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Abstract

In this paper we study a subordinate Brownian motion with a Gaussian component and

a rather general discontinuous part. The assumption on the subordinator is that its Laplace

exponent is a complete Bernstein function with a Lévy density satisfying a certain growth

condition near zero. The main result is a boundary Harnack principle with explicit boundary

decay rate for non-negative harmonic functions of the process in C1,1 open sets. As a consequence

of the boundary Harnack principle, we establish sharp two-sided estimates on the Green function

of the subordinate Brownian motion in any bounded C1,1 open set D and identify the Martin

boundary of D with respect to the subordinate Brownian motion with the Euclidean boundary.
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1 Introduction

The infinitesimal generator of a d-dimensional rotationally invariant Lévy process is a non-local

operator of the form L = b∆ +A where b ≥ 0 and

Af(x) =

∫
Rd

(
f(x+ y)− f(x)−∇f(x) · y1{|y|≤1}

)
ν(dy) = lim

ε→0

∫
{|y|>ε}

(f(x+ y)− f(x)) ν(dy) .

The measure ν on Rd\{0} is invariant under rotations around origin and satisfies
∫
Rd(1∧|y|

2) ν(dy) <

∞. When ν = 0, the operator L is proportional to the Laplacian, hence a local operator, while

when b = 0, the operator L is a purely non-local integro-differential operator. In particular, if

b = 0 and ν(dx) = c|x|−d−αdx, α ∈ (0, 2), then A is proportional to the fractional Laplacian

∆α/2 := −(−∆)α/2. Lévy processes are of intrinsic importance in probability theory, while integro-

differential operators are important in the theory of partial differential equations. Most of the
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research in the potential theory of Lévy processes in the last fifteen years concentrates on purely

discontinuous Lévy processes, such as rotationally invariant stable processes, or equivalently, on

purely non-local operators of the type A. For summary of some recent results from a probabilistic

point of view one can consult [6, 10, 25, 26] and references therein. We refer the readers to [7, 8, 9]

for a sample of recent progress in the PDE literature, mostly for the case of a fractional Laplacian

∆α/2, α ∈ (0, 2).

In many situations one would like to study operators that have both local and non-local parts.

From a probabilistic point of view, this corresponds to processes with both a Gaussian component

and a jump component. The fact that such a process X has both Gaussian and jump components

is the source of many difficulties in investigating the potential theory of X. The main difficulty

in studying X stems from the fact that it runs on two different scales: on the small scale the

diffusion corresponding to the Gaussian part dominates, while on the large scale the jumps take

over. Another difficulty is encountered when looking at the exit of X from an open set: for

diffusions, the exit is through the boundary, while for purely discontinuous processes, typically the

exit happens by jumping out from the open set. For the process X, both cases will occur which

makes the process X much more difficult to study.

Despite the difficulties mentioned above, in the last few years significant progress has been made

in understanding the potential theory of such processes. Green function estimates (for the whole

space) and the Harnack inequality for a class of processes with both diffusion and jump components

were established in [30, 36]. The parabolic Harnack inequality and heat kernel estimates were

studied in [37] for Lévy processes in Rd that are independent sums of Brownian motions and

symmetric stable processes, and in [16] for much more general symmetric diffusions with jumps.

Moreover, an a priori Hölder estimate was established in [16] for bounded parabolic functions. For

earlier results on second order integro-differential operators, one can see [18] and the references

therein.

Important progress has been made in two recent papers [13, 12] which consider operators of the

type ∆ + aα∆α/2 for a ∈ [0,M ]. The process corresponding to such an operator is an independent

sum of a Brownian motion and a rotationally invariant α-stable process with weight a. In [13] the

authors established a (uniform in a) boundary Harnack principle (BHP) with explicit boundary

decay rate for non-negative harmonic functions with respect to ∆ + aα∆α/2 in C1,1 open sets.

By using the BHP, the second paper [12] established sharp Green function estimates in bounded

C1,1 open sets D, and identified the Martin boundary of D for the operator ∆ + aα∆α/2 with its

Euclidean boundary.

The purpose of the current paper is to extend the results in [13, 12] to more general operators

than ∆+aα∆α/2. Analytically, the operators that we consider are certain functions of the Laplacian.

To be more precise, we consider a Bernstein function φ : (0,∞)→ (0,∞) with φ(0+) = 0, i.e., φ is

of the form

φ(λ) = bλ+

∫
(0,∞)

(1− e−λt)µ(dt) , λ > 0 , (1.1)

where b ≥ 0 and µ is a measure on (0,∞) satisfying
∫

(0,∞)(1 ∧ t)µ(dt) < ∞. µ is called the Lévy

measure of φ. By Bochner’s functional calculus one can define the operator φ(∆) := −φ(−∆) which

on C2
b (Rd), (the collection C2 functions in Rd which, along with partial derivatives up to order 2,
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are bounded,) turns out to be an integro-differential operator of the type

b∆f(x) +

∫
Rd

(
f(x+ y)− f(x)−∇f(x) · y1{|y|≤1}

)
ν(dy) ,

where the measure ν has the form ν(dy) = j(|y|) dy with j : (0,∞)→ (0,∞) given by

j(r) =

∫ ∞
0

(4πt)−d/2e−r
2/(4t) µ(dt) .

In order for the operator to have both local and non-local parts we will assume that b > 0 and

µ 6= 0. In fact, without loss of generality, throughout the paper we always suppose that b = 1.

Note that by taking φ(λ) = λ+ aαλα/2 we are back to the operator ∆ + aα∆α/2.

The operator φ(∆) is the infinitesimal generator of the Lévy process X that can be constructed

as follows: Recall that a one-dimensional Lévy process S = (St : t ≥ 0) is called a subordinator if

it is non-negative and S0 = 0. A subordinator S can be characterized by its Laplace exponent φ

through the relation

E[e−λSt ] = e−tφ(λ), t > 0, λ > 0 .

The Laplace exponent φ can be written in the form (1.1). We will assume that b = 1. Suppose

that W = (Wt : t ≥ 0) is a d-dimensional Brownian motion and S = (St : t ≥ 0) is a subordinator,

independent of W , with Laplace exponent φ. The process X = (Xt : t ≥ 0) defined by Xt = W (St)

is called a subordinate Brownian motion and its infinitesimal generator is φ(∆). It is a sum of a

Brownian motion and an independent purely discontinuous (rotationally invariant) Lévy process.

Potential theory of one-dimensional subordinate Brownian motions in this setting was studied

in [24]. In the current paper we look at the case when d ≥ 2. In order for our methods to work

we need additional assumptions on the Bernstein function φ. We will assume that φ is a complete

Bernstein function, namely the Lévy measure µ has a completely monotone density. By a slight

abuse of notation we will denote the density by µ(t). For the Lévy density µ we assume a growth

condition near zero: For any K > 0, there exists c = c(K) > 1 such that

µ(r) ≤ c µ(2r), ∀r ∈ (0,K) . (1.2)

We will later explain the role of these additional assumptions.

To state our main result, we first recall that an open set D in Rd (when d ≥ 2) is said to be C1,1

if there exist a localization radius R > 0 and a constant Λ > 0 such that for every Q ∈ ∂D, there

exist a C1,1-function ϕ = ϕQ : Rd−1 → R satisfying ϕ(0) = 0, ∇ϕ(0) = (0, . . . 0), ‖∇ϕ‖∞ ≤ Λ,

|∇ϕ(x)−∇ϕ(y)| ≤ Λ|x−y|, and an orthonormal coordinate system CSQ: y = (y1, · · · , yd−1, yd) =:

(ỹ, yd) with its origin at Q such that

B(Q,R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CSQ : yd > ϕ(ỹ)}.

The pair (R,Λ) is called the characteristics of the C1,1 open set D. Note that a C1,1 open set can

be unbounded and disconnected.

For any x ∈ D, δD(x) denotes the Euclidean distance between x and Dc. For any x /∈ D,

δ∂D(x) denotes the Euclidean distance between x and ∂D. It is well known that, if D is a C1,1

open set D with characteristics (R,Λ), there exists R̃ ≤ R such that D satisfies both the uniform

interior ball condition and the uniform exterior ball condition with radius R̃: for every x ∈ D with
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δD(x) < R̃ and y ∈ Rd \ D with δ∂D(y) < R̃, there are zx, zy ∈ ∂D so that |x − zx| = δD(x),

|y−zy| = δ∂D(y) and that B(x0, R̃) ⊂ D and B(y0, R̃) ⊂ Rd \D where x0 = zx+ R̃(x−zx)/|x−zx|
and y0 = zy + R̃(y − zy)/|y − zy|. Without loss of generality, throughout this paper, we assume

that the characteristics (R,Λ) of a C1,1 open set satisfies R = R̃ ≤ 1 and Λ ≥ 1.

For any open set D ⊂ Rd, τD := inf{t > 0 : Xt /∈ D} denotes the first exit time from D by X.

Definition 1.1 A function f : Rd 7→ [0,∞) is said to be

(1) harmonic in an open set D ⊂ Rd with respect to X if for every open set B whose closure is a

compact subset of D,

f(x) = Ex [f(X(τB))] for every x ∈ B; (1.3)

(2) regular harmonic in D for X if for each x ∈ D, f(x) = Ex [f(X(τD))].

We note that, by the strong Markov property of X, every regular harmonic function is automatically

harmonic.

Let Q ∈ ∂D. We will say that a function f : Rd → R vanishes continuously on Dc ∩ B(Q, r) if

f = 0 on Dc ∩ B(Q, r) and f is continuous at every point of ∂D ∩ B(Q, r). The following is the

main result of this paper.

Theorem 1.2 Suppose that the Laplace exponent φ of the subordinator S, independent of the

Brownian motion W , is a complete Bernstein function and that the Lévy density of S satisfies

(1.2). Let X = (Xt : t ≥ 0) be the subordinate Brownian motion defined by Xt = W (St). For any

C1,1 open set D in Rd with characteristics (R,Λ), there exists a positive constant C = C(d,Λ, R, φ)

such that for r ∈ (0, R], Q ∈ ∂D and any nonnegative function f in Rd which is harmonic in

D ∩B(Q, r) with respect to X and vanishes continuously on Dc ∩B(Q, r), we have

f(x)

δD(x)
≤ C f(y)

δD(y)
for every x, y ∈ D ∩B(Q, r/2). (1.4)

We note that (1.4) is a strengthened version of the usual boundary Harnack principle stated for

the ratio of two non-negative functions, f and g, harmonic in D ∩B(Q, r) with respect to X, and

which says that
f(x)

g(x)
≤ C f(y)

g(y)
for every x, y ∈ D ∩B(Q, r/2).

Indeed, the above inequality is a consequence of (1.4). We note that (1.4) gives the precise boundary

decay of non-negative harmonic functions and that the function x 7→ δD(x) is not harmonic in

D ∩B(Q, r) with respect to X.

Remark 1.3 The same type of boundary Harnack principle in C1,1 domains is valid also for

Brownian motions, namely the boundary decay rate is of the order δD(x). Since on the small scale

the diffusion part of X dominates, one would expect that harmonic functions of X and of Brownian

motion have the same order of decay rate at the boundary. For this reason, one might expect that

some kind of perturbation methods can be used to prove the BHP for X. We note that it is unlikely
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that any perturbation method would work because of the following: Suppose that instead of X we

consider a process Xa with the infinitesimal generator

Laf(x) = ∆f(x) +

∫
Rd

(
f(x+ y)− f(x)−∇f(x) · y1{|y|≤1}

)
νa(dy) ,

where νa(dy) = 1{|y|≤a} ν(dy) with 0 < a < ∞. Thus Xa is the process X with jumps of size

larger than a suppressed. In Section 6 we present an example showing that the boundary Harnack

principle fails even on the upper half-space for Xa. Note that if we think of X as a perturbation

of Brownian motion, then Xa is an even smaller perturbation of the same Brownian motion. The

counterexample in Section 6 shows that, despite the (seemingly) local nature of the BHP, one needs

some information of the structure of large jumps of X.

For any open set D ⊂ Rd, we will use XD to denote the process defined by XD
t (ω) = Xt(ω) if

t < τD(ω) and XD
t (ω) = ∂ if t ≥ τD(ω), where ∂ is a cemetery point. The Green function of XD

will be denoted by GD(x, y). For the precise definition of GD, see Section 2.

To state our result on Green function estimates, we introduce a function gD first. For d ≥ 2,

we define for x, y ∈ D,

gD(x, y) =


1

|x−y|d−2

(
1 ∧ δD(x)δD(y)

|x−y|2

)
when d ≥ 3,

log
(

1 + δD(x)δD(y)
|x−y|2

)
when d = 2.

Note that gD is comparable to the Green function of killed Brownian motion in D when D is a

bounded C1,1 domain, see [39, 40].

Theorem 1.4 Suppose that the Laplace exponent φ of S is a complete Bernstein function and

that the Lévy density of S satisfies (1.2). For any bounded C1,1 open set D ⊂ Rd, there exists

C = C(D,φ) > 1 such that for all x, y ∈ D

C−1 gD(x, y) ≤ GD(x, y) ≤ C gD(x, y). (1.5)

Finally, we state the result about the Martin boundary of a bounded C1,1 open set D with

respect to XD. Fix x0 ∈ D and define

MD(x, y) :=
GD(x, y)

GD(x0, y)
, x, y ∈ D, y 6= x0.

A function f is called a harmonic function for XD if it is harmonic for X in D and vanishes outside

D. A positive harmonic function f for XD is minimal if, whenever g is a positive harmonic function

for XD with g ≤ f on D, one must have f = cg for some constant c.

Theorem 1.5 Suppose that D is a bounded C1,1 open set in Rd. For every z ∈ ∂D, there exists

MD(x, z) := limy→zMD(x, y). Further, for every z ∈ ∂D, MD(·, z) is a minimal harmonic function

for XD and MD(·, z1) 6= MD(·, z1) if z1 6= z2. Thus the minimal Martin boundary of D can be

identified with the Euclidean boundary.
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Thus, by the general theory of Martin representation in [27] and Theorem 1.5 we conclude that,

for every harmonic function u ≥ 0 with respect to XD, there is a unique finite measure ν on ∂D

such that u(x) =
∫
∂DMD(x, z)ν(dz).

Let us now describe the main ingredients of the proof of Theorem 1.2, the boundary Harnack

principle. We follow the general strategy for proving the boundary Harnack principle in different

settings which requires the Carleson estimate, and upper and lower estimates on exit probabilities

and exit times from certain sets usually called “boxes” (see [4, 5, 13, 19, 21]). In Theorem 5.3

we prove the Carleson estimate for a Lipschitz open set by modifying the proof in [13]. In order

to obtain the upper estimates for exit probabilities and mean exit times, we follow the approach

from [13], the so-called “test function” method (which was modeled after some earlier ideas, see

[4, 19]), but have to make major modifications. In [13], the test functions are power functions of

the form x 7→ (xd)
p which are either superharmonic or subharmonic for the corresponding process,

and the values of the generator on these test functions are computed in detail. In our setting, the

power functions are neither superharmonic nor subharmonic, and explicit calculations cannot be

carried out because of the lack of explicit form of the Lévy measure. Instead we use the approach

developed in [26] for the case of certain pure-jump subordinate Brownian motions, which seems to

be quite versatile to cover various other cases.

One of the main ingredients in [26] comes from the fluctuation theory of one-dimensional Lévy

processes. Its purpose is to identify a correct boundary decay rate by finding an appropriate

harmonic function. Let Z = (Zt : t ≥ 0) be the one-dimensional subordinate Brownian motion

defined by Zt := W d(St), and let V be the renewal function of the ladder height process of Z.

The function V is harmonic for the process Z killed upon exiting (0,∞), and the function w(x) :=

V (xd)1{xd>0}, x ∈ Rd, is harmonic for the process X killed upon exiting the half space Rd+ := {x =

(x1, . . . , xd−1, xd) ∈ Rd : xd > 0} (Proposition 3.2). Therefore, w gives the correct rate of decay

of harmonic functions near the boundary of Rd+. We will use the function w as our test function.

Note that the assumption that φ is a complete Bernstein function implies that w is smooth. Using

smoothness and harmonicity of w together with the characterization of harmonic functions recently

established in [11], we show that (∆ +A)w ≡ 0 on the half space (Theorem 3.4). Consequently we

prove the following fact in Lemma 4.1, which is the key to proving upper estimates: If D is a C1,1

open set with characteristics (R,Λ), Q ∈ ∂D and h(y) = V (δD(y))1D∩B(Q,R), then (∆ +A)h(y) is

a.e. well defined and bounded for y ∈ D close enough to the boundary point Q. Using this lemma,

we give necessary exit distribution estimates in Lemma 4.3. Here we modify the test function h

by adding a quadratic type function (in one variable) – this is necessary for constructing suitable

superharmonic functions from h due to the presence of the Laplacian. The desired exit distribution

estimates are directly derived by applying Dynkin’s formula to the new test function. The reader

will note that our proof is even shorter than the one in [13], partly because, in [13], the uniformity

of the boundary Harnack principle for ∆ + aα∆α/2 in the weight a ∈ (0,M ] is established.

In order to prove the lower bound for the exit probabilities we compare the process X killed

upon exiting a certain box D̂ with the so-called subordinate killed Brownian motion obtained by

first killing Brownian motion upon exiting the box D̂, and then subordinating the obtained process.

If the latter process is denoted by Y D̂, then its infinitesimal generator is equal to −φ(−∆|
D̂

). Here

∆|
D̂

is the Dirichlet Laplacian and −φ(−∆|
D̂

) is constructed by Bochner’s subordination. The

advantage of this approach is that the exit probabilities of XD̂ dominate from the above those of
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the process Y D̂, while the latter can be rather easily computed, see [38]. This idea is carried out

in Lemma 4.4 (as well as for some other lower bounds throughout the paper).

Once the boundary Harnack principle is established, proofs of Theorems 1.4 and 1.5 are similar

to the corresponding proofs in [12] for the operator ∆ + aα∆α. Therefore we do not give complete

proofs of these two theorems in this paper, only indicate the necessary changes to the proofs in

[12].

The rest of the paper is organized as follows. In the next section we precisely describe the

settings and recall necessary preliminary results. Section 3 is devoted to the analysis of the process

and harmonic functions in the half-space. Section 4 is on the analysis in C1,1 open sets, and is

central to the paper, and this is where most of the new ideas appear. In this rather technical section

we establish the upper and lower bounds on the exit probabilities and exit times. In Section 5 we

first prove the Carleson estimate for Lipschitz open sets and then prove the main Theorem 1.2. In

Section 6 we provide the counterexample already mentioned in Remark 1.3. Finally, in Section 7

we explain the differences between the proofs of Theorems 1.4 and 1.5 and their counterparts from

[12].

Throughout this paper, the constants C1, C2, R, R1, RLip will be fixed. The lowercase constants

c0, c1, c2, · · · will denote generic constants whose exact values are not important and can change

from one appearance to another. The dependence of the lower case constants on the dimension d

and the function φ may not be mentioned explicitly. We will use “:=” to denote a definition, which

is read as “is defined to be”. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. For every

function f , let f+ := f ∨ 0. For every function f , we extend its definition to the cemetery point

∂ by setting f(∂) = 0. We will use dx to denote the Lebesgue measure in Rd and, for a Borel set

A ⊂ Rd, we also use |A| to denote its Lebesgue measure.

2 Setting and Preliminary Results

A C∞ function φ : (0,∞) → [0,∞) is called a Bernstein function if (−1)nDnφ ≤ 0 for every

n = 1, 2, . . . . Every Bernstein function has a representation φ(λ) = a+ bλ+
∫

(0,∞)(1− e
−λt)µ(dt)

where a, b ≥ 0 and µ is a measure on (0,∞) satisfying
∫

(0,∞)(1∧ t)µ(dt) <∞; a is called the killing

coefficient, b the drift and µ the Lévy measure of the Bernstein function. A Bernstein function φ is

called a complete Bernstein function if the Lévy measure µ has a completely monotone density µ(t),

i.e., (−1)nDnµ(t) ≥ 0 for every non-negative integer n and all t > 0. Here and below, by abuse

of notation we denote the Lévy density by µ(t). For more on Bernstein and complete Bernstein

functions we refer the readers to [34].

A Bernstein function φ on (0,∞) is the Laplace exponent of a subordinator if and only if

φ(0+) = 0. Suppose that S is a subordinator with Laplace exponent φ. S is called a complete

subordinator if φ is a complete Bernstein function. The potential measure U of S is defined by

U(A) = E
∫ ∞

0
1{St∈A} dt, A ⊂ [0,∞). (2.1)

Note that U(A) is the expected time the subordinator S spends in the set A.

Throughout the remainder of this paper, we assume that S = (St : t ≥ 0) is a complete

subordinator with a positive drift and, without loss of generality, we shall assume that the drift of
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S is equal to 1. Thus the Laplace exponent of S can be written as

φ(λ) := λ+ ψ(λ) where ψ(λ) :=

∫
(0,∞)

(1− e−λt)µ(dt).

We will exclude the trivial case of St = t, that is the case of ψ ≡ 0. Since the drift of S is equal

to 1, the potential measure U of S has a completely monotone density u (cf. [6, Corollary 5.4 and

Corollary 5.5]).

Suppose that W = (Wt : t ≥ 0) is a Brownian motion in Rd independent of S and with

Ex[eiθ·(Wt−W0)] = e−t|θ|
2
, for all x, θ ∈ Rd.

The process X = (Xt : t ≥ 0) defined by Xt = W (St) is called a subordinate Brownian motion. It

follows from [6, Chapter 5] that X is a Lévy process with Lévy exponent φ(|θ|2) = |θ|2 + ψ(|θ|2):

Ex[eiθ·(Xt−X0)] = e−tφ(|θ|2), for all x, θ ∈ Rd.

The Lévy measure of the process X has a density J , called the Lévy density, given by J(x) = j(|x|)
where

j(r) :=

∫ ∞
0

(4πt)−d/2e−r
2/(4t)µ(t) dt, r > 0. (2.2)

Note that the function r 7→ j(r) is continuous and decreasing on (0,∞). We will sometimes use

the notation J(x, y) for J(x− y).

The function J(x, y) is the Lévy intensity of X. It determines a Lévy system for X, which

describes the jumps of the process X: For any non-negative measurable function f on R+×Rd×Rd

with f(s, y, y) = 0 for all y ∈ Rd, any stopping time T (with respect to the filtration of X) and any

x ∈ Rd,

Ex

∑
s≤T

f(s,Xs−, Xs)

 = Ex
[∫ T

0

(∫
Rd
f(s,Xs, y)J(Xs, y)dy

)
ds

]
. (2.3)

(See, for example, [14, Proof of Lemma 4.7] and [15, Appendix A].)

Recall that for any open set U ⊂ Rd, τU = inf{t > 0 : Xt /∈ U} is the first exit time from U

by X. The following result is a consequence of a combination of [29, Theorem 1] and [33, Lemma

4.1], and will be used in Section 5. Results of this nature were also proved in [30] and [36].

Lemma 2.1 For every % > 0, there exists c = c(%) > 0 such that for every x0 ∈ Rd and r ∈ (0, %],

c−1r2 ≤ Ex0
[
τB(x0,r)

]
≤ c r2. (2.4)

In the remainder of this paper, we will need some control on the behavior of j near the origin.

For this, we will assume that for any K > 0, there exists c = c(K) > 1 such that

µ(r) ≤ c µ(2r), ∀r ∈ (0,K). (2.5)

On the other hand, since φ is a complete Bernstein function, it follows from [26, Lemma 2.1] that

there exists c > 1 such that µ(t) ≤ cµ(t + 1) for every t > 1. Thus by repeating the proof of
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[30, Lemma 4.2] (see also [25, Proposition 1.3.5]), we can show that for any K > 0, there exists

c = c(K) > 1 such that

j(r) ≤ c j(2r), ∀r ∈ (0,K), (2.6)

and, there exists c > 1 such that

j(r) ≤ c j(r + 1), ∀r > 1. (2.7)

Note that, as a consequence of (2.6), we have that, for any K > 0,

j(ar) ≤ c a−νj(r), ∀r ∈ (0,K) and a ∈ (0, 1) (2.8)

where c = c(K) is the constant in (2.6) and ν = ν(K) := log2 c.

The following Harnack inequality will be used to prove the main result of this paper.

Proposition 2.2 (Harnack inequality) There exists a constant c > 0 such that for any r ∈ (0, 1]

and x0 ∈ Rd and any function f which is nonnegative in Rd and harmonic in B(x0, r) with respect

to X we have

f(x) ≤ cf(y) for all x, y ∈ B(x0, r/2).

Proof. We first deal with the case d ≥ 3. When f is bounded, this proposition is just [30, Theorem

4.5]. Using the same argument as in the proof of [30, Corollary 4.7], one can easily see that [30,

Theorem 4.5] can be extended to any nonnegative harmonic function.

The assertions of the proposition in the cases of d = 2 and d = 1 follow easily from the assertion

in the case d ≥ 3. Since the arguments are similar, we will only spell out the details in the case

d = 2. For any x ∈ R3, x = (x̃, x3), where x̃ ∈ R2. Analogous notation will be used also for

other objects in R3. Let X = (Xt,Px) be the subordinate Brownian motion in R3 and write

X = (X̃,X3). Note that X̃ has the same distribution under P(x̃,0) and P(x̃,x3) for any x3 ∈ R.

Hence we can define Px̃ := P(x̃,0). The process (X̃,Px̃) is a subordinate Brownian motion in R2 via

the same subordinator as the one used to define X. For any given f̃ : R2 → [0,∞), we extend it to

R3 by defining f(x) = f((x̃, x3)) := f̃(x̃). Then

(1) If f̃ is regular harmonic (with respect to X̃) in an open set D̃ ⊂ R2, then f is regular harmonic

(with respect to X) in the cylinder D := D̃ × R. Indeed, let τ̃
D̃

:= inf{t > 0 : X̃t /∈ D̃} be

the exit time of X̃ from D̃, and τD := inf{t > 0 : Xt /∈ D}. Then clearly τ̃
D̃

= τD. Thus, for

any x = (x̃, x3) ∈ D,

Ex[f(X(τD))] = Ex̃[f̃(X̃(τ̃
D̃

))] = f̃(x̃) = f(x) .

(2) If f̃ is harmonic (with respect to X̃) in an open set D̃ ⊂ R2, then f is harmonic (with respect

to X) in the cylinder D := D̃×R. Indeed, let B ⊂ D be open and relatively compact. Then

there exists a cylinder C = C̃×R such that B ⊂ C and C̃ ⊂ D̃ is open and relatively compact

(in D̃). Since f̃ is harmonic (with respect to X̃) in D̃, it is regular harmonic in C̃. By (1), f

is regular harmonic (with respect to X) in C, and therefore also harmonic in C. Since B is

compactly contained in C, we see that

f(x) = Ex[f(X(τB))] , for all x ∈ B .
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Let r ∈ (0, 1), x̃0 ∈ R2 and define x0 := (x̃0, 0). Assume that f̃ : R2 → [0,∞) is harmonic

(with respect to X̃) in B(x̃0, r). Then f defined by f(x) = f̃(x̃) is harmonic in B(x̃0, r) × R. In

particular, f is harmonic in B(x0, r). By the assertion in the case d = 3,

f(x) ≤ cf(y) , for all x, y ∈ B(x0, r/2) .

Let x̃, ỹ ∈ B(x̃0, r/2), and define x := (x̃, 0), y := (ỹ, 0). Then

f̃(x̃) = f(x) ≤ cf(y) = cf̃(ỹ) .

2

It follows from [6, Chapter 5] that the process X has a transition density p(t, x, y), which is

jointly continuous. Using this and the strong Markov property, one can easily check that

pD(t, x, y) := p(t, x, y)− Ex[p(t− τD, X(τD), y); t > τD], x, y ∈ D

is continuous and is the transition density of XD. For any bounded open set D ⊂ Rd, we will use

GD to denote the Green function of XD, i.e.,

GD(x, y) :=

∫ ∞
0

pD(t, x, y)dt, x, y ∈ D.

Note that GD(x, y) is continuous on {(x, y) ∈ D ×D : x 6= y}.

3 Analysis on half-space

Recall that X = (Xt : t ≥ 0) is the d-dimensional subordinate Brownian motion defined by

Xt = W (St), where W = (W 1, . . . ,W d) is a d-dimensional Brownian motion and S = (St : t ≥ 0)

an independent complete subordinator whose drift is equal to 1 and whose Lévy density satisfies

(1.2).

Let Z = (Zt : t ≥ 0) be the one-dimensional subordinate Brownian motion defined as Zt :=

W d(St). Let Zt := sup{0 ∨ Zs : 0 ≤ s ≤ t} be the supremum process of Z and let L = (Lt : t ≥ 0)

be a local time of Z−Z at 0. L is also called a local time of the process Z reflected at the supremum.

The right continuous inverse L−1
t of L is a subordinator and is called the ladder time process of

Z. The process Ht = ZL−1
t

is also a subordinator and is called the ladder height process of Z.

(For the basic properties of the ladder time and ladder height processes, we refer our readers to [1,

Chapter 6].) The ladder height process H has a drift ([24, Lemma 2.1]). The potential measure of

the subordinator H will be denoted by V . Let V (t) := V ((0, t)) be the renewal function of H.

By [1, Theorem 5, page 79] and [24, Lemma 2.1], V is absolutely continuous and has a continuous

and strictly positive density v such that v(0+) = 1. The functions V and v enjoy the following

estimates near the origin.

Lemma 3.1 ([24, Lemma 2.2]) Let R > 0. There exists a constant c = c(R) > 1 such that for all

x ∈ (0, R], we have c−1 ≤ v(x) ≤ c and c−1x ≤ V (x) ≤ cx .
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By [26, Proposition 2.4] or [28, Lemma 3.8], the Laplace exponent χ of the ladder height process

H of Zt is also a complete Bernstein function. For an earlier result related to this, see [31]. Using

this and the fact that χ has a drift, we see from [25, Corollary 2.3], that v is completely monotone.

In particular, v and the renewal function V are C∞ functions.

We will use Rd+ to denote the half-space {x = (x1, . . . , xd−1, xd) := (x̃, xd) ∈ Rd : xd > 0}.
Define w(x) := V ((xd)

+).

Proposition 3.2 The function w is harmonic in Rd+ with respect to X and, for any r > 0, regular

harmonic in Rd−1 × (0, r) with respect to X.

Proof. Since Zt := W d(St) has a transition density, it satisfies the condition ACC in [35], namely

the resolvent kernels are absolutely continuous. The assumption in [35] that 0 is regular for (0,∞)

is also satisfied since X is of unbounded variation. Further, by symmetry of Z, the notions of

coharmonic and harmonic functions coincide. Now the proposition follows by the same argument

as in [26, Theorem 4.1]. 2

Unlike [26, Proposition 4.2], we prove the next result without using the boundary Harnack

principle.

Proposition 3.3 For all positive constants r0 and L, we have

sup
x∈Rd: 0<xd<L

∫
B(x,r0)c∩Rd+

w(y)j(|x− y|) dy <∞ .

Proof. Without loss of generality, we assume x̃ = 0. We consider two separate cases.

(a) Suppose L > xd ≥ r0/4. By (2.3) and Proposition 3.2, for every x ∈ Rd+,

w(x) ≥ Ex
[
w
(
X(τB(x,r0/2)∩Rd+

)
)

: X(τB(x,r0/2)∩Rd+
) ∈ B(x, r0)c ∩ Rd+

]
= Ex

[∫ τ
B(x,r0/2)∩Rd+

0

∫
B(x,r0)c∩Rd+

j(|Xt − y|)w(y) dydt

]
. (3.1)

Since |z − y| ≤ |x− z|+ |x− y| ≤ r0 + |x− y| ≤ 2|x− y| for (z, y) ∈ B(x, r0/2)× B(x, r0)c, using

(2.6) and (2.7), we have j(|z − y|) ≥ c1j(|x− y|). Thus, combining this with (3.1), we obtain that∫
B(x,r0)c∩Rd+

w(y)j(|x− y|)dy ≤ c−1
1

w(x)

Ex[τB(x,r0/2)∩Rd+
]
≤ c−1

1

V (L)

E0[τB(0,r0/4)]
.

(b) Suppose xd < r0/4. Note that if |y−x| > r0, then |y| ≥ |y−x|− |x| > 3r0/4 and |y| ≤ |y−x|+
|x| ≤ |y− x|+ r0/4 ≤ |y− x|+ |y− x|/4. Thus, using (2.6) and (2.7), we have j(|y|) ≥ c2j(|x− y|)
and

sup
x∈Rd: 0<xd<r0/4

∫
B(x,r0)c∩Rd+

w(y)j(|x− y|)dy ≤ c3

∫
B(0,r0/2)c∩Rd+

w(y)j(|y|)dy. (3.2)

Let x1 := (0̃, r0/8). By Proposition 3.2 and (2.3),

∞ > w(x1) ≥ Ex1
[
w(X(τB(0,r0/4)∩Rd+

)) : X(τB(0,r0/4)∩Rd+
) ∈ B(x, r0/2)c ∩ Rd+

]
= Ex1

[∫ τ
B(0,r0/4)∩Rd+

0

∫
B(0,r0/2)c∩Rd+

j(|Xt − y|)w(y) dy dt

]
. (3.3)
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Since |z − y| ≤ |z| + |y| ≤ (r0/4) + |y| ≤ 2|y| for (z, y) ∈ B(0, r0/4) × B(0, r0/2)c, using (2.6) and

(2.7), we have j(|z − y|) ≥ c3j(|y|). Thus, combining this with (3.3), we obtain that

∞ > w(x1) > c3Ex1

[∫ τ
B(0,r0/4)∩Rd+

0

∫
B(0,r0/2)c∩Rd+

j(|y|)w(y) dy dt

]

= c3Ex1 [τB(0,r0/4)∩Rd+
]

∫
B(0,r0/2)c∩Rd+

j(|y|)w(y)dy. (3.4)

Combining (3.2) and (3.4), we conclude that

sup
x∈Rd: 0<xd<r0/4

∫
B(x,r0)c∩Rd+

w(y)j(|x− y|)dy ≤ c4
V (r0/8)

E0[τB(0,r0/8)]
<∞.

2

For a function f : Rd → R and x ∈ Rd we define

Af(x) = lim
ε↓0

∫
B(x,ε)c

(f(y)− f(x)) j(|y − x|) dy

and Dx(∆ +A) to be the family of all functions f such that ∆f(x) is defined and

lim
ε↓0

∫
B(x,ε)c

(f(y)− f(x)) j(|y − x|) dy

exists and is finite. Recall that C2
0 (Rd) is the collection of C2 functions in Rd vanishing at infinity.

It is well known that C2
0 (Rd) ⊂ Dx(∆ +A) for any x and that, by the rotational symmetry of X,

∆ + A restricted to C2
0 (Rd) coincides with the infinitesimal generator of the process X (e.g. [32,

Theorem 31.5]).

The proof of the next result is similar to that of [26, Theorem 4.3]. We give the proof here for

completeness.

Theorem 3.4 For all x ∈ Rd+ we have that w ∈ Dx(∆ +A) and (∆ +A)w(x) = 0.

Proof. It follows from Proposition 3.3 and the fact that j is a Lévy density that for any L > 0

and ε ∈ (0, 1/2)

sup
x∈Rd: 0<xd<L

∣∣∣∣∣
∫
B(x,ε)c

(w(y)− w(x))j(|y − x|)dy

∣∣∣∣∣
≤ sup

x∈Rd: 0<xd<L

∫
B(x,ε)c

w(y)j(|y − x|) dy + V (L)

∫
B(x,ε)c

j(|y|)dy <∞ . (3.5)

Hence, for every ε ∈ (0, 1/2), Aεw(x) :=
∫
B(x,ε)c(w(y) − w(x))j(|y − x|)dy is well defined. Using

the smoothness of w in Rd+ and following the same argument in [26, Theorem 4.3], we can show

that Aw is well defined in Rd+ and Aεw(x) converges to

Aw(x) =

∫
Rd

(
w(y)− w(x)− 1{|y−x|<1}(y − x) · ∇w(x)

)
j(|y − x|)dy

12



locally uniformly in Rd+ as ε→ 0 and the function Aw(x) is continuous in Rd+.

Suppose that U1 and U2 are relatively compact open subsets of Rd+ such that U1 ⊂ U2 ⊂ U2 ⊂
Rd+. It follows again from the same argument in [26, Theorem 4.3] that the conditions [11, (2.4),

(2.6)] are true. Thus, by [11, Lemma 2.3, Theorem 2.11(ii)], we have that for any f ∈ C2
c (Rd+),

0 =

∫
Rd
∇w(x) · ∇f(x) dx+

1

2

∫
Rd

∫
Rd

(w(y)− w(x))(f(y)− f(x))j(|y − x|) dx dy. (3.6)

For f ∈ C2
c (Rd+) with supp(f) ⊂ U1 ⊂ U2 ⊂ U2 ⊂ Rd+,∫

Rd

∫
Rd
|w(y)− w(x)||f(y)− f(x)|j(|y − x|)dxdy

=

∫
U2

∫
U2

|w(y)− w(x)||f(y)− f(x)|j(|y − x|)dxdy + 2

∫
U1

∫
Uc2

|w(y)− w(x)||f(x)|j(|y − x|)dxdy

≤c1

∫
U2×U2

|y − x|2j(|y − x|)dxdy + 2‖f‖∞|U1|
(

sup
x∈U1

w(x)

)∫
Uc2

j(|y − x|)dy

+ 2‖f‖∞
∫
U1

∫
Uc2

w(y)j(|x− y|)dydx

is finite by Proposition 3.3 and the fact that j(|x|)dx is a Lévy measure. Thus by (3.6), Fubini’s

theorem and the dominated convergence theorem, we have for any f ∈ C2
c (Rd+),

0 =

∫
Rd
∇w(x) · ∇f(x) dx+

1

2
lim
ε↓0

∫
{(x,y)∈Rd×Rd, |y−x|>ε}

(w(y)− w(x))(f(y)− f(x))j(|y − x|) dx dy

= −
∫
Rd

∆w(x)f(x) dx− lim
ε↓0

∫
Rd+
f(x)

(∫
B(x,ε)c

(w(y)− w(x))j(|y − x|)dy

)
dx

= −
∫
Rd

∆w(x)f(x) dx−
∫
Rd+
f(x)Aw(x) dx = −

∫
Rd

(∆ +A)w(x)f(x) dx

where we have used the fact Aεw → Aw converges uniformly on the support of f . Hence, by the

continuity of (∆ +A)w, we have (∆ +A)w(x) = 0 in Rd+. 2

4 Analysis on C1,1 open set

Recall that Λ ≥ 1 and that D is a C1,1 open set with characteristics (R,Λ) and D satisfies the

uniform interior ball condition and the uniform exterior ball condition with radius R ≤ 1. The

proof of the next lemma is motivated by that of [26, Lemma 4.4].

Lemma 4.1 Fix Q ∈ ∂D and define

h(y) := V (δD(y))1D∩B(Q,R)(y).

There exists C1 = C1(Λ, R) > 0 independent of Q such that h ∈ Dx(∆ + A) for a.e. x ∈ D ∩
B(Q,R/4) and

|(∆ +A)h(x)| ≤ C1 for a.e. x ∈ D ∩B(Q,R/4) . (4.1)
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Proof. In this proof, we fix x ∈ D ∩B(Q,R/4) and x0 ∈ ∂D satisfying δD(x) = |x− x0|. We also

fix the C1,1 function ϕ and the coordinate system CS = CSx0 in the definition of C1,1 open set so

that x = (0, xd) with 0 < xd < R/4 and B(x0, R)∩D = {y = (ỹ, yd) ∈ B(0, R) in CS : yd > ϕ(ỹ)}.
Let

ϕ1(ỹ) := R−
√
R2 − |ỹ|2 and ϕ2(ỹ) := −R+

√
R2 − |ỹ|2.

Due to the uniform interior ball condition and the uniform exterior ball condition with radius R,

we have

ϕ2(ỹ) ≤ ϕ(ỹ) ≤ ϕ1(ỹ) for every y ∈ D ∩B(x,R/4). (4.2)

Define H+ := {y = (ỹ, yd) ∈ CS : yd > 0} and let

A := {y = (ỹ, yd) ∈ (D ∪H+) ∩B(x,R/4) : ϕ2(ỹ) ≤ yd ≤ ϕ1(ỹ)},

E := {y = (ỹ, yd) ∈ B(x,R/4) : yd > ϕ1(ỹ)}.

Note that, since |y − Q| ≤ |y − x| + |x − Q| ≤ R/2 for y ∈ B(x,R/4), we have B(x,R/4) ∩ D ⊂
B(Q,R/2) ∩D.

Let

hx(y) := V (δ
H+ (y)).

Note that hx(x) = h(x). Moreover, since δ
H+ (y) = (yd)

+ in CS, it follows from Theorem 3.4 that

Ahx is well defined in H+ and

(∆ +A)hx(y) = 0, ∀y ∈ H+. (4.3)

We show now that A(h− hx)(x) is well defined. For each ε > 0 we have that∣∣∣∣ ∫
{y∈D∪H+: |y−x|>ε}

(h(y)− hx(y))j(|y − x|) dy
∣∣∣∣

≤
∫
B(x,R/4)c

(h(y) + hx(y))j(|y − x|)dy +

∫
A

(h(y) + hx(y))j(|y − x|) dy

+

∫
E
|h(y)− hx(y)|j(|y − x|)dy =: I1 + I2 + I3.

By the fact that h(y) = 0 for y ∈ B(Q,R)c,

I1 ≤ sup
z∈Rd: 0<zd<R

∫
B(z,R/4)c∩H+

V (yd)j(|z − y|)dy + c1

∫
B(0,R/4)c

j(|y|)dy =: K1 +K2.

K2 is clearly finite since J is the Lévy density of X while K1 is finite by Proposition 3.3.

For y ∈ A, since V is increasing and (R−
√
R2 − |ỹ|2) ≤ R−1|ỹ|2, we see that

hx(y) + h(y) ≤ 2V (ϕ1(ỹ)− ϕ2(ỹ)) ≤ 2V (2R−1|ỹ|2) ≤ 2V (2R−1|y − x|2). (4.4)

Using (4.4) and Lemma 3.1, we have

I2 ≤c2

∫
A
|y − x|2j(|y − x|)dy ≤ c2

∫
B(0,R/4)

|z|2j(|z|)dz <∞. (4.5)
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For I3, we consider two cases separately: If 0 < yd = δ
H+ (y) ≤ δD(y), since v is decreasing,

h(y)− hx(y) ≤ V (yd +R−1|ỹ|2)− V (yd) =

∫ yd+R−1|ỹ|2

yd

v(z)dz ≤ R−1|ỹ|2v(yd). (4.6)

If yd = δ
H+ (y) > δD(y) and y ∈ E, using the fact that δD(y) is greater than or equal to the distance

between y and the graph of ϕ1 and

yd −R+
√
|ỹ|2 + (R− yd)2 =

|ỹ|2√
|ỹ|2 + (R− yd)2 + (R− yd)

≤ |y − x|2

2(R− yd)
≤ |y − x|

2

R
,

we have

hx(y)− h(y) ≤
∫ yd

R−
√
|ỹ|2+(R−yd)2

v(z)dz ≤ R−1|y − x|2 v(R−
√
|ỹ|2 + (R− yd)2). (4.7)

Thus, by (4.6)-(4.7) and Lemma 3.1,

I3 ≤ c3

∫
E
|y − x|2j(|y − x|)dy ≤ c3

∫
B(0,R/4)

|z|2j(|z|)dz <∞.

We have proved

|A(h− hx)(x)| ≤ I1 + I2 + I3 ≤ c4 (4.8)

for some constant c4 = c4(R,Λ) > 0.

The estimate (4.8) shows in particular that the limit

lim
ε↓0

∫
{y∈D∪H+:|y−x|>ε}

(h(y)− hx(y))j(|y − x|) dy

exists and hence A(h− hx)(x) is well defined.

We now consider ∆(h − hx). Note that for a.e. x ∈ D ∩ B(Q,R/4), the second order partial

derivatives of the function y → δD(y) exist at x. Without loss of generality we assume that x

has been chosen so that the second order partial derivatives of the function y → δD(y) exist at x.

Since hx(y) = V ((yd)
+) in CS, we have ∆hx(x) = v′(xd). It follows from (4.4), (4.6)–(4.7) that

|h(y) − hx(y)| ≤ c5R
−1|y − x|2 for y ∈ D ∩ B(Q,R/4). Combining this with the elementary fact

that, for any function f such that ∆f(z) exists,

∂2f(z)

∂z2
i

= lim
ε→0

(f(z + εei) + f(z − εei)− 2f(z))

ε2
,

we get |∆(h−hx)(x)| ≤ c6. In the display above ei stands for the unit vector in positive xi direction.

Using this, (4.3), (4.8), and linearity we get that (∆+A)h(x) is well defined and |(∆+A)h(x)| ≤ c7.

2

Using the fact that ∆ +A restricted to C2
b (Rd) coincides with the infinitesimal generator of the

process X, we know that the following Dynkin’s formula (see, for instance, [17, (5.8)]) is true: for

f ∈ C2
b (Rd) and any bounded open subset U of Rd,

Ex
∫ τU

0
(∆ +A)f(Xt)dt = Ex[f(XτU )]− f(x). (4.9)
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Lemma 4.2 For every r1 > 0 and every a ∈ (0, 1), there exists a positive constant c = c(r1, d, a)

such that for any r ∈ (0, r1] and any open sets U and D with B(0, ar) ∩D ⊂ U ⊂ D, we have

Px (XτU ∈ D) ≤ c r−2 Ex[τU ], x ∈ D ∩B(0, ar/2).

Proof. For fixed a ∈ (0, 1), take a C2 function f such that 0 ≤ f ≤ 1,

f(y) =

{
0, |y| < a/2

1, |y| ≥ a.

Put c1 = ‖
∑

i,j |
∂2f

∂yi∂yj
|‖∞. Define fr(y) = f(yr ) so that 0 ≤ fr ≤ 1,

fr(y) =

{
0, |y| < ar/2

1, |y| ≥ ar,
and sup

y∈Rd

∑
i,j

∣∣∣∣ ∂2

∂yi∂yj
fr(y)

∣∣∣∣ = c1 r
−2. (4.10)

Using (4.10), we see that∣∣∣∣∫
Rd

(fr(x+ y)− fr(x)− (∇fr(x) · y)1B(0,1)(y))J(y)dy

∣∣∣∣
≤

∣∣∣∣∣
∫
{|y|≤1}

(fr(x+ y)− fr(x)− (∇fr(x) · y)1B(0,1)(y))J(y)dy

∣∣∣∣∣+ 2

∫
{|y|>1}

J(y)dy

≤ c2

r2

∫
{|y|≤1}

|y|2J(y)dy + 2

∫
{|y|>1}

J(y)dy ≤ c3

r2
. (4.11)

Now, by combining (4.9), (4.10) and (4.11), we get that for any x ∈ D ∩B(0, ar/2),

Px (X(τU ) ∈ D) = Px (X(τU ) ∈ {y ∈ D : ar ≤ |y|})
= Ex [fr (X(τU )) : X(τU ) ∈ {y ∈ D : ar ≤ |y|}]

≤ Ex [fr (X(τU ))] = Ex
[∫ τU

0
(∆ +A)fr(Xt)dt

]
≤ ‖(∆ +A)fr‖∞ Ex[τU ] ≤ c4r

−2Ex[τU ],

where in the first equality above we used the assumption B(0, ar) ∩D ⊂ U . 2

Define ρQ(x) := xd−ϕQ(x̃), where (x̃, xd) are the coordinates of x in CSQ. Note that for every

Q ∈ ∂D and x ∈ B(Q,R) ∩D we have

(1 + Λ2)−1/2 ρQ(x) ≤ δD(x) ≤ ρQ(x). (4.12)

We define for r1, r2 > 0

DQ(r1, r2) := {y ∈ D : r1 > ρQ(y) > 0, |ỹ| < r2} .

Let R1 := R/(4
√

1 + (1 + Λ)2). By Lemma 3.1, V (δD(x)) on the right-hand sides of (4.13)–

(4.14) can be replaced by δD(x). The reason we prefer the forms below is that the function V will

be used in the proof.
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Lemma 4.3 There are constants λ0 > 2R−1
1 , κ0 ∈ (0, 1) and c = c(R,Λ) > 0 such that for every

λ ≥ λ0, Q ∈ ∂D and x ∈ DQ(2−1(1 + Λ)−1κ0λ
−1, κ0λ

−1) with x̃ = 0,

Px
(
X(τDQ(κ0λ−1,λ−1)) ∈ D

)
≤ c λ V (δD(x)) (4.13)

and

Ex
[
τDQ(κ0λ−1,λ−1)

]
≤ c λ−1 V (δD(x)). (4.14)

Proof. Without loss of generality, we assume Q = 0. Let ϕ = ϕ0 : Rd−1 → R be the C1,1 function

and CS0 be the coordinate system in the definition of C1,1 open set so that B(0, R)∩D =
{

(ỹ, yd) ∈
B(0, R) in CS0 : yd > ϕ(ỹ)

}
. Let ρ(y) := yd − ϕ(ỹ) and D(a, b) := D0(a, b).

Note that

|y|2 = |ỹ|2 + |yd|2 < r2 + (|yd − ϕ(ỹ)|+ |ϕ(ỹ)|)2 < (1 + (1 + Λ)2)r2 for every y ∈ D(r, r) . (4.15)

By this and the definition of R1, we have D(r, s) ⊂ D(R1, R1) ⊂ B(0, R/4) ∩D ⊂ B(0, R) ∩D for

every r, s ≤ R1.

Using Lemma 3.1, we can and will choose δ0 ∈ (0, R1) small such that

2r2 ≤ V ((1 + Λ2)−1/2r) for all r ≤ 4δ0.

Then, by (4.12), the subadditivity and monotonicity of V , for every λ ≥ 1 and every y ∈ B(0, R)∩D
with ρ(y) ≤ 4λ−1δ0, we have

2λ2ρ(y)2 ≤ V (λδD(y)) ≤ (λ+ 1)V (δD(y)) ≤ 2λV (δD(y)). (4.16)

Since ∆ϕ(ỹ) is well defined for a.e. ỹ with respect to the (d−1)-dimensional Lebesgue measure,

it follows that ∆ρ(y) exists for a.e. y with respect to the d-dimensional Lebesgue measure. Using

the fact that the derivative of a Lipschitz function is essentially bounded by its Lipschitz constant,

we have for a.e. y ∈ B(0, R) ∩D that

∆(ρ(y)2) = ∆((yd − ϕ(ỹ))2) = 2(1 + |∇ϕ(ỹ)|2)− 2ρ(y)∆ϕ(ỹ) ≥ 2(1− ρ(y)‖∆ϕ‖∞) .

Choosing δ0 ∈ (0, R1) smaller if necessary we can get that

∆(ρ(y)2) ≥ 1 for a.e. y ∈ B(0, R) ∩D with ρ(y) ≤ 2δ0. (4.17)

Let g(y) = g(ỹ, yd) be a smooth function on Rd with 0 ≤ g(ỹ, yd) ≤ 2, g(ỹ, yd) ≤ y2
d,

d∑
i,j=1

| ∂
2g

∂yi∂yj
|+

d∑
i=1

| ∂g
∂yi
| ≤ c1, (4.18)

and

g(y) =


0, if −∞ < yd < 0, or yd ≥ 4 or |ỹ| > 2

y2
d, if 0 ≤ yd < 1 and |ỹ| < 1

−(yd − 2)2 + 2, if 1 ≤ yd ≤ 3 and |ỹ| < 1

(yd − 4)2, if 3 ≤ yd ≤ 4 and |ỹ| < 1.
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Thus supp(g) ⊂ {|ỹ| ≤ 2, 0 ≤ yd ≤ 4}.
For λ > 1, let gλ(y) = gλ(ỹ, yd) := g(λδ−1

0 ỹ, λδ−1
0 ρ(y))1B(Q,R)(y) so that

supp(gλ) ⊂ {|ỹ| ≤ 2λ−1δ0, 0 ≤ ρ(y) ≤ 4λ−1δ0}. (4.19)

Then, since
∑d

i,j=1 |
∂2ρ(y)
∂yi∂yj

|+
∑d

i=1 |
∂ρ(y)
∂yi
| is essentially bounded, using (4.18), we have

d∑
i,j=1

| ∂2

∂yi∂yj
gλ(y)| ≤ c2λ

2 a.e. y. (4.20)

Note that, by the definition of g, gλ(y) = λ2δ−2
0 ρ(y)2 on D(λ−1δ0, λ

−1δ0). Thus, from (4.17) we get

∆gλ(y) ≥ λ2δ−2
0 for a.e. y ∈ D(λ−1δ0, λ

−1δ0). (4.21)

On the other hand, by (4.20) we have∣∣∣∣∫
Rd

(gλ(y + z)− gλ(y)− (∇gλ(y) · z)1B(0,λ−1)(z))J(z) dz

∣∣∣∣
≤

∣∣∣∣∣
∫
{|z|≤λ−1}

(gλ(y + z)− gλ(y)− (∇gλ(y) · z)1B(0,λ−1)(z))J(z) dz

∣∣∣∣∣
+

∫
{λ−1<|z|≤1}

J(z)gλ(y + z)dz +

(∫
{λ−1<|z|≤1}

J(z)dz

)
gλ(y) + 2

∫
{1<|z|}

J(z) dz

≤ c3λ
2

∫
{|z|≤λ−1}

|z|2J(z) dz + 2

∫
{1<|z|}

J(z) dz

+

∫
{λ−1<|z|≤1}

J(z)gλ(y + z)dz +

(∫
{λ−1<|z|≤1}

J(z)dz

)
gλ(y).

Thus

λ−2

∣∣∣∣∫
Rd

(gλ(y + z)− gλ(y)− (∇gλ(y) · z)1B(0,λ−1)(z))J(z)dz

∣∣∣∣
≤ c3

∫
{|z|≤λ−1}

|z|2J(z) dz + 2λ−2

∫
{1<|z|}

J(z) dz

+λ−2

∫
{λ−1<|z|≤1}

J(z)gλ(y + z)dz + λ−2

(∫
{λ−1<|z|≤1}

J(z)dz

)
gλ(y)

≤ c3

∫
{|z|≤λ−1}

|z|2J(z) dz + 2λ−2

∫
{1<|z|}

J(z) dz

+

∫
{λ−1<|z|≤1}

J(z)|z|2gλ(y + z)dz +

(∫
{0<|z|≤1}

|z|2J(z)dz

)
gλ(y). (4.22)

We claim that for every λ > 1 and y ∈ D(λ−1δ0, λ
−1δ0), the function z → gλ(y+z) is supported

in B(0, 3λ−1δ0

√
(4Λ)2 + 1).

Fix λ > 1 and y ∈ D(λ−1δ0, λ
−1δ0) and suppose that z ∈ B(0, 3λ−1δ0

√
(4Λ)2 + 1)c. Then

either |z̃| ≥ 3λ−1δ0, or |z̃| < 3λ−1δ0 and |zd| ≥ 12λ−1δ0Λ. If |z̃| ≥ 3λ−1δ0, then clearly |ỹ + z̃| ≥
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|z̃| − |ỹ| ≥ 3λ−1δ0 − λ−1δ0 = 2λ−1δ0. Thus by (4.19), gλ(y + z) = 0. Now assume |z̃| < 3λ−1δ0 and

|zd| ≥ 12λ−1δ0Λ. If zd ≤ −12λ−1δ0Λ, then gλ(y + z) = 0. If zd ≥ 12λ−1δ0Λ, we have

ρ(y + z) ≥ zd − |ψ(ỹ + z̃)| ≥ 12λ−1δ0Λ− Λ(|z̃|+ |ỹ|) ≥ λ−1Λ(12δ0 − 3δ0 − δ0) = 8λ−1Λδ0.

Thus by (4.19), gλ(y + z) = 0. The claim is proved.

Using the above claim and the fact that gλ(y) = λ2δ−2
0 ρ(y)2 on D(λ−1δ0, λ

−1δ0), we have from

(4.22), that for y ∈ D(λ−1δ0, λ
−1δ0)

λ−2

∣∣∣∣∫
Rd

(gλ(y + z)− gλ(y)− (∇gλ(y) · z)1B(0,λ−1)(z))J(z)dz

∣∣∣∣
≤c3

∫
{|z|≤λ−1}

|z|2J(z) dz + 2λ−2

∫
{1<|z|}

J(z) dz

+ 2

∫
{λ−1<|z|≤1∧3λ−1δ0

√
(4Λ)2+1}

J(z)|z|2dz + c4λ
2δ−2

0 ρ(y)2

≤(c3 + 2)

∫
{|z|≤3λ−1δ0

√
(4Λ)2+1}

(1 ∧ |z|2)J(z) dz + 2λ−2

∫
{1<|z|}

J(z) dz + c4λ
2δ−2

0 ρ(y)2, (4.23)

where c4 := 2−1 ∨
∫
{0<|z|≤1} |z|

2J(z)dz. Define

h(y) := V (δD(y))1B(0,R)∩D(y) and hλ(y) := λh(y)− gλ(y).

Choose λ∗ ≥ 2 large such that for every λ ≥ λ∗,

(c3+1)

∫
{|z|≤2λ−1δ0

√
(4Λ)2+1}

(1∧|z|2)J(z) dz+2λ−2

∫
{1<|z|}

J(z) dz ≤ 4−1δ−2
0 and

1

4
λδ−2

0 ≥ C1,

where C1 is the constant from Lemma 4.1. Then by (4.21) and (4.23), for every λ ≥ λ∗ and a.e.

y ∈ D(λ−12−1c
−1/2
4 δ0, λ

−1δ0),

(∆ +A)gλ(y) ≥ ∆gλ(y)− |Agλ(y)| ≥ λ2δ−2
0 − 4−1λ2δ−2

0 − c4λ
4δ−2

0 ρ(y)2 ≥ 1

2
λ2δ−2

0 (4.24)

and

(∆ +A)hλ(y) ≤ λ|(∆ +A)h(y)| − (∆ +A)gλ(y) ≤ λ(C1 −
1

2
λδ−2

0 ) ≤ −1

4
λ2δ−2

0 . (4.25)

Let δ∗ := 2−1c
−1/2
4 δ0 and f be a non-negative smooth radial function with compact support

such that f(x) = 0 for |x| > 1 and
∫
Rd f(x)dx = 1. For k ≥ 1, define fk(x) = 2kdf(2kx) and

h
(k)
λ (z) := (fk ∗ hλ)(z) :=

∫
Rd
fk(y)hλ(z − y)dy .

Let

Bλ
k :=

{
y ∈ D(λ−1δ∗, λ

−1δ0) : δD(λ−1δ∗,λ−1δ0)(y) ≥ 2−k
}

and consider large k’s such that Bλ
k ’s are non-empty open sets. Since h

(k)
λ is in C∞c , Ah(k)

λ is well

defined everywhere. We claim that for every λ ≥ λ∗ and k large enough,

(∆ +A)h
(k)
λ ≤ −

1

4
λ2δ−2

0 on Bλ
k . (4.26)
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Indeed, for any x ∈ Bλ
k and z ∈ B(0, 2−k), when k is large enough, it holds that x − z ∈

D(λ−1δ∗, λ
−1δ0). By the proof of Lemma 4.1 the following limit exists:

lim
ε→0

∫
B(x,ε)c

(hλ(y − z)− hλ(x− z)) j(|x− y|) dy

= lim
ε→0

∫
B(x−z,ε)c

(
hλ(y′)− hλ(x− z)

)
j(|(x− z)− y′|) dy′ = Ahλ(x− z) .

Moreover, by (4.25) it holds that for every λ ≥ λ∗, (∆ +A)hλ ≤ −1
4λ

2δ−2
0 a.e. on D(λ−1δ∗, λ

−1δ0).

Next, ∫
B(x,ε)c

(h
(k)
λ (y)− h(k)

λ (x)) j(|x− y|) dy

=

∫
|x−y|>ε

(∫
Rd
fk(z)(hλ(y − z)− hλ(x− z)) dz

)
j(|x− y|) dy

=

∫
B(0,2−k)

fk(z)

(∫
B(x,ε)c

(hλ(y − z)− hλ(x− z)) j(|x− y|) dy

)
dz.

By letting ε→ 0 and using the dominated convergence theorem, we get that for every λ ≥ λ∗ and

k large enough,

(∆ +A)h
(k)
λ (x) =

∫
|z|<2−k

fk(z)(∆ +A)hλ(x− z) dz ≤ −1

4
λ2δ−2

0

∫
|z|<2−k

fk(z) dz = −1

4
λ2δ−2

0 .

By using Dynkin’s formula (4.9), the estimates (4.26) and the fact that h
(k)
λ are in C∞c (Rd),

and by letting k →∞ we get for every λ ≥ λ∗ and x ∈ D(λ−1δ∗, λ
−1δ0) with x̃ = 0,

Ex[hλ(X(τD(λ−1δ∗,λ−1δ0)))]− λV (δD(x)) ≤ Ex[hλ(X(τD(λ−1δ∗,λ−1δ0)))]− hλ(x)

≤ −1

4
λ2δ−2

0 Ex[τD(λ−1δ∗,λ−1δ0)] . (4.27)

It is easy to see that hλ ≥ 0. In fact, if y ∈ (B(0, R) ∩D)c, then both h(y) and gλ(y) are zero. If

y ∈ B(0, R)∩D and ρ(y) ≥ 4λ−1δ0, then gλ(y) = 0. Finally, if y ∈ B(0, R)∩D and ρ(y) ≤ 4λ−1δ0,

then, since g(y) ≤ y2
d by (4.18), we have from (4.16),

hλ(y) = λV (δD(y))− g(λδ−1
0 ỹ, λδ−1

0 ρ(y)) ≥ λV (δD(y))− λ2ρ(y)2 ≥ 0.

Therefore, from (4.27),

V (δD(x)) ≥ 1

4
λ δ−2

0 Ex[τD(λ−1δ∗,λ−1δ0)]. (4.28)

Since B(0, (1 + Λ)−1δ∗λ
−1) ∩D ⊂ D(λ−1δ∗, λ

−1δ0), using Lemma 4.2 and (4.28), we have that for

every λ ≥ λ∗ and x ∈ B(0, 2−1(1 + Λ)−1δ∗λ
−1) with x̃ = 0,

Px
(
X(τDQ(λ−1δ∗,λ−1δ0)) ∈ D

)
≤ c7 λ

2 Ex[τD(λ−1δ∗,λ−1δ0)] ≤ c8 λV (δD(x)).

We have proved the lemma with λ0 := λ∗δ
−1
0 . 2
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Lemma 4.4 There is a constant c = c(R,Λ) > 0 such that for every λ ≥ λ0, κ ∈ (0, 1], Q ∈ ∂D
and x ∈ DQ(κλ−1, λ−1) with x̃ = 0,

Px
(
X(τDQ(κλ−1,λ−1)) ∈ DQ(2κλ−1, λ−1)

)
≥ cλV (δD(x)). (4.29)

Proof. Fix λ ≥ λ0 and κ ∈ (0, 1]. For simplicity we denote DQ(κλ−1, λ−1) by D̂. Further, let

U =
{
y ∈ D : ρQ(y) = κλ−1 and |ỹ| < λ−1

}
be the upper boundary of D̂.

Let τW
D̂

be the first time the Brownian motion W exits D̂ and W D̂ be the killed Brownian motion

in D̂. Let Y = (Yt : t ≥ 0) be the subordinate killed Brownian motion defined by Yt = W D̂(St).

Let ζ denote the lifetime of Y . Recall that u is the potential density of the subordinator S. It

follows from [38, Corollary 4.4] that

Px(X(τ
D̂

) ∈ U) ≥ Px(Yζ− ∈ U) = Ex
[
u(τW

D̂
);W (τW

D̂
) ∈ U

]
.

Thus, since u is deceasing, for any t > 0,

Px(X(τ
D̂

) ∈ U) ≥ Ex
[
u(τW

D̂
);W (τW

D̂
) ∈ U, τW

D̂
≤ t
]
≥ u(t)Px

(
W (τW

D̂
) ∈ U, τW

D̂
≤ t
)

= u(t)
[
Px
(
W (τW

D̂
) ∈ U

)
− Px

(
τW
D̂
> t
)]
≥ u(t)

[
Px
(
W (τW

D̂
) ∈ U

)
− t−1Ex

[
τW
D̂

]]
.

Now we use the following two estimates which are valid for the Brownian motion (for example,

see [13, Lemma 3.4] with a = 0). There exist constants c1 > 0 and c2 > 0 (independent of λ ≥ λ0)

such that Px
(
W (τW

D̂
) ∈ U

)
≥ c1λδD(x) and Ex

[
τW
D̂

]
≤ c2λ

−1δD(x) . Then, by choosing t0 > 0 so

that c1 − t−1
0 c2λ

−2 ≥ c1 − t−1
0 c2λ

−2
0 ≥ c1/2 =: c3, we get

Px
(
Xτ

D̂
∈ U

)
≥ u(t)(c1 − c2t

−1λ−2)λδD(x) ≥ c3u(t0)λδD(x) .

2

5 Carleson estimate and Boundary Harnack principle

In this section, we give the proof of the boundary Harnack principle for X. We first prove the

Carleson estimate for X on Lipschitz open sets.

We recall that an open set D in Rd is said to be a Lipschitz open set if there exist a localization

radius RLip > 0 and a constant ΛLip > 0 such that for every Q ∈ ∂D, there exist a Lipschitz

function ψ = ψQ : Rd−1 → R satisfying ψ(0) = 0, |ψ(x)− ψ(y)| ≤ ΛLip|x− y|, and an orthonormal

coordinate system CSQ: y = (y1, . . . , yd−1, yd) =: (ỹ, yd) with its origin at Q such that

B(Q,RLip) ∩D = {y = (ỹ, yd) ∈ B(0, RLip) in CSQ : yd > ψ(ỹ)}.

The pair (RLip,ΛLip) is called the characteristics of the Lipschitz open set D. Without loss of

generality, we will assume throughout this section that RLip < 1. Note that a Lipschitz open
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set can be unbounded and disconnected. For Lipschitz open set D and every Q ∈ ∂D and x ∈
B(Q,RLip) ∩D, we define

ρQ(x) := xd − ψQ(x̃) ,

where (x̃, xd) are the coordinates of x in CSQ.

The proof of the next lemma is similar to that of [13, Lemma 4.1].

Lemma 5.1 Let D ⊂ Rd be a Lipschitz open set with characteristics (RLip,ΛLip). There exists a

constant δ = δ(RLip,ΛLip) > 0 such that for all Q ∈ ∂D and x ∈ D with ρQ(x) < RLip/2,

Px(X(τ(x)) ∈ Dc) ≥ δ ,

where τ(x) := τD∩B(x,2ρQ(x)) = inf{t > 0 : Xt /∈ D ∩B(x, 2ρQ(x))}.

Proof. Let Dx := D ∩ B(x, 2ρQ(x)) and WDx be the killed Brownian motion in Dx. Here W

denotes the Brownian motion in Rd. As in the proof of Lemma 4.4, we define the subordinate killed

Brownian motion Y = (Yt : t ≥ 0) in Dx by Yt := WDx(St). We will use ζ to denote the lifetime

of Y and let Cx := ∂D ∩B(x, 2ρQ(x)) and τWU := inf{t > 0 : Wt /∈ U}.
Since, see [38], Px

(
Xτ(x) ∈ Cx

)
≥ Px (Yζ− ∈ Cx) = Ex

[
u(τWDx); W (τWDx) ∈ Cx

]
, we have

Px
(
Xτ(x) ∈ Dc

)
≥ Px

(
Xτ(x) ∈ Cx

)
≥ Ex

[
u(τWDx); W (τWDx) ∈ Cx, τWDx ≤ t

]
≥ u(t)Px

(
W (τWDx) ∈ Cx, τWDx ≤ t

)
≥ u(t)

(
Px(W (τWDx) ∈ Cx)− Px(τWDx > t)

)
, t > 0. (5.1)

By the fact that D is a Lipschitz open set, there exists c1 = c1(RLip,ΛLip) > 0 such that

Px(W (τWDx) ∈ Cx) ≥ c1 . (5.2)

(See the proof of [13, Lemma 4.1].) Since Px(τWDx > t) ≤ c2
R2

Lip

t (see, [13, (4.4)]), by using (5.2) and

(5.1), we obtain that

Px
(
Xτ(x) ∈ Dc

)
≥ u(t)

(
Px(W (τWDx) ∈ Cx)− Px(τWDx > t)

)
≥ u(t)

(
c1 − c2

R2
1

t

)
≥ c1u(t0)/2 > 0,

where t0 = t0(RLip,ΛLip) > 0 is chosen so that c1− c2R
2
Lip/t ≥ c1/2. The lemma is thus proved. 2

Suppose that D is an open set and that U and V are bounded open sets with V ⊂ V ⊂ U and

D ∩ V 6= ∅. If f vanishes continuously on Dc ∩ U , then by a finite covering argument, it is easy

to see that f is bounded in an open neighborhood of ∂D ∩ V . The proof of the next result is the

same as that of [13, Lemma 4.2]. So we omit the proof.

Lemma 5.2 Let D be an open set and U and V be bounded open sets with V ⊂ V ⊂ U and

D ∩ V 6= ∅. Suppose f is a nonnegative function in Rd that is harmonic in D ∩ U with respect to

X and vanishes continuously on Dc ∩ U . Then f is regular harmonic in D ∩ V with respect to X,

i.e.,

f(x) = Ex [f(XτD∩V )] for all x ∈ D ∩ V . (5.3)
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Theorem 5.3 (Carleson estimate) Let D ⊂ Rd be a Lipschitz open set with characteristics

(RLip,ΛLip). Then there exists a positive constant A = A(RLip,ΛLip) such that for every Q ∈ ∂D,

0 < r < RLip/2, and any nonnegative function f in Rd that is harmonic in D∩B(Q, r) with respect

to X and vanishes continuously on Dc ∩B(Q, r), we have

f(x) ≤ Af(x0) for x ∈ D ∩B(Q, r/2), (5.4)

where x0 ∈ D ∩B(Q, r) with ρQ(x0) = r/2.

Proof. Since D is Lipschitz with characteristics (RLip,ΛLip), there exists c0 = c0(d,ΛLip) > 1 such

that for any Q ∈ ∂D and x ∈ B(Q,RLip) ∩D,

c−1
0 ρQ(x) ≤ δD(x) ≤ ρQ(x).

Using that D is Lipschitz with characteristics (RLip,ΛLip) and r < RLip/2, by Proposition 2.2 and

a standard chain argument, it suffices to prove (5.4) for x ∈ D∩B(Q, r/(24c0)) and x̃0 = 0̃ in CSQ.

In this proof, the constants δ, β, η and ci’s are always independent of r.

Let ν = ν(3) ∨ 2 where ν(3) is the constant in (2.8) with K = 3, choose 0 < γ < ν−1 and let

D0(x) = D ∩B(x, 2ρQ(x)) , B1(x) = B(x, r1−γρQ(x)γ)

and

B2 = B(x0, ρQ(x0)/(3c0)) , B3 = B(x0, 2ρQ(x0)/(3c0)).

By Lemma 5.1, there exists δ = δ(RLip,ΛLip) > 0 such that

Px(X(τD0(x)) ∈ Dc) ≥ δ , x ∈ D ∩B(Q, r/4) . (5.5)

By the Harnack inequality and a chain argument, there exists β > 0 such that

f(x) < (ρQ(x)/r)−βf(x0) , x ∈ D ∩B(Q, r/4) . (5.6)

In view of Lemma 5.2, f is regular harmonic in D0(x) with respect to X. So for every x ∈ B(Q, r/4),

f(x) = Ex
[
f
(
X(τD0(x))

)
;X(τD0(x)) ∈ B1(x)

]
+ Ex

[
f
(
X(τD0(x))

)
;X(τD0(x)) /∈ B1(x)

]
. (5.7)

We first show that there exists η > 0 such that

Ex
[
f
(
X(τD0(x))

)
;X(τD0(x)) /∈ B1(x)

]
≤ f(x0) if x ∈ D ∩B(Q, r/(12c0)) with ρQ(x) < ηr . (5.8)

Let η0 := 2−2ν , then, since γ < 1− ν−1, for ρQ(x) < η0r,

2ρQ(x) ≤ r1−γρQ(x)γ − 2ρQ(x).

Thus if x ∈ D ∩ B(Q, r/12) with ρQ(x) < η0r, then |x − y| ≤ 2|z − y| for z ∈ D0(x), y /∈ B1(x).

Moreover, by the triangle inequality, |x− y| ≤ |x− z|+ |z− y| ≤ 1 + |z− y|. Thus we have by (2.6),
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(2.7), (2.3) and Lemma 2.1

Ex
[
f
(
X(τD0(x))

)
;X(τD0(x)) /∈ B1(x)

]
=Ex

∫ τD0(x)

0

∫
2>|y−x|>r1−γρQ(x)γ

j(|Xt − y|)f(y) dy dt+ Ex
∫ τD0(x)

0

∫
|y−x|>2

j(|Xt − y|)f(y) dy dt

≤c1Ex[τD0(x)]

(∫
2>|y−x|>r1−γρQ(x)γ

j(|x− y|)f(y) dy +

∫
|y−x|>2

j(|x− y|)f(y) dy

)

≤c1c2ρQ(x)2

(∫
|y−x|>r1−γρQ(x)γ ,|y−x0|>2ρQ(x0)/(3c0)

j(|x− y|)f(y) dy

+

∫
|y−x0|≤2ρQ(x0)/(3c0)

j(|x− y|)f(y) dy

)
=: c3ρQ(x)2(I1 + I2) . (5.9)

On the other hand, for z ∈ B2 and y /∈ B3, we have |z − y| ≤ |z − x0|+ |x0 − y| ≤ ρQ(x0)/(3c0) +

|x0 − y| ≤ 2|x0 − y| and |z − y| ≤ |z − x0|+ |x0 − y| ≤ 1 + |x0 − y|. We have again by (2.3), (2.6),

(2.7) and Lemma 2.1

f(x0) ≥ Ex0 [f(X(τB2)), X(τB2) /∈ B3]

≥ Ex0
∫ τB2

0

(∫
2>|y−x0|>2ρQ(x0)/(3c0)

j(|Xt − y|)f(y) dy +

∫
|y−x0|≥2

j(|Xt − y|)f(y) dy

)
dt

≥ c4Ex0 [τB2 ]

(∫
2>|y−x0|>2ρQ(x0)/(3c0)

j(|x0 − y|)f(y) dy +

∫
|y−x0|≥2

j(|x0 − y|)f(y) dy

)

≥ c5ρQ(x0)2

∫
|y−x0|>2ρQ(x0)/(3c0)

j(|x0 − y|)f(y) dy . (5.10)

Suppose now that |y − x| ≥ r1−γρQ(x)γ and x ∈ B(Q, r/(12c0)). Then

|y − x0| ≤ |y − x|+ r ≤ |y − x|+ rγρQ(x)−γ |y − x| ≤ 2rγρQ(x)−γ |y − x|.

Thus, using (2.8), we get for |x− y| ≤ 2,

j(|y − x|) ≤ c7(ρQ(x)/r)−νγj(|y − x0|). (5.11)

Now, using (2.6), (2.7) (together with |y − x0| ≤ |y − x|+ 1) and (5.11),

I1 ≤ c7

∫
2>|y−x|>r1−γρQ(x)γ ,|y−x0|>2ρQ(x0)/(3c0)

(ρQ(x)/r)−νγj(|y − x0|)f(y) dy

+c8

∫
|y−x|≥2,|y−x0|>2ρQ(x0)/(3c0)

j(|x0 − y|)f(y) dy

≤ c9

(
(ρQ(x)/r)−νγ + 1

) ∫
|y−x0|>2ρQ(x0)/(3c0)

j(|x0 − y|) f(y) dy

≤ c−1
5 c9ρQ(x0)−2

(
(ρQ(x)/r)−νγ + 1

)
f(x0)

≤ 2c−1
5 c9(ρQ(x)/r)−νγρQ(x0)−2f(x0) , (5.12)

where the second to last inequality is due to (5.10).

24



If |y − x0| < 2ρQ(x0)/(3c0), then |y − x| ≥ |x0 −Q| − |x −Q| − |y − x0| > ρQ(x0)/(6c0). This

together with the Harnack inequality implies that

I2 ≤ c10

∫
|y−x0|≤2ρQ(x0)/(3c0)

j(|x− y|)f(x0) dy ≤ c10f(x0)

∫
|y−x|>ρQ(x0)/(6c0)

j(|x− y|) dy

= c10f(x0)

(∫
1>|z|>ρQ(x0)/(6c0)

j(|z|) dz +

∫
1≤|z|

j(|z|) dz

)

≤ c10f(x0)

(∫
1>|z|>ρQ(x0)/(6c0)

j(|z|) dz + c11

)
. (5.13)

Combining (5.9), (5.12) and (5.13) we obtain

Ex[f(X(τD0(x))); X(τD0(x)) /∈ B1(x)]

≤ c12f(x0)
(
ρQ(x)2(ρQ(x)/r)−γνρQ(x0)−2

+(ρQ(x)/r)2(ρQ(x0)/(6c0))2

∫
1>|z|>ρQ(x0)/(6c0)

j(|z|) dz + (ρQ(x)/r)2r2
)

≤ c13f(x0)

(
(ρQ(x)/r)2−γν + (ρQ(x)/r)2

(∫
1>|z|>ρQ(x0)/(6c0)

|z|2j(|z|) dz + 1
))

≤ c14f(x0)
(
(ρQ(x)/r)2−γν + (ρQ(x)/r)2

)
, (5.14)

where we used the fact that ρQ(x0) = r/2. Since 2− γν > 0, choose now η ∈ (0, η0) so that

c14

(
η2−γν + η2

)
≤ 1 .

Then for x ∈ D ∩B(Q, r/(12c0)) with ρQ(x) < ηr, we have by (5.14),

Ex
[
f(X(τD0(x))); X(τD0(x)) /∈ B1(x)

]
≤ c14 f(x0)

(
η2−γν + η2

)
≤ f(x0) .

We now prove the Carleson estimate (5.4) for x ∈ D ∩ B(Q, r/(24c0)) by a method of con-

tradiction. Without loss of generality, we may assume that f(x0) = 1. Suppose that there exists

x1 ∈ D∩B(Q, r/(24c0)) such that f(x1) ≥ K > η−β∨(1+δ−1), where K is a constant to be specified

later. By (5.6) and the assumption f(x1) ≥ K > η−β, we have (ρQ(x1)/r)−β > f(x1) ≥ K > η−β,

and hence ρQ(x1) < ηr. By (5.7) and (5.8),

K ≤ f(x1) ≤ Ex1
[
f(X(τD0(x1)));X(τD0(x1)) ∈ B1(x1)

]
+ 1 ,

and hence

Ex1
[
f(XτD0(x1)

);XτD0(x1)
∈ B1(x1)

]
≥ f(x1)− 1 >

1

1 + δ
f(x1) .

In the last inequality of the display above we used the assumption that f(x1) ≥ K > 1 + δ−1. If

K ≥ 2β/γ , then B1(x1) ⊂ B(Q, r). By using the assumption that f = 0 on Dc ∩ B(Q, r), we get

from (5.5)

Ex1 [f(X(τD0(x1))), X(τD0(x1)) ∈ B1(x1)] = Ex1 [f(X(τD0(x1))), X(τD0(x1)) ∈ B1(x1) ∩D]

≤ Px(X(τD0(x1)) ∈ D) sup
B1(x1)

f ≤ (1− δ) sup
B1(x1)

f .
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Therefore, supB1(x1) f > f(x1)/((1 + δ)(1− δ)), i.e., there exists a point x2 ∈ D such that

|x1 − x2| ≤ r1−γρQ(x1)γ and f(x2) >
1

1− δ2
f(x1) ≥ 1

1− δ2
K .

By induction, if xk ∈ D ∩ B(Q, r/(12c0)) with f(xk) ≥ K/(1− δ2)k−1 for k ≥ 2, then there exists

xk+1 ∈ D such that

|xk − xk+1| ≤ r1−γρQ(xk)
γ and f(xk+1) >

1

1− δ2
f(xk) >

1

(1− δ2)k
K . (5.15)

From (5.6) and (5.15) it follows that ρQ(xk)/r ≤ (1− δ2)(k−1)/βK−1/β, for every k ≥ 1. Therefore,

|xk −Q| ≤ |x1 −Q|+
k−1∑
j=1

|xj+1 − xj | ≤
r

24c0
+

∞∑
j=1

r1−γρQ(xj)
γ

≤ r

24c0
+ r1−γ

∞∑
j=1

(1− δ2)(j−1)γ/βK−γ/βrγ =
r

24c0
+ r1−γrγK−γ/β

∞∑
j=0

(1− δ2)jγ/β

=
r

24c0
+ rK−γ/β

1

1− (1− δ2)γ/β
.

Choose

K = η ∨ (1 + δ−1) ∨ (24c0)β/γ(1− (1− δ2)γ/β)−β/γ .

Then K−γ/β (1−(1−δ2)γ/β)−1 ≤ 1/(24c0), and hence xk ∈ D∩B(Q, r/(12c0)) for every k ≥ 1. Since

limk→∞ f(xk) = +∞, this contradicts the fact that f is bounded on B(Q, r/2). This contradiction

shows that f(x) < K for every x ∈ D ∩ B(Q, r/(24c0)). This completes the proof of the theorem.

2

Proof of Theorem 1.2 . We recall that R1 = R/(4
√

1 + (1 + Λ)2) and λ0 > 2R−1
1 and κ0 ∈ (0, 1)

are the constants in the statement of Lemma 4.3.

Since D is a C1,1 open set and r < R, by the Harnack inequality and a standard chain argument,

it suffices to prove (1.4) for x, y ∈ D ∩B(Q, 2−1rκ0λ
−1
0 ). In this proof, the constants η and ci’s are

always independent of r.

For any r ∈ (0, R] and x ∈ D ∩ B(Q, 2−1rκ0λ
−1
0 ), let Qx be the point Qx ∈ ∂D so that

|x−Qx| = δD(x) and let x0 := Qx + r
8(x−Qx)/|x−Qx|. We choose a C1,1-function ϕ : Rd−1 → R

satisfying ϕ(0) = 0, ∇ϕ(0) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(y) − ∇ϕ(z)| ≤ Λ|y − z|, and an

orthonormal coordinate system CS with its origin at Qx such that

B(Qx, R) ∩D = {y = (ỹ, yd) ∈ B(0, R) in CS : yd > ϕ(ỹ)}.

In the coordinate system CS we have x̃ = 0̃ and x0 = (0̃, r/8). For any b1, b2 > 0, we define

D(b1, b2) :=
{
y = (ỹ, yd) in CS : 0 < yd − ϕ(ỹ) < b1rκ0λ

−1
0 , |ỹ| < b2rλ

−1
0

}
.

It is easy to see that D(2, 2) ⊂ D∩B(Q, r/2). In fact, since Λ ≥ 1 and R ≤ 1, for every z ∈ D(2, 2),

|z −Q| ≤ |Q− x|+ |x−Qx|+ |Qx − z| ≤ |Q− x|+ |x−Qx|+ |zd − ϕ(z̃)|+ |z̃|

< 5rλ−1
0 < 2−15rR/(4

√
1 + (1 + Λ)2) ≤ r

2
.
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Thus if f is a nonnegative function on Rd that is harmonic in D ∩ B(Q, r) with respect to X and

vanishes continuously in Dc∩B(Q, r), then, by Lemma 5.2, f is regular harmonic in D∩B(Q, r/2)

with respect to X, hence also in D(2, 2). Thus by the Harnack inequality, we have

f(x) = Ex
[
f
(
X(τD(1,1))

)]
≥ Ex

[
f
(
X(τD(1,1))

)
;XτD(1,1)

∈ D(2, 1)
]

(5.16)

≥ c1f(x0)Px
(
X(τD(1,1)) ∈ D(2, 1)

)
≥ c2f(x0)δD(x)/r.

In the last inequality above we have used (4.29).

Let w = (0̃, rλ−1
0 κ0/4). Then it is easy to see that there exists a constant η = η(Λ, δ0) ∈ (0, 1/4)

such that B(w, ηrλ−1
0 κ0) ⊂ D(1, 1). By (2.6), (2.7), (2.3) and Lemma 2.1,

f(w) ≥ Ew
[
f
(
X(τD(1,1))

)
;X(τD(1,1)) /∈ D(2, 2)

]
= Ew

∫ τD(1,1)

0

∫
Rd\D(2,2)

f(y)j(|Xt − y|)dydt

≥ c3 Ew
[
τB(w,ηrλ−1

0 κ0)

] ∫
Rd\D(2,2)

f(y)j(|w − y|)dy ≥ c4 r
2

∫
Rd\D(2,2)

f(y)j(|w − y|)dy.

Hence by (2.6), (2.7), (4.14),

Ex
[
f
(
X(τD(1,1))

)
; X(τD(1,1)) /∈ D(2, 2)

]
= Ex

∫ τD(1,1)

0

∫
Rd\D(2,2)

f(y)j(|Xt − y|)dydt

≤ c5 Ex[τD(1,1)]

∫
Rd\D(2,2)

f(y)j(|w − y|)dy

≤ c6 δD(x)r

∫
Rd\D(2,2)

f(y)j(|w − y|)dy ≤ c6 δD(x)

c4 r
f(w).

On the other hand, by the Harnack inequality and the Carleson estimate, we have

Ex
[
f
(
X(τD(1,1))

)
; X(τD(1,1)) ∈ D(2, 2)

]
≤ c7 f(x0)Px

(
X(τD(1,1)) ∈ D(2, 2)

)
≤ c8 f(x0)δD(x)/r.

In the last inequality above we have used (4.13). Combining the two inequalities above, we get

f(x) = Ex
[
f(X(τD(1,1))); X(τD(1,1)) ∈ D(2, 2)

]
+Ex

[
f(X(τD(1,1))); X(τD(1,1)) /∈ D(2, 2)

]
(5.17)

≤ c8

r
δD(x)f(x0) +

c6 δD(x)

c4 r
f(w)

≤ c9

r
δD(x)(f(x0) + f(w)) ≤ c10

r
δD(x)f(x0).

In the last inequality above we have used the Harnack inequality.

From (5.16)–(5.17), we have that for every x, y ∈ D ∩B(Q, 2−1rκ0λ
−1
0 ),

f(x)

f(y)
≤ c10

c2

δD(x)

δD(y)
,

which proves the theorem. 2
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6 Counterexample

In this section, we show that the boundary Harnack principle fails even on the upper half-space for

the independent sum of a Brownian motion and a finite range rotationally invariant Lévy process.

Suppose that Z is a rotationally invariant Lévy process whose Lévy measure has a density

J(x) = j(|x|) with j(r) = 0 for all r ≥ 1 and j(r) > 0 for r ∈ (0, 1). Suppose that Z is independent

of the Brownian motion W . We will consider the process Y = W + Z. For any Borel sets U and

V in Rd with V ⊂ U c, we have

Px(Y (τYU ) ∈ V ) = Ex
∫ τYU

0

∫
V
j(|Yt − z|)1{|Yt−z|<1}(|Yt − z|) dz dt x ∈ U, (6.1)

where τYU := inf{t > 0 : Yt /∈ U}.
Let D be the upper half-space Rd+ = {x ∈ Rd : xd > 0}. Suppose that the (not necessarily scale

invariant) boundary Harnack principle is true for Y on D at the origin, i.e., there exist constants

R1 > 0 and M1 > 1 such that for any r < R1 and any nonnegative functions f, g on Rd which are

regular harmonic with respect to Y in D ∩B(0,M1r) and vanish in Dc ∩B(0,M1r), we have

f(x)

g(x)
≤ cr

f(y)

g(y)
for any x, y ∈ D ∩B(0, r), (6.2)

where cr = cr(D) > 0 is independent of the harmonic functions u and v. Choose an r1 < R1 with

M1r1 < 1/2 and let A := (0̃, 1
2r1). We define a function g by

g(x) := Px
(
Y (τYD∩B(0,M1r1)) ∈ D

)
.

By definition g is regular harmonic inD∩B(0,M1r1) with respect to Y and vanishes inDc. Applying

the function g above to (6.2), we get a Carleson type estimate at 0, i.e., for any nonnegative function

f which is regular harmonic with respect to Y in D ∩B(0,M1r1) and vanishes in Dc ∩B(0,M1r1)

we have

f(A) ≥ c−1
r1

g(A)

g(x)
f(x) ≥ c−1

r1 g(A)f(x) = c1 f(x), x ∈ D ∩B(0, r1), (6.3)

where c1 = c−1
r1 g(A) > 0. We will construct a bounded positive function f on Rd which is regular

harmonic with respect to Y in D ∩B(0,M1r) and vanishes in Dc ∩B(0,M1r) for which (6.3) fails.

For n ≥ 1, we put

Cn :=
{

(x̃, xd) ∈ D : |x̃| ≤ 2−n−3r1, xd ≤ −1 + 2−nr2
1

}
,

Dn := {(ỹ, yd) ∈ D : |x− y| < 1 for some x ∈ Cn} .

It is easy to see that

Dn ⊂ {(ỹ, yd) : |ỹ| ≤ (2−n−3 + 2−(n−1)/2)r1, 0 ≤ yd ≤ 2−nr2
1} ⊂ B(0, r1) ∩D, for n ≥ 2. (6.4)

Indeed, for any y ∈ Dn, we have yd ∈ [0, 2−nr2
1] and |y − x| ≤ 1 for some x ∈ Cn. If |ỹ| >

(2−n−3 + 2−(n−1)/2)r1, yd ≥ 0 and x ∈ Cn, then

|x− y|2 ≥ x2
d + (|ỹ| − |x̃|)2 ≥ (1− 2−nr2

1)2 + 2−(n−1)r2
1 > 1.
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Thus, in this case y /∈ Dn.

For any n, let T YDn be the first hitting time of Dn by the process Y . By (6.4)

PA
(
τYD∩B(0,M1r1) > T YDn

)
→ PA

(
τYD∩B(0,M1r1) > T Y{0}

)
= 0, as n→∞.

Fix n0 ≥ 2 large so that

PA
(
τYD∩B(0,M1r1) > T YDn0

)
<

c1

2
(6.5)

and define

f(x) := Px
(
Y (τYD∩B(0,M1r1)) ∈ Cn0

)
.

f is a nonnegative bounded function which is regular harmonic in D ∩B(0,M1r1) with respect to

Y and vanishes in Dc ∩ B(0,M1r1). It also vanishes continuously on ∂D ∩ B(0,M1r1). Note that

by (6.1),

PA
(
Y (τYD∩B(0,M1r1)) ∈ Cn0 , τ

Y
D∩B(0,M1r1) ≤ T

Y
Dn0

)
= PA

(
Y (τYD∩B(0,M1r1)\Dn0

) ∈ Cn0

)
= 0.

Thus by the strong Markov property,

f(A) = PA
(
Y (τYD∩B(0,M1r1)) ∈ Cn0 , τ

Y
D∩B(0,M1r1) > T YDn0

)
= EA

[
PY (TYDn0

)

(
Y (τYD∩B(0,M1r1)) ∈ Cn0

)
; τYD∩B(0,M1r1) > T YDn0

]
≤ PA

(
τYD∩B(0,M1r1) > T YDn0

)(
sup
x∈Dn0

f(x)

)
<

c1

2

(
sup

x∈D∩B(0,r1)
f(x)

)
.

In the last inequality above, we have used (6.4)–(6.5). But by (6.3), f(A) ≥ c1 supx∈D∩B(0,r1) f(x),

which gives a contradiction. Thus the boundary Harnack principle is not true for D at the origin.

By inspecting the argument in [21, Section 6], we can come up with an example of a (bounded)

C1,1 domain on which the boundary Harnack principle for Y fails, even for regular harmonic function

vanishing on the whole Dc.

7 Proofs of Theorems 1.4 and 1.5

As already said in the introduction, once the boundary Harnack principle has been established,

the proofs of Theorems 1.4 and 1.5 are similar to the corresponding proofs in [12] for the operator

∆ +aα∆α/2. In fact, the proof are even simpler, because [12] strives for uniformity in the weight a.

The proof of Theorem 1.4 in the case d ≥ 3 is by now quite standard. Once the interior estimates

are established, the full estimates in connected C1,1 open sets follow from the boundary Harnack

principle by the method developed by Bogdan [3] and Hansen [20]. For the operator ∆ + a∆α/2

this is accomplished in [12, Section 3]. In the present setting the proof from [12] carries over almost

verbatim. In several places in [12] one refers to the form of the Lévy density, but in fact, the form

of the Lévy density is only used to establish uniformity in the weight a.

When d = 2, the above method ceases to work due to the nature of the logarithmic potential

associated with the Laplacian. The proof in [12, Section 4] for the operator ∆ + a∆α/2 uses a ca-

pacitary argument to derive the interior upper bound estimate for the Green function. By a scaling
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consideration and applying the boundary Harnack principle, one gets sharp Green function upper

bound estimates. For the lower bound estimates, [12] compares the process with the subordinate

killed Brownian motion when D is connected, and then extend it to general bounded C1,1 by using

the jumping structure of the process. In the present setting, the proof of the lower bound is exactly

the same as in [12] (see proofs of Theorems 4.1 and 4.4). The proof of the upper bound is essentially

the same as the one in [12], except that one has to make several minor modifications. Lemma 4.5

in [12] should be replaced by the following statement: There exists c > 0 such that for any L > 0,

Cap0
B(0,L)(B(0, r)) ≥ c

log(L/r)
for every r ∈ (0, 3L/4).

This is proved in the same way as [12, Lemma 4.5] by using the explicit formula for the Green

function of the ball B(0, L) ⊂ R2:

G0
B(0,L)(x, y) =

1

2π
log

(
1 +

(L2 − |x|2)(L2 − |y|2)

L2|x− y|2

)
.

The statement of Lemma 4.6 in [12] should be changed to: There exists c > 0 such that for any

L > 0 and bounded open set D in R2 containing B(0, L) and any x ∈ B(0, 3L
4 )

GD(x, 0) ≤ c

Cap0
D

(
B(0, |x|/2)

) Px (σB(0,|x|/2)
< τD

)
,

(we refer to [12] for all unexplained notation). Next, Corollary 4.7 in [12] should be replaced by

the statement: There exists c > 0 such that for any L > 0 and any x ∈ B(0, 3L/4)

GB(0,L)(x, 0) ≤ c log (L/|x|) .

Finally, the last change is in the proof of Lemma 4.8 in [12] which uses a scaling argument. This

in our setting can be circumvented by using the modified statement of [12, Lemma 4.6]. The rest

of the proof remains exactly the same.

The proof of Theorem 1.5 is also quite standard (see [2, 12, 22, 23]). In the current setting we

follow step-by-step the proof of the corresponding result in [12, Section 6]. The main difference

is that [12] uses the explicit form of the Lévy density ja for the operator ∆ + a∆α/2 which is

c(α, d, a)r−d−α. This Lévy density is now replaced by j, and it suffice to use properties (2.6) and

(2.7) to carry over all arguments. The reader can also compare with [23, Section 6] where the

Martin boundary was identified with the Euclidean boundary for purely discontinuous processes

whose jumping kernel satisfies (2.6) and (2.7).

Acknowledgment: We thank the referee for many valuable comments and suggestions.
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[30] M. Rao, R. Song and Z. Vondraček. Green function estimates and Harnack inequalities for

subordinate Brownian motion. Potential Anal. 25(2006), 1–27.

[31] L. C. G. Rogers. Wiener-Hopf factorization of diffusions and Lévy processes. Proc. London
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