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Abstract

We study the quadratic Lagrange spectrum defined by Parkkonen
and Paulin by considering the approximation by quadratic numbers
whose regular continued fraction expansion is ultimately periodic with
the same period as a fixed quadratic number or its Galois conjugate.
We improve the upper bound on the approximation constants involved
thereby proving a conjecture stated by Bugeaud.

1 Introduction

In this paper the superscript σ denotes the Galois conjugate of a quadratic
number. Let α0 be a fixed real quadratic irrational number and Eα0 the set of
quadratic numbers whose regular continued fraction expansion is ultimately
periodic with the same period as α0 or ασ0 .

Following Parkkonen and Paulin [3] and Bugeaud [2], we observe the
quantity

cα0(ξ) := lim inf
α∈Eα0 : |α−ασ |→0

2
|ξ − α|
|α− ασ|

for a real number ξ not in Q∪Eα0 . This approximation constant cα0(ξ) of ξ
by elements of Eα0 is always finite, as proved by Parkkonen and Paulin [3].
It follows immediately from the definition that

cα0+k(ξ + k′) = cα0(ξ)

for any integers k and k′. Define by

Spα0 := {cα0(ξ) : ξ ∈ R \ (Q ∪ Eα0)}
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the so called quadratic Lagrange spectrum of α0.
Parkkonen and Paulin [3, 4] showed that Spα0 is a closed subset of [0, (1+√

2)
√

3]. Bugeaud [2] proved that Spα0 is contained in [0, 1/2]. Denote
by Kα0 the maximum of Spα0 . Bugeaud also proved that for α0 ending
in an infinite string of identical digits in its continued fraction expansion,
Spα0 ⊂ [0, 3√

5
− 1] with K(1+

√
5)/2 = 3√

5
− 1 and

lim
m→+∞

K(m+
√
m2+4)/2 =

3√
5
− 1.

Recall that the continued fraction expansion of (m+
√
m2 + 4)/2 is [m,m, . . .] =

[m].
In view of these facts, Bugeaud proposed as an open problem to show

that −1 + 3/
√

5 is a common upper bound for all values of Kα0 , where α0

is a quadratic irrationality. We show that this is in fact the case.

Theorem 1. For any real quadratic irrational number α0, the maximum
Kα0 of Spα0 satisfies

0 < Kα0 ≤
3√
5
− 1.

The strict inequality 0 < Kα0 in the previous theorem follows from
Corollary 2.3 in [2].

Moreover, we generalize the other aforementioned result by Bugeaud [2].

Theorem 2. Let u, v be positive integers such that u > 1/0.0008 and v ≥ u.
Then for βu,v := [u, v], we have

lim
v→+∞

Kβu,v =
3√
5
− 1− 2/

√
5

u
.

The previous theorem shows that −1+3/
√

5 is in the second derived set
of

{Kα0 : α0 real quadratic irrationality}.
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We introduce the following notation

ai ∈ Z, ai ≥ 1 for i ≥ 1,
ξ = [a0, a1, a2, . . .] 6∈ Eα0 ,

pr/qr = [a0, a1, . . . , ar], for r ≥ 1 (convergents to ξ),
dr = [ar, ar−1, . . . , a1],
Dr = [ar+1, ar+2, . . .],
bi ∈ Z≥1, i ∈ {1, . . . , s},
α0 = [0, b1, . . . , bs],

τj = [bj , bj+1, . . . , bj−1], τ ′j = [bj−1, bj−2, . . . , bj ], j ∈ {1, . . . , s}
(we permute (b1, b2, . . . , bs) and (bs, bs−1, . . . , b1) cyclically),

ϕ =
1 +
√

5
2

, κ = −1 +
3√
5

=
2(2− ϕ)
ϕ+ ϕ−1

= 0.3416 . . . ,

M = lim sup
i≥1

ai, N = max
1≤j≤s

bj .

We tacitly assume that s is minimal. A theorem by Galois (see [5,
Satz 3.6] or [2]) says that τσj = −1/τ ′j . This shows that τσj and τ ′j are
equivalent numbers and thus have the same period in the continued fraction
expansion. Therefore, two quadratic numbers which are Galois conjugates
to each other always have inverse periods (see [5, Satz 3.8]). It is clear now
that Eα0 = Eτ1 = · · · = Eτs = Eτ ′

1
= · · · = Eτ ′

s
. This is also the reason why

we could take any pre-period for α0 in the notation above without loss of
generality.

Let k be an integer and τ ∈ T := {τ1, . . . , τs, τ ′1, . . . , τ ′s} such that τ +
k ≥ 1. We presume that k is chosen so that such a τ exists. We have
Eτ+k = Eτ = Eα0 since, for example, τ1 + k = [b1 + k, τ2].

For r ≥ 1, the quadratic number

αr := [a0, a1, . . . , ar, τ + k]

is a quite good approximation to ξ in Eα0 and

`τ (ξ) := lim inf
r→+∞

2
|ξ − αr|
|αr − ασr |

is greater than or equal to cα0(ξ). Note that

ασr = [a0, a1, . . . , ar, τ
σ + k].
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Taking into account all possible choices for τ , we see that

cα0(ξ) ≤ min
τ∈T
τ+k≥1

`τ (ξ). (1)

It is not at all clear whether an equality holds in (1) for some k since to
validate that claim the quantities 2|ξ−α|/|α−ασ| would have to be checked
for α of the form

[a0, a1, . . . , ar, a
′
1, . . . , a

′
t, τ ],

where τ ∈ T , t ≥ 1 and a′1, . . . , a
′
t are positive integers. This is not easy to

do.
By a well known theorem in the theory of continued fractions (see e.g.

Theorem 1.7 in [1] or p. 32 in [5]), we have

αr =
pr(τ + k) + pr−1

qr(τ + k) + qr−1
and ασr =

pr(τσ + k) + pr−1

qr(τσ + k) + qr−1
,

which implies

|αr − ασr | =

∣∣∣∣∣ (prqr−1 − pr−1qr)
(
(τ + k)− (τσ + k)

)(
qr(τ + k) + qr−1

)(
qr(τσ + k) + qr−1

)∣∣∣∣∣
=

τ − τσ∣∣(qr(τ + k) + qr−1

)(
qr(τσ + k) + qr−1

)∣∣ .
(2)

Observe that

|ξ − αr| =
∣∣∣∣prDr + pr−1

qrDr + qr−1
− pr(τ + k) + pr−1

qr(τ + k) + qr−1

∣∣∣∣
=

|τ + k −Dr|
(qrDr + qr−1)

(
qr(τ + k) + qr−1

) . (3)

Combining (2) with (3) and using qr/qr−1 = dr, we get

2
|ξ − αr|
|αr − ασr |

=
2|τ + k −Dr| · |τσ + k + 1

dr
|

(τ − τσ)(Dr + 1
dr

)
. (4)

This is what Bugeaud obtained (see [2], formula (3.4) and its modifica-
tions on pp. 994-995). Theorem 1 will now follow by (1) if the inequality

2|τ + k −Dr| · |τσ + k + 1
dr
|

(τ − τσ)(Dr + 1
dr

)
≤ κ (5)
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holds for some integer k, for τ ∈ {τ1, . . . , τs, τ ′1, . . . , τ ′s} such that τ + k ≥ 1
and for infinitely many integers r ≥ 1.

If τ = τj , we put τ ′ = τ ′j and if τ = τ ′j , we set τ ′ = τj .
By the already mentioned theorem of Galois which states that τσ =

−1/τ ′, proving (5) becomes equivalent to showing that

2|k + τ −Dr| · |k − 1
τ ′ + 1

dr
|

(τ + 1
τ ′ )(Dr + 1

dr
)

(6)

is less than κ. In the next section we show that this is true thereby proving
Theorem 1. In the last section, we prove Theorem 2.

2 Proof of Theorem 1

In order to prove Theorem 1, we distinguish between three different cases
according to the size of the partial quotients in the continued fraction expan-
sion of ξ and α0. These are the possibilities: min{M,N} ≥ 3, min{M,N} =
2 and min{M,N} = 1. The case min{M,N} = 1 has already been solved
by Bugeaud [2], but we include it for completeness. Observe that by inter-
changing (τ, τ ′) with (Dr, dr) and k with −k in (6), we obtain exactly the
same quantity. This remark will be useful for making our proofs shorter,
since we can assume without loss of generality that M ≥ N and treat the
case N ≥ M in an analogous manner. Thus, we only note the necessary
modifications at the end of each subsection.

2.1 Case N ≥ 3

Suppose that M ≥ N ≥ 3. Take j ∈ {1, . . . , s} such that bj = N and
put τ = τj . Choose r large enough such that ar+1 = M and al ≤ M for
l ≥ r. By taking for k the integer closest to 1/τ ′ − 1/dr, we ensure that
k ∈ {−1, 0, 1} and

2
∣∣∣k − 1

τ ′
+

1
dr

∣∣∣ ≤ 1.

Since τ ∈ [N,N + 1], Dr ∈ [M,M + 1], we have |k+ τ −Dr| ≤M −N + 2 ≤
M − 1. We also have τ ′ < N + 1, dr < M + 1. Hence, the value of (6) is
smaller than

M − 1
(N + 1

N+1)(M + 1
M+1)

<
1

N + 1
N+1

≤ 1
3 + 1

3+1

= 0.307 . . . < κ.

The case when N > M ≥ 3 is dealt with in the same way.
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2.2 Case N = 2

Suppose that M ≥ N = 2. Take k ∈ {−1, 0, 1} such that |k−1/τ ′+ 1/dr| ≤
1/2. We distinguish between two possible cases:

(A) s = 1, τ = τ ′ = [2] = 1 +
√

2.
(B) 1 ∈ {b1, . . . , bs}.
In case (B), we can choose j ∈ {1, . . . , s} such that bj = 2, bj+1 = 1 and

then put τ = τj = [2, 1, . . .], so that τ ≥ [2, 1, 1, 3] = 18/7 > 1 +
√

2.
In either case max{τ, τ ′} ≤ [2, 1, 2, 1] = 11/4.
If M = 2, then by the same argument, we also have Dr ∈ [1 +

√
2, 11/4]

for infinitely many r, thus (6) is less than

1 + |τ −Dr|
τDr

≤
1 + (11

4 − 1−
√

2)

(1 +
√

2)2
= 0.229 . . . < κ.

Therefore, assume M ≥ 3. For r such that ar+1 ≥ 3, value of (6) is less
than

1 +Dr − τ
(τ + 4

11)Dr
.

This is smaller than κ if and only if Dr(1− κ(τ + 4/11)) ≤ τ − 1 and since
τ ∈ [1 +

√
2, 11/4], the last inequality certainly holds if

Dr <
(1 +

√
2)− 1

1− κ(1 +
√

2 + 4
11)

= 27.744 . . . .

For this reason, we can assume that there are only finitely many r ≥ 1 such
that 3 ≤ ar+1 ≤ 26 and this implies M ≥ 27.

In the case (B), (6) is less than

1
τ + 1

τ ′
≤ 1

18
7 + 4

11

= 0.3407 . . . < κ.

In the case (A) when τ = τ ′ = 1 +
√

2, since Dr ≥ 27, we have |k + τ −
Dr| < Dr + 1/dr which implies (6) is less than 1√

2
|k + 1 −

√
2 + 1/dr| and

this is smaller than κ if and only if

−k +
√

2− 1− κ
√

2 ≤ 1
dr
≤ −k +

√
2− 1 + κ

√
2. (7)

This holds for some k ∈ {−1, 0, 1} if and only if (recall that dr > 1)

dr ≤
1√

2(1− κ)
= 1.07404 . . . = [1, 13, . . .]

or dr ≥
1√

2(1 + κ)− 1
= 1.11437 . . . = [1, 8, . . .].
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But from our assumption

dr 6∈
[ 1√

2(1− κ)
,

1√
2(1 + κ)− 1

]
for r large enough since ar, ar−1 ∈ {1, 2} ∪ {27, 28, . . .}.

We have finished the case when M ≥ N = 2. The case N > M = 2 is
done analogously.

2.3 Case N = 1

Let N = 1. Then M = 1 is not possible since ξ 6∈ Eα0 . Thus, M ≥ 2. Here
we have τ = τ ′ = ϕ = (1 +

√
5)/2 and we want to prove

2|k + ϕ−Dr| · |k − 1
ϕ + 1

dr
|

(ϕ+ 1
ϕ)(Dr + 1

dr
)

≤ κ =
2

ϕ+ 1
ϕ

(2− ϕ)

or
|k + ϕ−Dr| · |k − 1

ϕ + 1
dr
|

Dr + 1
dr

≤ 2− ϕ. (8)

If Dr ∈ [1, ϕ
2−ϕ ], then |ϕ−Dr| ≤ (ϕ−1)Dr and since dr ≥ 1, |− 1

ϕ+ 1
dr
| ≤

1
ϕ holds. Thus, for k = 0, the left hand side of (8) is less than (recall that
ϕ2 − ϕ− 1 = 0)

(ϕ− 1)Dr · 1
ϕ

Dr
= 2− ϕ,

which is what we wanted.
If Dr > ϕ/(2− ϕ) = 4.236 . . . and k = 1, the inequality (8) becomes

(Dr − ϕ− 1)
( 1
dr

+ 1− 1
ϕ

)
≤ (2− ϕ)

(
Dr +

1
dr

)
,

or, after simplification, Dr ≤ dr + 3.
Now, ifDr ≤ dr+3 for infinitely many r, then we are finished. Otherwise,

for some r0 and all r ≥ r0, the inequality Dr > dr + 3 is valid. This implies
that for r ≥ r0,

ar+1 ≥ Dr − 1 > dr + 2 ≥ ar + 2,

so for r → +∞, necessarily dr, Dr → +∞ and now k = 1 with this limit
case gives equality in (8).

The case when M = 1 is done analogously while observing that the
final situation where the partial quotients of τ would be unbounded cannot
happen since τ has a periodic continued fraction.
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3 Proof of Theorem 2

Using the previously established notation, let s = 2, b1 = u, b2 = v, where
integers u and v satisfy v > u > 1/0.0008. Here τ1 = βu,v = [u, v] and
τ2 = [v, u] = τ ′1. For ξ such that M = lim supi≥1 ai ≥ 2, the first and second
part of the proof of Theorem 1 in the previous section, show that (6) is
smaller than κ− 0.0008 and therefore smaller than

3√
5
− 1− 2/

√
5

u

for some k ∈ {−1, 0, 1}, τ ∈ {τ1, τ2} and infinitely many positive integers r.
Note that in these two parts (Subsections 2.1 and 2.2) with easy modifica-
tion, the worst upper bound which we obtain is less than 0.3408 < κ−0.0008.
Therefore, the only case worth looking at is M = 1, or, without loss of gen-
erality, by removing a finite prefix of the continued fraction expansion of ξ,
we can take ξ = ϕ.

Putting k = −1, which we can since u is large, (6) becomes

2(τ − ϕ− 1)(1 + 1
τ ′ − 1

ϕ)

(ϕ+ 1
ϕ)(τ + 1

τ ′ )
. (9)

for r → +∞. Note that for k = 0, the value of (6) is certainly larger than
(9). The function (9) in (τ, τ ′) is increasing in τ and decreasing in τ ′, so the
smallest value is obtained for (τ, τ ′) = (τ1, τ2) = (τ1, τ ′1). If we let v → +∞,
we get for (9) the value

κ
(

1− ϕ+ 1
u

)
= κ− 2/

√
5

u
. (10)

What is left to prove is that this is the best upper bound that we can
achieve with the chosen τ . In other words, if we approximate ξ = ϕ by

α = [1, . . . , 1︸ ︷︷ ︸
r

, a′1, . . . , a
′
t, τ ],

where a′1 6= 1, the value of 2|ξ − α|/|α − ασ| will not be smaller than (10)
(for v → +∞). Denote by p/q = [a′1, . . . , a

′
t] and p′/q′ = [a′1, . . . , a

′
t−1], or, if

t = 1, p′ = 1, q′ = 0 as is usual in the theory of regular continued fractions.
Reasoning in the same way that led us to (5), what we have to show is the
following inequality

2
∣∣pτ+p′

qτ+q′ − ϕ
∣∣ · ∣∣pτσ+p′

qτσ+q′ + 1
ϕ

∣∣∣∣pτ+p′

qτ+q′ −
pτσ+p′

qτσ+q′

∣∣(ϕ+ 1
ϕ)
≥ κ− 2/

√
5

u
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when v → +∞. Since |pq′ − p′q| = 1 and τσ = −1/τ ′, this simplifies to

|pτ + p′ − ϕ(qτ + q′)| · |pτσ + p′ + ϕ−1(qτσ + q′)|
|τ − τσ|

≥ 2− ϕ− 1
u

or

|(p− ϕq)τ + (p′ − ϕq′)| · | − (p+ ϕ−1q) + (p′ + ϕ−1q′)τ ′|
ττ ′ + 1

≥ 2−ϕ− 1
u

(11)

If t = 1, then p′ = 1, q′ = 0, q = 1 and we should prove

L :=
|(p− ϕ)τ + 1| · | − (p+ ϕ−1) + τ ′|

ττ ′ + 1
≥ 2− ϕ− 1

u
. (12)

Looking at the numerator of L as an absolute value of a quadratic function
in p ∈ Z, it becomes clear that the minimum of L can only be attained for
integers closest to the zeroes of this function, i.e. for

p ∈ {bϕ− τ−1c, dϕ− τ−1e, bτ ′ − ϕ−1c, dτ ′ − ϕ−1e},

where bxc and dxe are, respectively, the largest integer not greater than the
real number x and the smallest integer not less than x.

Since we have {τ, τ ′} = {[u, v], [v, u]} and u, v are large, for τ = [u, v],
we are left with checking p ∈ {1, 2, v − 1, v}, while for τ = [v, u], we should
check p ∈ {1, 2, u− 1, u}.

For τ = [u, v], when v → +∞, we have

L→

{
ϕ− 1− 1

u if p ∈ {1, v}
2− ϕ+ 1

u if p ∈ {2, v − 1}
.

For τ = [v, u], when v → +∞, we have

L→

{
ϕ− 1− 1

u if p ∈ {1, u}
2− ϕ− 1

u if p ∈ {2, u− 1}
.

Thus we are left with the case when t ≥ 2. Substituting

p′ − ϕq′ = q′

q
(p− ϕq)± 1

q
, p+ ϕ−1q =

q

q′
(p′ + ϕ−1q′)∓ 1

q′

into (11), we obtain∣∣(p− ϕq)(τ + q′

q

)
± 1

q

∣∣ · ∣∣(p′ + ϕ−1q′)
(
τ ′ − q

q′

)
± 1

q′

∣∣
ττ ′ + 1

≥ 2− ϕ− 1
u

(13)
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Now

p

q
= [a′1, . . . , a

′
t],

p′

q′
= [a′1, . . . , a

′
t−1],

q

q′
= [a′t, . . . , a

′
2].

Since a′1 6= ar+1 = 1, it follows a′1 ≥ 2. Also, a′t 6= bτ ′c because otherwise
the periodic part of the continued fraction of α would start with a′t. Thus
p− ϕq ≥ q(2− ϕ) and so∣∣(p− ϕq)(τ + q′

q

)
± 1

q

∣∣
τ + 1

τ ′
≥ q
(

2− ϕ− 1
u

)
.

Therefore, there remains to be proved that∣∣(p′ + ϕ−1q′)
(
τ ′ − q

q′

)
± 1

q′

∣∣
τ ′

≥ 1
q
,

or, after using p′ ≥ 2q′,

(2 + ϕ−1)qq′
∣∣∣τ ′ − q

q′

∣∣∣ ≥ τ ′ + q

q′
,

which follows if the inequality(
(2 + ϕ−1)qq′ − 1

)∣∣∣τ ′ − q

q′

∣∣∣ ≥ 2q
q′

(14)

is valid.
If |τ ′ − q

q′ | ≥
1
q′2 , then the left hand side of (14) is greater than

(2 + ϕ−1)
q

q′
− 1
q′2
≥ 2q
q′
.

Otherwise, |τ ′ − q
q′ | <

1
q′2 implies, according to a result by Fatou (see [1, p.

11]), that q
q′ is a convergent Pn

Qn
of τ ′ or a secondary convergent of τ ′ of the

following type
Pn+1 + Pn
Qn+1 +Qn

or
Pn+2 − Pn+1

Qn+2 −Qn+1
.

All of these fractions belong to the closed interval with endpoints Pn
Qn

and
Pn+1

Qn+1
which would require a′t = b qq′ c = bτ ′c for n ≥ 0 and this is not possible.

The only option left to check corresponds to the case when n = −1, that is
when

q

q′
=
bτ ′c+ 1

1
.
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Since u and v are large integers, τ ′ is very close to bτ ′c which allows us to
easily show that (14) holds in this case as well. Hence, we are finished with
the proof of Theorem 2.
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