POLUGRUPE

Ovo je forma:
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a ovo je objekt kojeg trebamo iz osnova o aproksimacijama. An element u € W4 (Rd)
does not belong necessary to E, (R, Rd). In order to approximate v with elements of
E,(R,R%) we define:

a(m) = - lvelly (Unlu) . (2)

kel (R)

The numbers ||1x |7 * (1x|u) are called Fourier coefficients of u.

1. Funkcionalni prostori

Prostori X (I, L), gdje je I C [0,00) interval a L je Banachov prostor.

DEFINITION 0.1 Let I C [0,00) be an interval. A function I >t — u(t) € L is
called finitely-valued if there exist ui,us,...,u, and a partition I = U]_,I,., where
I, are the Lebesgue measurable subsets of I, such that u,(t,-) = > u(-)lr(t). A
function I 3t — u(t) € L is called separably-valued if its range {u(t) : t € I} is a
separable set of L. It is called almost separably valued if there exists a subset Iy C I
of zero measure such that u(-) is separably-valued on I\ Iy.

A function I 3t — u(t) € L is called weakly Lebesque measurable if ( flu(-)) is
a measurbale function on I for each f € LT. A function I >t +— u(t) € L is called
a strongly Lebesque measurable function if there exists a sequence of finitely-valued
functions ug(-) convergeing to u(-) a.e. on I.

A function I 3t +— u(t) € L is called a strongly continuous on I if this function
s continuous in the norm of L.

A linear space of strongly measurable functions such that |[ul|;,zy = [; [|u(t)||dt
exists is denoted by L1 (I, L). Then Ly ([, L) is a Banach space with the norm [|ul| (7 1,).
Analogusly we define the linear space Wi (I, L). We say that a function u € Li(I, L)
belongs to Wi(I, L) if there exists a function @ € Li(I, L) such that u(t) — u(s) =
f: 1(2)dz for any par s,t € I,s < t. Then Wi (I, L) is a Banach space with the norm
lulliy oy = llullr,o) + HUHU L)

A linear space of strongly continuous functions on I is denoted by C(I, L). Analo-
gusly we define the linear space C*)(I, L). Apparently we have the following imbed-
ding Li(I,L) c C(I,L).

LEMMA 0.1 Let u € L1(I,L). Then the following is valid:

(i) | [y u@®)dt] < llullz,zy = f; lu(@)lldt.

(i) Let A be an operator in L with the domain D(A) C L and let {u,(t) € D(A) :
n € N} be a sequence of finitely-valued elements of L. If Au, — w in Li(I, L)
then A [;u(t)dt = [, Au(t)dt and ||A [u(t)dt| < ||Aull;,L.

(iii) If v € W(I ),u € W(I,L) and I = [a,b] then

/”[}(t)u(t)dt + / v(t)u(t)dt = vb)ud) — ula)v(a).

I I



2. Polugrupa

1. Strongly continuous semigroup. We formaly denote it as U(t) = exp(—tA)
having in mind that A is positive definite and therefore expecting that U(t) is
not increasing in the norm.

EXAMPLE 1 In the first example (Semigroup of time translations) we consider
X = Ly(0,00) and
t — (Uu)(x) = ut+z), =z€(0,00).

This is obviously a continuous contraction semigroup in X. As well we can define
t +— (U(t))! by using (v|U (t)u) = (U(t)tv|u). Apparently we have ((U(t) v|u) =
ftoo v(z—t)u(x)dz, defining a semigroup of translations in the negative direction.

The second example is called the semigroup of heat spreading. Here we have
X = Ly(R) and

(Ut (x) = /]R p(t, = — ) u(y) dy,
1 x?
p(t,z) = mexp(—m>.

This is also a continuous contraction semigroup in X.

2. U@ < exp(st).

3. The generator of a semigroup.

EXAMPLE 2 From the definition A = —(d/dt)U(t)|t = 0 we have for the semi-
group of time translation A = —d/dz defined on D(A) = W3 (0,00). Let us
mention that its adjoint is AT = d/dz on D(AT) = W} (0,00). Both operators
are closed on the specified domains.

4. For f € C’él)([o, o0)) and any u € L the following is valid: [ f(¢)U(t)udt € D(A)
and ©(A) is dense in L.

5. T(X\, A) = [exp(—At)U (t)dt.

EXAMPLE 3 For the semigroup of time translation we have the resolvents:

(T(A\, A)u)(z) = exp(Az) [° ;L(z) exp(—Az)dz,
(TN, ANu)(z) = exp(—Az) [ u(z) exp(Az)dz.

From ||T(A, A)|l, < 1/X for p = 1,00 we conclude that A satisfies the HY-
conditions for all p € [1, x].

Basic theorem

THEOREM 0.1 (Hille-Yoshida) Let A be an (unbounded) operator in a Banach
space L. Then —A is the generator of a strongly continuous contraction semigroup
U(-) iff A satisfies the HY-conditions.

ProoOF: For the proof we need the equality:

Ut) — V(t) = — /O U(t—s) (A — B)V(s)ds, (3)

which is valid for any two bounded operators in L.



LEMMA 0.2 LetU(-),V(-) be two strongly continuous semigroups in a Banach space
L with the generators —A,—B on the respective domains ©(A),D(B). If The set
D =9(A)ND(B) is dense in L and A= B on D then U =V.

PrOOF: For some A > 0 the operators A\I + A, A\I + B map the sets D(A), D(B)
onto L. Therefore
R = M+A)D = A +B)D
is a dense set in L and T'(A, A) = T' (A, B) on R. This implies T (A, A) = T'(\, B) on
Land A=Bon®(A)=T(\ A)L. QED

COROLLARY 0.1 Let D C R? be an open set and U(-) be a strongly continuous
contraction semigroup in L,(D) with the generator —A on ©(A). Then T(A\,A) >0
on D(A) iff U(t) >0 on Ly(D).

A representation of semigroup in terms of a contour integral

LEMMA 0.3 Let A satisfy the HY-conditons and let the operator T(xiu, A) fulfil
the following inequality
. p
1T (xip, Al < 7=
|1l
for all |u| > po > 0. Then the operator valued function A — T(X\, A) is regular
analytic on the set

A(po,0) = {)x = rexp(ig), r > po, |¢| < ngJ}’

where o = tan~1(p).

A curve C(a) C A(po, 0) for o < o is defined as in Figure.
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COROLLARY 0.2 Let the generator —A of a semigroup u(-) has the properties as
in the previous lemma. Then the operators U(t),t > 0, can be represented in the

following form.:
1
Ult) = — exp(At) T'(\, A) dA.
211 C(a)
The linear space D(A,t) = U(t)L is dense in L. Actually a stronger result can be
proved.

COROLLARY 0.3 Let the generator —A of a semigroup U(-) has the properties as
in Lemma 0.3. Then for each t > 0 and m € N the following inclusion is valid
A™U(t)L C L.



3. Elipticki operator

LEMMA 0.4 Let the linear operators A, B be defined on the dense manifold ® C L
such that A=Y, BA=! and A~'B have bounded extensions in L. If 31 = || BA™Y| and
B2 = ||A7LB|| are less than 1 then

(i) (A+B)™ = A7 3 (DR (BATY)! = 3o ()M (BATHFATY,
(i) (A + B)~!|| < [|A7H [ min{(1 = B1) 7", (1 = B2) 7'},
(i) [B(A+ B)"!, [(A+ B)7'B| < min{B1(1 = 1) ™", Ba(1 — 52) '}

Here we consider a set D C R? such that either D = R or D is a Lipsitz domain.

PROPOSITION 0.1 Let Ao(x) = — 3_;; 0ia;j(x)9; and B be an operator in La(D)
such that
o = sup {||BT (1, A)Y?|| : p>1} < oo.

Then
(i) A=Ay + B e LWy, W3).

(i) For X sufficiently large, X > 1 the operator A + A is an one-to-one mapping
between the spaces Wy ' (D) and Wa (D) having the following inverse:

T(AA) = T() Ag)'/? i(—)k (T(A,Ao)l/QBT()\,Ao)l/Q)kT()\,Ao)l/Q.
k=0

(iii) The following inequalities are valid:

1T\ A2 < (1=0) 1T, A0) 23,
1T A2 < (1-5) 1||T(>\,AO)1/2||2||T()\,A0)1/2||271,
< (1=8) TN A 2,

T(A, A)HL(W;I,W;)

where 3 = | T'(\, Ag) /2BT (X, Ag)Y/?||2 < oA~1/2 is less than 1 for X sufficiently
large.

COROLLARY 0.4 Let A on D(A) be a linear operator having the properties:

a) ©(A) is dense in L.

b) |(M + A)ul| = (A — &) ||u|| for some k >0 and all u € D(A), A > k.

¢) L=+ A)D(A) for some X > 0.
Then kI + A fulfils the HY-conditions and —A generates a continuous semigroup U (+)
for which

[U@) | < exp(rt).

PROPOSITION 0.2 Let Ao(z) = — _;; 0;aij(x)0; be an elliptic differential oper-
ator and let either D = R or D be a domain in R? with Lipsitz boundary. Then:

(i) The extensions Ay to D, = W (D)N{A(z)u € Ly(D)} and Ay to Dy = WiH(D)N

{A(x)u € W}(D)} are closed operators in Ly(D) and W4 (D), respectively,
satisfying the HY-condtions.

(i) The operators —Ay, —Az generate continuous contraction semigroups in La(D)
and W3(D), respectively.



PROOF: here we consider the case D = R?. For the proof of existince of semigroup
in W3 (R%) we use the norm

Bl = l1ul3 + alu,w),

where the form a(-,-) is defined by (1). This norm is equaivalent with the standard
norm of W, (R%). Now we have for u € D(Ay):
17\ A)uly

IT(A, )UI|2+a( (A, A)u, T(A, A)u)

= T3 + S, (T, Ayulas; T A)u)
= 7O\ Apull3 + [ AYV2TO, A = [ITOAull3 + [ TOL A A2 |3
< 272 (Il + a(ww) = A2 ul3.

COROLLARY 0.5 Let A(x) be an elliptic differential operator defined by (1). Then
its closures —A; on ®1 and —As on Do generate continuous semigroups Ui () in
Ly(D) and Us(-) in Wi(D), respectively, such that ||Ua(t)|lz < exp(kat), with ke
depending on the functions b’,b" and c.

Proor: We apply here Corollary 0.4. Hence
140+ B+ ADul® = (Ao + Byul® + A? |[ull® + 2A(u| (4o + B)u).

Now we have to estamite the last term from bellow. In the expression (u | (4o+B)u) =
(u]Apu) + (u|Bu) the first term is positive. Let us assume that we can estimate the
second term as |(u|Bu)| < (u|Aou) + B||u||?. This would imply

I(do+ B+ ADul? = (X - 228) lul® = (A — 26)2 Jul?

i.e. the assertion. Hence, it remains to demonstratre that the assumed estimate of
(u|Bu) is possible in the norm of spaces L2(D) as well as W} (D). Only the case
B =3, ;0; is considered. For the case of Ly(D) we use

1 _ 1
(u|Bu)| < e|Bullz + llul3 < 2ed|[b]|5 M~ a(u,u) + = [lull3.

In the case of problem in Wy (D) we have (u|Bu)21 = (u|Bu)s + a(u, Bu) so that we
have to estimate additionaly a(u, Bu):

1
a(u, Bu) = (Apu|Bu) < eal(u,Apu) + 4—€||Bu||§

The quantity ||Bu||3 can be estimated from above by oia(u,u) + o2||ul|3, where o;
depend on b',b",c and M. QED

LEMMA 0.5 Let Ag(x) be given. Its closures Ay in La(D) or Ay in W (R?) satisfy
the following inequalities:

| T(xip, A) |2 < |pl™t,
1T (i, A) 4 < (14477 ul7t,

for each |p| > 0.

PROOF: Let (ip+ A)w = f,u > 0, where w = u + iv and u,v € D(A) C Ly(R?).
An equaivalent formulation is:

Au — pv =
Av 4+ pu =

\
o

(4)

|
e



From these expressions we have |[w|2 < ||| f]|2, i.e. the first assertion. Now we
have to prove that (4) has solutions u,v € ®(A) for each f € La(D). The considered
system is equavalent to (A% + u?)v = —uf. Thus (4) is feasible if A? satisfies the HY-
conditions. Apparently D(A?) = T'(1, A)2Lo(D) is dense and (I +A%)D(A?) = La(D)
becasue A2 is symmetric on D(A2). It remains to prove that A? is acretive. The
following inequality is valid ||(AI+A2)ul|3 > A% u||% because A is positive semidefinite.
Hence v = T'(u2, A%)(—pf) € D(A?) and u = —pu~tAv € D(A).
Now we use
A?u — pAv = Af,
A%2v + pAu = 0. (5)

for a pair w € D(A42%),f € D(A). This new pair of equalities imply u(w|Aw) =
—(v|Af) so that
Mp|Vull; < —a(v, f).

By using |a(v, f)| < a(v,v)*?a(f, f)1/? we get the second assertion. Regarding Sys-
tem (5) we have to mention taht its feasibility can be proved by the same arguments
as for Sytem (4). QED

COROLLARY 0.6 Let A(x) = Ao(x)+ B(x) be a general elliptic differential opera-
tor on R and Ay, Ay be as in the previous lemma. Then there exist positive numbers
P1,p2 and ug such that

IT (i, Aa) e < 22,
M

are valid for i > po in the norms || - ||1, || - |2 of respective spaces Ly(D) and W3 (D).

a=1,2

Proor: We do not loose on generality by considering here the case B(x) =
> bi(x)0;. Now we apply Lemma 0.4 to the pair B(x) and il + Ag(x). In the case
of Ly(D) norm we start our calculations by proving the inequality

| AT (ip, Ao) |2 < |22

From (4) we have | AY/?w|}3 = (ulf) implying LAY *T(iss, Ag) £13 < |~ 1[I f113. There-
fore

- , [b]12.d 1
BT (ips, Ao)ull3 < ||bl|2, d[IVT (i, Ao)ull3 < i |IHUI@,
so that )
6 = | BTGm A |2 < 5

for ] = pio = 2[bloc (d/ M)/
In the case of Wi(D)-space we use Lemma 0.4 by proving ||VT'(iu, Ag)B| <
o|p| =2 with some o > 0.

. 11720, 1 1/2q,
VT (i, A0)Bulls < 7 1A T(in, Ao)Bully < o7 AT (in, Ao) 3 | Bull3,
implying as in the previous case
. 1
IVT(ips, Ao)Bull3 < 5 [|Vull3

for |p| > po. QED

COROLLARY 0.7 There exists a continuous contraction semigroup in Wy *(D)
generated by the elliptic differential operator —A(x). Fort >0 and any u € W, *(D)
the following inclusion must be valid: U(t)u € D(A™), where m € N is arbitrary.



Only a representation of the semigroup U(t) generated by —Ag(x) has to be
written down. Let us consider the case W, 1(]R"l). We know that an elements f
of W5 '(R?) has a representations yu = fo + 3,0 f;. Since the closure A\ + A €
L(W, ', W3) is an one-to-one mapping between Wy '(R?) and W3 (R?) we can write
(I+ A)T(1, Ay = p. However, for g = T'(1, A)u, fo € La(RY), f; € W3 (R?), we have

Ul = (I+A)U(t)g = Ult)g + Z (a:59;U(1)g)-

Due to the fact that Wi (R?) is dense in Ly(R?) we conclude that this equality is
valid for f; € LQ(Rd) as well. In addition, from the obtained representation we have
U(t)p € D(A™) for any ¢t > 0 and m € N.

Let us mention that ||(I + A)gl|2,1 = ||u|l2,1 as can be seen from

(ol(I+A)g) = (]n),
where ¢ € W) (D) = 1 = T(\, A)(I + A)¢p € W} (D).

4. Paraboloc equations

Let D be either R? or a bounded domain in D ¢ R? with the Lipsitz boundary.
The differential elliptic operator A(z) has the closure Ap from W (D) into Wy *(D).
Then the problem:

Owu(t) + Au(t) = p(t), for t>0,
u(0) = wo, (6)

has a solution for ug, p(t) belonging to a certain class of spaces. If a solution exists it
can be represented in a closed form as:

u(t) = U(t)uo +/O U(t—s) p(s)ds. (7)

In order to formulate the obtained results in a convenient way we split the solution
u of (7) as u = uy + ug, where u; is a linear function of the initial data ug and wus
is the linear function of the right hand side pu. Furthermore we denote shortly by
L(a),a € {~1,0,1} the Hilbert spaces Wy (D), La(D) and W, (D), respectively.

THEOREM 0.2 There exists a unique solution (7) of (6) with the following proper-
ties:

(i) If up € L(c) and p € L1((0,00), L(x)) then u € L(w)) for each t > 0.

(ii) If ug € L(a) and pu € W((0,00), L(a)) then uy,uz,u € C((0, 00, L(c)).

(iii) If ug € Wy *(D) then A™uq(t) € La(D) for any pairt > 0,m € N.

(iv) If ug € W3(D) and p = 0 then u € C((0,00, W5 (D)) N W3 ((0,00) x D), i.e

i € Ly((0,00) x D).
(v) If u € W((0,00), Wy (D)) then ug € C((0,00), Wa(D)).

Proor: To prove (iv) we need the equality

[ i3 + atuo.un) = 5 atus). ).

Assuming a(v,v) > M||Vv||3 we get the assertion. QED



NUMERICKI POSTUPCI
Promatramo izvorni problem i njegove diskretizacije:

ur(t) = —Aur(t) + p(t), Un(t) = —Anup(t), + p,(1),
u*(O) = Ug, un(o) = Uon,

(8)
gdje je mreza ili G, ili G,(D), te je ugy, definiran ovako. Pridruzimo funkciji ug

funkciju p(n) po izrazu (2). Tada definiramo ug, = ®~tdig(n).

LEMMA 0.6 If u,, = 0 in (8) then the grid solutions u,(t) fulfil the following in-
equlity |u,(t)]2.1 < |un(0)]2.1.
ProoF: Dobijemo slijedece dvije jednakosti:

E I 1+ () Aw ) = )11, (),

L (D13 + 5 5% (06) | Awa (1)) = (i 0) |0, (0))

Integriranjem tih jednakosti u intervalu [s, t] dobijemo

3l + 01 [ 37 wiu )3 a:

IN

1
3 lu.(s)13

n /<un<z>|un<z>>dz
378 Bl AN &
+ /<un<z>|un<z>>dz.

IN

MY D 0F + [ T 1z

%

|~

Ako stavimo p,, = 0, s | 0 i zbrojimo, dobijemo tvrdnju. QED

Definirajmo sada u(n,t) = ®u,(t) i niz aproksimativnih rjesenja 4 = {u(n,-) :
n € N}. Iz predhodnog stavka i Teorema 1.1. IL slijedi: [Ju(n, t)[|3; < h*|u,(t) |2 1<
hdluon |2,1. Sada, iz definicije ug,, imamo ovaj rezultat:

< luoll2,1,

limsup ||u(n,t)
n

t.j. niz 4 je ogranicen u WQI(D) To znaci da postoji slabo konvergentni podniz,
u(t) = udim, u(n,t) € W} (D) za svaki t > 0. Treba sada dokazati jaku konvergenciju
dobivenog niza $ = {u(n,-) : n € N} ka rjesenju u prostoru L ((0, 00), W3 (D)).

Let u*(t) = U(t)uo, uo € Wi (D) and let u*(n,t) be defined by (2). Then u,(t) =
. 1u*(n,t) satisfies the system

uﬁ(t) + Ap uﬁ(t) = Nn(t)a (9)
(“n(t))k = (Anu:z(t))k - h_da(¢k7“*(t))'

These equalities can be easily verified by making the scalar product of the first equality
with v,,. Hence:

W (v | (1) = h?an(v(n),u*(n,1)) — a(v(n), u*(t).
From Theorem on consistency of the discretized forms a,, we have

COROLLARY 0.8 If v = w—limv(n) € W3 (D) exists then for each t > 0 the
following equality is valid:

lim h* (v | p, (1)) = 0.



THEOREM 0.3 Let I = [0,T] and u(n,t) = ®,u,(t) be approzimate solutions de-
fined by ODE (8) with u,, = 0. Then u* = s—lim,, u(n) € La(I, W3 (D)).

PROOF: The convergence of approximate solutions u(n, t) € E, (D) to the original
solution u*(t) is proved by considereing the difference |, (t) —u (t)]2,1. We start to
evaluate the quantity

S(un (t), up (1)) =

ua(®) — w,(03ds + [ (ua(s) — ()| An (wn(s) — up(s)))ds. O

The squares of norms of each term can be rewritten as the sum of three terms which
have to be calculated by means of the following initial value problems:
u,(t) + A, u,(t) = 0,
uy(t) + Ap g (t) = (1),
u,(0) = u(0) = ugp.
The following espressions can be obtained:
t
L O] / (10 Aol = & w013,
1 . t
5Iun<t>|§ e o) s = 5O+ [ ) ) ds
(un / )] An u<>>+<un<s>|Anun<s>>}ds =

0

(1,0 +/ )| pa(5)) ds.

\

=}

Hence
B 5 (un (1), (1) = — b / (1 (5) + W(5) | (5 ) ds.

*

In the expression of d(u,(t),u}(t)) we have an integral. Let us prove first that the
function under the interal sign is bounded uniformly with respect to n. By using

[u*(n,t)ll21 < lluoll2,1,
u(n,t)ll2,; < (1= 0?72 [Jugll2,1,

we can get the following estimates
4M
1 —

e |(an(s) + w3 (s) [ ()] <

where we used the result of Theorem 1.1, II. part, connecting the norms of u,, and
u(n). Now, by using Lemma 0.6 and Lebesque theorem on limes under the integral
sign we get:

lim h?6(u,(t),ul(t)) = 0. (11)

n

Thus we have
lim [fu(n,t) —u*(n,t) ]2 = 0,

and consequently u* = s—limwu(n) € Li(I, La(D)). To prove u* = s—limu(n) €
WL(I, Ly(D)) we have to use Lemma 1.2, I1. part. Here we use the following abrevi-
ations w,, (t) = u,(t) — ul(¢) and w(n,t) = S, wy,(¢):

d d
S 0wt )E < h% S0 [Uiwal)lE < M R a(wa(5), wals).
i=1 i=1
Then from (11) we heve the assertion. QED



IpPITNI ZADATAK 0.1 (N. Sandric) Owvo je pomocni problem. Neka je I =[0,1] i

—u" + pvu + Au = f, z€(0,1),

uw(0) = wu(l) = 0, (12)

LEMMA 0.7 Neka suv, f € C(I), f > 0. Ako postoji rjeswnje u € C®(I), tada je
u>0,ifulloc < [ flloc/A

LEMMA 0.8 Ako je ||v]|oo < || f]loo/A i
21 £112 \ 1/3
ve ()
onda vrijedi slijedece:
(i) u € CO(I).
(i) |lulloo < [[flloo/A-
PrOOF: Imamo || f]l2 < ||flleo- Oznaka 8 = || f|leo/A.- Dalje je ||ullz < ||/||2-

Sluzimo se sa ab < ea® + b?)/(4¢). Iz (12) imamo

1
/13 (1= 2p8) + NulB(X = p82) < Nullo ISl (13)

Za e = (2pB)~! se dobije prva () = 1/2. Tada je druga () jednaka A\ — p?| fll2/(2A?).
To mora biti pozitivno. Onda iz 1. clana i desne strane, zajedno s (13) dobijemo
slijedece prve dvije nejednakosti

[ullz < 2] fll2
[l < 2112,
lu-+h) = u()lle < 2VR| 2,

dok je 3. nejednakost njihova posljedica. U njoj produzimo v sa I na R i promatramo
normu u Lo (R). Iz (12) dobijemo analognu nejednakost za ||u/(- + h) — u/(+)]|2.
Sada promatramo niz problema:

—ull + pup_rul, + Aup, = f, x€(0,1),

un(0) = un(1) = 0. (14)

LEMMA 0.9 Neka suug =0 1 X kao u Lemmi 0.8. Tada niz rjesenja 4 = {un:n €
N} zadaca (14) je ravnomjerno neprekidan uw C ™M (I).

References

[EK] ETHIER S. N. 1 KurTrZ T. G., Markov Processes, characteristics and Conver-
gence, Wiley, New York, 1986.

[Kr] KREIN S., Linearne diferencijalne jednadzbe u Banchovom prostoru, Nauka,
Moskba, 1967

[Ta] TANABE H., Fquations of Evolution, Pitman, 1975.

[Pa] PAazy A., Semigroups of Linear Operators and Applications to Partial Differen-
tial equations, Applied Mathematical Sciences, Springer, New York, 1983.

[Lu] LUNARDI A. Analytic semigroups, Birkhuser Verlag, Basel, 1995

10



