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Abstract

Kaneko and Sakai [11] recently observed that certain elliptic curves whose associated
newforms (by the modularity theorem) are given by the eta-quotients can be character-
ized by a particular differential equation involving modular forms and Ramanujan-Serre
differential operator.

In this paper, we study certain properties of modular parametrization associated to
the elliptic curves over Q, and as a consequence we generalize and explain some of their
findings.

1. Introduction

By the modularity theorem [4, 8], an elliptic curve E over Q admits a modular parametrization
ΦE : X0(N) → E for some integer N . If N is the smallest such integer, then it is equal to the
conductor of E and the pullback of the Néron differential of E under ΦE is a rational multiple
of 2πifE(τ), where fE(τ) ∈ S2(Γ0(N)) is a newform with rational Fourier coefficients. The fact
that the L-function of fE(τ) coincides with the Hasse-Weil zeta function of E (which follows
from Eichler-Shimura theory) is central to the proof of Fermat’s last theorem, and is related to
the Birch and Swinnerton-Dyer conjecture. In addition to this, modular parametrization is used
for constructing rational points on elliptic curves, and appears in the Gross-Zagier formula [9].

In this paper, we study some general properties of ΦE , and as a consequences we explain and
generalize the results of Kaneko and Sakai from [11].

Kaneko and Sakai (inspired by the paper of Guerzhoy [10]) observed that certain elliptic
curves whose associated newforms (by the modularity theorem) are given by the eta-quotients
from the list of Martin and Ono [12] can be characterized by a particular differential equation
involving holomorphic modular forms.

To give an example of this phenomena, let f20(τ) = η(τ)4η(5τ)4 be a unique newform of weight
2 on Γ0(20), where η(τ) is the Dedekind eta function η(τ) = q1/24

∏
n>0(1− qn), q = e2πiτ , and

put ∆5,4(τ) = f20(τ/2)2. Then an Eisenstein series Q5(τ) on M4(Γ0(5)) associated either to cusp
i∞ or to cusp 0 is a solution of the following differential equation

∂5,4(Q5)2 = Q3
5 −

89

13
Q2

5∆5,4 −
3500

169
Q5∆2

5,4 −
125000

2197
∆3

5,4, (1)

where ∂5,4(Q5(τ)) = 1
2πiQ5(τ)′ − 1

2πiQ5(τ)∆5,4(τ)′/∆5,4(τ) is a Ramanujan-Serre differential

operator. Throughout the paper, we use symbol ′ to denote d
dτ . This differential equation defines
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a parametrization of an elliptic curve E : y2 = x3 − 89
13x

2 − 3500
169 x−

125000
2197 by modular functions

x =
Q5(τ)

∆5,4(τ)
, y =

∂5,4(Q5)(τ)

∆5,4(τ)3/2
,

and f20(τ) is the newform associated to E. One finds that ∆5,4(τ) ∈ S4(Γ0(5)), so curiously
the modular forms ∆5,4, Q5 and ∂(Q5) appearing in this parametrization are modular for Γ0(5),
although the conductor of E is 20.

Using the Eichler-Shimura theory, we generalize (1) to the arbitrary elliptic curve E of con-
ductor 4N , E : y2 = x3 +ax2 +bx+c, where a, b, c ∈ Q, which admits a modular parametrization
Φ : X → E satisfying

Φ∗
(
dx

2y

)
= πif4N (τ/2)dτ.

Here X is the modular curve H/
(

1
2

0
0 1

)−1
Γ0(4N)

(
1
2

0
0 1

)
, and f4N (τ) ∈ S2(Γ0(4N)) is a new-

form with rational Fourier coefficients associated to E. It follows from the modularity theorem
that in any Q-isomorphism class of elliptic curves there is an elliptic curve E admitting such
parametrization (note that for u ∈ Q× the change of variables x = u2X and y = u3Y implies
dX
Y = udxy ).

To such Φ we associate a solution Q(τ) = x(Φ(τ))f4N (τ/2)2 of a differential equation

∂N,4(Q)2 = Q3 + aQ2∆N,4 + bQ∆2
N,4 + c∆3

N,4, (2)

where ∆N,4(τ) = f4N (τ/2)2, and ∂N,4(Q(τ)) = 1
2πiQ(τ)′ − 1

2πiQ(τ)∆N,4(τ)′/∆N,4(τ).

We show in Corollary 12 that f4N (τ/2)2 is modular for Γ0(N). In general the solution Q(τ)

will not be holomorphic and will be modular only for
(

1
2

0
0 1

)−1
Γ0(4N)

(
1
2

0
0 1

)
, but if the preimage

of the point at infinity of E under Φ is contained in cusps of X and is invariant under the action
of
(

1 0
N 1

)
and ( 1 1

0 1 ) (acting on X by Möbius transformations), Q(τ) will be both holomorphic and
modular for Γ0(N) (for more details see Proposition 5 and Theorem 7). Moreover, in Theorem
6 we show that there are only finitely many (up to isomorphism) elliptic curves E admitting Φ
with these two properties.

We also obtain similar results generalizing the other examples from [11] that correspond to
the elliptic curves over Q with j-invariant 0 and 1728 (see the next section).

2. Main results

Throughout the paper, let N be a positive integer and k ∈ {4, 6, 8, 12}. Let Ek/Q be an elliptic
curve given by the short Weierstrass equation y2 = fk(x), where

f4(x) = x3 + a2x
2 + a4x+ a6,

f6(x) = x3 + b6,
f8(x) = x3 + c4x,
f12(x) = x3 + d6,

and a2, a4, a6, b6, c4, d6 ∈ Q. Moreover, we assume j(E4) 6= 0, 1728.

Let

fN,k(τ) ∈ S2

(
Γ0

(
k2

4
N

))

2
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be a newform with rational Fourier coefficients, and let Γk :=
(

2
k

0
0 1

)−1
Γ0(k

2

4 N)
(

2
k

0
0 1

)
. Define

∆N,k(τ) := fN,k(2τ/k)k/2 ∈ Sk(Γk).

For f(τ) ∈Mmer
4 (Γk), we define the (Ramanujan-Serre) differential operator by

∂N,k(f(τ)) =
k

8πi
f ′(τ)− 1

2πi
f(τ)

∆′N,k(τ)

∆N,k(τ)
∈Mmer

6 (Γk).

Finally, assume that there is a meromorphic modular form Qk(τ) ∈Mmer
4 (Γk), such that the

corresponding differential equation holds

∂N,4(Q4(τ))2 = Q4(τ)3 + a2Q4(τ)2∆N,4(τ) + a4Q4(τ)∆N,4(τ)2 + a6∆N,4(τ)3

∂N,6(Q6(τ))2 = Q6(τ)3 + b6∆N,6(τ)2

∂N,8(Q8(τ))2 = Q8(τ)3 + c4Q8(τ)∆N,8(τ)
∂N,12(Q12(τ))2 = Q12(τ)3 + d6∆N,12(τ).

(3)

Each of these four identities defines a modular parametrization Ψk : Xk → Ek

Ψk(τ) =

(
Qk(τ)

∆N,k(τ)4/k
,
∂N,k(Qk)(τ)

∆N,k(τ)6/k

)
,

where Xk is the compactified modular curve H/Γk.

Proposition 1. Let dx
2y be the Néron differential on Ek. Then

Ψ∗k

(
dx

2y

)
=

4πi

k
fN,k(2τ/k)dτ. (4)

In particular, the conductor of Ek is k2

4 N and fN,k(τ) is the cusp form associated to Ek by the
modularity theorem.

Remark 2. Note that when k = 6, 8 or 12, fN,k(τ) is a modular form with complex multiplica-
tion by the ring of integers of Q(

√
−3), Q(

√
−1) and Q(

√
−3) respectively.

Conversely, given a modular parametrization Φk : Xk → Ek satisfying (4), we construct a
differential equation (3) and its solution Qk(τ) as follows.

Let x and y be functions on Ek satisfying Weierstrass equation y2 = fk(x). Functions x(τ) :=
x ◦ Φk(τ) and y(τ) := y ◦ Φk(τ) satisfy y(τ)2 = fk(x(τ)). Moreover (4) implies that(

k

8πi
x′(τ)

)2

= fN,k(2τ/k)2y(τ)2 = ∆N,k(τ)4/kfk(x(τ)). (5)

Define Qk(τ) := x(τ)∆N,k(τ)4/k.

Proposition 3. The following formula holds

∂N,k(Qk(τ))2 = ∆N,k(τ)12/kfk(x(τ)).

In particular, Qk(τ) is a solution of (3).

Now we investigate conditions under which Qk(τ) is holomorphic. The following lemma easily
follows from the formula above.

3
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Lemma 4. Assume that τ0 ∈ Xk is a pole of x(τ). Then

ordτ0(Qk(τ)) =

{
0, if τ0 is a cusp,

−2, if τ0 ∈ H.

As a consequence, we have the following characterization of the holomorphicity of Qk(τ) in
terms of modular parametrization Φk. Denote by C the set of cusps of Xk, and by O the point
at infinity of Ek.

Proposition 5. We have that Qk(τ) is holomorphic if and only if Φ−1
k (O) ⊂ C.

In Section 3.2 we show that the degree of Φk (as a function of the conductor) grows faster
than the total ramification index at cusps hence the following theorem holds.

Theorem 6. There are finitely many elliptic curves E/Q (up to a Q-isomorphism) that admit
a modular parametrization Φ : Xk → E with the property that Φ−1(O) ⊂ C.

In particular, there are finitely many elliptic curves Ek (up to a Q-isomorphism) for which
Qk(τ) (which satisfy equation (3)) is holomorphic.

Define A =
(

1 0
N 1

)
and T = ( 1 1

0 1 ). It is easy to see that Γk is generated by Γ0(N) and A
and T (Lemma 9), hence Qk(τ) is modular for Γ0(N) if and only if it is invariant under the
action of slash operators |A and |T . The following theorem describes the modularity in terms of
parametrization Φk.

Theorem 7. If Φ−1
k (O) is invariant under A and T , then Qk(τ) is modular for Γ0(N).

3. Proofs

3.1 Proof of Proposition 1 and Proposition 3

Proof of Proposition 1.

Ψ∗k

(
dx
2y

)
= 1

2
d
dτ

(
Qk(τ)

∆N,k(τ)4/k

)
∆N,k(τ)6/k

∂N,k(Qk)(τ)dτ

= 1
2

d
dτ
Qk(τ)fN,k(2τ/k)2− d

dτ
fN,k(2τ/k)2Qk(τ)

fN,k(2τ/k)4
fN,k(2τ/k)3

k
8πi

d
dτ
Qk(τ)−Qks(τ)

d
dτ
fN,k(2τ/k)

k/2

2πifN,k(2τ/k)
k/2

dτ

= 4πi
k fN,k(2τ/k)dτ.

Proof of Proposition 3. By definition,

∂N,k(Qk(τ)) = k
8πi(x(τ)∆N,k(τ)4/k)′ − 1

2πix(τ)∆N,k(τ)4/k∆′
N,k(τ)

∆N,k(τ)

= k
8πix

′(τ)∆N,k(τ)4/k.

Hence the claim follows from (5).

3.2 Proof of Theorem 6

Let ex ∈ Z be the ramification index of Φk at x ∈ Xk, and let deg(Φk) be the degree of Φk. It
follows from the Hurwitz formula that

∑
x∈Xk(ex− 1) = 2g− 2, where g is the genus of Xk (note

that the genus of Xk is equal to the genus of Γ0(k
2

4 N)). Therefore Φ−1
k (O) ⊂ C implies

deg(Φk) 6
∑
x∈C

ex 6 2g − 2 + #C. (6)

4
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In [15], Watkins proved a lower bound for the degree of modular parametrization Φ of an elliptic
curve over Q of conductor M

deg(Φ) >
M7/6

logM
· 1/10300√

0.02 + log logM
.

On the other hand, an upper bound (see [6]) for the genus g of X0(M) is

g < M
eγ

2π2
(log logM + 2/ log logM) for M > 2,

where γ = 0.5772 . . . is Euler’s constant.

If we use a trivial bound #C 6M , an easy calculation shows that (6) can not hold for curves
Ek of conductor greater than 1050. Therefore, we have proved the Theorem 6.

Remark 8. If we assume that ramification index at cusps is bounded by 24 (as suggested
in the paper of Brunault [5]), and if we use Abramovich [1] lower bound for modular degree
deg(Φ) > 7M/1600, we obtain that (6) can not hold for elliptic curves of conductor greater than
219.

3.3 Proof of Theorem 7

In this section we investigate conditions on modular parametrization Φk under which ∆N,k(τ)
and Qk(τ), initially modular for Γk, are modular for Γ0(N).

For S =
(
a b
c d

)
∈ SL2(Z), and a (meromorphic) modular form f(τ) of weight l, we define the

usual slash operator as f(τ)|lS := f(Sτ)(cτ + d)−l, where Sτ = aτ+b
cτ+d . Define T = ( 1 1

0 1 ) and

A =
(

1 0
N 1

)
.

Lemma 9. Group Γ0(k2N) is generated by Γk and T , while Γ0(N) is generated by Γ0(k2N) and
A.

Proof. To prove the first statement, let
(
a b
c d

)
∈ Γ0(k2N). Then gcd(a, k2 ) = 1, and there is r ∈ Z

such that ar ≡ −b mod k
2 . Then

(
a b
c d

)
T r ∈ Γk = Γ0(k2N) ∩ Γ0(k2 ), and the claim follows.

Second statement is proved analogously.

Therefore, to prove that ∆N,k(τ) and Qk(τ) are modular for Γ0(N) it suffices to show their
invariance under the slash operators |T and |A.

Lemma 10. Matrices A and T normalize Γk.

Proof. Let
(
a b
c d

)
∈ Γk = Γ0(k2N)∩Γ0(k2 ). Then k

2N |c and k
2 |c, and ad ≡ 1 (mod k

2 ). In particular,

since k
2 ∈ {2, 3, 4, 6}, it follows that a ≡ d (mod k

2 ).

Since

A−1
(
a b
c d

)
A =

(
a+bN b

−aN−bN2+c+dN −bN+d

)
,

T−1
(
a b
c d

)
T =

(
a−c a+b−c−d
c c+d

)
,

the claim follows.

For a prime p, define the Hecke operator Tp as a double coset operator Γk
(

1 0
0 p

)
Γk acting on

the space of cusp forms on Γk. Slash operators |A and |T correspond to ΓkAΓk and ΓkTΓk (see
Chapter 5 of [8]).
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Define the Fricke involution |2B on S2(Γk) by the matrix B :=

(
0 − k

2
k
2
N 0

)
. Note that |2B is

the conjugate of the usual Fricke involution on Γ0(k
2

4 N). In particular, B normalizes Γk, and |2B
commutes with all the Hecke operators Tp, p - k

2

4 N . Hence, fN,k(2τ/k)|2B = λk,NfN,k(2τ/k) for
some λk,N = ±1.

Lemma 11. The following are true.

a)

fN,k(2τ/k)|2T = e4πi/kfN,k(2τ/k),

b)

fN,k(2τ/k)|2A = e−4πi/kfN,k(2τ/k).

In particular, |2A and |2B have order k
2 when acting on fN,k(2τ/k).

Proof. A key observation is that the Fourier coefficients of fN,k(τ) are supported at integers that
are 1 mod k

2 . This implies

fN,k(2τ/k)|2T = e4πi/kfN,k(2τ/k).

When k = 4 (and k = 12) this is a consequence of the general fact that af (2) = 0 whenever
f(τ) =

∑
af (n)qn is a newform of level divisible by 4 (see [13], p.29). In the other three cases,

fN,k(τ) is a modular form with complex multiplication by the ring of integers of Q(
√
−3) or

Q(
√
−1), hence its Fourier coefficients afN,k(p) are zero when p is an inert prime (i.e. p ≡ 2

(mod 3) or p ≡ 3 (mod 4) respectively). Multiplicativity of the Fourier coefficients then implies
the observation.

On the other hand A = BT−1B−1, therefore

fN,k(2τ/k)|2A = (fN,k(2τ/k)|2B)|2T−1|2B−1 = (λk,NfN,k(2τ/k)|2T−1)|2B−1

= λk,Nλ
−1
k,Ne

−4πi/kfN,k(2τ/k).

Corollary 12. We have that

a) ∆N,k(τ) ∈ Sk(Γ0(N)),

b) ∆N,8(τ)1/2|4A = −∆N,8(τ)1/2 and ∆N,8(τ)1/2|4T = −∆N,8(τ)1/2,

c) ∆N,12(τ)1/2|6A = −∆N,12(τ)1/2 and ∆N,12(τ)1/2|6T = −∆N,12(τ)1/2.

We now recall some basic facts about Jacobians of modular curves. For more details see Chap-
ter 6 of [8]. Denote by Jac(Xk) the Jacobian of Xk. We will view it either as S2(Γk)

∧/H1(Xk,Z)
(where γ ∈ H1(Xk,Z) acts on f(τ) ∈ S2(Γk) by f(τ) 7→

∫
γ f(τ)dτ), or as the Picard group

Pic0(Xk) of Xk, which is the quotient Div0(Xk)/Div
l(Xk) of the degree zero divisors of Xk

modulo principal divisors. If x0 is a base point in Xk then Xk embeds into its Picard group
under the Abel-Jacobi map

Xk → Pic0(Xk), x 7→ (x)− (x0),

where (x)− (x0) denotes the equivalence class of divisors (x)− (x0) +Divl(Xk).

It is known that the parametrization Φk : Xk → Ek can be factored as

Xk ↪→ Jac(Xk)
ψk−→ Ẽk

φk−→ Ek. (7)

6
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Here Xk ↪→ Jac(Xk) is the Abel-Jacobi map (for some base point x0 ∈ Xk), φk is a rational
isogeny, and Ẽk (together with ψk) is the strong Weil curve associated to the newform fN,k(2τ/k)
via Eichler-Shimura construction as follows.

Let Vk be a C-span of fN,k(2τ/k) ∈ S2(Γk), and define Λk := H1(Xk)|Vk. Restriction to Vk
gives a homomorphism ψk

Jac(Xk)→ V ∧k /Λk
∼= Ẽk.

Here V ∧k /Λk is a one-dimensional complex torus isomorphic to the rational elliptic curve Ẽk with

the Weierstrass equation Ẽk : y2 = x3 − g2(Λk)
4 x− g3(Λk)

4 .

Let S be either A or T . Since by Lemma 10 S normalizes Γk, we can define the action
of S on Jac(Xk) in two equivalent ways: for φ ∈ S2(Γk)

∧/H1(Xk,Z) and f(τ) ∈ S2(Γk) let
S(φ)(f(τ)) := φ(f(τ)|2S), or for P = (x) − (x0) ∈ Pic0(Xk) let S(P ) = (Sx) − (Sx0). Now
Lemma 11 implies that the action of S on Jac(Xk) descends to the automorphism of Ẽk of the
order k

2 .

Recall that x and y are functions on Ek satisfying Weierstrass equation y2 = fk(x), and that
x(τ) = x ◦ Φk(τ) and y(τ) = y ◦ Φk(τ) are modular functions on Xk.

Proposition 13. Let S be either A or T . If Φ−1
k (O) is invariant under A and T , then

a)

x(τ)|S =

{
x(τ), if k = 4,

−x(τ), if k = 8.

b)

y(τ)|S =

{
y(τ), if k = 6,

−y(τ), if k = 12,

Proof. For P ∈ Ek, we define the S(P ) := φk(S(P̃ )) for any P̃ ∈ φ−1
k (P ). It is well defined since

S-invariance of Φ−1
k (O) implies the S-invariance of Ker(φk). We have that φk(S(P )) = S(φk(P )),

hence S is an automorphism of Ek.

Let x0 be a base point of Abel-Jacobi map in (7). Then x0 ∈ Φ−1
k (O), hence φk ◦ ψk maps

(Sx0)− (x0) to O in Ek. In particular, for x ∈ Xk we have

Φk(Sx) = φk ◦ ψk((Sx)− (x0)) = φk ◦ ψk((Sx)− (Sx0)) = S(Φk(x)). (8)

Assume first that k = 4. Then j(E4) 6= 0, 1728, and the automorphism group of E4 is of order
2 generated by (x, y) 7→ (x,−y). In particular x(S(P )) = x(P ), for every P ∈ E4.

If k = 8, then S is an automorphism of order k
2 = 4 of Ẽk, hence j(Ẽk) = 1728, and g3(Λ8) = 0.

Moreover φk is isomorphism (defined over Q), which implies that S is an isomorphism of order 4 of
E8 as well. The automorphism group is generated by (x, y) 7→ (−x, iy), hence x(S(P )) = −x(P )
for every P ∈ E8.

If k = 6 or 12, then j(Ẽk) = 0, g2(Λk) = 0, and φk is an isomorphism (defined over Q).
Therefore, S has order 3 on Ek if k = 6, and order 6 if k = 12. The automorphism group is
generated by (x, y) 7→ (e2πi/3x,−y), and in particular y(S(P )) = y(P ) if k = 6, and y(S(P )) =
−y(P ) if k = 12, for every P ∈ Ek.

Now (8) implies

x(τ)|S = x(Sτ) = x(Φk(Sτ)) = x(S(Φk(τ))) and y(τ)|S = y(Sτ) = y(Φk(Sτ)) = y(S(Φk(τ))),

7
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and the claim follows from the previous paragraph.

We need the following technical lemma. Recall that Qk(τ) := x(τ)∆N,k(τ)4/k.

Lemma 14. If ∂N,k(Qk(τ)) ∈Mmer
6 (Γ0(N)), then Qk(τ) ∈Mmer

4 (Γ0(N)).

Proof. As in the proof of Proposition 3, we have that ∂N,k(Qk(τ)) = k
8πix

′(τ)∆N,k(τ)4/k =
k

8πi
x′(τ)
x(τ) Qk(τ). Let S be either A or T . Then (x(Sτ))′ = x′(τ)|2S, and the invariance of x′(τ)

x(τ)

under S (hence under Γ0(N)) follows from the fact that x(τ) is an eigenfunction for S, which
follows from the proof of Proposition 13.

Since Qk(τ) := x(τ)∆N,k(τ)4/k, the Theorem 7 for k = 4 and 8 now follows from a) and b)
of Corollary 12 and a) of Proposition 13, while k = 6 and 12 case follows from ∂N,k(Qk)(τ) =
y(τ)∆N,k(τ)6/k together with a) and c) of Corollary 12, b) of Proposition 13 and Lemma 14.

4. Example

Let

f19,4(τ) =
∞∑
n=1

a(n)qn = q + 2q3 − q5 − 3q7 + q9 + · · ·

be a unique newform in S2(Γ0(76)), and denote by ∆19,4(τ) = f19,4(τ/2)2 ∈ S4(Γ0(19)).

Set Γ =
(

1
2

0
0 1

)−1
Γ0(76)

(
1
2

0
0 1

)
. For τ ∈ H̄ we define

Ψ(τ) = πi

∫ τ

i∞
f(z/2)dz.

For γ ∈ Γ and τ ∈ H̄ , define ω(γ) := Ψ(γτ)−Ψ(τ). One easily checks that d
dτ ω(τ) = 0, hence

ω(γ) does not depend on τ . Denote by Λ the image of Γ under ω. By Eichler-Shimura theory Λ
is a lattice, and Ψ(τ) induces a parametrization X := H/Γ → C/Λ. The complex torus C/Λ is

isomorphic to E : y2 = x3 − g2(Λ)
4 x − g3(Λ)

4 by the map given by Weierstrass ℘-function and its
derivative, z 7−→ (℘(z,Λ), ℘′(z,Λ)/2), thus by composing these two maps we obtain a modular
parametrization Φ : X → E.

One finds that generators ω1 and ω2 of Λ are

ω1 = 1.1104197465122 . . . , ω2 = 0.5552098732561 . . .+ 2.1752061725591 . . .× i.

Moreover, g2(Λ) = 256
3 and g3(Λ) = 4112

27 , hence it follows from Proposition 3 that

Q(τ) = ∆19,4(τ)℘(Ψ(τ),Λ) = 1 +
1

3

(
8q + 8q2 + 64q3 + 232q4 + 336q5 + 256q6 + 512q7 + · · ·

)
satisfies a differential equation

∂19,4(Q)2 = Q3 − 64

3
Q∆2

19,4 −
1028

27
∆3

19,4. (9)

One finds that

GCD ({p+ 1− a(p) : p prime, p ≡ 1 (mod 76)}) = 1,

hence it follows from the special case of Drinfeld-Manin theorem (see Theorem 2.20 in [7]) that
Ψ(τ) maps cusps of X to the lattice Λ, or equivalently that Φ maps cusps of X to the point
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at infinity of E. Modular curve X has six cusps, and one can check (for example by using
software package Magma) that the degree of Φ is six, therefore the conditions of Proposition 5
and Theorem 7 are satisfied, and we conclude that Q(τ) ∈M4(Γ0(19)).

References

1 D. Abramovich, A linear lower bound on the gonality of modular curves, Internat. Math. Res. Notices
(1996), no. 20, 1005–1011.

2 A. Atkin, J. Lehner, Hecke operators on Γ0(m), Math. Ann. 185 (1970) 134–160.

3 B. J. Birch, H. P. F. Swinnerton-Dyer, Elliptic curves and modular functions, Modular functions of one
variable IV, Lecture Notes in Mathematics, 1975, Volume 476/1975, 2–32,

4 C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic
exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).

5 F. Brunault, On the ramification of modular parametrization at the cusps, arXiv:1206.2621v1

6 J. A. Csirik, J. L. Wetherell, M. E. Zieve On the genera of X0(N), arXiv:math/0006096v2

7 H. Darmon, Rational points on modular elliptic curves, CBMS Regional Conference Series in Mathe-
matics, AMS, 101, (2004)

8 F. Diamond, J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228,
Springer-Verlag, New York, 2005.

9 B. Gross, D. Zagier, Heegner Points and Derivatives of L-series, Invent. Math. 84 (1986) pp. 225–320.

10 P. Guerzhoy, The Ramanujan differential operator, a certain CM elliptic curve and Kummer congru-
ences, Compositio Mathematica, 141 (2005), no. 3, 583–590.

11 M. Kaneko, Y. Sakai, The Ramanujan-Serre differential operators and certain elliptic curves, preprint.

12 Y. Martin, K. Ono, Eta-quotients and elliptic curves, Proc. Amer. Math. Soc., 125 (1997), 3169–3176.

13 K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS
Regional Conference Series in Mathematics, AMS, 102, (2003)

14 R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995),
no. 3, 553–572.

15 M. Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002),no.4,
487–502.

Matija Kazalicki mkazal@math.hr
Department of Mathematics, University of Zagreb, Bijenicka cesta 30, Zagreb, Croatia

Yuichi Sakai dynamixaxs@gmail.com

Koji Tasaka k-tasaka@math.kyushu-u.ac.jp
Graduate school of mathematics, Kyushu University, 744 Motooka Nishiku, Fukuoka-city, Fukuoka,
819-0395 Japan

9


