

Moreover, we will show in Lemma 2.5 thatGp|xn|q{Gprnq is comparable with P0pTBpxn,rnq  
8q. Hence the series in (1.5) is divergent if and only if¸

n¥1

P0pTBpxn,rnq   8q � 8 .

Theorem 1.2. Let d ¥ 3 and suppose that X � pXt,Pxq is an isotropic unimodal
Lévy process in Rd satisfying the weak scaling condition (1.4). Suppose that the
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collection of balls tBpxn, rnqun¥1 is regularly located. Then this collection is avoidable
if and only if » 8

1

rd�1Gprq
Gpφprqq dr   8 . (1.7)

The proof of Theorem 1.1(a) is rather straightforward and we give it in a slightly
more general form. In order to prove Theorems 1.1(b) and 1.2 we modify the ap-
proach from [8] which is essentially based on estimating the probability that starting
from the origin the process X exits the ball Bp0, rq before hitting any of the ob-
stacles Bpxn, rnq. An additional difficulty is caused by the fact that X, at the exit
from Bp0, rq, jumps out of the ball, which makes its position at the exit more un-
certain than for Brownian motion which at the exit is on the boundary of Bp0, rq.
Further, since we assume the weaker separation condition (1.2) than the one from
[8], the part using the separation condition had to be substantially modified. Here
we use the scaling of the process, combined with the argument from the proof of [2,
Theorem 3]. We learned this argument from [13] who use the result of [2, Theorem
3] in the proof of Theorem A.

An alternative way of proving Theorem 1.1 is based on the concept of minimal
thinness at infinity. Recall that F � Rd is said to be minimally thin at infinity
with respect to the process X if P0pTF   8q   1. Thus, A � �

n¥1Bpxn, rnq is
avoidable if and only if it is minimally thin at infinity. A Wiener-type criterion
(see [3]) for minimal thinness at infinity with respect to Brownian motion is well
known and can be described as follows: For j P Z consider the closed cube centered
at 0, with sidelength 3j, and sides parallel to coordinate axes. Divide this cube
into 3d subcubes of sidelength 3j�1 and discard the central cube. The enumeration
tQmum¥1 of all such cubes is a Whitney decomposition of Rdzt0u. Let Cap denote
the usual Newtonian capacity. Suppose that F is closed and does not contain the
origin. Then F is minimally thin at infinity (with respect to Brownian motion) if
and only if ¸

m¥1

diampQmq2�d CappF XQmq   8 .

This criterion is used in [13] in order to prove (the converse part of) Theorem A
(see [13, Theorem 6]). It is rather straightforward, although technically demanding,
to extend the latter approach to the class of isotropic unimodal Lévy processes
satisfying the weak lower scaling condition (1.4). The first step in this approach
would be an analog of the Wiener-type criterion for minimal thinness at infinity
with respect to the Lévy process X in terms of the corresponding capacity. Here
we need an additional assumption on the process, namely that it is a subordinate
Brownian motion. Analytically this means that the characteristic exponent ψ is of
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the form ψpxq � fp|x|2q where f is a Bernstein function. Below Cap denotes the
capacity with respect to the process X.

Theorem 1.3. Let d ¥ 3 and suppose that X � pXt,Pxq is a subordinate Brownian
motion in Rd satisfying the weak lower scaling condition (1.4). Let F � Rdzt0u be
a closed set. Then F is minimally thin at infinity with respect to X if and only if¸

m¥1

GpdiampQmqqCappF XQmq   8 . (1.8)

The key step in proving this theorem is to show quasiadditivity of the capacity with
respect to the Whitney decomposition tQmum¥1. This can be achieved by modifying
the method employed in [1] and [3]. Since the full proof would be quite long, we
only outline the main steps and changes in the Appendix.

Theorem 1.3 can be used to study avoidability of a collection of balls with random
centers given by the Poisson point process. In case of Brownian motion this question
was recently studied in [9]. By adopting their method we are able to extend the
results to subordinate Brownian motions satisfying (1.4). We state the assumptions
and the result in Section 5. Again, only necessary changes in the proof are outlined.

In Section 6 we look at the case d ¤ 2. Here we need somewhat stronger assumptions
on the process. We will assume that X is a transient subordinate Brownian motion
via the subordinator whose Laplace exponent is a complete Bernstein function which
satisfies the lower and the upper scaling conditions at zero and infinity. These
conditions, called (H1) and (H2), were used in [17] to study some aspects of the
potential theory. With these conditions in place, Theorems 1.1 and 1.2 are still valid,
and we indicate modifications of proofs. The reason stronger assumptions are needed
can be explained as follows: The weak lower scaling condition (1.4) gives the lower
bound on the quotient ψpλξq{ψpξq. A corresponding upper bound ψpλξq ¤ 4λ2ψpξq
- see (2.3) - is always true, but with λ2 instead of λα. This upper bound is sufficient
for our purposes in case d ¥ 3. This is not so when d ¤ 2, which makes it necessary
to impose an appropriate upper bound.

Finally, we make a comment on the related, but more difficult, problem of avoiding
a collection of balls that are contained in the unit ball. In case of Brownian motion,
this has been studied in [4, 11, 13, 15, 19]. For Lévy processes such problems make
no sense since with positive probability the process jumps out of the unit ball, thus
making every collection avoidable. A natural jump processes for the avoidability
problem in bounded open set D is a censored α-stable process with α P p1, 2q. This
is a process obtained from isotropic stable process by suppressing jumps landing
outside of D and continuing at the place where the suppressed jump has occurred.
Such process is transient and approaches the boundary at its lifetime. Avoidability
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of collection of balls in bounded C1,1 open set is studied in [18]. In a more general
context of balayage spaces the problem of smallness of unavoidable sets has been
addressed in [16].

We finish this introduction with a few words on notation. Throughout the paper we
use a number of constants. Constants whose values are important will be denoted
by uppercase letter C1, C2, . . . , or will have subscripts to remind the reader where
they come from, e.g., the already introduced CL in (1.4). Unimportant constants
will be denoted by c1, c2, . . . . Throughout the paper we use the notation fprq � gprq
as r Ñ a to denote that fprq{gprq stays between two positive constants as r Ñ a.

2. Preliminary Results

Let d ¥ 3 and let X � pXt,Pxq be an isotropic unimodal Lévy process in Rd with
the characteristic exponent ψ satisfying the weak lower scaling condition (1.4).

The characteristic exponent ψ is a radial function. Following [14], we introduce an
increasing modification ψ� : r0,8q Ñ r0,8q of ψ by

ψ�prq � sup
sPr0,rs

ψpsq, r ¡ 0 .

By [14, Lemma 1], ψ� satisfies the following weak lower scaling condition:

ψ�pλrq ¥ C2
Lλ

αψ�prq , λ ¥ 1, r ¡ 0 . (2.1)

By [14, Proposition 1], for any r ¡ 0,

ψprq ¤ ψ�prq ¤ 12ψprq . (2.2)

Further, by [14, Lemma 1]

ψ�pλrq ¤ 2p1 � λ2qψ�prq , λ, r ¡ 0 , (2.3)

ψ�pλrq ¥ 1

2

λ2

1� λ2
ψ�prq , λ, r ¡ 0 . (2.4)

When λ ¥ 1, (2.3) reads as weak upper scaling condition on ψ�: ψ�pλrq ¤ 4λ2ψ�prq,
r ¡ 0. Note the power 2 on λ which will be sufficient when d ¥ 3.

We will need the following two estimates.

Lemma 2.1. There exists a constant CG � CGpd, CL, αq ¥ 1 such that

C�1
G

|x|dψ�p|x|�1q ¤ Gpxq ¤ CG
|x|dψ�p|x|�1q , x P Rdzt0u . (2.5)
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In particular,

1

4C2
G

λ2�dGpxq ¤ Gpλxq ¤ C2
G

CL
λα�dGpxq , λ P p0, 1s , x P Rdzt0u . (2.6)

Proof. Inequality (2.5) is proved in [14, Theorem 3]. By (1.4) and (2.3),

CLλ
�αψ�p|x|�1q ¤ ψ�pλ�1|x|�1q ¤ 4λ�2ψ�p|x|�1q ,

which implies inequality (2.6). �

Note that as the special case of the right-hand side inequality in (2.6) (with λ � 1{2)
we get the following doubling condition for the Green function: There is a constant
c ¡ 0 such that

Gp2xq ¥ c Gpxq , x P Rdzt0u . (2.7)

For an open set D � Rd we define the first exit time from D by τD � inftt ¡ 0: Xt R
Du .

Lemma 2.2. [14, Corollary 2] There is a constant CJ � CJpdq ¡ 0 such that for
any x0 P Rd and r, s ¡ 0, s ¥ 2r,

sup
xPBpx0,rq

PxpXτBpx0,rq
R Bpx0, sqq ¤ CJ

�r
s

	α
.

Definition 2.3. A function u : Rd Ñ R is harmonic in an open set D � Rd if for
any open set B � B � D and x P B the following holds

Exr|upXτBq|; τB   8s   8 and upxq � ExrupXτBq; τB   8s . (2.8)

We say that u is regular harmonic in D if (2.8) holds with B � D .

For basic properties of harmonic functions in this context see for example [20].

Lemma 2.4 (Maximum Principle). Let D � Rd be an open set and let u, v : Rd Ñ R
be regular harmonic functions in D satisfying

upxq ¥ vpxq, x P Dc .

Then upxq ¥ vpxq for all x P Rd.

Proof. Since w � u� v is regular harmonic in D and wpyq ¥ 0 for y P Dc we get

wpxq � ExrwpXτDq; τD   8s ¥ 0, x P D .

�

The first hitting time of a closed set F � Rd is defined by TF � inftt ¡ 0: Xt P F u.
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Lemma 2.5. There is a constant CE P p0, 1s so that for all x0 P Rd, r ¡ 0 and
x P Bpx0, rqc,

CE
Gpx� x0q
Gprq ¤ PxpTBpx0,rq

  8q ¤ Gpx� x0q
Gprq .

Proof. Without loss of generality we assume that x0 � 0. Set B � Bp0, rq. Since G

and x ÞÑ PxpTB   8q are regular harmonic in Bc and PxpTB   8q � 1 ¤ Gpxq
Gprq

for

all x P B, by Lemma 2.4 we get the upper bound.

Let x P Bc. By using the strong Markov property we obtain

Gpx,Bq � Ex

8»
0

1tXtPBu dt � Ex
�» 8

TB

1tXtPBu dt;TB   8
�

� ExrGpXTB , Bq;TB   8s .

Since Gpz,Bq ¤ ³
Bp0,2rq

Gpyq dy for z P B, it follows that

PxpTB   8q ¥

³
B

Gpy � xq dy³
Bp0,2rq

Gpyq dy .

By Lemma 2.1, (2.2), lower scaling condition (1.4) and (2.3) it follows that

»
Bp0,2rq

Gpyq dy ¤ c1

2r»
0

ds

sψ�ps�1q ¤ c2ψ
�pp2rq�1q�1

2r»
0

ds

s
�
2r
s

�α ¤ c3ψ
�pr�1q�1 .

Since |y � x| ¤ |y| � |x| ¤ r � |x| ¤ 2|x| for all y P B, the doubling property of the
Green function implies»

B

Gpy � xq dy ¥ Gp2xq|B| ¥ c4Gpxqrd .

Hence, from the last three displayed equations and Lemma 2.1 we deduce,

PxpTB   8q ¥ c4
c3

Gpxqrd
ψ�pr�1q�1

¥ c5
Gpxq
Gprq , x P Bp0, rqc . (2.9)

�
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We now discuss scaling of the process X. First note that without loss of generality
we may assume that ψ�p1q � ψp1q. For a ¡ 0 let

ψapξq :� ψpaξq
ψ�paq , ξ P Rd .

Then clearly,

ψa,�prq :� sup
sPr0,rs

ψapsq � ψ�parq
ψ�paq , r ¡ 0 .

Since ψa is a continuous, negative definite function, it is a characteristic exponent
of a Lévy process Xa � pXa

t qt¥0. It is easy to see that Xa has the same law as the
scaled process paXt{ψ�paqqt¥0. Indeed

E0

�
eixx,aXt{ψ�paqy

� � e�
t

ψ�paq ψpaxq � e�tψ
apxq , x P Rd .

Further, for λ ¥ 1 and ξ P Rd,

ψapλξq � ψpλaξq
ψ�paq ¥ CLλ

αψpaξq
ψ�paq � CLλ

αψapξq .
Hence, Xa is also isotropic unimodal and satisfies the same weak lower scaling
condition (1.4). From the equality in law of Xa and paXt{ψ�paqqt¥0, it immediately
follows that for any Borel set B it holds that

PxpTB   8q � PaxpT aaB   8q , x P Rd , (2.10)

where aB � tay : y P Bu and T aaB � inftt ¡ 0 : Xa
t P aBu is the hitting time of B

by Xa .

Lemma 2.6. Let a ¡ 0 and let X � pXa
t qt¥0 be a Lévy process with the Lévy

exponent ψa. The Green function Ga of Xa is given by

Gapxq � a�dψ�paqGpa�1xq , x P Rd . (2.11)

In particular, if the weak scaling condition (1.4) holds, then for every ρ ¡ 0 there is
a constant C1 � C1pd, CL, α, ρq ¡ 0 such that

Gapxq ¤ C1

� |x|2�d _ |x|α�d� , |x| ¤ ρ .

Proof. Let B � Rd be a Borel set. By equality in law of Xa and paXt{ψ�paqqt¥0 and
a change of variables, we see that

8»
0

P0pXa
t P Bq dt �

8»
0

P0paXt{ψ�paq P Bq dt � ψ�paq
8»
0

P0pXt P a�1Bq dt

� ψ�paq
»

a�1B

Gpyq dy �
»
B

a�dψ�paqGpa�1yq dy.

This shows that the Green function of Xa exists and is given by (2.11).
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Assume now that (1.4) holds. By Lemma 2.1,

Gapxq ¤ CG|x|�d ψ�paq
ψ�pa|x|�1q .

Let N P NYt0u be such that ρ�1 ¥ 2�N , i.e. N ¥ log2 ρ . Then |x|� 1
N ¥ ρ�

1
N ¥ 1{2.

Suppose that |x|�1{N ¥ 1 (i.e. |x| ¤ 1). Then by (1.4),

ψ�paq
ψ�pa|x|�1q �

ψ�paq
ψ�pa|x|� 1

N q
ψ�pa|x|� 1

N q
ψ�pa|x|� 2

N q � � �
ψ�pa|x|�N�1

N q
ψ�pa|x|�1q ¤ C�N

L |x|α .

If 1{2 ¤ |x|�1{N ¤ 1 (i.e. 1 ¤ |x| ¤ 2N) we use (2.4) to conclude that for every b ¡ 0

ψ�p|x|�1{Nbq ¥ 1

2

|x|�2{N

1 � |x|�2{N
ψ�pbq ¥ 1

4
|x|�2{Nψ�pbq .

Now the same computation as above gives that

ψ�paq
ψ�pa|x|�1q ¤ 4N |x|2 .

Finally,

Gapaq ¤ pC�N
L � 4NqCG

� |x|2�d _ |x|α�d� , |x| ¤ ρ .

�

Let Cap denote the capacity with respect to X and Capa the capacity with respect
to Xa. It is shown in [14, Proposition 3] that there exists a constant C2 � C2pdq ¡ 1
such that for any r ¡ 0,

C�1
2 ψ�pr�1qrd ¤ CappBp0, rqq ¤ C2ψ

�pr�1qrd . (2.12)

Lemma 2.7. There exists a constant C3 � C3pd, CL, αq ¡ 1 such that for every
a ¡ 0 and every r ¡ 0

C�1
3

1

Gaprq ¤ CapapBp0, rqq ¤ C3
1

Gaprq .

Proof. Since Xa satisfies the same assumptions as X with same constants, it suffices
to prove the statement for a � 1. By [21, Proposition 5.55], there exists a constant
c1 � c1pdq ¡ 1 such that for every r ¡ 0

c�1
1

rd³
Bp0,rq

Gpyq dy ¤ CappBp0, rqq ¤ c1
rd³

Bp0,rq
Gpyq dy . (2.13)

By using (2.5) and polar coordinates we see that
³
Bp0,rq

Gpyq dy � ³r
0
s�1ψ�ps�1q�1 ds

with constants depending on d, CL and α. The weak lower scaling condition implies
the upper bound

³r
0
s�1ψ�ps�1q�1 ds ¤ c2ψ

�pr�1q�1 with cc � c2pCL, αq, while (2.3)
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implies the lower bound
³r
0
s�1ψ�ps�1q�1 ds ¥ c3ψ

�pr�1q�1. By inserting in (2.13)
and using (2.5) again, we get that

CappBp0, rqq � rdψ�pr�1q � 1

Gprq .

�

Lemma 2.8. For any bounded Borel set B � Rd and for every a ¡ 0 it holds that

CapapaBq � adψ�paq�1CappBq .

Proof. Let µ denote the equilibrium measure of the set B, i.e., PxpTB   8q �
Gµpxq. Then CappBq � µpBq (see, e.g.[7, VI.4]). Let µa denote the equilibrium
measure of aB with respect to the process Xa, and define the measure rµ by rµpAq :�
a�dψ�paqµapaAq. By using (2.11) in the second, and change of variables in the third
line, we have

PaxpT aaB   8q � Gaµapaxq �
»
Gapy � axqµapdyq

� a�dψ�paq
»
Gpa�1y � xqµapdyq

�
»
Gpy � xq rµpdyq � Grµpxq .

On the other hand, PaxpT aaB   8q � PxpTB   8q � Gµpxq. By the uniqueness
principle (see [7, VI.1 Proposition 1.15]) we conclude that rµ � µ. Hence,

CappBq � µpBq � rµpBq � a�dψ�paqµapaBq � a�dψ�paqCapapaBq ,
proving the claim. �

3. Proof of Theorem 1.1

We start with a general simple sufficient condition for avoidability of collection
of balls from which the first part of Theorem 1.1 will immediately follow. Let
tBpxn, rnqun¥1 be a family of disjoint closed balls in Rd and A :� �

n¥1Bpxn, rnq.
Proposition 3.1. Let d ¥ 3 and suppose that X � pXt,Pxq is an isotropic unimodal
Lévy process in Rd satisfying the weak scaling condition (1.4). If¸

n¥1

P0pTBpxn,rnq   8q   8 , (3.1)

then A is avoidable.
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Proof. Recall first that 0 R A. To simplify notation, let Bn � Bpxn, rnq, n ¥ 1.

Choose N P N such that
8°

n¡N

P0pTBn   8q   1{2, and let G :� �
n¡N

Bn. Since

tTG   8u � �
n¡NtTBn   8u, we have that

P0pTG   8q ¤
¸
n¡N

P0pTBn   8q   1

2
.

Let upxq :� PxpTG   8q, x P Rd. The function u is regular harmonic in Gc,
and by the above, up0q   1{2. We claim that the set tx P Gc : upxq   1{2u is
unbounded. If not, D :� tx P Gc : upxq   1{2u is bounded, hence P0pτD   8q � 1.
Since u � 1 on G, upxq ¥ 1

2
on Dc. Regular harmonicity of u in Gc implies that

up0q � E0rupXτDqs ¥ 1{2. Contradiction!

Now define F :�
N�
n�1

Bn. Since F is bounded, the right-hand side inequality in

Lemma 2.5 implies that lim
|x|Ñ8

PxpTF   8q � 0 . Hence, there exists a point y P Gc

such that PypTF   8q   1{2 and PypTG   8q   1{2. Since A � F Y G, we have
that

PypTA   8q ¤ PypTF   8q � PypTG   8q   1

2
� 1

2
� 1 .

Let vpxq :� PxpTA   8q. Then v is bounded in Rd and regular harmonic in Ac. It is
proved in [14, Theorem 2] that bounded harmonic functions are (Hölder) continuous.
Define U :� tv   1u. Then U is nonempty (since y P Uq and open.

In the sequel we distinguish whether X has a jump component or not. If it does
not, then X is Brownian motion and the (classical) maximum principle implies that
U � Ac (recall that Ac is connected). In case there is a jump component, i.e. the
Lévy measure is non-trivial, we will prove that P0pTU   TAq ¡ 0. With this result we
proceed in the following way. Since pvpXTA

t qqt¥0 is a P0-martingale, by the optional
stopping theorem we have for all t ¡ 0

vp0q � E0rvpXTU^TA^tqs � E0rvpXTU^tq, TU   TAs � E0rvpXTA^tq, TA ¤ TU s
¤ E0rvpXTU^tq, TU   TAs � P0pTA ¤ TUq .

By letting tÑ 8, the first term above converges to E0rvpXTU q, TU   TAs   P0pTU  
TAq. Thus vp0q   1, proving that A is avoidable.

It remains to show that P0pTU   TAq ¡ 0. Let j denote the radially decreasing
density of the Lévy measure ν: νpdxq � jpxq dx. Suppose first that ν has unbounded
support. Let ε ¡ 0 be such that Bp0, εqXBpy, εq � H, Bpy, εq � U , and A does not
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intersect either of the balls. Then by the Ikeda-Watanabe formula,

P0pTU   TAq ¥ P0pXτBp0,εq P Bpy, εqq �
»
Bpy,εq

»
Bp0,εq

GBp0,εqpx, dyqjpz � yq dz ¡ 0 .

The general case is slightly more complicated. Suppose that jpxq ¡ 0 for |x| ¤ R,
R ¡ 0. Let 0 � x0, x1, . . . , xn � y be a sequence of points in Ac such that for
ε P p0, R{8q small enough, the balls Bpxj, εq are pairwise disjoint and contained in
Ac, and moreover |xk � xk�1|   R{4 for all k � 1, 2, . . . , n. We first show that

c :� inf
xPBpxk�1,ε{2q

PxpXτBpxk�1,εq
P Bpxk, ε{2qq ¡ 0 .

Indeed, by the Ikeda-Watanabe formula, for every x P Bpxk�1, ε{2q we have

PxpXτBpxk�1,εq
P Bpxk, ε{2qq �

»
Bpxk,ε{2q

»
Bpxk�1,εq

GBpxk�1,εqpx, zqjpz � wq dz dw

¥ jpR{2q|Bpxk, ε{2q|
»
Bpxk�1,εq

GBpxk�1,εqpx, zq dz

� jpR{2q|Bpxk, ε{2q|ExτBpxk�1,εq .

Since infxPBpxk�1,ε{2q ExτBpxk�1,εq ¡ 0, we get that c ¡ 0. Now, P0pTU   TAq is
certainly larger then the probability of successively exiting the balls Bpxk�1, εq by
jumping into Bpxk, ε{2q, k � 1, 2, . . . , n. The latter probability is bounded from
below by cn. Thus P0pTU   TAq ¥ cn ¡ 0. �

Proof of Theorem 1.1(a): The statement follows directly from Proposition 3.1 and
Lemma 2.5 which states that P0pTBpxn,rnq   8q � Gp|xn|q{Gprnq. �

Lemma 3.2. Let B P BpRdq and let V1, V2,W � Rd be open sets such that V1 �
W � W � V2. Then

P0pτV2   TBq ¤ P0pτV1   TBq
�
t sup
yPW zV1

PypτV2   TBq � 1� t

�
,

where

t :� P0

�
XτV1

P W �� τV1   TB
�
.

Proof. Suppose that 0 P V1 which is the case of interest in the forthcoming results.
It is easily checked that the statement holds true also for 0 R V1. Separating the
event in the probability on the left-hand side and using the strong Markov property
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it follows that

P0pτV2   TBq � P0pτV2   TB, XτV1
P W q � P0pτV2   TB, XτV1

R W q
¤ E0rPXτV1

pτV2   TBq; τV1   TB, XτV1
P W s � P0pτV1   TB, XτV1

R W q
¤ sup

yPW zV1

PypτV2   TBqP0pτV1   TB, XτV1
P W q � P0pτV1   TB, XτV1

R W q . �

Proof of Theorem 1.1(b). Assume that the separation condition (1.6) holds and that
A is avoidable. We will prove that¸

n¥1

Gp|xn|q
Gprnq   8 .

First note that without loss of generality we may assume that rk ¤ |xk|{2 for all k ¥
1. Indeed, if we put r1k � rk ^ |xk|{2, and the collection tBpxk, rkquk¥1 is avoidable,
then clearly the collection tBpxk, r1kquk¥1 is avoidable as well, and condition (1.6) is
true with r1k. Suppose that we have proved that

°
n¥1Gp|xn|q{Gpr1nq   8. Then

r1n � rn for all n sufficiently large. Otherwise r1n � |xn|{2 for infinitely many n,
hence Gpr1nq � Gp|xn|q for infinitely many n, and the series will diverge.

Let c0 P p0, 1q be such that

inf
j ��k

|xj � xk|dψ�p|xk|�1qGprkq ¡ c0 . (3.2)

Pick ρ ¥ 2 large enough so that

4C2
G

�
2ρ

ρ2 � 1


d�2

¤ CE
2
. (3.3)

Set

ν :�
�

2d

c0CL


1{α

¥ 1 and δ :�
�
c0CL
4dC1


1{α
1

ρ
¤ 1, (3.4)

where C1 � C1pνρq ¥ 1 is the constant from Lemma 2.6. This choice of δ implies
that for all r ¤ νρ,

Gpδrq ¤ C1pδrqα�d ¤ 2�dpδrq�d . (3.5)

Note that Gpδrnq � Gprnq (with a constant independent of n). This, together with
δ ¤ 1, implies that it suffices to prove the theorem for the balls tBpxn, δrnqun¥1.
Therefore, in the sequel we set r̃n :� δrn and consider balls tBpxn, r̃nqun¥1 .

Let θ :� P0pTA � 8q ¡ 0 by the assumption and suppose that the series in (1.5)
is divergent. Let Bn :� Bp0, ρnq and pn :� P0pτBn   TAq, n ¥ 1. We are going to
prove that lim

nÑ8
pn � 0, contradicting P0pTA � 8q ¡ 0.
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We now chose m0 P N large enough so that

CJ
ρpm0�2qα

¤ θ

2
and CLρ

αm0 ¡ 12 . (3.6)

Set Ik :� tn P N : ρk�1   |xn| ¤ ρku, k P N. Since we have assumed that the series
in (1.5) diverges, there exists ` P t0, 1, . . . ,m0 � 1u such that

8̧

j�0

¸
nPI`�m0j

Gp|xn|q
Gpr̃nq � �8 . (3.7)

Set

mj :� `�m0j qj :� sup
yPBmj�1�2 zBmj

PypτBmj�1
  TAq ,

and

tj :� P0

�
XτBmj

P Bmj�1�2

�� τBmj   TA

	
.

By Lemma 3.2 (with V1 � Bmj , W � Bmj�1�2, V2 � Bmj�1
),

pmj�1
¤ pmjpqjtj � 1� tjq , j P N . (3.8)

We will prove that
8̧

j�1

p1 � qjq � �8 . (3.9)

Suppose that (3.9) is true. Then

tj ¥
pmj � P0pXτBmj

R Bmj�1�2q
pmj

¥ θ � θ
2

pmj
¥ θ

2

by Lemma 2.2 and condition (3.6). Hence,

8̧

j�1

�
1� pqjtj � 1 � tjq

� � 8̧

j�1

p1 � qjqtj ¥ θ

2

8̧

j�1

p1 � qjq � �8 .

Together with (3.8), this implies that lim
jÑ8

pmj � 0.

It remains to prove (3.9).

Let Ωj :� Bmj�1
z�nPImj

Bpxn, r̃nq, and define

vpxq :� Px
�
XτΩj

P
¤
nPImj

Bpxn, r̃nq
	
, x P Rd .
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Then v is regular harmonic in Ωj. Note that

1 � qj � inf
xPBmj�1�2zBmj

PxpTA   τBmj�1
q

¥ inf
xPBmj�1�2zBmj

PxpXτΩj
P
¤
nPImj

Bpxn, r̃nqq

� inf
xPBmj�1�2zBmj

vpxq .

Hence, by (3.7), it suffices to show that there exists rC1 ¡ 0 such that for all j P N
large enough, we have

vpxq ¥ rC1

¸
nPImj

Gp|xn|q
Gpr̃nq for all x P Bmj�1�2zBmj . (3.10)

Define

upxq :�
¸
nPImj

PxpTBpxn,r̃nq   8q .

Then u is regular harmonic in Ωj and u � 1 on each ball Bpxn, r̃nq, n P Imj .

Let us show that there exists rC2 � rC2pρq ¡ 0 such that

upxq ¤ rC2 , for all x P
¤
nPImj

Bpxn, r̃nq . (3.11)

We are going to use a scaling-type argument. Let a � νρ�pmj�1q and let Xa �
pXa

t qt¥0 be a Lévy process with the Lévy exponent ψa. Since PxpTBpxn,r̃nq   8q �
PaxpT aBpaxn,ar̃nqq, it is enough to show that¸

nPImj

PypT aBpaxn,ar̃nq   8q ¤ rC2, for all y P
¤
nPImj

Bpaxn, ar̃nq

for some constant rC2 � rC2pρq ¡ 0.

For n P Imj set

yn � axn sn � ar̃n

s̃n � Gapsnq�1{d ρnpyq � distpy,Bpyn, snqq ,
and note that |yn| � a|xn| ¤ νρ�pmj�1qρmj � νρ, a|xn| ¥ ν ¥ 1, arn ¤ a|xn| ¤ νρ,
and sn � aδrn ¤ νρ. In particular, Bpyn, snq � Bp0, 2νρq. Further, since sn �
δparnq and arn ¤ νρ, we get from (3.5) that Gapsnq � Gapδparnqq ¤ 2�dpδparnqq�d �
2�ds�dn . Thus rsn � Gapsnq�1{d ¥ 2sn.
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Let µn be the equilibrium measure of Bpyn, snq with respect to the potential Ga.
Then

PypT aBpyn,snq   8q � pGaµnqpyq �
»

Bpyn,snq

Gapz � yqµnpdzq , y P Rd .

Define the measure rµn by rµnpdyq � 1Bpyn,s̃nqpyq dy . We will prove that there is a
constant b ¡ 0 such that for any n P Imj

Garµn ¥ bGaµn on Bpyn, rsnqc . (3.12)

Take y P Bpyn, rsnqc. Then

Garµnpyq ¥ »
Bpyn,s̃nqXBpy,ρnq

Gapz � yq dz

¥ Gapρnpyqq |Bpyn, s̃nq XBpy, ρnq|
¥ c1G

apρnpyqq |Bpyn, s̃nq| ,
where in the last inequality we have used [2, Lemma 2.1] and the fact that 2sn ¤ rsn.
On the other hand, by using Lemma 2.7 in the last line,

Gaµnpyq �
»

Bpyn,snq

Gapz � yqµnpdzq

¤ GapρnpyqqµnpBpyn, snqq
� GapρnpyqqCapapBpyn, snqq
¤ C3G

apρnpyqqGapsnq�1 .

Now we get (3.12) from the last two displays and the choice of s̃n .

By (1.4), (2.11), (3.2) and (3.4)

|yj � yk|d
p2s̃kqd ¥ 2�dad|xj � xk|dGapskq � 2�dψ�paq|xj � xk|dGprkq

¥ c02
�dψ�paqψ�p|xk|�1q�1 � c02

�dψ
�pa|xk||xk|�1q
ψ�p|xk|�1q

¡ c0CL2�dνα � 1,

since a|xk| ¥ ν ¥ 1 . Thus |yj � yk| ¡ 2 maxts̃k, s̃ju, which implies that the balls
Bpyn, s̃nq are disjoint.

Let y P �
nPImj

Bpyn, snq. Then there exists n0 P I so that y P Bpyn0 , sn0q and

y R Bpyn, s̃nq for all n P Imjztn0u .
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Therefore, by (3.12) and Lemma 2.6 it follows that¸
nPImj

PypTBpyn,snq   8q ¤ 1�
¸
nPImj
n��n0

pGaµnqpyq ¤ 1 � b�1
¸
nPImj
n ��n0

pGarµnqpyq
¤ 1� b�1

»
Bp0,2νρq

Gapyq dy

¤ 1� b�1C1

»
Bp0,2νρq

�|y|2�d _ |y|α�d� dy �: rC2 .

This proves (3.11). Clearly, vpxq � 1 for x P �
nPImj

Bpxn, r̃nq.

Now take x P Bc
mj�1

. Then

|x� xn| ¥ |x| � |xn| ¥ pρmj�1 � ρmjq � pρm0 � 1qρmj ¥ pρm0 � 1q|xn| ,
implying that

upxq ¤
¸
nPImj

Gp|x� xn|q
Gpr̃nq ¤

¸
nPImj

G
�pρm0 � 1q|xn|

�
Gpr̃nq

¤ 4C2
G

�
ρm0�1 � ρ

ρm0 � 1


d�2 ¸
nPImj

Gppρm0�1 � ρq|xn|q
Gpr̃nq

¤ 4C2
G

�
2ρ

ρ2 � 1


d�2 ¸
nPImj

Gpprm0�1 � ρq|xn|q
Gpr̃nq

¤ CE
2

¸
nPImj

Gpprm0�1 � ρq|xn|q
Gpr̃nq ,

where the third inequality we have used Lemma 2.1, in the fourth that m0 ¥ 2 and
in the last one (3.3). Clearly, vpxq � 0 for x P Bc

mj�1
. By the maximum principle

(Lemma 2.4) it follows that

rC2vpxq ¥ upxq � CE
2

¸
nPImj

G
�pρm0�1 � ρq|xn|

�
Gpr̃nq , for all x P Rd . (3.13)

Take x P Bmj�1�2zBmj . Then for xn with index in Imj ,

|x� xn| ¤ |x| � |xn| ¤ ρmj�1�2 � ρmj � pρm0�1 � ρqρmj�1 ¤ pρm0�1 � ρq|xn| .



20 ANTE MIMICA AND ZORAN VONDRAČEK

By the left-hand side inequality of Lemma 2.5 we have

upxq ¥ CE
¸
nPImj

Gp|x� xn|q
Gpr̃nq ¥ CE

¸
nPImj

G
�pρm0�1 � ρq|xn|

�
Gpr̃nq . (3.14)

Combining (3.13) and (3.14) gives

vpxq ¥ CE

2 rC2

¸
nPImj

G
�pρm0�1 � ρq|xn|

�
Gpr̃nq , x P Bmj�1�2zBmj .

Finally, by (1.4) and Lemma 2.1, G
�pρm0�1�ρq|xn|

� ¥ G
�
ρm0 |xn|

� ¥ ρm0p2�dq
4C2

G
Gp|xn|q.

Hence,

vpxq ¥ rC1

¸
nPImj

Gp|cn|q
Gpr̃nq , x P Bmj�1�2zBmj ,

with rC1 :� CEρ
m0p2�dq

8 rC2C2
G

. �

4. Proof of Theorem 1.2

Lemma 4.1. If the family of balls tBpxn, rnqun¥1 is regularly located, then

8̧

n�1

Gp|xn|q
Gpφp|xn|qq   8 if and only if

8»
1

rd�1Gprq
Gpφprqq dr   8 .

Proof. Recall that R ¡ 0 is the constant from the uniform density condition. Set
Ak � tn P N : 2Rk ¤ |xn|   2Rpk � 1qu for k P N . By comparing measures of the
sets and using the ε separation condition it follows that the number of balls with

centers in Ak is at most p2Rpk�1q�εqd�p2Rk�εqdq
εd

for k large enough so that rn   ε.

Hence, for some constant c1 � c1pε, d, Rq ¡ 0, there are at most c1p2kRqd�1 balls
with center in Ak for all k P N .

In a similar fashion, by using uniform density, we deduce that, for some constant
c2 � c2pε, d, Rq ¡ 0, there are at least c2p2kRqd�1 balls with center in Ak .
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Since both G and φ are decreasing we obtain

8̧

n�1

Gp|xn|q
Gprnq �

8̧

n�1

Gp|xn|q
Gpφp|xn|qq ¥

8̧

k�1

Gp2Rpk � 1qq
Gpφp2Rpk � 1qqqc2p2kRq

d�1

¥ c3

8̧

k�1

2Rpk�2q»
2Rpk�1q

Gprq
Gpφprqqr

d�1 dr ¥ c4

8»
1

rd�1Gprq
Gpφprqq dr .

The other bound can be proved similarly. �

By Theorem 1.1 if (1.7) holds then the collection of balls is avoidable. In the
other direction, we effectively show that if the regularly spaced collection of balls is
avoidable then the separation condition (1.6) is automatically satisfied. We will need
to count the balls in annuli of the form Apx, r, 2rq :� ty P Rd : r ¤ |y � x| ¤ 2ru,
r ¡ 0. From the separation condition it follows that there exists N1 � N1pdq P N
such that for all x P Rd and all r ¡ 0 the number of balls Bpxn, rnq with centers in
Apx, r, 2rq is bounded from above by N1r

d. Similarly, the uniform density condition
implies that there exists N2 � N2pdq P N such that for all r ¡ 0 large enough the
number of balls Bpxn, rnq with centers in Ap0, r, 2rq is bounded from below by N2r

d.

Recall that A � �
n¥1Bpxn, rnq.

Lemma 4.2. Suppose that the family of balls tBpxn, rnqun¥1 is regularly located. If
the function r ÞÑ rdGprq{Gpφprqq is unbounded (at infinity), then A is unavoidable.

Proof. Assume that A is avoidable and let θ :� P0pTA � 8q ¡ 0. Fix

a :�
�

2CE
θ


α
_ 4 .

Since rdGprq{Gpφprqq is unbounded, there exists a sequence tRjuj¥1 such that
pRjqdGpRjq{GpφpRjqq Ñ 8 as j Ñ 8, and additionally satisfies Rj�1 ¥ 4aRj

and

G
�
Rj�1

2

	
Gp2aRjq ¤

CE
2

N2

N1

. (4.1)

For j ¥ 1 let Bj :� Bp0, Rjq,
pj :� P0pτBj   TAq ,
qj :� sup

xPBp0,aRjqzBj

PxpτBj�1
  TAq ,

tj :� P0

�
XτBj

P Bp0, aRjq
��� τBj   TA

	
.
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By Lemma 3.2, for all j ¥ 1,

pj�1 ¤ pjpqjtj � 1� tjq .
Moreover, by Lemma 2.2,

tj ¥
pj � P0pXτBj

R Bp0, aRjqq
pj

¥ θ � θ
2

pj
¥ θ

2
.

Let Ij :� tn ¥ 1 : Rj ¤ |xn| ¤ 2Rju be the set of indices of balls with centers in
the annulus Ap0, Rj, 2Rjq. Define Aj :� �

nPIj
Bpxn, rnq. We claim that there exists

δ ¡ 0 such that

PxpTAj   τBj�1
q ¥ δ , for all x P Bp0, aRjqzBj . (4.2)

This will imply that for all j ¥ 1,

1 � qj � inf
xPBp0,aRjqzBj

PxpTA   τBj�1
q ¥ inf

xPBp0,aRjqzBj
PxpTAj   τBj�1

q ¥ δ .

In the same way as in the proof of Theorem 1.1(b) we conclude that limjÑ8 pj � 0,
thus deriving a contradiction. Hence, it remains to show (4.2). We first modify

the function φ in the following way. Let rφprq � φp2Rjq if r P rRj, 2Rjs for some

j ¥ 1, and rφprq � φprq otherwise. Take new balls Bpxn, rφp|xn|qq and let rAj :��
nPIj

Bpxn, rφp|xn|qq. Since rAj � Aj, proving (4.2) for rAj will suffice. We keep using

notation φ for the new rφ. Then for n P Ij we have that rn � φp|xn|q � φp2Rjq �
φpRjq �: φj.

Define u : Rd Ñ r0,8q by

upxq :�
¸
nPIj

PxpTBpxn,rnq   8q .

Then u is harmonic in Ωj :� Bj�1zAj.
Let n0 P Ij and x P Bpxn0 , rn0q. By the separation condition, for any k ¥ 1, there
are at most N12

kd balls with centers xn such that ε2k�1 ¤ |x � xn| ¤ ε2k. For such
xn we have by Lemma 2.5

PxpTBpxn,rnq   8q ¤ Gp|x� xn|q
Gpφp|xn|qq ¤ Gpε2k�1q

Gpφjq .

The at mostN12
kd such balls contribute in the sum (for u) at mostN12

kdGpε2k�1q{Gpφjq.
It suffices to count only such balls for which ε2k ¤ 6Rj (there are none for which
this is not true). Now we estimate¸

k: ε2k¤6Rj

2kdGpε2k�1q .
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Let k0 P N be such that ε2k0�1 ¤ 6Rj   ε2k0 . Then by using (2.5) in the second and
the sixth inequality, (1.4) in the third, and (2.3) in the fifth, we get¸

k: ε2k¤6Rj

2kdGpε2k�1q ¤
k0̧

k�1

2kdGpε2k�1q ¤ 2dCG
εd

k0̧

k�1

1

ψ�ppε2k�1q�1q

¤ 2dCG
εdCL

1

ψ�ppε2k0�1q�1q
k0̧

k�1

2pk�k0qα

¤ 2dCG
εdCLp1 � 2�αq

1

ψ�pp6Rjq�1q
¤ 2p1� 62q2dCG

εdCLp1 � 2�αq
1

ψ�ppRjq�1q
¤ 74 2dC2

G

εdCLp1 � 2�αq GpRjqRd
j � c1GpRjqRd

j

with c1 � c1pd, ψq ¡ 0. Hence,

upxq ¤ 1 � c1
GpRjqRd

j

GpφpRjqq ¤ c2
GpRjqRd

j

GpφpRjqq ,

by the assumption that rdGprq{Gpφprqq is unbounded. Thus we have proved that

upxq ¤ c2
GpRjqRd

j

Gpφjq , x P Aj . (4.3)

Let x P Bp0, aRjqzBj. Then |x� xn| ¤ |x| � |xn| ¤ aRj �Rj ¤ 2aRj. Thus

upxq ¥ CE
¸
nPIj

Gp|x� xn|q
Gpφjq ¥ CE

¸
nPIj

Gp2aRjq
Gpφjq ¥ CE

Gp2aRjq
Gpφjq N2R

d
j . (4.4)

Let x P Bc
j�1. Then |x� xn| ¥ |x| � |xn| ¥ Rj�1 � 2Rj ¥ Rj�1{2. Hence,

upxq ¤
¸
nPIj

Gp|x� xn|q
Gpφjq ¤

¸
nPIj

GpRj�1{2q
Gpφjq ¤ GpRj�1{2q

Gpφjq N1R
d
j

¤ N1R
d
j

Gpφjq
CE
2

N2

N1

Gp2aRjq � CE
2

Gp2aRjq
Gpφjq N2R

d
j , (4.5)

where in the second line we used (4.1).

The maximum principle together with (4.3) and (4.5) implies that

c2
GpRjqRd

j

Gpφjq PxpTAj   τBj�1
q ¥ upxq � N2CE

2

Gp2aRjq
Gpφjq Rd

j , x P Ωj . (4.6)
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Note that by (2.5) and (2.3),

Gp2aRjq ¥ 1

2d�1p1 � 4a2qC2
G

GpRjq .

By using (4.4) for x P Bp0, aRjqzBj and the above estimate, we get

c2
GpRjqRd

j

Gpφjq PxpTAj   τBj�1
q ¥ N2CE

2

Gp2aRjq
Gpφjq Rd

j ¥
N2CE

2d�2p1 � 4a2qC2
G

GpRjqRd
j

Gpφjq .

Hence

PxpTAj   τBj�1
q ¥ N2CE

2d�2p1 � 4a2qC2
Gc2

.

This proves (4.2). �

Proof of Theorem 1.2. Assume that the integral in (1.7) converges. By Lemma

4.1,
°
n¥1

Gp|xn|q
Gpφp|xn|qq

  8. Proposition 3.1 now implies that the collection of balls is

avoidable.

To show the converse, assume that the (regularly located) collection of balls is
avoidable. It follows from Lemma 4.2 that r ÞÑ rdGprq{Gpφprqq is bounded (at
infinity) implying that

inf
n¥1

Gpφp|xn|qq
|xn|dGp|xn|q ¡ 0 .

By (2.2) and (2.5),

ψp|xn|�1q � ψ�p|xn|�1q � |xn|�dGp|xn|q�1 .

Together with ε separation this gives

inf
m ��n

|xm � xn|d ψp|xn|�1qGpφp|xn|qq ¥ p2εqd inf
n¥1

Gpφp|xn|qq
|xn|dGp|xn|q ¡ 0 .

Thus, the separation condition (1.6) is satisfied and the claim follows from Theorem
1.1(b). �

5. Poissonian collections of balls

In this section we consider collections of randomly located closed balls with centers
coming from a Poisson point process. Since we closely follow the arguments from
[9], most of the proofs are omitted. We precisely spell out the assumptions and give
proofs when some (non-trivial) changes are needed.

We consider a Poisson point process on Rd with mean measure µpdxq � µpxq dx
absolutely continuous with respect to the Lebesgue measure and an independent
isotropic unimodal Lévy process X with the characteristic exponent ψ satisfying
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the weak lower scaling condition (1.4). In this section we will assume that X is a
subordinate Brownian motion. Let G denote the Green function of X. We impose
the following assumptions on the radius function φ and the density µ: There exists
a constant CP ¡ 1 such that"

C�1
P φpxq ¤ φpyq ¤ CPφpxq

C�1
P µpxq ¤ µpyq ¤ CPµpxq for y P B

�
x, |x|

2

	
, (5.1)

φpxq ¤ 1

2
|x| , for all x P Rd , (5.2)

ψ�p|x|�1q�1Gpφpxqq�1µpxq ¤ CP , |x| Ñ 8 . (5.3)

Let P be a realization of points from the Poisson point process and let

AP �
¤
xPP

Bpx, φpxqq . (5.4)

The collection of closed balls AP is said to be avoidable if there exists a point x P Rd

such that PxpTAP   8q   1. Note that AP is avoidable if and only if it is minimally
thin at infinity. The latter condition apparently does not depend on the starting
point x.

Following [9] we say that we have percolation Lévy process if there is a positive
probability that the realization of point from the Poisson point process results in an
avoidable collection of balls.

Theorem 5.1. Suppose that (5.1)–(5.3) hold and that X is a subordinate Brownian
motion with the characteristic exponent ψ satisfying the weak lower scaling condition
(1.4). Percolation Lévy process occurs if and only if»

|x|¡1

Gpxq
Gpφpxqq µpxq dx   8 . (5.5)

Moreover, in case percolation Lévy process occurs, the random collection of balls AP
is avoidable with probability one.

In order to prove this theorem we use the characterization of minimal thinness at
infinity given in Theorem 1.3. Let tQmum¥1 be the Whitney decomposition described
in the introduction and let

W pAP ,8q �
¸
m¥1

GpdiampQmqqCappAP XQmq .

Then AP is avoidable if and only if W pAP ,8q   8.

The following lemma is proved exactly in the same way as [9, Lemma 2, Lemma 4].

Lemma 5.2. (i) PpAP is minimally thin at infinityq P t0, 1u.



26 ANTE MIMICA AND ZORAN VONDRAČEK

(ii) ErW pAP ,8qs   8 if and only if W pAP ,8q   8 P-a.s.

The next result is the key part of the proof of the theorem.

Lemma 5.3. There exists a constant C4 ¡ 1 such that for any Whitney cube Q and
any point x P Q

C�1
4

µpQq
Gpφpxqq ¤ ErCappAP XQqs ¤ C4

µpQq
Gpφpxqq . (5.6)

We defer the proof of the lemma until the end of the section and outline the proof
of theorem based on Lemmas 5.2 and 5.3.

Proof of Theorem 5.1. Note that

ErW pAP ,8qs �
8̧

m�1

GpdiampQmqqErCappAP XQmqs .

By Lemma 5.3, for any point xm P Qm, ErCappAP X Qmqs � µpQmq
Gpφpxmqq

. Since

diampQmq � |xm|, we also have that GpdiampQmqq � Gp|xm|q. Hence the sum
above is comparable with

8̧

m�1

Gp|xm|q
Gpφpxmqq µpQmq .

It follows from (5.1) that both φ and µ are approximately constant on each Whitney
cube. This implies that the last sum is convergent if and only if the integral in (5.5) is
convergent. Hence, ErW pAP ,8qs   8 if and only if the integral in (5.5) converges.
The first claim of the theorem now follows form Lemma 5.2(ii), while the second
one from Lemma 5.2(i). �

Proof of Lemma 5.3. The right-hand side inequality is proved exactly in the same
way as in the proof of [9, Lemma 3]. To prove the left-hand side inequality we follow
[9] and use the super-additivity property of capacity due to Aikawa and Borichev,
[2, Theorem 3], which in our case reads as follows: For r ¡ 0 and a ¡ 0 the radius
ηaprq is chosen so that CapapBp0, rqq � |Bp0, ηaprqq| � σdη

aprqd (σd is the volume
of the unit ball). By Lemma 2.7,

C�1
3 Gaprq�1 ¤ CapapBp0, rqq ¤ C3G

aprq�1 .

This gives the following estimate for ηaprq:rC�1
3 Gaprq�1{d ¤ ηaprq ¤ rC3G

aprq�1{d,

for rC3 � rC3pd, C3q � rC3pd, CL, αq ¥ 1. Let r0 ¡ 0. Choose a � apr0q ¡ 0 small
enough so that rC�1

3 Gaparq�1{d ¥ 2ar for all 0   r ¤ r0 . (5.7)
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To see that this is possible, first note that

Gaparq1{d � a�1ψ�paq1{dGprq1{d .
Then it follows for a ¤ r�1

0 ¤ r�1 that

rC�1
3 Gaparq�1{d � rC�1

3 aψ�paq�1{dGprq�1{d ¥ C
�1{d
G

rC�1
3 ar

�
ψ�pr�1q
ψ�paq


1{d

¥ C
2{d
L C

�1{d
G

rC�1
3 arparq�α

and so it is enough to choose a ¡ 0 small enough so that

C
2{d
L C

�1{d
G

rC�1
3 par0q�α ¥ 2 (5.8)

i.e.

a ¤
�

2C
1{d
G
rC3

C
2{d
L

��1{α

r�1
0 . (5.9)

Note that a ¤ r�1
0 . Hence, pηaq�parq :� maxpηaparq, 2arq � ηaparq for 0   r ¤ r0.

Let F :� �
Bpyk, aρkq � Bpx, 1q for some x P Rd, where ρk ¤ r0 and the larger

balls Bpyk, rC3G
apaρkq�1{dq are disjoint (note that the latter balls are larger because

of (5.7)). Then Bpxk, pηaq�paρkqq are disjoint, hence by [2, Theorem 3]

CapapF q ¥ c1
¸
k

CapapBpyk, aρkqq , (5.10)

for some constant c1 ¡ 0.

Let φ0 � minxPQ φpxq. By (5.1), φ0 � φpxq for all x P Q. It suffices to consider
only balls with centers in Q and assume that all such balls are of radius φ0 (this
decreases the capacity of P XQ). Choose (cf. (5.9) with r0 � φ0)

a � min

$&% 1

`pQq?d,
�

2C
1{d
G
rC3

C
2{d
L

��1{α

φ�1
0

,.- ,

where `pQq is the sidelength of Q.

Note that a ¤ φ�1
0 and that (5.2) implies a ¥ c2{`pQq.

Let
N � tp8C1{d

G
rC3q�1`pQq aGapaφ0q1{du .

The cube Q is divided into Nd smaller sub-cubes with sidelength `pQq{N , and a
typical sub-cube is denoted by Q1. Let Q2 � Q1 be a cube concentric to Q1 with
sidelength `pQq{p4Nq. If Q2 contains points from the realization of P , choose one
such point. This gives points x1, x2, . . . , xM , where M ¤ Nd is random. By the
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choice of a and N , Bpxk, φ0q � Q1 where Q1 is the sub-cube that contains xk.
Indeed, since

aGapaφ0q1{d � ψ�paq1{dGpφ0q1{d

we get

N ¤ p8C1{d
G
rC3q�1`pQqψ�paq1{dGpφ0q1{d

¤ p8C1{d
G
rC3q�1`pQqψ�paq1{dC1{d

G φ�1
0 ψ�pφ�1

0 q�1{d

¤ 8�1`pQqφ�1
0

�
ψ�paq
ψ�pφ�1

0 q

1{d

¤ 8�1`pQqφ�1
0 ,

where the last inequality follows from a ¤ φ�1
0 . This implies that φ0 ¤ `pQq

8N
. Set

AP,Q �
M¤
k�1

Bpxk, φ0q .

Then CappAP X Qq ¥ CappAP,Qq. To estimate CappAP,Qq we scale the cube Q by

factor a. Since `paQq ¤ 1{?d, the scaled cube aQ is inside a ball of radius 1. By
choice of N we have that

8C
1{d
G
rC3G

apaφ0q�1{d ¤ a`pQq
N

,

which implies that balls Bpaxk, rC3G
apaφ0q�1{dq are disjoint. The scaling relation for

capacity (Lemma 2.8), (5.10), and Lemma 2.7 imply that

CappAP,Qq � ψ�paqa�dCapapaAP,Qq
¥ c1ψ

�paqa�dMCapapBp0, aφ0qq
� c1MCappBp0, φ0qq ¥ c3

Gpφ0qM .

Hence,

ErCappAP XQqs ¥ c3
Gpφ0q EM . (5.11)

The probability that Q2 contains a Poisson point is equal to

1 � PpP XQ2 � Hq � 1 � e�µpQ
2q .

To estimate µpQ2q, let x P Q2 be the center of Q2. Then

µpQ2q � µpxq|Q2| � µpxq
�
`pQq
N


d
.
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By choice of N and using a ¥ c2{`pQq we get�
`pQq
N


d
¤ c4a

�dGapaφ0q�1 � c4ψ
�paq�1Gpφ0q�1

¤ c5ψ
�pc2{`pQqq�1Gpφ0q�1 .

Thus, by (2.4) we get

µpQ2q ¤ c6ψ
�p`pQq�1q�1Gpφ0q�1µpxq ¤ c7ψ

�p|x|�1q�1Gpφpxqq�1µpxq ¤ c7CP

by (5.3). Finally, since 1� e�x ¥ c8x for x P r0, c7CP s,
EM �

¸
Q2�Q

�
1 � e�µpQ

2q
	
¥ c8

¸
Q2�Q

µpQ2q ¥ c9µpQq .

Together with (5.11) this gives that ErCappAP XQqs ¥ c9
µpQq

Gpφpxqq
. �

6. Case d ¤ 2

Let f : p0,8q Ñ p0,8q be a Bernstein function with the representation

fpλq �
»
r0,8q

p1� e�λtqmpdtq , λ ¡ 0 .

If the Lévy measure mpdtq has a completely monotone density mptq, then f is called
a complete Bernstein function. The function f serves as the Laplace exponent
of a subordinator (i.e. a nonnegative Lévy process) S � pStqt¥0 – the law of St
is characterized by Ere�λSts � e�tfpλq. Let W � pWt,Pxq be an independent d-
dimensional Brownian motion. The process X � pXtqt¥0 defined by Xt � W pStq
is called a subordinate Brownian motion. It is an isotropic unimodal Lévy process
with the characteristic exponent ψ given by ψpxq � fp|x|2q. Note that ψp|x|q is
already increasing and hence equal to ψ�.

Following [17] we will assume the next two hypotheses:

(H1): There exist constants 0   δ1 ¤ δ2   1 and a1, a2 ¡ 0 such that

a1λ
δ1fptq ¤ fpλtq ¤ a2λ

δ2fptq, λ ¥ 1, t ¥ 1 . (6.1)

(H2): There exist constants 0   δ3 ¤ δ4   1 and a3, a4 ¡ 0 such that

a3λ
δ4fptq ¤ fpλtq ¤ a4λ

δ3fptq, λ ¤ 1, t ¤ 1 . (6.2)

By [17, (2.11)] we have that under (H1) and (H2) there are constants a5 and a6
such that

a5λ
δ1^δ3 ¤ fpλrq

fprq ¤ a6λ
δ2_δ4 , λ ¥ 1, r ¡ 0 .
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In terms of the characteristic exponent ψ the above reads

a5λ
2pδ1^δ3qψprq ¤ ψpλrq ¤ a6λ

2pδ2_δ4qψprq , λ ¥ 1, r ¡ 0 .

If we define CL :� a5 and α :� 2pδ1 ^ δ3q, we see that (1.4) holds true. Note that
ψpλrq ¤ ψprq for λ P p0, 1q. By defining CU :� a6 and β :� 2pδ2 _ δ4q, it follows
from the right-hand side inequality above that

ψpλrq ¤ CUp1� λβqψprq , λ ¡ 0, r ¡ 0 . (6.3)

Moreover, again by [17, (2.11)] we conclude that for λ ¤ 1 and all r ¡ 0

fpλrq
fprq ¥ a�1

6 λδ2_δ4 ,

which gives
ψpλrq ¥ C�1

U λβψprq , λ ¤ 1 , r ¡ 0 . (6.4)

From now on we assume that d ¤ 2, and that f is a complete Bernstein function
satisfying (H1) and (H2). Inequality (6.3) replaces (2.3) which for d ¤ 2 is not
good enough. Inequality (6.4) replaces (2.4). It follows from [17, Theorem 3.4(b)]
that X is transient if d ¡ β. Moreover, the Green function exists and satisfies (2.1).
The inequality (2.6) reads

1

2CUC2
G

λβ�dGpxq ¤ Gpλxq ¤ C2
G

CL
λα�dGpxq , λ P p0, 1s , x P Rdzt0u .

We comment now the other preliminary results from Section 2. Lemma 2.2 is valid
in all dimensions (see [14, Corollary 2]), as well as Lemmas 2.4 and 2.5. Discussion
of the scaling goes through unchanged (see [17, Section 2]). The statements and
proofs of Lemmas 2.6–2.8 are the same.

We also note that the global scale invariant Harnack inequality is valid (see [17,
Theorem 3.7]). Moreover, it is shown in [17] that the process X satisfies conditions
(1.4), (1.13) and (1.14) from [10]. Hence by [10, Proposition 4.14], nonnegative
harmonic functions are Hölder continuous.

With these preparations we see that Theorems 1.1, 1.2, 1.3 and 5.1 are valid as
stated with minor changes in proofs – (2.3) is replaced with (6.3) giving β instead
of 2.

By considering the examples from the introduction, we see that some of them do
not satisfy the current assumptions. Here are the ones where the process X is
not transient: (i) Brownian motion, ψpxq � |x|2; (ii) Isotropic stable process with
ψpxq � |x|β for d ¤ β; (iii) Sum of two independent isotropic stable processes,
ψpxq � |x|α � |x|β, d ¤ α, β ¤ 2; (iv) Truncated β-stable process. An example
of a transient process not satisfying our assumptions is an independent sum of a
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Brownian motion and isotropic β-stable process with β   d, ψpxq � |x|2 � |x|β.
In particular, the right-hand side inequality in (H1) is not true, and consequently,
(6.3) fails.

7. Appendix

7.1. Wiener’s criterion for minimal thinness at infinity. Let X � pXt,Pxq
be a subordinate Brownian motion in Rd, d ¥ 3, satisfying the weak lower scaling
condition (1.4). The goal of this appendix is to outline a proof of Theorem 1.3.

The concept of minimal thinness is defined for points on the minimal Martin bound-
ary. For the exposition in the classical case of Brownian motion we refer to [5], while
for a class of Markov processes the theory was developed in [12]. Our first goal is to
show that the Martin boundary of Rd with respect to X consists of one point that
we call infinity and denote by 8 (the fact tacitly used in introduction). This will
follow from the next Liouville-type result. In the proof we use a global scale invari-
ant Harnack inequality proved in [14, Theorem 1]: There exists a constant C ¡ 0
such that for every r ¡ 0 and every function u : Rd Ñ r0,8q which is harmonic in
Bp0, 2rq,

sup
xPBp0,rq

upxq ¤ C inf
xPBp0,rq

upxq .

Lemma 7.1. If u : Rd Ñ r0,8q is harmonic in Rd with respect to X, then u is a
constant function.

Proof. Without loss of generality we may assume that infxPRd upxq � 0 (otherwise
subtract the infimum). Then upxq � 0 for every x P Rd. Suppose not, and without
loss of generality assume that up0q ¡ 0 (note that X is translation invariant). Then
for every r ¡ 0,

0   up0q ¤ sup
xPBp0,rq

upxq ¤ C inf
xPBp0,rq

upxq .

By letting r Ñ 8 we obtain 0   up0q ¤ 0 – contradiction. �

This shows that the Martin boundary, and hence the minimal Martin boundary, of
Rd consists of a single point that we denote by 8.

For A � Rd, let TA :� inftt ¡ 0 : Xt P Au. A Borel set A � Rd is said to be
minimally thin with respect to X at 8 if there exists x P Rd such that

PA1pxq :� PxpTA   8q   1 .

Here PA denotes the hitting operator to A for X: PAupxq � ExrupXTAq, TA   8s.
In potential-theoretic language, PA1 � pRA

1 - the balayage of 1 onto A. Recall that if
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u is an excessive function with respect to X and A � Rd, then the reduit of u onto
A is defined by

RA
u � infts : s excessive and s ¥ u on Au.

Probabilistically, RA
u pxq � ExrupXDAq, DA   8s, where DA � inftt ¥ 0 : Xt P Au

is the debut of A. The balayage pRA
u is the lower semi-continuous regularization of

the reduit RA
u . It holds that pRA

u ¤ RA
u ¤ u, and RA

u � u on A (see [6] for details).

Proposition 7.2. The following are equivalent:

(a) A is minimally thin at 8;

(b) There exists a potential u � Gµ such that

lim inf
xÑ8, xPA

upxq ¡ 0 . (7.1)

(c) There exists a potential u � Gµ such that

lim inf
xÑ8, xPA

upxq � �8 . (7.2)

Proof. We sketch the proof following the proof of [5, Theorem 9.2.6]. Clearly, (c)
implies (b). Assume that (b) holds. Then lim infxÑ8,xPA upxq �: a ¡ 0. Hence,
there exists a Martin topology neighborhood W of 8 such that u ¥ a{2 on AXW .

If pRAXW
1 � 1, then u ¥ pRAXW

u ¥ a{2 ¡ 0 everywhere, which implies that a{2 is a

harmonic minorant of u. This is impossible, since u is a potential. Hence pRAXW
1 � 1,

i.e., A is minimally thin at 8.

Suppose that (a) holds. By [12, Lemma 2.7], there exists an open subset U � Rd

such that A � U , and U is minimally thin at 8. By the analog of [5, Theorem
9.2.5], there is a sequence pWnqn¥1 of Martin topology open neighborhoods of 8
shrinking to 8 such that pRUXWn

1 p0q ¤ 2�n. Let u1 :� °8
n�1

pRUXWn
1 . Then u1 is a

sum of potentials, hence a potential itself since u1p0q   8. Further, pRUXWn
1 � 1 on

the open set U XWn. Therefore, u1pxq Ñ 8 as xÑ 8, x P U . Thus (c) holds. �

Before we proceed, let us record an estimate on the Green function. Let η P p0, 1q.
By Lemma 2.1,

Gpη|y|q ¤ C2
Gη

�d ψ�p|y|�1q
ψ�pη�1|y|�1q Gp|y|q .

By (2.3),

ψ�p|y|�1q � ψ�pηη�1|y|�1q ¤ 2p1 � η2qψ�0pη�1|y|�1q ¤ 4ψ�pη�1|y|�1q .
Thus, for η P p0, 1q,

Gpη|y|q ¤ 4C2
Gη

�dGp|y|q , y P Rd, y � 0 . (7.3)
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The following proposition is an analog of [6, Proposition V. 4.15]. The proof is
similar and uses Lemma 2.1 and (7.3). We omit the proof.

Proposition 7.3. Let E � Rd such that 0 R E. Let psnqn¥1 be a sequence in p0,8q
and δ P p0, 1q such that sn�1 ¥ δ�1sn for every n ¥ 1. Define

An � E X tx P Rd : sn ¤ |x|   sn�1u , n ¥ 1 .

Then E is minimally thin at 8 if and only if
°8
n�1R

An
1 p0q   8.

Corollary 7.4. (Wiener’s criterion) Let E � Rd such that 0 R E, and let λ ¡ 1.
For n P N define An � tx P Rd : λn�1 ¤ |x|   λnu. Then E is minimally thin at 8
if and only if

8̧

n�1

GpλnqCappE X Anq   8 . (7.4)

Again, this is an analog of [6, Corollary V. 4.17] with the same proof.

7.2. Quasiadditivity of capacity. In this subsection we indicate the main steps
in the proof that the capacity Cap is quasiadditive with respect to a certain Whitney
decomposition. More precisely, if tQmum¥1 is a Whitney decomposition of Rdzt0u,
then there exists a constant C5 ¡ 0 such that for every E � Rdzt0u,

CappEq ¥ C5

8̧

m�1

CappE XQmq . (7.5)

This will follow from [3, Theorem 7.1.3] once we check conditions of that theorem.

The first condition is that tQm, rQmu, where rQm is the double cube, is a quasidisjoint
decomposition of Rdzt0u (see [3, pages 146, 147] for details). This is clear. The
second condition is that the kernel, in our caseGpx, yq, satisfies the Harnack property

with respect to tQm, rQmu, namely that Gpx, yq � Gpx1, yq for x, x1 P Qm, y P rQc
m.

This is also clear since distances |x� y| and |x1 � y| are comparable. What remains
to show is that there exists a measure σ comparable to Cap with respect to tQmu.
This means that there exists a constant C6 ¡ 0 such that

σpQmq � CappQmq for all Qm , (7.6)

σpEq ¤ C6CappEq for every Borel set E . (7.7)

Let us define the measure mψ in the following way:

mψpEq �
»
E

ψ�p|x|�1q dx . (7.8)
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Note that for any r ¡ 0,

mψpBp0, rqq �
»
Bp0,rq

ψ�p|x|�1q dx ¤ c1

» r
0

td�1ψ�pt�1q dt ¤ c2r
dψ�pr�1q ¤ c3

1

Gprq .

The proof of the following statements is similar to the proof of [1, Lemma 1].

Lemma 7.5. (i) If 0   r   |x|{2, then mψpBpx, rqq � rdψp|x|�1q.
(ii) If r ¥ |x|{2, then mψpBpx, rqq � 1

Gprq
� rdψpr�1q.

(iii) In both cases, there exists a constant C ¡ 0 such that mψpBpx, rqq ¤ C 1
Gprq

for all r ¡ 0 and all x P Rd.
(iv) There exists C � Cpdq ¡ 0 such that for all r ¡ 0 and all x P Rd mψpBpx, 2rqq ¤

CmψpBpx, rqq, i.e. mψ is a doubling measure.
(v) Let p P p1,8q and 1{p � 1{q � 1. There exist a constant C ¡ 0 such that³

Bpx,rq
|y|�d{qψp|y|�1q1{p dy ¤ C pmψpBpx, rqqq1{q.

Remark 7.6. Let Q be a Whitney cube for Rdzt0u. This means that 0 R Q, and the
sidelength `pQq of Q is comparable to its diameter diampQq. If x0 denotes the center
of Q, then Bpx0, c1diampQqq � Q � Bpx0, c2diampQqq (for universal 0   c1   c2).
Hence

CappQq � CappBpx0, diampQqq � 1

GpdiampQqq .
On the other hand, since |x0| is comparable with diampQq, by Lemma 7.5

mψpQq � mψpBpx0, diampQqq � 1

GpdiampQqq .

This shows that mψ satisfies (7.6) with respect to the family of Whitney cubes for
Rdzt0u.

Now we need an estimate for the difference of two Green functions. This is the only
place where we use the assumption that X is a subordinate Brownian motion.

Lemma 7.7. There exists a constant c ¡ 0 such that for all x, y P Rd we have

|Gpxq �Gpyq| ¤ c

�
1

2
^ |x� y|
|x| ^ |y|



G p|x| ^ |y|q . (7.9)

Proof. Let Updtq denote the potential (renewal) measure of the subordinator. Then
(see, e.g. [21, (5.47)])

Gpxq �
»
r0,8q

p4πtq�d{2e� |x|2
4t Updtq , x P Rd .

We look separately at two cases.
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Case 1: |x� y| ¥ 1
2
p|x| ^ |y|q. Then by monotonicity of G and Lemma 2.1 (2.6), we

trivially have that

|Gpxq �Gpyq| ¤ Gp|x|q �Gp|y|q ¤ 2G

�
1

2
p|x| ^ |y|q



¤ c1Gp|x| ^ |y|q .

Case 2: |x� y| ¤ 1
2
p|x| ^ |y|q. By the mean value theorem we have that

e�
|x|2
4t � e�

|y|2
4t � �2xx� ϑpy � xq, y � xy

4t
e�

|x�ϑpy�xq|2
4t ,

where ϑ � ϑpx, y, tq P p0, 1q. We estimate the absolute value above as follows:����e� |x|2
4t � e�

|y|2
4t

���� ¤ |y � x| |x� ϑpy � xq|
2t

e�
|x�ϑpy�xq|2

4t

¤ 2|y � x|
|x� ϑpy � xq|

|x� ϑpy � xq|2
4t

e�
|x�ϑpy�xq|2

4t

¤ 2|y � x|
|x� ϑpy � xq| e

� |x�ϑpy�xq|2
8t ,

where in the last line we used the elementary inequality se�s ¤ e�s{2, s ¡ 0. Since

|x� ϑpy � xq| ¥ |x| � ϑ|y � x| ¥ |x| � |x| ^ |y|
2

¥ |x| ^ |y|
2

,

we get that ����e� |x|2
4t � e�

|y|2
4t

���� ¤ 4|y � x|
|x| ^ |y| e

�

�
|x|^|y|

2
?

2


2

4t .

Therefore,

|Gpxq �Gpyq| ¤
»
r0,8q

p4πtq�d{2
����e� |x|2

4t � e�
|y|2
4t

���� Updtq
¤ 4|y � x|

|x| ^ |y|
»
r0,8q

p4πtq�d{2e�
�
|x|^|y|

2
?

2


2

4t Updtq

� 4|y � x|
|x| ^ |y| G

� |x| ^ |y|
2
?

2



¤ c2

|y � x|
|x| ^ |y| Gp|x| ^ |y|q ,

where in the last inequality we have again used (2.6). �

Let us define the maximal function with respect to the measure mψ. For f : Rd Ñ R,
let

Mψfpxq � sup
1

mψpQq
»
Q

fpyqmψpdyq , (7.10)

where the supremum is taken over all cubes Q containing x.
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From now on, given a cube Q, we denote by rQ the double cube, that is the cube
centered at the same point as Q but the size twice long.

Lemma 7.8. (i) There exists a constant C ¡ 0 such that for all f : Rd Ñ R,
all r ¡ 0 and all x0 P Rd,

sup
x,x1PBpx0,rq

»
RdzBpx0,2rq

|Gpx, yq �Gpx1, yq|fpyqmψpdyq ¤ CMψfpx̃0q , (7.11)

where rx0 is any point in Bpx0, rq.
(ii) There exists a constant C ¡ 0 such that for all f : Rd Ñ R and all cubes Q

sup
x,x1PQ

»
Rdz rQ

|Gpx, yq �Gpx1, yq|fpyqmψpdyq ¤ CMψfprx0q , (7.12)

where rx0 is any point in Bpx0, rq.
(iii) There exists a constant C ¡ 0 such that for all cubes Q

sup
x,x1PQ

»
Rdz rQ

|Gpx, yq �Gpx1, yq|mψpdyq ¤ C . (7.13)

The proof of (i) and (ii) follows the method of the proof of [3, Lemma 14.4], while
(iii) follows by taking f � 1.

Introduce the operator

Tψfpxq :�
»
Rd
Gpx, yqfpyqmψpdyq , (7.14)

and the norms

}f}p,ψ :�
�»

Rd
|f |p dmψ


1{p

.

The goal is to prove the following theorem.

Theorem 7.9. (i) Let 1   p   8. There exists a constant C ¡ 0 such that
}Tψf}p,ψ ¤ C}f}p,ψ.

(ii) There exists a constant C ¡ 0 such that for every λ ¡ 0, and every measure
µ,

λmψ

�"
x P Rd :

»
Rd
Gpx, yqµpdyq ¡ λ

*

¤ CµpRdq . (7.15)

Part (ii) of Theorem 7.9 immediately implies that condition (7.7) is satisfied for the
measure mψ. Indeed, suppose that µ is a measure such that Gµ ¥ 1 on E. With
λ � 1, (7.15) implies

mψpEq ¤ mψpGµ ¥ 1q ¤ CµpRdq .
Since CappEq � inftµpRdq : Gµ ¥ 1 on Eu, we get that mψpEq ¤ CCappEq.
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Theorem 7.9 is proved through a series of lemmas that exactly follow Lemmas 3, 5
and 6 in [1]. Recall that α ¡ 0 is the exponent form the weak lower scaling condition
(1.4). Without loss of generality we may assume that 0   α   2.

Lemma 7.10. Suppose that p P p1,8q satisfies 1   p   d
d�α

, and let 1
p
� 1

q
� 1.

There exists a constant C ¡ 0 such that for any cube Q in Rd,»
Q

|Tψfpxq|mψpdxq ¤ C}f}q,ψmψpQq1{p . (7.16)

Note that if γ � p1 � pq�1, then p � 1
γ
� 1, and 1   p   d

d�α
is equivalent to

d�α
2d�α

  γ   1
2
.

Lemma 7.11. Let d�α
2d�α

  γ   1
2
. There exists a constant C ¡ 0 such that if

0   ε   1, Q is a cube and rQ the double cube, f ¥ 0 with supppfq � rQ and

}f}1,ψ ¤ εmψp rQq, then

mψ ptx P Q : Tψfpxq ¡ 1uq ¤ Ce1�γmψpQq .

Lemma 7.12. Let d�α
2d�α

  γ   1
2
. There exist constants B ¡ 0 and C ¡ 0 such that

if λ ¡ 0, 0   ε   1, f ¥ 0 and a cube Q has a point x1 such that Tψfpx1q ¤ λ, then

mψ ptx P Q : Tψfpxq ¡ Bλ,Mψfpxq ¤ ελuq ¤ Cε1�γmψpQq .

With Lemmas 7.10–7.12, the proof of Theorem 7.9 is the same as the proof of [1,
Theorem 3].

7.3. Aikawa’s Wiener-type criterion for minimal thinness at infinity. Let
tQmum¥1 be a Whitney decomposition of Rdzt0u with cubes of size 3n, n P Z. By
the previous subsection, there exists a constant C ¡ 1 such that for every E � Rd,

C�1
8̧

m�1

CappE XQmq ¤ CappEq ¤ C
8̧

m�1

CappE XQmq . (7.17)

Proof of Theorem 1.3. Take λ � 3 in Corollary 7.4 and define An � tx P Rd :
3n ¤ |x|   3n�1u. If An X Qm � H, then diampQmq � 3n, and therefore Gp3nq �



38 ANTE MIMICA AND ZORAN VONDRAČEK

GpdiampQmqq. Thus,¸
n

Gp3nqCappE X Anq �
¸
n

Gp3nq
¸
m

CappE X An XQmq

�
¸
m

¸
n

Gp3nqCappE X An XQmq

�
¸
m

¸
n,AnXQm�H

GpdiampQmqqCappE X An XQmq

�
¸
m

GpdiampQmqq
¸

n,AnXQm�H

CappE X An XQmq

�
¸
m

GpdiampQmqqCappE XQmq .

The first line follows from (7.17). One inequality in the last line is subadditivity of
capacity. For another we argue as follows. There exists N P N such that for every
Qm,

°
n,AnXQm�H

1 � °
n 1AnXQm ¤ N . Hence,

°
n,AnXQj�H

CappE X An X Qjq ¤
NCappE XQjq. �
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[9] T. Carroll, J. O’Donovan, J. Ortega-Cerdà, On Lundh’s percolation diffusion, Stoch. Pro-

cess. Appl. 122 (2012) 1988–1997.
[10] Z.-Q. Chen, T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric

measurespaces, Probab. Theory Relat. Fields 140 (2008), 277–317.
[11] J. O’Donovan, Brownian motion in a ball in the presence of spherical obstacles,

Proc. Amer. Math. Soc. 138 (2010) 1711-1720.
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[20] R. Song, Z. Vondraček, Harnack inequality for some classes of Markov processes, Math. Z.
246 (2004) 177–202.
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Croatia

E-mail address: amimica@math.hr

Department of Mathematics, University of Zagreb, Bijenička c. 30, 10000 Zagreb,
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