LINEAR RELATIONS FOR COEFFICIENTS OF DRINFELD MODULAR FORMS

MATIJA KAZALICKI

Abstract

Choie, Kohnen and Ono have recently classified the linear relations among the initial Fourier coefficients of weight k modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$, and they employed these results to obtain particular p-divisibility properties of some p-power Fourier coefficients that are common to all modular forms of certain weights. Using this, they reproduced some famous results of Hida on non-ordinary primes. Here we generalize these results to Drinfeld modular forms.

1. Introduction and statement of results

In a recent paper, Y. Choie, W. Kohnen and K. Ono [1] determined all the linear relations among the initial Fourier coefficients of weight k modular forms on $\mathrm{SL}_{2}(\mathbb{Z})$. As a consequence, they identified spaces M_{k} in which there are universal p-divisibility properties for certain p-power coefficients. As an application, they gave a new proof of a famous theorem of Hida on non-ordinary primes (see Corollary 1.3 of [1]). Here we generalize these results to Drinfeld modular forms.

Let $A=\mathbb{F}_{q}[T]$ be the ring of the polynomials over the finite field \mathbb{F}_{q} where $q=p^{s}$ and $K=\mathbb{F}_{q}(T)$. Completing K with respect to the absolute value $|\mid$ that corresponds to the degree valuation $\operatorname{deg}: K \rightarrow \mathbb{Z} \cup\{-\infty\}$, normalized by $|T|=q$, we obtain the field $K_{\infty}=\mathbb{F}_{q}\left(\left(\frac{1}{T}\right)\right)$. The completion of the algebraic closure of K_{∞} with respect to the absolute value extending $\|$ is denoted by C. Now as an analogue of the complex upper half-plane, we define $\Omega:=C-K_{\infty}$ to be the Drinfeld upper half plane.

Throughout, if $k>0$ is an integer, we denote by \mathscr{M}_{k}^{l} the vector space of Drinfeld modular forms for $\Gamma=\mathrm{GL}_{2}(A)$ of weight k and type l. By the Theorem 2.1.3 of [3], if $q-1 \mid k$, then its dimension is

$$
\begin{equation*}
d(k):=\operatorname{dim}_{C}\left(\mathscr{M}_{k}^{0}\right)=\left\lfloor\frac{k}{q^{2}-1}\right\rfloor+1 . \tag{1.1}
\end{equation*}
$$

Every Drinfeld modular form $f(z) \in \mathscr{M}_{k}^{0}$ has a t-expansion

$$
f(z)=\sum_{i=0}^{\infty} a_{f}((q-1) i) t^{(q-1) i}
$$

[^0]where as usual $t(z)=e_{L}^{-1}(\tilde{\pi} z)$. Here $L=\tilde{\pi} A$ is the one dimensional lattice corresponding to the Carlitz module ρ that is defined by (see Section 4 of [2])
$$
\rho_{T}=T \tau^{0}+\tau=T X+X^{q}
$$
and $e_{L}(z)$ is the "Carlitz exponential" function related to L (see Section 2 of [2]). The A-algebra of weight k and type l modular forms with t-expansion coefficients in A is denoted by $\mathscr{M}_{k}^{l}(A)$.

As in the classical case, we have Eisenstein series $E^{(k)} \in \mathscr{M}_{k}^{0}$ (for convenience set $E^{(0)}=1$), a Delta-function $\Delta(z) \in \mathscr{M}_{q^{2}-1}^{0}$, and a Poincare series $h(z):=P_{q+1,1}(z) \in$ \mathscr{M}_{q+1}^{1}. We also make use of the normalized weight $q-1$ Eisenstein series $g(z)=$ $\tilde{\pi}^{1-q}[1] E^{(q-1)} \in \mathscr{M}_{q-1}^{0}$. Here we use the notation $[d]:=T^{q^{d}}-T$, for integers $d>0$. For more information about t-expansions of these functions see [2].

Define $\sigma(k) \in\{0, q-1,2(q-1), \ldots, q(q-1)\}$ by the relation $k \equiv \sigma(k)\left(\bmod q^{2}-1\right)$, and for positive integers N we define

$$
\begin{equation*}
L_{k, N}:=\left\{\left(c_{0}, \ldots, c_{N+d(k)} \in C^{d(k)+N+1}\right): \sum_{\nu=0}^{N+d(k)} c_{\nu} a_{f}((q-1) \nu)=0, \text { for every } f \in \mathscr{M}_{k}^{0}\right\} . \tag{1.2}
\end{equation*}
$$

This is the space of linear relations satisfied by the first $d(k)+N+1$ Fourier coefficients of all the forms $f(z) \in \mathscr{M}_{k}^{0}$. For each $G \in \mathscr{M}_{\left(q^{2}-1\right) N}^{0}$, define numbers $b(k, N, G ; \nu)$ by

$$
\begin{equation*}
\frac{G g^{q} h}{E^{(\sigma(k))} \Delta^{N+d(k)}}=\sum_{\nu=0}^{N+d(k)} b(k, N, G ; \nu) t^{-\nu(q-1)+1}+\sum_{\nu=1}^{\infty} c(k, N, G ; \nu) t^{\nu(q-1)+1} . \tag{1.3}
\end{equation*}
$$

Generalizing the work of Choie, Kohnen and Ono (see Theorem 1.1. of [1]), we have the following description of the $L_{k, N}$.
Theorem 1.1. The map $\phi_{k, N}: \mathscr{M}_{\left(q^{2}-1\right) N}^{0} \rightarrow L_{k, N}$ defined by

$$
\phi_{k, N}(G(z))=(b(k, N, G ; \nu): \nu=0,1, \ldots, d(k)+N)
$$

defines a linear isomorphism between $\mathscr{M}_{\left(q^{2}-1\right) N}^{0}$ and $L_{k, N}$.
We recall that in the classical case we say that a prime number p is non-ordinary for a normalized Hecke eigenform $f(z)=\sum_{n=1}^{\infty} a_{f}(n) q^{n} \in S_{k}$ if $a_{f}(p) \equiv 0(\bmod p)$. Generalizing Theorem 1.2 of [1], which gives a result on non-ordinary primes, we obtain condition which determine Fourier coefficient with a divisibility by generic $[d]$.

Theorem 1.2. Let d be a positive integer and $f \in \mathscr{M}_{k}^{0}(A)$. If $a \geq 0$ and $b>0$ are integers such that

$$
\begin{equation*}
\left(q^{2}+1-\sigma(k)\right)\left(q^{b}-1\right)+\left(q^{d}-1\right) a+k-\sigma(k)=\left(q^{b}-1\right)\left(q^{2}-1\right), \tag{1.4}
\end{equation*}
$$

then

$$
a_{f}\left(q^{b}(q-2)+1\right) \equiv 0(\bmod [d])
$$

Example. Define $g_{d}:=(-1)^{d+1} \tilde{\pi}^{1-q^{d}} L_{d} E^{\left(q^{d}-1\right)} \in \mathscr{M}_{q^{d}-1}^{0}(A)$, where $L_{d}=[d][d-1] \ldots[1]$. The constant coefficient of the t-expansion of g_{d} is 1 and $g_{d} \equiv 1(\bmod [d])$ (see Section 6 of [2]). Using the notation of Theorem 1.2, for even d and $q \geq 4$, set $b=d$, $k=(q-1)^{2}+q^{d}-1$ and $a=q^{2}-2 q-2$. Now $\sigma(k)=(q-1)^{2}$, and the condition (1.4) is satisfied. It follows that for $f(z)=g_{d}(z) g(z)^{q-1} \in \mathscr{M}_{(q-1)^{2}+q^{d}-1}^{0}(A)$, we have $a_{f}\left(q^{d}(q-2)+1\right) \equiv 0(\bmod [d])$. Since $g_{d}(z) \equiv 1(\bmod [d])$, we conclude that $a_{g^{q-1}}\left(q^{d}(q-\right.$ $2)+1) \equiv 0(\bmod [d])$.

2. Acknowledgements

The author wishes to thank Ken Ono for suggesting this project and for his comments on drafts of the paper.

3. Proofs of Results

3.1. Preliminaries. A meromorphic Drinfeld modular form for Γ of weight k and type l (where $k \geq 0$ is an integer and l is a class in $\mathbb{Z} /(q-1)$) is a meromorphic function $f: \Omega \rightarrow C$ that satisfies:
(i) $f(\gamma z)=(\operatorname{det} \gamma)^{-l}(c z+d)^{k} f(z)$ for every $\gamma \in \Gamma$,
(ii) f is meromorphic at the cusp ∞.

If f is a meromorphic Drinfeld modular form of weight k and type l, then the t expansion of f is of the form

$$
f=\sum_{i} a_{f}((q-1) i+l) t^{(q-1) i+l} .
$$

Moreover, if f is a holomorphic (on Ω and at the cusp ∞), then f is called Drinfeld modular form for Γ. The space of all Drinfeld modular forms (resp. Drinfeld modular forms with t-expansion coefficients in A) of weight k and type l is denoted by \mathscr{M}_{k}^{l} (resp. $\left.\mathscr{M}_{k}^{l}(A)\right)$.

We will need the valence formula for meromorphic modular forms (see Section 5 of [2]):

$$
\begin{equation*}
\sum_{z \in \Gamma \backslash \Omega}^{\prime} v_{z}(f)+\frac{v_{0}(f)}{q+1}+\frac{v_{\infty}(f)}{q-1}=\frac{k}{q^{2}-1} \tag{3.1}
\end{equation*}
$$

where we are summing over the non-elliptic equivalence classes of $z \in \Omega$, and v_{z} (resp. v_{0}, resp. v_{∞}) is the order of f at z (resp. at the elliptic points, resp. at ∞).

For every meromorphic weight two type one Drinfeld modular form $f(z), \omega:=f(z) d z$ is a 1 -form on the compactification $\overline{\Gamma \backslash \Omega}$ of $\Gamma \backslash \Omega$. If $f(z)=\sum_{n=n_{0}}^{\infty} a(n) t^{n}$ is the t expansion of $f(z)$, and if $\pi: \Omega \rightarrow \Gamma \backslash \Omega$ is the quotient map, then we have the following lemma.

Lemma 3.1. Assuming the notation above, the following is true:
a) $\operatorname{Res}_{\infty} \omega=-a(1) / \tilde{\pi}$
b) $\operatorname{Res}_{\tau} f(z)=\operatorname{Res}_{\pi(\tau)} \omega$ for each $\tau \in \Omega$
c) $\sum_{\gamma \in \overline{\Gamma \backslash \Omega}} \operatorname{Res}_{\gamma} \omega=0$.

Hence if $f(z)$ is holomorphic on Ω, then we have $a(1)=0$.

3.2. Proof of Theorem 1.1. Here we prove Theorem 1.1.

Proof of Theorem 1.1. First we are going to show that

$$
\begin{equation*}
\sum_{\nu=0}^{N+d(k)} b(k, N, G ; \nu) a_{f}((q-1) \nu)=0 \tag{3.2}
\end{equation*}
$$

for all $G \in \mathscr{M}_{\left(q^{2}-1\right) N}^{0}$ and all $f(z)=\sum_{\nu=0}^{\infty}((q-1) \nu) t^{(q-1) \nu} \in \mathscr{M}_{k}^{0}$. Let us define $V(z):=\frac{g^{q} h G}{E^{(\sigma(k))} \Delta^{N+d(k)}}$. Then (3.2) is equivalent to the statement that the coefficient of t in the t-expansion of $V(z) f(z)$ is zero. A simple calculation shows that $V(z) f(z)$ is a weight two, level one meromorphic Drinfeld modular form, so by Lemma 3.1 it is enough to prove that $\frac{g^{q} h f G}{E^{(\sigma(k))} \Delta^{N+d(k)}}$ is holomorphic on Ω. According to the valence formula (3.1), the zeros of $E^{(\sigma(k))}$ are at elliptic points of Ω with multiplicity $\frac{\sigma(k)}{q-1} \leq q$.
The only zeros of g are also at elliptic points, with multiplicity 1 , and so $\frac{g^{q}}{E^{(\sigma(k))}}$ is holomorphic on Ω. Also, Δ has no zeros besides infinity so the claim follows.

The map $\phi_{k, N}$ is obviously linear, and it is also injective since $\phi_{k, N}(G)=(0)$ implies that $V(z) f(z)$ is the holomorphic modular form of weight 2 that vanishes at infinity, hence is 0 . Since $d(k)$ functionals $\left\{a_{f}(0), a_{f}(q-1), \ldots, a_{f}((q-1)(d(k)-1))\right\}$ form the basis for the dual space $\left(\mathscr{M}_{k}^{0}\right)^{*}$, we conclude that $\operatorname{dim}_{C} L_{k, N}=N+1=\operatorname{dim} \mathscr{M}_{\left(q^{2}-1\right) N}$ so $\phi_{k, N}$ is isomorphism.
3.3. Proof of the Theorem 1.2. We use the normalized Eisenstein series $E^{(\sigma(k))}:=$ $-\tilde{\pi}^{-k}(-[1])^{\frac{\sigma(k)}{q-1}} E^{(\sigma(k))} \in \mathscr{M}_{\sigma(k)}^{0}(A)$ (see Section 6 of [2], we employ the fact that $\sigma(k)<$ $q^{2}-1$), and the normalized Delta-function $\Delta:=\tilde{\pi}^{\left(1-q^{2}\right)} \Delta \in \mathscr{M}_{q^{2}-1}^{0}(A)$ (see Section 6 of [2]). The t-expansion coefficients of the functions $g(z)$ and $h(z)$ are already the elements of A, and the t-coefficient of the t-expansion of $h(z)$ is -1 (see Section 9 of [2]).
Proof of the Theorem 1.2. Let $u(z):=\frac{g(z)^{q} h(z)}{E^{(\sigma(k))}(z)}$. From the proof of the Theorem 1.1, $u(z)$ is holomorphic on Ω. Define

$$
G(z)=u(z)^{q^{b}-1} g_{d}(z)^{a} .
$$

Since $k \equiv \sigma(k)\left(\bmod \left(q^{2}-1\right)\right),(1.4)$ implies that the weight of $\mathrm{G},\left(q^{2}+1-\sigma(k)\right)\left(q^{b}-1\right)+$ $\left(q^{d}-1\right) a$, is of the form $N\left(q^{2}-1\right)$, where N is a positive integer. Thus $G \in \mathscr{M}_{\left(q^{2}-1\right) N}^{0}$.

An easy calculation shows that $N+d(k)=q^{b}$, so as in the proof of Theorem 1.1, the t-coefficient of t-expansion of function

$$
\frac{G g^{q} h f}{E^{(\sigma(k))} \Delta^{N+d(k)}}=\frac{u^{q^{b}} g_{d}^{a} f}{\Delta^{q^{b}}}
$$

is zero. Now from the t-expansions

$$
\begin{gathered}
\frac{1}{\Delta(z)}=-t^{-(q-1)}+b_{0}+b_{1} t^{q-1}+\ldots \\
u(z)=-t+a_{2} t^{(q-1)+1}+\ldots
\end{gathered}
$$

we derive t-expansions

$$
\begin{gathered}
\frac{1}{\Delta^{q^{b}}(z)}=(-1)^{q^{b}} t^{-q^{b}(q-1)}+b_{0}^{q^{b}}+b_{1}^{q^{b}} t^{(q-1) q^{b}}+\ldots, \\
u^{q^{b}}(z)=(-1)^{q^{b}} t^{q^{b}}+a_{2}^{q^{b}} t^{q^{b+1}}+\ldots
\end{gathered}
$$

and

$$
\frac{u^{q^{b}}(z)}{\Delta^{q^{b}}(z)}=(-1)^{q^{b}}(-1)^{q^{b}} t^{-(q-2) q^{b}}+\left(\left(-b_{0}\right)^{q^{b}}+\left(-a_{2}\right)^{q^{b}}\right) t^{g^{b}}+\ldots
$$

Since $\Delta(z)$ and $E^{(\sigma(k))}$ are both normalized with coefficients in A, the coefficients of $u(z)$ and $\frac{1}{\Delta(z)}$ are also in A. Finally, from $g_{d} \equiv 1(\bmod [d])$ it follows

$$
\frac{u^{q^{b}} g_{d}^{a} f}{\Delta^{q^{b}}} \equiv \ldots+a_{f}\left(q^{b}(q-2)+1\right) t+\ldots(\bmod [d])
$$

Hence $a_{f}\left(q^{b}(q-2)+1\right) \equiv 0(\bmod [d])$.

Remark. It came to our knowledge that the similar results have been obtained independently by S. Choi in [4].

References

[1] Y. Choie, W. Kohnen, K. Ono Linear relations between modular form coefficients and nonordinary primes, Bulletin of the London Mathematical Society, 37, Part 3, (2005), pages 335-341.
[2] E. U. Gekeler, On the coefficients of Drinfeld modular forms, Invent. Math 93 (1988), pages 667-700.
[3] D. Goss, Modular forms for $\mathbb{F}_{r}[T]$, J. Reine Angew. Math. 317 (1980), pages 16-39.
[4] S. Choi, Linear relations and congruences for the coefficients of Drinfeld modular forms, preprint
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
E-mail address: kazalick@math.wisc.edu

[^0]: 2000 Mathematics Subject Classification. 11F52.
 Key words and phrases. Drinfeld modular form, t-expansion, linear relations among coefficients, congruences.

