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Abstract. We show that definable sets of finite S1-rank in algebraically closed

fields with an automorphism can be measured.

1. Introduction

A difference field is a pair (K,σ) consisting of a field K and a distinguished
automorphism σ of K. Important examples of such fields are algebraic closures F̄p

of finite fields, equipped with a power of the Frobenius automorphism φq : x 7→ xq

(for q a power of p). We will denote the pair (F̄p, φq) by Kq.
The fundamental work of Ax [1] showed that pseudofinite fields (infinite models

of the theory of finite fields) can be characterised as fields F which are perfect,

quasifinite (Gal(F̄ /F ) ∼= Ẑ) and pseudo-algebraically closed (every geometrically
irreducible variety over F has an F -rational point). Moreover, every pseudofinite
field is elementarily equivalent to an ultraproduct of finite fields.

It has been a fruitful idea in mathematics to consider the finite field Fq as
the fixed field of φq in Kq. This was, after all, what motivated Weil’s idea of
a cohomological proof of his conjectures, and a stream of important results by
Grothendieck and Deligne.

Knowing that the fixed field of the model companion of difference fields (ACFA)
is a pseudofinite field, and having in mind Ax’s results, van den Dries, Macintyre
and Wood were tempted to formulate a more general conjecture: ACFA is in fact
the theory of fields Kq, and every model of ACFA is elementarily equivalent to an
ultraproduct of fields Kq.

Although this question is model-theoretic in nature, it soon becomes clear that
the answer transcends the boundaries of mathematical disciplines and requires
pushing the methods of algebraic geometry to the extreme (and beyond). Both
approaches to the problem, by Macintyre [12] and Hrushovski [9], have the same
basic idea, which we will try to sketch here.

It is known that the theory ACFA ([13], [2]) is axiomatised by the following
axiom scheme:

(1) (K,σ) is an algebraically closed field with an automorphism σ.
(2) For every variety X over K, and every variety W ⊆ X × σ(X) project-

ing generically onto X and σ(X), there is a point x ∈ X(K) such that
(x, σ(x)) ∈ W .

The fact that finite fields are asymptotically pseudo-algebraically closed is shown
using the Lang-Weil estimates. In the same way, to show axiom (2) above asymptot-
ically for fields Kq, we require some kind of a generalisation of Lang-Weil estimate
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for the number of points on a correspondence twisted by a high-enough power of
Frobenius.

Deligne’s conjecture, proved in [16], [4] is a result of this nature, as well as the
more general fixed-point formula used by Lafforgue in his work on the Langlands
programme [11]. However, due to certain properness restrictions, none of these
results is general enough for our purpose. Hrushovski proves a less qualitatively
precise, but more general quantitative estimate in [9], from which the ‘nonstandard
Frobenius’ conjecture is immediate.

In a somewhat different direction, using the classical Lang-Weil and the specific
quantifier elimination (where each definable set has a finite covering by a quantifier-
free set), the paper [3] establishes estimates for the number of points of definable
sets over finite fields. As a consequence of the uniformity in these estimates, it also
assigns a dimension and measure to definable sets in pseudofinite fields. Caught in
the fashion of studying measurability aspects of various structures, as well as the
increasing interest in motivic integration in the model-theoretic community, the
authors of the present paper have independently realised that a similar measurabil-
ity phenomenon can be deduced for ACFA, using Hrushovski’s twisted Lang-Weil
and essentially the same form of quantifier elimination. More precisely, we get the
following.

Theorem 1.1 (Main Theorem). Let ϕ(X,Y ) be a formula in the language of
difference rings, with X = (X1, . . . ,Xm) as parametric variables and with Y =
(Y1, . . . , Yn). Then there is a positive constant C and a finite set D of pairs (d, µ)
with d ∈ Z∪{∞}, µ ∈ Q+ ∪{∞}, such that in each field Kq and each x ∈ Km

q , we
have the estimate

∣

∣card(ϕ(x,Kn
q )) − µqd

∣

∣ ≤ Cqd−1/2,

for some (d, µ) ∈ D.
Moreover, for each (d, µ) ∈ D there is a difference formula ϕ(d,µ)(X) such that

for each Kq, the above estimate holds for ϕ(x,Kn
q ) with (d, µ) if and only if Kq |=

ϕ(d,µ)(x).

We must note here that although the framework of difference schemes developed
in [9] may be more appropriate for the task at hand, we choose to use mostly
elementary techniques of classical algebraic geometry together with several main
results from [9] considered axiomatically. Our hope is that this approach may find
a wider audience.

The organisation of the paper is as follows. In Section 2 we recall some classical
results on constructibility in algebraic geometry, and prove some new lemmas which
are not readily available in the literature.

In Section 3, we establish the estimates for the quantifier-free definable sets over
the fields Kq, using the twisted Lang-Weil. This is the hardest part of the work,
because extending the estimates to formulae with quantifiers works exactly as in
[3].

In Section 4, we thus establish the Main Theorem 1.1 and use it to we define a
dimension and measure for certain definable sets in a model of ACFA, and discuss
the relationship of this dimension to the known rank-functions.

A word about notation and language. We use scheme-theoretic language, which
is slightly unusual for a model-theoretic paper. In Section 2 this language allows
slightly more general constructibility results than can be formulated in the language
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of varieties. However, in sections 3 and 4, which contain our main results, everything
can be formulated in the language of varieties and we try to limit referring to
schemes as much as possible.

We are grateful to Ehud Hrushovski and Zoe Chatzidakis for numerous discus-
sions. The second author was supported by EPSRC grant GR/R37388/01 and in
part by a Marie Curie Fellowship.

2. Constructibility

We attempt to find a balance between the standard notation of algebraic geom-
etry and model theory.

The structure sheaf of a scheme X is denoted OX , and the residue field at x ∈ X
by k(x). If X is an integral scheme (reduced and irreducible), the residue field of
the generic point equals the function field of X. Given a scheme S, a variety over
S is a separated and reduced scheme of finite type over S. Given schemes X and S,
the set of S-valued points of X, denoted X(S), is the set of all morphisms S → X.
When S is the spectrum of a field k we usually just write X(k). We use the term
algebraic scheme for a scheme of finite type over a field.

For the reader coming from model theory, an affine variety X over an alge-
braically closed field k in our language corresponds exactly to the zero set of some
polynomial ideal and to the set X(k) of k-valued points of X. As most of our
results refer to such objects, there should be no problem with the language.

The algebraic closure of a field k is denoted by k̄. The geometric properties of a
scheme X over a field k refer to the properties of the scheme X ×k k̄ (X considered
over the algebraic closure k̄).

Families of varieties and schemes can be treated more precisely in algebraic
geometry than what is usually done in model theory. Given an S-scheme f : X → S
and a point s ∈ S, there is a natural map Spec(k(s)) → S, and the fibre Xs is
defined to be the fibre product X ×S Spec(k(s)). As a topological space, it can
be identified with f−1(s) (with topology induced from X) and it is equivalent to
the usual model-theoretic treatment of families: if our family X is defined by a
formula X(Y ;Z) ∧ S(Z), as a set, Xs is exactly the definable set obtained by
substituting parameters s for the variable Z. However, the algebraic definition
of Xs is richer, because we retain the structure sheaf on Xs. Even if we have a
map of varieties, considering fibres can quickly take us away from varieties into the
realm of nonreduced or nonseparated objects, as 2.10 below illustrates. This is the
reason why we prefer the scheme-theoretic language, at least in this section about
constructible properties.

We adopt the definitions from [5], [7]. Since we are primarily interested in
applications to varieties over a field, in our consideration of constructibility we
assume that all schemes are noetherian. However, many results can be generalised
to arbitrary schemes of finite presentation simply by replacing ‘constructible’ by
‘locally constructible’ below. We refer the reader interested in these issues to [7],
section 9.

Definition 2.1. (1) A subset of a noetherian topological space X is constructible,
if it is a finite union of locally closed subsets of X.

(2) A function h from a noetherian space X to a set T is constructible if h−1(t)
is constructible for all t ∈ T and empty except for finitely many values t.



4 MARK RYTEN AND IVAN TOMAŠIĆ

Proposition 2.2. A function h : X → T on a noetherian space is constructible if
and only if for every closed irreducible Y ⊆ X there exists a nonempty open U ⊆ Y
on which h is constant.

Corollary 2.3. Let X be a noetherian topological space on which every closed
irreducible subset admits a generic point. If h : X → T is such that h−1(t) is
constructible for every t ∈ T , then h is constructible.

Definition 2.4. We say that P(X, k) is a constructible property (of algebraic
schemes), if the following conditions are satisfied:

(1) If k is a field, X a scheme over k and k′ is an extension of k, P(X, k) holds
if and only if P(X ×k k′, k′) does.

(2) Let S be an integral noetherian scheme with generic point η, u : X → S a
morphism of finite type. For s ∈ S, let Xs := u−1(s) = X ×S Spec(k(s)).
Let E be the set of s ∈ S where P(Xs,k(s)) holds. Then one of the sets
E, S \ E contains a nonempty open set (and is therefore a neighbourhood
of η).

It is clear that a Boolean combination of constructible properties is again a
constructible property.

A similar definition to 2.4 should make sense for properties of several schemes,
morphisms between schemes, or constructible subsets. In particular:

Definition 2.5. Let P(f,X, Y, k) be an relation. We say that P is a constructible
property (of morphisms of schemes), if the following conditions are satisfied:

(1) If k is a field, f : X → Y a map of schemes over k, and k′ is an extension
of k, P(f,X, Y, k) holds if and only if P(f(k′),X(k′), Y(k′), k

′) does.
(2) Let S be an integral noetherian scheme with generic point η, X, Y two

S-schemes of finite type and f : X → Y an S-morphism. For s ∈ S, let
Xs := X ×S Spec(k(s)), Ys := Y ×S Spec(k(s)) and fs := f × 1 : Xs → Ys.
Let E be the set of s ∈ S where P(fs,Xs, Ys,k(s)) holds. Then one of the
sets E, S \ E is a neighbourhood of η.

The above definition is equivalent to the usual model-theoretic definition, as the
following proposition ([7], 9.2.3) shows.

Proposition 2.6. Let P be a constructible property of algebraic schemes (resp.
of morphisms of schemes), S a scheme, X, Y S-schemes of finite type, and f :
X → Y an S-morphism. Then the set E of s ∈ S for which P(Xs,k(s)) (resp.
P(fs,Xs, Ys,k(s))) holds is constructible. Moreover, if S is irreducible with generic
point η, one of the sets E, S \ E is a neighbourhood of η.

The moral of the whole story of constructible properties is that the behaviour of
a constructible property is “generically determined” by the generic point.

The following is an easy modification of [7], 9.3.1.

Proposition 2.7. Let P(X, k) be a constructible property of algebraic schemes.
Denote by P′(f,X, Y, k) (resp. P′′(f,X, Y, k)) the following relation: f : X → Y
is a k-morphism of k-schemes such that P(f−1(y),k(y)) for all y ∈ Y (resp. for
generic y ∈ Y ). Then P′ and P′′ are constructible properties of morphisms of
schemes.
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Recall that a finite algebraic scheme X over a field k is isomorphic to Spec(A),
where A is an artinian ring, which also happens to be a k-algebra of finite rank. This
rank we shall call the total rank of X. The separable rank of X is

∑

x∈X [k(x) : k]sep,
which equals the geometric number of points of X ([5], 6.4.5, 6.4.7).

Theorem 2.8. The properties of a k-algebraic scheme X listed below are con-
structible:

(1) X is empty.
(2) X is finite over k.
(3) dim(X) belongs to a given set Φ ⊆ Z∪{−∞}.
(4) X is geometrically irreducible/reduced/integral/connected.
(5) number of geometric components of X belongs to some Φ;
(6) X is geometrically normal/regular.
(7) X is finite of (total, separable) rank that belongs to some Φ.

Proof. The items (1)–(3), (4)–(5) and (6) are [7], 9.2.6, 9.7.7 and 9.9.5. For (7),
the case of separable rank is included in (5). Let us sketch the proof for the case of
total rank. The first property of 2.4 is [5], 6.4.6, so it remains to check the second.

Assume f : X → S is a quasifinite map with S integral noetherian with generic
point η. We need to show that the rank of the fibres is constant in a neighbourhood
of η. However, by localising S, we may assume that f is finite and even flat, by the
generic flatness theorem ([6], 6.9.1). It is well-known that the rank is constant in
that case ([15], III.10). ¤

Theorem 2.9. The following properties of maps between algebraic schemes are
constructible:

(1) surjective;
(2) dominant;
(3) separated;
(4) proper;
(5) radical;
(6) finite;
(7) quasi-finite;
(8) generically finite of degree (total, separable, purely inseparable) that belongs

to some Φ;
(9) an immersion (open, closed);

(10) an isomorphism.

Proof. All the properties except (8) can be found in [7] as 9.6.1. The item (8) follows
from 2.7 and 2.8(7), because when X → Y is a dominant generically finite map of
integral schemes, its (separable, total) degree is exactly the (separable, total) rank
of the generic fibre. The purely inseparable degree is also constructible being the
quotient of the total and the separable degree. ¤

Example 2.10. Let k be an algebraically closed field of characteristic p > 0, let
X = A1

k = Spec(k[x]) and let f : X → X be given by x → xp. The fibres of closed
points x ∈ X are non-reduced of rank p, and the generic fibre is integral of rank p,
which coincides with the degree of f .

The following is a well-known way of treating individual schemes as fibres of
families of schemes. In model theory, it corresponds to taking the canonical pa-
rameter for the variety (resp. morphism) and then writing the individual variety
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(resp. morphism) as a generic element of a family over the quantifier-free type of
the canonical parameter.

Lemma 2.11. Let S and S′ be irreducible varieties over Z (resp. Fp) with generic
points η and η′. Let X be an S-scheme of finite type and Y a separated S′-scheme
of finite type. Let f0 : Xη → Yη′ be a morphism. Then there exists an irreducible
variety S′′ of finite type over Z with generic point ν equipped with dominant maps
to S and S′ and an S′′-map f : X(S′′) → Y(S′′) such that the original f0 can be
identified with fν .

Proof. Let K := k(η), K ′ := k(η′) be the residue fields at the given generic points.
It follows from the assumptions and [6], 4.8.13 that there is a field of definition of
f0, denoted K ′′, of finite type over KK ′. In the spirit of [7], 8.1, there exists a
scheme S′′ with function field K ′′, as well as an S′′-map f : X(S′′) → Y(S′′) with
the required properties. ¤

There is an intimate connection between the existence of bounds on polynomial
ideals defining varieties under consideration and constructibility.

Definition 2.12. (1) The complexity of a variety X is the minimum (in the
lexicographical ordering) of the number, as well as the degrees, of polyno-
mials defining an open affine covering of X and the “gluing” maps between
them. Similarly we can define complexity for constructible sets and for
algebraic maps.

(2) We say that an algebraic-geometric operation is of bounded complexity if, for
a given complexity n, there exists an N such that for varieties of complexity
at most n the result of the operation is of complexity at most N .

Clearly, knowing that certain operations in algebraic geometry are of bounded
complexity has direct consequences for constructibility. This approach was pio-
neered in [17] and its use of nonstandard methods is of great importance for model
theory.

On the other hand, constructibility also has implications toward bounded com-
plexity:

Proposition 2.13. The following operations are of bounded complexity:

(1) taking the image of a constructible set by an algebraic map;
(2) taking the closure of the image of a constructible set;
(3) given a constructible property P, taking the constructible set E := {y ∈ Y :

P(Xy,k(y))}, for a map X → Y .

Proof. Let us prove (1) and (2) simultaneously. Let fi : Xi → Yi be ki-maps and
let Ei be constructible in Xi of bounded complexity. Suppose that the complex-
ity of fi(Xi) (resp. fi(Xi)) is unbounded. By taking the ultraproduct, we get a
map of ordinary varieties over the ultraproduct field K. For a model-theorist, the
proof terminates in one step by using Los’ theorem, because the projection of the
ultraproduct constructible set will be the projection for almost all i.

Alternatively, (by 2.11), the ultraproduct map can be considered as the generic
fibre of a map of S-schemes X → Y for S integral of finite type over the prime
subfield with generic point η. However, if we take a constructible (resp. closed)

subset Z of Y such that Z ∩Yη = fη(Eη) (resp. Z ∩Yη = fη(Eη)), by [7], 9.5.2 and
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9.5.3, it follows that there is a dense open subset of S on which Zs = fs(Es) (resp.

Zs = fs(Es)). By devissage on S we contradict the assumption of unboundedness.
For (3), let P be a constructible property, and assume Xi → Yi are ki-maps

of bounded complexity and suppose Ei are the corresponding constructible sets of
unbounded complexity. As above, take the ultraproduct and get the relevant map
of S-schemes X → Y , for S integral of finite type over the prime subfield. If we con-
sider X as a scheme over S×Y , by 2.6 we get that E := {(s, y) : P(X(s,y),k(s, y))}
is constructible. Then, for s in S, Es = {y ∈ Ys : P((Xs)y)}, which gives a bound
on the complexity of the latter sets. ¤

A similar proof shows that a constructible function of varieties or maps takes
only finitely many values when we bound the complexity. For example, there is a
bound on the number of geometric components of varieties of bounded complexity.

3. Quantifier-free case

A difference ring is a ring R with a distinguished homomorphism σ. As already
mentioned in the introduction, a difference field is a field K with a distinguished
automorphism σ. The language of difference rings, apart from the usual symbols
of the language of rings, contains an unary function symbol for σ, and we refer to
formulae in this language as σ-formulae.

Definition 3.1. Let (K,σ) be a difference field. Let X be some variety over K
and let W be a closed subvariety of X × σ(X). We introduce the notation for the
set of fixed K-points of the correspondence W twisted by σ:

XW σ

(K) := {x ∈ X(K) : (x, σ(x)) ∈ W (K)}.

Mostly we will apply this to the special case of fields Kq (defined in the Introduc-

tion), in which case we will denote this set by XW q

(Kq).

We make significant use of the following results of Hrushovski, appearing as 1.1B,
1.1 and 16.1 in [9].

Theorem 3.2. Assume the following.

(1) Let S and S′ be reduced, irreducible, separated schemes of finite type over Z

and let a (base change) map τ : S′ → S2 be also given. Let X be a scheme
over S. View X2 as a scheme over S2, and let W be a (S′-) subscheme of
X2×S2 S′. For L a field and s ∈ S′(L), denote τ(s) = (s1, s2) ∈ S2(L). We
will assume that Xs1

, Xs2
and Ws are varieties and view Ws as a subvariety

of Xs1
× Xs2

.
(2) We further assume that for s ∈ S′, Ws, Xs1

, Xs2
are geometrically irre-

ducible, the projection Ws → Xs2
is a quasi-finite map of purely insepa-

rable degree δ′, dim(Xs1
) = dim(Xs2

) = dim(Ws) = d, the total degree of
Ws → Xs1

is δ.
(3) Let t ∈ S(Kq), s ∈ S′(Kq) such that τ(s) = (t, φq(t)). In this situation, let

X
W q

s

t (Kq) = {c ∈ Xt(Kq) : (c, φq(c)) ∈ Ws(Kq)}.

Then there exists an open (Z or Fp) subscheme S′′ of S′ and a constant C > 0 such
that if s ∈ S′′(Kq) with τ(s) = (t, φq(t)), then

∣

∣

∣
card

(

X
W q

s

t (Kq)
)

− δ/δ′qd
∣

∣

∣
≤ Cqd−1/2.
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Since fixing the base change S′ → S2 determines some of the difference type of
the parameters of W , and we do not wish to develop the theory of constructibility
for difference schemes for the purposes of this paper, we opt for the following,
“bounded complexity” version.

Theorem 3.3. Let X be an affine variety over Kq, and let W ⊆ X × Xφq be
an irreducible subvariety. Assume dim(W ) = dim(X) = d, the map W → X is
dominant of degree δ and W → Xφq is quasifinite of purely inseparable degree δ′.
There is a constant C depending on the complexity of X and W (but not on q or
the parameters from Kq) such that

∣

∣

∣
card

(

XW q

(Kq)
)

− δ/δ′qd
∣

∣

∣
≤ Cqd−1/2.

Theorem 3.4. Let X be a smooth algebraic variety over a difference field (K,σ).
Let W ⊆ X×Xσ be a geometrically reduced and irreducible subvariety with dim(W ) =
dim(X) + e. Assume W projects dominantly to X and Xσ. Let Z be the differ-
ence scheme described by {x ∈ X : (x, xσ) ∈ W}. Then any component of Z has
transformal dimension at least e.

Remark 3.5. We leave the difference scheme properties from the theorem above
undefined, because they are beyond the content of this paper. We will use the
theorem to the following extent. If X and W over some Kq are as above and e > 0,

then XW q

(Kq) is infinite.

Next we show how to break up an arbitrary situation into pieces which all satisfy
the requirements of 3.3 or 3.4. We were subsequently informed by Zoe Chatzidakis
that our procedure is a variant of the construction appearing in [8].

Lemma 3.6. Let (K,σ) be a difference field, and let W be a subvariety of X×Xσ.
Then we can find, by operations of bounded complexity, geometrically irreducible Xi

and distinct geometrically irreducible Wi, i < n, as well as numbers di, ei, δi, δ
′

i ∈
Z∪{∞}, i < n, such that:

(1)

XW σ

(K) =
⋃

i<n

X
W σ

i

i (K);

(2) for every i < n, Wi projects dominantly onto Xi and Xσ
i ;

(3) when di := dim(Wi) = dim(Xi) then moreover Wi → Xi is generically
finite of degree δi ∈ Z, and Wi → Xσ

i is quasifinite of purely inseparable
degree δ′i ∈ Z.

(4) when ei := dim(Wi)− dim(Xi) > 0, Xi is smooth and, by 3.4, we stipulate
δi = ∞.

If W and X come from families like in 3.2(1), there is a finite set D of sequences
∆ = (di, ei, δi, δ

′

i : i < n) such that for every s ∈ S′(K) there is a ∆ ∈ D such that
Ws “decomposes in a ∆-way”.

Moreover, for each ∆ ∈ D, there is a σ-formula ϕ∆(z) such that Ws ⊆ Xt×Xσ(t)

decomposes in a ∆-way if and only if ϕ∆(s).

Proof. We argue by induction on geometric number of components and dimension
of W , as well as the complexity of W and X. We repeat the same procedure for all
geometric components of W so we may assume that W is geometrically irreducible.
Let X1 and X2 be closures of projections of W in X and Xσ, respectively. It is
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clear that X1 and X2 are again geometrically irreducible and we can distinguish
the following two cases.

When X1 6= σ−1(X2), we replace X by X ′ = X1 ∩ σ−1(X2) and W by W ′ =
W ∩ X ′ × σ(X ′) and we continue by induction.

Let us consider the case X1 = σ−1(X2). Clearly dim(X1) ≤ dim(W ). If
dim(X1) < dim(W ), we write X1 as a disjoint union of Xo and Xs, where Xs

is the singular locus (a proper closed subset). Then the sets W ∩ Xo × σ(Xo) and
W ∩Xs×σ(Xs) are either as required or we proceed by induction (the mixed terms
Xs × σ(Xo) and Xo × σ(Xs) have no points of the form (x, σ(x)).

If dim(X1) = dim(X2) = dim(W ), let X ′

2 ⊆ X2 be open such that the map
Wη → Xη2

is quasifinite on X ′

2 and let C be the (proper closed) complement of
X ′

2 in X2. Then W decomposes as W intersected by σ−1(X ′

2) × X ′

2, σ−1(C) × C
and mixed terms. Mixed terms have no points of form (x, σ(x)), the first one is as
required and the second one is of lower dimension and we continue by induction.

It is clear that the induction finishes in boundedly many steps since all the
operations involved are of bounded complexity:

(1) cartesian products and intersections just by definition;
(2) taking geometrically irreducible components by [17];
(3) Zariski closures of images by 2.13(2);
(4) taking an open set where a generically finite morphism is quasifinite by

2.13(3) and 2.8(7).
(5) taking the geometric nonsingular locus of a variety, by 2.13(3) and 2.8(6).

Therefore, in view of 2.9, there exists the sought-after formula ϕ∆ describing the
situation. ¤

Corollary 3.7. Let X → S, W → S′, S′ → S2 be as in 3.2(1). Then there exists
a constant C > 0 depending only on the complexity of X and W and a finite set
D of pairs (d, µ) with d ∈ Z∪{∞}, µ ∈ Q+ ∪{∞} such that for large enough q, for
s ∈ S′(Kq) mapping onto (t, φq(t)) ∈ S2(Kq), there exist (d, µ) ∈ D such that

∣

∣

∣
card

(

X
W q

s

t (Kq)
)

− µqd
∣

∣

∣
≤ Cqd−1/2.

Moreover, for every (d, µ) in D, there is a σ-formula ϕ(d,µ)(z) such that the
above estimate holds for s if and only (Kq, φq) |= ϕ(d,µ)(s).

Proof. Given an s ∈ S′(Kq), apply the previous lemma to get the ‘components’ Wi

and Xi, i < n. If there is one i where dim(Xi) < dim(Wi), the required number of
points is infinite by 3.5 and no discussion is required. Thus we may suppose that
dim(Xi) = dim(Wi) for all i < n and all the second projections are quasifinite.

We proceed by induction on d := max{dim(Wi) : i < n}. By rearranging the Wi

we may assume that dim(Wi) = d for i < m and dim(Wi) =: di < d for m ≤ i < n.
We claim that the numbers d and µ :=

∑

i<m δi/δ′i are as required. Indeed, if we
denote by Ni,q the generic number of counted Kq-points coming from Wi, we have:

(1) for i < m,
∣

∣Ni,q − (δi/δ′i)q
d
∣

∣ < Ciq
d−1/2;

(2) for m ≤ i < n,
∣

∣Ni,q − (δi/δ′i)q
d
∣

∣ < Ciq
d−1/2;

(3) the number of double-counted points comes from Wi ∩ Wj for i 6= j < n,
which are of dimension less than d.

It is clear that the required formulae ϕ(d,µ) can be obtained by Boolean combina-
tions of ϕ∆ from 3.6. ¤
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Corollary 3.8. Let θ(X,Y ) be a quantifier-free formula in the language of differ-
ence rings. Then there exist positive constant C such that for each x ∈ Kq with

large enough q there exist µ ∈ Q
+ ∪{∞} and d ∈ Z∪{∞} such that

∣

∣card(θ(x,Kq)) − µqd
∣

∣ ≤ Cqd−1/2.

Moreover, the function x 7→ (d, µ) is definable in the language of difference rings
(and it has finitely many values). We denote by θ(d,µ)(X) the σ-formula which in
each Kq (with large enough q) defines the set of x such that the above estimate holds
for the pair (d, µ).

Proof. By the methods of [3], 3.5, we may assume that the formula is positive
quantifier-free, i.e. just a system of σ-polynomial equations.

Let us describe the folklore translation of such a system into a correspondence
([13]). We may assume the system is of the following form:

fi(X;Z, σZ, . . . , σmZ) = 0, for i < n,

where X is a tuple of parametric variables. The solutions of this system are clearly
in bijection with the solutions of the system

fi(X;Y0, . . . , Ym) = 0, i < n
Yj+1 = σYj , j < m.

Let Y = (Y0, . . . , Ym−1), and denote by f̃i the polynomials such that f̃i(X,Y, Y ′) =
fi(X,Y, Y ′

m−1), for i < n. If we let S′ = Ak, where k is the length of the parametric

variable X, and if we let W be the S′-variety defined by polynomials f̃i, for a given
x ∈ S′, the solutions to the system above is in bijection with the set

{y ∈ Am : (y, σ(y)) ∈ Wx}.

Thus we have obtained a correspondence W → S′ equipped with two projections
into the affine space X := Am (over say S = Spec(prime subfield)). This brings us
into the setup of the previous corollary. ¤

Remark 3.9. If we had a refinement of 3.4, which guaranteed that the transformal
dimensions are exactly e, our considerations would allow extracting even the trans-
formal dimension as a definable invariant, although the interesting case for us is
when it is 0, when we get some form of the total dimension and measure.

4. Main theorem and applications

Using the particular form of quantifier elimination for ACFA ([2], 1.6, 1.8), to-
gether with the fact that ACFA is the theory of fields Kq ([9]), we obtain the
following.

Fact 4.1. Every formula ϕ(X,Y ) (X parameter variables) in the language of dif-
ference rings is equivalent, uniformly for all fields Kq, to a disjunction of formulae
of the form

∃Tθ(X,Y, T ),

where T is a single variable, θ is quantifier-free, and there is a number e such that
for every Kq, and all x ∈ Km

q and y ∈ Kn
q , the number of t ∈ Kq with θ(x, y, t) is

at most e.
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This is exactly the form of quantifier elimination needed to axiomatically transfer
the proof of [3], 3.7 to our context, using our result 3.8 for quantifier-free formulae.
Thus we may consider our Main Theorem 1.1 proved.

Now we are ready to interpret the numbers d and µ as an appropriate kind of
dimension and measure in a model of ACFA.

Let ϕ(X,Y ) be a formula, and let C, D be as in the theorem above. Then,
for all fields Kq with sufficiently large q, and for every tuple x ∈ Kn

q , there exists

a unique pair (d, µ) ∈ D with | card(ϕ(x,Kn
q )) − µqd| ≤ Cqd−(1/2). Hence, there

exists a unique pair (d, µ) ∈ D such that Kq |= ϕ(d,µ)(x). Therefore, by the main
result of [9], the same will be true in a model of ACFA as well.

Definition 4.2. If S is a set definable in a model K of ACFA by the formula
ϕ(x, Y ) for x ∈ Kn, then we define the pair (d(S), µ(S)) to be the unique pair
(d, µ) ∈ D such that K |= ϕ(d,µ)(x).

Proposition 4.3. Let K be a model of ACFA.

(1) For a definable set S, d(S) = 0 if and only if S is finite.
(2) If S and T are disjoint definable sets, then

µ(S ∪ T ) =











µ(S) + µ(T ) if d(S) = d(T ),

µ(S) if d(S) > d(T ),

µ(T ) if d(S) < d(T ).

(3) Let f : S → T be a definable function. If for all a ∈ T , d(f−1(a)) = d
then d(S) = d(T ) + d. If additionally for all a ∈ T , µ(f−1(a)) = m, then
µ(S) = mµ(T ).

(4) (The S1-property). Assume that d(ϕ(Y )) = n. For any formula ψ(X,Y ),
there is no infinite sequence (ai)i∈I such that for all i ∈ I, d(ϕ(Y ) ∧
ψ(ai, Y )) = n and for all i 6= j ∈ I, d(ϕ(Y ) ∧ ψ(ai, Y ) ∧ ψ(aj , Y )) < n.

Proof. The properties (1)–(3) are obtained by arguing over fields Kq for large q by
straightforward counting arguments. For the property (4), suppose there is such
an infinite family. Then µ(ϕ(Y )) ≥

∑

i µ(ϕ(Y ) ∧ ψ(ai, Y )), which is a contradic-
tion, because all the numbers in the sum belong to a finite set of positive rational
numbers. ¤

Remark 4.4. As already remarked in 7.13 of [2], any definable rank satisfying the
properties above, if finite, will bound the S1 and therefore SU -rank. So we can
argue that we have obtained a measurability result for formulae of finite S1-rank in
ACFA.

The function degσ from loc. cit. satisfies these properties, and by careful analysis
of what we have done, we get:

Proposition 4.5. Let S be a definable set in a saturated model K of ACFA, defined
over a (small) set A. The rank d defined above is equal to

sup{degσ(x/ aclσ(A)) : x ∈ S}.

Proof. It is easily seen that the set defined using X and W of dimension d like in
3.3 has degσ exactly d.

Thus, d and degσ agree on quantifier-free σ-sets. Moreover, since both behave
well with respect to finite covers, they coincide for all definable sets. ¤
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Remark 4.6. Let K be a model of ACFA and let S ⊆ Kn be a definable set. By
Def(S) we denote the set of all definable subsets of S. The µ from above induces a
finitely additive measure µS on Def(S) by:

µS(T ) :=

{

µ(T )/µ(S) if d(T ) = d(S),

0 if d(T ) < d(S).

Remark 4.7. To tie in our results with those of [3], suppose (K,σ) is a model of
ACFA. It is well-known ([13], [2]) that the fixed fields Fk of σk are pseudofinite
fields. Thus, by [3], each Fk has an appropriate dimension/measure pair (dk, µk).

Clearly, if S ⊆ Kn is a set definable in the language of rings, (dk(S), µk(S))
coincides with our (d(S ∩ Fn

k ), µ(S ∩ Fn
k )) from 4.2.

Remark 4.8 (Stable finite dimensional reducts of ACFA are locally modular). The
measurability of the finite dimensional part of ACFA in 4.6 clearly implies the
following notion of unimodularity in the sense of Hrushovski.

Let A and B be finite-dimensional definable sets in ACFA. Let f1 and f2 be
definable surjections from A onto B, with constant finite fibre sizes k1, k2 ∈ N

respectively. Then k1 = k2.
Now let R be a finite dimensional stable reduct in ACFA. Since ACFA is super-

simple, R is superstable of finite rank. Furthermore, R must also be Hrushovski
unimodular. Then, by the main result of [10], all the minimal types of R are locally
modular.

Remark 4.9 (Finite simple groups). Macintyre and Hrushovski both remarked
that one can interpret asymptotic twisted simple groups of Lie type (2B2,

2G2,
2F4) inside ACFA. The first author has made this concrete in upcoming work;
he shows that the families of finite simple group of the above type are uniformly
bi-interpretable with families of finite difference fields. The latter appear asymp-
totically as definable sets inside models of ACFA. Using [9] the asymptotic theories
of the above families of finite simple groups are determined. Furthermore, for any
collection of finite simple groups of Lie type (twisted or untwisted), uniform esti-
mates in the same form as those in 1.1 are obtained for any family of sets definable
in the language of groups.

References

[1] James Ax. The elementary theory of finite fields. Annals of Mathematics (2), 88:239–271,

1968.
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