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Abstract

In this paper we study mutual absolute continuity and singularity of probability
measures on the path space which are induced by an isotropic stable Lévy process
and the purely discontinuous Girsanov transform of this process. We also look at
the problem of finiteness of the relative entropy of these measures. An important
tool in the paper is the question under which circumstances the a.s. finiteness of an
additive functional at infinity implies the finiteness of its expected value.
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1 Introduction

One of the common issues when studying Markov processes is the question whether a ran-
dom time-change of a conservative (transient) Markov process is again conservative. The
time-change is usually realized as the generalized inverse of a positive additive functional.
Typical examples are functionals of the form At =

∫ t
0
f(Xs) ds where f is a real-valued

function defined on the state space E of the Markov process X = (Xt,M,Mt,Px),
t > 0, x ∈ E. The time-changed process is again conservative if, and only, if A∞ = ∞
a.s.; equivalently, it is not conservative if, and only, if Px(A∞ < ∞) > 0 for some x.
The related question, whether the expectation of ExA∞ is finite, is relatively easy to
answer. Note that ExA∞ = Gf(x) is the Green potential of f . Using potential-theoretic
methods we can reduce this problem to properties of the corresponding Green function;
this analytic problem is rather well understood. Hence, it is crucial to understand under
which circumstances the finiteness of the additive functional at infinity, A∞ < ∞, will
imply the finiteness of the expectation, ExA∞ <∞.

If X is a diffusion on an interval in R, additive functionals of the type At =
∫ t

0
f(Xs) ds

are sometimes called perpetual integral functionals. The question of necessary and suffi-
cient conditions for the a.s. finiteness of A∞ has been addressed in [11] following earlier
work by various authors, notably by Engelbert and co-authors, see e.g. [7].

Additive functionals also appear in the study of absolute continuity of measures on the
path space of a process. In fact, by the Girsanov theorem, the Radon-Nikodým density
often takes the form exp(At) where At is an additive functional as above. The problem
when two probability measures are absolutely continuous over a finite time horizon is
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rather well understood. On the other hand, not much is known if the time-interval is
infinite. Clearly, the question whether A∞ is finite or infinite plays a decisive role. For
elliptic diffusions with drift this question has been addressed in [1]. To be more precise,
let

La,b =
1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi

be a diffusion operator on Rd with a a(x) = (aij(x))di,j=1 positive definite and locally
Hölder continuous diffusion coefficient and a locally Hölder continuous drift b(x) =
(bi(x))di=1, and assume that the martingale problem for (La,b, C∞c (Rd)) is well posed.
Denote by Pa,bx the corresponding probability measure on the path space C([0,∞),Rd),
and the canonical process by X = (Xt)t>0. It is proved in [1, Theorem 1] that for a
further drift coefficient b̂ the following holds:

(i) Pa,bx ⊥ Pa,b̂x ⇐⇒
∫∞

0
〈b̂− b, a−1(b̂− b)〉(Xs) ds =∞ a.s. Pa,bx or a.s. Pa,b̂x ;

(ii) Pa,b̂x � Pa,bx ⇐⇒
∫∞

0
〈b̂− b, a−1(b̂− b)〉(Xs) ds <∞ a.s. Pa,b̂x .

Ben-Ari and Pinsky also give a formula for the relative entropy H(Pa,bx ;Pa,b̂x ) of the mea-

sures Pa,bx and Pa,b̂x . Moreover, if both operators La,b and La,b̂ are Fuchsian—roughly

speaking: a is uniformly elliptic and (1 + |x|)|b(x)|, (1 + |x|)|b̂(x)| are bounded—, then

either Pa,bx ⊥ Pa,b̂x or Pa,bx ∼ Pa,b̂x ;

in the second case supx∈RdH(Pa,bx ;Pa,b̂x ) < ∞ and supx∈RdH(Pa,b̂x ;Pa,bx ) < ∞, cf. [1,
Theorem 2]. Recall that the relative entropy of two measures ν and µ is defined as

H(ν;µ) =


∫

dν

dµ
log

dν

dµ
dµ =

∫
log

dν

dµ
dν if ν � µ,

+∞ otherwise.

The first goal of this paper is to look into the question when the a.s. finiteness of an
additive functional implies the finiteness of its expectation; this problem is first considered
in a rather general framework and then in the more specific framework of isotropic stable
Lévy processes in Rd. Our second goal is to study the absolute continuity and mutual
singularity of probability measures induced by a purely discontinuous Girsanov transform.
More precisely, let X = (Xt,M,Mt,Px), t > 0, x ∈ Rd, be a conservative symmetric
(w.r.t. Lebesgue measure) right Markov process in Rd defined on the path space with
filtration (Mt)t>0, and assume that M = σ(∪t>0Mt). By I2(X) we denote all bounded,
symmetric functions F : Rd ×Rd → R, vanishing on the diagonal, such that

Ex

[∑
s6t

F 2(Xs−, Xs)

]
<∞ for all x ∈ Rd,

holds, see Definition 2.4 in Section 2 for details. Such functions give rise to mar-
tingale additive functionals (MF

t )t>0 whose quadratic variation is given by [MF ]t =∑
s6t F

2(Xs−, Xs). If infx,y F (x, y) > −1, the solution to the SDE LFt = 1 +
∫ t

0
LFs− dM

F
s

is a positive local martingale, hence a positive supermartingale under each Px. By the
general theory, there exists a family P̃x of (sub)-probability measures on M such that

dP̃x|Mt
= LFt dPx|Mt

for all t > 0. Under these measures X is a strong Markov process.
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We will write X̃ = (X̃t,M,Mt, P̃x) to denote this process. The process X̃ is called a
purely discontinuous Girsanov transform of X, see [4, 17] and Section 2 for further details.

Since LFt > 0, we have dP̃x|Mt
∼ dPx|Mt

for all t > 0. We are interested under which con-

ditions P̃x and Px are mutually absolutely continuous on the whole time-interval [0,∞).
The following three theorems are the main results of the paper.

Theorem 1.1. Let X be a conservative symmetric right Markov process in Rd. Assume
that F ∈ I2(X) and infx,y∈Rd F (x, y) > −1.

(a) P̃x ⊥ Px if, and only, if
∑

t>0 F
2(Xt−, Xt) =∞ Px a.s. or P̃x a.s.

(b) P̃x � Px if, and only, if
∑

t>0 F
2(Xt−, Xt) <∞ P̃x a.s.

(b̃) Px � P̃x if, and only, if
∑

t>0 F
2(Xt−, Xt) <∞ Px a.s.

(c) H(P̃x;Px) = Ẽx
[∑

t>0

(
log(1 + F )− F

1+F

)
(Xt−, Xt)

]
and

H(P̃x;Px) <∞ if, and only, if Ẽx
[∑

t>0 F
2(Xt−, Xt)

]
<∞.

(c̃) H(Px; P̃x) = Ex
[∑

t>0 (F − log(1 + F )) (Xt−, Xt)
]

and

H(Px; P̃x) <∞ if, and only, if Ex
[∑

t>0 F
2(Xt−, Xt)

]
<∞.

The proof of Theorem 1.1 follows directly from our investigations in Section 2 on
purely discontinuous Girsanov transforms. Let us, for completeness, indicate already
here how to derive the assertions from these results.

Proof of Theorem 1.1. Parts (a), (ã) and (b), (b̃) are immediate consequences of Theorem
2.8. Parts (c), (c̃) follow from Proposition 2.10 and Remark 2.11 (a).

In the next two theorems we assume that X is an isotropic α-stable Lévy process.

Theorem 1.2. Let X be an isotropic α-stable Lévy process in Rd. Assume that 0 < α <
2 ∧ d, F ∈ I2(X) and infx,y∈Rd F (x, y) > −1.

(a) Either P̃x ⊥ Px or P̃x ∼ Px.

(b) If P̃x ∼ Px and if there exist C > 0 and β > α/2 such that

0 6 F (x, y) 6 C
|x− y|β

1 + |x|β + |y|β
for all x, y ∈ Rd, (1.1)

then supx∈RdH(Px; P̃x) <∞.

Note that contrary to [1, Theorem 2], we do not need a Fuchsian-type condition (1.1)
to conclude that dichotomy in part (a) of Theorem 1.2 holds true. On the other hand,
the next theorem shows that (1.1) is needed for part (b).

Theorem 1.3. Let X be an isotropic α-stable Lévy process in Rd, 0 < α < 2 ∧ d. For
each γ and β satisfying 0 < γ < α/2 < β there exists some F ∈ I2(X) satisfying

F (x, y) 6
1

2

|x− y|β

1 + |x|γ + |y|γ

such that Px � P̃x and H(Px; P̃x) =∞.
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These three theorems on purely discontinuous Girsanov transforms of isotropic stable
Lévy processes are the analogues of Theorems 1–3 from [1]. The main ingredients used
in the proof of Theorem 1.1 are in the next section, while the proofs of Theorems 1.2
and 1.3 are given in the last section of this paper, building on the results obtained in
earlier sections. In Section 2, after recalling some necessary definitions and results from
[17], we study absolute continuity and singularity of the measures Px and P̃x for general
strong Markov processes on Rd. Section 3 is devoted to showing that the finiteness of
the expectation of an additive functional (At)t>0 satisfying A∞ < ∞ a.s. is related to
the lower boundedness of the function u(x) := Ex[e

−A∞ ]. The motivation for this section
comes from the need to understand the general principle underlying the first part of the
proof of [1, Theorem 2]. As an application, in Example 3.8 we give an alternative proof
of (part of) [11, Theorem 3]. In Section 4 we look more closely in the case of an isotropic
stable Lévy process X. Following the ideas from [3], we first prove in Theorem 4.8 a
Harnack inequality for F -harmonic functions of X—this can be thought of as a Harnack
inequality for a Schrödinger-type semigroup of X. The main result of the section is
Theorem 4.15 where we show that Px a.s. finiteness of A∞ =

∑
t>0 F (Xt−, Xt) implies

finiteness of the expectation ExA∞ under an appropriate Fuchsian-type condition on the
function F .

Acknowledgement. The authors thank Jean Jacod for very helpful comments and
for supplying the reference [10, VIII (8.17), (8.18)] which improved the presentation
of Lemma 2.1. Part of this work was done while the second-named author was visiting
TU Dresden. Financial support through the Alexander-von-Humboldt foundation and
the Croatian Science Foundation under the project no. 3526 is gratefully acknowledged.

2 Purely discontinuous Girsanov transforms:

Absolute continuity and singularity

We begin with an auxiliary result which relates the finiteness of the quadratic variation
of a local martingale with the convergence of the stochastic (Doléans–Dade) exponen-
tial. Let M = (Mt)t>0, M0 = 0, be a local martingale on a filtered probability space
(Ω,M, (Mt),P). As usual, we denote the quadratic variation of M by [M ] = ([M ])t>0

and the predictable quadratic variation (or angle bracket) by 〈M〉 = (〈M〉t)t>0; the angle
bracket is the compensator of the quadratic variation, i.e. [M ]−〈M〉 is a local martingale.
Further, [M ]∞ = supt>0[M ]t, 〈M〉∞ = supt>0〈M〉t, and if the superscript ‘c’ denotes the
continuous part, then 〈M c〉 = [M c] = [M ]c and

[M ]t = [M ]ct +
∑
s6t

(∆Ms)
2 = 〈M c〉t +

∑
s6t

(∆Ms)
2.

Let E(M) = (E(M)t)t>0 be the stochastic exponential defined by

E(M)t = exp

(
Mt −

1

2
[M ]ct

) ∏
0<s6t

(1 + ∆Ms)e
−∆Ms .

The stochastic exponential is the unique solution of the SDE Lt = 1 +
∫ t

0
Ls− dMs, hence

a local martingale. For these facts we refer to [9] or [14].
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We will need the following simple observation: Let (an)n>1 be a sequence of real
numbers such that an > −1. Then∑

n>1

a2
n <∞ ⇐⇒

∑
n>1

(
an

1 + an

)2

<∞ ⇐⇒
∏
n>1

1 + an(
1 + 1

2
an
)2 > 0. (2.1)

Lemma 2.1. Let M be a local martingale such that ∆Mt > −1 for all t > 0.

(a) {[M ]∞ =∞} ⊂ {limt→∞ E(M)t = 0} a.s.

(b) If there exists some C > 0 such that ∆Mt < C for all t > 0, then

{limt→∞ E(M)t = 0} = {[M ]∞ =∞} a.s.

Remark 2.2. The a.s. equality {limt→∞ E(M)t = 0} = {〈M〉∞ =∞} is well known
for continuous local martingales, cf. [15, Exercise IV-3.25]; Lemma 2.1 extends this to
martingales with jumps.

A proof of Lemma 2.1(b) can be easily deduced from [10, Corollaire VIII (8.17)], while
part (a) is explicitly stated in [10, Corollaire VIII (8.18)]. Below we give an elementary
proof of part (a) and prove part (b) under the additional assumption that ∆Mt < 1 for
all t > 0.

Proof of Lemma 2.1. (a) Consider the local martingale 1
2
M . Then

E
(

1
2
M
)
t

= exp
(

1
2
Mt − 1

8
[M ]ct

)∏
s6t

(
1 + 1

2
∆Ms

)
e−

1
2

∆Ms .

Since ∆
(

1
2
M
)
t

= 1
2
∆Mt > −1

2
, E
(

1
2
M
)

is a positive local martingale, hence a super-

martingale, and therefore the limt→∞ E
(

1
2
M
)
t

exists a.s. Furthermore,

E
(

1
2
M
)2

t
= exp

(
Mt − 1

4
[M ]ct

)∏
s6t

(
1 + 1

2
∆Ms

)2
e−∆Ms

= E(M)t exp
(

1
4
[M ]ct

)∏
s6t

(
1 + 1

2
∆Ms

)2

1 + ∆Ms

,

which can be rearranged as

E(M)t = E
(

1
2
M
)2

t
exp

(
−1

4
[M ]ct

)∏
s6t

1 + ∆Ms(
1 + 1

2
∆Ms

)2 . (2.2)

Since [M ]t = [M ]ct +
∑

s6t(∆Ms)
2, we find{

[M ]∞ =∞
}
⊂
{

[M ]c∞ =∞
}
∪
{∑

t>0
(∆Mt)

2 =∞
}
.

Note that 0 < (1 + x)/(1 + 1
2
x)2 6 1 for all x > −1 implying that the product appearing

in (2.2) stays bounded between 0 and 1; moreover, E(1
2
M)2

t is bounded since it converges
as t→∞. Now there are two possibilities:

(i) [M ]c∞ =∞, then the right-hand side of (2.2) tends to zero;

(ii)
∑

t>0(∆Mt)
2 = ∞, then by (2.1),

∏
t>0

1+∆Mt

(1+ 1
2

∆Mt)
2 = 0, and the right-hand side of

(2.2) tends to zero;
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in both cases, limt→∞ E(M)t = 0.

(b) Assume that ∆Mt < 1 for all t > 0 and limt→∞ E(M)t = 0. From E(X)E(Y ) =
E(X + Y + [X, Y ]) we get that E(M)E(−M) = E(−[M ]). Because of ∆Mt < 1, E(−M)
is a nonnegative local martingale, hence a nonnegative supermartingale which is a.s.
convergent as t → ∞. Thus, on the set {limt→∞ E(M)t = 0} we see that the product
E(M)tE(−M)t converges to 0 a.s., hence, limt→∞ E(−[M ])t = 0 a.s. From

E(−[M ])t = exp(−[M ]t)
∏
s6t

(1−∆[M ]s)e
∆[M ]s

= exp

(
− [M ]ct −

∑
s6t

∆[M ]s

)∏
s6t

(1−∆[M ]s)e
∆[M ]s

= exp(−[M ]ct)
∏
s6t

(1− (∆Ms)
2)

we conclude that [M ]c∞ =∞ or
∏

t>0(1−(∆Mt)
2) = 0 holds true. The latter is equivalent

to
∑

t>0(∆Mt)
2 = ∞. Thus we have [M ]∞ = [M ]c∞ +

∑
t>0(∆Mt)

2 = ∞ on the set
{limt→∞ E(M)t = 0}.

A version of the following lemma is stated and proved in [1, Lemma 1].

Lemma 2.3. Let (Ω,M) be a measurable space and (Mt)t>0 a filtration such that M =

σ
(⋃

t>0Mt

)
. Let P and P̃ be probability measures on (Ω,M) such that P̃|Mt � P|Mt

for all t > 0. Then

(a) P̃� P ⇐⇒ P̃
(

lim sup
t→∞

dP̃|Mt

dP|Mt

<∞
)

= 1.

(b) P̃ ⊥ P ⇐⇒ P̃
(

lim sup
t→∞

dP̃|Mt

dP|Mt

=∞
)

= 1 ⇐⇒ P
(

lim sup
t→∞

dP̃|Mt

dP|Mt

= 0
)

= 1.

(c) P̃� P =⇒ H(P̃;P) = limt→∞H(P̃|Mt ;P|Mt).

In the remainder of this section we adopt the setting of [17] with the simplification that
the state space is Rd and the process has infinite lifetime: Let X = (Ω,M,Mt, θt, Xt,Px)
be a symmetric (w.r.t. Lebesgue measure) right Markov process on Rd with infinite life-
time. We will always work with the canonical representation of X, i.e. Ω = D([0,∞),Rd)
is the Skorokhod space of all càdlàg functions ω : [0,∞) → Rd, Xt is the coordinate
projection Xt(ω) = ω(t) andM = σ (∪t>0Mt). Under Px, X is a strong Markov process
with initial condition X0 = x. The shift operators θt, t > 0, satisfy Xs ◦ θt = Xs+t for all
t, s > 0. By (N,H) we denote the Lévy system of X. This means that H = (Ht)t>0 is a
positive continuous additive functional of X with bounded 1-potential and N(x, dy) is a
kernel from (Rd,B(Rd)) to (Rd,B(Rd)) satisfying N(x, {x}) = 0 for all x ∈ Rd and

Ex

[∑
s6t

f(Xs−, Xs)

]
= Ex

[∫ t

0

∫
Rd
f(Xs−, y)N(Xs−, dy) dHS

]
, x ∈ Rd,

for any non-negative Borel function f on Rd ×Rd vanishing on the diagonal.

Definition 2.4 ([4, 17]). (a) The class J(X) consists of all bounded, symmetric func-
tions F : Rd ×Rd → R which vanish on the diagonal and satisfy

lim
t→0

sup
x∈Rd

Ex

[∫ t

0

∫
Rd
|F (Xs−, y)|N(Xs−, dy) dHs

]
= 0.
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(b) The class I2(X) consists of all bounded, symmetric functions F : Rd × Rd → R

which vanish on the diagonal and satisfy for all x ∈ Rd and t > 0

Ex

[∑
s6t

F 2(Xs−, Xs)

]
= Ex

[∫ t

0

∫
Rd
F 2(Xs−, y)N(Xs−, dy) dHs

]
<∞.

Remark 2.5. (a) Since

Ex

[∫ t

0

∫
Rd
F 2(Xs−, y)N(Xs−, dy) dHs

]
6 ‖F‖∞Ex

[∫ t

0

∫
Rd
|F (Xs−, y)|N(Xs−, y) dHs

]
,

we see, with a simple application of the Markov property, that J(X) ⊂ I2(X).

(b) Since the integrator s 7→ Hs is continuous and s 7→ Xs is càdlàg and has at most
countably many discontinuities, we may replace in the integrals appearing in Definition
2.4 Xs− by Xs.

(c) If infx,y F (x, y) > −1, then F ∈ I2(X) implies log(1 + F ) ∈ I2(X).

Let F ∈ I2(X). For n ∈ N define

MF,n
t :=

∑
s6t

F (Xs−, Xs)1{|Xs−Xs−|> 1
n
} −

∫ t

0

∫
Rd
F (Xs−, y)1{|y−Xs−|> 1

n
}N(Xs−, dy) dHs.

Then MF,n is a pure jump martingale additive functional (MAF) of X. Note that
∆MF,n

s = F (Xs−, Xs) and the quadratic variations are given by [MF,n]ct = 0 and

[MF,n]t =
∑
s6t

F 2(Xs−, Xs)1{|Xs−Xs−|> 1
n
},

〈MF,n〉t =

∫ t

0

∫
Rd
F 2(Xs−, y)1{|y−Xs−|> 1

n
}N(Xs−, dy) dHs,

According to [17, p. 493] the L2(Px)-limit MF
t = limn→∞M

F,n
t exists and MF is a MAF

of X. In particular, MF
t and

[MF ]t =
∑
s6t

F 2(Xs−, Xs), (2.3)

〈MF 〉t =

∫ t

0

∫
Rd
F 2(Xs−, y)N(Xs−, dy) dHs.

are defined in L2. The condition infx,y F (x, y) > −1 ensures that the limit MF =
limn→∞M

F,n has again jumps bounded strictly from below by −1, i.e. ∆MF
t > −1.

If F ∈ J(X), we could directly define MF by the a.s. expression
∑

s6t F (Xs−, Xs) −∫ t
0

∫
Rd
F (Xs−, y)N(Xs−, dy) dHs.

Assume that −c := infx,y F (x, y) > −1. Then −c 6 F (x, y) 6 C for some C > 0. Set

LF,nt := E(MF,n)t and LFt := E(MF )t. Clearly,

LF,nt = exp
(
MF,n

t

)∏
s6t

(1 + F (Xs−, Xs))1{|Xs−Xs−|> 1
n
} exp

(
−F (Xs−, Xs)1{|Xs−Xs−|> 1

n
}

)
= exp

(
MF,n

t +
∑
s6t

(log(1 + F )− F ) (Xs−, Xs)1{|Xs−Xs−|> 1
n
}

)
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= exp

(∑
s6t

log(1 + F (Xs−, Xs)1{|Xs−Xs−|> 1
n
})

−
∫ t

0

∫
Rd
F (Xs−, y)1{|y−Xs−|> 1

n
}N(Xs−, dy) dHs

)
,

and

LFt = exp
(
MF

t

)∏
s6t

(1 + F (Xs−, Xs)) exp (−F (Xs−, Xs))

= exp

(
MF

t +
∑
s6t

(
log(1 + F )− F

)
(Xs−, Xs)

)
. (2.4)

Since | log(1 + F ) − F | 6 c1F
2 for some c1 > 0, we see that LFt ∈ (0,∞). Because of

MF
t ∈ L2(Px) and F ∈ I2(X) we see that logLFt ∈ L1(Px). It is proved in [17, p. 494]

that LF,nt converges to LFt in probability as n→∞.
Recall that LF is under each Px a non-negative local martingale, hence a supermartin-

gale. By [16, Section 62] there exists a family (P̃x)x∈Rd of (sub-)probability measures on
M such that

dP̃x|Mt
= LFt dPx|Mt

for all t > 0;

under these measures X is a right process which we denote by X̃ = (X̃t,M,Mt, P̃x).

The process X̃ is called a purely discontinuous Girsanov transform of X. Since LFt > 0

we see that dP̃x|Mt
∼ dPx|Mt

for all t > 0. We are interested when P̃x ∼ Px or P̃x ⊥ Px.
We need the following result from [17, Proposition 2.3].

Proposition 2.6. Assume that f : Rd×Rd → [0,∞) is a measurable function vanishing
on the diagonal. Then we have for all t > 0 and x ∈ Rd

Ẽx

[∑
s6t

f(Xs−, Xs)

]
= Ẽx

[∫ t

0

∫
Rd
f(Xs−, y)(1 + F (Xs−, y))N(Xs−, dy) dHs

]
. (2.5)

In particular, ((1 + F (x, y))N(x, dy), Hs) is a Lévy system for X̃.

Set F1 := − F
1+F

. From −1 < −c 6 F (x, y) 6 C we see that − C
1+C

6 F1(x, y) 6 c
1−c .

Hence, F1 is symmetric, bounded and infx,y F1(x, y) > −1. By [17, p. 497], we have that

F1 ∈ I2(X̃). Define

M̃F1,n
t

:=
∑
s6t

F1(X̃s−, X̃s)1{|X̃s−X̃s−|> 1
n
} −

∫ t

0

∫
Rd
F1(1 + F )(X̃s−, y)1{|y−X̃s−|> 1

n
}N(X̃s−, dy) dHs

=
∑
s6t

F1(X̃s−, X̃s)1{|X̃s−−X̃s|> 1
n
} +

∫ t

0

∫
Rd
F (X̃s−, y)1{|y−X̃s−|> 1

n
}N(X̃s−, dy) dHs.

Then M̃F1,n is a MAF of X̃ and by the same argument as before it converges to M̃F1

which is again a MAF of X̃. Note that

[M̃F1 ]t =
∑
s6t

F 2
1 (X̃s−, X̃s), (2.6)
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〈M̃F1〉t =

∫ t

0

∫
Rd
F 2

1 (X̃s−, y)
(
1 + F (X̃s−, y)

)
N(X̃s−, dy) dHs.

Let L̃F1,n and L̃F1 , be the solutions to the SDEs L̃F1,n
t = 1 +

∫ t
0
L̃F1,n
s− dM̃F1,n

s and L̃F1
t =

1 +
∫ t

0
L̃F1
s− dM̃

F1
s , respectively. From [17, p. 497] we know that

L̃F1,n
t =

1

LF,nt
and L̃F1

t =
1

LFt
P̃x a.s. (2.7)

As before we see that L̃F1
t ∈ L1(P̃x).

Remark 2.7. Since P̃x|Mt ∼ Px|Mt , we also have L̃F1
t = 1/LFt Px a.s.

Theorem 2.8. Assume that F ∈ I2(X) and infx,y F (x, y) > −1. Then

P̃x � Px ⇐⇒ P̃x

(∑
t>0

F 2(Xt−, Xt) <∞

)
= 1

Px � P̃x ⇐⇒ Px

(∑
t>0

F 2(Xt−, Xt) <∞

)
= 1

P̃x ⊥ Px ⇐⇒ P̃x

(∑
t>0

F 2(Xt−, Xt) =∞

)
= 1

Px ⊥ P̃x ⇐⇒ Px

(∑
t>0

F 2(Xt−, Xt) =∞

)
= 1

Since P̃x ⊥ Px if, and only if, Px ⊥ P̃x, Theorem 2.8 immediately entails the following
zero–two-law.

Corollary 2.9 (Zero–two-law). Assume that F ∈ I2(X) and infx,y F (x, y) > −1. Then

P̃x
(∑

t>0 F
2(Xt−, Xt) =∞

)
+ Px

(∑
t>0 F

2(Xt−, Xt) =∞
)

= 0 or 2 according to P̃x ∼
Px or P̃x⊥Px.

Proof of Theorem 2.8. Note that

dP̃x|Mt

dPx|Mt

= LFt =
1

L̃F1
t

=
1

E(M̃F1)t
Px|Mt a.s.

Since Px|Mt ∼ P̃x|Mt and since the densities areMt measurable, the above equality holds

a.s. for both Px and P̃x. Hence,

lim sup
t→∞

dP̃x|Mt

dPx|Mt

=∞ ⇐⇒ lim
t→∞
E(M̃F1)t = 0 P̃x a.s.

Since −1 < infx,y F (x, y) 6 supx,y F (x, y) < ∞, we get that −1 < infx,y F1(x, y) 6
supx,y F1(x, y) <∞. From Lemma 2.1 we conclude that{

lim sup
t→∞

dP̃x|Mt

dPx|Mt

=∞

}
=
{

[M̃F1 ]∞ =∞
}

P̃x a.s.
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By Lemma 2.3

P̃x � Px ⇐⇒ [M̃F1 ]∞ <∞ P̃x a.s.

P̃x ⊥ Px ⇐⇒ [M̃F1 ]∞ =∞ P̃x a.s.

From (2.6) we conclude that

[M̃F1 ]∞ =
∑
t>0

F 2
1 (Xt−, Xt) =

∑
t>0

(
F (Xt−, Xt)

1 + F (Xt−, Xt)

)2

.

Now the first and the third equivalence follow from (2.1).

The second and the fourth equivalence are proved analogously. We start with the identity

dPx|Mt

dP̃x|Mt

=
1

LFt
=

1

E(MF )t
P̃x|Mt a.s.,

and conclude, as before, that

Px � P̃x ⇐⇒ [MF ]∞ <∞ Px a.s.

Px ⊥ P̃x ⇐⇒ [MF ]∞ =∞ Px a.s.

The claim now follows from (2.3).

In the next proposition we compute the relative entropies H(Px; P̃x) and H(P̃x;Px).

Proposition 2.10. Let F ∈ I2(X) and infx,y F (x, y) > −1.

(a) Assume that P̃x � Px. Then

H(P̃x;Px) = Ẽx

[∑
t>0

(F1 − log(1 + F1)) (Xt−, Xt)

]
(2.8)

= Ẽx

[∑
t>0

(
log(1 + F )− F

1 + F

)
(Xt−, Xt)

]
;

in particular, H(P̃x;Px) <∞ if, and only, if Ẽx
[∑

t>0 F
2(Xt−, Xt)

]
<∞.

(b) Assume that Px � P̃x. Then

H(Px; P̃x) = Ex

[∑
t>0

(F − log(1 + F )) (Xt−, Xt)

]
, (2.9)

and H(Px; P̃x) <∞ if, and only, if Ex
[∑

t>0 F
2(Xt−, Xt)

]
<∞.

Proof. We begin with part (b). By the definition of the entropy,

H
(
Px|Mt

; P̃x|Mt

)
= Ex

[
log

dPx|Mt

dP̃x|Mt

]
= Ex

[
log

1

LFt

]
= −Ex

[
logLFt

]
.
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Combining this with (2.4) yields

H
(
Px|Mt

; P̃x|Mt

)
= −Ex[MF

t ] + Ex

[∑
s6t

(F − log(1 + F )) (Xs−, Xs)

]

= Ex

[∑
s6t

(F − log(1 + F )) (Xs−, Xs)

]

since MF
t is a martingale. As Px � P̃x we get with Lemma 2.3 (c) that

H(Px; P̃x) = lim
t→∞
H
(
Px|Mt ; P̃x|Mt

)
= Ex

[∑
t>0

(F − log(1 + F )) (Xt−, Xt)

]
.

Note that −1 < −c 6 F 6 C. Hence, there are two constants c1, c2 > 0 such that
c1F

2 6 F − log(1 + F ) 6 c2F
2. This proves the second part of the claim.

The identity (2.8) of part (a) follows, using the analogue of (2.4), in the same way as

(2.9), while the second equality is clear. As before we can show that H(P̃x;Px) < ∞ if,

and only, if Ẽx
[∑

t>0 F
2
1 (Xt−, Xt)

]
< ∞. Since c3F

2 6 F 2/(1 + F )2 = F 2
1 6 c4F

2 for
some constants c3, c4 > 0, the claim follows.

Remark 2.11. (a) Assume that −1 < infx,y F (x, y) 6 supx,y F (x, y) < ∞. Then the

conclusion of Proposition 2.10(b) holds regardless of Px � P̃x: If Px is not absolutely

continuous with respect to P̃x then, by definition,H(Px; P̃x) =∞. Moreover, by Theorem
2.8, Px

(∑
t>0 F

2(Xt−, Xt) =∞
)
> 0 implying that Ex

[∑
t>0 F

2(Xt−, Xt)
]

= ∞, hence
the right-hand side of (2.9) is infinite as well. A similar argument applies to part (a) of
the proposition.

(b) Assume that the Lévy system (N,H) satisfies Hs ≡ s. If Px � P̃x, we can rewrite

the entropy H(Px; P̃x) in the following form:

H
(
Px|Mt

; P̃x|Mt

)
= Ex

[∑
s6t

(F − log(1 + F )) (Xs−, Xs)

]

= Ex

[∫ t

0

∫
Rd

(F − log(1 + F )) (Xs−, y)N(Xs−, dy) ds

]
,

hence, by Lemma 2.3 (c),

H(Px; P̃x) = Ex

[∫ ∞
0

∫
Rd

(F − log(1 + F )) (Xs−, y)N(Xs−, dy) ds

]
= Ex

[∫ ∞
0

h(Xs) ds

]
= Gh(x)

where

h(z) :=

∫
Rd

(F − log(1 + F ))(z, y)N(z, dy),

and G denotes the potential (Green) operator of X. If Px is not absolutely continuous

with respect to P̃x, then by part (a), both H(Px; P̃x) and Gh(x) are infinite.
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Similarly, using Proposition 2.6, we have

H(P̃x;Px) = Ẽx

[∫ ∞
0

(
log(1 + F )− F

1 + F

)
(1 + F )(Xs−, y)N(Xs−, dy) ds

]
= Ẽx

[∫ ∞
0

(
(1 + F ) log(1 + F )− F

)
(Xs−, y)N(Xs−, dy) ds

]
= Ẽx

[∫ ∞
0

h1(Xs) ds

]
= G̃h1(x),

where

h1(z) :=

∫
Rd

(
(1 + F ) log(1 + F )− F

)
(z, y)N(z, dy),

and G̃ denotes the potential (Green) operator of X̃.

In the next corollary we assume that for every x ∈ Rd, there exists some t > 0 (which

may even depend on x) such that Xt has a strictly positive density under both Px and P̃x,

that is Px(Xt ∈ C) =
∫
C
p(t, x, z) dz with p(t, x, z) > 0 and P̃x(Xt ∈ C) =

∫
C
p̃(t, x, z) dz

with p̃(t, x, z) > 0.

Corollary 2.12. Let F ∈ I2(X) and infx,y F (x, y) > −1.

(a) Assume that for every x ∈ Rd there is some t such that Xt has a strictly positive

transition density under P̃x. If P̃x � Px (resp. P̃x ⊥ Px) for some x ∈ Rd, then
this is true for all x ∈ Rd.

(b) Assume that for every x ∈ Rd there is some t such that Xt has a strictly positive

transition density under Px. If Px � P̃x (resp. Px ⊥ P̃x) for some x ∈ Rd, then
this is true for all x ∈ Rd.

Proof. (b) Assume that Px ⊥ P̃x, let f(y) = Py
(∑

s>0 F
2(Xs−, Xs) = ∞

)
and pick t as

in the statement of the corollary. Since∑
s>0

F 2(Xs−, Xs) =
∑
s6t

F 2(Xs−, Xs) +
∑
s>t

F 2(Xs−, Xs)

and the first sum is always finite (as F ∈ I2(X)), we see that

f(x) = Px

(∑
s>0

F 2(Xs−, Xs) =∞

)
= Px

(∑
s>t

F 2(Xs−, Xs) =∞

)

= Px

(∑
s>0

F 2(Xs− ◦ θt, Xs ◦ θt) =∞

)

= Ex

[
PXt

(∑
s>0

F 2(Xs−, Xs) =∞

)]
= Exf(Xt)

=

∫
Rd
f(z)p(t, x, z) dz.
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By Theorem 2.8 we have f(x) = 1, and this implies that f(z) = 1 for Lebesgue a.e. z ∈ Rd.
Then, however, f(y) =

∫
Rd
f(z)p(t, y, z) dz = 1 for every y ∈ Rd.

Assume now that Px � P̃x, and let g(y) = Py
(∑

s>0 F
2(Xs−, Xs) < ∞

)
, so that

g(x) = 1. The same argument as above shows that g(y) = 1 for all y ∈ Rd.

Part (a) is proved in the same way as (b).

Recall that the invariant σ-field I is defined as

I =
{

Λ ∈M : θ−1
t Λ = Λ for all t > 0

}
.

Corollary 2.13. Assume that F ∈ I2(X) and infx,y F (x, y) > −1. Fix x ∈ Rd. If the

invariant σ-field I is trivial under both Px and P̃x, then either P̃x ∼ Px or P̃x ⊥ Px.

Proof. Pick Λ =
{∑

s>0 F
2(Xs−, Xs) =∞

}
. Then Λ ∈ I, hence by the assumption

Px(Λ) = 0 or 1, and P̃x(Λ) = 0 or 1.

If Px(Λ) = 1, then by Theorem 2.8 we first have Px ⊥ P̃x, and then it follows that

P̃x(Λ) = 1. The rest of the proof follows by exchanging Px and P̃x.

Assume that for all x ∈ Rd, Xt admits a positive transition density p(t, x, z) under
Px. Let Λ ∈ I and define φ(y) := Py(Λ). Then, by the Markov property,

φ(x) = Ex[1Λ] = Ex[1Λ ◦ θt] = Ex [PXtΛ] = Ex[φ(Xt)] =

∫
Rd
φ(z)p(t, x, z) dz.

If φ(x) = 1, we get from 0 6 φ 6 1 that φ(z) = 1 Lebesgue a.e.; in the same way as
in the proof of Corollary 2.12 it follows that φ ≡ 1. Similarly, if φ(x) = 0, then φ ≡ 0.
In particular, this shows that if I is trivial under Px for some x ∈ Rd, then it is trivial
under Px for all x ∈ Rd. Under appropriate conditions, the same conclusion holds for
P̃x.

3 Finiteness of the expectation of additive function-

als

Let X = (Ω,M,Mt, θt, Xt,Px) be a strong Markov process with state space Rd, assume
thatM = σ

(⋃
t>0Mt

)
, and let A = (At)t>0 be a perfect additive functional of X, cf. [2].

This means that A is non-negative, adapted and there exists a set Λ ∈ M such that
Px(Λ) = 1 for all x ∈ Rd, such that on Λ

• t 7→ At is non-decreasing, right-continuous and A0 = 0,

• At+s = As + At ◦ θs for all s, t > 0.

We will be mainly interested in the following two types of perfect additive functionals:

(i) At :=
∫ t

0
f(Xs) ds where f : Rd → [0,∞) is a measurable function;

(ii) At :=
∑

s6t F (Xs−, Xs) where F : Rd × Rd → [0,∞) is a measurable function
vanishing on the diagonal.
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In this section we discuss the problem when Px(A∞ <∞) = 1 implies Ex[A∞] <∞.
Set Mt := e−At for t > 0. Then M = (Mt)t>0 is a perfect multiplicative functional

of X taking values in [0, 1], and M∞ = limt→∞Mt = e−A∞ is also well defined. Clearly,
M∞ > 0 if, and only, if A∞ < ∞. We also note that M0 = 1. From the defining
property of a multiplicative functional, Mt+s = Ms · (Mt ◦ θs) we get, letting t→∞, that
M∞ = Ms · (M∞ ◦ θs), Px a.s. for all x ∈ Rd; the exceptional set does not depend on x.

Define u : Rd → [0, 1] by u(x) := Ex[M∞]. Then u is measurable, and by [4, Theorem
2.5] (u(Xt))t>0 is a càdlàg process. We will prove several lemmas involving this function
u.

Lemma 3.1. The process
(
u(Xt)Mt

)
t>0

is a bounded Px-martingale for all x ∈ Rd. In
particular

u(x) = Ex[u(Xt)Mt]. (3.1)

Proof. By the Markov property we have

Ex[M∞ |Ms] = Ex[Ms · (M∞ ◦ θs) |Ms]

= MsEx[M∞ ◦ θs |Ms]

= MsEXs [M∞]

= Msu(Xs).

(3.2)

The expression on the right-hand side is obviously bounded. Since the left-hand side is a
martingale, the claim follows.

From now on we will assume that Px(A∞ < ∞) = 1 for every x ∈ Rd. This implies
that Px(M∞ > 0) = 1 for every x ∈ Rd, hence u > 0.

Lemma 3.2. It holds that Px (limt→∞ u(Xt) = 1) = 1 for every x ∈ Rd.

Proof. Since
(
u(Xt)Mt

)
t>0

is a bounded Px-martingale, the martingale convergence the-

orem shows that the limit limt→∞ u(Xt)Mt exists Px a.s.
On the other hand, limt→∞Mt = M∞ > 0 Px a.s. Hence, limt→∞ u(Xt) exists Px a.s.

Letting t→∞ in (3.1) we get from the bounded convergence theorem that

Ex

[
lim
t→∞

u(Xt)M∞

]
= u(x) = Ex[M∞].

Since 0 6 u 6 1 and Px(M∞ > 0) = 1, the claim follows.

For a measurable function F : Rd × Rd → [0,∞) vanishing on the diagonal, let

F̃ (x, y) := 1− e−F (x,y) and Ãt :=
∑

s6t F̃ (Xs−, Xs).

Lemma 3.3. (a) Let At =
∫∞

0
f(Xs) dAs. For all t > 0 it holds that

u(x) = Ex

[
u(Xt)−

∫ t

0

u(Xs) dAs

]
(3.3)

= 1− Ex
[∫ ∞

0

u(Xs) dAs

]
. (3.4)
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(b) Let At =
∑

s6t F (Xs−, Xs) and Ãt :=
∑

s6t

(
1− e−F (Xs−,Xs)

)
. For all t > 0 it holds

that

u(x) = Ex

[
u(Xt)−

∫ t

0

u(Xs) dÃs

]
(3.5)

= 1− Ex
[∫ ∞

0

u(Xs) dÃs

]
. (3.6)

Proof. We only prove part (b) of the lemma, part (a) follows in a similar way.

We begin with (3.5): Set F̃ (x, y) = 1− e−F (x,y). Because of (3.2) we have

Ex

[
u(Xt)−

∑
s6t

u(Xs)F̃ (Xs−, Xs)

]

= Ex

[
M−1

t Ex(M∞ | Mt)−
∑
s6t

M−1
s Ex(M∞ | Ms) F̃ (Xs−, Xs)

]
= Ex

[
M−1

t M∞
]
−
∑
s6t

Ex

[
Ex

(
M−1

s M∞F̃ (Xs−, Xs)
∣∣Ms

)]
= Ex

[
M−1

t M∞
]
− Ex

[
M∞

∑
s6t

M−1
s F̃ (Xs−, Xs)

]

= Ex
[
M∞ e

At
]
− Ex

[
M∞

∑
s6t

eAs(1− e−F (Xs−,Xs))

]
(∗)
= Ex

[
M∞ e

At
]
− Ex

[
M∞

(
eAt − 1

)]
= Ex[M∞]

= u(x).

In the equality marked by (*) we used the fact that eAt is of purely discontinuous type, see
[16, top of p. 381]; (in the corresponding calculation for continuous additive functionals
we can use here

∫ t
0
eAs dAs = eAt − 1).

Letting t → ∞ in (3.5) and a combination of Lemma 3.2 with the bounded and
monotone convergence theorems gives (3.6).

As a direct consequence of Lemma 3.3 we see that the process N = (Nt)t>0, defined by

Nt := u(Xt)−
∫ t

0
u(Xs) dAs, respectively Nt := u(Xt)−

∫ t
0
u(Xs) dÃs, is a Px-martingale

for all x ∈ Rd.
For a measurable set D ⊂ Rd, denote by τD = inf{t > 0 : Xt /∈ D} the first exit time

of X from D. Since u(Xs)Ms = E[M∞ | Ms] is a bounded martingale, cf. Lemma 3.1,
the next lemma follows from optional stopping.

Lemma 3.4. For every open set D ⊂ Rd it holds that

u(x) = Ex [u(XτD)MτD ] for all x ∈ D.1 (3.7)

1Because of Lemma 3.2 the right-hand side is also defined if τD = +∞. In this case we have u(XτD ) = 1
on the set {τD = +∞}.
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Proposition 3.5. (a) Let At =
∫ t

0
f(Xs) ds. If Ex[A∞] 6 c <∞, then u(x) > e−c > 0.

Conversely, the condition infx∈Rd u(x) = c > 0 implies supx∈Rd Ex[A∞] 6 c−1 − 1.
Thus, infx∈Rd u(x) > 0 if, and only, if supx∈Rd Ex[A∞] <∞.

(b) Let At =
∑

s6t F (Xs−, Xs) and Ãt :=
∑

s6t

(
1− e−F (Xs−,Xs)

)
. If Ex[A∞] 6 c <∞,

then u(x) > e−c > 0. Conversely, the condition infx∈Rd u(x) = c > 0 implies

supx∈Rd Ex[Ã∞] 6 c−1 − 1. If, in addition, 0 6 F (x, y) 6 C for all x, y ∈ Rd, then
infx∈Rd u(x) = c > 0 implies supx∈Rd Ex[A∞] <∞.

Proof. Again we only prove part (b), part (a) being similar.
Suppose that Ex[A∞] 6 c <∞. Jensen’s inequality for the convex function e−t yields

0 < e−c 6 e−Ex[A∞] 6 Ex
[
e−A∞

]
= Ex[M∞] = u(x).

Conversely, assume that infx∈Rd u(x) = c > 0. It follows from (3.6) that

1− c > Ex

[∫ ∞
0

u(Xs) dÃs

]
> cEx[Ã∞],

implying that supx∈Rd Ex[Ã∞] 6 c−1 − 1.
Assume now that 0 6 F (x, y) 6 C for all x, y ∈ Rd. There exists some constant

κ = κ(C) > 1 such that κλ 6 1 − e−λ 6 λ for all λ ∈ [0, C]. This implies that

κF (x, y) 6 F̃ (x, y) 6 F (x, y) for all x, y ∈ Rd, hence κAt 6 Ãt 6 At for all t ∈ [0,∞].

Therefore, supx∈Rd Ex[A∞] 6 κ−1 supx∈Rd Ex[Ã∞] <∞.

Proposition 3.6. Assume that X is a strong Feller process and limt→0 supx∈Rd Ex[At] =
0.

(a) Let At =
∫∞

0
f(Xs) ds. Then u(x) = Ex[M∞] is continuous.

(b) Let At =
∑

s6t F (Xs−, Xs) with F > 0 bounded. Then u(x) = Ex[M∞] is continu-
ous.

Proof. We prove (b), as part (a) is similar. From (3.5) we know that

u(x)− Ex[u(Xt)] = Ex

[∫ t

0

u(Xs) dÃs

]
.

By the strong Feller property, x 7→ Ex[u(Xt)] is continuous. On the other hand, by using
notation from the proof of Proposition 3.5(b),

Ex

[∫ t

0

u(Xs) dÃs

]
6 Ex

[∫ t

0

dÃs

]
= Ex[Ãt] 6

1

κ
Ex[At],

which converges, by assumption, uniformly to zero as t→ 0. Thus u is the uniform limit
of the continuous functions x 7→ Ex[u(Xt)] and, therefore, itself continuous.

Example 3.7. Let X = (Xt,Px) be a Brownian motion in Rd, d > 3. Assume that
f : Rd → [0,∞) is bounded and radial, i.e. f(x) = f(y) if |x| = |y|. Let At :=

∫ t
0
f(Xs) ds,

set Mt := e−At , assume that A∞ <∞ Px a.s., and let u(x) := Ex[M∞]. Then:

u is radial: Let |x| = |y| and assume that U is a rotation around the origin such that
Ux = y. Since f is radial, we have

∫∞
0
f(UXs) ds =

∫∞
0
f(Xs) ds. This implies that the

distributions of A∞ under Py and Px coincide.
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u is continuous: This follows from Proposition 3.6(a).

u is bounded from below: It is enough to prove that lim inf |x|→∞ u(x) > 0. Otherwise
there would exist a sequence (rn)n>1 such that limn→∞ rn = ∞ and u(x) 6 2−n for
|x| = rn. Since X has a.s. continuous paths and lim supt→∞ |Xt| = +∞ a.s., there exists
for every n > 1 some tn = tn(ω) such that |Xtn(ω)| = rn, hence u(Xtn(ω)) 6 2−n. This,
however, contradicts the fact that limt→∞ u(Xt) = 1 a.s.

It follows from Proposition 3.5(a) that supx∈Rd ExA∞ <∞.

Example 3.8. Suppose that X = (Xt,Px) is a strong Markov process on R such that
limt→∞Xt = +∞. Assume further that Py(XTx = x) = 1 for all y < x where Tx :=
inf{t > 0 : Xt > x} is the first entry time into [x,∞). This condition is, for example,
satisfied if X is a regular diffusion or if X is a spectrally negative (i.e. without positive
jumps) Lévy process. For any measurable and locally bounded f : R → [0,∞) define
At :=

∫ t
0
f(Xs) ds and Mt := e−At . Assume that A∞ < ∞ Px a.s. for all x ∈ R, and let

u(x) := Ex[M∞]. Then we have for y < x

u(y) = Ey[M∞] = Ey[MTx(M∞ ◦ θTx)] 6 Ey[M∞ ◦ θTx ] = Ey
[
EXTx [M∞]

]
= u(x), (3.8)

showing that u is non-decreasing.
For x ∈ R we define fx(y) := f(y)1[x,∞)(y), Axt :=

∫ t
0
fx(Xs) ds, M

x
t := e−A

x
t and

Lx := sup{t > 0 : Xt = x}. Since limt→∞Xt = +∞, we have that Py(Lx < ∞) = 1 for
all y. Furthermore,

A∞ =

∫ ∞
0

f(Xs) ds =

∫ Lx

0

f(Xs) ds+

∫ ∞
Lx

f(Xs) ds =

∫ Lx

0

f(Xs) ds+

∫ ∞
Lx

fx(Xs) ds,

implies that A∞ < ∞ Py a.s. if, and only, if Ax∞ < ∞ Py a.s. If ux(y) := Ey[M
x
∞], then

the same calculation as in (3.8) together with Py(M
x
Tx

= 1) = 1 for y < x, shows that
ux(y) = ux(x) for all y < x. Since ux is non-decreasing, we conclude that infy∈R u

x(y) =
ux(x) > 0. Now it follows from Proposition 3.5(a) that

sup
y∈R

EyA
x
∞ 6 ux(x)−1 − 1 <∞.

Since EyA
x
∞ < ∞ implies Py

(
Ax∞ < ∞

)
= 1, we have shown that the following four

statements are equivalent:

(i) Px
(
A∞ <∞

)
= 1 for all x ∈ R;

(ii) Px
(
Ax∞ <∞

)
= 1 for all x ∈ R;

(iii) ExA
x
∞ <∞ for all x ∈ R;

(iv) supy∈REyA
x
∞ <∞ for all x ∈ R.

This gives an alternative proof of the equivalences (i)–(iv) from [11, Theorem 3] (their
setting is slightly more general since the state space is an arbitrary interval (l, r) ⊂ R
and the lifetime ζ can be finite; but our proofs are easily adapted to that setting). Note
that even for a bounded f we cannot conclude that ExA∞ < ∞, because of the lack of
control of u(x) as x→ −∞.
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4 Isotropic stable Lévy processes

In this section we will assume that X is an isotropic α-stable Lévy process in Rd, 0 < α <
2∧ d. Recall that a Lévy process is a stochastic process with independent and stationary
increments and càdlàg paths. The transition function is uniquely determined by the
characteristic function of Xt which is, in the case of an isotropic stable Lévy process,
exp(−t|ξ|α). In particular, Xt has a continuous transition density p(t, x, y) = p(t, x− y),
t > 0, x, y ∈ Rd. From the Lévy–Khintchine representation

|ξ|α =
α2α−1Γ

(
α+d

2

)
πd/2Γ

(
1− α

2

) ∫
Rd\{0}

(1− cos y · ξ) dy

|y|d+α

we see that the Lévy measure is c̃(d, α)|y|−d−α dy, and because of the stationarity of the
increments, we see that the Lévy system (N,H) is of the form N(x, dy) = j(x, y) dy and
Hs(ω) ≡ s with j(x, y) = c̃(d, α)|x− y|−d−α. The corresponding Dirichlet form (E ,F) of
X is

F =

{
f ∈ L2(Rd, dx) :

∫
Rd

∫
Rd

(f(x)− f(y))2j(x, y) dx dy <∞
}
,

and

E(f, f) =

∫
Rd

∫
Rd

(f(x)− f(y))2j(x, y) dx dy, f ∈ F .

Let F ∈ I2(X) such that infx,y∈Rd F (x, y) > −1, and let X̃ = (X̃t,M,Mt, P̃x) be the
corresponding purely discontinuous Girsanov transform of X. It follows from [17, Lemma

2.1 and Theorem 2.5] that the semigroup of X̃ is symmetric (with respect to Lebesgue

measure), and that the Dirichlet form (Ẽ , F̃) of X̃ in L2(Rd, dx) is given by F̃ = F , and

Ẽ(f, f) =

∫
Rd

∫
Rd

(f(x)− f(y))2(1 + F (x, y))j(x, y) dx dy, f ∈ F̃ .

Since the killing measure of X̃ is zero and 1 + F (x, y) is bounded from below and above

by positive constants, we conclude that X̃ is conservative. By [17, Theorem 2.7], X̃ has
continuous transition densities p̃(t, x, y), t > 0, x, y ∈ Rd.

Since α < d, X is transient and has the Green function G(x, y) = c(d, α)|x − y|α−d,
where c(d, α) = 2−απ−d/2Γ

(
d−α

2

)
/Γ
(
α
2

)
. In this case, X̃ also admits a Green function

G̃(x, y) which satisfies the following two-sided estimates, cf. [17, Corollary 2.8]:

c−1G(x, y) 6 G̃(x, y) 6 cG(x, y), x, y ∈ Rd, (4.1)

for some constant c > 1.

Definition 4.1. A measurable function f : Rd → R is said to be in the Kato class K(X)
if

lim
t→0

sup
x∈R

Ex

(∫ t

0

|f(Xt)| dt
)

= 0.

If F : Rd × Rd → R is a symmetric, bounded measurable function vanishing on the
diagonal, then F ∈ J(X), cf. Definition 2.4, if, and only, if h ∈ K(X) where

h(y) :=

∫
Rd
F (y, z)j(y, z) dz. (4.2)
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Definition 4.2. Let C > 0 and β > 0. A bounded symmetric function F : Rd×Rd → R

vanishing on the diagonal is in the class I(C, β) if

|F (x, y)| 6 C|x− y|β for all x, y ∈ Rd.

We note that F ∈ I(C, β) if, and only, if F is symmetric and |F (x, y)| 6 Ĉ(|x−y|β∧1)

for some constant Ĉ > 0. It is proved in [17, Example p. 492] that I(C, β) ⊂ I2(X) if
β > α/2. Similarly, we have the following simple result.

Lemma 4.3. If F ∈ I(C, β) for β > α, then F ∈ J(X).
Consequently, if At :=

∑
s6t F (Xs−, Xs), then limt→0 supx∈Rd ExAt = 0.

Proof. By the properties of the Lévy system we have

Ex[At] = Ex

[∑
s6t

F (Xs−, Xs)

]
= Ex

[∫ t

0

∫
Rd
F (Xs−, y)j(Xs−, y) dy ds

]
= Ex

[∫ t

0

h(Xs) ds

]
where

h(y) =

∫
Rd
F (y, z)j(y, z) dz

6 c1

∫
Rd

(
|y − z|β ∧ 1

)
|y − z|−d−α dz

= c1

(∫
|y−z|61

|y − z|β−d−α dz +

∫
|y−z|>1

|y − z|−d−α dz
)

= c2 <∞.

Therefore, Ex[At] = Ex

[∫ t
0
h(Xs) ds

]
6 c2t which implies the statement.

Denote by B(x0, r) the open ball centred at x0 with radius r > 0, and by GB(x0,r) the
Green function of the process X killed upon exiting B(x0, r). To simplify notation we
write B = B(0, 1).

Lemma 4.4. Let β > α. There exists a constant C1(d, α, β) <∞ such that

sup
x,w∈B

∫
B

∫
B

GB(x, y)GB(z, w)

GB(x,w)
|y − z|β−α−d dz dy = C1(d, α, β).

Proof. We follow the arguments from [4, Example 2]. From the sharp estimates of the
Green function GB we get: If δB(x) = dist(x,Bc) is the distance to the boundary, there
exists a constant c1 = c1(d, α) such that

GB(x, y)GB(z, w)

GB(x,w)
6


c1 |x− w|d−α

|x− y|d−α|z − w|d−α
, |x− w| 6 1

2
max{δB(x), δB(w)},

c2 |x− w|d−α/2

|x− y|d−α/2|z − w|d−α/2
, |x− w| > 1

2
max{δB(x), δB(w)}.

These estimates imply that

GB(x, y)GB(z, w)

GB(x,w)
|y − z|β−α−d
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6 c1

[
|x− w|d−α

|x− y|d−α|z − w|d−α|y − z|d+α−β +
|x− w|d−α/2

|x− y|d−α/2|z − w|d−α/2|y − z|d+α−β

]
6 c2

[
|x− y|d−α + |y − z|d−α + |z − w|d−α

|x− y|d−α|z − w|d−α|y − z|d+α−β +
|x− y|d−α/2 + |y − z|d−α/2 + |z − w|d−α/2

|x− y|d−α/2|z − w|d−α/2|y − z|d+α−β

]
= c2

[
1

|z − w|d−α|y − z|d+α−β +
1

|x− y|d−α|y − z|d+α−β

+
1

|z − w|d−α/2|y − z|d+α−β +
1

|x− y|d−α/2|y − z|d+α−β

+
1

|x− y|d−α|z − w|d−α|y − z|2α−β
+

1

|x− y|d−α/2|z − w|d−α/2|y − z|3α/2−β

]

where c2 = c2(d, α). The integrals of the first four terms are estimated in the same way,
so we only do the first one. Since β > α > 0, we have that∫

B

∫
B

1

|z − w|d−α|y − z|d+α−β dz dy 6
∫
B(w,2)

1

|w − z|d−α

(∫
B(z,2)

1

|y − z|d+α−β dy

)
dz

= c3(d, α, β) <∞.

In order to estimate the fifth term we use Hölder’s inequality with 2α−β
d

< 1
q
< α

d
(note

that 2α− β < α) and 1
p

= 1− 1
q
> 1− α

d
to get∫

B

dz

|z − w|d−α|y − z|2α−β
6

(∫
B

|z − w|(α−d)p dz

)1/p (∫
B

|y − z|(β−2α)q dz

)1/q

6

(∫
B(w,2)

|z − w|(α−d)p dz

)1/p (∫
B(y,2)

|y − z|(β−2α)q dz

)1/q

= c4(d, α, β) <∞.

Therefore∫
B

∫
B

dz dy

|x− y|d−α|z − w|d−α|y − z|2α−β
6 c4(d, α, β)

∫
B(x,2)

dy

|x− y|d−α
6 c5(d, α, β).

The integral of the sixth term is estimated in the same way.

Lemma 4.5. For every ε > 0 there exists some r0 = r0(C, d, α, β, ε) > 0 such that for
every r 6 r0, x,w ∈ B(x0, r) and F ∈ I(C, β) it holds that∫

B(x0,r)

∫
B(x0,r)

GB(x0,r)(x, y)GB(x0,r)(z, w)

GB(x0,r)(x,w)
|F (y, z)| |y − z|−α−d dz dy < ε, (4.3)

Proof. By the scaling property and the spatial homogeneity of a stable Lévy process we
see

GB(x0,r)(x, y) = rα−dGB(r−1(x− x0), r−1(y − x0)),

where B = B(0, 1). Therefore,∫
B(x0,r)

∫
B(x0,r)

GB(x0,r)(x, y)GB(x0,r)(z, w)

GB(x0,r)(x,w)
F (y, z)

dz dy

|y − z|α+d
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6 Crα−d
∫

B(x0,r)

∫
B(x0,r)

GB

(
1
r
(x− x0), 1

r
(y − x0)

)
GB

(
1
r
(z − x0), 1

r
(w − x0)

)
GB

(
1
r
(x− x0), 1

r
(w − x0)

) |y − z|β dz dy
|y − z|d+α

.

Using the change of variables y′ = r−1(y− x0), z′ = r−1(z − x0), where x′ = r−1(x− x0),
w′ = r−1(w − x0) and by Lemma 4.4, the last expression is equal to

Crα−d
∫
B

∫
B

GB(x′, y′)GB(z′, w′)

GB(x′, w′)
rβ|y′ − z′|βr−d−α|y′ − z′|−d−αr2d dz′ dy′

= Crβ
∫
B

∫
B

GB(x′, y′)GB(z′, w′)

GB(x′, w′)
|y′ − z′|β−α−d dz′ dy′

= CC1(d, α, β)rβ.

Now we choose r0 = r0(C, d, α, β, ε) > 0 such that CC1(d, α, β)rβ0 < ε.

Let F : Rd × Rd → R be bounded and symmetric, set At :=
∑

s6t F (Xs−, Xs) and
denote by τB(x0,r) = inf{t > 0 : Xt /∈ B(x0, r)} the first exit time of X from the ball
B(x0, r). For x,w ∈ B(x0, r), let Pwx denote the law of the h-transformed killed process
XB(x0,r) with respect to the excessive function GB(x0,r)(·, w)—this is the process XB(x0,r)

conditioned to die at {w}. By [4, Proposition 3.3] it holds that

Ewx

[∑
s6t

F (X
B(x0,r)
s− , XB(x0,r)

s )

]

= Ex

[∫ t

0

∫
B(x0,r)

F (X
B(x0,r)
s , z)GB(x0,r)(z, w)

GB(x0,r)(x,w)
|XB(x0,r)

s − z|−d−α dz ds

]
.

This formula remains valid if we replace t with τB(x0,r). On [0, τB(x0,r)) the killed process
coincides with X, and so

Ewx

 ∑
s6τB(x0,r)

F (Xs−, Xs)


= Ex

[∫ τB(x0,r)

0

∫
B(x0,r)

F (Xs, z)GB(x0,r)(z, w)

GB(x0,r)(x,w)
|Xs − z|−d−α dz ds

]
=

∫
B(x0,r)

∫
B(x0,r)

GB(x0,r)(x, y)GB(x0,r)(z, w)

GB(x0,r)(x,w)
F (y, z)|y − z|−α−d dz dy. (4.4)

Lemma 4.6. Assume that F is a non-negative function in I(C, β), let ε > 0 and denote
by r0 = r0(C, d, α, β, ε) > 0 the constant from Lemma 4.5. Then for r 6 r0 it holds that

e−ε 6 Ewx

[
e
−AτB(x0,r)

]
6 1.

Proof. Let r 6 r0 and set τ = τB(x0,r). By (4.4) and Lemma 4.5 we see that Ewx [Aτ ] < ε.
By Jensen’s inequality, it follows that

e−ε 6 e−E
w
x [Aτ ] 6 Ewx [e−Aτ ] 6 1.

Remark 4.7. If we do not assume in Lemma 4.6 that F is non-negative, we could use

Khas’minskii’s lemma, see e.g. [6, Lemma 3.7], to get Ewx

[
e
AτB(x0,r)

]
6 (1− ε)−1.
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Let F be a non-negative, symmetric function on Rd × Rd and D ⊂ Rd a bounded
open set. We say that a non-negative function u : Rd → [0,∞) is F -harmonic in D if for
every open set V ⊂ V ⊂ D the following mean-value property holds:

u(x) = Ex
[
e−AτV u(XτV )

]
, for all x ∈ V.

The function u is regular F -harmonic in D if u(x) = Ex
[
e−AτDu(XτD)

]
for all x ∈ D. A

standard argument using the strong Markov property shows that any regular F -harmonic
function u is also F -harmonic in D.

We will now prove the Harnack inequality for non-negative F -harmonic functions. For
a continuous additive functional At =

∫ t
0
f(Xs) ds with f ∈ K(X) an analogous result

has been proved in [3, Theorem 4.1]. Our argument is a modification of that proof. Recall
that the Poisson kernel of the ball B(0, r) is given by

Pr(x, z) = ĉ(α, d)

(
r2 − |x|2

|z|2 − r2

)α/2
|x− z|−d, |x| < r, |z| > r,

where ĉ(α, d) = π1+d/2Γ(d/2) sin(πα/2).

Theorem 4.8. Let D ⊂ Rd be a bounded open set and K ⊂ D a compact subset of D.
There exists a constant C2 = C2(C, β, d, α,D,K) > 0 such that for every F ∈ I(C, β)
and every u : Rd → [0,∞) which is F -harmonic in D, it holds that

C−1
2 u(x) 6 u(y) 6 C2u(x), x, y ∈ K.

Proof. Set δK = dist(K,Dc) and ρ0 = r0 ∧ δK/2 where r0 = r0(C, d, α, β, 1/2) is the
constant from Lemma 4.5 with ε = 1/2. Let x ∈ K, 0 < r 6 ρ0 and B = B(x, r). By [3,
(2.15)], see also [5, Theorem 2.4],

u(y) = Ey
[
u(XτB)e−AτB

]
= Ey

[
u(XτB)E

XτB−
y

[
e−Aζ

]]
,

where ζ = τB\{v} and v = XτB−. By Lemma 4.6, 1
2
6 E

XτB−
x

[
e−Aζ

]
6 1, implying that

1

2
Ey[u(XτB)] 6 u(y) 6 Ey[u(XτB)]. (4.5)

If |y − x| < 1
2
r, then

Ex[u(XτB)] =

∫
Bc
Pr(0, z − x)u(z) dz

6 sup
|z−x|>r

Pr(0, z − x)

Pr(y − x, z − x)

∫
Bc
Pr(y − x, z − x)u(z) dz

6 3d+1Ey[u(XτB)].

Here Pr(·, ·) denotes the Poisson kernel of the ball, and the last estimate follows from
the explicit formula for Pr. Similarly,

Ex[u(XτB)] > 3−d−1Ey[u(XτB)].

Combining the last two estimates with (4.5) yields

3−d−3u(y) 6 u(x) 6 3d+3u(y), y ∈ B(x, r/2). (4.6)
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In particular, (4.6) holds for r = ρ0.
Now pick z ∈ K such that |z−x| > 1

2
ρ0 and set B̂ := B(z, ρ0/4). With B = B(x, ρ0/4)

we have that B ∩ B̂ = ∅. By using (4.5) in the first line, (4.6) in the fourth line (with
r = ρ0/2), and the estimate of the Poisson kernel in the fifth line of the calculation below,
we get

u(z) >
1

2
Ez[u(XτB̂

)]

=
1

2

∫
B̂c
Pρ0/4(0, y − z)u(y) dy

>
1

2

∫
B

Pρ0/4(0, y − z)u(y) dy

>
1

2
3−d−3u(x)

∫
B

Pρ0/4(0, y − z) dy

>
1

2
3−d−3u(x)ĉ(α, d)(ρ0/4)α

∫
B

|y − z|−d−α dy

> 3−d−32−1−2αĉ(α, d)ρα0
∣∣B(0, ρ0/4

)∣∣ (3|z − x|
2

)−d−α
u(x)

> 3−2d−3−α2−d−α−1ĉ(α, d)
∣∣B(0, 1)

∣∣ρd+α
0 (diamK)−d−αu(x)

= C(α, d)
( ρ0

diamK

)d+α

u(x) = cu(x).

Similarly, u(x) > cu(z). Together with (4.6) this proves the theorem.

Remark 4.9. The constant C2 depends on d, α and the ratio ρ0/ diamK.

Lemma 4.10. Let D ⊂ Rd be a bounded open set and assume that F,Φ are two non-
negative symmetric functions on Rd ×Rd vanishing on the diagonal such that

F (x, y) = Φ(x, y) for all (x, y) ∈ (D ×Rd) ∪ (Rd ×D).

Then u is (regular) F -harmonic in D if, and only, if u is (regular) Φ-harmonic in D.

Proof. Let At =
∑

s6t F (Xs−, Xs) and Bt =
∑

s6t Φ(Xs−, Xs). For any open V ⊆ D we
have Xs− ∈ V ⊂ D, and so F (Xs−, Xs) = Φ(Xs−, Xs) for all s 6 τV . Thus, AτV =∑

s6τV
F (Xs−, Xs) =

∑
s6τV

Φ(Xs−, Xs) = BτV . Therefore

Ex
[
e−AτV u(XτV )

]
= Ex

[
e−BτV u(XτV )

]
,

proving the claim.

For R > 0 set uR(x) := u(Rx), FR(x, y) := F (Rx,Ry), DR := R ·D := {Rx : x ∈ D},
and define the additive functional ARt :=

∑
s6t FR(Xs−, Xs).

Lemma 4.11. Let R > 0 and assume that u is regular F -harmonic in DR, i.e.

u(x) = Ex

[
e
−AτDR u(XτDR

)
]

for all x ∈ DR. (4.7)

Then uR is regular FR-harmonic in D, i.e.

uR(x) = Ex

[
e−A

R
τDuR(XτD)

]
for all x ∈ D. (4.8)
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Proof. We begin with some scaling identities. Note that the Px-distribution of (RXt)t>0

is equal to the PRx-distribution of (XRαt)t>0. From this identity it follows that the Px-
distribution of the pair (τD, RXτD) is equal to the PRx-distribution of (R−ατDR , XτRD) =
(R−ατDR , XτDR

). Using these scaling identities in the second line, a change of variables
in the third line and (4.7) in the fourth line below, we get

Ex

[
e−A

R
τDuR(XτD)

]
= Ex

[
e−

∑
s6τD

F (RXs−,RXs)uR(XτD)
]

= ERx

[
e
−

∑
s6R−ατDR

F (XRαs−,XRαs)
u(XτDR

)
]

= ERx

[
e
−

∑
s6τDR

F (Xs−,Xs)
u(XτDR

)
]

= u(Rx) = uR(x).

Lemma 4.12. Assume that F : Rd ×Rd → [0,∞) is symmetric, bounded and satisfies

F (x, y) 6 C
|x− y|β

1 + |x|β + |y|β
for all x, y ∈ Rd. (4.9)

(a) FR is symmetric, bounded and satisfies FR(x, y) 6 C|x − y|β for all (x, y) ∈
(B(0, 1)c ×Rd) ∪ (Rd ×B(0, 1)c).

(b) For a bounded open set D ⊂ B(0, 1)c let

F̂R(x, y) =

{
FR(x, y) if (x, y) ∈ (D ×Rd) ∪ (Rd ×D)

0 otherwise.

Then F̂R is symmetric, bounded and satisfies F̂R(x, y) 6 C|x−y|β for all x, y ∈ Rd.

Proof. (b) follows directly from (a). (a) Symmetry and boundedness are clear. For |x| > 1
or |y| > 1 we have

FR(x, y) = F (Rx,Ry) 6 C
|Rx−Ry|β

1 + |Rx|β + |Ry|β
= C

|x− y|β

R−β + |x|β + |y|β
6 C|x− y|β.

Remark 4.13. (a) Note that (4.9) implies the condition

F (x, y) 6 C
|x− y|β

1 + |x|β
for all x, y ∈ Rd. (4.10)

Conversely, if F is symmetric and (4.10) holds, then F satisfies (4.9) with 2C instead
of C. Indeed, by symmetry, (4.10) is valid with y instead of x in the denominator,
and thus

F (x, y) 6 C|x− y|β min

{
1

1 + |x|β
,

1

1 + |y|β

}
6 C|x− y|β 2

1 + |x|β + |y|β
.

(b) Note that the statement of Lemma 4.12 (b) can be rephrased as F̂R ∈ I(C, β) for
all R > 0. This will be crucial in the proof of Theorem 4.15.

For a Borel set C ⊂ Rd let TC = inf{t > 0 : Xt ∈ C} be its hitting time. If 0 < a < b,
let V (0, a, b) := {x ∈ Rd : a < |x| < b} be the open annulus, and denote by V (0, a, b) its
closure.
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Lemma 4.14. Let (Rn)n>1 be a strictly increasing sequence of positive numbers such that
limn→∞Rn =∞, and let Vn := V (0, Rn, 2Rn) = {x ∈ Rd : Rn 6 |x| 6 2Rn}. Then

Px

(
lim sup
n→∞

{TVn <∞}
)

= 1 for all x ∈ Rd.

Lemma 4.14 says that Px ({TVn <∞} infinitely often) = 1, i.e. with Px probability
1, the process X visits infinitely many of the sets Vn.

Proof of Lemma 4.14. Let Ck :=
⋃
n>k Vn. By [8, Proposition 2.5], Px(TCk <∞) = 1 for

every x ∈ Rd and k > 1. Obviously,{
TCk <∞

}
=
{
T⋃

n>k Vn
<∞

}
=
⋃
n>k

{
TVn <∞

}
.

Since this inclusion holds for all k > 1, we get⋂
k>1

{
TCk <∞

}
⊂
⋂
k>1

⋃
n>k

{
TVn <∞

}
= lim sup

n→∞

{
TVn <∞

}
.

Since Px(TCk <∞) = 1 we see

1 = Px

(⋂
k>1

{
TCk <∞

})
6 Px

(
lim sup
n→∞

{
TVn <∞

})
= Px

(
{TVn <∞} i.o.

)
.

Theorem 4.15. Assume that F : Rd ×Rd → [0,∞) is bounded, symmetric and satisfies
condition (4.9) with β > α. Let At :=

∑
s6t F (Xs−, Xs). If Px(A∞ < ∞) = 1 for all

x ∈ Rd, then supx∈Rd Ex[A∞] <∞.

Proof. First note that F (x, y) 6 C|x − y|β for all x, y ∈ Rd, hence F ∈ I(C, β) and,
by Lemma 4.3, F ∈ J(X). Let Mt = e−At and u(x) := Ex[M∞]. Since X is a strong
Feller process, it follows from Proposition 3.6(b) and Lemma 4.3 that u is continuous.
Moreover, by Lemma 3.4, u is regular F -harmonic in every bounded open set G ⊂ Rd.
Finally, by Lemma 3.2, we have that limt→∞ u(Xt) = 1 Px a.s. According to Proposition
3.5(b), in order to prove that supx∈Rd Ex[A∞] <∞ it suffices to show that u is bounded
from below by a strictly positive constant.

Let D = V (0, 1, 5) = {x ∈ Rd : 1 < |x| < 5}. For R > 1 set DR := R ·D, uR(x) =

u(Rx), FR(x, y) = F (Rx,Ry) and F̂R(x, y) = FR(x, y) for (x, y) ∈ (D ×Rd) ∪ (Rd ×D),
and 0 otherwise. Since u is regular F -harmonic in DR, we get from Lemma 4.11 that uR is
regular FR-harmonic in D. Since FR(x, y) = F̂R(x, y) for all (x, y) ∈ (D×Rd)∪ (Rd×D),

uR is by Lemma 4.10 also regular F̂R-harmonic in D. Moreover, by Lemma 4.12, F̂R ∈
I(C, β). Hence it follows from Theorem 4.8 that there exists a constant c > 1 depending
only on d and α such that

c−1uR(y) 6 uR(x) 6 cuR(y) for all x, y ∈ V (0, 2, 4).

This can be written as

c−1u(y) 6 u(x) 6 cu(y) for all x, y ∈ V (0, 2R, 4R). (4.11)

Since u is continuous, lower boundedness follows if we can show that lim inf |x|→∞ u(x) >
0. Suppose not; then there exists a sequence (xn)n>1 in Rd such that |xn| → ∞ and
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limn→∞ u(xn) = 0. Let Vk = V (0, 2k, 2k+1). Without loss of generality we may assume
that there exists an increasing sequence (kn)n>1 such that xn ∈ Vkn for every n > 1.
By Lemma 4.14, with Px-probability 1, X hits infinitely many sets Vkn . Hence, for
Px a.e. ω there exists a subsequence (nl(ω)) and a sequence of times tl(ω) such that
Xtl(ω)(ω) ∈ Vknl(ω) . By 4.11 we get that

c−1u(Xtl(ω)(ω)) 6 u(xnl(ω)) 6 cu(Xtl(ω)(ω)).

Since, by assumption, liml→∞ u(xnl(ω)) = 0 we get that liml→∞ u(Xtl(ω)(ω)) = 0. But this
is a contradiction with limt→∞ u(Xt) = 1 Px a.s.

We conclude that lim infn→∞ u(xn) > c−1. This finishes the proof.

Remark 4.16. For α < β let

F (x, y) :=
|x− y|β

1 + |x|β + |y|β
, x, y ∈ Rd.

Then F is non-negative, bounded, symmetric, satisfies (4.9) and F ∈ J(X) ⊂ I2(X), cf.
the remark following Definition 4.2. Let At :=

∑
s6t F (Xs−, Xs). Then Ex[At] < ∞ for

all t > 0. On the other hand, it is not difficult to show that Ex[A∞] = ∞. Hence, the
statement of Theorem 4.15 is not void—there do exist functions satisfying all conditions
of the theorem (except A∞ <∞ a.s.) but still Ex[A∞] =∞.

Remark 4.17. Suppose that f : Rd → [0,∞) is a measurable function satisfying the
condition

f(x) 6
C

1 + |x|α
for all x ∈ Rd. (4.12)

Let At :=
∫ t

0
f(Xs) ds. Using similar arguments as in the proof of Theorem 4.15 we can

show that Px(A∞ <∞) = 1 implies that Ex[A∞] <∞. Indeed, the analogues of Lemmas
4.5 and 4.6 and Theorem 4.8 are given in [3, Lemma 3.4, Lemma 3.5, Theorem 4.1], the
scaling Lemma 4.11 is proved in the same way, the counterpart of Lemma 4.12 shows
that f̂R(x) := Rαf(Rx) is bounded by C for all |x| > 1. The rest of the argument is
exactly the same as in the proof of Theorem 4.15.

In the next result we show that the condition (4.9) is essential for validity of the
Theorem 4.15.

Theorem 4.18. There exists a non-negative bounded function F ∈ I(1, β) such that
A∞ :=

∑
s>0 F (Xs−, Xs) <∞ Px a.s., but Ex[A∞] =∞.

Proof. Fix γ and β so that 0 < γ < α < β and α− γ < 1
2
. Let (xn)n>1 be a sequence of

points in Rd such that |xn| = 2nd/(α−γ) and let rn = 2−n|xn|+ 1. Note that |xn| > 22nd >
2n. Consider the family of balls {B(xn, rn)}n>1. By [13, Lemma 2.5],

P0(TB(xn,rn) <∞) 6

(
rn
|xn|

)d−α
=

(
2−n|xn|+ 1

|xn|

)d−α
6 (2−n + 2−n)d−α = 2(1−n)(d−α).

Hence,
∑

n>1P0(TB(xn,rn) < ∞) < ∞, implying by the Borel–Cantelli lemma that
P0({TB(xn,rn) <∞} i.o.) = 0. Therefore, X hits P0 a.s. only finitely many balls B(xn, rn).
Let C :=

⋃
n>1B(xn, rn).
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Define a symmetric bounded function F : Rd ×Rd → [0,∞) by

F (y, z) :=


|y − z|β

|y|γ + |z|γ
, y, z ∈ B(xn, rn) for some n, |y − z| 6 1

0, otherwise.

Note that F (y, z) 6 |y − z|β ∧ 1 for all y, z ∈ Rd. Thus, F ∈ J(X) and F ∈ I(1, β).
Let At :=

∑
s6t F (Xs−, Xs), t > 0. Then E0[At] <∞ implying that P0(At <∞) = 1

for all t > 0. Since X visits only finitely many balls B(xn, rn), the last exit time from
the union

⋃
n>1B(xn, rn) is finite, hence P0(A∞ < ∞) = 1. Since {A∞ < ∞} ∈ I, the

argument at the end of Section 2 shows that Px(A∞ <∞) = 1 for all x ∈ Rd.
Further,

Ex[A∞] = Ex

[∑
s>0

F (Xs−, Xs)

]

= Ex

[∫ ∞
0

∫
Rd
F (Xs−, z)j(Xs−, z) dz ds

]
= Ex

[∫ ∞
0

h(Xs) ds

]
= Gh(x) = c(α, d)

∫
Rd
h(y)|x− y|α−d dy,

where

h(y) :=

∫
Rd
F (y, z)j(y, z) dz = c̃(α, d)

∫
Rd
F (y, z)|y − z|−d−α dz.

If y /∈ C, then F (y, ·) = 0, implying that h(y) = 0. Let y ∈ B(xn, rn−1). Then |y| 6 2|xn|
and if z satisfies |z − y| < 1, then z ∈ B(xn, rn) and also |z| 6 2|xn|. Therefore,

h(y) = c̃(α, d)

∫
z∈B(xn,rn),|z−y|61

|y − z|β

|y|γ + |z|γ
|y − z|−d−α dz

> c1

∫
|z−y|61

|y − z|β−d−α

|xn|γ
dz > c2|xn|−γ.

In the last inequality we have used that 0 <
∫
|z−y|61

|y − z|β−d−α dz < ∞. Hence, for

|x| 6 1 we have |x− y| 6 4|xn|, so

Gh(x) = c(α, d)
∑
n>1

∫
B(xn,rn)

h(y)|x− y|α−d dy

> c(α, d)
∑
n>1

∫
B(xn,rn−1)

h(y)|x− y|α−d dy

> c3

∑
n>1

|xn|−γ
∫
B(xn,rn−1)

|xn|α−d dy

= c4

∑
n>1

|xn|−γ+α−d(rn − 1)d

= c4

∑
n>1

|xn|−γ+α−d(2−n|xn|)d

= c4

∑
n>1

2nd2−nd =∞.

This implies that Gh ≡ ∞.
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5 Proofs of Theorems 1.2 and 1.3

Throughout this section we assume that X is an isotropic α-stable Lévy process such
that α < 2 ∧ d. We collect the results obtained so far and prove Theorems 1.2 and 1.3
stated in the introduction.

Since both X and X̃ admit continuous transition densities, it follows from Corollary
2.12 that if P̃x � Px (P̃x ⊥ Px) for some x ∈ Rd, then this remains true for all x ∈ Rd.

Similarly, if Px � P̃x (Px ⊥ P̃x) for some x ∈ Rd, then this remains true for all x ∈ Rd.
For the proof of Theorem 1.2 we need that the invariant σ-field is trivial.

Lemma 5.1. The invariant σ-field I is trivial with respect to both Px and P̃x for all
x ∈ Rd.

Proof. Using standard approximation techniques it is enough to consider non-negative
bounded random variables. Suppose that Λ is a non-negative and bounded I-measurable
random variable. Define h(x) := Ex[Λ]. Then h is an invariant function in the sense
that h(x) = Exh(Xt) for all t > 0. This implies that (h(Xt))t>0 is a bounded martingale
and Λ = limt→∞ h(Xt) Px-a.s. for every x ∈ Rd. By optional stopping, we see that
h(x) = Exh(XτD) for every relatively compact open set D ⊂ Rd and every x ∈ D; this
means that h is harmonic on Rd. Therefore, in order to show that I is Px-trivial for all
x ∈ Rd, it suffices to prove that constants are the only non-negative bounded harmonic
functions with respect to X. This is equivalent to showing that the (minimal) Martin
boundary of Rd with respect to X consists of a single point, say ∞, cf. [12]. For stable
Lévy processes this is a well-known fact which follows from

lim
|y|→∞

G(x, y)

G(x0, y)
= 1. (5.1)

For the purely discontinuous Girsanov transform X̃ we proceed as follows. First note
that because of the conservativeness of X̃ constant functions are harmonic. It is easy to
see that X̃ satisfies the conditions from [12], hence admits the Martin boundary ∂MRd.
Fix a point x0 ∈ Rd and let

M̃(x, y) =
G̃(x, y)

G̃(x0, y)
,

where, as before, G̃(x, y) denotes the Green function of X̃. If z ∈ ∂MRd, then the Martin
kernel at z is given by

M̃(x, z) = lim
yn→z

M̃(x, yn) = lim
yn→z

G̃(x, yn)

G̃(x0, yn)
(5.2)

where yn → z in the Martin topology and |yn| → ∞. Recall from (4.1) that c−1G(x, y) 6
G̃(x, y) 6 cG(x, y) for all x, y ∈ Rd where G denotes the Green function of the α-stable
Lévy process. We conclude from (5.1) and (5.2) that

c−2 6 M̃(x, z) 6 c2 for all x ∈ Rd and z ∈ ∂MRd. (5.3)

Suppose that h is a minimal harmonic function with respect to X̃. It follows from [12]
that there is a finite measure ν on ∂MRd such that

h(x) =

∫
∂MRd

M̃(x, z) ν(dz).
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From (5.3) we conclude that c−2ν(∂MRd) 6 h. The minimality of h now implies that it

is constant. Thus, the minimal Martin boundary of Rd with respect to X̃ consists of a
single point.

Proof of Theorem 1.2. (a) follows immediately from Corollary 2.13 and Lemma 5.1.

(b) The assumption P̃x ∼ Px implies, by Theorem 1.1, that

Px

(∑
t>0

F 2(Xt−, Xt) <∞

)
= 1

Note that

F 2(x, y) 6 C2 |x− y|2β

(1 + |x|β + |y|β)2
6 C2 |x− y|2β

1 + |x|2β + |y|2β
.

Since 2β > α, Theorem 4.15 shows that supx∈Rd Ex
[∑

t>0 F
2(Xt−, Xt)

]
< ∞. From

Theorem 1.1 (c̃) we conclude that supx∈RdH(Px; P̃x) <∞.

Proof of Theorem 1.3. By assumption 2γ < α < 2β. Denote by B(xn, rn) the balls and
by Φ the function constructed in the proof of Theorem 4.18 with 2γ and 2β. Thus

Φ(x, y) =


|x− y|2β

|x|2γ + |y|2γ
, x, y ∈ B(xn, rn) for some n and |x− y| < 1,

0, otherwise.

Define F (x, y) = 1
8

√
Φ(x, y). Then

F (x, y) 6
1

8

|x− y|β√
|x|2γ + |y|2γ

6
1

4

|x− y|β

|x|γ + |y|γ
6

1

2

|x− y|β

1 + |x|γ + |y|γ

since we can take |x|, |y| > 1. As
∑

t>0 F
2(Xt−, Xt) = 1

8

∑
t>0 Φ(Xt−, Xt), we see from

Theorem 4.18 that
∑

t>0 F
2(Xt−, Xt) < ∞ Px a.s. and Ex[

∑
t>0 F

2(Xt−, Xt)] = ∞. By

Theorem 1.1(b̃) and (c̃) it follows that Px � P̃x and H(Px; P̃x) =∞.
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