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2. predavanje
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Sadržaj predavanja

Primjer iz prakse:

Numerički model hladenja u pećima za prokaljivanje
plinom.
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Uvod

Original je prezentacija pod naslovom:

“A Numerical Model of Cooling in Gas–Quenching
Systems”

s konferencije

“International Conference on Numerical Analysis and
Applied Mathematics” (ICNAAM 2005),

Hotel Esperides, Rodos, Grčka, 16–20. 9. 2005.

Osnovni stručni termini:

forge = kovati,

quench = gasiti (vatru).
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Main topics — Overview

Introduction — industrial (or practical) background of
the problem of “Cooling in Gas–Quenching Systems”.

Formulation of the problem in terms of a temperature
distribution model in 3D.

Model reduction from “intractable” 3D geometries to
standard geometries in 1D.

Numerical solution of 1D problems and implementation
of some steps.

Typical example and numerical results.

Conclusion with some comments on applicability.
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Introduction — Heat treatment

Heat treatment of metal parts is used to obtain required
properties of treated materials. Primary target is to

increase hardness of steel alloys.

This process is traditionally known as forging.

The final part of the treatment is quenching, or rapid cooling
— traditionally, done in water or oil.

Modern technology also uses

vacuum furnaces with high–pressure gas quenching

to cover a wide variety of heat treatment processes.
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Introduction — Furnace

A typical furnace cross–section is:
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Introduction — Examples (I)

Typical examples of heat treated materials are:

aircraft engine parts,

car parts (transmission, gear box),

high quality tools.

Some of them are illustrated on the next few slides.
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Introduction — Examples (II)

Vacuum–brazed turbine blades (in front of the furnace):
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Introduction — Examples (III)

Plasma–carburized synchronizing rings:
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Introduction — Examples (IV)

Vacuum–hardened gear parts:
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Introduction — Problem and motivation

Rapid quenching can cause distortion of parts and
development of residual stresses.

In extreme cases, parts may crack during quenching!

Current state of heat treatment is still very much based on

practical experience and technical know–how,

despite recent advances in technology.

Our immediate goal in this work is to develop techniques to

predict the temperatures (and stresses)

in parts being heat treated and quenched.
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Introduction — Goal

In the long run, this will be used in a “quenching expert
system” which will be able to:

predict the quality of the treated parts,

plan quenching conditions for future treatments,

optimize time, energy, cost — increase productivity.

The first steps in this process, as usual, are:

selection of a tractable physical and mathematical model,

extensive and accurate data gathering,

model verification.
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Temperature distribution model (I)

A part being quenched is represented by a domain Ω ⊂ R
3.

Temperature distribution in this part is determined by the
heat conduction equation (HCE)

ρc
∂T

∂t
= div(λ grad T ),

with the following notation:

x ∈ Ω — space coordinates, each in [m],

t ≥ 0 — time [s],

T = T (x, t) — temperature [◦C] or [K].
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Temperature distribution model (II)

Physical properties of the part are:

ρ — density [kg/m3],

c — specific heat [J/(kg K)],

λ — thermal conductivity [W/(m K)].

The initial condition is the uniform temperature distribution

T (x, 0) = T0, x ∈ Ω.

(Realistic assumption — after the initial heat treatment, just
before quenching, which starts at t = 0).

Typical values of T0 can be as high as 1100 ◦C.
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Temperature distribution model (III)

Note: Because of the temperature range involved, all physical
properties

ρ, c, λ

are temperature dependent, and cannot be treated as
constant. The whole problem is nonlinear!

Boundary conditions should represent the flow of thermal
energy between

the surface of the material (∂Ω) and

the quenching medium — cooling gas, blown at high
speed and pressure.
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Boundary conditions (I)

Our model is the Newton’s law of cooling on the boundary ∂Ω

λ
∂T

∂n
= −α (T − Tx) ,

where:

n — outer normal vector on ∂Ω,

Tx — temperature of the cooling gas [◦C] or [K],

α — Newton’s boundary heat transfer coefficient
α — [W/(m2 K)].

Generally, both Tx and α depend on (x, t) on ∂Ω.
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Boundary conditions (II)

In this model of boundary conditions

Tx can be regarded as known (say, measured),

but α is unknown.

In other words, to use this model, we first have to find α, or

solve the inverse problem!

One does not bother with solution of inverse problems, unless
there is a very good motivation for doing so.

So, what do we expect to achieve by finding α?
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Why α?

Our basic assumption is that

α represents the overall quenching conditions quite well,

and can be used as a basis of an “expert quenching system”.

We also expect that α (mildly) depends on

material and geometry of various parts in the same load,
and

position of a particular part inside the chamber, due to
somewhat different cooling conditions (gas flow).
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Model verification

Of course, all these assumptions have to be verified in practice.

By gathering enough data for

various loads,

geometries and

positions,

we may be able to automatically optimize the quenching
conditions.

This outlines our global strategy towards the goal of an
“expert quenching system”.
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Solution of the inverse problem

How to calculate α for a particular part, under particular
cooling conditions?

The global numerical procedure is:

measure temperatures near, or at the surface of the part,

use these measurements as Dirichlet boundary conditions
and solve the HCE,

extend or extrapolate the solution towards the boundary
(if necessary),

calculate α via numerical differentiation.
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Model reduction

Unfortunately, it is almost impossible to measure any
boundary condition in a 3D space (intractable model)!

Therefore, we have to make one more simplification:

reduce the intractable 3D model to one of the standard
(and tractable) 1D models.

Two basic geometries which allow 1D models are:

infinite plates,

infinite cylinders.

We shall describe the α calculation procedure for “infinite”
plates. The procedure for “infinite” cylinders is quite similar.
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Infinite plate model (I)

In the infinite plate model we have:

a thin lying steel plate,

initially heated to the uniform temperature T0,

cooled by gas blown from above the plate.

The gas then passes through a heat–exchanger (HE) and
cools, before being blown again from the top.

The model situation is illustrated in the following figure,
which shows

the cross–section of the plate, and

the positions of the temperature measurement devices.
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Infinite plate model (II)

x = b1

x = a1

x = 0

x = a2

x = b2

unknown α1 (bottom)

Tn1
measured near–bottom temperature

Tc measured center/core temperature

Tn2
measured near–top temperature

unknown α2 (top)

Tx1
measured gas temperature before HE

Tx2
measured gas temperature after HE

Direction of cooling

solution extension
or extrapolation
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Measured temperatures (I)

The model itself requires only 4 measured temperatures

Tn1
, Tn2

, Tx1
, Tx2

.

In practice, we also measure Tc at the core, which is taken as a
reference, to check the results.

All temperatures are measured at discrete times,

usually 1 s apart, but can be up to 10 s in some cases,

until some final time tfinal, typically 1800 s,

and rounded to the nearest ◦C.
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Measured temperatures (II)

Note that accurate measurement of surface temperatures (at
b1 and b2) is virtually impossible.

The measurements are taken at points a1 and a2 beneath the
surface (so b1 < a1, and a2 < b2).

The solution has to be extended from [a1, a2] to [b1, b2]. This
can be done by

the quasi–reversibility method of Lattès and Lions, or

simple extrapolation, if the depths |bi − ai| are small,
with respect to the whole thickness b2 − b1 of the plate.

Experiments show that simple extrapolation is sufficient for
depths ≤ 10% of the thickness. Works up to 20%.
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Numerical solution (I)

The actual computation is performed in two phases.

Phase 1: α calculation (inverse problem), t ∈ [0, tfinal]:

solve the HCE on [a1, a2] with measured temperatures
Tn1

and Tn2
as boundary conditions,

extend or extrapolate the solution to [b1, b2],

calculate α1, α2, using measured cooling gas
temperatures Tx1

and Tx2
, respectively,

check errors in calculated core temperature with respect
to Tc (reference point).
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Numerical solution (II)

Phase 2: Model verification (direct problem), t ∈ [0, tfinal]:

solve the HCE on [b1, b2] with the law of cooling
boundary conditions, using calculated α1, α2

(from Phase 1),

check errors in calculated temperatures at a1, core and
a2, with respect to Tn1

, Tc and Tn2
(reference points).
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Numerical solution (III)

Accurate and efficient implementation of both phases involves
several interesting numerical problems.

All measured temperatures (except Tc) have to be
smoothed before use. This is done by

cubic spline least–squares approximation (Dierckx).

The same applies to all calculated α(t) values.

The nonlinear implicit method is used to solve the HCE
(in both phases), with simple iterations per time–step.

Numerical differentiation (needed for α) is based on
low–degree polynomial least–squares approximation (not
interpolation).
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Numerical example — Data (I)

A number of experiments has been carried out with thin
plates and thin cylinders.

As an example, we take a lying steel alloy plate.

Dimensions of the plate are: 20 cm × 20 cm × 5 cm, or

b1 = −0.025 m, b2 = 0.025 m.

Near–surface temperatures Tn1
and Tn2

are measured at
the depth of 4.5 mm, so

a1 = −0.0205 m, a2 = 0.0205 m.
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Numerical example — Data (II)

All measured temperatures have 184 data points, with
∆t ≈ 10 s.

Final time: tfinal = 1871 s.

Initial condition: T0 = 1099 ◦C.

Cooling conditions: Nitrogen N2, blown from above,

at fan speed of 3000 rotations per minute,

with varying pressure:

6.0 bar for the first 900 s,

3.2 bar later on.

This change in pressure should be reflected in α.
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Numerical example — Data (III)
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Numerical example — Data (IV)
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Numerical example — Results (I)
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Numerical example — Results (II)
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Numerical example — Results (III)

0 500 1000 1500

−10

−8

−6

−4

−2

0

Time t [s]

Phase 1: Errors in core temperature Tc

E
rr

or
in

T
c

[◦
C

]

ZR2 2009, 2. predavanje – p.37/48



Numerical example — Results (IV)
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Numerical example — Results (V)
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Numerical example — Results (VI)
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Comments on the results (I)

These comments apply generally to all experiments that have
been carried out.

Calculated errors refer to original measured temperatures, so
they include:

smoothing of measured temperatures,

numerical solution of the nonlinear HCE (with simple
iterations),

smoothing of calculated α values.
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Comments on the results (II)

Calculated errors in the core temperature Tc are almost equal
for both phases. In other words,

the change of boundary conditions between two phases
and α smoothing, together, introduce very small
(negligible) errors.

However, the errors themselves are not negligible.

We have an over–estimate of Tc — the core cools more
quickly than predicted (which is good).

This is probably due to inaccurate physical properties at
high temperatures.
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Comments on the results (III)

We had to use very crude approximations, because

accurate data (especially for c) are very hard to get.

This is a problem for national standard institutes!

In Phase 2, calculated errors in near–surface temperatures Tn1

and Tn2
are mostly initial smoothing errors, so

α calculation (in Phase 1) is quite accurate and
smoothing errors in α are really negligible.

These results confirm that calculated α curves can be used to
predict temperatures, or

1D model works on “near 1D” geometries.
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Conclusion (I)

For practical applications, this 1D model has many
deficiencies.

On the other hand, 3D (and even 2D) models are out of
question for everyday use, due to:

lack of data,

computational cost (time).

To minimize some of 1D model deficiencies:

a cylindrical “flux–sensor” has been built for data
gathering in all production loads (charges).

ZR2 2009, 2. predavanje – p.44/48



Conclusion (II)

The “flux–sensor”:
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Conclusion (III)

Some advatanges of the “flux–sensor”:

a few of them can be placed at different positions inside
the chamber,

calculated “benchmark” α curves for each load are stored
in a data base which is used for quenching optimization.
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