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Abstract

We establish a boundary Harnack principle for a large class of subordinate Brownian motions,
including mixtures of symmetric stable processes, in κ-fat open sets (disconnected analogue of
John domains). As an application of the boundary Harnack principle, we identify the Martin
boundary and the minimal Martin boundary of bounded κ-fat open sets with respect to these
processes with their Euclidean boundaries.
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The boundary Harnack principle for nonnegative classical harmonic functions is a very deep result
in potential theory and has very important applications in probability and potential theory.

In [4] Bogdan showed that the boundary Harnack principle is valid in bounded Lipschitz domains
for nonnegative harmonic functions of rotationally invariant stable processes and then in [27] Song
and Wu extended the boundary Harnack principle for rotationally invariant stable processes to
bounded κ-fat open sets. Subsequently Bogdan-Stos-Sztonyk [7] and Sztonyk [29] extended the
boundary Harnack principle to symmetric (not necessarily rotationally invariant) stable processes.
In a recent paper [6], Bogdan, Kulczycki and Kwasnicki proved a version of the boundary Harnack
inequality for nonnegative harmonic functions of rotationally invariant stable processes in arbitrary
open sets.

By using some perturbation methods, the boundary Harnack principle has been generalized
to some classes of rotationally invariant Lévy processes including relativistic stable processes and
truncated stable processes. These processes can be regarded as perturbations of rotationally in-
variant stable processes and their Green functions on bounded smooth domains are comparable
to their counterparts for rotationally invariant stable processes (see [9, 12, 15, 16, 17, 22]). This
comparison of Green functions played a crucial role in the arguments of [12], [16] and [17].

In this paper, we will show that, under minimal conditions, the boundary Harnack principle is
valid for subordinate Brownian motions with characteristic exponents of the form Φ(ξ) = |ξ|α`(|ξ|2)
for some α ∈ (0, 2) and some positive function ` which is slowly varying at∞. Examples of this class
of subordinate Brownian motions include, among others, relativistic stable processes and mixtures
of rotationally invariant stable processes. The Green functions of subordinate Brownian motions
considered here behave like c|x|−d+α(`(|x|−2))−1 near the origin. So these subordinate Brownian
motions can not be regarded as perturbations of rotationally invariant stable processes in general
and their Green functions in bounded smooth domains are not comparable to their counterparts
for rotationally invariant stable processes.

Our proof of the boundary Harnack principle will be similar to the arguments in [4] and [27]
for rotationally invariant stable processes. One of the key ingredients is a sharp upper bound for
the expected exit time from a ball which, in the case of stable processes, follows easily from the
explicit formula for the Green function of a ball. However, the known methods seem to fail to get
the desired upper bound here and a substantially new idea needs to be introduced. We rely on the
fluctuation theory for real-valued Lévy processes and borrow some results from [26] to accomplish
the desired upper bound.

The organization of this paper is as follows. In Section 2 we use the fluctuation theory for real-
valued Lévy processes to establish a nice upper bound on the expected exit time from an interval
for a one-dimensional subordinate Brownian motion. In Section 3, we use the results of Section 2
to establish the desired upper bound on the expected exit time from a ball for a multidimensional
subordinate Brownian motion and an upper bound on the Poisson kernel of a ball. The proof of
the boundary Harnack principle is given in Section 4 and in the last section we apply our boundary
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Harnack principle to study the Martin boundary with respect to subordinate Brownian motions.
In this paper we will use the following convention: the values of the constants r1, r2, . . . will

remain the same throughout this paper, while the values of the constants c1, c2, . . . or C,C1, C2, . . .

might change from one appearance to another. The dependence of the constants on the dimension,
the index α and the slowly varying function will not be mentioned explicitly, while the dependence
of the constants on other quantities will be expressed using c(·) with the arguments representing
the quantities the constant depends on. In this paper, we use “:=” to denote a definition, which
is read as “is defined to be”. f(t) ∼ g(t), t → 0 (f(t) ∼ g(t), t → ∞, respectively) means
limt→0 f(t)/g(t) = 1 (limt→∞ f(t)/g(t) = 1, respectively).

2 Some Results on One-dimensional Subordinate Brownian Mo-
tion

Suppose that W = (Wt : t ≥ 0) is a one-dimensional Brownian motion with

E
[
eiξ(Wt−W0)

]
= e−tξ

2
, ∀ξ ∈ R, t > 0 ,

and S = (St : t ≥ 0) is a subordinator (a non-negative increasing Lévy process) independent of W
and with Laplace exponent φ, that is

E
[
e−λSt

]
= e−tφ(λ), ∀t, λ > 0.

A C∞ function g : (0,∞)→ [0,∞) is called a Bernstein function if (−1)nDng ≤ 0 for every positive
integer n. Any Bernstein function g can be written in the following form

g(λ) = a+ bλ+
∫ ∞

0
(1− e−λt)µ(dt)

where a, b ≥ 0 and µ is a measure on (0,∞) with
∫∞

0 (1∧ t)µ(dt) <∞. µ is called the Lévy measure
of g. It is well known that a function g is the Laplace exponent of a subordinator if and only if g is
a Bernstein function with limλ→0 g(λ) = 0. A Bernstein function g is called a complete Bernstein
function if its Lévy measure µ has a completely monotone density with respect to the Lebesgue
measure. For details on examples and properties of complete Bernstein functions, one can see [13],
[23] or [26]. One of the important properties of complete Bernstein functions is that f is complete
Bernstein if and only if λ 7→ λ/f(λ) is complete Bernstein. We will use this property in the paper.

Throughout this paper we will assume that φ is a complete Bernstein function such that

φ(λ) = λα/2`(λ) (2.1)

for some α ∈ (0, 2) and some positive function ` which is slowly varying at∞, that is, `(λt)/`(t)→ 1
as t → ∞ for every λ > 0. For concepts and results related to the slowly varying functions, we
refer our readers to [3].
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Using Corollary 2.3 of [25] or Theorem 2.3 of [21] we know that the potential measure U of S
defined by

U(A) := E
∫ ∞

0
1(St∈A)dt =

∫ ∞
0

P(St ∈ A)dt

has a decreasing density u.
By using the Tauberian theorem (Theorem 1.7.1 in [3]) and the monotone density theorem

(Theorem 1.7.2 in [3]), one can easily check that

u(t) ∼ tα/2−1

Γ(α/2)
1

`(t−1)
, t→ 0. (2.2)

Let µ(t) be the density of the Lévy measure of φ. It follows from Proposition 2.23 of [26] that

µ(t) ∼ α

2Γ(1− α/2)
`(t−1)
t1+α/2

, t→ 0. (2.3)

The subordinate Brownian motion X = (Xt : t ≥ 0) defined by Xt = WSt is a symmetric Lévy
process with the characteristic exponent

Φ(θ) = φ(θ2) = |θ|α`(θ2), ∀θ ∈ R.

Let Xt := sup{0 ∨Xs : 0 ≤ s ≤ t} and let Lt be a local time of X −X at 0. L is also called a
local time of the process X reflected at the supremum. Then the right continuous inverse L−1

t of
L is a possibly killed subordinator and is called the ladder time process of X. The process XL−1

t

is also a possibly killed subordinator and is called the ladder height process of X. (For the basic
properties of the ladder time and ladder height processes, we refer ore readers to Chapter 6 of [1].)

It follows from Corollary 9.7 of [10] that the Laplace exponent χ of the ladder height process
of X is given by

χ(λ) = exp
(

1
π

∫ ∞
0

log(Φ(λθ))
1 + θ2

dθ

)
= exp

(
1
π

∫ ∞
0

log(|θ|αλα`(θ2λ2))
1 + θ2

dθ

)
, ∀λ > 0. (2.4)

Under our assumptions, we have the following result.

Proposition 2.1 The Laplace exponent χ of the ladder height process of X is a special Bernstein
function. i.e., λ/χ(λ) is also a Bernstein function.

Proof. Define ψ(λ) = λ/φ(λ). Let T be a subordinator independent of W and with Laplace
exponent ψ and let Y = (Yt : t ≥ 0) be the subordinate Brownian motion defined by Yt = WTt . Let
Ψ be the characteristic exponent of Y . Then

Φ(θ)Ψ(θ) = φ(θ2)ψ(θ2) = θ2, ∀θ ∈ R.
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Let ρ be the Laplace exponent of the ladder height process of Y . Then by (2.4) we have

χ(λ)ρ(λ) = exp
(

1
π

∫ ∞
0

log(Φ(θλ)) + log(Ψ(θλ))
1 + θ2

dθ

)
= exp

(
1
π

∫ ∞
0

log(Φ(θλ)Ψ(θλ))
1 + θ2

dθ

)
= exp

(
1
π

∫ ∞
0

log(θ2λ2)
1 + θ2

dθ

)
= λ.

Thus χ is a special Bernstein function. 2

Proposition 2.2 If there are M > 1, δ ∈ (0, 1) and a nonnegative integrable function f on (0, δ)
such that ∣∣∣∣log

(
`(λ2θ2)
`(λ2)

)∣∣∣∣ ≤ f(θ), ∀(θ, λ) ∈ (0, δ)× (M,∞), (2.5)

then
lim
λ→∞

χ(λ)
λα/2(`(λ2))1/2

= 1. (2.6)

Proof. Using the identity

λβ/2 = exp
(

1
π

∫ ∞
0

log(θβλβ)
1 + θ2

dθ

)
, ∀λ, β > 0,

we get easily from (2.4) that

χ(λ) = λα/2 exp
(

1
π

∫ ∞
0

log(`(λ2θ2))
1 + θ2

dθ

)
= λα/2(`(λ2))1/2 exp

(
1
π

∫ ∞
0

log
(
`(λ2θ2)
`(λ2)

)
1

1 + θ2
dθ

)
.

By Potter’s Theorem (Theorem 1.5.6 (1) in [3]), there exists λ0 > 1 such that∣∣∣∣log
(
`(λ2θ2)
`(λ2)

)∣∣∣∣ 1
1 + θ2

≤ 2
log θ

1 + θ2
, ∀(θ, λ) ∈ [1,∞)× [λ0,∞).

Thus by using the dominated convergence theorem in the first integral below, the uniform conver-
gence theorem (Theorem 1.2.1 in [3]) in the second integral, and the assumption (2.5) in the third
integral, we have

lim
λ→∞

∫ ∞
0

log
(
`(λ2θ2)
`(λ2)

)
1

1 + θ2
dθ = lim

λ→∞

(∫ ∞
1

+
∫ 1

δ
+
∫ δ

0

)
log
(
`(λ2θ2)
`(λ2)

)
1

1 + θ2
dθ = 0.

2

In the case φ(λ) = λα/2 for some α ∈ (0, 2), the assumption of the proposition above is trivially
satisfied. Now we give some other examples.
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Example 2.3 Suppose that α ∈ (0, 2) and define

φ(λ) = (λ+ 1)α/2 − 1.

Then φ is a complete Bernstein function which can be written as φ(λ) = λα/2`(λ) with

`(λ) =
(λ+ 1)α/2 − 1

λα/2
.

Using elementary analysis one can easily check that there is a nonnegative integrable function f on
(0, 1) such that (2.5) is satisfied.

Example 2.4 Suppose 0 < β < α < 2 and define

φ(λ) = λα/2 + λβ/2.

Then φ is a complete Bernstein function which can be written as φ(λ) = λα/2`(λ) with

`(λ) = 1 + λ(β−α)/2.

Using elementary analysis one can easily check that there is a nonnegative integrable function f on
(0, 1) such that (2.5) is satisfied.

Example 2.5 Suppose that α ∈ (0, 2) and β ∈ (0, 2− α). Define

φ(λ) = λα/2(log(1 + λ))β/2.

By using the facts that λ and log(1+λ) are complete Bernstein functions and properties of complete
Bernstein functions (see [26]), one can easily check that φ is a complete Bernstein function. φ can
be written as φ(λ) = λα/2`(λ) with

`(λ) = (log(1 + λ))β/2.

To check that there is a nonnegative integrable function f on (0, 1) such that (2.5) is satisfied, we
only need to bound the function ∣∣∣∣log

(
log(1 + λ2θ2)
log(1 + λ2)

)∣∣∣∣
for large λ and small θ. We will consider two cases separately. Fix an M > 1 and a θ < 1.

(1) λ ≥ M , θ < 1 and λ > 1/θ. In this case, by using the fact that for any a > 0 the function
x 7→ x

x−a is decreasing on (a,∞), we get that∣∣∣∣log
(

log(1 + λ2θ2)
log(1 + λ2)

)∣∣∣∣ = log
(

log(1 + λ2)
log(1 + λ2θ2)

)
≤ log

(
log(1 + λ2)

log(θ2) + log(1 + λ2)

)
≤ log

(
log(1 + θ−2)

log(θ2) + log(1 + θ−2)

)
= log

(
log(1 + θ2)− log(θ2)

log(1 + θ2)

)
.
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(2) λ ≥M , θ < 1 and λ ≤ 1/θ. In this case we have∣∣∣∣log
(

log(1 + λ2θ2)
log(1 + λ2)

)∣∣∣∣ = log
(

log(1 + λ2)
log(1 + λ2θ2)

)
≤

(
log(1 + λ2)

log(1 +M2θ2)

)
≤

(
log(1 + θ−2)

log(1 +M2θ2)

)
.

Combining the results above one can easily check that there is a nonnegative integrable function f
on (0, 1) such that (2.5) is satisfied.

Example 2.6 Suppose that α ∈ (0, 2) and β ∈ (0, α). Define

φ(λ) = λα/2(log(1 + λ))−β/2.

By using the facts that λ and log(1+λ) are complete Bernstein functions and properties of complete
Bernstein functions (see [26]), one can easily check that φ is a complete Bernstein function. φ can
be written as φ(λ) = λα/2`(λ) with

`(λ) = (log(1 + λ))−β/2.

Similarly to the example above, one can use elementary analysis to check that there is a nonnegative
integrable function f on (0, 1) such that (2.5) is satisfied.

The method of Example 2.5 can be used to construct a whole class of complete Bernstein
functions satisfying the assumptions of this paper. For instance, by using arguments similar to the
one used in Example 2.5, one can check for α ∈ (0, 2), β ∈ (0, 2 − α), functions like λα/2(log(1 +
log(1 +λ)))β/2, λα/2(log(1 + log(1 + log(1 +λ))))β/2, . . . are complete Bernstein functions satisfying
the assumptions of this paper. Similar to Example 2.6, for any α ∈ (0, 2), β ∈ (0, α), functions
like λα/2(log(1 + log(1 +λ)))−β/2, λα/2(log(1 + log(1 + log(1 +λ))))−β/2, . . . are complete Bernstein
functions satisfying the assumptions of this paper.

In the remainder of this section we will always assume that the assumption of Proposition 2.2 is
satisfied. It follows from Propositions 2.1 and 2.2 above and Corollary 2.3 of [25] that the potential
measure V of the ladder height process of X has a decreasing density v. Since X is symmetric, we
know that the potential measure V̂ of the dual ladder height process is equal to V .

In light of Proposition 2.2, one can easily apply the Tauberian theorem (Theorem 1.7.1 in [3])
and the monotone density theorem (Theorem 1.7.2 in [3]) to get the following result.
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Proposition 2.7 As x→ 0, we have

V ((0, x)) ∼ xα/2

Γ(1 + α/2)(`(x−2))1/2
,

v(x) ∼ xα/2−1

Γ(α/2)(`(x−2))1/2
.

It follows from Proposition 2.2 above and Lemma 7.10 of [19] that the process X does not creep
upwards. Since X is symmetric, we know that X also does not creep downwards. Thus if, for any
a ∈ R, we define

τa = inf{t > 0 : Xt < a}, σa = inf{t > 0 : Xt ≤ a},

then we have
Px(τa = σa) = 1, x > a. (2.7)

Let G(0,∞)(x, y) be the Green function of X(0,∞), the process obtained by killing X upon exiting
from (0,∞). Then we have the following result.

Proposition 2.8 For any x, y > 0 we have

G(0,∞)(x, y) =
{ ∫ x

0 v(z)v(y + z − x)dz, x ≤ y,∫ x
x−y v(z)v(y + z − x)dz, x > y.

Proof. By using (2.7) above and Theorem 20 on page 176 of [1] we get that for any nonnegative
function f on (0,∞),

Ex
[∫ ∞

0
f(X(0,∞)

t ) dt
]

= k

∫ ∞
0

∫ x

0
v(z)f(x+ z − y)v(y)dzdy , (2.8)

where k is a constant depending on the normalization of the local time of the process X reflected
at its supremum. We choose k = 1. Then

Ex
[∫ ∞

0
f(X(0,∞)

t ) dt
]

=
∫ ∞

0
v(y)

∫ x

0
v(z)f(x+ y − z)dzdy

=
∫ x

0
v(z)

∫ ∞
0

v(y)f(x+ y − z)dydz =
∫ x

0
v(z)

∫ ∞
x−z

v(w + z − x)f(w)dwdz

=
∫ x

0
f(w)

∫ x

x−w
v(z)v(w + z − x)dzdw +

∫ ∞
x

f(w)
∫ x

0
v(z)v(w + z − x)dzdw . (2.9)

On the other hand,

Ex
[∫ ∞

0
f(X(0,∞)

t ) dt
]

=
∫ ∞

0
G(0,∞)(x,w)f(w) dw

=
∫ x

0
G(0,∞)(x,w)f(w) dw +

∫ ∞
x

G(0,∞)(x,w)f(w) dw . (2.10)
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By comparing (2.9) and (2.10) we arrive at our desired conclusion. 2

For any r > 0, let G(0,r) be the Green function of X(0,r), the process obtained by killing X upon
exiting from (0, r). Then we have the following result.

Proposition 2.9 For any R > 0, there exists C = C(R) > 0 such that∫ r

0
G(0,r)(x, y)dy ≤ C rα/2

(`(r−2))1/2

xα/2

(`(x−2))1/2
, x ∈ (0, r), r ∈ (0, R).

Proof. For any x ∈ (0, r), we have∫ r

0
G(0,r)(x, y)dy ≤

∫ r

0
G(0,∞)(x, y)dy

=
∫ x

0

∫ x

x−y
v(z)v(y + z − x)dzdy +

∫ r

x

∫ x

0
v(z)v(y + z − x)dzdy

=
∫ x

0
v(z)

∫ x

x−z
v(y + z − x)dydz +

∫ x

0
v(z)

∫ r

x
v(y + z − x)dydz ≤ 2V ((0, r))V ((0, x)).

Now the desired conclusion follows easily from Proposition 2.7 and the continuity of V ((0, x)) and
xα/2/(`(x−2))1/2.

2

As a consequence of the result above, we immediately get the following.

Proposition 2.10 For any R > 0, there exists C = C(R) > 0 such that∫ r

0
G(0,r)(x, y)dy ≤ C rα/2

(`(r−2))1/2

(
xα/2

(`(x−2))1/2
∧ (r − x)α/2

(`((r − x)−2))1/2

)
, x ∈ (0, r), r ∈ (0, R).

3 Key estimates on Multi-dimensional Subordinate Brownian Mo-
tions

In the remainder of this paper we will always assume that d ≥ 2 and that α ∈ (0, 2). From now on
we will assume that B = (Bt : t ≥ 0) is a Brownian motion on Rd with

E
[
eiξ·(Bt−B0)

]
= e−t|ξ|

2
, ∀ξ ∈ Rd, t > 0.

Suppose that S = (St : t ≥ 0) is a subordinator independent of B and that its Laplace exponent
φ is a complete Bernstein function satisfying all the assumption of the previous section. More
precisely we assume that there is a positive function ` on (0,∞) which is slowly varying at ∞ such
that φ(λ) = λα/2`(λ) for all λ > 0 and that there is a nonnegative integrable function f on (0, δ)
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for some δ > 0 such that (2.5) holds. As in the previous section, we will use u(t) and µ(t) to denote
the potential density and Lévy density of S respectively.

In the sequel, we will use X = (Xt : t ≥ 0) to denote the subordinate Brownian motion defined
by Xt = BSt . Then it is easy to check that when d ≥ 3 the process X is transient. In the case of
d = 2, we will always assume the following:

A1. The potential density u of S satisfies the following assumption:

u(t) ∼ ctγ−1, t→∞ (3.1)

for some constants c > 0 and γ < 1.
Under this assumption, one can easily see that the integral∫ ∞

0
(4πt)−1 exp

(
−r

2

4t

)
u(t)dt

is finite for all r > 0 and thus the process X is also transient for d = 2.
We will use G(x, y) = G(x − y) to denote the Green function of X. The Green function G of

X is given by the following formula

G(x) =
∫ ∞

0
(4πt)−d/2e−|x|

2/(4t)u(t)dt, x ∈ Rd.

Using this formula, we can easily see that G is radially decreasing and continuous in Rd \ {0}.
In order to get the asymptotic behavior ofG near the origin, we need some additional assumption

on the slowly varying function `. For any y, t, ξ > 0, define

Λ`,ξ(y, t) :=

{
`(1/y)
`(4t/y) , y < t

ξ ,

0, y ≥ t
ξ .

We will always assume that
A2. There is a ξ > 0 such that

Λ`,ξ(y, t) ≤ g(t), ∀y, t > 0,

for some positive function g on (0,∞) with∫ ∞
0

t(d−α)/2−1e−tg(t)dt <∞.

It is easy to check (see the proofs of Theorem 3.6 and Theorem 3.11 in [26]) that for the
subordinators corresponding to Examples 2.3–2.6, A1 and A2 are satisfied.

Under these assumptions we have the following.

Theorem 3.1 The Green function G of X satisfies the following

G(x) ∼ αΓ((d− α)/2)
2α+1πd/2Γ(1 + α/2)

1
|x|d−α`(|x|−2)

, |x| → 0.
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Proof. This follows easily from A1-A2, (2.2) above and Lemma 3.3 of [26]. We omit the details.
2

Let J be the jumping function of X, then

J(x) =
∫ ∞

0
(4πt)−d/2e−|x|

2/(4t)µ(t)dt, x ∈ Rd.

Thus J(x) = j(|x|) with

j(r) =
∫ ∞

0
(4πt)−d/2e−r

2/(4t)µ(t)dt, r > 0.

It is easy to see that j is continuous and decreasing on (0,∞). In order to get the asymptotic
behavior of j near the origin, we need some additional assumption on the slowly varying function
`. For any y, t, ξ > 0, define

Υ`,ξ(y, t) :=

{
`(4t/y)
`(1/y) , y < t

ξ ,

0, y ≥ t
ξ .

We will always assume that
A3. There is a ξ > 0 such that

Υ`,ξ(y, t) ≤ h(t), ∀y, t > 0

for some positive function h on (0,∞) with∫ ∞
0

t(d+α)/2−1e−th(t)dt <∞.

It is easy to check (see the proofs of Theorem 3.6 and Theorem 3.11 in [26]) that for the
subordinators corresponding to Examples 2.3–2.6, A3 is satisfied.

Theorem 3.2 The function j satisfies the following

j(r) ∼ αΓ((d+ α)/2)
21−απd/2Γ(1− α/2)

`(r−2)
rd+α

, r → 0.

Proof. This follows easily from A1, A3, (2.3) above and Lemma 3.3 of [26]. We omit the details.
2

For any open set D, we use τD to denote the first exit time from D, i.e., τD = inf{t > 0 :
Xt /∈ D}. Given an open set D ⊂ Rd, we define XD

t (ω) = Xt(ω) if t < τD(ω) and XD
t (ω) = ∂ if

t ≥ τD(ω), where ∂ is a cemetery state. We now recall the definition of harmonic functions with
respect to X.
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Definition 3.3 Let D be an open subset of Rd. A function u defined on Rd is said to be

(1) harmonic in D with respect to X if

Ex [|u(XτB )|] <∞ and u(x) = Ex [u(XτB )] , x ∈ B,

for every open set B whose closure is a compact subset of D;

(2) regular harmonic in D with respect to X if it is harmonic in D with respect to X and for each
x ∈ D,

u(x) = Ex [u(XτD)] ;

(3) harmonic for XD if it is harmonic for X in D and vanishes outside D.

In order for a scale invariant Harnack inequality to hold, we need to assume some additional
conditions on the Lévy density µ of S. We will always assume that

A4. The Lévy density µ of S satisfies the following conditions: there exists C1 > 0 such that

µ(t) ≤ C1µ(t+ 1), ∀t > 1.

It follows from (2.3) that for any M > 0 there exists C2 > 0 such that

µ(t) ≤ C2µ(2t), ∀t ∈ (0,M).

Using A4 and repeating the proof of Lemma 4.2 of [21] we get that

(1) For any M > 0, there exists C3 > 0 such that

j(r) ≤ C3j(2r), ∀r ∈ (0,M). (3.2)

(2) There exists C4 > 0 such that

j(r) ≤ C4j(r + 1), ∀r > 1. (3.3)

It is easy to check (see [26]) that for the subordinators corresponding to Examples 2.3–2.6,
A4 is satisfied. Therefore by Theorem 4.14 of [26] (see also [21]) we have the following Harnack
inequality.

Theorem 3.4 (Harnack inequality) There exist r1 ∈ (0, 1) and C > 0 such that for every
r ∈ (0, r1), every x0 ∈ Rd, and every nonnegative function u on Rd which is harmonic in B(x0, r)
with respect to X, we have

sup
y∈B(x0,r/2)

u(y) ≤ C inf
y∈B(x0,r/2)

u(y).
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For any bounded open set D in Rd, we will use GD(x, y) to denote the Green function of
XD. Using the continuity and the radial decreasing property of G, we can easily check that GD is
continuous in (D ×D) \ {(x, x) : x ∈ D}.

Proposition 3.5 For any R > 0, there exists C = C(R) > 0 such that for every open subset D
with diam(D) ≤ R,

GD(x, y) ≤ G(x, y) ≤ C
1

`(|x− y|−2)|x− y|d−α
, ∀(x, y) ∈ D ×D. (3.4)

Proof. The results of this proposition are immediate consequences of Theorem 3.1 and the conti-
nuity and positivity of `(r−2)rd−α on (0,∞). 2

The idea of the proof of the next lemma comes from [29].

Lemma 3.6 For any R > 0, there exists C = C(R) > 0 such that for every r ∈ (0, R) and x0 ∈ Rd,

Ex[τB(x0,r)] ≤ C
rα/2

(`(r−2))1/2

(r − |x− x0|)α/2

(`((r − |x− x0|)−2))1/2
, x ∈ B(x0, r).

Proof. Without loss of generality, we may assume that x0 = 0. For x 6= 0, put Zt = Xt·x
|x| . Then

Zt is a Lévy process on R with

E(eiθZt) = E(eiθ
x
|x| ·Xt) = e−t|θ|

α`(θ2), θ ∈ R.

Thus Zt is of the type of one-dimensional subordinate Brownian motion we studied in the previous
section. It is easy to see that, if Xt ∈ B(0, r), then |Zt| < r, hence

Ex[τB(0,r)] ≤ E|x|[τ̃ ],

where τ̃ = inf{t > 0 : |Zt| ≥ r}. Now the desired conclusion follows easily from Proposition 2.10.
2

Lemma 3.7 There exist r2 ∈ (0, r1] and C > 0 such that for every positive r ≤ r2 and x0 ∈ Rd,

Ex0 [τB(x0,r)] ≥ C
rα

`(r−2)
.
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Proof. The conclusion of this Lemma follows easily from Theorem 3.2 above and Lemma 3.2 of
[24]. 2

Using the Lévy system for X, we know that for every bounded open subset D and every f ≥ 0
and x ∈ D,

Ex [f(XτD); XτD− 6= XτD ] =
∫
D
c

∫
D
GD(x, z)J(z − y)dzf(y)dy. (3.5)

(See, for example, Appendix A.3 of [11].) For notational convenience, we define

KD(x, y) :=
∫
D
GD(x, z)J(z − y)dz, (x, y) ∈ D ×Dc

. (3.6)

Thus (3.5) can be simply written as

Ex [f(XτD); XτD− 6= XτD ] =
∫
D
c
KD(x, y)f(y)dy.

Using the continuities of GD and J , one can easily check that KD is continuous on D ×Dc.
As a consequence of Lemma 3.6-3.7 and (3.6), we get the following proposition.

Proposition 3.8 There exist C5, C6 > 0 such that for every r ∈ (0, r2) and x0 ∈ Rd,

KB(x0,r)(x, y) ≤ C5 j(|y − x0| − r)
rα/2

(`(r−2))1/2

(r − |x− x0|)α/2

(`((r − |x− x0|)−2))1/2
(3.7)

for all (x, y) ∈ B(x0, r)×B(x0, r)
c

and

KB(x0,r)(x0, y) ≥ C6 J(y − x0)
rα

`(r−2)
, ∀y ∈ B(x0, r)

c
. (3.8)

Proof. Without loss of generality, we assume x0 = 0. For z ∈ B(0, r) and r < |y| < 2,

|y| − r ≤ |y| − |z| ≤ |z − y| ≤ |z|+ |y| ≤ r + |y| ≤ 2|y|,

and for z ∈ B(0, r) and y ∈ B(0, 2)c,

|y| − r ≤ |y| − |z| ≤ |z − y| ≤ |z|+ |y| ≤ r + |y| ≤ |y|+ 1.

Thus by the monotonicity of J , (3.2) and (3.3), there exists a constant c > 0 such that

cJ(y) ≤ J(z − y) ≤ j(|y| − r) , (z, y) ∈ B(0, r)×B(0, r)
c
.

Applying the above inequality and Lemmas 3.6-3.7 to (3.6), we have proved the proposition. 2
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Proposition 3.9 For every a ∈ (0, 1), there exists C = C(a) > 0 such that for every r ∈ (0, r2),
x0 ∈ Rd and x1, x2 ∈ B(x0, ar),

KB(x0,r)(x1, y) ≤ CKB(x0,r)(x2, y), y ∈ B(x0, r)
c
.

Proof. This follows easily from the Harnack inequality (Theorem 3.4) and the continuity of
KB(x0,r). For details, see the proof of Lemma 4.2 in [29]. 2

As an immediate consequence of Theorem 3.2, we have

Lemma 3.10 There exists r3 ∈ (0, r2] such that for every y ∈ Rd with |y| ≤ r3,

αΓ((d+ α)/2)
22−απd/2Γ(1− α/2)

`(|y|−2)
|y|d+α

≤ J(y) ≤ 2ααΓ((d+ α)/2)
πd/2Γ(1− α/2)

`(|y|−2)
|y|d+α

.

The inequalities below will be used several times in the remainder of this paper.

Lemma 3.11 There exist r4 ∈ (0, r3] and C > 0 such that

sα/2

(`(s−2))1/2
≤ C

rα/2

(`(r−2))1/2
, ∀ 0 < s < r ≤ 4r4, (3.9)

s1−α/2

(`(s−2))1/2
≤ C

r1−α/2

(`(r−2))1/2
, ∀ 0 < s < r ≤ 4r4, (3.10)

s1−α/2 (`(s−2)
)1/2 ≤ C r1−α/2 (`(r−2)

)1/2
, ∀ 0 < s < r ≤ 4r4, (3.11)∫ ∞

r

(
`(s−2)

)1/2
s1+α/2

ds ≤ C

(
`(r−2)

)1/2
rα/2

, ∀ 0 < r ≤ 4r4, (3.12)

∫ r

0

(
`(s−2)

)1/2
sα/2

ds ≤ C

(
`(r−2)

)1/2
rα/2−1

, ∀ 0 < r ≤ 4r4, (3.13)

∫ ∞
r

`(s−2)
s1+α

ds ≤ C
`(r−2)
rα

, ∀ 0 < r ≤ 4r4, (3.14)∫ r

0

`(s−2)
sα−1

ds ≤ C
`(r−2)
rα−2

, ∀ 0 < r ≤ 4r4 (3.15)

and ∫ r

0

sα−1

`(s−2)
ds ≤ C

rα

`(r−2)
, ∀ 0 < r ≤ 4r4. (3.16)

Proof. The first three inequalities follow easily from Theorem 1.5.3 of [3], while the last five from
the 0-version of Theorem 1.5.11 of [3]. 2
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Proposition 3.12 For every a ∈ (0, 1), there exists C = C(a) > 0 such that for every r ∈ (0, r4]
and x0 ∈ Rd,

KB(x0,r)(x, y) ≤ C
rα/2−d

(`(r−2))1/2

(`((|y − x0| − r)−2))1/2

(|y − x0| − r)α/2
, ∀x ∈ B(x0, ar), y ∈ {r < |x0−y| ≤ 2r}.

Proof. By Proposition 3.9

KB(x0,r)(x, y) ≤ c1

rd

∫
B(x0,ar)

KB(x0,r)(w, y)dw

for some constant c1 = c1(a) > 0. Thus from Lemma 3.6 and (3.7), we have that

KB(x0,r)(x, y) ≤ c2

rd

∫
B(x0,r)

∫
B(x0,r)

GB(x0,r)(w, z)J(z − y)dzdw

=
c2

rd

∫
B(x0,r)

Ez[τB(x0,r)]J(z − y)dz

≤ c3

rd
rα/2

(`(r−2))1/2

∫
B(x0,r)

(r − |z − x0|)α/2

(`((r − |z − x0|)−2))1/2
J(z − y)dz

for some constants c2 = c2(a) > 0 and c3 = c3(a) > 0. Now applying Lemma 3.10, we get

KB(x0,r)(x, y) ≤ c4r
α/2−d

(`(r−2))1/2

∫
B(x0,r)

(r − |z − x0|)α/2

(`((r − |z − x0|)−2))1/2

`(|z − y|−2)
|z − y|d+α

dz

for some constant c4 = c4(a) > 0. Since r − |z − x0| ≤ |y − z| ≤ 3r ≤ 3r4, from (3.9) we see that

(r − |z − x0|)α/2

(`((r − |z − x0|)−2))1/2
≤ c5

(|y − z|)α/2

(`(|y − z|−2))1/2

for some constant c5 > 0. Thus we have

KB(x0,r)(x, y) ≤ c6r
α/2−d

(`(r−2))1/2

∫
B(x0,r)

(`(|z − y|−2))1/2

|z − y|d+α/2
dz

≤ c6r
α/2−d

(`(r−2))1/2

∫
B(y,|y−x0|−r)c

(`(|z − y|−2))1/2

|z − y|d+α/2
dz

≤ c7r
α/2−d

(`(r−2))1/2

∫ ∞
|y−x0|−r

(
`(s−2)

)1/2
s1+α/2

ds

for some constants c6 = c6(a) > 0 and c7 = c7(a) > 0. Using (3.12) in the above equation, we
conclude that

KB(x0,r)(x, y) ≤ c8r
α/2−d

(`(r−2))1/2

(`((|y − x0| − r)−2))1/2

(|y − x0| − r)α/2

for some constant c8 = c8(a) > 0. 2
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4 Boundary Harnack Principle

In this section, we give the proof of the boundary Harnack principle for X.
Using an argument similar to the first part of the proof of Lemma 3.3 in [27] and using Lemma

3.10 and (3.14)-(3.15) above we can easily get the following lemma. We skip the details.

Lemma 4.1 There exists C > 0 such that for any r ∈ (0, r4) and any open set D with D ⊂ B(0, r)
we have

Px (XτD ∈ B(0, r)c) ≤ C r−α `(r−2)
∫
D
GD(x, y)dy, x ∈ D ∩B(0, r/2).

Lemma 4.2 There exists C > 0 such that for any open set D with B(A, κr) ⊂ D ⊂ B(0, r) for
some r ∈ (0, r4) and κ ∈ (0, 1), we have that for every x ∈ D \B(A, κr),∫

D
GD(x, y)dy ≤ C rα κ−d−α/2

1
`((4r)−2)

(
1 +

`((κr2 )−2)
`((4r)−2)

)
Px
(
XτD\B(A,κr)

∈ B(A, κr)
)
.

Proof. Fix a point x ∈ D \ B(A, κr) and let B := B(A, κr2 ). Note that, by the harmonicity of
GD(x, · ) in D \ {x} with respect to X, we have

GD(x,A) ≥
∫
D∩Bc

KB(A, y)GD(x, y)dy ≥
∫
D∩B(A, 3κr

4
)c
KB(A, y)GD(x, y)dy.

Since 3κr
4 ≤ |y − A| ≤ 2r for y ∈ B(A, 3κr

4 )c ∩D and j is a decreasing function, it follows from
(3.8) in Proposition 3.8 and Lemma 3.10 that

GD(x,A) ≥ c1
(κr2 )α

`
(
(κr2 )−2

) ∫
D∩B(A, 3κr

4
)c
GD(x, y)J(y −A)dy

≥ c1 j(2r)
(κr2 )α

`
(
(κr2 )−2

) ∫
D∩B(A, 3κr

4
)c
GD(x, y)dy

≥ c2 κ
α r−d

`((2r)−2)
`((κr2 )−2)

∫
D∩B(A, 3κr

4
)c
GD(x, y)dy

for some positive constants c1 and c2. On the other hand, applying Theorem 3.4 we get∫
B(A, 3κr

4
)
GD(x, y)dy ≤ c3

∫
B(A, 3κr

4
)
GD(x,A)dy ≤ c4 r

d κdGD(x,A)

for some positive constants c3 and c4. Combining these two estimates we get that∫
D
GD(x, y)dy ≤ c5

(
rdκd + rdκ−α

`((κr2 )−2)
`((2r)−2)

)
GD(x,A) (4.1)
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for some constant c5 > 0.
Let Ω = D\B(A, κr2 ). Note that for any z ∈ B(A, κr4 ) and y ∈ Ω, 2−1|y−z| ≤ |y−A| ≤ 2|y−z|.

Thus we get from (3.6) that for z ∈ B(A, κr4 ),

c−1
6 KΩ(x,A) ≤ KΩ(x, z) ≤ c6KΩ(x,A) (4.2)

for some c6 > 1. Using the harmonicity of GD(·, A) in D \ {A} with respect to X, we can split
GD(·, A) into two parts:

GD(x,A) = Ex [GD(XτΩ , A)]

= Ex
[
GD(XτΩ , A) : XτΩ ∈ B(A,

κr

4
)
]

+ Ex
[
GD(XτΩ , A) : XτΩ ∈ {

κr

4
≤ |y −A| ≤ κr

2
}
]

:= I1 + I2.

Using (4.2) and (3.4), we have

I1 ≤ c6KΩ(x,A)
∫
B(A,κr

4
)
GD(y,A)dy ≤ c7KΩ(x,A)

∫
B(A,κr

4
)

1
|y −A|d−α

dy

`(|y −A|−2)

for some constant c7 > 0. Since |y −A| ≤ 4r ≤ 4r4, by (3.9),

|y −A|α/2

`(|y −A|−2)
≤ c8

(4r)α/2

`((4r)−2)
(4.3)

for some constant c8 > 0. Thus

I1 ≤ c7 c8KΩ(x,A)
∫
B(A,κr

4
)

1
|y −A|d−α/2

(4r)α/2

`((4r)−2)
dy ≤ c9κ

α/2rα
1

`((4r)−2)
KΩ(x,A)

for some constant c9 > 0. Now using (4.2) again, we get

I1 ≤ c10κ
α/2−drα−d

1
`((4r)−2)

∫
B(A,κr

4
)
KΩ(x, z)dz

for some constant c10 > 0. On the other hand, by (3.4),

I2 =
∫
{κr

4
≤|y−A|≤κr

2
}
GD(y,A)Px(XτΩ ∈ dy)

≤ c11

∫
{κr

4
≤|y−A|≤κr

2
}

1
|y −A|d−α

1
`(|y −A|−2)

Px(XτΩ ∈ dy)

for some constant c11 > 0. Using (4.3), the above is less than or equal to

c12κ
α/2−d rα−d

1
`((4r)−2)

Px
(
XτΩ ∈ {

κr

4
≤ |y −A| ≤ κr

2
}
)

for some constant c12 > 0. Therefore

GD(x,A) ≤ c13 κ
α/2−d rα−d

1
`((4r)−2)

Px
(
XτΩ ∈ B(A,

κr

2
)
)
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for some constant c13 > 0. Combining the above with (4.1), we get∫
D
GD(x, y)dy ≤ c14 r

α κ−d−α/2
1

`((4r)−2)

(
1 +

`((κr2 )−2)
`((2r)−2)

)
Px
(
XτD\B(A,κr2 )

∈ B(A,
κr

2
)
)

for some constant c14 > 0. It follows immediately that∫
D
GD(x, y)dy ≤ c14 r

α κ−d−α/2
1

`((4r)−2)

(
1 +

`((κr2 )−2)
`((2r)−2)

)
Px
(
XτD\B(A,κr)

∈ B(A, κr)
)
.

2

Combining Lemmas 4.1-4.2 and using the translation invariant property, we have the following

Lemma 4.3 There exists c1 > 0 such that for any open set D with B(A, κr) ⊂ D ⊂ B(Q, r) for
some r ∈ (0, r4) and κ ∈ (0, 1), we have that for every x ∈ D ∩B(Q, r2),

Px (XτD ∈ B(Q, r)c) ≤ c1 κ
−d−α/2 `(r−2)

`((4r)−2)

(
1 +

`((κr2 )−2)
`((2r)−2)

)
Px
(
XτD\B(A,κr)

∈ B(A, κr)
)
.

Let A(x, a, b) := {y ∈ Rd : a ≤ |y − x| < b}.

Lemma 4.4 Let D be an open set and 0 < 2r < r4. For every Q ∈ Rd and any positive function
u vanishing on Dc ∩B(Q, 11

6 r), there is a σ ∈ (10
6 r,

11
6 r) such that for any x ∈ D ∩B(Q, 3

2r),

Ex
[
u(XτD∩B(Q,σ)

);XτD∩B(Q,σ)
∈ B(Q, σ)c

]
≤ C

rα

`((2r)−2)

∫
B(Q, 10r

6
)c
J(y −Q)u(y)dy

for some constant C > 0 independent of Q and u.

Proof. Without loss of generality, we may assume that Q = 0. Note that by (3.13)∫ 11
6
r

10
6
r

∫
A(0,σ,2r)

`((|y| − σ)−2)1/2(|y| − σ)−α/2u(y)dydσ

=
∫
A(0, 10

6
r,2r)

∫ |y|∧ 11
6
r

10
6
r

`((|y| − σ)−2)1/2(|y| − σ)−α/2dσu(y)dy

≤ c1

∫
A(0, 10

6
r,2r)

(∫ |y|− 10
6
r

0
`(s−2)1/2s−α/2ds

)
u(y)dy

≤ c2

∫
A(0, 10r

6
,2r)

`((|y| − 10r
6

)−2)1/2(|y| − 10r
6

)1−α/2u(y)dy

for some positive constants c1 and c2. Using (3.11), we get that there is a constant c3 > 0 such
that∫

A(0, 10r
6
,2r)

`((|y| − 10r
6

)−2)1/2(|y| − 10r
6

)1−α/2u(y)dy ≤ c3

∫
A(0, 10r

6
,2r)

`(|y|−2)1/2|y|1−α/2u(y)dy,
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which is less than or equal to

c4
r1−α/2

`((2r)−2)1/2

∫
A(0, 10r

6
,2r)

`(|y|−2)u(y)dy

for some constant c4 > 0 by (3.10). Thus, by taking c5 > 6c2c4, we can conclude that there is a
σ ∈ (10

6 r,
11
6 r) such that∫

A(0,σ,2r)
`((|y| − σ)−2)1/2 (|y| − σ)−α/2u(y)dy ≤ c5

r−α/2

`((2r)−2)1/2

∫
A(0, 10r

6
,2r)

`(|y|−2)u(y)dy. (4.4)

Let x ∈ D ∩ B(0, 3
2r). Note that, since X satisfies the hypothesis H in [28], by Theorem 1 in

[28] we have

Ex
[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c

]
= Ex

[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c, τD∩B(0,σ) = τB(0,σ)

]
= Ex

[
u(XτB(0,σ)

);XτB(0,σ)
∈ B(0, σ)c, τD∩B(0,σ) = τB(0,σ)

]
≤ Ex

[
u(XτB(0,σ)

);XτB(0,σ)
∈ B(0, σ)c

]
=
∫
B(0,σ)c

KB(0,σ)(x, y)u(y)dy.

In the first equality above we have used the fact that u vanishes on Dc∩B(0, σ). Since σ < 2r < r4,
from (3.7) in Proposition 3.8, Proposition 3.12 and Lemma 3.10 we have

Ex
[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c

]
≤
∫
B(0,σ)c

KB(0,σ)(x, y)u(y)dy

≤ c6

∫
A(0,σ,2r)

σα/2−d

(`(σ−2))1/2

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

+ c6

∫
B(0,2r)c

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
u(y)dy

for some constant c6 > 0. When y ∈ A(0, 2r, 4) we have 1
12 |y| ≤ |y|−σ, while when |y| ≥ 4 we have

|y| − σ ≥ |y| − 1. Since σ − |x| ≤ σ ≤ 2r, we have by (3.9) and the monotonicity of j,

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
≤ c7j(

|y|
12

)
rα

`((2r)−2)
, y ∈ A(0, 2r, 4)

and

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
≤ c7j(|y| − 1)

rα

`((2r)−2)
, |y| ≥ 4

for some constant c7 > 0. Thus by applying (3.2) and (3.3), we get

j(|y| − σ)
σα/2

(`(σ−2))1/2

(σ − |x|)α/2

(`((σ − |x|)−2))1/2
≤ c8j(|y|)

rα

`((2r)−2)
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for some constant c8 > 0. On the other hand, by (3.9) and (4.4), there exist positive constants c9

and c10 such that ∫
A(0,σ,2r)

σα/2−d

(`(σ−2))1/2

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

≤ (
10r
6

)−d
σα/2

(`(σ−2))1/2

∫
A(0,σ,2r)

(`((|y| − σ)−2))1/2

(|y| − σ)α/2
u(y)dy

≤ c9r
−d (2r)α/2

(`((2r)−2))1/2

r−α/2

(`((2r)−2))1/2

∫
A(0, 10r

6
,2r)

`(|y|−2)u(y)dy

≤ c10
rα

`((2r)−2)

∫
A(0, 10r

6
,2r)

`(|y|−2)|y|−d−αu(y)dy,

which is less than or equal to

c11
rα

`((2r)−2)

∫
A(0, 10r

6
,2r)

J(y)u(y)dy,

for some constants c11 > 0 by Lemma 3.10. Hence

Ex
[
u(XτD∩B(0,σ)

);XτD∩B(0,σ)
∈ B(0, σ)c

]
≤ c12

rα

`((2r)−2)

∫
B(0, 10r

6
)c
J(y)u(y)dy

for some constant c12 > 0. 2

Lemma 4.5 Let D be an open set. Assume that B(A, κr) ⊂ D∩B(Q, r) for some 0 < r < 2r4 and
κ ∈ (0, 1

2 ]. Suppose that u ≥ 0 is regular harmonic in D ∩B(Q, 2r) with respect to X and u = 0 in
Dc ∩B(Q, 2r). If w is a regular harmonic function with respect to X in D ∩B(Q, r) such that

w(x) =
{
u(x), x ∈ B(Q, 3r

2 )c ∪ (Dc ∩B(Q, r)),
0, x ∈ A(Q, r, 3r

2 ),

then

u(A) ≥ w(A) ≥ C κα
`((2r)−2)
`((κr)−2)

u(x), ∀x ∈ D ∩B(Q,
3
2
r)

for some constant C > 0.

Proof. Without loss of generality, we may assume Q = 0 and x ∈ D∩B(0, 3
2r). The left hand side

inequality in the conclusion of the lemma is obvious, so we only need to prove the right hand side
inequality. Since u is regular harmonic in D ∩ B(0, 2r) with respect to X , we know from Lemma
4.4 that there exists σ ∈ (10r

6 , 11r
6 ) such that

u(x) = Ex
[
u(XτD∩B(0,σ)

); XτD∩B(0,σ)
∈ B(0, σ)c

]
≤ c1

rα

`((2r)−2)

∫
B(0, 10r

6
)c
J(y)u(y)dy
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for some constant c1 > 0. On the other hand, by (3.8) in Proposition 3.8, we have that

w(A) =
∫
B(0, 3r

2
)c
KD∩B(0,r)(A, y)u(y)dy ≥

∫
B(0, 3r

2
)c
KB(A,κr)(A, y)u(y)dy

≥ c2

∫
B(0, 3r

2
)c
J(A− y)

(κr)α

`((κr)−2)
u(y)dy

for some constant c2 > 0. Note that |y − A| ≤ 2|y| in A(0, 3r
2 , 4) and that |y − A| ≤ |y| + 1 for

|y| ≥ 4. Hence by the monotonicity of j, (3.2) and (3.3),

w(A) ≥ c3
(κr)α

`((κr)−2)

∫
B(0, 3r

2
)c
J(y)u(y)dy

for some constant c3 > 0. Therefore

w(A) ≥ c4 κ
α `((2r)

−2)
`((κr)−2)

u(x)

for some constant c4 > 0. 2

We recall the definition of κ-fat set from [27].

Definition 4.6 Let κ ∈ (0, 1/2]. We say that an open set D in Rd is κ-fat if there exists R > 0
such that for each Q ∈ ∂D and r ∈ (0, R), D ∩ B(Q, r) contains a ball B(Ar(Q), κr). The pair
(R, κ) is called the characteristics of the κ-fat open set D.

Note that all Lipschitz domains and all non-tangentially accessible domains (see [14] for the
definition) are κ-fat. Moreover, every John domain is κ-fat (see Lemma 6.3 in [20]). The boundary
of a κ-fat open set can be highly nonrectifiable and, in general, no regularity of its boundary can
be inferred. κ-fat open set may be disconnected.

Since l is slowly varying at ∞, we get the Carleson’s estimate from Lemma 4.5.

Corollary 4.7 Suppose that D is a κ-fat open set with the characteristics (R, κ). There exists a
constant R1 such that if r ≤ R1, Q ∈ ∂D, u ≥ 0 is regular harmonic in D ∩ B(Q, 2r) with respect
to X and u = 0 in Dc ∩B(Q, 2r), then

u (Ar(Q)) ≥ Cu(x), ∀x ∈ D ∩B(Q,
3
2
r)

for some constant C > 0.

The next theorem is a boundary Harnack principle for bounded κ-fat open set and it is the
main result of this section.
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Theorem 4.8 Suppose that D is a κ-fat open set with the characteristics (R, κ). There exists a
constant r5 := r5(D,α, `) ≤ r4 ∧ R such that if 2r ≤ r5 and Q ∈ ∂D, then for any nonnegative
functions u, v in Rd which are regular harmonic in D ∩ B(Q, 2r) with respect to X and vanish in
Dc ∩B(Q, 2r), we have

C−1 u(Ar(Q))
v(Ar(Q))

≤ u(x)
v(x)

≤ C u(Ar(Q))
v(Ar(Q))

, ∀x ∈ D ∩B(Q,
r

2
)

for some constant C = C(D) > 1.

Proof. Since ` is slowly varying at ∞, there exists a constant r5 := r5(D,α, `) ≤ r4 ∧R such that
for every 2r ≤ r5,

max
(

`(r−2)
`((κr)−2)

,
`((2r)−2)
`((4r)−2)

,
`((κr2 )−2)
`((4r)−2)

,
`((κr)−2)
`((2r)−2)

)
≤ 2. (4.5)

Fix 2r ≤ r5 throughout this proof. Without loss of generality we may assume that Q = 0 and
u(Ar(0)) = v(Ar(0)). For simplicity, we will write Ar(0) as A in the remainder of this proof. Define
u1 and u2 to be regular harmonic functions in D ∩B(0, r) with respect to X such that

u1(x) =
{
u(x), r ≤ |x| < 3r

2 ,
0, x ∈ B(0, 3r

2 )c ∪ (Dc ∩B(0, r))

and

u2(x) =
{
u(x), x ∈ B(0, 3r

2 )c ∪ (Dc ∩B(0, r)),
0, r ≤ |x| < 3r

2 ,

and note that u = u1 + u2. If D ∩ {r ≤ |y| < 3r
2 } is empty, then u1 = 0 and the inequality (4.8)

below holds trivially. So we assume D ∩ {r ≤ |y| < 3r
2 } is not empty. Then by Lemma 4.5,

u(y) ≤ c1κ
−α `((κr)

−2)
`((2r)−2)

u(A), ∀y ∈ D ∩B(0,
3r
2

)

for some constant c1 > 0. For x ∈ D ∩B(0, r2), we have

u1(x) = Ex
[
u(XτD∩B(0,r)

) : XτD∩B(0,r)
∈ D ∩ {r ≤ |y| < 3r

2
}
]

≤

(
sup

D∩{r≤|y|< 3r
2
}
u(y)

)
Px
(
XτD∩B(0,r)

∈ D ∩ {r ≤ |y| < 3r
2
}
)

≤

(
sup

D∩{r≤|y|< 3r
2
}
u(y)

)
Px
(
XτD∩B(0,r)

∈ B(0, r)c
)

≤ c1 κ
−α `((κr)

−2)
`((2r)−2)

u(A) Px
(
XτD∩B(0,r)

∈ B(0, r)c
)
.

23



Now using Lemma 4.3 and (4.5) we have that for x ∈ D ∩B(0, r2),

u1(x)

≤ c2 κ
−d− 3

2
α `((κr)

−2)
`((2r)−2)

`(r−2)
`((4r)−2)

(
1 +

`((κr2 )−2)
`((4r)−2)

)
u(A) Px

(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)

≤ c3 u(A) Px
(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)

(4.6)

for some positive constants c2 and c3 = c3(κ). Since 2r < r4, Theorem 3.4 implies that

u(y) ≥ c4 u(A), y ∈ B(A,
κr

2
)

for some constant c4 > 0. Therefore for x ∈ D ∩B(0, r2)

u(x) = Ex
[
u(Xτ(D∩B(0,r))\B(A,κr2 )

)
]
≥ c4 u(A) Px

(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)
. (4.7)

Using (4.6), the analogue of (4.7) for v and the assumption that u(A) = v(A), we get that for
x ∈ D ∩B(0, r2),

u1(x) ≤ c3 v(A) Px
(
Xτ(D∩B(0,r))\B(A,κr2 )

∈ B(A,
κr

2
)
)
≤ c5 v(x) (4.8)

for some constant c5 = c5(κ) > 0. For x ∈ D ∩B(0, r), we have

u2(x) =
∫
B(0, 3r

2
)c
KD∩B(0,r)(x, z)u(z)dz

=
∫
B(0, 3r

2
)c

∫
D∩B(0,r)

GD∩B(0,r)(x, y)J(y − z)dyu(z)dz.

Let
s(x) :=

∫
D∩B(0,r)

GD∩B(0,r)(x, y)dy.

Note that for every y ∈ B(0, r) and z ∈ B(0, 3r
2 )c,

1
3
|z| ≤ |z| − r ≤ |z| − |y| ≤ |y − z| ≤ |y|+ |z| ≤ r + |z| ≤ 2|z|

and that for every y ∈ B(0, r) and z ∈ B(0, 12)c,

|z| − 1 ≤ |y − z| ≤ |z|+ 1.

So by the monotonicity of j, for every y ∈ B(0, r) and z ∈ A(0, 3r
2 , 12),

j(12|z|) ≤ j(2|z|) ≤ J(y − z) ≤ j(
1
3
|z|) ≤ j(

1
12
|z|)

and for every y ∈ B(0, r) and every z ∈ B(0, 12)c,

j(|z| − 1) ≤ J(y − z) ≤ j(|z|+ 1).
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Using (3.2) and (3.3), we have that, for every y ∈ B(0, r) and z ∈ B(0, 3r
2 )c,

c−1
6 j(|z|) ≤ J(y − z) ≤ c6 j(|z|)

for some constant c6 > 0. Thus we have

c−1
7 ≤ u2(x)

u2(A)
/
s(x)
s(A)

≤ c7, (4.9)

for some constant c7 > 1. Applying (4.9) to u and v and Lemma 4.5 to v and v2, we obtain for
x ∈ D ∩B(0, r2),

u2(x) ≤ c7 u2(A)
s(x)
s(A)

≤ c2
7

u2(A)
v2(A)

v2(x)

≤ c8 κ
−α `((κr)

−2)
`((2r)−2)

u(A)
v(A)

v2(x) = c8 κ
−α `((κr)

−2)
`((2r)−2)

v2(x) (4.10)

for some constant c8 > 0. Combining (4.8) and (4.10) and applying (4.5), we have

u(x) ≤ c9 v(x), ∀x ∈ D ∩B(0,
r

2
)

for some constant c9 = c9(κ) > 0. 2

5 Martin Boundary and Martin Representation

In this section we will always assume that D is a bounded κ-fat open set in Rd with the character-
istics (R, κ). We are going to apply Theorem 4.8 to study the Martin boundary of D with respect
to X.

We recall from Definition 4.6 that for eachQ ∈ ∂D and r ∈ (0, R), Ar(Q) is a point inD∩B(Q, r)
satisfying B(Ar(Q), κr) ⊂ D∩B(Q, r). From Theorem 4.8, we get the following boundary Harnack
principle for the Green function of X which will play an important role in this section. Recall that
r5 ≤ R is the constant defined in Theorem 4.8.

Theorem 5.1 There exists a constant c = c(D,α, `) > 1 such that for any Q ∈ ∂D, r ∈ (0, r5)
and z, w ∈ D \B(Q, 2r), we have

c−1 GD(z,Ar(Q))
GD(w,Ar(Q))

≤ GD(z, x)
GD(w, x)

≤ c
GD(z,Ar(Q))
GD(w,Ar(Q))

, x ∈ D ∩B
(
Q,

r

2

)
.

Since ` is slowly varying at ∞, there exists a positive constant r6 := r6(κ, l) ≤ r5 such that for
every 2r ≤ r6,

1
2
≤ min

(
`((κ

2

64r
−2)

`(r−2)
,
`(( 4

κ2 r
−2)

`(r−2)

)
≤ max

(
`((κ

2

64r
−2)

`(r−2)
,
`(( 4

κ2 r
−2)

l(r−2)

)
≤ 2. (5.1)
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Lemma 5.2 There exist positive constants c = c(D,α) and γ = γ(D,α) < α such that for any
Q ∈ ∂D and r ∈ (0, r6), and nonnegative function u which is harmonic with respect to X in
D ∩B(Q, r) we have

u(Ar(Q)) ≤ c

(
2
κ

)γk ` ((κ/2)−2kr−2
)
)

` (r−2))
u(A(κ/2)kr(Q)), k = 0, 1, . . . . (5.2)

Proof. Without loss of generality, we may assume Q = 0. Fix r < r6 and let

ηk :=
(κ

2

)k
r, Ak := Aηk(0) and Bk := B(Ak, ηk+1), k = 0, 1, . . . .

Note that the Bk’s are disjoint. So by the harmonicity of u, we have

u(Ak) ≥
k−1∑
l=0

EAk
[
u(YτBk ) : YτBk ∈ Bl

]
=

k−1∑
l=0

∫
Bl

KBk(Ak, z)u(z)dz.

Theorem 3.4 implies that∫
Bl

KBk(Ak, z)u(z)dz ≥ c0 u(Al)
∫
Bl

KBk(Ak, z)dz

for some constant c0 = c0(d, α) > 0. Since dist(Ak, Bl) ≤ 2ηl, by (3.8) in Proposition 3.8 and the
monotonicity of j we have

KBk(Ak, z) ≥ c1 J(2(Ak − z))
(ηk+1)α

`((ηk+1)−2)
≥ c1 J(4ηl)

(ηk+1)α

`((ηk+1)−2)
, z ∈ Bl.

Applying Lemma 3.10 and (5.1), we get

KBk(Ak, z) ≥ c2
(ηk+1)α

(4ηl)d+α

`((4ηl)−2)
`((ηl+1)−2)

`((ηl+1)−2)
`((ηk+1)−2)

≥ 2 c2

(κ
8

)d+α (ηk+1)α

(ηl+1)d+α

`((ηl+1)−2)
`((ηk+1)−2)

, z ∈ Bl

for some constant c2 = c2(d, α, `) > 0. Thus we have∫
Bl

KBk(Ak, z)dz ≥ c3
(ηk+1)α

(ηl+1)α
`((ηl+1)−2)
`((ηk+1)−2)

, z ∈ Bl

for some constant c3 = c3(d, α, `) > 0. Therefore,

(ηk)
−α u(Ak)`((ηk+1)−2) ≥ c4

k−1∑
l=0

(ηl)
−α u(Al)`((ηl+1)−2)

for some constant c4 = c4(d, α, κ, `) > 0. Let ak := (ηk)−αu(Ak)`( 1
(ηk+1)2 ) so that ak ≥ c4

∑k−1
l=0 al.

By induction, one can easily check that ak ≥ c5(1 + c4/2)ka0 for some constant c5 = c5(d, α) > 0.
Thus, with γ = α− ln(1 + c4

2 )(ln(2/κ))−1, we get

u(Ar(Q)) ≤ c

(
2
κ

)γk ` ((κ/2)−2(k+1)r−2
)
)

` ((κ/2)−2r−2))
u(A(κ/2)kr(Q)).

Applying (5.1), we conclude that (5.2) is true. 2
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Lemma 5.3 Suppose Q ∈ ∂D and r ∈ (0, r5). If w ∈ D \B(Q, r), then

GD(Ar(Q), w) ≥ c
καrα

`((κr/2)−2)

∫
B(Q,r)c

J(
1
2

(z −Q))GD(z, w)dz

for some constant c = c(D,α, `) > 0.

Proof. Without loss of generality, we may assume Q = 0. Fix w ∈ D \B(0, r) and let A := Ar(0)
and u(·) := GD(·, w). Since u is regular harmonic in D ∩ B(0, (1 − κ/2)r) with respect to X, we
have

u(A) ≥ EA
[
u
(
XτD∩B(0,(1−κ/2)r)

)
;XτD∩B(0,(1−κ/2)r)

∈ B(0, r)c
]

=
∫
B(0,r)c

KD∩B(0,(1−κ/2)r)(A, z)u(z)dz

=
∫
B(0,r)c

∫
D∩B(0,(1−κ/2)r)

GD∩B(0,(1−κ/2)r)(A, y) J(y − z)dyu(z)dz.

Since B(A, κr/2) ⊂ D ∩B(0, (1− κ/2)r), by the monotonicity of the Green functions,

GD∩B(0,(1−κ/2)r)(A, y) ≥ GB(A,κr/2)(A, y), y ∈ B(A, κr/2).

Thus

u(A) ≥
∫
B(0,r)c

∫
B(A,κr/2)

GB(A,κr/2)(A, y)J(y − z)dyu(z)dz

=
∫
B(0,r)c

KB(A,κr/2)(A, z)u(z)dz,

which is greater than or equal to

c1

∫
B(0,r)c

J(z −A)
(κr/2)α

`((κr/2)−2)
u(z)dz

for some positive constant c1 = c1(d, α, `) by (3.8) in Proposition 3.8. Note that |z −A| ≤ 2|z| for
z ∈ B(0, r)c. Let M :=diam(D). Hence

u(A) ≥ c2
καrα

`((κr/2)−2)

∫
A(0,r,M)

u(z)J(2z)dz ≥ c3
καrα

`((κr/2)−2)

∫
A(0,r,M)

u(z)J(
1
2
z)dz (5.3)

for some constant c3 = c3(d, α, `,M) > 0. We have used (3.2) in the last inequality above. 2

Lemma 5.4 There exist positive constants c1 = c1(D,α, `) and c2 = c2(D,α, `) < 1 such that for
any Q ∈ ∂D, r ∈ (0, r6) and w ∈ D \B(Q, 2r/κ), we have

Ex
[
GD(XτD∩Bk

, w) : XτD∩Bk
∈ B(Q, r)c

]
≤ c1 c

k
2 GD(x,w), x ∈ D ∩Bk,

where Bk := B(Q, (κ/2)kr), k = 0, 1, . . . .
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Proof. Without loss of generality, we may assume Q = 0. Fix r < r6 and w ∈ D \ B(0, 4r). Let
ηk := (κ/2)kr, Bk := B(0, ηk) and

uk(x) := Ex
[
GD(XτD∩Bk

, w);XτD∩Bk
∈ B(0, r)c

]
, x ∈ D ∩Bk.

Note that for x ∈ D ∩Bk+1

uk+1(x) = Ex
[
GD(XτD∩Bk+1

, w); XτD∩Bk+1
∈ B(0, r)c

]
= Ex

[
GD(XτD∩Bk+1

, w); τD∩Bk+1
= τD∩Bk , XτD∩Bk+1

∈ B(0, r)c
]

= Ex
[
GD(XτD∩Bk

, w); τD∩Bk+1
= τD∩Bk , XτD∩Bk

∈ B(0, r)c
]

≤ Ex
[
GD(XτD∩Bk

, w); XτD∩Bk
∈ B(0, r)c

]
.

Thus
uk+1(x) ≤ uk(x) , x ∈ D ∩Bk+1 . (5.4)

Let Ak := Aηk(0) and M :=diam(D). Since GD( · , w) is zero on Dc, we have

uk(Ak) = EAk
[
GD(XτD∩Bk

, w); XτD∩Bk
∈ A(0, r,M)

]
≤ EAk

[
GD(XτBk

, w); XτBk
∈ A(0, r,M)

]
≤
∫
A(0,r,M)

KBk(Ak, z)GD(z, w)dz.

Since r < r4, by (3.7) in Proposition 3.8, we get that for z ∈ A(0, r,M),

KBk(Ak, z) ≤ c1 j(|z| − ηk)
η
α/2
k

(`(η−2
k ))1/2

(ηk − |Ak|)α/2

(`((ηk − |Ak|)−2))1/2

for some constant c1 = c1(D,α) > 0 and k = 1, 2, . . . . Since ηk − |Ak| ≤ ηk ≤ r6, from (3.9) we see
that

(ηk − |Ak|)α/2

(`((ηk − |Ak|)−2))1/2
≤ c

η
α/2
k

(`(η−2
k ))1/2

.

Thus
KBk(Ak, z) ≤ c2 j(|z| − ηk)

ηαk
`(η−2

k )

for some constant c2 = c2(D,α, `) > 0 and k = 1, 2, . . . . Therefore by the monotonicity of j

uk(Ak) ≤ c2
ηαk

`(η−2
k )

∫
A(0,r,M)

J(
1
2
z)GD(z, w)dz, k = 1, 2, . . . . (5.5)

From Lemma 5.3, we have

GD(A0, w) ≥ c3
καrα

`((κr/2)−2)

∫
A(0,r,M)

J(
1
2
z)GD(z, w)dz (5.6)
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for some constant c3 = c3(D,α, `) > 0. Therefore (5.5) and (5.6) imply that

uk(Ak) ≤ c4

(κ
2

)kα `
(
(κ/2)−2r−2

)
` ((κ/2)−2kr−2)

GD(A0, w)

for some constant c4 = c4(D,α, `) > 0. On the other hand, using Lemma 5.2, we get

GD(A0, w) ≤ c5

(
2
κ

)γk ` ((κ/2)−2kr−2
)
)

` (r−2))
GD(Ak, w)

for some constant c5 = c5(D,α) > 0. Thus by (5.1)

uk(Ak) ≤ c6

(
2
κ

)−k(α−γ)

GD(Ak, w)

for some constant c6 = c6(D,α) > 0 and k = 1, 2, . . . . By Theorem 5.1, we have

uk(x)
GD(x,w)

≤ uk−1(x)
GD(x,w)

≤ c6
uk−1(Ak−1)
GD(Ak−1, w)

≤ c4c5c6

(
2
κ

)−(k−1)(α−γ)

for k = 1, 2, . . . . 2

Let x0 ∈ D be fixed and set

MD(x, y) :=
GD(x, y)
GD(x0, y)

, x, y ∈ D, y 6= x0.

MD is called the Martin kernel of D with respect to X.
Now the next theorem follows from Theorem 5.1 and Lemma 5.4 (instead of Lemma 13 and

Lemma 14 in [4] respectively) in very much the same way as in the case of symmetric stable
processes in Lemma 16 of [4] (with Green functions instead of harmonic functions). We omit the
details.

Theorem 5.5 There exist positive constants R1, M1, c and β depending on D, α and l such that
for any Q ∈ ∂D, r < R1 and z ∈ D \B(Q,M1r), we have

|MD(z, x)−MD(z, y)| ≤ c

(
|x− y|
r

)β
, x, y ∈ D ∩B(Q, r).

In particular, the limit limD3y→wMD(x, y) exists for every w ∈ ∂D.

There is a compactification DM of D, unique up to a homeomorphism, such that MD(x, y) has
a continuous extension to D × (DM \ {x0}) and MD(·, z1) = MD(·, z2) if and only if z1 = z2. (See,
for instance, [18].) The set ∂MD = DM \D is called the Martin boundary of D. For z ∈ ∂MD, set
MD(·, z) to be zero in Dc.
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A positive harmonic function u for XD is minimal if, whenever v is a positive harmonic function
for XD with v ≤ u on D, one must have u = cv for some constant c. The set of points z ∈ ∂MD
such that MD(·, z) is minimal harmonic for XD is called the minimal Martin boundary of D.

For each fixed z ∈ ∂D and x ∈ D, let

MD(x, z) := lim
D3y→z

MD(x, y),

which exists by Theorem 5.5. For each z ∈ ∂D, set MD(x, z) to be zero for x ∈ Dc.

Lemma 5.6 For every z ∈ ∂D and B ⊂ B ⊂ D, MD(XτB , z) is Px-integrable.

Proof. Take a sequence {zm}m≥1 ⊂ D \ B converging to z. Since MD(·, zm) is regular harmonic
for X in B, by Fatou’s lemma and Theorem 5.5,

Ex [MD (XτB , z)] = Ex
[

lim
m→∞

MD (XτB , zm)
]
≤ lim inf

m→∞
MD(x, zm) = MD(x, z) < ∞.

2

Lemma 5.7 For every z ∈ ∂D and x ∈ D,

MD(x, z) = Ex
[
MD

(
XD
τB(x,r)

, z
)]
, for every 0 < r < r6 ∧

1
2
ρD(x). (5.7)

Proof. Fix z ∈ ∂D, x ∈ D and r < r6 ∧ 1
2ρD(x) < R. let

ηm :=
(κ

2

)m
r and zm := Aηm(0), m = 0, 1, . . . .

Note that

B(zm, ηm+1) ⊂ B(z,
1
2
ηm) ∩D ⊂ B(z, ηm) ∩D ⊂ B(z, r) ∩D ⊂ D \B(x, r)

for all m ≥ 0. Thus by the harmonicity of MD(·, zm), we have

MD(x, zm) = Ex
[
MD

(
XτB(x,r)

, zm

)]
.

On the other hand, by Theorem 5.1, there exist constants m0 ≥ 0 and c1 > 0 such that for
every w ∈ D \B(z, ηm) and y ∈ D ∩B(z, ηm+1),

MD(w, zm) =
GD(w, zm)
GD(x0, zm)

≤ c1
GD(w, y)
GD(x0, y)

= c1MD(w, y), m ≥ m0.

Letting y → z ∈ ∂D we get

MD(w, zm) ≤ c1MD(w, z), m ≥ m0, (5.8)
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for every w ∈ D \B(z, ηm).
To prove (5.7), it suffices to show that {MD(XτB(x,r)

, zm) : m ≥ m0} is Px-uniformly integrable.
Since MD(XτB(x,r)

, z) is Px-integrable by Lemma 5.6, for any ε > 0, there is an N0 > 1 such that

Ex
[
MD

(
XτB(x,r)

, z
)

; MD

(
XτB(x,r)

, z
)
> N0/c1

]
<

ε

4c1
. (5.9)

Note that by (5.8) and (5.9)

Ex
[
MD

(
XτB(x,r)

, zm

)
; MD

(
XτB(x,r)

, zm

)
> N0 and XτB(x,r)

∈ D \B(z, ηm)
]

≤ c1 Ex
[
MD

(
XτB(x,r)

, z
)

; c1MD

(
XτB(x,r)

, z
)
> N0

]
< c1

ε

4c1
=

ε

4
.

By (3.7) in Proposition 3.8, we have for m ≥ m0,

Ex
[
MD

(
XD
τB(x,r)

, zm

)
; XτB(x,r)

∈ D ∩B(z, ηm)
]

=
∫
D∩B(z,ηm)

MD(w, zm)KB(x,r)(x,w)dw

≤ c2

∫
D∩B(z,ηm)

MD(w, zm)j(|w − x| − r) rα/2

(`(r−2))1/2

(r − |w|)α/2

(`((r − |w|)−2))1/2
dw

for some c2 = c2(d, α, l) > 0. Since |w − x| ≥ |x − z| − |z − w| ≥ ρD(x) − ηm ≥ 2r − r = r, using
the monotonicity of J and (3.9) to the above equation, we see that

Ex
[
MD

(
XD
τB(x,r)

, zm

)
; XτB(x,r)

∈ D ∩B(z, ηm)
]

≤ c3 j(r)
rα

`(r−2)

∫
D∩B(z,ηm)

MD(w, zm)dw

≤ c4

∫
B(z,ηm)

MD(w, zm)dw = c4GD(x0, zm)−1

∫
B(z,ηm)

GD(w, zm)dw (5.10)

for some c3 = c3(D,α, `) > 0 and c4 = c4(D,α, `, r) > 0. Note that, by Lemma 5.2, there exist
c5 = c5(D,α, `,m0) > 0, c6 = c6(D,α, `,m0, r) > 0 and γ < α such that

GD(x0, zm)−1 ≤ c5

(κ
2

)−γm `
(
(κ/2)−2(m+1)(κ/2)−2m0r−2

)
)

` ((κ/2)−2(κ/2)−2m0r−2)
GD(x0, zm0)−1

≤ c6

(κ
2

)−γm
`
(

(κ/2)−2m(κ/2)−2(m0+1)r−2
)
. (5.11)

On the other hand, by (3.4)∫
B(z,ηm)

GD(w, zm)dw ≤ c7

∫
B(zm,2ηm)

dw

`(|w − zm|−2)|w − zm|d−α

≤ c8

∫ 2ηm

0

sα−1

`(s−2)
ds ≤ c9

(ηm)α

`((2ηm)−2)
. (5.12)

In the last inequality above, we have used (3.16). It follows from (5.10)-(5.12) that there exists
c10 = c10(D,α, `,m0, r) > 0 such that

Ex
[
MD(XD

τB(x,r)
, zm);XτB(x,r)

∈ D ∩B(z, 2r/m)
]
≤ c10

(κ
2

)(α−γ)m `
(
(κ/2)−2m(κ/2)−2(m0+1)r−2

)
` ((κ/2)−2m(2r)−2)

.
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Since ` is slowly varying at ∞, we can take N = N(ε,D,m0, r) large enough so that for m ≥ N ,

Ex
[
MD

(
XτB(x,r)

, zm

)
; MD

(
XτB(x,r)

, zm

)
> N

]
≤ Ex

[
MD

(
XτB(x,r)

, zm

)
; XτB(x,r)

∈ D ∩B(z, 2r/m)
]

+Ex
[
MD

(
XτB(x,r)

, zm

)
; MD

(
XτB(x,r)

, zm

)
> N and XτB(x,r)

∈ D \B(z, 2r/m)
]

< c10

(κ
2

)(α−γ)m `
(
(κ/2)−2m(κ/2)−2(m0+1)r−2

)
` ((κ/2)−2m(2r)−2)

+
ε

4
< ε.

As each MD(XτB(x,r)
, zm) is Px-integrable, we conclude that {MD(XτB(x,r)

, zm) : m ≥ m0} is uni-
formly integrable under Px. 2

Using the fact that Px(XτU ∈ ∂U) = 0 for every smooth open set U (Theorem 1 in [28]), one
can follow the proof of Theorem 2.2 of [8] or the proof of Theorem 4.8 of [17] and show that the
two lemmas above imply that MD(·, z) is harmonic for X. We skip the details.

Theorem 5.8 For every z ∈ ∂D, the function x 7→MD(·, z) is harmonic in D with respect to X.

Recall that a point z ∈ ∂D is said to be a regular boundary point for X if Pz(τD = 0) = 1 and
an irregular boundary point if Pz(τD = 0) = 0. It is well known that if z ∈ ∂D is regular for X,
then for any x ∈ D, GD(x, y)→ 0 as y → z.

Lemma 5.9 (1) If z, w ∈ ∂D, z 6= w and w is a regular boundary point for Y , then MD(x, z)→ 0
as x→ w.

(2) The mapping (x, z) 7→MD(x, z) is continuous on D × ∂D.

Proof. Both of the assertions can be proved easily using our Theorems 5.1 and 5.5. We skip the
proof since the argument is almost identical to the one on page 235 of [5]. 2

Lemma 5.10 Suppose that h is a bounded singular α-harmonic function in a bounded open set D.
If there is a set N of zero capacity such that for any z ∈ ∂D \N ,

lim
D3x→z

h(x) = 0,

then h is identically zero.

Proof. Take an increasing sequence of open sets {Dm}m≥1 satisfying Dm ⊂ Dm+1 and
⋃∞
m=1Dm =

D. Set τm = τDm . Then τm ↑ τD and limm→∞Xτm = XτD by the quasi-left continuity of X. Since
N has zero capacity, we have

Px(XτD ∈ N) = 0, x ∈ D.
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Therefore by the bounded convergence theorem we have for any x ∈ D,

h(x) = lim
m→∞

Ex(h(Xτm), τm < τD)

= lim
m→∞

Ex(h(Xτm)1∂D\N (XτD); τm < τD) = 0.

2

So far we have shown that the Martin boundary of D can be identified with a subset of the
Euclidean boundary ∂D.

If I is the set of irregular boundary points of D for X, then I is semi-polar by Proposition II.3.3
in [2], which is polar in our case (Theorem 4.1.2 in [11]). Thus Cap(I) = 0. Using this observation
and the above lemma, now we can follow the proof of Theorem 4.1 in [27] and show the following
theorem, which is the main result of this section.

Theorem 5.11 The Martin boundary and the minimal Martin boundary of D with respect to X

can be identified with the Euclidean boundary of D.

As a consequence of Theorem 5.11, we conclude that for every nonnegative harmonic function
h for XD, there exists a unique finite measure µ on ∂D such that

h(x) =
∫
∂D

MD(x, z)µ(dz), x ∈ D.

µ is called the Martin measure of h.
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Berlin, 2006.

[20] O. Martio and M. Vuorinen, Whitney cubes, p-capacity, and Minkowski content. Exposition. Math.,
5(1) (1987), 17–40.
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