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ABSTRACT. In this paper, we establish sharp two-sided estimates for transition densities of a large class
of subordinate Markov processes. As applications, we show that the parabolic Harnack inequality and
Holder regularity hold for parabolic functions of such processes, and derive sharp two-sided Green function
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1. INTRODUCTION

Transition densities of Markov processes are of central importance in both probability and analysis.
The transition density p(t,z,y) of a Markov process X with generator L is the fundamental solution of
the equation dyu = Lu. Hence the transition density p(t,z,y) is also known as the heat kernel of L. The
heat kernel is rarely known explicitly. Due to the importance of heat kernels, there is a huge amount of
literature devoted to estimates of heat kernels.

The purpose of this paper is to study heat kernel estimates for subordinate Markov processes. The
main motivation comes from [42], where it was established that the jump kernels of subordinate killed
Lévy processes have an unusual form not observed before. It is therefore plausible that the heat kernels
of those processes will have some new features. It turns out that this is indeed the case. To illustrate the
new features, we explain below the motivating and also the simplest example covered by our results.

Let D € R?% d > 1, be a bounded C'' open set. For z € D, let p(x) denote the distance between x
and D°. Let Y be an isotropic a-stable process in R? o € (0,2] and let Y? denote the part process of ¥
killed upon exiting D. When a = 2, we further assume that D is connected Sharp two-sided estimates
of the heat kernel pp(t,z,y) of Y were obtained in [27, (3] (for o = 2) and [9] (for o < 2): there exist
positive constants ¢;, i = 1,...,8, such that following estimates hold true. For (¢,z,y) € (0,1] x D x D,
t
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o y|d+a) <pp(t,z,y) < coh(t,z,y) (t N ), for v < 2,

and
ch(t,z,y)t= el < (2, y) < eshit,a,y) e ol for o = 2,
where the boundary function h(¢, z,y) is given by
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For (t,z,y) € [1,00) x D x D,
cre” M 5p ()6 (y)*? < pp(t,x,y) < cse™ ' op(x)*/?0p(y)*/?,

where \; is the smallest eigenvalue of the Dirichlet (fractional) Laplacian (—A)®/ 2| D
Let S = (S;)i>0 be a B-stable subordinator, 3 € (0,1), independent of Y, and let X = (X;);>0 be
the subordinate process: X; := Yét) . The generator of X is equal to (the negative of) ((—A)a/ 2‘ D)ﬁ -

The research of Soobin Cho is supported by the POSCO Science Fellowship of POSCO TJ Park Foundation.
This research is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea govern-
ment(MSIP) (No. 2016R1E1A1A01941893).
Research supported in part by a grant from the Simons Foundation (#429343, Renming Song).
Research supported in part by the Croatian Science Foundation under the project 4197. (Zoran Vondracek).
1


http://arxiv.org/abs/2103.10152v1

2 SOOBIN CHO, PANKI KIM, RENMING SONG AND ZORAN VONDRACEK

the fractional power of the Dirichlet fractional Laplacian. In particular, when o = 2, ( — A{ D)ﬁ is called
a spectral fractional Laplacian in the PDE literature, see, for instance, [5] and the references therein. In
this respect, the process X bears some similarity with the isotropic af-stable process. The heat kernel
q(t,z,y) of the subordinate process X is given by

o0
q(t,z,y) = / pp(s,z,y)P(S; € ds), t>0, xz,y€ D.
0

Note that the distribution of S; is not explicitly known, making the above integration rather delicate.
To handle this integral, we establish some estimates on the distribution of S; (in fact, for much more
general subordinators than the stable ones). Using these, we can obtain sharp two-sided estimates of
q(t,z,y). To present those estimates, we first introduce some notation. Denote a A b := min{a,b} and
aVb:=max{a,b}. The notation f(s)~ g(s) means that there exist comparison constants ¢, co > 0 such
that c19(s) < f(s) < cag(s) for specified range of the variable s. For z,y € D, let

ov(z,y) = op(x) Vép(y), on(x,y) = dp(x) A dp(y),
mv(t,x,y) - (tl/(aﬁ) \% 5\/(-%',y)) A ’1’ - y’a m/\(t7x7y) = (tl/(aﬁ) \4 5/\(1.72/)) A ‘.%' - y‘
Our main results, specialized to the present situation, are summarized below.

Theorem 1.1. (1) Suppose (t,z,y) € (0,1] x D x D.
(i) If |z — y|*? < t, then

dp(z) /2 Sp(Y) \*? _a/(ap)
q(t,z,y) ~ (1/\ tl/(—aﬁ)> (1/\ tl/(aﬁ)) t . (1.1)
(ii) If |x — y|*? >t and o = 2, then
ép () op(y) t
~ (1 1 . 1.2
o) = (10 GZ20) (0 B2 e 2
(iii) If |x — y|*® >t and a € (0,2), then
/2 a/2 rmp(t, x,y)\*(1-5) t
< tl/(aﬁ)> (14 tl/(am) ( iz —y] ) [z — y[dToB e /2,
/2 a/2 rmy(t, x,y)\ —ob t
~ 1 1/2
6/\($ y) a/2 5\/(x’y) a/2 t mv(t,x,y) _
< = — ] ) (A S ) [z = JdreB %8 (e m,\(t,:c,y)>’ p=1/2

(2) For all (t,x,y) € [1,00) x D x D,

AP «a a
q(t’x’y) =€ g 5D(x) /26D(y) /25

where A1 is the smallest eigenvalue of the Dirichlet (fractional) Laplacian (—A)Q/Q‘D

From Theorem [[LT[1), one can see that, for z,y away from the boundary (in the sense that o (z,y) >
|z —y| v t1/(@#) and for all 3 € (0,1), it holds that

t

~pd/(eB) A
q(t,z,y) ~t A |z — y[dtoB”

Recall that the same two-sided estimates are valid for the heat kernel of the isotropic af-stable process
in the whole space. The novelty of the estimates for ¢(¢,z,y) is in the boundary term, which is quite
unusual and involves interplays among dv (z,y), Ia(z,y) and time ¢ itself. In this respect, the form of the
boundary term is very different from the boundary function h(t,z,y) for the underlying process Y.

All the estimates in Theorem [[LT] are consequences of Theorems 2] 7] and Lemma [Z.]] see Example
Integrating the heat kernel estimates, we can obtain sharp two-sided estimates on the Green function
of X, see Theorem and Example

In this paper, we obtain sharp two-sided heat kernel estimates for subordinate Markov processes in a
setting which is more general, in several directions, than that of the example above. We allow (i) quite
general subordinators, (ii) Markov processes with state space D that is either a bounded or an unbounded
subset of a locally compact separable metric space, and (iii) very general form of two-sided estimates of the
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heat kernel pp(¢,z,y) of the underlying process. In the remaining part of the introduction, we describe
some of our assumptions and results and lay out the structure of the paper.

In Section 2 we first introduce the main assumption on the subordinator S = (S¢);>0. Let v denote
its Lévy measure and w(t) := v(t,00). We assume that there exist constants R; € (0, 00|, ¢1,c2 > 0 and
B9 > 1 > 0 such that

cl<§>ﬁ1 < w(r) < 02<§>ﬁ2 forall 0 <r < R< R;.

r w(R) r

This assumption is quite weak — it implies that the Laplace exponent ¢ of the subordinator S satisfies
weak scaling conditions near infinity with lower index (7 and upper index (2 A 1. Note that Gy > 1
is allowed. Building upon the results from [22] 23], we show several auxiliary results leading to the
important estimate ([Z24]) saying that P(S; > s) ~ tw(s) for 2¢~1(1/t)"! < s < Ry /2.

Sections BH4] are central to the paper. We start with the setup in Section Bl the underlying space is
a locally compact separable metric space E with a Radon measure m having full support and satisfying
volume doubling conditions. The state space is a proper open subset D of F, bounded or unbounded,
and Y” is a Hunt process living on D. We assume that Y” admits a transition density pp(t,z,y).
The main assumption on the transition density is given in Definition Depending on whether D is
bounded or unbounded, the assumptions are somewhat different. Roughly speaking, at least for small
times, pp(t,z,y) is comparable to the product of two parts which we may call the boundary part and the
interior part. The latter is specified in terms of the volume and two functions — ¥ > & — both enjoying
the scaling property, and also includes a Gaussian part. We note that although in most examples it
holds that ¥ ~ &, allowing for different functions enlarges the scope of examples. The boundary part is
described through a boundary function h(¢,z,y) which is not specified but is required to satisfy certain
assumptions — see Definition To justify our assumptions on the heat kernel pp(t,x,y), we provide a
number of examples from the literature satisfying those assumptions.

The main object of our study is the subordinate process X; := Yét) . In Subsection 1] see Theorem
1] we first establish sharp two-sided estimates of the jump kernel J(x,y) of X, thus generalizing [42]
Theorem 8.4]. Subsection contains sharp two-sided estimates of the heat kernel ¢(¢, z,y) of X which
are the main results of the paper. The case of a bounded set D and small time is given in Theorem [£.2]
and the case of unbounded D and all time in Theorem The near-diagonal estimates have a rather
simple form, but the off-diagonal estimates are quite involved, containing four terms which cannot be
compared under general assumptions. The form of the estimates is somewhat simplified in case when the
upper scaling index o < 1 and ¥ ~ &, see Corollary L4l Finally, Theorem [£7] provides the large time
estimates in case of bounded D.

In Section Bl we apply our sharp two-sided heat kernel estimates to derive sharp two-sided estimates of
the Green function G(z,y) of X. The most general form of the estimates is given in Proposition 5.3l These
can be simplified under additional assumptions on the boundary function h(t,x,y). We obtain several
forms of the estimates depending on the relationship between the parameters in the volume doubling
condition, the scaling indices of the functions w and ®, and the parameters coming from A. The main
results of this section are Theorems (.8 B.10] and B.1T1

In Section [6] we show that parabolic functions with respect to X satisfy Holder regularity and the
parabolic Harnack inequality. By using the rough upper estimates and the interior estimates for the heat
kernel from Proposition and Corollary together with the jump kernel estimates from Theorem
[41] we establish that the process X satisfies all the assumptions from [I6] [19] used in the proofs of those
results.

Finally, in Section[7 we provide a concrete and explicit example which includes the motivating example
from the beginning of this introduction, and, with help of Lemma [TI], derive the heat kernel estimates
using the general Theorems [4.2], and L7l We also derive the jump kernel estimates and Green function
estimates using Theorem B and Theorems (.8 .10, E.11] respectively. As an application of these
estimates, combined with the main results of [44], we completely determine the region of the parameters
where the boundary Harnack principle holds for the process X; = Yb{) , where D is the upper half-space,
YP is the process in Example (b-4) and S; is an independent [-stable subordinator, 5 € (0,1). At
the end we provide an interesting example in which the upper scaling index By > 1 and the two scaling
function ® and V¥ are different.

Notations: Values of lower case letters with subscripts ¢;, ¢ = 0,1, 2, ... are fixed in each statement
and proof, and the labeling of these constants starts anew in each proof. Recall that a A b := min{a, b},
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a Vb := max{a,b}. We use two notations for comparison of functions. First, the notation f(z) ~ g(x)
means that there exist constants ¢, ca > 0 such that ¢;g(x) < f(x) < caog(x) for specified range of . On
the other hand, the notation f(x) =< g1(x) + g2(z)h(cx) means that there exist constants cs, ¢y, c5,c6 > 0
such that c3(g1(z) + g2(x)h(cax)) < f(z) < c5(g1(x) + ga(x)h(csz)) for specified range of . We use the
convention 1/00 = 0.

2. ESTIMATES ON DISTRIBUTIONS OF SUBORDINATORS

Let S = (S¢)t>0 be a driftless subordinator (i.e., a non-decreasing pure-jump Lévy process on R with
So = 0) with Laplace exponent ¢ given by

p(\) = —log Ee 1 = / (1 — e )u(ds).
0
Let w(r) := v(r,00). Using that ¢(\) = A [ e *w(s)ds, it is easy to see (cf. the proof of [22, Lemma
2.1]) that
1/x 1/
el)\/ w(s)ds < ¢p(N) < 2)\/ w(s)ds, A >0. (2.1)
0 0

The following is our main assumption on the subordinator S.

(Poly-R;) There exist constants Ry € (0,00], ¢1,c2 > 0 and B2 > 1 > 0 such that

RN\Br_ w(r) R\ B2
)V < <o 2 < ,
Cl(r) _w(R)_C2<r> forall 0<r<R< Ry

Suppose that (Poly-R;) holds. Then by [22] Lemma 2.1(ii)], in case Ry < oo, for every ro > 0, there
exists ¢3 = c3(rp) > 0 such that

»(R) R B2/l

—SCg(—) , To<r<R. 2.2

o =\5 22
On the other hand, by adapting the proof of [23, Lemma 2.3(3)], we can get that, for every rg > 0, there
exists ¢4 = ¢4(rp) > 0 such that

o(R) RN\ B

204(—) , ro<r<R. 2.3
o) =\ 2
As a consequence of ([ZZ) and (23)), we see that 31 < 1 and that ¢~! enjoys the following scaling: For
every tg > 0, there exist c5,cg > 0 depending on ¢y such that

C5<t)1/(52A1) _ o L(t) - <t)1/61

ECEORERY

In case when (Poly-oo) holds, 22)) and [23) are valid for all 0 < r < R, and (24]) is valid for all
0<s<t.

, o <s<t. (2.4)

Lemma 2.1. Assume (Poly-Ry) holds. For any a > 0, there exists ¢c; = ci(a) € (0,1) such that
o) < APV < 6(N),  A> a. (2.5)
Further, if (Poly-00) holds, then 23 holds for all A > 0.

Proof. The second inequality follows from the fact 1 — e ™ —ue™ > 0 for u > 0. The first inequality
follows from [37, Lemma 1.3] and its proof. O

Lemma 2.2. Assume (Poly-R;) holds. For any a > 0, there exists ¢; = c1(a) > 0 such that
16" (N)] < AT (N), A>a. (2.6)
Further, if (Poly-o0) holds, then (286 holds for all X > 0.
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Proof. The proof is similar to that of 23] Lemma 2.1(3)], where the existence of Lévy density is assumed.
We give a detailed proof for the reader’s convenience.
Since e=* < 272 for all x > 0, we see that for all A > 1/Ry,

1/ 0o /A
NN = [ aPe g+ [ ety < [ ey X ey, @)
0 1/A 0
By (Poly-R;), there exists € € (0,1/2) such that w(e/A) > 2w(1/A) for all A > 1/R;. Hence,
1/x 1/
/ yv(dy) > et v(dy) > eX"tw(1/)) for all A > 1/R;.
0 €/

It follows that " "
! e ! v e) e v “lw . .
S = [ avtan) = e [ wian) 2 w/) (28)

Combining (2.8) with ([27), we get that in the case Ry = oo, (2.0) holds for all A > 0 with ¢; = €/(2e),
and in the case Ry < oo, (2.6) holds with

==V sup  (Ag"NI/FN).

2¢ " Xela,1/R]
O

A) =A@’ (A), A > 0. The function H is strictly

Let H : (0,00) — (0,00) be defined by H(X) := ¢(
= w(0+), and satisfies

increasing, H(0+) = 0, limy_,oo H(A) = [° v(ds) =

H ! *°
;2)\) = —(@) :/ e Msw(s)ds, > 0. (2.9)
0
Since 1 — e — Ase™ > 1 —2/e when s > 1/, we sece that
o -2
d(N) > H(N) > / (1 —e ™ = Ase M)w(ds) > ¢ . w(l/A), A>0. (2.10)
1/

Suppose that (Poly-R;) holds. Then it follows from the proof of [23] Lemma 2.3(3)] that, for every
ro > 0, there exists a constant ¢ = ¢(rg) > 0 such that

H(R) R\ B
>cl — <r<R. 2.11
H(r) — c( r) » TOST S (2.11)
As a consequence of (ZIT), we have the following upper scaling for the inverse function H~:
H(t) g [T\ VP
<o () H <t. 2.12
Hi(s) = c . , (ro) < s < (2.12)

In case when (Poly-oo) holds, ([ZI1I) and (ZI2]) hold with 7o = 0. Note that (ZII]) implies that
limy o0 H(A) = +00.
Next we look at the function b : (0,00) — (0, 00) defined by
o0
b(t) := (¢ o H1)(1/1) :/ se T /D5y (ds), ¢> 0.
0
The function b is strictly increasing, b(0+) = 0, and limy_oo b(t) = [;° sv(ds) = ¢/(0+). This implies
that ¢t — tb(t) is also strictly increasing and limy_, tb(t) = +o00. Moreover, according to [22, Lemma
2.4(ii)], cf. also [23] (2.13)], it holds that
o7/ <tb(t) < (1 t)" forall t > 0. (2.13)
Hence, under (Poly-R;), we see from the scaling of ¢! in (24]) that, for every tq > 0, there exists
c1 = c1(tp) > 0 such that
1o M1/ <tb(t) < oM (1/t)7 for all 0 < t < tp. (2.14)

Moreover, if (Poly-00) holds, then ([2.I4]) holds with ¢y = oo.
Finally, we introduce the function o = (¢, s) : (0,00) x (0,00) — [0, 00) defined by

o=o(ts):= (gb/)*l(s/t)1(07¢/(0+))(8/t), s, t > 0.
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Note that s — o(t,s) is decreasing with lims 00 (t,s) = oo and lims_, o(t,s) = 0, while t — o(t,s)
is increasing with limy_,0o(¢,s) = 0 and lim;_,o (¢, s) = oco. Further, by using the former and the fact
that H is increasing, we conclude that

t(Hoo)(t,th(t)) =1 and t(Hoo)(t,s) <1l for s> th(t). (2.15)

The function o plays a crucial role in estimating the left tail of the subordinator S. We first state a
result which follows from [22] Lemma 2.11] and [32, Lemma 5.2].

Proposition 2.3. There exist constants c1,co > 0 such that for all t > 0,
crexp (— cat(H o0)(t,s)) <P(S; < s) <eexp (—t(H oo)(t,s)).

Proof. If s < tb(t), then it follows from [22] Lemma 2.11] and [32, Lemma 5.2] that there exist ¢j,co > 0
independent of s and ¢ such that c¢j exp (— cot(H o 0)(t,5)) < P(S; < s) <exp (—t(H oo)(t,s)). (Note
that the function b(t) in this paper is the same as t~'b(¢) in [22].) In particular, taking s = tb(t) and
using ([ZI5), we get c3 1= cre~ 2 < P(S; < th(t)) < e L.

If s > tb(t), then by the second part of (ZI5)), exp(—t(H o o)(t,s)) > e !, and thus P(S; < 5) <1 <
eexp (— t(H o o)(t,s)) which gives the desired upper bound. For the desired lower bound,

P(Sy < s) > P(Sy < tb(t)) > c3 > czexp ( — cot(H 0 0) (1, 5)).

O
Lemma 2.4. Suppose (Poly-Ry) holds. Then, for any a > 0, there exists 6 = d(a) > 0 such that
o(t,u) —s(5\? /
— 2 >2 — <s<t . 2.16
o(t,s) — <u) » 0<u<s<tga) (2.16)

Moreover, if (Poly-00) holds, then [2I6]) holds for all 0 < u < s < t¢'(0+).

Proof. Let a > 0. For all 0 < 2w < t¢/(a), it holds that o(¢,2w) > a. By the mean value theorem, the
fact that both |¢”| and s — o(t, s) are decreasing, and Lemma [2Z2] we get

= = (¢ 0 0)(t,2w) — (¢ 0 0)(tw) < |(6” 0 0)(t, 2w) (o (t, w) — o (t, 2w))

t
%(J(t,w) —o(t,2w) = = ST (2.17)

Let § =logy(1+1/(2¢1)). Then, we see from (2I7) that for all 0 < 2w < t¢/(a),

_ 2ciw (o(t,w) — o(t,2w))

<a

20 (t, 2w) < o(t,w). (2.18)

For any 0 < u < s < t¢'(a), let n = n(u,s) be the largest integer such that 2"u < s. Then, by 2I8]), we
obtain

O-(t’u) > 25n0-(t’ 2nu) > 2511 > 25n275(n+1) (f)é _ 275<§)6
o(t,s) — o(t,s) — - '

This proves the first assertion.
Assume now that Ry = co. Then (2.6)) is valid for all A > 0 so that (ZI7)) holds for all 0 < 2w < t¢/(0+).
Hence, (ZI8]) holds for all 0 < 2w < t¢/(04). We conclude the proof as in the first assertion. O

Lemma 2.5. Suppose that (Poly-Ry) holds. Then, for all kK, N > 0 and T > 0, there exists a constant
C =C(T,k,N) > 0 such that for all0 <t <T and 0 < s < ¢~ 1(1/t)7!,

exp (— kt(Hoo)(t,s)) < C(s¢ ta/t)N. (2.19)

Moreover, if (Poly-00) holds, then for all Kk, N > 0, there exists a constant C = C(k,N) > 0 such that
@I9) holds for all 0 < s < ¢~ 1(1/t)~ 1.
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Proof. Choose an arbitrary ¢ € (0,7]. In view of (2.I4)), since e=* < 1 for all > 0, it suffices to prove
@I9) for 0 < s < tb(t). Recall that t(H o o)(t,tb(t)) = 1. Hence, by (2I1), Lemma 24 and 214]), we
have that, for all 0 < s < tb(t),

tH(H o 0)(t, s) =

(Hoo)(t,s) o(t,s) \A ¢~ (1/t) L\ o8
(H o o)(t, 16(t)) = cl(a(t,tb(t))) 2 C2< s ) ’

where § = §(T) is the constant from Lemma B4l Let c3 := sup,~o2/(%#)e=%% Then

1 N/(6B1)
exp (— wt(H 0 0)(t,5)) < c3<m) V< eaes (sl (1)
This proves the first assertion. Moreover, we can see that the second assertion is true by using that (212])
and (2.14)) hold for 79 = 0 and ¢y, = oo, respectively and the second assertion of Lemma [2.4] 0

Lemma 2.6. Let f: (0,00) — (0,00) be a given function. Assume that (Poly-R1) holds and there exist
constants c1,p > 0 such that sPf(s) < c1tPf(t) for all 0 < s < t. Then for every T > 0, there exists a
constant C = C(T, c1,p) > 0 such that for any t € (0,71,

E[f(Sy): St <r] < Cf(r)exp < — %(Hoa)(t,r)>, 0<r<¢ Y1/t)7L. (2.20)

Moreover, if (Poly-00) holds, then there exists a constant C = C(c1,p) > 0 such that (Z20) holds for all
t>0.

Proof. By using Proposition in the second and Lemma (with k = 1/2 and N = p+ 1) in the
third inequality below, we get that

E[f(S) : St < r] 2/2 " P(S; € ds) <cl2p2f 2 Iy P(S; < 2_j7")
2-7— 17’ =0
< 2P f(r) ZQ”’exp(— —(Hoo)(t,277 )) exp(— %(Hoa)(t,Q_jT))

7=0

(H o0)(t,1)) 3227 (279r6 (1/1)""" < 2esf () exp ( ~ %(H 0 0)(t,1)).

J=0

< caf(r)exp < - %

Proposition 2.7. Suppose that (Poly-R1) holds. Then for any T > 0, there exist constants 6 € (0,1)
independent of T and € = ¢(T') € (0,1) such that

Plegp ' (1/t) P < Sy <o M (1/t)7') >0, te(0,T). (2.21)
Moreover, if (Poly-00) holds, then there exist €,0 € (0,1) such that (2Z21)) holds with T = co.
Proof. By Proposition 23] [2I5) and (ZI4]), there exists a constant ¢; € (0,1) such that P(S; <

“1(1/t)71) > ¢ for all t > 0. Let ¢y = log(2/c1). Then, using Proposition 23] again, we get that for all
t>0,

P(th(t/co) < Sy < ¢ H1/t) 1) > o1 = P(Sp < th(t/e2)) > c1 —e @ = ¢y /2. (2.22)

Since (Poly-R;) holds, by [2I4]) and (24]), there exists € € (0,1) such that
th(t/cz) > ed 1(1/)7L, te€(0,T). (2.23)
We also see that if (Poly-oo) holds, then ([223]) holds with 7" = oo. Combining this with (222), we
obtain (Z.21]). O

Lemma 2.8. Suppose that (Poly-R1) holds. Then, for any k > 0, there exists a constant a1 = ay(k) > 0
such that for all ¢~1(1/t)7" < s < Ry /2, we have exp ( — ksH~(1/t)) < artw(s).
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Proof. According to [22, Lemma 2.2], there exists ¢; > 0 such that H(1/s)% < ¢;¢(1/s)2w(s),
s € (0, Ry/2]. Note that by 1), the map A — A\"2H()\) is decreasing. Let ¢y 1= sup,oa2(1HF)e=r2,
Then by using (Poly-R;) and the fact that ¢ is increasing, we get that for all ¢=1(1/t)"! < s < Ry /2,
since 1/s < ¢~ 1(1/t) < H-Y(1/t),

s 2(1+B2) S)\ 1482
o) el

< ereat ™2 (1/5)2w(s) < clcQtHﬁQqﬁ(qﬁfl(1/25))6210(8) = cicatw(s).

This proves the lemma. g

exp (— IQSH_l(l/t)) < 02(

Proposition 2.9. Suppose that (Poly-R;) holds. Then, for all 2¢=*(1/t)~! < s < R1/2,
P(S; > s) =~ tw(s). (2.24)
In particular, there exists a constant M > 1 such that for all 2¢~(1/t)™ < s < Ry1/(2M),
P(S; € [s, Ms]) ~ tw(s).

Proof. The lower bound of (Z24]) follows from [22, Lemma 2.6] (note that t¢(s~') < 1). The upper
bound of (2Z24) comes from the proof of [22] Proposition 2.7] with a bit of modification. We provide
most of the proof for the reader’s convenience.

Pick an arbitrary s € (2¢01(1/t)~!, R1/2). Let € = log(5/4)/2 € (0,1). We set

ph =10 mrqm(de),  p =L g1, (de) and g =1 o) (dx)

and denote by S', 5% and S the independent driftless subordinators with Lévy measures pt, > and 2,
respectively. Then Sy < S} + S? + S? (note that it may happen that s < ¢/H~'(1/t)) and hence

P(S; > s) <P(S} > 3s/4) + P(S? > s/4) + P(S? > 0).

Since S is a compound Poisson process, it holds that P(S? > 0) = 1 — e~*(¥) < tw(s). Moreover, by
following the proof of [22] Proposition 2.7], one can obtain from [34, Proposition 1 and Lemma 9] that
P(S? > s/4) < ctw(s). Lastly, by using Markov’s inequality and [22) Lemma 2.5], since s > 2tb(t) due to
[213), we have that

P(S} > 3s/4) <E [exp (—(3s/4)H ' (1/t) + H ' (1/)S})]

e/H'(1/1)
=exp ( — (3s/4)H ' (1/t) +t/0 o (eH—l(l/t)x — 1)v(d))

1 2 1 </H/ H=Y(1/t) d
<exp (— (3s/4)H ' (1/t) + e*tH™ (1/t)/ xe” *v(dx))
0

<exp (— (3s/4)H ' (1/t) + (5/4)H 1 (1/1)tb(t)) < exp (-2 3sH '(1/t)).

We used the fact that eV — 1 < ye~¥e? for all y > 0 in the third line. Hence, by Lemma 28] we get that
P(S} > 3s/4) < ctw(s) and hence the first assertion holds.
The second assertion follows from (Poly-R;). O

3. SETUP AND MAIN ASSUMPTIONS

Let (E, p) be a locally compact separable metric space such that all bounded closed sets are compact,
and let m a positive Radon measure on E with full support. We use B(z,7) to denote the open ball in
(E, p) of radius r centered at x, and V (z,r) := m(B(z,r)) its volume.

Throughout the remainder of this paper, we assume the following volume doubling and reverse volume
doubling properties with localization radius Rg € (0, 00]: There exist constants dy > d; > 0 such that,
for every a > 1, there exists a constant Cy = Cy(a) > 1 satisfying

_1/R\& V(m R) R\ d2
I g < T - < . .
Cy, <r> _V(:c,r)_cv<r> foralz € EF and 0<r < R < aRpg (3.1)



HEAT KERNEL ESTIMATES FOR SUBORDINATE MARKOV PROCESSES 9

As a consequence of [B.1), we see that for all Ry, e,n > 0, there exists a constant C' = C(Rg,¢e,n) > 0
such that

V(z,r) < CV(y,mr) forallz,y € E and ep(z,y) <1 < Ry. (3.2)

Indeed, since B(x,r) C B(y,r + p(z,y)), we get from BI) that V(z,r) < V(y,r + p(z,y)) < V(y, (1 +
1/e)r) < 1V (y,nr). Moreover, if the localization radius Rpg is infinite, then the above constant C' is
independent of Ry and ([B.2]) holds for ep(x,y) < r < 0.

Let D be a proper open subset of E. We use diam(D) to denote the diameter of D. If diam(D) < oo, i.e.,
D is bounded, then by the assumption on E it holds that m(D) < co. For z € D, let 0p(z) = p(xz, E\ D).
In most applications, D will be an open subset of the Euclidean space R%, d > 1, and m(dy) will be the
Lebesgue measure. For simplicity we write dy instead of m(dy). Let Y = (YD P?) be a Hunt process
in D. We assume that the semigroup of Y” admits a density pp(t,x,y), which we call the heat kernel of
YP. Thus, for any non-negative Borel function f on D,

E7[f(Y}")] = /D F@po(t,z,y) dy.

Let S = (S¢)i>0 be a driftless subordinator independent of YP. We will be interested in the subordinate
process X; := Yé?- It is well known (cf. [6, p.67, pp. 73-75] and [50]) that X is also a Hunt process and
admits a heat kernel ¢(t, z,y) which is given by the formula

q(t,x,y) = E[pp(Se, x,y)] = /000 pp(s,x,y)P(S; € ds). (3.3)

Our goal is to find two-sided estimates of ¢(t,z,y) under certain assumptions on the underlying heat
kernel pp(t, z,y) and the subordinator S. On the subordinator we will impose the assumption (Poly-R;).
Now we explain the assumptions we impose on pp(t, z,y). These assumptions are motivated by various
examples from the literature.

We first introduce two functions ®, ¥ : [0,00) — [0, 00), both strictly increasing and satisfying W(r) >
®(r) for all r > 0. Moreover, we always assume that both satisfy global scaling conditions: There exist
constants «aq, oo, a3,y > 0 and ¢1, ¢9, c3, ¢4 > 0 such that for all R > r > 0,

Ryen  ®(R) Ry o2 Ryes  U(R) Ry o
— < < — — < ——=< — . .
Cl(r) — D(r) _62<r> and 63<r> — U(r) _C4<r> (3.4)
As an easy consequence we see that, for every a > 1, there exist two constants ¢1(a) > 0 and c3(a) > 0
such that, for all r, R > 0 satisfying 0 < r < aR, it holds that
Ry\o1  ®(R) Ry o2
— < ——=< — . .
Cl(a)(r) - O(r) _cz(a)<r) (3:5)

The following lemma shows that, without loss of generality, we may replace ® by a nicer function.

Lemma 3.1. There exists a strictly increasing differentiable functions d satisfying the following two
properties:

(P1) ®(r) ~ ®(r) for all ¥ > 0 and ® satisfies [BH);

(P2) & (r) ~ r~1®(r) and (®~1)(t) ~ t1OL(t) for r,t > 0.

Proof. According to [8, Lemmas 3.1 and 3.2], for any a > aq, there exists a complete Bernstein function
o such that

O(r)~p(r )"t and (r)~rte(r) forallr >0,
and that ¢ satisfies the weak scaling conditions with exponents a;/a and ag/a. Let <I>( ) == (r ,

r > 0. It is straightforward to check that ® satisfies ([Z35) and also that @ (r) ~ r~®(r). Moreover, by
the inverse function theorem, the second comparability in (P2) is also valid. O

—a)—l

Lemma 3.2. Let f : (0,00) — (0,00) be a given function. Assume that there ezist constants c1,p > 0
such that sPf(s) < c1tPf(t) for all 0 < s < t. Then there exists a constant co = ca(c1,p) > 0 such that

for allr,k >0,
r K2 carPTf(r)
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Proof. Let c3 :=sup, uP*?/2¢=%_ Then by the scaling of ®, we have that

jﬁrf(s>exp (- &;§§%5§)ds g;C3]€TA¢(R)f<s>(§i;}fl)pa2ds«+-jfié(n)f<s>ds

< f " () a5+ | :M sPsPf(s)ds

crear?f(r) [T . arPfr) " < ci(ca + D)rPH f(r)
= o0y /0 Ay /mwd ST ey

|

Definition 3.3. We say that a function h : (0,00) x D x D — [0, 1] is a boundary function if it satisfies
the following two properties:

(H1) For all fixed z,y € D, the map s — h(s,z,y) is non-increasing.

(H2) There exist constants ¢; > 0, v > 0 such that

sTh(s,z,y) < cit"h(t,z,y), 0<s<t<d4®(diam(D))+1, z,y € D,
with 4®(diam(D)) + 1 interpreted as co when D is unbounded.
A boundary function h is said to be regular if there exists ¢ > 0 such that
h(t,z,y) > co, 0 <t<4®(diam(D)) + 1, x,y € D with 5 (z,y) > & 1(¢).
A regular boundary function h is said to be of Harnack-type if there exists c3 > 0 such that for all
x,y,z € D satistying p(z,z) < (p(z,y) N dp(x))/2,
ht,2,y) < esh(t,z,y), 0<t<®(p(z,y)). (3.7)

From now on, h(t,z,y) always denotes a boundary function.

Remark 3.4. Suppose that h is a regular boundary function. Then for every e € (0,1), there exists
c1 = c1(€) > 0 such that

h(t,z,y) > c1, 0<t<4®(diam(D))+ 1, z,y € D with 5u(x,y) > ed71(2).
Indeed, by (34) and (H2), we see that for all z,y € D with 6, (z,y) > e®1(¢),
h(t,z,y) > coh(®(e® (1)), z,y) > cs.
Example 3.5. (a) Let p,q > 0. For t > 0 and z,y € D, define

hpq(t,x,y) = <1 A M)po A <I>(5D(y))>q7 hy(t,z,y) == hpp(t, x,y). (3.8)

t
Then hy 4(t,z,y) is a typical example of a regular boundary function which is also of Harnack-type.
Indeed, (H1) and the regularity is clear, while (H2) holds with ¢; = 1 and v = p + ¢ since for all
0<s<t,

Uy ot 7,y) = (EA @60()) (EADED(1))" > 574y gs,2,).

Moreover, we see from (3.4) that for all z,y, z € D satisfying p(x, z) < (p(z,y) Adp(x))/2, since dp(z) >
op(z) — plx,2) = ép(x)/2,
(1 A (I>(5D(m)))p < <1 N @(25[)(2)))? < <1 N <I>(5D(z))>p‘
t t t
Thus we conclude that hy (¢, z,y) is of Harnack-type. The boundary function h,(t,z,y) is very typical
when D is a bounded smooth open subset of R.
(b) Let hy(t, z,y) be the function defined in ([B.8]). Then h,(t A1, z,y) is also a regular boundary function

of Harnack-type. This is a typical boundary function for smooth exterior open sets.
(c) A quite general example of a boundary function is obtained as follows. Suppose that Y admits a

dual process YD, Let ¢ and Z be the lifetimes of Y2 and Y respectively. Assume that the survival
probabilities P*(¢ > t¢) and Py(f > t) satisfy the following doubling property: P*({ > t/2) ~ P*({ > t)
and PY(C > t/2) ~ PY(C > t) for all 0 < ¢ < 4®(diam(D)) + 1 and z,y € D. Then h(t,z,y) := P*(( >
t)IP’y(Z > t) is a boundary function. Indeed, (H1) is clear, while (H2) follows from the doubling property
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of survival probabilities assumed above. The survival probabilities usually satisfy the doubling property,
see for instance, [25, Lemma 2.21] and its proof. In fact, by [25, Lemma 2.21] and its proof, one can see
that the boundary function h above is often regular.

Moreover, the above h(t,z,y) is of Harnack-type if, in addition, (1) it is regular; (2) Y'? satisfies the
(interior elliptic) Harnack inequality and (3) there is ¢; > 0 such that for all z € D and ®(dp(z)) <t <
®(diam(D)),

PE(¢ > ) 2 PU(C > Tyey) = PU(Yey . € D), (3.9)

TU(2,t)’
where U(z,t) := B(z,c1®1(t)) N D and 7y = inf{t > 0:Y,P ¢ V}.

To see this, we fix x,2z € D satisfying p(z,2) < ép(z)/2. If Sp(x) V p(z) > (e1 A271)@71(t), then
we have dp(x) Adp(z) > dp(z) V ép(z) —2719p(x) > 27 (e; A271)@1(¢). By Remark B4} it follows
that 1 > P*(¢ > ¢t) AP*(¢C > t) > h(t,z,x) A h(t,z,2) > co. Hence, we obtain h(t,z,y)/h(t,z,y) =
PZ(¢ > t)/P*(¢ > t) < 1/ea. If 6p(x) V 6p(2) < (e1 A271)®71(t), then B(z,dp(x)) C U(w,t) so that
v PY(Y,P? € D) is harmonic in B(x,dp(z)) with respect to Y. Using [39) twice, we see from the

TU (z,t)

Harnack inequality, (34 and (H2) that
P*(¢ > t) < 3P*(Y,P € D) < e3P*(Y.P € D) < eyP*(¢ > o(D71(1)/2)) < esP?(C > ).

TU (w,t) TU(z,8(®—1(t)/2))
The second inequality above is valid since U(z, ®(®~1(t)/2)) C U(x,t). Therefore, we obtain (3.7)).
Under the setting and assumptions in [25] Section 2] (Assumptions A and U in [25]), for the Hunt
process Y defined right below [25] (2.27)] on a k-fat open set D with a critical killing potential © € K; (D),
by [25, Lemma 2.21], we know that the boundary function h(t,z,y) = P%(¢ > t)PY(C > t) is of Harnack-
type. (See [25], Definition 2.19] and [25] Definition 2.12] for the definitions of a x-fat open set and the
class K; (D), respectively.) See [2 4 [14] for related work.

For later use, we record the following simple consequence of (H1) and (H2): Let & > 1 and s,t > 0
satisfy k~'s < t < ks < 4®(diam(D)). Then for all z,y € D,

e tkTh(s, 2, y) < h(t,x,y) < clk7h(s,z,y), (3.10)
where ¢ is the constant from (H2).

Definition 3.6. Let h(t,z,y) be a boundary function.
(a) We say that HKE holds, if D is bounded and the following estimates hold: (i) there exist Cy € {0,1}
and c1, g, c3,¢4 > 0 such that for all (¢,z,y) € (0,1] x D x D,

1 Cot 1 _ep(z,y)?
auh{t, 7.9) {vu,@—l(t)) . <v<x,p<x,y>>w<p<x,y>> V@ e 1) ex O1(1)? )>]
S pD(tw%'?y)
1 Cot 1 cap(x,y)?
< eshlt, 7, 3) [wm, 21 " <v<x,p<x,y>>w<p<x,y>> + ey o (i >>} » (311)

and (ii) there exists a constant Ap > 0 such that for all (¢,z,y) € [1,00) x D x D,
pp(t,z,y) ~ e Pth(1,z,y). (3.12)

(b) We say that HKY holds, if the constant Rg in (3.I) is infinity and (BII) holds for all (¢,z,y) €
(0,00) x D x D.

By using the function (1A m)@(ﬂ instead of ®(r), we may and do assume that ®(diam(D)) <
R1/8 whenever (Poly-R;) and HKE hold.

Remark 3.7. One can easily see that if HK% holds, then for every T' > 0, there exist constants
1,2, c3,¢4 > 0 such that [BIT]) holds for all (¢,z,y) € (0,7] x D x D, and (3.12]) holds for all (t,z,y) €
[T,o0) x D x D.

Remark 3.8. Note that a A (b+¢) < (aAb)+ (aNc) <2(aN (b+¢)) for all a,b,c > 0. Hence [BIT) is
equivalent to the statement that for all (¢,z,y) € (0,1] x D x D,

_ 1 Cot 1 cp(@,y)?
Pl ) = Mt ) Kw:c, O v<w,p<x,y>>w<p<x,y>>> e o (- W)} |
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Example 3.9. Here are several examples of processes satisfying HK% or HK}I‘J We will not try to give
the most general examples but the reader will see from examples below that our setup is general enough
to cover almost all known cases. In all examples below, the boundary functions are of Harnack type.

(a) Suppose that D is a bounded C''! open subset of R?.

(1) If D is connected and Y” is the killed Brownian motion in D, then HK% is satisfied with Cy = 0,
®(r) = r? and boundary function h, /2- See [24] for a more general example.

(2) If a € (0,2) and YP is a killed isotropic a-stable process in D, then HKY is satisfied with
®(r) = ¥(r) = r* and boundary function hy o, cf. [9]. More generally, suppose x is a complete Bernstein
function satisfying global weak scaling conditions with indices 1, f2 € (0,1), Y is a subordinate Brownian
motion in R? via an independent subordinator with Laplace exponent y, Y is the part process of Y
in D. Then HK} is satisfied with ®(r) = ¥(r) = 1/x(r~?) and boundary function hy s, cf. [I4]. See
[3, B1], 36] for more general examples.

(3) If D is connected and Y is the independent sum of isotropic a-stable process and Brownian motion,
then its part process Y2 in D satisfies HKY with ®(r) = 72 A 7%, ¥(r) = r® and boundary function
hy 2, cf. [11]. More generally, suppose x is a complete Bernstein function satisfying the conditions in
the paragraph above and Y is the independent sum of Brownian motion and a subordinate Brownian
motion via a subordinator with Laplace exponent Y, then its part process Y in D satisfies HKlf3 with
(r) = Oy (r) :== r2 A (1/x(r™%)), ¥(r) = 1/x(r~?) and boundary function hi2, cf. [15]. Note that
since limy o0 X(A)/A = 0 (see (21))), for every a > 0, there are comparability constants depending on a
such that ®,(r) ~r? for r € (0,a). We remark here that the estimates in [I1, (1.4)] and [15, (1.14)] are
comparable to ([BI3]) since t < 1.

(4) Suppose that y is a complete Bernstein function such that the function A — x(\) — Ax/()\) satisfies
weak scaling conditions for A > a > 0 with upper index § < 2 and lower index v > 2*11{521}, Suppose
that Y is a subordinate Brownian motion in R? via an independent subordinator with Laplace exponent
X, Y'P is the part process of Y in D. Then HKY is satisfied with ®(r) = 1/x(r2), ¥(r) = 1/(x(r~2) —
r~2x/(r~?)) and boundary function hy s, cf. [38].

(5) Let a € (1,2) and Y'P be a censored a-stable process in D. Then it follows from [I0] that HKY is
satisfied with ®(r) = ¥(r) = r® and boundary function h(,_1)/q-

(6) Let € (0,2) and Z D he the part process, in D, of a reflected isotropic a-stable process in D. For
any q € [a — 1,a) N (0, ), let YP be the process on D corresponding to the Feynman-Kac semigroup of
ZP via the multiplicative functional exp(— fot C(d,a, q)dist(ZP,0D)~ds), where the positive constant
C(d, a,q) is defined on [25] p. 233]. It follows from [25, Theorem 3.2] that the small time estimates ([B.11])
holds with ®(r) = ¥(r) = 7* and hy/,. Using the small time estimates and the argument in [20, Section
4], one can easily show that the semigroup of Y is intrinsically ultracontractive. With this, one can
easily check that the large time estimates in Definition [F6)(a)(ii) holds. Thus HKY holds.

(7) Suppose that D is connected, d > 3 and k > —i. Let YP be the process corresponding to
Alp — k6p(x)~2, the Dirichlet Laplacian in D with critical potential xdp(x)~2. It follows from [28| (6)]
and [29, Corollary 1.8] that the heat kernel of Y'? satisfies HKE with Cy = 0, ®(r) = 72 and boundary

function hy, where p = 1(3 + /1 + k).

(8) Suppose that o € (1,2) and d > 2. Let b: RY — R such that |b] is in the Kato class Ky o1 (see
[12, Definition 1.1] for definition). Let Y be an a-stable process with drift b in R?, that is, a process with
generator —(—A)*2 +b -V, and let VP be the part process of Y in D. By [I2, Theorem 1.3], HK}
holds with ®(r) = ¥(r) = r* and hy 5. See also [39].

(9) For general setups in which HKY is satisfied, see [25, Section 2] and [30].

(b) Suppose that D is an unbounded C! open subset of R?.

(1) If D is the domain above the graph of a bounded Lipschitz function in R~!, then the killed
Brownian motion in D satisfies HKY with Cy = 0, ®(r) = r? and a boundary function defined in terms
of survival probabilities like in Example B.5(b), which is of Harnack type (cf. [51]).

(2) Suppose that D is a half-space-like C'! open set in R and « € (0,2). Let Y? be the part process
in D of an isotropic a-stable process. Then by [21I, Theorem 1.2], HKY is satisfied with ®(r) = ¥(r) = r®
and boundary function hy /5. More generally, let YP be the part process in D of the independent sum of
Brownian motion and an isotropic a-stable process. By [I3, Theorem 1.4 and Remark 1.5(ii)], HKY is
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satisfied with ®(r) = 72 Ar®, ¥(r) = r* and boundary function hy /5. When D is an exterior C'! open
set in R% with d > o and YP is part process in D of an isotropic a-stable process, it follows from [21
Theorem 1.2] that HKY, is satisfied with ®(r) = ¥(r) = #* and boundary function hy 5(t A 1,z,y). See
[35] for a more general example.

(3) Suppose D is the upper half space in R%. Let y be a complete Bernstein function satisfying global
weak scaling conditions with indices ay, a3 € (0,1), Y be a subordinate Brownian motion in R? via an
independent subordinator with Laplace exponent x, Y be the part process of Y in D. It follows from
[0, Theorem 5.10] that HKY is satisfied with ®(r) = ¥(r) = 1/x(r~?) and boundary function hy . See
[7] for a more general example.

(4) Suppose that D is the upper half space in R? and a € (0,2). Let ZP be the part process,
in D, of a reflected isotropic a-stable process in D. For any q € [a — 1,a) N (0,a), let Y be the
process on D corresponding to the Feynman-Kac semigroup of ZP via the multiplicative functional
exp(— fo (d, v, q)6p(ZP)~%ds), where C(d, o, q) is defined on [25] p. 233]. It follows from [25, Theorem
3.2] that HKII’J is satisfied with ®(r) = ¥(r) = r* and boundary function hgq.

(5) Suppose that D = R%\ {0} and o € (0,2). Let Z be an isotropic a-stable process in RY. For
any ¢ € (0,a), let Y be the process on D corresponding to the Feynman-Kac semigroup of ZP via
the multiplicative functional exp(— fo C(d, o, q)|ZP|~ds), where C(d, a, q) is defined on [25, p. 250]. It
follows from [25, Theorem 3.9] and [33], Theorem 1.1] that HKY is satisfied with ®(r) = ¥(r) = r® and
boundary function hg/q-

(6) Suppose that D = R%\ {0}, d > 2 or D = (0,00). Let Y” be a process with generator A + (a —
1)]x|~2 szzl z;x;0;; + kx| 72 - V — blz| 72 for some a > 0, ,b € R such that

A:zl\/g—i—(d_%aﬁ_ayz%((d—1+/<;—a)\/((2a—1)d+1—/f—?)a)).

Note that when a = 1 and x,b > 0, the above inequality is always true. It follows from [46] Proposition
4.14, Theorem 6.2, Corollary 6.4] that HK® is satisfied with Cy = 0, ®(r) = 72 and boundary function
hpg wherep=A—(d—1+k—a)/(4a) and g =A - ((2a —1)d+ 1 — £ — 3a)/(4a).

(7) Suppose that a € (1,2) and D = R%\ {0}, d > 3. Let Y'? be a process with generator —(—A)~%/2 4
k|z|~@x - V for some k € (0,00). It follows from [45, Theorems 4 and 5] that HKY is satisfied with
®(r) = ¥(r) = r* and boundary function h = hg g/, for 8 € (0, ) determined by the equation at the
beginning of [45], Section 3.2].

We now briefly discuss the term

B 1 Cot L apy)?
1t.2:0.00 = M (v pwon + v e (- o)
appearing in (BII). If Cy = 0, then clearly
1 cip(x,y)?
I(t,z,y,0) = V@ 11) exp ( — %) (3.14)

Suppose now that Cy = 1.

Lemma 3.10. For any a > 1, there are comparability constants depending on a such that

1
Ve o=’ t>a ' ®(p(,y)),
It 3,y,1) = V@27 ) ep(y)’ (3.15)
T TEem) Pl e) < bl
In particular, if ¥(r) ~ ®(r) for r € (0,Ry), then
I(t,z,y,1) ~ ! t t>0, xz,y €D, p(x,y) < Ry. (3.16)

Ve, 1(0) " V(w oo )@ (0@, 9))
Proof. If t > a~'®(p(x,y)), then by (B3],

1 2
> [(t,z,y,1) > c1p(z,y) )

co(a, eq)
Ve, @ L(t) — = Vi, @ L(t) eXp(_ B-1(1)2 =]

V(z, @=1(1)

>
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Assume that t < a®(p(x,y)). Set

t 1 _ clp(x,y)2
Vo o) (o) | Ve e 1) ex o1(1)? )

Clearly, I(t,xz,y,1) < g(t,z,y). Further, by using that ¥ > & and ([B3]), we have

(t ) < a n 1 - c3(a) +1
x
TP =V e () T Ve e 1) T Ve, e (1)
Hence, I(t,2,5,1) = V&, (1)~ A glt,,) > (es(a) + 1)~ g(t,,). Thus, EI5) holds.

Now, we assume that W(r) ~ ®(r) for r € (0, Ry). Using BJ), (B3) and the fact that e™ < kFu=*
for all u,k > 0, we get that for all ¢ > 0 and x,y € D satisfying t < ®(p(z,y)) and p(x,y) < Ry,

g(t,z,y) =

1 < C1p($,y)2) - cy ( d1(t)? )(d2+al)/2
- . _
V(z, @1(t)) o-1(t)2 /T V(z, @71(t)) \eip(z, y)?
< C57f < Cﬁt
= Viz, p(z,9)2(p(z,y)) ~ V(z,p(z,y)¥(p(z,y))
Thus, we can deduce (3.16) from (B.15]). O
4. JUMP KERNEL AND HEAT KERNEL ESTIMATES
For a given boundary function h, we define for (¢,z,y) € [0,00) x D x D,
(p(z,y))
Biwy)i= [ b (s (4.1)
0
and if ¢-1(1/1)"1 < ®(p(z, 1)),
4@ (p(z,y))
Bult.a.y) = | (s, 3, y)w(s)ds. (1.2)
20-1(1/t) 71

Since [ w(s)ds < oo for all r > 0 (see [ZI)) and h < 1, the integral in ([@I) converges. Note that, by
(H1), Bj(x,y) ~ Bp(0,z,y) for all (z,y) € D x D.

4.1. Jump kernel estimates. The jump kernel of the subordinate process X is given by
[ee]
Iew) = [ (o), ayeD. (13)
0

See [6, p.74] and also [45].

Theorem 4.1. Suppose that either (1) (Poly-R;1) and HKY hold, or (2) (Poly-co) and HKY hold.
Then, for (x,y) € D x D with x # vy,

CoBZ(l', y)
Vi(z, p(z,y))¥(p(z,y))

w(®(p(x,y)))
Vi(z,p(z,y))

J(z,y) ~ + W(@(p(x,9)), =,y) (4.4)

Proof. Since the proofs are similar, we only give the proof of the case (1), which is more complicated.
Fix z,y € D with z # y and let r := p(z,y) > 0. By Remark B7 BII) and (BI2) hold with

T := ®(2diam(D)). Then by @3] and B.IH),

D(r) D(r) s.x or2
J(z,y) < L/o sh(s,z,y)v(ds) +/O M exp ( - ﬁ)y(ds)

V(z,r)¥(r) =
T MV s " Ooe,)\DsV s) —:
! [b(r) V(z, & 1(s)) (ds) + i, ’y)/T (ds) =: CoJy + Jo + J3 + Ju.

Since (Poly-R;) holds, there exists a constant a > 1 such that w(s/a) > 2w(s) for all s < Rj.
Therefore, by (3.I0]), since we assumed ®(diam(D)) < R;/8,

a” o (r)

V(z,r)V(r)J; = Z/@( ) sh(s,z,y)v(ds)
ieN v @ T
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~ Z a”'®(r)h(a'®(r), z,y) (w(a '®(r)) — w(a T O(r)))

€N
' ' 7z+1q>
~ 3 a () h(a~ D (r), 2, y)uw( =y [ (s, 2, y)w(s)ds = By(x,y).
ieN ien Jamie(r)

Next, by (H1), the scaling and monotonicity of ®, we get that

h(@(r),z,y) [*) _ar? e > 2h(@().2.y) <I>(r)y .
e Viz,r) A(r)/aexp( @—1(8)2) (ds) 2 V(z,r) A(T)/a (ds)

_ ch(®(r), 2,y) c2h(®(r), 2, y)w(®(r))
- Q‘/T(w@b(r)/a) —w(®(r))) > =2 ) .
Hence, we obtain the lower bound in (4.4)).

Now, we prove the upper bound in (@Z). Let ® be the function in Lemmaldl Since s 5 V (2, ®(s))
and s — h(s,z,y) are non-increasing, using the Leibniz rule for product, integration by parts and the
property (P2) of ®~! in Lemma [B.I] we obtain

) p(s.a 2
A~ =Ll <>>< )

-
; C/ch(r) }‘L/((S T y) S;)< <
)

<c / " his,zyhu(s) _r? 037"2 )ds. (4.5)
0

exp ( - =
V(a,d1(s)) sB1(s)? ()2
In the second inequality above, we used the following: Since h < 1, e™® < k¥2=* for all z,k > 0 and

lim,_, sw(s) = 0 (because w is the tail of the Lévy mesure v/), by using () and the scaling of &1, we
have that

r

im wex _ car? e lim w(s) 5*1(8)2 (d2+a2)/2
= V(z,d1(s)) p< 51(3)2> =c V(z, d1(s)) < r2 >
- i b (s)2 cd” ( )* im sw(s) =
Td2+a2V(£C, ;1;—1(1)) ll_{%w(s)q) (S) < Td2+a2V(:c, &)_1(1)) ;—>O ( ) 0.

By (Poly-R;), (H2), BI), BF) and the fact that ® ~ &, we can use Lemma with f(s) =
h(s,z,y)w(s) V(z,® (s)) ts71d"1(s)) "2 and p = v + o + 1 + (d2 + 2) /a1 to deduce from (EF) that
_ () RGO B(@(r), 2, y)w((r))r? _ ch(®(r), z, y)w(®(r))
= Q@ e V(o) V(z,r)

Jo (4.6)

For J3 and Jy, since s — V(z,®71(s))7!, s+ h(s,z,y) and s — w(s) are non-increasing, we have by
the boundedness of D that

h(r), z, y)w(P(r)) ch(®(r), z, y)w(®(r))
V(x,r) +h(l,z,y)o(T) < V(z,r) ’

This completes the proof. O

J3+ Jy <

Suppose that ¥ ~ & and Cy = 1. Then the first term in (£4]) dominates the second. Indeed, by (H1),
. P(p(2y)) P(p(2y))
Biwa) = [ Msmpule)ds > @)y [ w()ds
> h(@(p(z,9)), 2, y)w(®(p(z,y)))®(p(2, y))-

Moreover, if B2 < 1, then according to [47, Lemma 2.6, Proposition 2.9] and (2Z2]), we get that w(s) ~
¢(1/s) for all 0 < s < Ry/2. Therefore, it holds that

1 ®(p(.)) . )
Vi(z, p(z,y)®(p(z,y)) /0 (s,2,y)p(1/s) ds

J(z,y) ~
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In case the boundary function is equal to hy s, the integral above can be estimated in the same way as

in [42] Lemma 8.1], cf. [42], (8.4)].
Suppose that Cyp = 0. Then

V(x, p(z,y))

In particular, in the context of Example B9(b-1), and assuming Sy < 1, the above formula reduces to
[AT, Theorem 4.4.(1)]. Similarly, if D is an exterior C*! domain in R¢, the boundary function is equal to
hijo(t A1, 2,y) and B2 < 1, then (@) reduces to [4T, Theorem 4.4.(2)].

(4.7)

4.2. Heat kernel estimates. Let

1
Y(r) = —————, r>0. (4.8)
G(1/®(r))
Since ¢ and ® are strictly increasing, v is also strictly increasing. Moreover, it follows from ([2.2I), (23]
and ([B.4) that, for every Ry > 0, there exist ¢1,co > 0 such that

RyoiBr )(R) RN a2(B2A1)
— <~ <cl— . .
Cl(?“) _w(r)_@(r) , 0<r<R<Ry (4.9)
In case when (Poly-o00) holds, (49) is valid with Ry = co. We note that
i) = (o7 /7Y, t>0. (4.10)

Recall the definition of the function By, (t, z,y) from (L2]).

Theorem 4.2. Suppose that (Poly-Ry) and HK% hold. Then for every T > 0, the following estimates
are valid for all (t,z,y) € (0,T] x D x D:
() 1 (plr,9)) < t, then

h(o~ (/)" @, y)
ExET (4.11)

q(t,z,y) ~

(i) If Y(p(z,y)) > t, then

~ <o e /) )
q(t, z,y) < V@ @) o) (tBh(t, ) + S >
e (1/t) - 2:9) cp(z,y)” tw(P(p(z,y)))
- Ve, o—1(t)) O F ( - W) + h(®(p(z ,y)),x,y)m. (4.12)

Proof. Take z,y € D and let r := p(z,y). We start by establishing some relations valid for all ¢ € (0, 7.
By Proposition [Z7] there exist constants d, e € (0,1) such that

ta,y) >4 inf .x,y), te(0,T) 4.13
atry) 26 e ppls,ny). 1€ (0.T) (4.13)

On the other hand, by Remark B.7 (with 7' = ®(diam(D))), (I4), BI5), (BI2) and the fact that
exp(—cr?/®71(5)?) ~ 1 when s > ®(r), we see that

q(t,z,y)
&) Cos 1 cr?
<[ e (v * vaam e (- aie) B <
d(diam(D)) h(S T y) 00
+/ —— " _P(S; €ds)+ h(l,z,y / e APSP(S, € ds
a(r) V(x, ®~1(s)) (5 )+ ) &(diam(D)) (5t )
D(r) sh(s P y) d(diam(D)) h(S T y) CT‘2
- SIS, T Y) d _s,ry) __T \p d
o [ T ey e+ | P () P (~ G S € 49
+ h(l,x,y)/ G_ADS]P)(St e dS) =: C()Il + Iy + Ig. (414)
P(diam(D))
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(i) Assume that ¢(r) < t. By Remark B.7 BI5), (H1), (31), the scaling of =1 and (@I0), there
exists a constant ¢; > 0 such that

)

'f S, T, >c
et g1y PP Y 2 AT )

Hence, the lower bound in (£I1]) follows from (£.I3]).

Now, we prove the upper bound in [@II]). First, using Lemma in the first inequality below, the
assumption ¥ > & and Lemma 25 with N = v+ dy/a; in the second, (H2), ([AI0) and (3.4]) in the third,
and (3.I) in the last, we get that

D(1)h(®(r).7.y) t
b < S e (= S(H o) (1.0(0) )

< % (@(r)6~ (1) (B(r)p~ (1/1) ™/

MO ) ) (1 b7/ )
9T Ve @) 2 Ve

Next, we observe that

amo o h
I < / MP(& € dS) + / (Six’ly)ﬂb(st € dS) = IQ 1+ 122
0 14 ) (1/6)1

(z, &~ 1(s Vi, @=1(s))
By (H2), (B) and (34), we can apply Lemma 28 with f(s) = h(s,z,y)V (z,® 1(s)) ' and p = y+da /a1
to get that
h(o~'(1/t) " @, y) h(o (/) z,y)

Iy <cs

t -1 -1
_Z <
ey (-5 ek 1) < e
Moreover, we see from (H1), (AI0) and the monotonicity of 1»~! that
h((;S_l(l/t)_l,x,y) -1 -1 h(¢_1(1/t)_1,x,y)
P(S, > ¢ Y(1/t)™ ) < .
Vieoty o= WS T )
Lastly, by using (H1) and (H2), since ¢ and 1) are increasing and ¢ < T', we have that
ho ' (1/t) Y z,y)
I3 < h(1 < .
b ( ,l’, y) — CG V(l‘,’(ﬁil(t))
Hence, we obtain the upper bound in (£I]]) from (.I4).

(ii) Assume that ¢ (r) > t. First we establish the lower bound. From (£13)), Remark B.7, (3.15)), (£10),
(H1), and the scaling and monotonicity of ¢~!, we get that

- - Cop™ ' (1/8)7! 1 cgr?
> crh(¢ 1 (1/t) ! ——. 4.15
alt:,9) 2 erh(6™ (1107w w) | 2= SEs + v 0 (- oie) (4.15)
We also see from Remark [B.7] that
ez [ polaaRsied) > 20 [ s e e, @)
q(t,z,y 2/ Pp(S, 2,y € as 27/ sh(s,z,y € ds), .
—1(1/t)-1 ! V(x,r)\I’(r) G=1(1/t)~1 !
where in the second inequality we used (B8] and neglected the second term. Let M > 1 be the constant

in Proposition If ®(r) > M¢~1(1/t)71, then by (H1), (H2) and Proposition 29, since we assumed
¢ (diam(D)) < Ry/8,

V(x, = 1(t))

I <

49(r) 2Mip1(1/t) !
/ sh(s,x,y)P(S; € ds) > Z / sh(s,x,y)P(S; € ds)
2071 (1/t)1 ieN M=ty (1/t) !
Mi<2®(r)p=1(1/t)
> oM~ > M~ (1/t) T h(2M T e (/) T my)w(2M T e (1) 7Y
ieN

MP<2®(r)p~ 1 (1/t)

2Mi¢~H(1/t)”
sttt Y / (s, 2, y)w(s)ds

IMi— 1¢ 1(1/t
M””<2<I>(7")¢ L(1/t)
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40 (r)/M 49(r)/M

> cloM_lt/ h(s,z,y)w(s)ds > cloM_lt/ h(s,z,y)w(s)ds
20~ (1/H) 7" 20(r)/M

4P(r)
> 2¢10M 2t ®(r)h(4®(r) /M, x, y)w(4®(r) /M) > 0102_1M_2t/ h(s,x,y)w(s)ds.
40 (r) /M

By the fourth and the last inequalities above, we deduce from ([4.16) that

coCh 40(r) coc1o CotBp(t, z,y)
> = P > .
q(t,@y) > 2V (2, 7)¥(r) /2¢>—1(1/t)—1 shis, 2, y)P(S; € ds) > 2M?% V(x,r)¥(r)

In case when ®(r) < M¢~(1/t)~!, we see from (H1), ZI0) and ([EIH) that
CotBy(t,z.y) _ __ Cot /4M¢‘1<l/t>”
V(z,r)¥(r) = V(z,r)W(r) Jog-1(1/p-1

e -1 !
< MU 13y (67 1/0) < ot 0)

Hence, it remains to prove that there exists a constant cio > 0 such that

q(t,,y) > Cl2h((1)(7“),x,y)%‘

Recall that M > 1 is the constant in Proposition By using Proposition 29, (3.15), (H1), (31 and
the scaling of ®, we get that, if 4®(r)/M > 2¢~1(1/t)~!, then

49 (r) h(s,z,y) tw(®(r))
q(t,z,y) > c1 [@(T)/M V(z,® 1(s)) Viz,r)

If 4®(r)/M < 2¢~1(1/t)~!, then by (@I0), the scaling of ® and the assumption that ¥ (r) > t, we get
() < r < ez () for some ¢15 > 1. By (EI0) and (ZI0), since w is non-increasing,

F(@() < (@ (107 < ele — 271667 (1) = (e —2). (417
Therefore, by (H1), [I3) (neglecting the first term) and (B.4]), we obtain

h(s,x,y)w(s)ds

P(S; € ds) > c14h(®(r),z,y)

h(®(r), z,y) cseit” (1) tw(®(r))
t > _ - > h(® _—
Q( axay) = Ci6 V(l’,T’) eXP( w_l(t)Q > = C17 ( (T)’x’y) V(.%',?")
This completes the proof of the lower bound.
Now we prove the upper bound. Recall (£I4]). Observe that
o1/t 2071 (1/t) !
Vix,r)U(r)l; < / sh(s,x,y)P(S; € ds) —i—/ sh(s,x,y)P(S; € ds)
0 o=t (1/t)!
4P(r)
—i—/ sh(s,z,y)P(S; € ds) =: K1 + Ky + K.
20-1(1/t)71

We get from Lemma that K7 < c186 1 (1/t) " h(¢~1(1/t)~ 1, 2,y). Next, by (H1), we have Ky <
207 1(1/t)"t h(¢p~1(1/t)7L, 2, y). To bound K3, we use integration by parts and Proposition 20l to obtain

K / o h( ) d (—P(S: > s))
= S S, T, Y) 7 — Z S
P e ds t

4P(r)

<2071 (1/t) " h(oT (1/t) 7 3, y) +/ h(s,z,y)P(S; > s)ds

4P(r) dh
+f B(5, 2 ) DY) < oy (67 (1) (o (1) ) + 1Bt 2.).
26=1(1/)"! ds
In the second inequality above, we used the fact that s — h(s,z,y) is non-increasing (so that s —
%h(s,x,y) <0 a.e.).
Now, we estimate Is. We have

20711/ h(s,x,y) cr?
< _ sy o
I, < /0 Vi o1(s) exp < @*1(5)2>P(St € ds)



HEAT KERNEL ESTIMATES FOR SUBORDINATE MARKOV PROCESSES 19

40(r) h(s,z,y) cr? o h(s,z,y)
+/ 5 DY) vp —7IF’Seds+/ MY pg, e ds
20— 1(1/t)~1 V(z,®=1(s)) < @_1(3)2> (St ) 4B (r) V(z, ®71(s)) (St )

=: L+ Ly + Ls.
By applying Lemma [2.0] we get from (H1), (H2), (8.]), the scaling of ® and ([@I0) that
2 20 1(1/t)" 1
Ly <exp < - <I>—1(2¢—cf(1/t)—1)2> /0 e %P(& € ds)
h(p~ 1 (1/t)~ o172
e o (- )
Let ® be the function in Lemma 311 By using integration by parts and similar calculations to ([E.5]), we
get that

4®(r) 2
L<en [ M8y (- BN L (s, > )
20-1(1/)= V (@, 7 1(s)) ©~(s)2/ ds
-1 ~1 2
[ h@? (1/t),z,y) exp < __ €237 )P(St > 2¢_1(1/t)_1)
Ve, @1 (2071(1/1)71)) O (2071 (1/t)71)?
+ /4¢(r) MP(S} > 5)~L exp ( — ~023T2
2011/t Vi, @7 s)) s H(s)? =1(s)?
By (H1), (31)), the scaling of ® and ([@I0), since ® ~ &, we see that
Loy < eosh(6™H(1/0) Y 2, y)V (w007 (1) exp (= carr® /971 (1)?).
Also, by using Proposition [29] and repeating the calculation in (£6]), we get that

< c20

< coy

)ds} =:co5 (Lo + Lop).

4®(r) h(s,z,y)w(s) r? Co3r? cooth(®(r), z, y)w(®(r))
Lys <c t/ L — exp | — = ds < 7 )
222 i1 Ve, -1(s)) sb-1(s)2 < 2> V(z,7)

F-1(s)
By (H1) and Proposition 2291 we obtain
Lz < W(®(r),z,y)V(x,r) TP(S; > 40 (r)) < cs0th(®(r), z,y)V (z,7) Lw(®(r)).
Finally, we estimate I3. By Proposition [20] since D is bounded, we get from (H1) and (H2) that
I3 < cgith(1, 2, y)w(®(diam(D))) < csath(P(r), z, y)V (z,7) " w(®(r)).
This completes the proof. O

If one assumes HK% , instead of HK% , together with (Poly-00), the results of Theorem [£.2(i) and
(ii) are valid for all time. The proof is analogous to the proof of Theorem and hence omitted.

Theorem 4.3. Suppose that (Poly-00) and HKY, hold. Then the assertions in Theorem [[.2(i)—(ii) hold
for all (t,x,y) € (0,00) x D x D.

When the upper scaling index 2 in (Poly-R;) is strictly less than 1, we can obtain the following
simpler form of off-diagonal estimate.

Corollary 4.4. Suppose that (Poly-R1) holds with 52 < 1 and ®(r) ~ V(r) for r € (0, Ry).
(i) If HKY holds, then for every T > 0, the following estimates hold for all (t,z,y) € (0,T] x D x D:

(1) If Y(p(x,y)) < t, then (EII)) holds.
(2) If Y(p(z,y)) > t, then
h(@(p(x,9)),7,y)
t y V(p(z,y))
Vi(z,p(z,y)) Bn(t, z,y)
®(p(z,y))

(i) If Ry = oo and HKY, holds, then (1) and (2) above hold for all (t,z,y) € (0,00) x D x D.

when Cy = 0,
q(t,z,y) ~ (4.18)

when Cy = 1.
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Proof. According to [47, Lemma 2.6, Proposition 2.9] and (2.2]), since 82 < 1, we get that w(s) ~ ¢(1/s)
for all 0 < s < Ry/2.

(i) We only need to deal with the case (2), i.e., the case ¥(p(z,y)) > t. We first assume that Cy = 0.
Using w(s) ~ ¢(1/s), we get that w(®(p(z,y))) ~ 1/¥(p(x,y)). Thus by Theorem E2] it remains to
show that for any given ¢; > 0, there exists co > 0 such that for all (¢,x,y) € (0,7] x D x D satisfying

P(p(z,y)) 2 t,

Mo ' (/) Lay) o ap@y)? th(@(p(,y)), z,y)
e S Ay e ) )

Let c3 := sup,,.oul®@tezytazfa)/2e—u By (@1), (BZI), (@39), (£I0) and (H2), we obtain that
h((bil(l/t)il?x?y) exp < _ C1p(ﬂc,y)2> <e h((ﬁil(l/t)il,x,y) ( (o l(t)2 )(d2+a2’y+a252)/2
Ve, 01(1)) TP ST VT ®) \ep(ny)?
Gl VL It )(‘PW 't ))) t oo th(®(p(z,y)). =,y)
Ve, p(x,y))  \2(p(x,y))/ d(p(x,y)) = V(@ plz,y)(p(z,y))

Now, let Cp = 1. Since ®(r) ~ U(r) for r € (0, Ry), the first term on the right hand side of [{I2]) is
comparable with

tBh(tw%'?y) + h( (1/15)71,1',21)
V(z, pla,y)@(p(z,y)) ~ V(x, pla,y)@(p(z,y))o~" (1/1)
By (H2) and (Poly-R;), it holds that for all (¢,z,y) € (0,7] x D x D satisfying ¥ (p(z,y)) > t,

49 (p(z,y))

tBy(t, x,y) > t/ch( ) h(s,z,y)w(s)ds > csth(®(p(z,y)), z,y)w(P(p(z,y))) ®(p(z,y)).
p(z,y

Combining this with (£I9), using w(s) ~ ¢(1/s), one can see that the first term on the right hand
side of (£I2)) dominates the other two terms. Further, by (H2), (ZI0) and (22I), we see that for all
(t,z,y) € (0,T] x D x D satistying 1(p(z,y)) > ¢,

Tt

Tt

h(s,z,y)w(s)ds > cqt /2¢ h(s,z,y)p(1/s)ds

tB(t,z,y) > t/
“L(1/t)-1

20~ (1/5)~"
> s (/)7 (e (1) 2, y).
This yields the desired conclusion.
(ii) This can be proved by the same argument as that of (i). We omit the details here. ]

In the case when D is a bounded C''! domain, Y is a killed Brownian motion in D and S is an (a/2)-
stable subordinator, part (i) of the corollary above is equivalent to [49, Theorem 4.7]. In the case when D
is an exterior C1'' domain, Y7 is a killed Brownian motion in D and S is an (a/2)-stable subordinator,
part (ii) of the corollary above corrects [49, Theorem 4.6].

For future use, we note the following rough upper estimates on ¢(¢, z,y).

Proposition 4.5. (i) Suppose that (Poly-R;) and HKlf3 hold. Then for every T > 0, there exists a
constant C > 0 such that for all (t,z,y) € (0,T] x D x D,

1 t
altsz,y) < CRT (/) 2.) <V<w,w1<t>> : v<w,p<x,y>>w<p<x,y>>>‘ (4.20)

(ii) Suppose that (Poly-oc) and HKY hold. Then, there exists a constant C > 0 such that ([Z20) holds
for all (t,x,y) € (0,00) x D x D.

Proof. (i) Take z,y € D and let r := p(z,y). If ¢(r) < ¢, then [@20) follows from Theorem F.2(i).
Hence, we assume that ¢(r) > ¢ and estimate each term in Theorem F.2((ii) separately.
First, by using (H1), the fact that ¥ > ® and 2.1I), we get

_ o s,x,y)w(s)ds th(t/¢" (/1) z.) 4CI)(T)ws s
V() /2/¢1<1/t>h<’ Ywls)d V(e )20 e

th(1/o~'(1/t) ' 2, y) th(¢~'(1/t)"" .y
< e V) ¢ (1/(4®(r))) < 4e Vo)

IN
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Next, we note that, since ¢ is a Bernstein function, the map u +— ¢(u)/u is decreasing so that
D(r)p(1/®(r)) > ¢~ 1(1/t) " Le(¢~1(1/t)). Hence, since ¥ > @, it holds that
-1

M@ (/) ey) o MeT (/) hay)  th(eT (/) xy)

Vi(w,r)¥(r)e=1(1/t) = V(z,r)(r)e(e~1(1/t)) Vi, r)v(r)
Thirdly, by @) and @), we sce that for cg 1= sup,qul@Te2(82A))/2c—u,
h(¢_1(1/t)_1,x,y) 017’2 h(¢_1(1/t)_1,$,y) ¢_1(7§)2 (d2+a2(B2A1))/2
oo e <o veety Car )
e /) )
S V()

Lastly, by (H1) and (2I0),
th(®(r), z,y)w(®(r)) _ e th(¢" (/)" z,y)
V(z,r) “e—2 V(z,r)(r) '
(ii) By using Theorem instead of Theorem .2, we obtain the result by repeating the proof of (i).
O

As a corollary to Theorems and [L.3] we obtain the following interior estimates on ¢(t,z,y) in case
of a regular boundary function.

Corollary 4.6. Suppose that h(t,x,y) is a reqular boundary function.
(i) If (Poly-R;) and HKY hold, then for every T > 0, the following estimates hold for all (t,x,y) €
(0,T] x D x D satisfying op(x,y) > p(z,y) V¢~ (2).
1) [ x, <t, then tr,y) 0 ———.
(1) 1f ¥ (p(z,y)) q(t,z,y) CRT=0))
(@) 1 6(ple.y)) > 1. then
Co ( /4<I>(p(rvy)) 1 >
q(t,z,y) < t w(s)ds + ————
o) = a5
1 cpla,y)*y | tw(@(p(x,y)))
1)) P < T 112 )
Viz,¥=1(t)) P=(t) Vi(z,p(z,y))
(ii) If (Poly-00) and HKY, hold, then (1) and (2) above hold for all (t,z,y) € (0,00) x D x D satisfying
5/\(x’y) Z p(x,y) v TIZ)_l(t).

Now we give the large time estimates for ¢(¢, z,y) under HK%.

_|_

Theorem 4.7. Suppose that (Poly-R1) and HK% hold. Then for every T > 0,
q(t,z,y) ~ e_w()‘D)h(l,m,y), (t,z,y) € [T,00) x D x D. (4.21)

Proof. Fix z,y € D and s¢ € (0, 1) such that (Hoo)(T,s9) > 2¢(Ap)+1/T. Since lims_o(Hoo)(T,s) =
00, such an sg always exists. Then, since H is non-decreasing and ¢’ is non-increasing, we see that

(H o 0)(t,s0) > 26(\p) +1/T, t>T. (4.22)

By (H2), ) and ([B4)), we can apply Lemma 26 with f(s) = h(s,z,y)V (z,®1(s)). Using Remark
B (with T = sg), Lemma 2.0l and ([£22]), since ¢ is the Laplace exponent of S, we get that, for all t > T,

0 h(s,z,y) S
< — P 1 DS
q(t7 x7 y) S Ch A V(l‘, @_1(5)) (St S ds) + Clh( ,x,y) /S\O e (St (= ds)
h(so,ﬂf,?/) t AR to(\p)
SO - = DSt] « D)
<c V(2. ® (s0)) exp ( 2(H o 0)(t,50)> + c1h(1,z,y)Ele ] < esh(1,z,y)e

On the other hand, we also see from Remark B.7] that

o] 50
q(t,x,y) > C4h(1,x,y)/ e PP(S, € ds) = csh(1, 3, y) <eft¢()‘D) —/ e PSP(S, € ds)).

S0 0
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According to Proposition and ([@22)), it holds that for all t > T,
S0
/ e_)‘DSIP’(St € ds) <P(S; < sg) < exp ( — 2t¢(AD)).
0

Therefore, we conclude that for all t > T, q(t,z,y) > c4(1 — e TPOPYB(1, 2, y)e 1D, O

5. GREEN FUNCTION ESTIMATES

In this section, we always assume that either (1) (Poly Rl) and HKY hold, or (2) (Poly-oc) and
HKh hold. The Green function Gp of X is given by Gp(z,y) fo (t,z,y)dt.

As an application of the heat kernel estimates obtained in the previous section, we can obtain two-sided
estimates on the Green function. To this end, we prove a simple lemma first.

Lemma 5.1. Let f : I — [0,00) be a function defined on an interval I C [0,00). Assume that there exist
constants c1,co > 0, p1,p2 € R such that

cl<r—2)pl < 1(r2) < 02<T—2)p2 for all ri,ro € I, 0 <1y < ro. (5.1)
1 f(r1) ™
For any a > 1, there exists a constant cg > 0 such that for allT,R € I, ar < R,
R
|5 s = ) + £(R). (52)

(i) If we assume p1 > 0, then, for any a > 1, erS_lf(S)dS ~ f(R) for all r,R € I, ar < R, with
comparison constants depending on a.

.. R _1 ~ .
(i) If we assume py < 0, then, for any a > 1, ["s7 f(s)ds ~ f(r) for allr,R € I, 0 < ar < R, with
comparison constants depending on a.

Proof. Suppose a > 1. For all r,R € I, ar < R, by (&),

R ar R
/ s1f(s)ds > / sT1f(s)ds \// sV f(s)ds > c(f(r)V f(R)).

R/a

Thus we only need to prove the upper bounds in (i) and (ii).
(i) By (B10), since p; > 0, we have that

R R gp1—1
/ s~Lf(s) f (R)/ ;pl ds < ¢ 'pr f(R).

(ii) Similarly, by (&), since ps < 0, we have that

R R p(g R gpa—1
/ s71f(s)ds = f(r)/ Sff((g)ds < cgf(r)/ e ds < —copy f( ).

|

Recall the definition of ¢ in (Z.8]). The next simple observation will be used in the proof of the next
proposition and also later.

Lemma 5.2. If D is bounded, then there exists ¢ > 0 such that for any x,y € D,

/Qq’(diam(D” h(s,z,y) g s <h(‘1>(p(w,y)),w,y)¢(p(w,y))
D(p(z,y)) SV(:C,‘I)fl(S))gb(l/S) N V(CE,p(CE,y))

Proof. This follows easily from (5.2)), (H1), (H2) and (32). O

+ h(l,x,y)) .

The following proposition provides the first and most general estimate of the Green function.
Proposition 5.3. It holds that for x,y € D,

Co @ (p(z,y)) h(s,z,y) ) 2®(diam(D)) h(s,z,y)
V(m,p(:v,y))‘lf(p(m,y))/ P(1/s) I +[p(p(x,y)> sV (x,®71(s))p(1/s)

Gp(z,y) ~ ds. (5.3)
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Proof. Since the proofs are similar, we only give the proof when HK% holds, which is more complicated.
Take z,y € D and let r := p(z,y). Set Tp := 1/¢(1/(2®(diam(D)))). By a change of variables and
Lemma [2.1] we have that

4 e ) [0 Bz )0 (1)) P b
/0 110 dt_/o o5 ¢ _/0 o(1)s) (54)

and

/TD h(¢1(1/t)I,m,y)dt:/”(dia‘“w” his,z,y)  d'(1/s)
/

oy Vi, (1)) ®(r) Vi(z,®71(s)) s2p(1/s)?
N 2®(diam(D)) h(S,.%',y) )
. Am Vi o ()e(1/5) " 59

Combining with Theorem (with T'=Tp), we arrive at the lower bound in (5.3)).
By Theorems [1.2] and 7] (with "= Tp), we have that

Gp(r,y) < co /W) h(qb‘;z(lgzzé)g;’y) exp < - %)dt + coh(®(r), z,y) wv((q)(r))) /W) tdt
0 T, z,7) Jo
Co ¥(r) Co Y (e (1/t) 7t 3, y)
V(o () AR V) | T
c o h(gb_l(l/t)_l,x,y) c T Ooefw)()\D)
i O/W Vi oty T o) /T «
=: ¢o(G1 + G2 + CyGs + CoGy + G5 + Gg).

First note that, following the proof of Lemma and with help of ([43]), one can see that under the
assumptions of Lemma B.2] there exists ¢; > 0 such that for all r,x € (0,Tp),

r /'432 c errl r
;s (= g < 25
Applying this inequality with f(t) = h(¢=1(1/t)" 1, 2,9)V (2, v~ 1(t))"! and p := v/B1 + do/(a1p1), we
get from (H2), (24), (3I) and (£3) that
h(®(r), =, y) Y(r)P*!
C V) ey
For Ga, we see from (2.I0) that

B N ) S W(r)
B TP L s v BT

For G3, we use Fubini’s theorem to get that

40 (r
V(z,m)¥(r)Gs —/ / (s,z,y)w(s)dsdt
$=1(1/t)

6(2/s)~* 49(r) o(r)
:/ h(s,z,y)w(s )/ tdtd8+/ h(s,x,y)w(s)/ tdtds
0 0 2 0

®(r)
=: G311+ Gs2. (5.6)

By (2.10), a change of variables and (H2), we get

22(r) o(r) 1,(9 a(r)
Gs1 < 03/ M 2,4)6(2/s )ds = 203/ wds < 64/ Ls’gc’y)ds.
0 0 0

+Co

G1§C

= e2h(®(r), 7, y)

¢(2/s5)? ¢(1/s) ¢(1/s)
On the other hand, we also get from (ZI0), (H1) and (22)) that
e ) 4P(r) B e
G < 575 @), 2.6/ RENO [ ds = o h@(r) ) )20)

S =9 s/ AW o(1)s) = *"A(TW (1)) © = 5/0 o(1]s)
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ClearlY7 GG < (ﬁ(AD)ilh(l?xay)
Recall from (5.4]) and (5.5]) that

D(r) 2®(diam(D))
G4 +G5 ~ CO / h(S,l’,y) / h(falxay) ds.
Viz,r)¥(r) Jo  ¢(1/s) B(r) sV (x, @1 (s))p(1/s)
It follows from Lemma 5.2l and the upper bounds above on G1, G2, Gg that G5 dominates G1 + Go + Gg.
Since G4 dominates G3, the proof is complete. |

In the remainder of this section, under some additional assumptions on the boundary function, we will
obtain Green function estimates in simpler forms. Lemma [5.1] will be a useful tool in all simplifications.
We start with the following condition which is a counterpart of (H2).

(H2*) There exist constants ¢1,7. > 0 such that for all z,y € D and s,t > 0 with ®(6y(z,y)) <s<t<
2¢(diam(D)),

s™h(s,z,y) > c1t™h(t, z,y).
Note that the v, above is less than or equal to ~.

Remark 5.4. Suppose that a boundary function h(t, x,y) satisfies (H2*). Then for every € € (0, 1), there
exists ca = c2(€) > 0 such that for all z,y € D and s,t > 0 with e®(dy(z,y)) < s <t < 2®(diam(D)),

ST h(s,x,y) > et h(t,z,y).

Indeed, let e®(dy(z,y)) < s < ®(dv(z,y)) and s <t < 2&(diam(D)). If ¢t < &(dy(x,y)), then et < s so
that by (H1),

sTh(s,z,y) > s h(t,x,y) > et h(t,z,y).
Ift > ®(0y(x,y)), then by using (H1) in the first inequality below, (H2*) in the second, and the condition
that s > e®(dy(z,y)) in the last inequality, we see that

Sﬂ/*h(s,x,y) > SV*}L(@(é\/(m,y)),w,y) = cl (m

Example 5.5. Let p,q > 0, p+ ¢ > 0. Recall that the boundary function h,4(t,z,y) defined in (3.8])
satisfies (H2) with v = p+¢. We claim that h, 4(t,z,y) also satisfies (H2*) with v, = v = p+ ¢. Indeed,
for all z,y € D and ®(dy(z,y)) < s < t,

sp+th7q(s,x,y) = ®(0p(x))P®(6p(y))? = tp+th7q(t7x7y)-

Y
> t"h(t,z,y) > 1€t h(t, x,y).

In the remainder of this section, we let dy,ds,~, v, 1, 82 and a1, @y be the constants in (B1]), (H2),
(H2*), (Poly-R;) and the scaling indices of ® in (B.4]), respectively.

Let
é ( ) /2<1>(diam(D)) h(S, z, y)
D\Z,Y) = —
o(pzy)  SV(z, @71(s))p(1/s)
denote the second term on the right-hand side of the estimate (5.3]).

ds (5.7)

Lemma 5.6. The following estimates hold for all x,y € D.
(i) If d1 > as(B2 A 1), then
= Y(p(z,y))
Gp(z,y) = h(@(P(ﬂﬁay))axay)m-

(it) If dy < a1 (B1 — ), then

h(1,2,y), when HKY holds,

Gp(z,y) ~
p(,y) {oo, when HK}I‘J holds.

Below, we also assume that h(t,x,y) is reqular and (H2*) holds.
(ZZZ) If a1 1 > do > di > 012((52 AN 1) — ’y*), then

Gp(a,y) = h(D(p(z, ), 2, y) — LYV 0 (@:Y))

V(x,p(x,y) v 6\/('Iay)) .
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(iv) If di = da = 1 81 = azf2, then
~ 5\/ ('Ia y)
Gp(a.y) = h(®(p(a,y)),,y) log (e + ).

p(z,y)
(v) If a1 = o, B1 = P2, v =7« and dy = dy = a1 (51 — ), then

Cpl,y) ~ h(1,z,y)log (e + diam(D)(p(z,y) V év(z,y))~'), when HKY holds,
DY) = 00, when HKIEJ holds.

Proof. Take x,y € D. Let 0 := 0p(x,y) and dy := dy(x,y). Define

o h(s,x,y)
9) = Va1 o(1/5)

s> 0.

Then

C;D (1’, y) =
®(p(x,y)) §

By (H1), (H2), 31), B4), (22) and ([Z3]), there exist ¢1,c2 > 0 such that
r\ —v—d2/o1+P1 g(r) r\ —di/a2+(B2A1)
a(3) <5 =2(3)

_ /2<1>(diam(D)) g(s)d
—as

S 00 = c2 , 0<s<r<2®(diam(D)). (5.8)

If h(t,z,y) is regular, then by Remark [3.4], for every a > 0, there exists c3 = ¢3(a) > 0 such that

S

== < , 0<s<r<®(adp) A2®(diam(D)); (5.9)

~ g(s)

if furthermore (H2*) further holds, then by Remark [5.4] there exists ¢4 > 0 such that

r\—y—d2/aa+Bi g(r) 7\ Ve —di/a2+(B2A1)
(D) <8 <o)

cg(r)—dg/aﬁ-ﬁl < g(r) < <Z>—d1/a2+(52/\1)

~9(s)

(i) By (5.8), since —dy/ag + (B2 A1) < 0, the result follows from Lemma [5.1](ii).

(ii) If D is bounded, then by (58) and Lemma [B.[i), since —y — d2/a1 + 1 > 0, it holds that
Gp(z,y) ~ g(®(diam(D))). By B2), there exists a constant c5 > 1 such that cs' < V(z,diam(D)) < c5
for all z € D. Hence, by using (H1), (H2) and the definition of g, we get that Gp(x,y) ~ h(1,z,y). If D
is unbounded, then we see from (0.8)) and Lemma [BE.1J(i) that

~ T
Gp(r,y) = lim @ds ~ lim g(r) > ¢19(1) lim poy—de/oatb _ o

(iii) Suppose that éy < 2p(z,y). Since =y —di/az + (B2 A1) <0, by (B.10) and Lemma [5.1ii),
Gp(,y) ~ g(®(p(z,y))) = 2@ 1) 2, yPlp@,y))

V(z, p(z,y))
Hence the result follows from (3.I]) and (4.9]).
Suppose now that oy > 2p(z,y). Then o5 > oy — p(z,y) > dv/2 > p(x,y). Since h is regular, we get
hP(dy),x,y) ~ h(P(p(z,y)),x,y) ~ 1. Further, since —da/a; + 51 > 0 and —vy, — di/aa + (B2 A 1) < 0,
by the scaling of @, (5.9)), (5.10) and Lemma [5.1)(i)-(ii), we get

N 28(57) (g 2®(diam(D)) (4
Gp(a.y) =~ / 9) 4o / 9) 4s = g(3(5,)) + 9(B(50))

, d(5,/2) < s <r<20(diam(D)).  (5.10)

S S

(p(zy)) S B(6v) §
~ _ h(q)(5v)7x7y)1/f(5v) ~ ¢(5v) ~ h(q)(p(xay))vxay)w((SV)
~9(®(0v)) = V(z,0y) T V(zey) V(z,0y) '

This finishes the proof for (iii).
(iv) Since d; = da, by (1) and ([B.2)), we see that for every a > 0, there are comparability constants
depending on a such that for all w,z € D and 0 < r < adiam(D),

V(w,r) o~ ( ))le(w,p(w,z)) o~ (ﬁ)dl‘/(z,p(w,z)) ~Viz,r) ~rfV(z1). (5.11)

p(w, z w, z)
Moreover, since 1 = 52 and a1 = ag, by (22)), (Z3) and (B34), we get that
p(1/s) "t~ M 0< s <20(diam(D)) and D 7'(s) ~ sV 5> 0, (5.12)

r
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so that g(s) ~ h(s,z,y) for all 0 < s < 2®(diam(D)). In particular, since h is regular, we see from
Remark [3.4] that
g(s) =1, 0<s<2P(dp). (5.13)

If 5y < 2p(x,y), then by (BI0) and Lemma [BI(ii),
Gplx,y) = g(®(p(z,y))) = h(®(p(x,y)),2,y) =~ h(@(p(z,y)), z,y) log (e + p(ivy)>-
If 6y > 2p(x,y), then we get o, > 0y /2 > p(x,y) as in (iii), and by (5I3), (5.I0) and Lemma B.IN(ii),
Gp(z,y) ~ /qu) gls )d + /m(dlam 9(s) ) ds /qu) ds + g(®(8)).
O(p(zy)) 5 ®(6v) s P(p(zy)) S
Note that since ®(s) ~ s* for s > 0, we have fga((if;)) s~ ds ~ log <e + %) so that

o /”W) ds
D(0y)) = h(P(y),z,y) <1<logle+ o~ —.
9(2(8)) = h(P(S)..y) 2+ 2) = Loy 5

Eventually, since d, ~ oy and h(®(p(z,y)),z,y) ~ 1 in this case, we obtain that

Gp(@,y) = log (e + p(i?y)> ~ h(®(p(z,y)), 2,y) log (e + p(i y)>
(v) By (&I0), (512), the regularity of h, (H2), Remark 5.4 and (BI0]), we have
g(s) =57, 0<s<P(da) (5.14)
and
g(s) ~ sTh(s,z,y) ~t"h(t,z,y), P(6v/2) < s <t <2P(diam(D)) + 1. (5.15)

If 0y < 2p(z,y), then since ®(s) ~ s** for s > 0 in this case, we get from (5.I5]) that
_ 2®(diam(D)) ds diam(D
®(p(z.y)) s p(x,y)

If 0y > 2p(x,y), then do > 0y /2 > p(x,y) as in (iii) and hence by (5.14) and (G159,

B 2000 20(diam(D))
Gp(z,y) ~ / s ds + h(l,x,y)/ —.
@(p(z,y)) o(dv) 8

Since ®(s) ~ s for s > 0, Iy < dy < 205 and h is regular, by (5.15),

2®(diam(D)) d di D
h(l,w,y)/ =~ h(1, 2, y)log (e + 7@?( ))
o(5v) S v

~ h(1,z,y)log (e +

20 (5)
> h(1,z,y) ~ R(00)"h(®(0n), z,y) ~ B(6A)" = 'Y_l/ 7 s,
2(p(z,y))

This completes the proof. O

In the next lemma we show that under the additional assumption that v < f; + 1, the first term on
the right-hand side of (5.3]) is dominated by Gp(z,y).

Lemma 5.7. If either Co =0 or vy < 81 + 1, then Gp(z,y) ~ ép(x,y) on D x D.

Proof. When Cy = 0, the assertion follows from Proposition (.3l So we now assume v < (1 + 1.
According to (Z3]) and (H2), we have

h(t,z,y)p(1/t)~! Br1—v )
> for all <t<®d(d D)).
h(s.2.)0(1/5) T = ( > orall 0<s<t< ®(diam(D))
Thus, since ¥ > ®, by Lemma [5.11(i), (H1) and ([Z2]), we get
CO /@(r) h(s,x,y) ds < ch(@(’l“),x,yﬁb(T)@(T) < Ch(@(r),m,y)qﬁ(r)
Viz,r)¥(r) Jo  o(1/s) —— V(z,r)¥(r) - Vie,r)
Combining the above with Lemma and Proposition (.3l we get the assertion. O
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Define
(%, if di > aa(Ba A1),
wir) = Jlog (e 2H), it =y = anfy = aaty 19
S 1o

By combining Proposition £.3] Lemma and Lemma [5.7 we arrive at the following result.

Theorem 5.8. Suppose that Co =0 or v < 1 + 1, h(t,z,y) is reqular and (H2*) holds.

(a) Suppose also that one of the following holds: (1) di > ag(Sa A1) or (2) di = dy = a1 ff1 = aafe
or (8) da < a11. Then it holds that

Gp(z,y) = h(®(p(z,y)), 2, y)90 (2, y). (5.17)
(b) If da < o1 (81 — ), then
Gp(z,y) ~ h(1,2,y),  when Hth]; holds,
o0, when HKY holds.
(¢) Ifon = ag, B1 =P, v = and di = dy = a1 (B1 — 7), then

G () h(1,z,y)log <e + diam(D)(p(x,y) V 5v(x,y))_1>, when HKEY holds,
D\T,Y) =
0, when HKII’J holds.

When Cy = 1, Theorem 5.8 only deals with the case v < 81 + 1. To cover the case when ~ is large, we
assume the following condition.

(H2**) There exist constants ¢; > 0, Vs € (0,1 + 1) such that for all z,y € D and s,t > 0 with
(0 (2,y)) <5 <t < B(dv(2,y)),

sT*h(s,z,y) < c1t"™ h(t,z,y).

Example 5.9. For p,q > 0, let h;, 4(t, z,y) be the boundary function defined in (B8). If pVg < 14/, then
hpq(t, x,y) satisfies (H2**). Indeed, we see that for all z,y € D and ®(dx(x,y)) < s <t < ®(dv(z,v)),

D(O6p(x))PsPVaP  if dp(z) < dp(y)

< PVap (¢ )
d(6p(y))dsPVa—a, if 6p(x) > dpl(y) — pa(t, T,Y)

For a given boundary function h, we define for x,y € D,

Bl y) = (o, 5) A by (), 2, 3) <1 A q)qgf;g,?)w(&v(x,y))) |

One can see that for all p,q > 0,

BOp(a) () , 2 Y1, ole))yiorne(y, Sz g

[hpql(,y) ~ <1 No(y) o(p(z, y) ®(p(z,y)) Y(p(z,y))

)
Indeed, for z,y € D, if 0p(z,y) > p(z,y), then [hy, ](x,y) = 1 and the right-hand side of (5.I8]) is also
equal to 1. If 05 (z,y) < p(x,y), then oy (z,y) < p(z,y)+x(z,y) < p(x,y)+ p(x,y) < 2p(z,y) and hence
by (BI0) and the scaling properties of ® and v,

D (p(x,y)' P9 (p(z,y)) D8y (z, )P .
‘I)(fsv(xay))l_p_ql/}(&/(x,y))[h D(p(z,y))Pta pa(@(Ov(z,y), z,y) =
<1 : ‘P(p(w,y))) (M <I>(p(x,y))> '

®(0p(z))P2(0p(y))?
®(p(w,y))PTa

p,q](x, y) =

~

Recall that go(x,y) is defined in (B.16]).
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Theorem 5.10. Suppose that Cy =1, h(t,x,y) is regular, (H2*) holds with v, > (f2 A1)+ 1 and (H2**)
holds. Suppose also that one of the following holds: (1) dy > a(f2 A1) or (2) dy = dos = 181 = azfy or
(3) do < a1 1. Then it holds that

GD(x7y) = [h](.%’,y)

+h@(p(z, ), 2, y)go (%, ). (5.19)

In particular, if ¥ ~ ®, then

Proof. Take z,y € D and let r := p(z,y) and oy := dy(z,y). Observe that by (22)), (Z3]), (H1), (H2**)
and the regularity of h,

A h(t,x,y)/gb(l/t) t B2/l
c1 (;) < h(s,2,y)/6(1/5) < e (;) , 0<s<t<®(oy). (5.21)

Note also that by ([2.2]), 23)), (H2), (H2*) and Remark [5.4],

Ber_ bt y)/6(1/1) i
03@) = h(z,x,z)/qs(i/i) = 04(9

If 6y > 2r, then by Lemma [5.1i) and (5.21]), foq)(r) h(s,z,y)0(1/5) " ds ~ h(®(r),z,y)P(r)(r).
If 6y < 2r, then by Lemma [5.11(i)-(ii), (5.21]), (5.22]) and the scaling property of ¢, since 51 — s > —1
and P2 A1 — v, < —1, we get that

D(r) M B D(6v)/2 M ®(r) M N )
/0 ¢(1/s) ds_/o o(1/s) ds / ds = h(®(dy ), z,y)®(5v )b (dy).

o,)2 H(1/s)
Therefore, in either case, it holds that

. ®B(6y)/2 < s <t < ®(diam(D)). (5.22)

®0) h(s,x,y) N D(5)e(dy) e — -
[ dS—h@(Wv)away)(M @(TW(T))@( Jor) = ()@, (523)

Combining this with Proposition 5.3 and Lemma [5.6] we get (5.19]).

Now we also assume that ¥ ~ ®. If é,, > r, then [h](x,y) = h(®(r),z,y). Hence, we see from Lemma
that in (B.19]), the second term dominates the first one so that (520) holds. If &y, < r, then using
Lemma [B.1(ii), (5:22]) and the condition that 82 A1 —~, < —1 in the second inequality below, the scaling
property of ¢ and ([BI0) in the third, and ([5.23]) in the fourth, we get

2®(diam (D)) h(s T y) 1 2®(diam(D)) h(S o y)
/ — ds < / — = ds
o(r) sV (z,®71(s))p(1/s) Vi(z,r)®(r) Jo ¢(1/s)
h(@(’l“),x,y)¢(7‘) Ce /<I>(r) h(s,x,y)
<¢s < —
V(x774) V(xar)q)(r) Dd(r)/2 ¢(1/8)
Note that go(z,y) ~ ¢(r)/V(x,r) when dy < r. Thus by Proposition 5.3 and (5:23]), we get Gp(z,y) ~
[h](z,y)(r)/V (z,7) =~ [h](z,y)g0(x,y) when 6, < r. This completes the proof for (5.20). O

ds < cr[h](w,y)

For completeness, we record the Green function estimates when Cy =1, 51 = f and v, = v = 1 + 1.

Theorem 5.11. Suppose that Co =1, B1 = B2, h(t,x,y) is reqular and (H2*) holds with v, = v = f1+1
and (H2**) holds. Suppose also that one of the following holds: (1) di > ag(f2 A1) or (2) dy = do =
o181 = asfe or (3) do < a1 1. Then it holds that

D(p(x,y)) (p(x, )" P(p(z,y))
Y(p(z,y) V(z,p(z,y)) toe (6 - 0y (z,y))

Gp(.y) ~ W(@(p(z.v)). .1) ) +alen)] G20
In particular, if ¥ ~ ®, then

Ce,) = h(@(p(r, ), 2, 9)go . y) o (e + (5.25)
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Proof. Take z,y € D and let r := p(z,y) and 0y = dy(z,y). Using Lemma [B.I|(i) (which is applicable

due to (521)), (512]), the second comparability in (515, (BI0) and the scaling property of ®, we get
that, if &y > 2r, then

@(T)M <~ <I>(T)SB1 s s~ P(r) ")z
| B e [ s s = @0y h@ (). 2.0)

and if 6y < 2r, then

d(r) 271e(271(6y)) d(r)
[ o)y, hs.y)
0 ¢(1/s) 0 o(1/s) 2-1p(2-1(s,)) P(1/s)
2-19(2-1(8v)) o(r)
:/ sﬁlh(s,x,y)ds—i—CI)(r)'Yh(Cb(r),x,y)/ sP177ds
0 2-15(2-1(5))

= B0V A(@(y), 7, y) + O(r) h(®(r), 7, y) log (e + qiis?ﬂ

~ ®&(r)"h(®(r), x,y) log (e + ;é;%)

The last comparability above is valid by the second comparability in (5I5]). Therefore, in either case, it
holds that

0 h(s,@,y) O(r)
/0 S(1/5) ds ~ ®(r) h(®(r),z,y) log <e + ‘1>(5v)).
Combining this with Proposition 5.3l and Theorem B8] we get (5.24]).
Now we also assume that ¥ ~ ®. Then as in the proof of Theorem [5.I0] one can check that in (5.24]),
if 4y > r, then the second term dominates the first one, and if §, < r, then the first term dominates the
second one. Combining with the facts that ¥(r) ~ ®(r)Y~! for 0 < r < diam(D) since 31 = 32 and that

go(z,y) ~ ¥(r)/V(z,r) when éy < r, we obtain (5.25]). O

6. PARABOLIC HARNACK INEQUALITY AND HOLDER REGULARITY

Throughout this section, we assume that h(¢,z,y) is a regular boundary function and that either (1)
(Poly-R;) and HKY hold, or (2) (Poly-00) and HKY hold.

For zg € D and r > 0, let Tp(y ) = inf{s > 0: X, & B(xo,7)} and X B(zo.r) be the part process of X
in B(wo,r). Denote by ¢z, (t,7,y) the heat kernel of X B(@or) By the strong Markov property,

4B(xo,r) (t7 T, y) = Q(ta €T, y) —E; [q(t — TB(z0,r)> XTB(acO,r) ) y); TB(zo,r) < t] : (61)
Recall the definition of ¢ in (4.8]).
Lemma 6.1. There exist constants C' > 0 and € € (0,1/4) such that for all xg € D and r € (0,0p(xg)),

-1
QB(xo,r)(t,l",?/) > m for all t € (0,%(er)] and z,y € B(ﬂfoaﬂ/) (t))

Proof. Since the proofs are similar, we only give the proof in case (1).

Fix 9 € D and r € (0,0p(zp)). Let € € (0,1/4) to be chosen later. Let 0 < ¢t < #(er) and
x,y € B(xg,etp~1(t)). Clearly, z,y € B(zo,€?r). Further, dx(x,y) > 6p(wg) — €2r >r —r/4 > 7 L(t) >
2etp=1(t) > p(x,y). Therefore, we have 6, (z,y) > ¥ ~1(t) = p(x,y) V ¢~ 1(t). From Corollary E6(i) (with
T = y(diam(D))) and ([B.2), it follows that there exist constants c1,co > 0 (independent of t,zg, z,y)

such that
C2

€1
q(t,z,y) = — > — )
29 2 Y 6T = Viwo, v 10)
Let z € D\ B(xg,r). Then since t < 9(er) and € < 1/4,
p(Z,y) 2 p(z,xo) - p(’y,$0) 2 (1 - 62)/)('2’370) > (1 - 62)T = (26)717!)71@)'
Then according to Proposition A5]i), BI) and ([3.2)), since h < 1, there exist constants cs,cq,c5 > 0
(independent of ¢, zg, z,y) such that for every 0 < s < ¢,

(6.2)

Cc3S c3 Cy C5€d1
12 = VG 0 ) = VpCn) = VoG = Vi i@y Y
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Combining ([61]) with (6.2) and (6.3]), we get that

dy
Cy — Ciy€
t > .
QB(xo,r)( ,x,y) = V($0,1/1_1(t))
Now we finish the proof by choosing € = (¢2/(2¢5))Y/% so that ¢y — c5e® = ¢y /2. O

Remark 6.2. By using (£9) we may replace ¢(er) and ep~!(r) in the statement of Lemma with
e(r) and 1~ (er) respectively, cf. [19, p.3758].

Lemma 6.3. There exists a constant C > 1 such that for all x € D and r € (0,0p(z)),

C™l(r) < E*[1p(,n)] < (7). (6.4)
Proof. Fix x € D and r € (0,6p(x)). Let € € (0,1/4) be as in the statement of Lemma Then by
Lemma [6.1], we have that

y € B(x, €r).

4dB(zx,r) (7/1(67“)7 T, y) > V(w, 67“) )

By (31)), this implies that

2
Px(TB(z,r) > Ib(eT)) > / QB(x,r)(¢(€T)a$,y) dy > M = C2.

B(z,e?r) V($, ET‘)
Hence, by Markov’s inequality and (@3], we get that
Ex[TB(x,r)] > w(GT)PI(TB(z,r) > ¢(€7")) > 021/1(67”) > 031/}(74)'

To obtain the upper bound in (6.4]), we first assume that HK}E‘; holds. We claim that there exists a
constant A > 1 such that

sup P*(7p(y,) > Y(Ar)) < 5. (6.5)
Indeed, according to Proposition [4.5)(i) and Theorem [£7] since h < 1, there exists ¢4 > 1 such that

q(t,z,y) <cy (V(z,w_l(t))_ll{tgl} + e_qb(/\D)tl{Dl}) , 2,y € B(x,r). (6.6)
Further, by (B8]), there is ¢5 > 1 such that for all z € B(x,r),
V(z,cs5m) > V(x,(c5 — 1)r) > 2¢4V (7). (6.7)
Let A > ¢5 be a constant such that
exp (6(Ap)u(Acs ¥ (1)) > 2m(D). (6.8)
In case when r < c; ¢y~ (1), we see from (B.6) and (B7) that for all z € B(x,7),
cqVix,r)

PZ(TB(:B,T) > T/J(AV")) < PZ(TB(:B,T) > 1/1(057")) < / Q(¢(057’)7Z7y)dy < V(

1
< —.
B(z,r) 2

z,57)
On the other hand, if 7 > c5'¢~(1), then since B(z,r) C B(z,dp(x)) C D, we get from (6.6) and (G.S)
that for all z € B(x,r),

P*(Tp(a,r) > (A1) < P (Tpr) > ¥(Acs '971(1))) < V(a,r)exp (= ¢(Ap)d(Acs 97 (1)))
1
< m(D)exp (= ¢(Ap)b(Ae (1)) < 5.
Hence, (6.5]) holds.
Now, by (6.5 and Markov’s property, we see that for all n > 2,

sup IP>z(7_153(at,7’) > n¢(AT)) = Sup P* (TB(x,r) > m/)(AT), TB(x,r) > ¢(AT))

2€B(z,r) z€B(z,r)
< sup P? (IP’XWM) ("B > (n—1)y(Ar)), TB(z,r) > ¢(Ar))
z€B(x,r)

< sup ]P)Z(TB(at,r) > (n - 1)1/}(A7“)) sSup PZ(TB(aC,r) > ¢(A7“))
2€B(z,r) z€B(x,r)
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n
<... < ( sup P*(7p(y,) > w(Ar))) <27
z€B(z,r)
Therefore, we get from (49 that

B [Tpn] < > mp(Ar)P (g € ((n — 1)3p(Ar), nap(Ar)))
n=1

< g A™? 52/\1)¢ ZnQ (n=1) — 4eg A2 52/\1)¢( ).

n=1
Similarly, by using Proposition [£.5(ii), we can obtain the upper bound in (6.4]) when (Poly-oc) and
HKY hold. O

Recall that the jump kernel J(z,y) is given in (4.3)).
Lemma 6.4. There exists a constant C > 1 such that for all x € D and r € (0,0p(z)),

C
J(x,y)dy < —. 6.9
/D\B(:v,r) (=:9) P(r) (69)
Proof. By Theorem 1] and the fact that A < 1, we have that
S(p(z,y)) d P
/ J(z,y)dy < c1 / Jo wis)ds dy +/ w(®(plz:9) dy
D\B(z,r) D\B(a,r) V (@, p(z,9))¥(p(,y)) D\B,r) V(@ p(2,y))

=: Cl(Il + IQ)
By the first inequality in ([2.1]), since ¥ > &, we see that

e®(p(z,y))o(1/®(p(z,y))) edy
= /D\B(:v T) V($, p($, y))\ll(p(xa y)) = /D\B(:v,r) V($, p($, y))iﬁ(p(ﬁ, y)) .

It follows from (ZI0) that Iy < éfD\B(m ) V(z, p(z,y)) " ¥(p(x,y))"'dy. Hence, by 1), (&9) and
the proof of [I8, Lemma 2.1], we conclude that I1 + Iy < co /(7). O

Let Z := (V5, X5)s>0 be the time-space process corresponding to X, where V; = V) —s. The augmented
filtration of Z will be denoted by (.%S) s>0. The law of the time-space process s — Z; starting from (¢, x)
will be denoted by P(®). For every open subset B of [0,00) x D, define 753 = inf{s > 0: Z, ¢ B} and
OB = TRc.

Recall that a Borel measurable function w : [0,00) x D — R is parabolic (or caloric) on (a,b) x B(xg,)
with respect to the process X if for every relatively compact open set U C (a,b) x B(zg,r) it holds that
u(t,z) = B y(Z,,) for all (t,z) € U.

We denote by dt @ m the product of the Lebesgue measure on [0,00) and m on E.

Lemma 6.5. Let ¢ € (0,1/4) be the constant from Lemma [61. For every § € (0,¢€|, there erists a
constant C; > 0 such that for all x € D, r € (0,6p(z)), t > 0¢(r), and any compact set A C [t —

0(r),t — () /2] x B(a, v~ (ed)(r)/2)),

dt @ m(A)
pt.z) >0 ———~. 1
(A < Tl—sp(r) f]x Bar)) = C1V(x’r)w(r) (6.10)

Proof. Let 7, = T_sy(r) gxB(a,r) a0d As = {y € D : (s,y) € A}. For any t,7 > 0 and = € D such that
B(z,r) C D,

o(r) Tr
SY(r)PE®) (o4 < 1) > / pte) (/ 1a(t —s,Xs)ds > 0) du
0 0
d(r) Tr Tr
> / pe) </ 14(t —s,X5)ds > u> du = E®7) [/ 1a(t— s,Xs)ds] . (6.11)
0 0 0

For any t > d(r),

Tr o (r)
E() [ / 1A(t—S,Xs)d8] > / p) ((t—s,XsB(”““””) € A) ds
0 5(r) /2
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54(r) 54(r)
= / ]P’$(X5B(x’r) S At—s)ds = / dS/ qB(x,r)(Saxay) dy
59(r)/2 sz Ja,

Let s € [69(r) /2,8 (r)] and y € B(x,9~(ed1p(r)/2)). Then s < eyp(r) and =1 (edp(r)/2) < ¢~ 1(es) so
that y € B(x,9 " !(es)). Hence, by (3.1), (£9), Lemma [6.1] and Remark 6.2

4B (8:2,y) = V(e (s) " > oV, r) "

Tr 5¢(T)
) [/ 14(t — S,Xs)d5:| > L/ ds/ dy = CthLm(A)‘
0 Viz,r) 8ip(r)/2 As_s V(z,r)

Combining with (6.11]), we arrive at (G.10]). O

Therefore

Theorem 6.6. There exists a constant n € (0,1] such that for all 6 € (0,1), there exists a constant
C =C(0) > 0 so that for every xy € D, r € (0,0p(z¢)), to > 0, and any function u on (0,00) X D which
is parabolic in (to,to + ¥(r)) X B(xo,r) and bounded in (to,to + ¥(r)) x D, we have

1 .
lu(s, z) —u(t,y)| < C(w (Is =) + p(w,y)>7l esssup  |ul, (6.12)
r [to,to+4(r)]x D

for every s, t € (to+ 1 (r) — Y (0r),to + ¢ (r)) and x,y € B(xo,dr).

Proof. Using (B.1), (£9) and Lemmas[6.3] [6.4land [6.5] the result can be proved using the same argument
as in the proof of [I7, Theorem 4.14] (see also the proof of [19, Proposition 3.8]). We omit details here.
d

Lemma 6.7. Let ¢ € (0,1/4) be the constant from Lemma [61 and let § € (0,e/4) be such that
46¢(2r) < ep(r) for all ¥ > 0. Then there exists a constant Cy > 0 such that for all zo € D,
R € (0,8p(x0)), 7 € (0,0~ (D0(R)/2)/2), S(R)/2 <t — 5 < A50(2R), x € Blag, v ((R)/2)/2)
and z € B(xo, 1 (e5(R)/2)),

Vix,r)

t,z
P (041w By < Tlst]x Blro,R) > C2V(:v,R)' (6.13)
Proof. The left-hand side of (6.13]) is equal to
PP € Bla) = | (=5 %0) d (6.14)

Note that t — s < 469(2R) < ep(R) by the choice of 4. Next, if z € B(x,r), then p(z,z9) < p(z,x) +
ol 50) < 7+ pla,0) < Y (DY(R)/2) < G (elt — ), implying that = € Blzo, ¢ (e(t — 5))) (with
the same conclusion for y € B(x,r)). Thus it follows from Lemma [6.I] Remark and ([B.2)) that
UB(wo,r)(t — 5,2,y) = 1V (20, R)~! > 2V (z, R)~!. By inserting in ([G.14) we obtain (6I3). O

In the remainder of this section, we further assume that h is of Harnack-type.
Suppose that z,y,z € D are such that p(x, z) < p(z,y)/2. Then

2 3
(@ y) < plz,y) < 5p(,y)- (6.15)
As a consequence, by the scalings of ® and W, there exists a > 1 such that
a ' ®(p(z,y)) < V(p(z,y)) < a®(p(z,y)), o W(p(z,y)) < U(p(z,y)) < a¥(p(z,y)). (6.16)

Proposition 6.8. Suppose that h is of Harnack-type. Then there exists a constant C > 0 such that for
all z,y, z € D satisfying p(x,z) < (p(x,y) Aop(x))/2, it holds that

J(z,y) < CJ(z,y).

Proof. This follows from Theorem [.1] (B.7)), the scaling property of w, (8.10) and (6.16]). O
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Corollary 6.9. Suppose that h is of Harnack-type. Then there exists a constant C > 0 such that for all
z,ye D and 0 <71 < (p(z,y) ANdp(x))/2, it holds that

C
o) < g [ I
V(m,r) B(z,r)
Proof. Let z,y € D and r > 0 be as in the statement. If z € B(xz,r), then p(z,2) < r < p(z,y)/2.
Therefore, by Proposition 6.8, J(z,y) < ¢;1J(z,y), whence the claim immediately follows. |

Lemma 6.10. Suppose that h is of Harnack-type. Let e € (0,1/4) be the constant from Lemmal6], and
0 > 1/2. Further, let 0 < 6y < €, and 0 < 01 < b2 < 03 < 04 be such that (93 — 62)(r) > ¥(dor) and
dap(r) < (er) for all r € (0,diam(D)). For xg € D, tg >0 and r € (0,dp(x)), define

Ql = (to,to + 54¢(7“)) X B(wo,égr), QQ = (to,to + (54¢(7“)) X B(.%'o,?“),
Qs = [to + 019(r), to + 629 (r)] x B(xo,857/2),  Qa = [to + 0s(r), to + darp(r)] x B(zo, o7 /2).

Let f : (tp,00) X D — [0,00) be bounded and supported in (ty,00) x (D \ B(xg, (1 + 0)r)). Then there
exists a constant Cy > 0 such that

BV f(Zr, ) < CoREW) f(Z,, ) for all (t, 1) € Qs, (2, 42) € Qu.

Proof. Without loss of generality we may assume that tg = 0. Fix g € D. For s > 0, we set
Bs = B(zo,s). Let (t1,y1) € Qs and (t2,y2) € Q4. By the Lévy system formula for the time-space
process Z we have

E(t2:92) f F(Zs,,) = E"2%2) f(ty — (1, At2), Xry Aty)

t2
— (t292) / Li<ry, dt fte —t,v)J (X, v)dv
0 D\B(x07(1+9) )

to
= / dt / (tg—t,v)E(tQ’yQ) (1<, J(Xp,0)] dv
0 D\B(zo,(1+6)r -

to
-
to
= / ds/ (s,v)dv/ qB, (ta — s,y2,2)J(z,v)dz (6.17)
0 D\B(zo,(1+6)r r

t1
> / ds / F(s,0)dv / 4, (t2 — 5y, 2)J (2, v)d=.
0 D\B(zo,(14+0)r) B<52r

0

QU

S/ (S U)E(t27y2) |:1t2—S§TBT J(Xt2—87v):| dv
D\B(zo0,(140)r)

For s € [0,t1] it holds that ¥(dor) < (03 — d2)1p(r) < to —t1 < tg — s < dgtp(r) < t(er), hence
63r < edor < e~ L(ty — s). Therefore, for any 2 € Bsz,, by Lemma [6.1 and B.2), ¢3,(t2 — 5,y2,2) >
c1V(zo, vt (ta — 8)) 71 > 1V (wg, er)~L. We conclude that

t1
E(tQ’yQ)f T ) > L/ ds/ f(s,v dv/ J(z,v)dz. 6.18
(Zra,) V(zo,er) Jo D\B(wo,(140)r) (s:) B (z:0) (6.18)

2
607"

Now, by using the Lévy system formula again, similar to (6.I7]) we obtain that

t1
B f(Zg,) = [ ds [ fo)de [ amg (0= sa,2) e 0)ds
0 D\B(z0,(140)r) B(%T 0"
t1
- )
0 B

t1
= / ds / 4B, (t1 —S,yl,z)dz/ f(s,v)J(z,v)dv
0 By2,\Bss2, /4 0" D\B(zo,(1+6)r)

07‘

B, (t1 — S,yhz)dz/ f(s,v)J(z,v)dv
o D\B(wo,(14+6)r)
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o,

Let 2z € By, \ Bss2,4- Since y1 € By, s, we have that 2p(zo,y1) < 63r/4 < p(y1,2) < 383r/2, which

implies by @3) that 1(p(y1,2)) > cath(r) > c265 't1. Hence by Proposition &5, BI) and B.2), we get
that for any s > 0,

t1
4dBo (tl - S, Y1, Z)dz/ f(S, U)J(Z’ U)d’U = / dS(Il + 12)
%" D\B(z0,(14+0)r) 0

363r/4

Cgtl 62_16352

V(y1, p(y1, 2)(p(y1,2)) — V(y1, p(y1, 2))
Cq4 Cq4 Cy

= Voo pn,2)) = Viwo,63r/4) = Vo, er)

QBégT(tl - $7y17z) < q(tl - Saylaz) <

Therefore,
Cs

L= V(xg, er) /196%T\336%T/4 4 /D\B(zo,(l—i—ﬁ)r) fls,0)J(z v)dv.
Let z € Bssa,4- Then by ([B.2)), we have
V(z,03r/4) > 6V (o, €r). (6.19)
We also have that 6p(z) > 7 — 362r/4 > (1 — 62)r, and for v € D\ B(xo, (1+ 0)r),

pz,0) 2 p(xo,v) = plz0,2) 2 1+ 0)r — == = — > (1-65)r.
Thus, for any w € B(z,82r/4), since §3 < 2/5,
1 1 &
(o) nap(e) = (1~ > B> (e, w).

From Proposition [6.8 we get that J(z,v) < ¢7J(w,v). Therefore, by (6.19)),

/
B
/ ;
B

q t1 — 8,91,2)dz 7/ Jw,vdw/ s,v)dv
36(2)7‘( 1 Y1 ) (V(Z’(Sgr/zl) B(z,82r/4) ( ) D\B(zo,(1+0)r) f( )
08107

—_— dw/ f(s,v)J(w,v)dwv.
V(zo,er) /B(z,égr/zl) D\B(zo,(1+6)r) (s,0)J(w, v)

It follows that

t1 t1
Etv) £( 7, = / ds(Iy + I) / ds/ dz/ s,v)J(z,v
I, 0 i+ 1) V(xo,er) D\B(z0,(1+0)r) fev)J (7 v)dv

t1
=
= —= ds/ 5,v dv/ J(z,0)dz < coE2%2) f(7. ).
V(xo,er)/o D\B($07(1+6)r)f( ) B (2,0) 9 f(Zs,)

60r

4By, (t1 — 87y172)d2/ f(s,v)J(z,v)dv
o D\B(x0,(1+0)r)

362r/4

IN

362r/4

a

Theorem 6.11. Suppose that h is of Harnack-type. Then there exist constants 6 >0, C' > 1 and K > 1
such that for all to > 0, x9 € D and R € (0, Ry) with B(zg,CR) C D, and any non-negative function u
on (0,00) X D which is parabolic on @ := (to,to + 40 (CR)) x B(xo, CR), we have

sup - u(ty,yn) < K dnf | oultz, g2), (6.20)
(t1,y1)€Q - (t2,y2)€Q+

where Q_ = [to+ 0 (CR),to+20¢)(CR)] x B(xg, R) and Q_ = [to+ 35 (CR),to+ 46¢)(CR)] x B(xg, R).

Proof. Using (3.1), (49), Lemmas 6.1l 6.3] 6.5 6.7 and Corollary the result can be proved
using the same argument as in the proof of [16, Lemma 5.3] (see also the proof of [19, Lemma 4.1]). We
omit details here. |
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7. EXAMPLES

Recall the definition of By(t,z,y) from [@2). For p,q > 0, we let B, (¢, z,y) := By, (t,z,y) where
hpq(t,x,y) is the boundary function defined in (B.8). We remind the reader that this is the typical
and most important boundary function. Recall that ¢(r) = 1/¢(1/®(r)), dv(z,y) = dp(z) V op(y) and
on(z,y) = op(x) A dp(y). Define m!  (r) = (v=1(t) V r) A p(z,y). For simplicity, we will use §(z) and
d(y) instead of dp(z) and dp(y), respectively.

The following lemma provides the list of estimates of By, 4(t, z,y) depending on the relationship between
the parameters p, q, 81, 82. The list is not exhaustive, but it suffices for our purpose. The proof of the

lemma is rather technical and consists of carefully estimating the integral defining By, 4(t, z,y).

Lemma 7.1. Let g > p > 0, p+q > 0. Suppose that (Poly-R1) holds with 51,82 € (0,1). Then, the
following estimates hold for all z,y € D, 0 <t < ¢(p(x,y)) such that ®(p(x,y)) < R1/8.

(i) If o < 1 —p—q, then
Bpq(t,x,y) ~ (1 A

(i) If 1 —p—q < 1 < o <1—gq, then

P 2(0(y)) \1®(p(z,y))
)> <M <I>(p(w,y))) Y(p(w,y))

(g B0 e B0() \e o)l (6 () P
Bralte) = (10 gees) (N goag) S0t (0 (2.9)) - ()
(i5i) If 1 —q < p1 < B < 1 —p, then
. B((r)  \ry, . B(O) \e®ml,(5(y)
Bralte) = (0 g ) (1 550/57) Sl 2
() If 1 —p < By < By <1, then
o B0@) \pf, . B(6(y) \eP(mL (0 (@,y)
Bpatt )~ (U =) (10 530 0) St n ) (73

(v) If 1 = B2 =1—p—q and p > 0, then
Bp,q(t,z,y) ~ <1 A M)p(l A _20(y))

>q<1>(p(x,y))p+qlog(e—|—q)( LIGC)) ). (14

(I)(p(xay) @(p(m,y)) mtaz,y((s\/(x’y)))
(vi) If By = B2 =1 —q and p =0, then
Bpq(t,z,y) ~ (1 A %)qu(p(x,y))q log (e + %) (7.5)
) z,Y

(vii) If p1 = P2 = 1 — q and q = p, then

By Ao D
@(p(az,y))) (1/\ ¢*1(1/t)*1> ®(p(z,y)) lg< + B (ot (6A(:c,y)))) (7.6)

(viii) If f1 = P2 =1 —q and ¢ > p > 0, then

Bpg(t,z,y) ~ (1 A

e R0 e B0 i Bt ()
Bralt: )= (10 g ) (7w y) 200198 (4 g O
(ix) If By = B2 =1 —p and ¢ > p > 0, then
BOG) N[y POW) g o s (o Pt (6()
Byt z,y) ~ (mm) <1AW> (ml, ,(8(y)))? log (HW). (7.8)

Proof. Fix z,y € D such that r := p(z,y) < ®1(R1/8), and t € (0,%(r)]. Let 65 := da(x,y) and
dv = dy(z,y), and note that §, < r+0,. We also note that since 52 < 1, by [47, Lemma 2.6, Proposition

2.9] and (2.2)),
w(s) ~¢(1l/s), se€(0,R1/2), (7.9)
which is equivalent to that w(®(s)) ~ 1 (s)~! for s € (0, P~ (Ry/2).
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If 6, > r, then by Lemma [5.1[i), (Poly-R;) and (7.9), we have

N 4P(r) N @(7“)
Bpq(t,z,y) _/ 71(1/t)71w(5)d8 =00 (7.10)

(i) This follows immediately from Lemma [5.1I{(i) and (Poly-R;).

(i) First assume ®(d,) > ¢~'(1/t)~!, which is equivalent to &, > ¢~ (t). If 5 > r, then m, () = r
so that (Z1)) follows from (ZI0). If 5, = d(z) < 7, then §(y) < 2r so that m, ,(dy) ~ d(y) and by Lemma
B.1Ki)-(ii) and (Poly-R;),

320w) Z))\P 40(r) (s
Bpq(t,z,y) ~ / (jt) 1<1/\ (o ))) w(s)ds + ®(5(z))P@(5(y))? / (s)

s 30(6(y)
=~ ©(6(x))P@(6(y)) _p¢(5(y))_1- (7.11)
Similarly, if 6, = d(y) < r, then m! y(5v) ~ §(z) an

3R V) . » A2 qp(s) .
Bpq(t;z,y) =~ /2¢1(1/t) 1 <1 A ) s)ds + ¢(0(z))" 2 (0(y))* /<I>(5(w)) 3p+qd
~ O(6(x)) 1D (6(y))" ( ()" (7.12)

Thus in the case ®(dy) > ¢~ 1(1/t)7Y, By 4(t, z,y) is comparable with the right hand side of (Z.T)).
If ®(6y) < ¢~1(1/t)~1, then by Lemma B.I(ii), (Poly-R;) and (Z.9]), we obtain
o(r) o o~ 1(1/t)~(-p=a)
Bpq(t,2,y) ~ ‘P(5(90))p‘1>(5(y))q/ s P w(s)ds =~ ®(6(x))P R (6(y))* :
2¢=1(1/t)~1 t
Since m}, , (6) = ¢~ !(t) in this case, we conclude (Z.T)).
(iii) First assume ®(6(y)) > ¢~ (1/t)" . If 65 > r, then ml,  (6(y)) = r so that (T2) follows from (ZI0).
If 0o = d(z) < r, then (IT]) holds by Lemma [5.1(i)-(ii) and (Poly-R;). If 6, = d(y) < r, then

e 30(8(y)) o e)ds [ d(5(z))\Pw(s) 8N¢(5(y))
Byt ’y)_/qul(l/t)l (s)ds + @(3(y)) /3@(6@)) (1/\ , ) s 6w

Thus when ®(3(y)) > ¢~ (1/t) ", since mf, , (6(y)) ~ 6(y), Bpq(t, z,y) is comparable with the right hand
side of (7.2).
If ®(6(y)) < ¢~ (1/t)~L, then by Lemma E.1((ii), (Poly-R;) and (Z.9), we get

4P(r) T p
Bya(t,,y) =~ 0(5(y))? /2 . (1 W) 50w (s)ds

(0(x)) \ry P(o(y) \eo'(1/H)!
~ (1 71(1/75)71) <¢*1(1/t)*1) :

Since m}, ,(6(y)) = ~1(t) in this case, we conclude (7.2).
(iv) If (I>(5/\) O(r ) then (73) follows from (ZI0). If ®(r) > ®(6,) > ¢ 1(1/t)~! and 55 = &(z), then
i)~

by Lemma B.II(i)-(ii) and (Poly-R:), we have
3%(dn) 49 (r) P @
By q(t,z,y) 2/ w(s)ds +<I>(5/\)p/ <1 A (5(3/)))‘1 “Pry(s)ds ~ (5/\).
20— 1(1/t)—1 30(5p) S w(é/\)

Similarly, if ®(r) > ®(55) > ¢~ 1(1/t)~! and 6, = 6(y), then

30(5,) 505 506,
Bp,q(t’x’y) = /2¢1(1/t)1 (1 A ( S(x)))ps_qw(s)ds ~ 1/J§5A§ .

If ®(65) < ¢~ (1/t)~!, then by considering the cases 5 = &(z) and d, = §(y) separately, we see from
Lemma [5.1](ii) and (Poly-R;) that

4P(r)

w(s)ds + B(3,)" /

3P(dn)

- ®(5(x)) \» D(0(y)) 12 '(1)
Bpq(t,z,y) ~ (1 A W) (1 A 3 ) ; .
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(v) Note that w(s) ~ sPT4~! for s € (0, Ry) in this case. If ®(6,) > ¢~ 1(1/t)7!, then by Lemma 5.1I(i),
we get in the case &y = §(z),

4®(rAS(z)) 4®(r)
Bpalt.0) = | (s AD(E))"s ™ Pds + BB D6 [ s
et 48 (rAsy)

~ B (r A 6(2))PD(r A 6(y)! + B(3(x))PB(5(y))" log % |
z,y\“V

Similarly, when §, = d(y), we also get the same conclusion. One can check that the last line in the
above is comparable with the right hand side of (T4). If ®(6y) < ¢ 1(1/t)7L, then B, ,(t,x,y) =~
P(6(z))P@(6(y))?log (2@(r)p~*(1/¢)) and (ml ,(0v)) = ¢~ 1(1/t)"L. Hence, (Z4) is valid.

(vi) Note that w(s) ~ s9~! for s € (0, R1/2) and that t(s) ~ ®(s)!7? for s € (0, R;/2) in this case. If
8(y) > r, then () follows from (ZIQ). If r > §(y) = ml, ,(6(y)) > ¢~'(1/t)~", then

32(8(y)) 49 (r) o
By q(t, z,y) ~ / 577 ds + @(5(3/))(1/ s lds ~ ®(5(y))? log <e + (r) )

26-1(1/t)~1 35(5(y)) (4(y))
If 5(y) < ¢~1(1/t)", then ®(m] ,(3(y))) = ¢~ (1/t)~" and
4P(r)
By q(t,z,y) ~ <I>(5(y))q/ s tds ~ ®(5(y))?log (e + @(r)qﬁ_l(l/t)).
Tt
(vii) Let Fi(t,z,y) be the function given in the right hand side of (Z.6]). Then, we have
©(37)PR(dv )PP~ (1/1)P, if ®(dv) < ¢~H(1/H)7
it = { SOV B LRGN, BT <80
®(65)Plog (e + @(dv)/P(6n)), if ®(55) > 1(1/t)7L, &y < 2,
®(r)P, if ®(6,) > ¢ 1(1/t)7! 5V > 2r.

The last comparison in (T.I3]) above holds since ®(d,) > (o — r) > <I>(7") in such case.
Note that w(s) ~ sP~! for s € (0, Ry) in this case. If ®(6,) < ¢~ (1/t)~!, then

4P(r)

Bpp(t,z,y) ~ <1>(6/\)p<1>(6v)p/ eyt 5P s ~ B(5,)PD(6)Po L (1/t)P.

If ®(6y) > ¢~ 1(1/t)~ > ®(5,), then by @A), ®(6y) < ®(5x +7) < ®(2r) < c®(r) so that

4<I>(7’/\5\/) 4<I>(7’)
By p(t, z,y) = ®(31) / s~ 1ds + ®(55)P (0 )" / 5P 1ds
26711/ 40(rAsy)
P (ov)”

P(Gp)P [log (2@(r Aov)o 1 (1/1)) +

If ®(55) > ¢~ 1(1/t)~ L, then

W} ~ ®(64)P log (e + ®(5v)p~ ' (1/1)).

4P (rAIA) 4P (rAdv) 4P(r)
Bpp(t,z,y) ~ / sPlds + <I>(5A)p/ s lds + <I>(5A)p<1>(5v)p/ 5P lds
“1(1/t)-1 4P (rASA) 4P (rAdv)
@(T A (5\/) @((5\/)1)
~ P p ZN RV p__T\TV/
~ q)(T'/\(S/\) +q)(5/\) lOg (I)(T/\(S/\) (I)((S/\) q)(r/\(sv)p

Now, by considering each case separately, (7.6]) follows from (7.13]).
(viii) If 6(y) > 2r (so that §(x) > ), then (Z.7) follows from (ZI0). If 2r > &(y) > ¥~ (t) and 6(y) > §(x),
then by the scaling property of ® and Lemma [5.11(i),
4P(rAd(y)) 4P(r)
Bpaltr) = [ (s A BT s + (55 s
Tt 42 (rnd(y))

= ®(r A(x) Ao(y))PR(r Ad(y)! P + @(5(x))PR(6(y)) @(r Ad(y)) ™"
~ ©(3(2))P(d(y)) """ = ©(8(x))" @ (my, , (3(y))) P L(3(y))"-
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If 2r > 6(y) > ¢~ 1(t) and 6(y) < 6(z), then §(x) > m  (6(y)) and 6(x) < 6(y) +r < 3r so that by the
scaling property of ®, we get

prq(t7 x’ y)

4P (rAI(y)) 4P (rAd(x)) 4P(r)
~ / s 1ds + B(5(y))" / s~ Lds + B(5(2))PD(5(y))? / 5P
11/ 13(rA3(y) 10(73(2)

~ B(5(y))7 + D(3(y)) log =

®(4(2))

o~ <1 A —>p<1>(5(y))q log <e + M )
®(mj ,(5(y))) ®(mf, ,(6(y)))

If 6(y) < ¢~ (t), then §(x) < d(y) +r < 2r so that m’,  (6(x)) ~¢~'(t) V §(z) and hence

20(4 (6)V5(x) o)
Byalt o) = 20" [ s+ 8030 [ —
et 28 (=1 (£)V(z))
~ (5(y)) log 22O g 5010 (5(y))0 (. (8(2))) .
T, 00) o

By considering the cases 6(z) > 1~ 1(¢) and &§(z) < 1»~1(t) separately, we conclude (7.7)).
(ix) Let Fy(t,z,y) be the function given in the right hand side of (7.6]). Then, we have

(

O (r)?P, if 6(x) > 2r,

B (5 ()" if 2 > 6(z) = o(y) = v (0),
Fatn) @@@W¢%u> it 20 > 5(z) > ¥ (1) > 8(y),

B(3())? log (e + /M()D if 20 > 6(x) > 61(1), 6(x) < 6(y),

m&mpo@+¢ 6 (1/0), i 8(x) < (1) < 8(y),

B(3() P (3(y))10 <uw it 3(x) v é(y) < ().

\

Now by considering each case separately, using similar arguments to the ones given in the proof of (viii),

we conclude (8. O

Example 7.2. Let d,a > 0, g € (0,1) and p1,p2 > 0 such that p; + p2 > 0. Suppose that for every
ro > 1, there are comparability constants such that

Viz,r)~rl zeD,0<r<r. (7.14)

Let YP be a Hunt process in D and S = (St)t>0 be an independent driftless subordinator with Laplace
exponent ¢. Suppose that the tail w of the Lévy measure of S satisfies

wir)~r=P, 0<r<r, (7.15)

. . h h
for some r; > 0. Suppose that the heat kernel pp(t, z,y) of VP satisfies either HKg™*"? or HK/*"?

with ®(r) = ¥(r) = r® where the boundary function hy, p, is defined as ([B.8). When HK%‘“’p2 is
satisfied, we also assume that ((.I4]) and (ZI5) hold for all » > 0. See Example 39 for concrete examples
of YP. By switching the roles of z and y if needed, without loss of generality, we assume that py > py.

Let q(t,z,y), J(z,y) and Gp(x,y) be the heat kernel, the jump kernel and the Green function of the
subordinate process X; := Yb{) respectively. Using our theorems in Sections [4] and Bl and Lemma [Tl we
get explicit estimates on ¢(¢,z,y), J(z,y) and Gp(x,y). We list them in terms of the range of p; + po,
similar to the format of the Green function estimates for Dirichlet forms degenerate at the boundary in
[44].

In particular, by putting p; = p2 = 1/2, we get Theorem [T
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We first give the Green function estimates. Define

1

T ah d> apf,
(z,y) = <1 A o) )apl (1 A oY) )am X e ov (z, y)
BEV= 0 ey p(x,y) log (” p(z,y) ) d=of,

[o(z,y) V oy (z,9)]*7~%, d < ap.
When Cjy = 0, by Theorem 5.8 and Example 5.5, for all z,y € D, if d > a(8 — p1 — p2), then

and if d < a(f8 — p1 — p2), then

iam hp,,
6(2)°76(y)°P2 log (e + o)) d = a(8 — p1 — py) and HKg™™ holds,
Gp(@,y) = § 6(x)P16(y)or, d < a8 —p1 —p2) and HK}]_;"I’p2 holds, (7-17)
o0, d < a(f —p1 —p2) and HK}J’I’p2 holds.

Now assume that Co = 1. If p; +p2 < 8+ 1, then using Theorem [B.8 and Example again, we see that

([I6) and (CI7) also hold. If p; +p2 = B+ 1 and p2 < 5+ 1 (so that (H2**) holds, cf. Example £.9]),
then by Theorem BIT], for all z,y € D,

Gp(z,y) ~ g(z,y) log (e + %) (7.18)

If pr+p2 > pF+1and py < f+1 (so, again, (H2**) holds), then by Theorem .10l and (5.I8]), for all
x,y € D,

—a(p1+p2—5-1)
e ) (7.19)

p(z,y)
The unusual form of the estimates in (ZI8)-(Z.19) should be compared with similar estimates of the Green
function obtained in a different context in [44, Theorem 1.1 (2),(3)]. Such estimates lead to anomalous

boundary behavior of the corresponding Green potential, cf. [I].
Next, we obtain estimates on J(z,y) from Theorem .J1 When Cj = 0, using the fact that

(1 280 (14 28 = (1 p 20y (2B g p e, (7.20)

S S S S

Gp(x,y) ~ (1 A

we see that for all z,y € D,

In(z,y)\or oy (x,y)\ar I(y) \epz—p1) 1
J(z,y) =~ (1A 2009 1 1 S
() ( p(z,y) ) < p(z,y) ) ( p(w,y)> p(x, y)teP
Now assume that Cy = 1. Using Lemma [ZT], the fact that B} (z,y) ~ B(0,z,y) and (Z20) several times,
we see that for all z,y € D, if p; + p2 < 1 — (3, then
on(z,y)\op oy (x,y)\ar I(y) \op2—p1) 1
J(z,y) ~ (1A 28 1A Y 1A -
) ( ple,y) ) < p(e,y) ) ( p(w,y)>
if p1 + po =1 — 3, then

J(z,y)
on(z,y)yer o Oy(a,y)\or 6(y) \p2=p1) ( p(z,y) )
1A 1A 1A log | e+ , p1>0,
~ 41d . < p(g((x,)y) )( /3() p(w,y)(> )< p(x,y)) dv(z,y) 1
pl,y) P (4 y) U=, plz,y _
< " p(x,y)) o <e+ o(y) ) =0
and if p; + p2 > 1 — (3, then
1
J(2,y) ~ ——— g X

p(x,y)
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SN0 s ol

<1 A p(x,y) ) log (6 + o(z) >’
In(z,y)\ar d(y) \e(=p1—=8)

x <M5p((x7;j))) " (;Ap(w?,jy)z ( )A’( |

(1 o )“ log (e + ™ xi — Bl ).

<1 A 6Ii((a;,z{y)))ap1 (1 A 0(y) )a(lém(ﬁ’)yl)og <e n () A p(z,y)
5'0((9;’ ‘Z{y)) oy g)/) a1-B-p2) /. 8(y) g

<1 : pA(x;y) ) (1 : pv(w,’y) ) (1 : p(w,y))

ZORAN VONDRACEK

p22p1>1_57
p2 >p1=1-7,
p2 >1— 08> pi,

p2=p1=1-7,

)’ p2:1_5>p1>0’

p2<1—ﬂ.

Below, we also assume that p; = ps = p for simplicity, and obtain heat kernel estimates from Lemma

[Z.1] Corollary 4.4l Theorem (4.7 and (7.20]).

(1) The following estimates hold for all (¢,z,y) € (0,1] x D x D.

(i) The case of p(z,y)*? < t. For all p > 0,
alt,,y) ~(1A
(ii) The case p(z,y)* > t. If Cy = 0, then

q(t,z,y) 2(1 A

we)” (1

on(,y) )ap(l

t1/(eB)

ov(z, y))aptfd/(aﬁ).

A oy (, y))‘)‘pp(x’

p(z,y) p(z,y) y)irer
and if Cy = 1, then
t
q(t,z,y) ~ oz, y)TroB x
( [} a(1-8)
5/\ (1’, y) ap 5\/ (.%', y) ap tl/( A) \ 5/\ (1’, y) (
(A Sesr) (8 Sre) 2@ y) ’ p>1=p
5/\ (1’, y) ap 5\/ (.%', y) ap (tl/(aﬁ) V 5\/ (.%', y)) A p(.%', y) _
(1 p(x,y) ) (1 £1/(B) ) og | et /@R 5 () R
onlz,y)\op ov(z,y)\op t1/@B) v/ 5 (z,y —a(p+h-1) 1-p
N AT (1) (A s A
5/\(1.7:[/) ap 5\/(-%',y) ap ( p(may) > 1_/8
1A 1A 1 ; = 5
( p(z,y) > ( p(z,y) ) BT B 8, () PT
5/\('Iay) ap 5\/(x’y) ap 1-— 5
1A 1A , pe(0,——)
( p(z,y) > ( p(z,y) ) =) (721)
(2) For all (t,z,y) € [1,00) x D x D, if HKEP holds, then
q(t,,y) = e OIS, (2,4)P6y (2, )™ = e "POP)5(2) 6 (2)°,
and if HK%p holds, then (i) and (ii) above hold for all (¢, z,y) € (0,00) x D x D.
Example 7.3. Let D := {x € R?: z; > 0} be the upper half space in R? and ¢ € [a — 1,a) N (0, ). We

recall the process Y'” from Example B.9] (b-4), which corresponds to the Feynman-Kac semigroup of the
part process ZP, in D, of the reflected isotropic a-stable process in D via the multiplicative functional
exp(— fg C(d,a, q)(ZSD);ads), where the positive constants C(d, o, q) is defined on [25] p. 233]. It is easy
to see that Y7 satisfies the scaling property and horizontal translation invariance, more precisely, for any
A > 0, the transition density pp of Y satisfies

pp(A%, Az, A\y) =

and

pD(t’x + (5’0)’y + (5’0)) = pD(taxay),

pp(t,z, y)A\ "%,

t>0,z,ye D

t>0,z,y€D,zeRIL
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Let S = (St)t>0 be a f-stable subordinator independent of the process Y, 8 € (0,1). Then the process
X = Yb{) falls into the framework of the present paper and thus we can get sharp two-sided estimates
on the jump kernel, heat kernel and Green functions of X. By using the scaling property and horizontal
translation invariance of pp above, we can show that the killing function x(z) of X is given by

k(x) = Cx;aﬁ, reD

for some constant C' € (0,00). One can check, by following arguments at the end of [43, Section 2], that
the jump kernel of the subordinate process X; := Y satisfies assumptions in [44, (A1)-(A4)] except in
the case ¢ = a(1 — ) /2.

Moreover, by comparing the Green function estimates in [44, Theorem 1.1] with the Green function
function estimates in Example [[.2] one can see that the value of the constant in the critical killing
potential is indeed related to the power of the decay correctly. Thus, instead of computing the constant
C of the killing function k(x), we see that the exponent p in [44] should be ¢ (and the constant « in [44]
is equal to af in the present case) and we can use [44, Theorems 1.2 and 1.3] directly. Therefore, by
checking the range of p = ¢/« in the jump kernel estimates in Example and [44, Theorems 1.2 and
1.3], from [44] Theorems 1.2 and 1.3] we obtain the following corollary. See [44, Theorem 1.2] for the
precise statement of the scale-invariant boundary Harnack principle.

Corollary 7.4. Suppose d > « and Y is the process defined above. Let B2 == BV 1/2. If q €
[ —1,0) N ((@B —1)1,aB/2) , then the scale-invariant boundary Harnack principle is valid for YP. If
q € [afia V(o —1),a), then the non-scale-invariant boundary Harnack principle is not valid for YyP.

Note that constants (81, 82) in [44] are (o« —af3,0) for a(1—p) < ¢ < o, (q,a—q—ap) for a(1—F)/2 <
g < a(l —B) and (q,q) for 0 < ¢ < a(l — B)/2. The case ¢ = a(l — 3)/2 does not fit exactly in the
framework of [43] 44], but by a slight modification of the boundary term, one can cover this case as well.
We omit the details.

The next example illustrates that any of the four terms in (£I12)) can not dominates all the other terms
in general.

Example 7.5. Let 0 < 81 <1 < B9 and S be a subordinator with tail Lévy measure w satisfying
w(r) ~ rPUArTB e >0,

Let ap > a1 > 0. Suppose that the heat kernel pp(t,z,y) of Y2 enjoys the estimate HKy; Ra/2 with
O(r)=r,  V(r)=r*vre r>0.

Examples of such Y can be found in [38, Theorem 1.4] where Dirichlet heat kernel estimates for a
large class of subordinate Brownian motions are treated. Recall that v(r) := ¢(1/®(r))~!. Note that
(Poly-o00) holds, and by (2.1]),

“Hif <1 abrif <1
r I r T I r
1/r) ~ ’ - ~ ) =
o(1/r) {r—l, if > 1, vir) {rm, it > 1,
11 /7)1 ~ r/B i e <1 V() ~ p/eab) i <1
1 if r>1, T Ve, if r>1.

Let q(t,z,y) be the heat kernel of the subordinate process X; := Yét) . We obtain global estimates on
q(t,x,y) from Theorem 3] and Lemma[T.Il Write the terms on the right-hand side of (£I2]) respectively
as

1 __ CtBu(t,a,y) 4, = Cod (/D) (e (/) e y)
LTV (xp(a, y)) (p(z,y)) ? V(z, p(z,9)¥(p(z,y))
s <1/t> oY) play)?  th(@(p(z,y)), 7, y)w(@(p(x,y)))

As = =y e (- ) - Vi ple,9)) |

T2
(t,z

(1) The following estimates hold for all ,y) € (0,1/¢(4)] x D x D.

() If p(z,y) < /(@181 then

o(x) \ar/2 o(y) \x/2 1
q(t, >, y) —(1 N m> (1 A tl/(a151)> V(x,tl/(alﬁl)) '
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(ii) Let Co = 0 and p(z,y) > tY/(@18)_ Tt is easy to see that A4 dominates As. Hence, we have that

0(x) /2 0(y) \o1/2 t
P(ﬁﬂay)) <1Ap(w,y)) V(z, p(z,y))[p(z,y)*1 5V p(x,y)* 5]

(iif) Let Cp = 1 and tY/(®18) < p(x,y) < 1. First observe that tw(¢~(1/t)~1) ~ 1. Thus it follows from
(E2), (Poly-R;) and (B.I0) that A; dominates Ay and Ay (hence also Asz). Further, note that for any
R; > 0, w satisfies (Poly-R;) with both the upper and the lower index equal to 5 € (0,1). Therefore
we see that (Z.2I)) holds with a = a1, 8 = f; and p = 1/2, after multiplying p(z,y)?V (z, p(z,y))~! in
each case.

(iv) Let Cyp =1 and p(x,y) > 1. Then A; dominates Ay, and A4 dominates As. Observe that

Byjo(t, x,y) 2/

20711/t

q(t,z,y) 2(1 A

1 4p(z,y)*1
h1/2(87$,y)361d3+/ hija(s,@,y)s P ds
1

and for all u > 0,

oo 1-PB2

p(z,y)*1 u
/ hiya(s,@,y)s™Pds < h1/2(u,$,y)/ sP2ds < =1
u u 2 —

h1/2(u’ xz, y) (722)
Hence, if 81 > 1/2, then

q(t,z,y) ~ t X [(1 A 0(z) >a1/2 (1 A M)al/z(l A thy((gA))m(lfﬁl)

Viz,p(z,y))p(z,y)* t1/(e1fy) t1/(cabr)
S(x) /2 S(y) /2 —anp }
+ (1A LA x,y) "N
( p(x,y)) < p(x,y)) o)
else if B < 1/2, then
q(t,z,y) ~ ! X {(1 A5(m))a1/2<1 /\5(y))a1/2(1 Amt (8,)) "
T Vi p(z,y))p(, y)e Y

()" g ) e

otherwise if 51 = 1/2, then

altz,y) = V(w7p(w7;))p(x,y)“2 8 [<1 " 5A(m’y)>al/z<1 A flv/g;%)al/z tog <e " %>
# (1 gt) " () o)

(2) The following estimates hold for all (¢,z,y) € [1/¢(4),00) x D x D.
(i) If p(x,y) < t'/%1 then

d(x) /2 0(y) /2 1
alt z,y) = (1 " tl/al) <1 " tl/a1> V(x, tl/oa)’ (7.23)

(ii) Let p(x,y) > t'/*1. Then by (Z.22), we see that A, dominates A; and

zi(/i)l )a1/2< fl(/i)l >a1/2 |:V(£C, p(x,cy(;gd(x, y)2 * V(x,tl/o1) xp < - cp(tf/’gl)2 >]
,0((59(;2/))041/2 <1 " pf:(g)y) )“1/2 Vi, p(z, y)t)p(w, y)oiie

pf:(c:,% )“1/2 (1 " pf:(g)y) )“1/2 Vi, p(z, y)t)p(w, y)ire
Note that, in case of Cp =1 and (2 > as/a;, we see from (7.23)) and (7.24) that

Q(t’x’y) XpD(Ct’x,y)a t> 1/¢(4)’ T,y € D.

alt,z,y) = (14

+<1/\

= pplct,z,y) + <1 A (7.24)
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