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ABSTRACT. Choie, Kohnen and Ono have recently classified the linear relations
among the initial Fourier coefficients of weight k& modular forms on SLa(Z), and they
employed these results to obtain particular p-divisibility properties of some p-power
Fourier coefficients that are common to all modular forms of certain weights. Using
this, they reproduced some famous results of Hida on non-ordinary primes. Here we
generalize these results to Drinfeld modular forms.

1. INTRODUCTION AND STATEMENT OF RESULTS

In a recent paper, Y. Choie, W. Kohnen and K. Ono [1] determined all the linear
relations among the initial Fourier coefficients of weight & modular forms on SLy(Z).
As a consequence, they identified spaces M), in which there are universal p-divisibility
properties for certain p-power coefficients. As an application, they gave a new proof of
a famous theorem of Hida on non-ordinary primes (see Corollary 1.3 of [1]). Here we
generalize these results to Drinfeld modular forms.

Let A = F,[T] be the ring of the polynomials over the finite field F, where ¢ = p*
and K = F (7). Completing K with respect to the absolute value | | that corresponds
to the degree valuation deg : K — Z U {—o0}, normalized by |T'| = ¢, we obtain the
field Koo = Fy((7)). The completion of the algebraic closure of K, with respect to
the absolute value extending | | is denoted by C. Now as an analogue of the complex
upper half-plane, we define () := C' — K, to be the Drinfeld upper half plane.

Throughout, if & > 0 is an integer, we denote by .#} the vector space of Drinfeld
modular forms for I' = GLy(A) of weight k& and type . By the Theorem 2.1.3 of [3], if
q — 1|k, then its dimension is

(1.1) d(k) == dime(A) = qu,k_ 1J + 1.

Every Drinfeld modular form f(z) € .#_ has a t-expansion
F(2) =) aslg = 1)ijt @V,
i=0
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where as usual t(z) = e;'(7z). Here L = %A is the one dimensional lattice correspond-
ing to the Carlitz module p that is defined by (see Section 4 of [2])

pr =T +7=TX + X,

and er(z) is the “Carlitz exponential” function related to L (see Section 2 of [2]). The
A-algebra of weight k and type [ modular forms with t-expansion coefficients in A is
denoted by .Z}(A).

As in the classical case, we have Eisenstein series E*) € . (for convenience set
E© = 1), a Delta-function A(z) € AMp_y, and a Poincare series h(2) 1= Ppy11(2) €

//lq 1. We also make use of the normalized weight ¢ — 1 Eisenstein series g(z) =

#174[1]E@Y € .42 . Here we use the notation [d] := 79" — T, for integers d > 0. For
more information about t-expansions of these functions see [2].
Define o(k) € {0,¢—1,2(¢ —1),...,q(q — 1)} by the relation k = o(k)(mod ¢*> — 1),
and for positive integers N we define
(1.2)
N+d(k)

Lin :={(co,- -, CNyar) € Cd(kHNH ; Z cyap((q—1)v) =0, for every f € .4}

This is the space of linear relations satlsﬁed by the first d(k)+ N + 1 Fourier coefficients
of all the forms f(z) € 4. For each G € t//l(%zfl)N, define numbers b(k, N, G; v) by

Ggth N+d(k)
1)+1 v 1+
(13)  —omy anram = Z b(k, N, G; )t =D+ +Z (k, N, G-+

v=1

Generalizing the work of Cho1e, Kohnen and Ono (see Theorem 1.1. of [1]), we have
the following description of the Ly n.

Theorem 1.1. The map ¢ n : ’//(?JLIW — Ly N defined by
oen(G(2)) = (b(k,N,G;v):v=0,1,...,d(k) + N)
defines a linear isomorphism between ‘///(?12—1)N and Ly n.

We recall that in the classical case we say that a prime number p is non-ordinary
for a normalized Hecke eigenform f(z) = > 7 ar(n)q" € Sy if ar(p) = 0(modp).
Generalizing Theorem 1.2 of [1], which gives a result on non-ordinary primes, we obtain
condition which determine Fourier coefficient with a divisibility by generic [d].

Theorem 1.2. Let d be a positive integer and f € MX(A). Ifa > 0 and b > 0 are
integers such that

(14)  (P+1=a(b)( =D+ (" —Vat+k—o(k) = (" - (¢ -1),
then
af(qb(q —2) + 1) = 0(mod [d]).
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Ezample. Define gq := (—1)* 171" [ B4~ ¢ Mp_ (A), where Ly = [d][d—1]...[1].
The constant coefficient of the t-expansion of g4 is 1 and g; = 1(mod [d]) (see Section
6 of [2]). Using the notation of Theorem 1.2, for even d and ¢ > 4, set b = d,
k=(q—12+¢*—1and a = ¢> —2¢ — 2. Now o(k) = (¢ — 1)?, and the condition
(1.4) is satisfied. It follows that for f(z) = g4(2)g(2)? ! € ,///((21 N (A), we have

— 2+qd_1
ar(q*(¢g—2)+1) = 0(mod [d]). Since g4(z) = 1(mod [d]), we conclude that age-1(q%(q—

2) + 1) = 0(mod [d]).
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3. PROOFS OF RESULTS

3.1. Preliminaries. A meromorphic Drinfeld modular form for I of weight k and type
[ (where k > 0 is an integer and [ is a class in Z/(q — 1)) is a meromorphic function
f:Q — C that satisfies:

(i) f(vz) = (dety) ! (cz + d)k f(z) for every v € T,

(ii) f is meromorphic at the cusp oco.
If f is a meromorphic Drinfeld modular form of weight k& and type [, then the t-
expansion of f is of the form

F=> ap((q—1)i+ it

Moreover, if f is a holomorphic (on 2 and at the cusp o), then f is called Drinfeld
modular form for T'. The space of all Drinfeld modular forms (resp. Drinfeld modular
forms with t-expansion coefficients in A) of weight k and type [ is denoted by .} (resp.
M (A)).

We will need the valence formula for meromorphic modular forms (see Section 5 of

[2)):
(3.1) > )+ wlf) | velf) __E

_ 2 _q°
ey q+1 qg—1 q 1

where we are summing over the non-elliptic equivalence classes of z € €2, and v, (resp.
Vo, TeSP. Uso) is the order of f at z (resp. at the elliptic points, resp. at oo).

For every meromorphic weight two type one Drinfeld modular form f(z), w := f(2)dz
is a 1-form on the compactification T\Q of T\Q. If f(z) = D g @(n)t" s the -
expansion of f(z), and if 7 :  — I'\Q is the quotient map, then we have the following
lemma.

Lemma 3.1. Assuming the notation above, the following is true:
a) Resoow = —a(1)/7
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b) Res; f(2) = Resyryw for each T €
€) > cia Resyw = 0.

Hence if f(z) is holomorphic on €2, then we have a(1) = 0.

3.2. Proof of Theorem 1.1. Here we prove Theorem 1.1.

Proof of Theorem 1.1. First we are going to show that
N-+d(k)

(3.2) > bk, N,G;v)ap((q—1)v) =0

for all G € ///(?12_1)]\, and all f(z) = Y00 ((¢ — D)t € 4P, Let us define
Vis) e 9'hG

(2) == E (k) AN+d(k)

of t in the t-expansion of V(z)f(z) is zero. A simple calculation shows that V(z)f(z)

is a weight two, level one meromorphic Drinfeld modular form, so by Lemma 3.1 it is
g'hfG

E (k) AN+d(k)

. Then (3.2) is equivalent to the statement that the coefficient

is holomorphic on €. According to the valence

k
qg—1
q
The only zeros of g are also at elliptic points, with multiplicity 1, and so % is

holomorphic on ). Also, A has no zeros besides infinity so the claim follows.

The map ¢y is obviously linear, and it is also injective since ¢x y(G) = (0) implies
that V(2)f(z) is the holomorphic modular form of weight 2 that vanishes at infinity,
hence is 0. Since d(k) functionals {a;(0),as(¢—1),...,a;((¢—1)(d(k) —1))} form the
basis for the dual space (.#})*, we conclude that dime Ly y = N + 1 = dim A 2_1)n
SO ¢p,n is isomorphism. O

enough to prove that

formula (3.1), the zeros of E(¥) are at elliptic points of Q with multiplicity

3.3. Proof (%Ig the Theorem 1.2. We use the normalized Eisenstein series E(*) .=
—7 R (—[1]) 1 B®) ¢ ///(?(k)(A) (see Section 6 of [2], we employ the fact that o(k) <
¢> — 1), and the normalized Delta-function A = 7)A€ ///;)Q_I(A)(see Section

6 of [2]). The t-expansion coefficients of the functions g(z) and h(z) are already the
elements of A, and the t-coefficient of the t-expansion of h(z) is —1 (see Section 9 of

2]).
ih
Proof of the Theorem 1.2. Let u(z) := %))EZ; From the proof of the Theorem 1.1,
g 4

u(z) is holomorphic on Q. Define

G(2) = ul(2)" " gal2)".

Since k = o(k)(mod (¢>—1)), (1.4) implies that the weight of G, (¢?*+1—0(k))(¢®*—1)+
(¢ —1)a, is of the form N(¢g* — 1), where N is a positive integer. Thus G € E///((;Ll)N.
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An easy calculation shows that N + d(k) = ¢°, so as in the proof of Theorem 1.1, the
t-coefficient of t-expansion of function

Gy'hf  _ugyf
E(o(k)) AN+d(k) A
is zero. Now from the t-expansions
1
A(z)
u(z) = —t +agt TV 4

S R

we derive t-expansions
1 b b b b b
- (2@ q 4’ +(q—1)q
AT (2) (-7t + b + 0t +...,
w (z) = (=17t +ad 1"
and ,
q
25 b(2> = ()7 (=)t 4 (<b)? + (—ag)? )t + ...
AT (z)

Since A(z) and E*) are both normalized with coefficients in A, the coefficients of
u(z) and ﬁ are also in A. Finally, from gq = 1(mod [d]) it follows

u’gqf
A
Hence af(q*(¢ —2) + 1) = 0(mod [d]).

=...+ar(¢"(g—2)+ )t +...(mod [d)).

0

Remark. It came to our knowledge that the similar results have been obtained inde-
pendently by S. Choi in [4].
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