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Abstract

We establish a p-adic version of the inequalities linking values
of Koksma’s functions of two algebraically dependent transcenden-
tal numbers and show that in a very special, but nontrivial case these
inequalities become equalities.

1 Introduction

We will be using the most natural measure for the size of a polynomial or an
algebraic number. The notation H(P ) stands for naive height of polynomial
P , i.e. the maximum of the absolute values of its coefficients. The height
H(α) of a number α algebraic over Q is that of its minimal polynomial over
Z.

Let p be a rational prime number. We denote by Qp the completion of
the field of rational numbers Q with respect to p-adic absolute value | · |p
which is normalised in such a way that |p|p = p−1. By Zp we denote the
ring of p-adic integers. Basic facts about p-adic theory will be tacitly used,
interested reader can consult e.g. [5, 6].

Mahler [9] introduced in 1932 a classification of complex transcenden-
tal numbers according to how small the value of an integer polynomial at
the given number can be with regards to the the height and degree of this
polynomial. In 1939 Koksma [7] devised another classification which looks
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at how closely the complex transcendental number can be approximated by
algebraic numbers of bounded height and degree. Koksma proved that the
two classifications are identical. See [2] for all references.

In analogy with his classification of complex numbers, Mahler proposed a
classification of p-adic numbers. Let ξ ∈ Qp and given n ≥ 1, H ≥ 1, define
the quantity

wn(ξ,H) := min{|P (ξ)|p : P (X) ∈ Z[X], deg(P ) ≤ n, H(P ) ≤ H, P (ξ) 6= 0}.

We set

wn(ξ) := lim sup
H→∞

− log(Hwn(ξ,H))

logH
,

and thus wn(ξ) is the upper limit of the real numbers w for which there exist
infinitely many integer polynomials P (X) of degree at most n satisfying

0 < |P (ξ)|p ≤ H(P )−w−1.

In analogy with Koksma’s classification of complex numbers, for ξ ∈ Qp

and given n ≥ 1, H ≥ 1, we define the quantity

w∗n(ξ,H) := min{|ξ−α|p : α algebraic in Qp, deg(α) ≤ n, H(α) ≤ H, α 6= ξ}.

We set

w∗n(ξ) := lim sup
H→∞

− log(Hw∗n(ξ,H))

logH
,

and thus w∗n(ξ) is the upper limit of the real numbers w for which there exist
infinitely many algebraic numbers α in Qp of degree at most n satisfying

0 < |ξ − α|p ≤ H(α)−w−1.

Mahler proved in [9] that his classification of real numbers has the prop-
erty that every two algebraically dependent numbers belong to the same
class. In order to prove this basic property he showed that if ξ and η are
transcendental real numbers such that P (ξ, η) = 0 for an irreducible polyno-
mial P (x, y) ∈ Z[x, y] of degree M in x and N in y, then the inequalities

wn(ξ) + 1 ≤M(wnN(η) + 1) and wn(η) + 1 ≤ N(wnM(ξ) + 1) (1)

are valid for every positive integer n. Schmidt [12, (4), p. 276] showed that
these conditions also imply inequalities

w∗n(ξ) + 1 ≤M(w∗nN(η) + 1) and w∗n(η) + 1 ≤ N(w∗nM(ξ) + 1), (2)
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i.e. the analogous inequalities we get when Mahler’s function wk is replaced
with Koksma’s function w∗k. Note that the definitions of functions wk and
w∗k on real numbers are very similar to the ones given above for the p-adic
numbers. Full explanations including a slight difference between the settings
can be found in [2].

Mahler himself [10] proved the inequalities (1) under analogous conditions
in the p-adic setting. We will establish in this paper a p-adic version of (2).
Let us mention that our proof is in different fashion from what Mahler did
in [10] and is more in vein with [12].

Theorem 1. Let ξ, η ∈ Qp be two transcendental numbers which are alge-
braically dependent. Suppose P (x, y) ∈ Z[x, y] is a non-zero polynomial irre-
ducible over Q, of degree M in x and degree N in y such that P (ξ, η) = 0.
Then for every positive integer n, it holds

w∗n(ξ) + 1 ≤M(w∗nN(η) + 1) and w∗n(η) + 1 ≤ N(w∗nM(ξ) + 1).

We will exhibit a case when one of these inequalities becomes an equality
in Proposition 2.

2 Proof of the main result

The following lemma and its proof holds whether we take the algebraic num-
ber to be in C or in Cp.

Lemma 1. Let α be a non-zero algebraic number of degree n. Let a, b and
c be integers with c 6= 0. We then have

H

(
aα + b

c

)
≤ 2n+1 H(α) max{|a|, |b|, |c|}n.

Proof. See [11, Lemma 2].

Our next lemma deals with the standard representation of symmetric
polynomials through elementary symmetric polynomials but with an impor-
tant observation that will later be required.

Lemma 2. Let P (t1, . . . , tk) ∈ Z[t1, . . . , tk] be a homogeneous symmetric
polynomial. Denote

degt1 P = · · · = degtk P = d.

There exists a unique polynomial Q(x1, . . . , xn) ∈ Z[x1, . . . , xn] such that

P (t1, . . . , tk) = Q(s1, . . . , sk),
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where si = si(t1, . . . , tk) (1 ≤ i ≤ k) are elementary symmetric polynomials
of t1, . . . , tk. For every monomial si11 · · · s

ik
k in Q(s1, . . . , sk), we have i1 +

· · ·+ ik ≤ d.

Proof. See [8, Theorem 6.1, §IV.6, p. 191], [4, Theorem 3.3.1, p. 25], [3,
Exercise 13, §7.1, p. 326].

Now we prove the announced result.

Proof of Theorem 1. Of course, it is enough to prove only the first inequality
since the second follows by interchanging ξ and η.

Fix a positive integer n. It is not hard to see from Lemma 1 that for
any integer l 6= 0 we have w∗n(ξ) = w∗n(lξ) and w∗n(η) = w∗n(lη). Hence, by
taking l to be a large power of p and multiplying the polynomial P (x, y) by
the appropriate power of p, we see that without loss of generality we can
suppose ξ, η ∈ Zp.

The partial derivatives of P (x, y) do not vanish at (ξ, η).
Suppose to the contrary that ∂

∂y
P (x, y) vanishes at (ξ, η). By consid-

ering P (ξ, y) as a polynomial in y with coefficients in Q(ξ), one sees that
P (ξ, y) = P ∗1 (ξ, y)P ∗2 (ξ, y), where P ∗1 (ξ, y), P ∗2 (ξ, y) are polynomials of posi-
tive degree in y, with coefficients in Q(ξ). Since ξ is transcendental, Q(ξ) is
isomorphic to Q(x), so in fact we have P (x, y) = P ∗1 (x, y)P ∗2 (x, y), where
P ∗1 (x, y), P ∗2 (x, y) ∈ Q(x)[y]. But Q(x) is the fraction field of Q[x], so
by Gauss’s Lemma [8, Theorem 2.1, Corollary 2.2, §IV.2, p. 181] we can
find polynomials P1(x, y), P2(x, y) ∈ Q[x, y] of positive degree in y and with
P (x, y) = P1(x, y)P2(x, y). This contradicts the irreducibility of P (x, y).

Let H > 1 and suppose β ∈ Qp is an algebraic number with deg(β) ≤ n,
H(β) ≤ H such that w∗n(ξ,H) = |ξ − β|p. Obviously, if H is large enough,
w∗n(ξ,H) becomes as small as we want, and since ξ ∈ Zp, we can assume
β ∈ Zp as well. Since P (x, y) and ∂

∂y
P (x, y) are polynomials, there exist ε,

c1, c2 all positive real numbers depending only on P (x, y) (in other words,
only on ξ and η) such that for any u ∈ Qp

|u− ξ|p < ε ⇒


|P (u, η)|p = |P (u, η)− P (ξ, η)|p < c1|u− ξ|p,∣∣∣∣ ∂∂yP (u, η)− ∂

∂y
P (ξ, η)

∣∣∣∣
p

<
1

2

∣∣∣∣ ∂∂yP (ξ, η)

∣∣∣∣
p

= c2 > 0.

If we take H large enough, we get

|ξ − β|p < min
{
ε,
c22
2c1

}
,
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which implies

|P (β, η)|p < c1|β − ξ|p <
c22
2

and

∣∣∣∣ ∂∂yP (β, η)

∣∣∣∣
p

> c2.

Therefore, ∣∣∣∣∣ P (β, η)(
∂
∂y
P (β, η)

)2
∣∣∣∣∣
p

<
1

2

and if we look at P (β, y) as a polynomial in y, we see that the conditions of
general form of Hensel’s Lemma (see [8, Proposition 7.6, §XII.7, p. 493]) are
fulfilled. This lemma implies there is a β′ ∈ Zp such that P (β, β′) = 0 and

|β′ − η|p ≤

∣∣∣∣∣ P (β, η)(
∂
∂y
P (β, η)

)2
∣∣∣∣∣
p

<
c1
c22
|β − ξ|p � |β − ξ|p = w∗n(ξ,H),

where the implied constants in � and � everywhere they appear in this
proof depend at most on ξ, η and n.

Let Q(x) = ak(x − β1) · · · (x − βk) (k ≤ n) be the minimal polynomial
of β = β1 over Z. The number β′ is a root of the polynomial P (β, y) in y,
hence a root of the polynomial

R(y) = aMk P (β1, y)P (β2, y) · · ·P (βk, y).

The polynomial P (β, y) is not identically zero, since P (x, y) would otherwise
be divisible by the minimal polynomial of β. Thus R(y) is not identically
zero. The coefficients of R(y) are linear combinations with rational integer
coefficients of terms of the type

aMk
∑
σ

βi1σ(1) · · · β
ik
σ(k),

where the sum is taken over all permutations σ of {1, . . . , k} while 0 ≤
ij ≤ M for 1 ≤ j ≤ k. But, because of Lemma 2 and Vietè’s formulas
for the polynomial Q(x), such terms are rational integers themselves and �
H(Q)M ≤ HM . Therefore, R(y) ∈ Z[y] and H(R) � HM . Since R(β′) = 0,
we see that β′ is algebraic and its minimal polynomial over Z is a factor of
R(y). Using Gauss’s Lemma [8, Theorem 2.1, Corollary 2.2, §IV.2, p. 181]
and Gelfond’s Lemma (see e.g. [2, Lemma A.3, p. 221] or [1, Lemma 1.6.11,
p. 27]), we get that this minimal polynomial also has coefficients � HM .
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Hence H(β′)� HM , say H(β′) ≤ cHM . Thus

w∗nN(η, cHM) ≤ w∗kN(η, cHM) ≤ |η − β′|p � w∗n(ξ,H)⇒

w∗nN(ξ) + 1 = lim sup
H→∞

− log(w∗nN(ξ, cHM))

log(cHM)

≥ 1

M
lim sup
H→∞

− log(w∗n(ξ,H))

logH
=

1

M
(w∗n(ξ) + 1).

3 An example

If w > 1+
√

5
2

, we can give a simple construction of ξ ∈ Qp such that w∗1(ξ) = w.

Proposition 1. Let w > 1+
√

5
2

and

ξ =
∞∑
i=1

aip
b(w+1)ic ∈ Qp,

where ai ∈ {1, . . . , p− 1} for all i ≥ 1. Then w1(ξ) = w∗1(ξ) = w.

Proof. Take any w > 1+
√

5
2

and let ξk =
∑k

i=1 aip
b(w+1)ic. All the implicit

constants in � and � in this proof depend at most on p. Since

|ξ − ξk|p = p−b(w+1)k+1c � ξ−w−1
k

for any k ≥ 1, we have w∗1(ξ) ≥ w.
For a reduced fraction a/b ∈ Q whose height is large enough, let l ≥ 1 be

such that
ξl ≤ H(a/b) < ξl+1.

Suppose that ∣∣∣ξ − a

b

∣∣∣
p

= H
(a
b

)−ν
,

where ν > w + 1. We have

|ξ − ξl|p = |ξl+1 − ξl|p = p−b(w+1)l+1c � ξ−w−1
l ,

|ξ − ξl+1|p = p−b(w+1)l+2c � ξ−w−1
l+1 � ξ

−(w+1)2

l .
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Therefore,

1

|b|ξl + |a|
≤
∣∣∣bξl − a

b

∣∣∣
p

=
∣∣∣ξl − a

b

∣∣∣
p
≤ max{|ξ − ξl|p,

∣∣∣ξ − a

b

∣∣∣
p
} (3)

� max{ξ−w−1
l ,H(a/b)−ν} = ξ−w−1

l and

1

|b|ξl+1 + |a|
≤
∣∣∣ξl+1 −

a

b

∣∣∣
p
≤ max{|ξ − ξl+1|p,

∣∣∣ξ − a

b

∣∣∣
p
} (4)

� max{ξ−w−1
l+1 ,H(a/b)−ν}.

From (3) we get

ξw+1
l � |b|ξl + |a| � H(a/b)(ξl + 1)� H(a/b)ξl, i.e.

ξwl � H(a/b). (5)

From (4) we get

min{ξw+1
l+1 ,H(a/b)ν} � |b|ξl+1 + |a| � H(a/b)ξl+1.

Since ξwl+1 � H(a/b) does not hold, we must have

H(a/b)ν � H(a/b)ξl+1, i.e.

H(a/b)� ξ
1

ν−1

l+1 � ξ
1
w
l+1 � ξ

w+1
w

l . (6)

If there is an infinite sequence ak
bk
∈ Q such that

lim sup
k→∞

− log |ξ − ak
bk
|p

log H(ak/bk)
> w,

then H(ak/bk) → ∞ when k → ∞ and we conclude from (5) and (6) that

w ≤ w+1
w

which implies w ≤ 1+
√

5
2

, contrary to our choice of w.
Hence, it must hold that w∗1(ξ) = w.

We are able to show that the inequalities in (2) are sharp at least in a
very special situation.

Proposition 2. Let k ≥ 1 be an integer, w be a real number such that

w > −1 + k +
k2 + k

√
k2 + 4k

2

and

ξ = a0 +
∞∑
i=1

aip
b(w+1)ic ∈ Qp,

where ai ∈ {1, . . . , p−1} for all i ≥ 0. Then w∗1(ξ) = w and w∗1(ξk) = w+1
k
−1.
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Proof. It has been shown in Proposition 1 that w∗1(ξ) = w. We claim that
w∗1(ξk) = w+1

k
− 1 and, thus,

w∗1(ξ) + 1 = k
(
w∗1(ξk) + 1

)
,

so that inequality (2.i) becomes an equality for this special choice of η = ξk

and n = 1.
Using similar notation as in Proposition 1, we have

|ξk − ξkl |p = |(ξl + ρlp
b(w+1)l+1c)k − ξkl |p

� p−b(w+1)l+1c

� ξ
−(w+1)
l � (ξkl )−

w+1
k ,

with ρl being some element in Zp \ pZp and constants in � depending only
on p and k. Hence,

w∗1(ξk) ≥ w + 1

k
− 1.

In order to show that the last inequality is actually an equality, we proceed
just like in the proof of Proposition 1. Let a/b ∈ Q be a reduced fraction
such that

ξkl ≤ H(a/b) < ξkl+1

and ∣∣∣ξ − a

b

∣∣∣
p

= H
(a
b

)−ν
,

where ν > w+1
k

.
Instead of (5), we now have

(ξkl )
w+1
k
−1 ≤ H(a/b)

and instead of (6),

H(a/b) ≤ (ξkl )
k(w+1)
w+1−k

where we used the fact that w + 1 > 2k which obviously holds if w satisfies
the conditions of this proposition.

If we had w∗1(ξk) > w+1
k
− 1, we could conclude that

w + 1

k
− 1 ≤ k(w + 1)

w + 1− k

which contradicts the lower bound on w imposed in the statement of this
proposition.
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