UNAVOIDABLE COLLECTIONS OF BALLS FOR ISOTROPIC
LEVY PROCESSES

ANTE MIMICA AND ZORAN VONDRACEK

ABSTRACT. A collection { B(, ) }n=1 of pairwise disjoint balls in the Euclidean
space R? is said to be avoidable with respect to a transient process X if the process
with positive probability escapes to infinity without hitting any ball. In this
paper we study sufficient and necessary conditions for avoidability with respect to
unimodal isotropic Lévy processes satisfying a certain scaling hypothesis. These
conditions are expressed in terms of the characteristic exponent of the process, or
alternatively, in terms of the corresponding Green function. We also discuss the
same problem for a random collection of balls. The results are generalization of
several recent results for the case of Brownian motion.

1. INTRODUCTION

Let {B(2n,7,)}n=1 be a collection of pairwise disjoint balls in the Euclidean space
R¢, d > 3. For convenience we assume that none of the balls contains the origin.
This collection of balls is said to be avoidable (with respect to Brownian motion) if
Brownian motion started at the origin with positive probability escapes to infinity
without hitting any of the balls. More precisely, if X = (X;,P,) denotes a standard
Brownian motion in R?, A = Uns1 B(xp,r,) is the union of all balls, and Ty =
inf{t > 0: X; € A} the hitting time to A, then A is avoidable if Py(T4 < o) < 1.
If the last probability is equal to 1, then we say that the collection of balls is
unavoidable. The restriction on dimension d > 3 comes from the fact that for d = 1
and d = 2 any single ball is unavoidable.

The problem of determining when the collection of closed balls is avoidable has been
studied in [8] and [13]. In particular, the following result was proved in [13].
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Theorem A. If A is unavoidable, then

S

n=1

Conversely, if (1.1) and the separation condition
inf [T = 2|

— >0 1.2
m#£n nl;?/d|xn|2/d (1.2)

hold, then A is unavoidable.

The same result with a stronger separation condition was proved in [8, Theorem 1].
It is shown in [8, Theorem 3] that a separation condition is not redundant — there
exists an avoidable collection of balls { B(Z,, ) }nx1 (satisfying inf,,., |2m —2,| > 0)
such that (1.1) holds.

The family of balls {B(x,,, ) }n>1 is said to be regularly located if the following three
conditions are satisfied:

(i) There exists € > 0 such that |z, — z,,| > 2¢ for m # n (e separation);
(ii) There exists R > 0 such that any ball B(z, R) contains at least one center
x,, (uniform density);
(iii) There is a decreasing function ¢ : (0,00) — (0, 0) such that r, = ¢(|z,|) for
each n > 1 (the radius of the ball is the function of the distance of its center
from the origin).

The following sufficient and necessary condition for avoidability of a regularly located
collection of balls is proved in [8, Theorem 2].

Theorem B. Suppose that the collection of balls {B(x,, 7)) n=1 45 reqularly located.
Then this collection is avoidable if and only if

JOO ro(r)* 2 dr < . (1.3)

1

The main goal of this paper is to extend these two theorems to a class of isotropic
Lévy processes which, as a very special case, includes isotropic a-stable processes.
The extension is possible due to some very recent results in the potential theory of
such Lévy processes, cf. [14, 17]. We first note that since a Lévy process can be
transient in dimensions d = 1 and d = 2, the problem of avoidability can be studied
in all dimensions. Still, throughout most of the paper we will focus on the case
d = 3. The reason is that in this case we need to impose minimal assumptions on
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the Lévy process. In Section 6 we will briefly discuss what can be said in case d < 2
under somewhat stronger assumptions on the process.

Let d = 3 and let X = (X;,[P,) be an isotropic unimodal Lévy process in R?. This
means that for each t > 0 there is a decreasing function p; : (0,00) — (0,00) such
that

Po(X; € A) = J pe(|z))dz,  AcR? Borel.
A

That is, transition probabilities of X admit radial decreasing densities. Subordinate
Brownian motions are typical examples of isotropic unimodal Lévy processes. The
characteristic exponent ¢ of X is defined by

EO [ei<m,Xt>] _ e—tw(m) : re Rd,

and is given by the Lévy-Khintchine formula

V() = alz|* + f (1= + iz, Yly<1) v(dy),
RA\{0}

where a = 0 and v is the Lévy measure having a radial decreasing density (see [22]).

The characteristic exponent 1) is a radial function: there exists v : (0, 00) — (0, o)

such that ¥(x) = 1o(|z]). In order not to overburden the notation, we will simply

write ¢(|x|) instead of ¢y(|z]). The same convention will be used for all radial

functions on R?, e.g. we write interchangeably p;(z) and p;(|z]).

The main assumption we impose on the process X is the following weak lower scaling
condition: There are Cr > 0 and « > 0 such that

P(AE) = O Y (8), for A\>1, £eR?. (1.4)

Without loss of generality, we will assume that C', < 1. Isotropic unimodal Lévy
processes satisfying the weak lower scaling condition were recently studied in [14].

We list several examples of such processes: (a) Brownian motion, ¥ (z) = |z|*; (b)
Isotropic S-stable process; ¥(x) = |z|?, 3 € (0,2); (c) Independent sum of Brownian
motion and isotropic S-stable process, ¥(z) = |z|* + |z|?; (d) Independent sum of
two isotropic stable processes; ¥(z) = |z|* + |z|?, o, 8 € (0,2); (e) Subordinate
Brownian motion via subordinator whose Laplace exponent is comparable to a reg-
ularly varying function at zero and at infinity with (not necessarily same) indices
from (0, 2). For this class of examples see [17]; (f) Truncated S-stable process — the
Lévy process with the Lévy measure v(dz) = |z|~* 1 ,<; dz. For other examples
see [14, Examples 1-4] and [17].

By letting A — oo in (1.4) we see that ¢ is unbounded. This implies that the Lévy
measure v is infinite (unless it is zero). A consequence of this fact and transience of
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the process is that the Green function of X is well defined and is given by

G(z) = Joopt(x) dt, zeR?.

0

The occupation measure of the process X started at x € R? is defined by G(z, B) :=

Q0
E, S Lix,epy dt. The Green function is the density of the occupation measure of the
0

process started at the origin. Note that GG is radial and decreasing.

Now we are ready to state our main results which are generalizations of Theorems A
and B. Recall that A = |J,., B(x,7,) where the closed balls are pairwise disjoint
and 0 ¢ A. Again, we say that A is avoidable (with respect to X) if Po(T4 < ) < 1
where Ty = inf{t > 0: X, € A}.

Theorem 1.1. Let d = 3 and suppose that X = (X;,P,) is an isotropic unimodal
Lévy process in RY satisfying the weak scaling condition (1.4).

(a) If A is unavoidable, then

(1.5)
7;1 G(rn)
(b) Conversely, if (1.5) and the separation condition

iIﬂlFf |2 — 20| (|2, G(ry) > 0 (1.6)

hold, then A is unavoidable.

One of the key results proved in [14] states that the Green function G(|x|) is com-
parable with |z|=%)(]z|~})~! (see Section 2 for more details). This means that
condition (1.5) can be written solely in terms of the given characteristic exponent
. the series in (1.5) is divergent if and only if

Dl =
=1 |$n|d¢ |x | Y

Moreover, we will show in Lemma 2.5 that G(|z,|)/G(r,) is comparable with Po(T5,, ..\ <
o). Hence the series in (1.5) is divergent if and only if

Z ]P)O(TE(xnmn) < OO) = Q0.

n=1

Theorem 1.2. Let d = 3 and suppose that X = (X;,P,) is an isotropic unimodal
Lévy process in R satisfying the weak scaling condition (1.4). Suppose that the
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collection of balls { B(x,,, ) }n>1 8 regularly located. Then this collection is avoidable

iof and only of

©rd1G(r) o
1 —G(¢(T)) dr < oo. (1.7)

The proof of Theorem 1.1(a) is rather straightforward and we give it in a slightly
more general form. In order to prove Theorems 1.1(b) and 1.2 we modify the ap-
proach from [8] which is essentially based on estimating the probability that starting
from the origin the process X exits the ball B(0,r) before hitting any of the ob-
stacles B(zy,7,). An additional difficulty is caused by the fact that X, at the exit
from B(0,r), jumps out of the ball, which makes its position at the exit more un-
certain than for Brownian motion which at the exit is on the boundary of B(0, 7).
Further, since we assume the weaker separation condition (1.2) than the one from
[8], the part using the separation condition had to be substantially modified. Here
we use the scaling of the process, combined with the argument from the proof of [2,
Theorem 3]. We learned this argument from [13] who use the result of [2, Theorem
3] in the proof of Theorem A.

An alternative way of proving Theorem 1.1 is based on the concept of minimal
thinness at infinity. Recall that F < R? is said to be minimally thin at infinity
with respect to the process X if Po(Tp < o0) < 1. Thus, A = J,o, B(zn, ) is
avoidable if and only if it is minimally thin at infinity. A Wiener-type criterion
(see [3]) for minimal thinness at infinity with respect to Brownian motion is well
known and can be described as follows: For j € Z consider the closed cube centered
at 0, with sidelength 3/, and sides parallel to coordinate axes. Divide this cube
into 3¢ subcubes of sidelength 3'~! and discard the central cube. The enumeration
{Qm}m=1 of all such cubes is a Whitney decomposition of R?\{0}. Let Cap denote
the usual Newtonian capacity. Suppose that F' is closed and does not contain the
origin. Then F' is minimally thin at infinity (with respect to Brownian motion) if
and only if

Z diam(Q,,)? ™ Cap(F N Q,,) < .

mz=1

This criterion is used in [13] in order to prove (the converse part of) Theorem A
(see [13, Theorem 6]). It is rather straightforward, although technically demanding,
to extend the latter approach to the class of isotropic unimodal Lévy processes
satisfying the weak lower scaling condition (1.4). The first step in this approach
would be an analog of the Wiener-type criterion for minimal thinness at infinity
with respect to the Lévy process X in terms of the corresponding capacity. Here
we need an additional assumption on the process, namely that it is a subordinate
Brownian motion. Analytically this means that the characteristic exponent ¢ is of
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the form ¢(z) = f(|z|*) where f is a Bernstein function. Below Cap denotes the
capacity with respect to the process X.

Theorem 1.3. Let d = 3 and suppose that X = (X, P,) is a subordinate Brownian
motion in R? satisfying the weak lower scaling condition (1.4). Let F < RI\{0} be
a closed set. Then F is minimally thin at infinity with respect to X if and only if

> G(diam(Q,,)) Cap(F A Q) < 0. (1.8)

mz1

The key step in proving this theorem is to show quasiadditivity of the capacity with
respect to the Whitney decomposition {@Q;,}m=1. This can be achieved by modifying
the method employed in [1] and [3]. Since the full proof would be quite long, we
only outline the main steps and changes in the Appendix.

Theorem 1.3 can be used to study avoidability of a collection of balls with random
centers given by the Poisson point process. In case of Brownian motion this question
was recently studied in [9]. By adopting their method we are able to extend the
results to subordinate Brownian motions satisfying (1.4). We state the assumptions
and the result in Section 5. Again, only necessary changes in the proof are outlined.

In Section 6 we look at the case d < 2. Here we need somewhat stronger assumptions
on the process. We will assume that X is a transient subordinate Brownian motion
via the subordinator whose Laplace exponent is a complete Bernstein function which
satisfies the lower and the upper scaling conditions at zero and infinity. These
conditions, called (H1) and (H2), were used in [17] to study some aspects of the
potential theory. With these conditions in place, Theorems 1.1 and 1.2 are still valid,
and we indicate modifications of proofs. The reason stronger assumptions are needed
can be explained as follows: The weak lower scaling condition (1.4) gives the lower
bound on the quotient ¥(A)/1(€). A corresponding upper bound ¥(A\) < 4X%9)(€)
- see (2.3) - is always true, but with A\? instead of A*. This upper bound is sufficient
for our purposes in case d = 3. This is not so when d < 2, which makes it necessary
to impose an appropriate upper bound.

Finally, we make a comment on the related, but more difficult, problem of avoiding
a collection of balls that are contained in the unit ball. In case of Brownian motion,
this has been studied in [4, 11, 13, 15, 19]. For Lévy processes such problems make
no sense since with positive probability the process jumps out of the unit ball, thus
making every collection avoidable. A natural jump processes for the avoidability
problem in bounded open set D is a censored a-stable process with « € (1,2). This
is a process obtained from isotropic stable process by suppressing jumps landing
outside of D and continuing at the place where the suppressed jump has occurred.
Such process is transient and approaches the boundary at its lifetime. Avoidability
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of collection of balls in bounded C*! open set is studied in [18]. In a more general
context of balayage spaces the problem of smallness of unavoidable sets has been
addressed in [16].

We finish this introduction with a few words on notation. Throughout the paper we
use a number of constants. Constants whose values are important will be denoted

by uppercase letter C,Cs, ..., or will have subscripts to remind the reader where
they come from, e.g., the already introduced Cp, in (1.4). Unimportant constants
will be denoted by ¢y, ¢a, . ... Throughout the paper we use the notation f(r) = g(r)

as r — a to denote that f(r)/g(r) stays between two positive constants as r — a.

2. PRELIMINARY RESULTS

Let d > 3 and let X = (X;,P,) be an isotropic unimodal Lévy process in R? with
the characteristic exponent 1 satisfying the weak lower scaling condition (1.4).

The characteristic exponent 1) is a radial function. Following [14], we introduce an
increasing modification ¢* : [0,0) — [0, ) of ¢ by

() = sup $(s), 1> 0.

s€[0,r]

By [14, Lemma 1], ¥* satisfies the following weak lower scaling condition:

V() = CEIN**(r), A=1,r>0. (2.1)
By [14, Proposition 1], for any r > 0,
o(r) < *(r) < 12¢(r). (2.2)
Further, by [14, Lemma 1]
P (Or) < 2L+ N)Y(r), A\r >0, (2.3)
P (Ar) = %1 i2)\2¢*(r), A1 >0, (2.4)

When A > 1, (2.3) reads as weak upper scaling condition on ¢*: ¢*(\r) < 4\2*(r),
r > 0. Note the power 2 on A which will be sufficient when d > 3.

We will need the following two estimates.

Lemma 2.1. There exists a constant Cg = Ce(d, Cp, ) = 1 such that

-1
CVG < G([L’) < OG

g (o < @ S Ggery e TERAOL (29)
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In particular,
1 2—d C% a—d d
—5 AT G (1) < G(Ax) < ZAG(x), Ae (0,1], z e R\{0}. (2.6)
4C% Cr
Proof. Inequality (2.5) is proved in [14, Theorem 3]. By (1.4) and (2.3),
CoA™ Y (Ja™h) < " (A e ™) < 42|,
which implies inequality (2.6). O
Note that as the special case of the right-hand side inequality in (2.6) (with A = 1/2)

we get the following doubling condition for the Green function: There is a constant
¢ > 0 such that

G(2r) = c G(z), xeRN{0}. (2.7)
For an open set D < R? we define the first ezit time from D by 7p = inf{t > 0: X, ¢
D} .
Lemma 2.2. [14, Corollary 2| There is a constant C; = C;(d) > 0 such that for

any vo € R? and r,s > 0, s = 2r,

r\ o
sup Px(XTB(wM) ¢ B(xg,s)) <Cy (—) .
z€B(xo,r)

S

Definition 2.3. A function u: R? — R is harmonic in an open set D < RY if for
any open set B < B < D and z € B the following holds

E.[|u(X.,)|; 78 < 0] < 0 and u(zr) = B [u(X,,); 78 < 0] . (2.8)
We say that u is regular harmonic in D if (2.8) holds with B = D.

For basic properties of harmonic functions in this context see for example [20].

Lemma 2.4 (Maximum Principle). Let D < R? be an open set and let u,v: R — R
be regular harmonic functions in D satisfying

u(z) = v(x), re D°.

Then u(x) = v(z) for all z € RY.

Proof. Since w = u — v is regular harmonic in D and w(y) = 0 for y € D we get
w(x) =E [w(X,,);7p <] =20, zeD.

4

The first hitting time of a closed set F' < R? is defined by T = inf{t > 0: X; € F'}.
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Lemma 2.5. There is a constant Cg € (0,1] so that for all xo € R%, r > 0 and

x € B(xg,r)e,

G(z — o)
G(r)

G(z — o)

“ GO

< Pe(Tppmn <) <

xg,T

Proof. Without loss of generality we assume that zo = 0. Set B = B(0,r). Since G
and xz — P,(Tp < o0) are regular harmonic in B¢ and P,(Tp < o0) = 1 < g(r)
all x € B, by Lemma 2.4 we get the upper bound.

Let x € B°. By using the strong Markov property we obtain

o0
G(l’, B) = Ew ]-{XtGB} dt = Ex lf 1{Xt€B} dt,TB < O

Tg

= Ex[G(XTBaB)7TB < OO] .

Since G(z,B) < | G(y)dy for z € B, it follows that
B(0,2r)

g y—x)dy
§ Glydy

B(0,2r)

PI(TB < OO) =

By Lemma 2.1, (2.2), lower scaling condition (1.4) and (2.3) it follows that

| o fdfé < e ((2n)” >1I8(i;)a<c3w*<rl>l

B(0,2r)

Since |y — x| < |y| + |z| < r + |z| < 2|x| for all y € B, the doubling property of the
Green function implies

JG(y —2)dy = G(22)|B| = csG(z)r*

B

Hence, from the last three displayed equations and Lemma 2.1 we deduce,

s G(z)rd - G(x)
e (=) T TG0

P.(Ts < w0) = xe B(0,r)°. (2.9)
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We now discuss scaling of the process X. First note that without loss of generality
we may assume that ¢*(1) = ¢ (1). For a > 0 let

arey . Y(ag)
77Z) (g) T ’QZ)*(CL) ) §€Rd‘
Then clearly,

r>0.

a () ary _ Y(ar)
P*r(r) 82}33]”’(8> @)

Since 1* is a continuous, negative definite function, it is a characteristic exponent
of a Lévy process X = (X{)i=0. It is easy to see that X* has the same law as the
scaled process (aX¢/y+(a))t=0- Indeed

E [6i<x’axt/w*(a>>] = ¢ T YP) — ot (@) , zeR?
Further, for A > 1 and ¢ € R,
Y(Aag)
PUAE) = — > O\ —— = CpLA"Y*(§) .
0= = N TN
Hence, X® is also isotropic unimodal and satisfies the same weak lower scaling

condition (1.4). From the equality in law of X and (aXi/y+(a))t=0, it immediately
follows that for any Borel set B it holds that

P, (Tg < ©) = P (T < ), zeR?, (2.10)

where aB = {ay : y € B} and T = inf{t > 0 : X{ € aB} is the hitting time of B
by X¢.

P(af)

Lemma 2.6. Let a > 0 and let X = (X{)i=0 be a Lévy process with the Lévy
exponent Y. The Green function G* of X* is given by

Gr) = a *(a)G(az), weR:. (2.11)
In particular, if the weak scaling condition (1.4) holds, then for every p > 0 there is
a constant Cy = C1(d, Cp, cr, p) > 0 such that

G*(z) < Oy (|2~ v [z]*79), lz| < p.

Proof. Let B < R? be a Borel set. By equality in law of X® and (a Xt/ () )i=0 and
a change of variables, we see that

0 e 0]

JJP’o(Xf € B)dt = fPo(aXt/wa) € B)dt =4’(a)
0

Po(X, € a ' B) dt

¥*(a) f Gly) dy = j 0~ (a)G (a™1y) dy.

a~1B B
This shows that the Green function of X® exists and is given by (2.11).
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Assume now that (1.4) holds. By Lemma 2.1,

—q_ ¥*(a)
G(r) < Cgla| *——"—.
= Colrl s el )
Let N € NU {0} be such that p' = 27~ ie. N = log,p. Then |z|"v = p~~ = 1/2.
Suppose that |7V =1 (ie. |z| < 1). Then by (1.4),

WHa)  _ Wfa)  alaN)  Wt(al2| )
Yralel™) g (ale| w) r(alzR)  Ur(aleT)
If 1/2 < 2|7V <1 (le. 1 < |z < 2V) we use (2.4) to conclude that for every b > 0

1 |x|7#N . 1, - N
3 T L V0 > el 0),

4
Now the same computation as above gives that

(@)
S <4kl

7N|x|a.

V¥ (e N0) =

Finally,
G*(a) < (O +4N)C (Jaf v 2. el <
O

Let Cap denote the capacity with respect to X and Cap® the capacity with respect
to X It is shown in [14, Proposition 3] that there exists a constant Cy = Cy(d) > 1
such that for any r > 0,

Cy ™ (r~Hr? < Cap(B(0,7)) < Cop*(rH)r. (2.12)

Lemma 2.7. There exists a constant C3 = C3(d,Cp,a) > 1 such that for every
a >0 and every r > 0

41 1
G Gy < Coan (BUO.1) < Cogges

Proof. Since X satisfies the same assumptions as X with same constants, it suffices
to prove the statement for a = 1. By [21, Proposition 5.55], there exists a constant
¢1 = ¢1(d) > 1 such that for every r > 0

d d
1 r — r

¢ ——— < Cap(B(0,7) < cim/————.
Ton Gy = CPPO S AT Gy

By using (2.5) and polar coordinates we see that §, , G(y) dy = §os tpr(s™h) M ds
with constants depending on d, C';, and «. The weak lower scaling condition implies
the upper bound i s7'¢*(s7H) " ds < cu*(r™) " with ¢. = ¢(Cy, @), while (2.3)

(2.13)



12 ANTE MIMICA AND ZORAN VONDRACEK

implies the lower bound §i s~ '¢*(s™")"'ds = cyp*(r~')~'. By inserting in (2.13)
and using (2.5) again, we get that

Cap(B(0,7)) = ri*(r~!) =

G(r)
O

Lemma 2.8. For any bounded Borel set B < R% and for every a > 0 it holds that
Cap®(aB) = a™*(a) 'Cap(B).

Proof. Let p denote the equilibrium measure of the set B, i.e., P.(Tp < o) =
Gu(z). Then Cap(B) = u(B) (see, e.g.[7, VI.4]). Let p* denote the equilibrium
measure of aB with respect to the process X?, and define the measure i by fi(A) :=
a~%*(a)u*(aA). By using (2.11) in the second, and change of variables in the third
line, we have

Puc(Tiy <) = G'n'(as) = | G*(y — ax) u*(dy)
— @) [ Gty - o) )

_ fG@—mﬁwszmw.

On the other hand, P, (T < ) = P.(Tp < o) = Gu(x). By the uniqueness

a

principle (see [7, VI.1 Proposition 1.15]) we conclude that i = p. Hence,
Cap(B) = p(B) = Ji(B) = a~"¢*(a)p"(aB) = a~"*(a)Cap®(aB),

proving the claim. O

3. PROOF OF THEOREM 1.1

We start with a general simple sufficient condition for avoidability of collection
of balls from which the first part of Theorem 1.1 will immediately follow. Let
{B(2,7n)}n=1 be a family of disjoint closed balls in R* and A := J,,o; B(2y, ).

Proposition 3.1. Let d = 3 and suppose that X = (X;,P,) is an isotropic unimodal
Lévy process in RY satisfying the weak scaling condition (1.4). If

> Po(Tg,, .y < 0) < 0, (3.1)

n=1

then A 1is avoidable.
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Proof. Recall first that 0 ¢ A. To simplify notation, let B, = B(z,,r,), n = 1.
o0
Choose N € N such that > Py(Tp, < o) < 1/2, and let G := |J B,. Since

n>N n>N
{Te < o} < U, y{TB, < oo}, we have that

1
Po(Te < 0) < )| Po(Th, <) < .
2
n>N
Let u(z) := P, (Tg < ), x € RY The function u is regular harmonic in G¢,

and by the above, u(0) < 1/2. We claim that the set {z € G : u(z) < 1/2} is
unbounded. If not, D := {z € G°: u(x) < 1/2} is bounded, hence Py(rp < o0) = 1.
Since u = 1 on G, u(zx) = % on D¢ Regular harmonicity of u in G implies that

u(0) = Eou(X,,)] = 1/2. Contradiction!

N
Now define F' := U B,. Since F' is bounded, the right-hand side inequality in

Lemma 2.5 1mphes that lim P,(Tr < ) = 0. Hence, there exists a point y € G¢

|| —00
such that P, (Tp < o) < 1/2 and P,(T < ) < 1/2. Since A = F U G, we have
that
1 1
Py(T4 < 0) <Py (Tp < 0) + P, (TG<oo)<2+§=1.

Let v(x) := P,(T4 < o0). Then v is bounded in R? and regular harmonic in A¢. It is
proved in [14, Theorem 2] that bounded harmonic functions are (Holder) continuous.
Define U := {v < 1}. Then U is nonempty (since y € U) and open.

In the sequel we distinguish whether X has a jump component or not. If it does
not, then X is Brownian motion and the (classical) maximum principle implies that
U = A° (recall that A° is connected). In case there is a jump component, i.e. the
Lévy measure is non-trivial, we will prove that Po(Tyy < T4) > 0. With this result we
proceed in the following way. Since (v(X;*))e=o is a Po-martingale, by the optional
stopping theorem we have for all £t > 0

v(0)

Eo|v(X1y arunt)] = Eolv( Xy at), Tv < Ta] + Eolv(Xryat), Ta < Ty
< E [U(XTU/\t) TU < TA] + ]P)()(TA TU)

By letting t — oo, the first term above converges to Eo[v(Xr,), Ty < Ta] < Po(Ty <
T4). Thus v(0) < 1, proving that A is avoidable.

It remains to show that Py(Ty < Ta) >
density of the Lévy measure v: v(dx) = j(
support. Let € > 0 be such that B(0,€) N

0. Let j denote the radially decreasing
x) dz. Suppose first that v has unbounded
B(y,€) = &, B(y,e) < U, and A does not
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intersect either of the balls. Then by the Ikeda-Watanabe formula,
Po(Ty < Ta) > Po(X,,., € Bly.c)) = f f Gno (. dy)j (= — y)d= > 0.
B(y,e) JB{0,¢)

The general case is slightly more complicated. Suppose that j(x) > 0 for |z| < R,
R > 0. Let 0 = x9,21,...,7, = y be a sequence of points in A° such that for
€ € (0, R/8) small enough, the balls B(xj,€) are pairwise disjoint and contained in
A°, and moreover |z —xy 1| < R/4 for all k =1,2,...,n. We first show that

c:= inf  P.(X

z€B(z1_1,6/2) TB(wg—1,€)

€ B(xy,€/2)) > 0.
Indeed, by the Ikeda-Watanabe formula, for every x € B(zx_1,€/2) we have
Po(Xrp,_, o € Blak,€/2)) = J J G By 1,0(%,2)j(2 —w) dz dw
B(.Tk,e/Q) B(.Tk_l,e)

> (R/2)| By, /2)| fB(

= j(R/2)|B(xk’ 6/2)| ]ExTB(xk—lﬂﬁ) :

GB(%?M) (xv Z) dz
)

Since infiep(ay 1.e/2) BaTB(z, 1,00 > 0, we get that ¢ > 0. Now, Po(Ty < Ta) is
certainly larger then the probability of successively exiting the balls B(xy_1,€) by
jumping into B(zy,€/2), k = 1,2,...,n. The latter probability is bounded from
below by ¢". Thus Py(Ty < T4) = " > 0. O

Proof of Theorem 1.1(a): The statement follows directly from Proposition 3.1 and
Lemma 2.5 which states that Po(T5,, .., < ©) = G(|z.])/G (). O

Lemma 3.2. Let B € B(R?) and let Vi, Vo, W <= R? be open sets such that Vi <
W W cVy. Then

]P)O(TV2 < TB) < ]P)()(Tvl < TB) t sup Py(7'v2 < TB) +1—t ,
yEW\Vl

where

t:= PQ (X

TVl

EW‘TV1<TB) .

Proof. Suppose that 0 € V; which is the case of interest in the forthcoming results.
It is easily checked that the statement holds true also for 0 ¢ V. Separating the
event in the probability on the left-hand side and using the strong Markov property
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it follows that
IP)0(7'\/2 < TB) = IED0(7'\/2 < TB>XTV € W) + IP)0(7'V2 < TBaXTv ¢ W)

< EO[PXTvl (TV2 <TB);TV1 <T37XTV EW]+P0(TV1 <TB,X ¢W)
< sup ]P)y(TV2 < TB)]P)Q(TVl < TBaXTV € W) + Po(Tvl < TB> ¢ W) L]
yEW\Vl

Proof of Theorem 1.1(b). Assume that the separation condition (1.6) holds and that
A is avoidable. We will prove that

Z G|xn|

nz=1

First note that without loss of generality we may assume that ry < [25|/2 for all k >
1. Indeed, if we put rj = 73 A |zx|/2, and the collection {B(xg, %) }x=1 is avoidable,

then clearly the collection {B(xk, 7}, )}r=1 is avoidable as well, and condition (1.6) is

true with 7. Suppose that we have proved that > _, G(|z,|)/G(r;,) < . Then
/

rl = r, for all n sufficiently large. Otherwise r/, = |z,|/2 for infinitely many n,

hence G(r]) = G(|x,]) for infinitely many n, and the series will diverge.

Let ¢y € (0,1) be such that

;n£ 25 — 2 (Joe| 1) G(ry) > o (3.2)
Pick p > 2 large enough so that
2 \*?  Cp
4C? < —. 3.3
() <5 (33)
Set
od 1/a C()C l/a
= >1 d o:= - <1, 4
: (COOL) " (4d01) p (34)

where C} = C1(vp) = 1 is the constant from Lemma 2.6. This choice of § implies
that for all » < vp,

G(0r) < Cy(or)* 4 < 274or) 2. (3.5)
Note that G(0r,) = G(r,,) (with a constant mdependent of n). This, together with

6 < 1, implies that it suffices to prove the theorem for the balls {B(2n,677) }ns1.
Therefore, in the sequel we set 7, := 07, and consider balls {B(z,, Tn)}n>1 -

Let 0 := Py(T4 = o) > 0 by the assumption and suppose that the series in (1.5)
is divergent. Let B, := B(0,p") and p, := Py(7p, < T4), n = 1. We are going to
prove that lim p, = 0, contradicting Po(T4 = o) > 0.

n—oo
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We now chose m( € N large enough so that

Cy

W and OLpozmo > 12. (36)
plmo—2)a

<

2

Set I := {neN: pFt < |z,| < p*}, k € N. Since we have assumed that the series
in (1.5) diverges, there exists £ € {0,1,...,my — 1} such that

2 3 G|$”| = +oo. (3.7)

j=0 ne[[+m0]

Set

mj =L+ mgj q; = sup P, (15 < Ty),

e
J+1
yEB7nj+1 —2 \B'm‘7

and
by i=Po (Xey, € Binyyy2 |75, < Ta) -
By Lemma 3.2 (with Vi = By, W = By, ,, 2, Va = Bp,,1),
Py < Pmy(qst; +1—15), jeN. (3.8)
We will prove that

Q0
(1-gq)) . (3.9)
7j=1
Suppose that (3.9) is true. Then
pm]- - PO(XTij ¢ Bm]-+1—2) 9 — g

t; = > >
pm]' pmj

oD

by Lemma 2.2 and condition (3.6). Hence,

o0 0
Zl—q]t—i-l Z}l—qJ

Together with (3.8), this implies that lim p,,, = 0.
J—0

l\DICb

o0
>3 201 -4) =

Jj=1

It remains to prove (3.9).

Let Q; := m]+l\UneI B(x,,T,), and define

v(z) =P, (ij € U E(mn,fn)) , zeR?.

nelmj
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Then v is regular harmonic in €2;. Note that

xEij+1 _92 ij

inf  Pu(Xy, € | Blan, )

xEij+1 _Q\ij

A\

nejmj

= inf v(x).
$€ij+1 72\B7nj

Hence, by (3.7), it suffices to show that there exists C; > 0 such that for all j € N
large enough, we have

v(z)=C ) Gl oot ze B, s 2\Bm, - (3.10)

Define
u(@) = Y Pu(Tpe, sy < )

ne[mj

Then w is regular harmonic in §2; and v = 1 on each ball E(l‘n, Tn), N E L, -

Let us show that there exists Cy = Cb (p) > 0 such that
u(z) < Gy, for all x € U B(xn, ). (3.11)

neImj

We are going to use a scaling-type argument. Let a = vp~(™i~1) and let X¢ =
(X{)i=0 be a Lévy process with the Lévy exponent ¢¢. Since P.(Tg,, 7., < ©) =

Pos(T y, ary)- it 18 enough to show that
ZI: P, ( Blazn.ain) < o) < Oy, forall ye LEJ B(axy,,ary,)
ne m; ne m;

for some constant Cy = Cy(p) > 0.

For n € I, set

Yn = ATy S, = ar,

S = G (s0) "1 pu(y) = dist(y, B(yn, 5n)) ,
and note that |y,| = alz,| < vp= ™ Vp™ = vp, alz,| = v =1, ar, < alz,| < vp,
and s, = adr, < vp. In particular, B(y,,s,) < B(0,2vp). Further, since s, =
§(ary,) and ar, < vp, we get from (3.5) that G%(s,,) = G*(6(ar,)) < 274(d(ar,)) ™4 =
27454 Thus 5, = G%(s,) " = 2s,.
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Let u, be the equilibrium measure of B(y,,s,) with respect to the potential G®.
Then

(T, <) = (@) = | G- ypalds), g
E(yn,sn)

Define the measure fi, by fi,(dy) = 15, 5.,(y) dy. We will prove that there is a
constant b > 0 such that for any n € I,,,,

Gip = bG,  on By, $,)°. (3.12)

Take y € B(Yn,3,)¢. Then

GJin(y)

A\

Gz —y)dz
B(yn,3n)nB(y,pn)
= G(pu(y)) |B(Yn, 5n) N By, pu)]
= c1G*(pn(Y)) |B(Wn Sn)l

where in the last inequality we have used [2, Lemma 2.1] and the fact that 2s,, < 3,.
On the other hand, by using Lemma 2.7 in the last line,

G pn(y) = f G*(z — y)un(dz)
B(yn,sn)
< GY(pu(y) n(B(Yn, 5n))
= G*(pn(y))Cap®(B(Yn, 5n))
< GG (pu(y) G (50) ™"
Now we get (3.12) from the last two displays and the choice of 5, .

By (1.4), (2.11), (3.2) and (3.4)

d
Y — Yy — a —d %
Iy = wel” z%k)’;' > 97wy — 2 UG (1) = 27 (a) |y — "G ()
(alze||zel )

CH(E

> Co2fdw*(a)w*(|xk|fl)fl _ Co2id¢*

> coCr2 W =1,
since alzy| = v = 1. Thus |y; — yx| > 2max{3y, §,;}, which implies that the balls

B(yn, $,) are disjoint.

Let y € |J B(Yn,5n). Then there exists ng € I so that y € B(Yn,, Sn,) and

nelmj

y & B(yn, 5,) for all n e I, \{no} .
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Therefore, by (3.12) and Lemma 2.6 it follows that

D Py(Tgy ey <) <1+ D (GUun)(y) < T+07 YT (Gin)(v)

neImj neImj neImj
n+ng n+$ng

<14b f G (y) dy

B(0,2vp)

<1+b7'C J (9> v y* ) dy =: Gy

B(0,2vp)

This proves (3.11). Clearly, v(z) = 1 for x € |J B(x,,7).

neImj

Now take x € By, . Then

| — x| = || = |T8| = (0™ = ™) = (0™ = 1)p™ = (p"° — 1)|x,],

implying that

- 1)Ixnl)

y
]
%

=
H
T2

)
M

N

o (P T @ G((p 7+ p)|a)
G < ) Z G

(2 NP G 4 p)lral)
1cq (p —) 2 ()

N

<

Ce < GU™ "+ p)leal)
2 G () :

19

where the third inequality we have used Lemma 2.1, in the fourth that my > 2 and
in the last one (3.3). Clearly, v(z) = 0 for z € BﬁIjH. By the maximum principle

(Lemma 2.4) it follows that

Cp G((p™ " + p)lzal)

Cov(z) = u(z) — -2 for all z € R?. (3.13)

2 , G(7) ’

Take x € By, 2\Bm,;. Then for z,, with index in I,,,,,

| — @] < Ja| + || < P4 p™ = (pM0T 4 p)p™ T < (00T A+ p)|aal
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By the left-hand side inequality of Lemma 2.5 we have

uw) > Cp Y W >0p Y G((pmoc:(f:)pm"'). (3.14)

Combining (3.13) and (3.14) gives

Cg Z G((Pmo_1+P)|$n|)

vie) > o G

T € ij+1,2\ij .
nelmj

mq(2—d)

Finally, by (1.4) and Lemma 2.1, G((p™ ™ +p)|z,|) = G(p™|xn]) = Egmz— G(|xnl).
G
Hence,

X € ijJrl,Q\ij ,

~ G(lenl)
> —
n;ﬂjGr

. ~ . CEme(Q_d)
with C) 1= =E——
! 8C5C2

4. PROOF OF THEOREM 1.2

Lemma 4.1. If the family of balls {B(xn,7n)n=1 s Teqularly located, then

ZG?||nn||)<oo if and only if JLG))dT<OO.

n=1

Proof. Recall that R > 0 is the constant from the uniform density condition. Set
A = {neN: 2Rk < |z,| < 2R(k + 1)} for k € N. By comparing measures of the
sets and using the e separation condition it follows that the number of balls with
centers in A is at most (ZR(k+1)+623_(2Rk_E)d) for k large enough so that r, < e.
Hence, for some constant ¢; = ¢;(e,d, R) > 0, there are at most c;(2kR)?! balls

with center in Ay, for all ke N.

In a similar fashion, by using uniform density, we deduce that, for some constant
co = co(e,d, R) > 0, there are at least co(2kR)?! balls with center in Ay .
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Since both G and ¢ are decreasing we obtain

Iwnl CG(lzal) v GERR(k+1)) d-1
2 G(r 2 o) = Z Glo@R(+ 1)) 22k
2R(k+2) ( ) o0 i1 ( )
- G(r L1 Jr —G(r
dr = c4 | ———dr.
ol | sem > e
2R(k+1) 1
The other bound can be proved similarly. U

By Theorem 1.1 if (1.7) holds then the collection of balls is avoidable. In the
other direction, we effectively show that if the regularly spaced collection of balls is
avoidable then the separation condition (1.6) is automatically satisfied. We will need
to count the balls in annuli of the form A(x,r,2r) :== {y e RY: r < |y — x| < 2r},
r > 0. From the separation condition it follows that there exists Ny = Ny(d) € N
such that for all x € R? and all r > 0 the number of balls B(z,,r,) with centers in
A(z,r,2r) is bounded from above by N;r¢. Similarly, the uniform density condition
implies that there exists Ny = Ny(d) € N such that for all » > 0 large enough the
number of balls B(z,,,,) with centers in A(0,7,2r) is bounded from below by Nor.

Recall that A = o, B(@n, 7).

Lemma 4.2. Suppose that the family of balls {B(x,,7,)}ns1 is regularly located. If
the function r — r¢G(r)/G(¢(r)) is unbounded (at infinity), then A is unavoidable.

Proof. Assume that A is avoidable and let 6 := Py(T4 = o) > 0. Fix

2 (07
a:= (%) v 4.

Since rG(r)/G(¢(r)) is unbounded, there exists a sequence {R;};>; such that
(Rj)‘G(R;)/G(¢(R;j)) — o0 as j — oo, and additionally satisfies R;j;1 > 4aR;

and
Rii1
G (%) _Cu N,
G(2aR;) = 2 N,
For j = 1let B; := B(0, R;),

(4.1)

p; = ]P)[)(TBJ.<TA),

q; = sup ]P):E(TBJ'+1 < TA) )
z€B(0,aR;)\B;

t; = PO(XTBjeB(O,aRj)

TB; <TA> .
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By Lemma 3.2, for all j > 1,

Moreover, by Lemma 2.2,
Dj — IP’o(XTBj ¢ B(0,aR;)) N 0 _ g

t; > > >
Dj Dj

Let I; :={n > 1: R; < |v,| < 2R;} be the set of indices of balls with centers in

the annulus A(0, R;, 2R;). Define A; := ] ., B(%,,7,). We claim that there exists

0 > 0 such that

Po(Ta, < 7B;,,) =6, for all x € B(0,aR;)\B; . (4.2)

J

N D

’VZEI]'

This will imply that for all 7 > 1,

1—gq; = inf P.(Ta < TBj+1) = inf Px(TAJ‘ < 7B

)>4.
2€B(0,aR;\B; z€B(0,aR;)\B;

J+1

In the same way as in the proof of Theorem 1.1(b) we conclude that lim; ,, p; = 0,
thus deriving a contradiction. Hence, it remains to show (4.2). We first modify
the function ¢ in the following way. Let ¢(r) = ¢(2R;) if r € [R;,2R;] for some
j = 1, and ¢(r) = ¢(r) otherwise. Take new balls B(z,,d(|z,|)) and let A; :=
Uner, B(xy, ¢(|zn])). Since A; = A;, proving (4.2) for A; will suffice. We keep using
notation ¢ for the new ¢. Then for n € I; we have that r, = ¢(|z,|) = ¢(2R;) =
O(R;) =: ¢;.
Define u : R? — [0, o0) by
u(@) = Y Po(Tg, ) < 0)

nte
Then w is harmonic in Q; := B;11\A4,.
Let ng € I; and = € B(xy,,Ty,). By the separation condition, for any k& > 1, there

are at most N;2% balls with centers z,, such that €2 < |x — z,| < €2*. For such
x, we have by Lemma 2.5

G(|lr — z,]) _ G(e2F 1)
G(o(|znl)) — Gloy)

The at most N;2%¥ such balls contribute in the sum (for u) at most N12*G(e2"1) /G(5;).
It suffices to count only such balls for which €2¥ < 6R; (there are none for which
this is not true). Now we estimate

> MG (et ).

k: €2k <6R;

Tn,Tn)
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Let ko € N be such that e2"~! < 6R; < €2*. Then by using (2.5) in the second and
the sixth inequality, (1.4) in the third, and (2.3) in the fifth, we get

> MG(et!) < i 2MG(e2F ) QdOG Z
- 77[) 62k 1
k: 28 <6R; k=1
29C¢
(k—ko)a
< EdCL w* 2k0 1 Z 2
_ 240, 1
o1 -2 )y ((6R;) 1)
_ 20+ 62)2¢Cq 1
o el (1 =27 ()7
7421C% y J
< EdCL(l — 275“) G(R])R] = ClG(Rj)Rj

with ¢; = ¢1(d, ) > 0. Hence,

— reA;. (4.3)

Let 2 € B(0, aR)\B- Then |z — z,| < |2| + |z,| < aR; + R; < 2aR;. Thus

xn| G(2aR;) G(2aR,; )N R,
- Z >0 2 o) e, 4

Let z € B, . Then |z — z,| > |z] — |z,| = Rjﬂ —2R; > Rj.1/2. Hence,

u(z) < Z—W\Z y+1/2 < G( J+1/2)N1Rd

TLEIJ' TLEI (¢])
NIR? CE N2 CE G(QCLR ) d
< —_— R — ——N 4.

where in the second line we used (4.1).

The maximum principle together with (4.3) and (4.5) implies that

G(R )R  NoCp G(2aR,)

((b]) — = Pu(Ta; < 7B,,,) = u(w) > Gy RS, re. (4.6)
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Note that by (2.5) and (2.3),
1
24+1(1 + 4a?)C?% G(R;).
By using (4.4) for z € B(0,aR;)\B; and the above estimate, we get
d ) ) RY
SNy (1) <5, 5 OO pa MO GGG
G(9;) " 2 G(g) 7 2M(1+4a’)CE Gley)

G(2aR;j) =

Hence
NyCg

1) 2 2042(1 + 4a?)Cé.cy
This proves (4.2). d

IED:E(TAJ- <TB

Proof of Theorem 1.2. Assume that the integral in (1.7) converges. By Lemma

4.1, 3044 Gf(;'f;")) < 00. Proposition 3.1 now implies that the collection of balls is

avoidable.

To show the converse, assume that the (regularly located) collection of balls is
avoidable. It follows from Lemma 4.2 that r — r¢G(r)/G(¢(r)) is bounded (at
infinity) implying that

By (2.2) and (2.5),
Y(lzal ™) = 0 (J2al ™) = |2a TG (l2a]) 7

Together with € separation this gives

. — o (|| T €)71n M
int o =l (el ) Go(al)) > (20" int g

Thus, the separation condition (1.6) is satisfied and the claim follows from Theorem
1.1(b). 4

> 0.

5. POISSONIAN COLLECTIONS OF BALLS

In this section we consider collections of randomly located closed balls with centers
coming from a Poisson point process. Since we closely follow the arguments from
[9], most of the proofs are omitted. We precisely spell out the assumptions and give
proofs when some (non-trivial) changes are needed.

We consider a Poisson point process on R? with mean measure u(dr) = p(z)dx
absolutely continuous with respect to the Lebesgue measure and an independent
isotropic unimodal Lévy process X with the characteristic exponent 1 satisfying
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the weak lower scaling condition (1.4). In this section we will assume that X is a
subordinate Brownian motion. Let G denote the Green function of X. We impose
the following assumptions on the radius function ¢ and the density u: There exists
a constant Cp > 1 such that

¢(r) < ¢(y) < Cpo(x) v
{cp ) < pl) < Coplo) rvEB(5). 51)
o(z) < %|x| , for all z € R?, (5.2)
V(277G (b)) u(e) < Cpy Ja| - 0. (5.3)

Let P be a realization of points from the Poisson point process and let
Ap = || B(x, ¢(x)). (5.4)
zeP

The collection of closed balls Ap is said to be avoidable if there exists a point = € R?
such that P, (T4, < o) < 1. Note that Ap is avoidable if and only if it is minimally
thin at infinity. The latter condition apparently does not depend on the starting
point .

Following [9] we say that we have percolation Lévy process if there is a positive
probability that the realization of point from the Poisson point process results in an
avoidable collection of balls.

Theorem 5.1. Suppose that (5.1)—(5.3) hold and that X is a subordinate Brownian
motion with the characteristic exponent 1 satisfying the weak lower scaling condition
(1.4). Percolation Lévy process occurs if and only if

G@)
Lc|>1 G(o(x)) ple) de < o0 (5.5)

Moreover, in case percolation Lévy process occurs, the random collection of balls Ap
15 avoidable with probability one.

In order to prove this theorem we use the characterization of minimal thinness at
infinity given in Theorem 1.3. Let {Q,,}n>1 be the Whitney decomposition described
in the introduction and let

W(Ap,0) = > G(diam(Qp)) Cap(Ap N Q)

mz=1

Then Ap is avoidable if and only if W (Ap, 0) < o0.

The following lemma is proved exactly in the same way as [9, Lemma 2, Lemma 4].

Lemma 5.2. (i) P(Ap is minimally thin at infinity) € {0, 1}.
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(ii) E[W(Ap, )] < o if and only if W(Ap, ) < 0 P-a.s.

The next result is the key part of the proof of the theorem.

Lemma 5.3. There exists a constant Cy > 1 such that for any Whitney cube Q) and
any point x € Q)

Q)

-1 M(Q)
“ C(olw)

<
b G(9(x))

E[Cap(Ap n Q)] < C4

(5.6)

We defer the proof of the lemma until the end of the section and outline the proof
of theorem based on Lemmas 5.2 and 5.3.

Proof of Theorem 5.1. Note that

E[W (Ap,0)] = > G(diam(Qy,)) E[Cap(Ap 0 Q)]
m=1

By Lemma 5.3, for any point x,, € Q,,, E[Cap(Ap N Q)] = Gﬁ%ﬁ))' Since

diam(Q,,) = ||, we also have that G(diam(@,,)) = G(|x,,|). Hence the sum
above is comparable with
|xm|
Z o)y @)

It follows from (5.1) that both gb and [ are approx1mately constant on each Whitney
cube. This implies that the last sum is convergent if and only if the integral in (5.5) is
convergent. Hence, E[W(Ap,o0)] < co if and only if the integral in (5.5) converges.
The first claim of the theorem now follows form Lemma 5.2(ii), while the second
one from Lemma 5.2(i). O

Proof of Lemma 5.3. The right-hand side inequality is proved exactly in the same
way as in the proof of [9, Lemma 3]. To prove the left-hand side inequality we follow
[9] and use the super-additivity property of capacity due to Aikawa and Borichev,
[2, Theorem 3|, which in our case reads as follows: For » > 0 and a > 0 the radius
n®(r) is chosen so that Cap®(B(0,7)) = |B(0,n%(r))| = oan®(r)¢ (o4 is the volume
of the unit ball). By Lemma 2.7,

Cy1G(r)t < Cap®(B(0,7)) < C3G(r) *
This gives the following estimate for n®(r):
Gy G (r) M < n(r) < GyGe(r) Y,

for C5 = Cs(d, C3) = Cs(d,Cp,a) = 1. Let ro > 0. Choose a = a(ry) > 0 small
enough so that N
C5tGar)™ 4 = 2ar forall 0<r<rg. (5.7)
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To see that this is possible, first note that
Ga(ar)l/d _ aflw*(a)l/dG(r)l/d )

Then it follows for a < ry* < r~! that

~N-1va —1/d _ S—1_ %0 N—1/d ~1/d —1/d -1 ) v
Cy G*ar) = C5 ay*(a) G(r) 1 = C5/"Cy tar @)

> Cz/ngl/déglar(ar)_o‘

and so it is enough to choose a > 0 small enough so that

CHC M (arg) ™ = 2 (5.8)
i.e. y
20Yac,\
a < (C?Td?) o (5.9)
L

Note that a < ry*. Hence, (n?)*(ar) := max(n®(ar), 2ar) = n®(ar) for 0 < r < ro.

Let F := | JB(yx,apr) = B(z,1) for some z € RY, where p, < ry and the larger
balls B(yx, C3G*(apr)~ /%) are disjoint (note that the latter balls are larger because
of (5.7)). Then B(zg, (n*)*(apx)) are disjoint, hence by [2, Theorem 3]

Cap*(F) = c1 Y Cap™(B(yx, apy)) . (5.10)
k
for some constant ¢; > 0.

Let ¢g = mingeg ¢(x). By (5.1), ¢o = ¢(x) for all x € Q. It suffices to consider
only balls with centers in ) and assume that all such balls are of radius ¢q (this
decreases the capacity of P n Q). Choose (cf. (5.9) with 79 = ¢p)

~ —1/a
a = min 1 2Cé/d03 / bo !

K(Q)\/E Cz/d 0 )
where £(Q)) is the sidelength of Q.

Note that a < ¢5* and that (5.2) implies a > ¢y /0(Q).

Let N
N = |(8CH Cs)710(Q) aG* (ado)*] .

The cube @ is divided into N¢ smaller sub-cubes with sidelength ¢(Q)/N, and a
typical sub-cube is denoted by @'. Let Q" < @’ be a cube concentric to @)’ with
sidelength ¢(Q)/(4N). If Q" contains points from the realization of P, choose one
such point. This gives points xi, Zs,...,2a, where M < N¢ is random. By the



28 ANTE MIMICA AND ZORAN VONDRACEK

choice of a and N, B(zg,¢0) < Q" where @) is the sub-cube that contains zy.
Indeed, since

aGa(a¢0)1/d _ ¢*(a)1/dG(¢0)1/d
we get
< (80 Ch) Q)" (@) G (o)
< (8CHCy)HUQ)w (@) VIO oy (95 )~

. 1/d
< Qb (%) < 8UQ)d7",
0

where the last inequality follows from a < ¢, *. This implies that ¢o < E(Q . Set

M
UE $k,¢0

Then Cap(Ap N Q) = Cap(Apg). To estimate Cap(Ap o) we scale the cube @) by
factor a. Since £(a@Q) < 1/+/d, the scaled cube a@ is inside a ball of radius 1. By
choice of N we have that

al(Q)

801/d03Ga(a¢ ) l/d N

which implies that balls B(azx, C3G*(ade) /%) are disjoint. The scaling relation for
capacity (Lemma 2.8), (5.10), and Lemma 2.7 imply that

Cap(Apq) = ¢*(a)a “Cap®(adpq)
> ¢ (a)a='MCap®(B(0, agy))
= ¢ MCap(B(0,¢g)) = %M

Hence,
C3

G ()
The probability that @” contains a Poisson point is equal to

—P(PnQ"=F) =1—e M),
To estimate u(Q"), let x € Q" be the center of @”. Then

W@ = p(@)|Q] = () (@) |

E[Cap(Ap N Q)] = EM . (5.11)
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By choice of N and using a > ¢3/¢(Q) we get

d
(“2) < cucrleon = et Glon
< st (e2/U(Q)) TG (o)
Thus, by (2.4) we get
Q") < et (UQ) ™)™ G (g0) ™ @) < ertp* (2 ) T Glo(@) T @) < erCp
by (5.3). Finally, since 1 — e * = cgz for x € [0, ¢7Cp],

EM = Z (1 — 6_“(Q”)) > cg Z w(Q") = cou(Q) .

Q//CQ QHCQ
Together with (5.11) this gives that E[Cap(Ap n Q)] = ¢ G’(‘é%). O
6. CASE d <2

Let f:(0,00) — (0,00) be a Bernstein function with the representation
fA) = f (1—eym(dt), X>0.
[0,0)

If the Lévy measure m(dt) has a completely monotone density m(t), then f is called
a complete Bernstein function. The function f serves as the Laplace exponent
of a subordinator (i.e. a nonnegative Lévy process) S = (S;)i=0 — the law of S;
is characterized by E[e *%] = e M. Let W = (W,,P,) be an independent d-
dimensional Brownian motion. The process X = (X;);>o defined by X, = W (S;)
is called a subordinate Brownian motion. It is an isotropic unimodal Lévy process
with the characteristic exponent ¢ given by v (x) = f(]z|*). Note that (|x]) is
already increasing and hence equal to ¥*.

Following [17] we will assume the next two hypotheses:

(H1): There exist constants 0 < §; < d2 < 1 and ay, as > 0 such that

a N f(t) < fFOM) < aX2f(t), A=1,t>1. (6.1)
(H2): There exist constants 0 < 03 < d4 < 1 and a3, as > 0 such that
asA? f(t) < fOM) < ag\®f(t), A<1,t<1. (6.2)

By [17, (2.11)] we have that under (H1) and (H2) there are constants a; and ag

such that o)
r
<a /\(52\/547
fry ~°°

as\11 % < A=1,r>0.
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In terms of the characteristic exponent 1) the above reads
asN2O78) () < () < agh2®2Vy(r), A =17 > 0.

If we define Cp, := a5 and o := 2(d; A J3), we see that (1.4) holds true. Note that
P(Ar) < ¢(r) for A € (0,1). By defining Cy := ag and f := 2(dy v d&4), it follows
from the right-hand side inequality above that

Y(Or) < Cu(1+ M)(r), A>0,r>0. (6.3)
Moreover, again by [17, (2.11)] we conclude that for A < 1 and all » > 0
f(Ar) ~1y82v3
Z a )\ 2V 04 ,
fr)y —F
which gives
(W) = C' A P(r), A< 1,r>0. (6.4)

From now on we assume that d < 2, and that f is a complete Bernstein function
satisfying (H1) and (H2). Inequality (6.3) replaces (2.3) which for d < 2 is not
good enough. Inequality (6.4) replaces (2.4). It follows from [17, Theorem 3.4(b)]
that X is transient if d > . Moreover, the Green function exists and satisfies (2.1).
The inequality (2.6) reads

1 —d Cgv' a—d d
QCUC%)\B G(z) < G(\x) < C—L)\ G(x), A€ (0,1], x e R\{0}.
We comment now the other preliminary results from Section 2. Lemma 2.2 is valid
in all dimensions (see [14, Corollary 2]), as well as Lemmas 2.4 and 2.5. Discussion
of the scaling goes through unchanged (see [17, Section 2]). The statements and
proofs of Lemmas 2.6-2.8 are the same.

We also note that the global scale invariant Harnack inequality is valid (see [17,
Theorem 3.7]). Moreover, it is shown in [17] that the process X satisfies conditions
(1.4), (1.13) and (1.14) from [10]. Hence by [10, Proposition 4.14], nonnegative
harmonic functions are Holder continuous.

With these preparations we see that Theorems 1.1, 1.2, 1.3 and 5.1 are valid as
stated with minor changes in proofs — (2.3) is replaced with (6.3) giving J instead
of 2.

By considering the examples from the introduction, we see that some of them do
not satisfy the current assumptions. Here are the ones where the process X is
not transient: (i) Brownian motion, ¢(x) = |z|?; (ii) Isotropic stable process with
Y(x) = |z|? for d < B; (iii) Sum of two independent isotropic stable processes,
Y(x) = |z|* + |2/%, d < a,8 < 2; (iv) Truncated S-stable process. An example
of a transient process not satisfying our assumptions is an independent sum of a
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Brownian motion and isotropic $-stable process with 8 < d, ¥(x) = |z|* + |z|°.
In particular, the right-hand side inequality in (H1) is not true, and consequently,
(6.3) fails.

7. APPENDIX

7.1. Wiener’s criterion for minimal thinness at infinity. Let X = (X;,P,)
be a subordinate Brownian motion in R¢, d > 3, satisfying the weak lower scaling
condition (1.4). The goal of this appendix is to outline a proof of Theorem 1.3.

The concept of minimal thinness is defined for points on the minimal Martin bound-
ary. For the exposition in the classical case of Brownian motion we refer to [5], while
for a class of Markov processes the theory was developed in [12]. Our first goal is to
show that the Martin boundary of R? with respect to X consists of one point that
we call infinity and denote by oo (the fact tacitly used in introduction). This will
follow from the next Liouville-type result. In the proof we use a global scale invari-
ant Harnack inequality proved in [14, Theorem 1]|: There exists a constant C' > 0
such that for every r > 0 and every function u : R? — [0, 00) which is harmonic in
B(0,2r),
< i ,
2, U <O gt )

Lemma 7.1. If u : R — [0,00) is harmonic in R with respect to X, then u is a
constant function.

Proof. Without loss of generality we may assume that inf,cga u(z) = 0 (otherwise
subtract the infimum). Then u(x) = 0 for every x € R%. Suppose not, and without
loss of generality assume that u(0) > 0 (note that X is translation invariant). Then
for every r > 0,

0<u(0)< sup u(x)<C inf wu(z).
zeB(0,r) zeB(0,r)

By letting r — o0 we obtain 0 < u(0) < 0 — contradiction. O

This shows that the Martin boundary, and hence the minimal Martin boundary, of
R? consists of a single point that we denote by oo.

For A < R, let Ty := inf{t > 0: X, € A}. A Borel set A = R? is said to be
minimally thin with respect to X at oo if there exists € R? such that

PAl(ﬂf) = Px(TA < OO) <1.

Here P4 denotes the hitting operator to A for X: Pyu(x) = E [u(Xr,), T4 < 0].
In potential-theoretic language, P41 = R{ - the balayage of 1 onto A. Recall that if
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u is an excessive function with respect to X and A < R, then the reduit of u onto
A is defined by
R4 = inf{s : s excessive and s = u on A}.

Probabilistically, R/ (x) = E,[u(Xp,), Da < ], where Dy = inf{t > 0: X; € A}
is the debut of A. The balayage RZ is the lower semi-continuous regularization of
the reduit R2. It holds that R < RA < wu, and R2 = wu on A (see [6] for details).

Proposition 7.2. The following are equivalent:
(a) A is minimally thin at oo,

(b) There exists a potential uw = G such that
lim ianu(m) > 0. (7.1)

Tr—00, x€

(¢) There exists a potential w = Gu such that
lim inf u( ) = +. (7.2)

T—00, reA

Proof. We sketch the proof following the proof of [5, Theorem 9.2.6]. Clearly, (c)
implies (b). Assume that (b) holds. Then liminf, ,o  ea u(x) = a > 0. Hence,
there exists a Martin topology neighborhood W of oo such that u > a/2 on AnW.

If RAW =1, then u = RAW > q/2 > 0 everywhere, which implies that a/2 is a

harmonic minorant of u. This is impossible, since u is a potential. Hence fi‘f‘“w # 1,
i.e., A is minimally thin at co.

Suppose that (a) holds. By [12, Lemma 2.7], there exists an open subset U < R?
such that A < U, and U is minimally thin at co. By the analog of [5, Theorem
9.2.5], there is a sequence (W,),>1 of Martin topology open neighborhoods of oo

shrinking to oo such that RY""» (0) < 27" Let uy := >, RVOWn Then u, is a

sum of potentials, hence a potential itself since u;(0) < co. Further, }Aﬁ]r‘w" =1on

the open set U n W,,. Therefore, u;(z) — o0 as x — o0, x € U. Thus (c) holds. O

Before we proceed, let us record an estimate on the Green function. Let n € (0, 1).
By Lemma 2.1,
> a_ V(™)

G(nlyl) < Cen WG(WD.
By (2.3),

O (yl™h) = o 7Y <200+ )y yl Y < 4ty Y.
Thus, for n € (0, 1),

Gnly]) <4CZn™G(ly]), yeR%y=0. (7.3)
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The following proposition is an analog of [6, Proposition V. 4.15]. The proof is
similar and uses Lemma 2.1 and (7.3). We omit the proof.

Proposition 7.3. Let E < R such that 0 ¢ E. Let (s,)n>1 be a sequence in (0,00)
and § € (0,1) such that s, 1 = 6 ts, for everyn = 1. Define

Ay, =FEn{reR’: s, <|r|<s,,1}, n=1.
Then E is minimally thin at oo if and only if Yo Ri™(0) < co.

Corollary 7.4. (Wiener’s criterion) Let E < RY such that 0 ¢ E, and let X > 1.
For n € N define A, = {x e RY: \"*1 < |z| < A"}. Then E is minimally thin at oo
iof and only of

3 G(\")Cap(E n A,) < 0. (7.4)

Again, this is an analog of [6, Corollary V. 4.17] with the same proof.

7.2. Quasiadditivity of capacity. In this subsection we indicate the main steps
in the proof that the capacity Cap is quasiadditive with respect to a certain Whitney
decomposition. More precisely, if {Q,}m=1 is @ Whitney decomposition of R%\{0},
then there exists a constant C5 > 0 such that for every E < R4\{0},

Cap(F) = Cs Z Cap(E N Q) . (7.5)

This will follow from [3, Theorem 7.1.3] once we check conditions of that theorem.

The first condition is that {Q,,, @m}, where @m is the double cube, is a quasidisjoint
decomposition of RN\{0} (see [3, pages 146, 147] for details). This is clear. The
second condition is that the kernel, in our case G(z, y), satisfies the Harnack property
with respect to {Qm,@m}, namely that G(z,y) = G(2,y) for z,2" € Qpn, y € @fn
This is also clear since distances | — y| and |z’ — y| are comparable. What remains
to show is that there exists a measure o comparable to Cap with respect to {Qy,}-
This means that there exists a constant Cls > 0 such that

o(Qn) = Cap(@n) forall Q. (7.6)
o(E) < CgCap(F) for every Borel set E . (7.7)

Let us define the measure m,, in the following way:

mo(B) = [ 0*(al Vo (75)
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Note that for any r > 0,

mBON) = [ v e < [ e d<ent o) <6

1
G(r)

The proof of the following statements is similar to the proof of [1, Lemma 1].
Lemma 7.5. (i) If 0 < r <|z|/2, then my(B(z,7)) = ri(jz|h).
(i) If r = |x|/2, then my(B(z,7)) = ﬁ = rdp(r-1).
(ili) In both cases, there exists a constant C' > 0 such that my(B(z,r)) < C’Gér)
for all r > 0 and all x € R,
(iv) There exists C = C(d) > 0 such that for allr > 0 and all x € R my(B(z,2r)) <

Cmy(B(z,7)), i.e. my is a doubling measure.
(v) Let p € (1,00) and 1/p+ 1/q = 1. There exist a constant C' > 0 such that

Figemy [0 (0]~ P dy < C (my (B, ).

Remark 7.6. Let Q be a Whitney cube for R\ {0}. This means that 0 ¢ ), and the
sidelength £(Q) of @ is comparable to its diameter diam(Q). If =y denotes the center
of @, then B(xg, c;diam(Q)) < Q < B(xo, codiam(Q)) (for universal 0 < ¢; < ¢a).
Hence

1
Cap(Q) = Cap(B(zo, diam(Q)) = Cldam(Q))
On the other hand, since |zy| is comparable with diam(), by Lemma 7.5
1
my(Q) = my(B(xo, diam(Q)) = C(diam(Q))

This shows that m,, satisfies (7.6) with respect to the family of Whitney cubes for

R4 {0}.

Now we need an estimate for the difference of two Green functions. This is the only
place where we use the assumption that X is a subordinate Brownian motion.

Lemma 7.7. There exists a constant ¢ > 0 such that for all z,y € R? we have

) G (] A Jyl) (7.9

1|z —y

G(a) — G| < c (— .

2 fal Ayl

Proof. Let U(dt) denote the potential (renewal) measure of the subordinator. Then
(see, e.g. [21, (5.47)])

Glz) = f (4rt) e Udt), zeR?.
[0,00)

We look separately at two cases.
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Case 1: |z —y| = 1 (Jz] A |y|). Then by monotonicity of G and Lemma 2.1 (2.6), we
trivially have that

610) - G| < Gl + Gl < 26 (01l A ) ) < cGllel 2 o).

Case 2: | —y| < 5 (Jz| A y]). By the mean value theorem we have that
ik w2 Az 4y —x)y— :p> Lzt
4t ’
where ¥ = ¥(z,y,t) € (0,1). We estimate the absolute value above as follows:

|12 12 |z + 9y — )| _letow—a)?
e &t —e 4t < | | —_— ¢ 4t
2t
2y —z| |z + Iy —)f -l
|z + 9y — z)| 4t
2|y — x| e,\zw(gt—xn? 7
|z + Iy — )|
where in the last line we used the elementary inequality se™® < e~%?2, s > 0. Since
x| Ay x| Ay
o4 0y — )| > [al — Dy — o] > fof — 2R LA
we get that
5 , (\zwm)Q
B vl Ay — x| _\ v
e At — e 4t 4t
|z A Jyl
Therefore,
z2 2
Glz) = Gly)| < J (4mt) =2 | =5 — o= | Ur(an)
[0,c0)
lz| alu] )
Aly —
< Hy=af (4m)d/26( i) U(dt)
2] A [yl Jo,m)
Aly — | <I$|A|y|) ly — x|
— G < ¢ Gl A lyl),
|z A [yl 2v/2 ] A [yl
where in the last inequality we have again used (2.6). O

Let us define the maximal function with respect to the measure m,,. For f : R? — R,
let

1
Myfia) =sip o | 1 mta), (7.10)

where the supremum is taken over all cubes () containing .
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From now on, given a cube (), we denote by Cj the double cube, that is the cube
centered at the same point as () but the size twice long.

Lemma 7.8. (i) There exists a constant C > 0 such that for all f : RY — R,
all 7 > 0 and all o € RY,

swp | (Gl - G I ma(dy) < CMuf(G), (T1)
z,2'€B(xo,r) JRNB(x0,2r)

where Tq is any point in B(xg,T).
(ii) There exists a constant C > 0 such that for all f : R — R and all cubes Q

sup j |G(2.y) - G )| (W) my(dy) < CMf(Fo),  (7.12)
RAQ

z,z’'eQ

where Tq is any point in B(xg,r).
(iii) There ezists a constant C > 0 such that for all cubes @

sup f G~ Gt pma) < 0 (7.13)
]Rd

z,z'eQ

The proof of (i) and (ii) follows the method of the proof of [3, Lemma 14.4], while
(iii) follows by taking f = 1.

Introduce the operator

T, f(x) = f G 9) £ (y) m(dy) (7.14)

R4

/p
o i= ([ L7 ame) ™

The goal is to prove the following theorem.

and the norms

Theorem 7.9. (i) Let 1 < p < oo. There exists a constant C' > 0 such that

1T f o < Clf o
(ii) There exists a constant C > 0 such that for every X > 0, and every measure

Ay, ({x e R¢: N G(z,y) p(dy) > )\}) < Cp(RY). (7.15)

Part (ii) of Theorem 7.9 immediately implies that condition (7.7) is satisfied for the
measure my. Indeed, suppose that p is a measure such that Gu > 1 on E. With
A =1, (7.15) implies

m¢(E

) < my(Gu = 1) < Cu(R?).
Since Cap(FE) = inf{u(R%) : Gu > 1

on E}, we get that m,(E) < CCap(FE).
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Theorem 7.9 is proved through a series of lemmas that exactly follow Lemmas 3, 5
and 6 in [1]. Recall that o > 0 is the exponent form the weak lower scaling condition
(1.4). Without loss of generality we may assume that 0 < o < 2.

Lemma 7.10. Suppose that p € (1,00) satisfies 1 < p < 7%=, and let % + % = 1.

There exists a constant C > 0 such that for any cube Q in R,

JQ Ty f (@) my(dz) < Cfllgpms (@)1 (7.16)

Note that if v = (1 + p)~!, then p = % —1,and 1 < p < L is equivalent to

d—
d—a
2d—«

1

Lemma 7.11. Let 2651_—0& < v % There exists a constant C' > 0 such that if

<
0 <e <1, Qisa cube and Cj the double cube, f = 0 with supp(f) < @ and

~

1w < emy(Q), then

my ({zeQ: Tyf(z) >1}) < Ce' "my(Q) .

Lemma 7.12. Let Qdd:Z <y < % There exist constants B > 0 and C' > 0 such that

ifA>0,0<e<1, f=0 and a cube Q has a point x" such that Ty f(z') < X, then

my (fr € Q: Tuf(2) > BA Myf(z) < A}) < O Tmy(Q).

With Lemmas 7.10-7.12, the proof of Theorem 7.9 is the same as the proof of [1,
Theorem 3].

7.3. Aikawa’s Wiener-type criterion for minimal thinness at infinity. Let
{Qm}m=1 be a Whitney decomposition of R¥N{0} with cubes of size 3", n € Z. By
the previous subsection, there exists a constant C' > 1 such that for every E < RY,

c! i Cap(E N @Qy,) < Cap(E) < C i Cap(E N Q). (7.17)
m=1

m=1

Proof of Theorem 1.3. Take A\ = 3 in Corollary 7.4 and define A, = {z € R? :
3" < |z < 3" If A, n Q # &, then diam(Q,,) = 3", and therefore G(3") =
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G(diam(Q,,)). Thus,
Z G(3")Cap(En 4,) = Z G(3") Z Cap(E n A, N Q)

= Y)Y GB")Cap(E N Ay 0 Q)

m n

= 2 Z G(diam(Q,))Cap(E n A, n Q)

m n,AnNQm#J

= Z G(diam(Q,,)) Z Cap(E N A, 0 Q)

", AnNQm#

= Z G (diam(Q,,))Cap(£ N Q) -

The first line follows from (7.17). One inequality in the last line is subadditivity of
capacity. For another we argue as follows. There exists N € N such that for every

Qm. Zn,Aanm;fé@ 1=> 14,0, < N. Hence, Zn,AanﬁeQ Cap(E n A, nQj) <
NCap(E n Q). O
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