LINEAR RELATIONS FOR COEFFICIENTS OF DRINFELD MODULAR FORMS

MATIJA KAZALICKI

ABSTRACT. Choie, Kohnen and Ono have recently classified the linear relations among the initial Fourier coefficients of weight k modular forms on $SL_2(\mathbb{Z})$, and they employed these results to obtain particular p-divisibility properties of some p-power Fourier coefficients that are common to all modular forms of certain weights. Using this, they reproduced some famous results of Hida on non-ordinary primes. Here we generalize these results to Drinfeld modular forms.

1. INTRODUCTION AND STATEMENT OF RESULTS

In a recent paper, Y. Choie, W. Kohnen and K. Ono [1] determined all the linear relations among the initial Fourier coefficients of weight k modular forms on $SL_2(\mathbb{Z})$. As a consequence, they identified spaces M_k in which there are universal p-divisibility properties for certain p-power coefficients. As an application, they gave a new proof of a famous theorem of Hida on non-ordinary primes (see Corollary 1.3 of [1]). Here we generalize these results to Drinfeld modular forms.

Let $A = \mathbb{F}_q[T]$ be the ring of the polynomials over the finite field \mathbb{F}_q where $q = p^s$ and $K = \mathbb{F}_q(T)$. Completing K with respect to the absolute value | | that corresponds to the degree valuation deg : $K \to \mathbb{Z} \cup \{-\infty\}$, normalized by |T| = q, we obtain the field $K_{\infty} = \mathbb{F}_q((\frac{1}{T}))$. The completion of the algebraic closure of K_{∞} with respect to the absolute value extending | | is denoted by C. Now as an analogue of the complex upper half-plane, we define $\Omega := C - K_{\infty}$ to be the Drinfeld upper half plane.

Throughout, if k > 0 is an integer, we denote by \mathscr{M}_k^l the vector space of Drinfeld modular forms for $\Gamma = \operatorname{GL}_2(A)$ of weight k and type l. By the Theorem 2.1.3 of [3], if q - 1|k, then its dimension is

(1.1)
$$d(k) := \dim_C(\mathscr{M}_k^0) = \left\lfloor \frac{k}{q^2 - 1} \right\rfloor + 1.$$

Every Drinfeld modular form $f(z) \in \mathscr{M}_k^0$ has a t-expansion

$$f(z) = \sum_{i=0}^{\infty} a_f((q-1)i)t^{(q-1)i},$$

²⁰⁰⁰ Mathematics Subject Classification. 11F52.

Key words and phrases. Drinfeld modular form, t-expansion, linear relations among coefficients, congruences.

MATIJA KAZALICKI

where as usual $t(z) = e_L^{-1}(\tilde{\pi}z)$. Here $L = \tilde{\pi}A$ is the one dimensional lattice corresponding to the Carlitz module ρ that is defined by (see Section 4 of [2])

$$\rho_T = T\tau^0 + \tau = TX + X^q,$$

and $e_L(z)$ is the "Carlitz exponential" function related to L (see Section 2 of [2]). The A-algebra of weight k and type l modular forms with t-expansion coefficients in A is denoted by $\mathcal{M}_k^l(A)$.

As in the classical case, we have Eisenstein series $E^{(k)} \in \mathscr{M}_k^0$ (for convenience set $E^{(0)} = 1$), a Delta-function $\Delta(z) \in \mathscr{M}_{q^2-1}^0$, and a Poincare series $h(z) := P_{q+1,1}(z) \in \mathscr{M}_{q+1}^1$. We also make use of the normalized weight q-1 Eisenstein series $g(z) = \tilde{\pi}^{1-q}[1]E^{(q-1)} \in \mathscr{M}_{q-1}^0$. Here we use the notation $[d] := T^{q^d} - T$, for integers d > 0. For more information about *t*-expansions of these functions see [2].

Define $\sigma(k) \in \{0, q-1, 2(q-1), \dots, q(q-1)\}$ by the relation $k \equiv \sigma(k) \pmod{q^2 - 1}$, and for positive integers N we define (1.2)

$$L_{k,N} := \{ (c_0, \dots, c_{N+d(k)} \in C^{d(k)+N+1}) : \sum_{\nu=0}^{N+d(k)} c_{\nu} a_f((q-1)\nu) = 0, \text{ for every } f \in \mathscr{M}_k^0 \}.$$

This is the space of linear relations satisfied by the first d(k) + N + 1 Fourier coefficients of all the forms $f(z) \in \mathscr{M}_k^0$. For each $G \in \mathscr{M}_{(q^2-1)N}^0$, define numbers $b(k, N, G; \nu)$ by

(1.3)
$$\frac{Gg^{q}h}{E^{(\sigma(k))}\Delta^{N+d(k)}} = \sum_{\nu=0}^{N+d(k)} b(k, N, G; \nu)t^{-\nu(q-1)+1} + \sum_{\nu=1}^{\infty} c(k, N, G; \nu)t^{\nu(q-1)+1}.$$

Generalizing the work of Choie, Kohnen and Ono (see Theorem 1.1. of [1]), we have the following description of the $L_{k,N}$.

Theorem 1.1. The map $\phi_{k,N} : \mathscr{M}^{0}_{(q^{2}-1)N} \to L_{k,N}$ defined by $\phi_{k,N}(G(z)) = (b(k, N, G; \nu) : \nu = 0, 1, \dots, d(k) + N)$

defines a linear isomorphism between $\mathscr{M}^{0}_{(q^2-1)N}$ and $L_{k,N}$.

We recall that in the classical case we say that a prime number p is non-ordinary for a normalized Hecke eigenform $f(z) = \sum_{n=1}^{\infty} a_f(n)q^n \in S_k$ if $a_f(p) \equiv 0 \pmod{p}$. Generalizing Theorem 1.2 of [1], which gives a result on non-ordinary primes, we obtain condition which determine Fourier coefficient with a divisibility by generic [d].

Theorem 1.2. Let d be a positive integer and $f \in \mathscr{M}_k^0(A)$. If $a \ge 0$ and b > 0 are integers such that

(1.4)
$$(q^2 + 1 - \sigma(k))(q^b - 1) + (q^d - 1)a + k - \sigma(k) = (q^b - 1)(q^2 - 1),$$

then

$$a_f(q^b(q-2)+1) \equiv 0 \pmod{[d]}$$

Example. Define $g_d := (-1)^{d+1} \tilde{\pi}^{1-q^d} L_d E^{(q^d-1)} \in \mathscr{M}_{q^d-1}^0(A)$, where $L_d = [d][d-1] \dots [1]$. The constant coefficient of the *t*-expansion of g_d is 1 and $g_d \equiv 1 \pmod{[d]}$ (see Section 6 of [2]). Using the notation of Theorem 1.2, for even *d* and $q \geq 4$, set b = d, $k = (q-1)^2 + q^d - 1$ and $a = q^2 - 2q - 2$. Now $\sigma(k) = (q-1)^2$, and the condition (1.4) is satisfied. It follows that for $f(z) = g_d(z)g(z)^{q-1} \in \mathscr{M}_{(q-1)^2+q^d-1}^0(A)$, we have $a_f(q^d(q-2)+1) \equiv 0 \pmod{[d]}$. Since $g_d(z) \equiv 1 \pmod{[d]}$, we conclude that $a_{g^{q-1}}(q^d(q-2)+1) \equiv 0 \pmod{[d]}$.

2. Acknowledgements

The author wishes to thank Ken Ono for suggesting this project and for his comments on drafts of the paper.

3. Proofs of Results

3.1. **Preliminaries.** A meromorphic Drinfeld modular form for Γ of weight k and type l (where $k \ge 0$ is an integer and l is a class in $\mathbb{Z}/(q-1)$) is a meromorphic function $f: \Omega \to C$ that satisfies:

- (i) $f(\gamma z) = (\det \gamma)^{-l} (cz+d)^k f(z)$ for every $\gamma \in \Gamma$,
- (ii) f is meromorphic at the cusp ∞ .

If f is a meromorphic Drinfeld modular form of weight k and type l, then the t-expansion of f is of the form

$$f = \sum_{i} a_f((q-1)i+l)t^{(q-1)i+l}.$$

Moreover, if f is a holomorphic (on Ω and at the cusp ∞), then f is called *Drinfeld* modular form for Γ . The space of all Drinfeld modular forms (resp. Drinfeld modular forms with *t*-expansion coefficients in A) of weight k and type l is denoted by \mathscr{M}_k^l (resp. $\mathscr{M}_k^l(A)$).

We will need the valence formula for meromorphic modular forms (see Section 5 of [2]):

(3.1)
$$\sum_{z \in \Gamma \setminus \Omega}' v_z(f) + \frac{v_0(f)}{q+1} + \frac{v_\infty(f)}{q-1} = \frac{k}{q^2 - 1},$$

where we are summing over the non-elliptic equivalence classes of $z \in \Omega$, and v_z (resp. v_0 , resp. v_{∞}) is the order of f at z (resp. at the elliptic points, resp. at ∞).

For every meromorphic weight two type one Drinfeld modular form $f(z), \omega := f(z)dz$ is a 1-form on the compactification $\overline{\Gamma \setminus \Omega}$ of $\Gamma \setminus \Omega$. If $f(z) = \sum_{n=n_0}^{\infty} a(n)t^n$ is the *t*expansion of f(z), and if $\pi : \Omega \to \Gamma \setminus \Omega$ is the quotient map, then we have the following lemma.

Lemma 3.1. Assuming the notation above, the following is true:

a) $\operatorname{Res}_{\infty}\omega = -a(1)/\tilde{\pi}$

b)
$$\operatorname{Res}_{\tau} f(z) = \operatorname{Res}_{\pi(\tau)} \omega$$
 for each $\tau \in \Omega$
c) $\sum_{\gamma \in \overline{\Gamma \setminus \Omega}} \operatorname{Res}_{\gamma} \omega = 0.$

Hence if f(z) is holomorphic on Ω , then we have a(1) = 0.

3.2. Proof of Theorem 1.1. Here we prove Theorem 1.1.

Proof of Theorem 1.1. First we are going to show that

(3.2)
$$\sum_{\nu=0}^{N+d(k)} b(k, N, G; \nu) a_f((q-1)\nu) = 0$$

for all $G \in \mathscr{M}^{0}_{(q^{2}-1)N}$ and all $f(z) = \sum_{\nu=0}^{\infty} ((q-1)\nu)t^{(q-1)\nu} \in \mathscr{M}^{0}_{k}$. Let us define $V(z) := \frac{g^{q}hG}{E^{(\sigma(k))}\Delta^{N+d(k)}}$. Then (3.2) is equivalent to the statement that the coefficient of t in the t-expansion of V(z)f(z) is zero. A simple calculation shows that V(z)f(z) is a weight two, level one meromorphic Drinfeld modular form, so by Lemma 3.1 it is enough to prove that $\frac{g^{q}hfG}{E^{(\sigma(k))}\Delta^{N+d(k)}}$ is holomorphic on Ω . According to the valence formula (3.1), the zeros of $E^{(\sigma(k))}$ are at elliptic points of Ω with multiplicity $\frac{\sigma(k)}{q-1} \leq q$. The only zeros of g are also at elliptic points, with multiplicity 1, and so $\frac{g^{q}}{E^{(\sigma(k))}}$ is

holomorphic on Ω . Also, Δ has no zeros besides infinity so the claim follows.

The map $\phi_{k,N}$ is obviously linear, and it is also injective since $\phi_{k,N}(G) = (0)$ implies that V(z)f(z) is the holomorphic modular form of weight 2 that vanishes at infinity, hence is 0. Since d(k) functionals $\{a_f(0), a_f(q-1), \ldots, a_f((q-1)(d(k)-1))\}$ form the basis for the dual space $(\mathscr{M}_k^0)^*$, we conclude that $\dim_C L_{k,N} = N + 1 = \dim_{(q^2-1)N} \mathscr{M}_{(q^2-1)N}$ so $\phi_{k,N}$ is isomorphism.

3.3. **Proof of the Theorem 1.2.** We use the normalized Eisenstein series $E^{(\sigma(k))} := -\tilde{\pi}^{-k}(-[1])^{\frac{\sigma(k)}{q-1}}E^{(\sigma(k))} \in \mathscr{M}^{0}_{\sigma(k)}(A)$ (see Section 6 of [2], we employ the fact that $\sigma(k) < q^{2} - 1$), and the normalized Delta-function $\Delta := \tilde{\pi}^{(1-q^{2})}\Delta \in \mathscr{M}^{0}_{q^{2}-1}(A)$ (see Section 6 of [2]). The *t*-expansion coefficients of the functions g(z) and h(z) are already the elements of A, and the *t*-coefficient of the *t*-expansion of h(z) is -1 (see Section 9 of [2]).

Proof of the Theorem 1.2. Let $u(z) := \frac{g(z)^q h(z)}{E^{(\sigma(k))}(z)}$. From the proof of the Theorem 1.1, u(z) is holomorphic on Ω . Define

$$G(z) = u(z)^{q^b - 1} g_d(z)^a.$$

Since $k \equiv \sigma(k) \pmod{(q^2-1)}$, (1.4) implies that the weight of G, $(q^2+1-\sigma(k))(q^b-1)+(q^d-1)a$, is of the form $N(q^2-1)$, where N is a positive integer. Thus $G \in \mathscr{M}^0_{(q^2-1)N}$.

4

An easy calculation shows that $N + d(k) = q^b$, so as in the proof of Theorem 1.1, the *t*-coefficient of *t*-expansion of function

$$\frac{Gg^q h f}{E^{(\sigma(k))} \Delta^{N+d(k)}} = \frac{u^{q^b} g^a_d f}{\Delta^{q^b}}$$

is zero. Now from the t-expansions

$$\frac{1}{\Delta(z)} = -t^{-(q-1)} + b_0 + b_1 t^{q-1} + \dots,$$
$$u(z) = -t + a_2 t^{(q-1)+1} + \dots,$$

we derive t-expansions

$$\frac{1}{\Delta^{q^b}(z)} = (-1)^{q^b} t^{-q^b(q-1)} + b_0^{q^b} + b_1^{q^b} t^{(q-1)q^b} + \dots,$$
$$u^{q^b}(z) = (-1)^{q^b} t^{q^b} + a_2^{q^b} t^{q^{b+1}} + \dots$$

and

$$\frac{u^{q^{b}}(z)}{\Delta^{q^{b}}(z)} = (-1)^{q^{b}}(-1)^{q^{b}}t^{-(q-2)q^{b}} + ((-b_{0})^{q^{b}} + (-a_{2})^{q^{b}})t^{q^{b}} + \dots$$

Since $\Delta(z)$ and $E^{(\sigma(k))}$ are both normalized with coefficients in A, the coefficients of u(z) and $\frac{1}{\Delta(z)}$ are also in A. Finally, from $g_d \equiv 1 \pmod{[d]}$ it follows

$$\frac{u^{q^b}g_d^a f}{\Delta^{q^b}} \equiv \ldots + a_f (q^b(q-2)+1)t + \ldots \pmod{[d]}.$$

Hence $a_f(q^b(q-2)+1) \equiv 0 \pmod{[d]}$.

Remark. It came to our knowledge that the similar results have been obtained independently by S. Choi in [4].

References

- Y. Choie, W. Kohnen, K. Ono Linear relations between modular form coefficients and nonordinary primes, Bulletin of the London Mathematical Society, 37, Part 3, (2005), pages 335-341.
- [2] E. U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math 93 (1988), pages 667-700.
- [3] D. Goss, Modular forms for $\mathbb{F}_r[T]$, J. Reine Angew. Math. **317** (1980), pages 16-39.
- [4] S. Choi, Linear relations and congruences for the coefficients of Drinfeld modular forms, preprint

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706 *E-mail address:* kazalick@math.wisc.edu