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Abstract

This paper presents a methodology for automated modular verification of C programs against specifications
written in separation logic. The distinguishing features of the approach are representation of the C memory
model in separation logic by means of rewrite rules suitable for automation and the careful integration of
an SMT solver behind the separation logic prover to guide the proof search.
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1 Introduction

Deductive software verification has made great progress in recent years, with a
number of automated tools emerging, such as e.g., ESC/Java[16], Spec# [3], Key-C
[21], Caduceus [15], Havoc [2] or Verified C Compiler (VCC) [11]. One of the most
interesting, but also the hardest, properties one wants to verify with such tools are
those of heap allocated data. Specifying properties about the objects in the heap
poses a major challenge.

Separation logic [17,24] is a promising new approach tailored for specifying and
verifying properties of heap allocated data. It supports local reasoning by allowing
small specifications that speak only about memory footprints. That is, in order
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to specify how a piece of code works one only needs to deal with the part of the
memory that the code actually accesses. This often leads to simpler specifications
and proofs than one would have in other formalisms.

This paper presents a methodology for automated modular verification of C pro-
grams against specifications written in separation logic. Its distinguishing features
are representation of the C memory model in separation logic by means of rewrite
rules suitable for automation. We also show how to integrate the use of a separation
logic prover with an SMT solver. The separation logic prover reduces validity of
separation logic formulae to validity of formulae of classical logic, which can then be
checked using an SMT solver. The SMT solver can also be called from the separa-
tion logic prover for computing a congruence closure and guiding proof search. This
is needed, for instance, in case when the prover tries to establish equality between
expressions that denote memory addresses involving arithmetic operations arising
from the memory model representation. The SMT solver supports such reasoning
within built-in background theories or those axiomatized by the user.

The presented methodology has been implemented in a prototype tool that uses
the Z3 SMT solver [12] and a modified version of the separation logic prover from
the jStar tool [14]. The tool has shown to be able to automatically verify a handful
of small annotated example C programs involving dynamically allocated structures,
one of which is described in the paper.

In summary, the contributions of the paper are as follows:

• A simple separation logic based representation of the C memory model and, in
particular, composite C types (structures, unions and arrays), defined in terms
of rewrite and sequent rules;

• An overview of CoreC*, a small and compact subset of the C language with
contracts tailored for simple symbolic execution;

• The integration of an SMT solver with a separation logic prover.

1.1 Related Work

A number of tools such as Havoc [2], VCC [11] or Escher’s C compiler [10] addressing
automated deductive verification of low-level C programs have emerged in recent
years. Many foundational issues regarding C memory model have been described
in greater detail: Leroy and Blazy [19] describe a formal verification of a memory
model for low-level imperative languages such as C; Moy [20] shows how unions and
casts can be encoded as structure subtyping; and Norrish [23] deals with formalizing
most aspects of C semantics in HOL.

Separation logic has already evidenced promising results in verifying high-level
procedural programs [4,5], and object-oriented programs [7,14]. Design of our verifi-
cation tool has been influenced by [14], while the programming language constructs
for specifying contracts are adopted from Spec# [3] and VCC [11]. Conceptually
similar work to ours is [1] on verifying Cminor programs using separation logic.
Also related to our work is research in shape analysis based on separation logic [13].

A line of research about L4 kernel verification employs a separation logic based
formalism capturing low-level features of the C memory model [28,29,30]. This
approach deals with intricacies of structured C types in detail on a foundational
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level, however, it is not as directly applicable for fully automated verification as our
approach. Pelaska and Löding [25] developed a technique for abstract interpretation
of C/C++ programs that has been applied for verification of embedded systems in
the fields of avionics, railways and automotive control. Their approach is similar to
ours with respect to the memory model treatment and the symbolic execution.

Use of SMT solvers for automated verification of heap properties is also not
new, see e.g., [6,18] or [26]. A closely related work with respect to using an SMT
solver for checking validity of separation logic formulae is [22]: the authors use an
SMT solver for checking validity of pure formulae (they do not, however, use it for
congruence closure computation).

The rest of this paper is structured as follows. We begin with motivating our
approach on an example in Section 2. Section 3 explains how we represent the C
memory model by use of rewrite rules. We give the architecture of our prototype
tool in Section 4, and then describe its key components: the symbolic interpreter in
Section 5, and the theorem prover in Section 6. The final Section 7 gives concluding
remarks and discusses future work.

2 A Motivating Example

In this section, we motivate the methodology presented in the paper. We first give
a brief introduction to the annotation language, and then explain how to use it to
specify a queue data structure that is automatically verifiable with our tool.

2.1 A brief introduction to the syntax

Let S be a structure containing two int variables a and b:
struct S { int a; int b; };

and let f be a function that updates fields a and b of an object of type S, say p,
to 42 and 28, respectively. The specification of f should require that p refers to a
properly allocated object of type S and ensure that its fields a and b are indeed
properly updated upon return from the call. In our syntax, the code for f together
with the annotations for preconditions and postconditions would look as follows:
void f ( struct S∗ p)
logical ( int x; int y ;)
requires (p‘−>‘S{x,y})
ensures (p‘−>‘S{42,28})
{

p−>a = 42;
p−>b = 28;
}

The operator ‘−>‘ in the concrete syntax represents the “points to” predicate sym-
bol from separation logic with a meaning that p‘−>‘S{x,y} holds iff p points to an
object of type S such that its fields a and b have int values x and y, respectively. If
we are not interested in specifying explicit values of object’s fields, variables passed
as parameters to object’s constructor should be existentially quantified by declaring
them as logical .
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2.2 Specification of the queue

Let us now move on to a more interesting example. The goal is to specify, implement
and verify operations of a queue data structure. Due to page limits, we show the
final annotation for one operation only, but we explain all the ingredients.

The queue is implemented as a singly-linked list of elements of type Node:
typedef struct node {

struct node∗ next;
void∗ data;
} Node, ∗PNode;

Using the operator ‘−>‘, we can easily specify the contract of a function allocating
a new queue node (variable result refers to the value returned from the function):
struct node∗ alloc node()
logical (void∗ d; PNode n;)
ensures ( result ‘−>‘Node{n,d});

The queue is assumed to always have a sentinel node allocated in the front. The
first and the last node of the queue’s linked list is accessible via the queue’s first
and last fields:
typedef struct queue {

PNode first ;
PNode last;
} Queue;

For specification purposes, the queue can be seen as an abstract sequence of values
stored in the queue. It is convenient to specify validity properties of the queue
with respect to such abstract sequence. For instance, if first and last point to the
same node then the sequence of values in the queue is empty. If first and last
are different, then the queue nodes form a linked list with its values comprising a
sequence of values stored in the queue. In the following, let predicate seq empty()
stand for the empty sequence; seq cons(y,ys) for the sequence having y inserted
before ys; and seq append(ys,zs) for the sequence with ys being appended with zs.
In our tool, such predicates for dealing with mathematical sequences are axiomatized
as a background theory within the SMT theorem prover.

The validity properties of the queue are formally captured via the valid queue
predicate:
spec int valid queue (Queue∗ q, sequence xs)
logical (PNode f, l , n; void ∗d;)
ensures ( result == q‘−>‘Queue{f,l} ‘∗‘ f‘−>‘Node{n,d} &&

(( f==l) ==> (xs==seq empty())) && ((f!=l) ==> list(n, l, xs)));

Here the operator ‘∗‘ represents the separating conjunction from separation logic
which denotes that left and right conjuncts access disjoint parts of the heap. The
meaning of list (h,t ,xs) is that nodes between h and t form a linked list with the
sequence of values xs:
spec int list (PNode h, PNode t, sequence xs)
logical (PNode n; void∗ d; sequence ys)
ensures ( result == h‘−>‘Node{n,d} && ((h==t) ==> (xs==seq cons(d, seq empty()))) &&

((h!=t) ==> (xs==seq cons(d, ys) && list(n, t, ys ))));

Having everything prepared, the fully annotated enqueue operation of the queue
looks as follows:
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void enqueue(struct queue∗ q, void∗ d)
logical (sequence xs)
requires ( valid queue (q, xs))
ensures ( valid queue (q, seq append(xs, seq cons(d, seq empty()))))
{

struct node∗ n = alloc node();
n−>data = d;
q−>last−>next = n;
q−>last = q−>last−>next;
}

3 The C Memory Model

This section describes the C memory model that we use in our approach. Here the
memory model refers to the formal description of the memory layout of different
C objects (in particular, primitive types, structures, unions and arrays). The key
feature is determining how to provide enough aliasing and anti-aliasing information
about objects in memory to make operations based on pointer arithmetic feasible.

The main difficulty with the C memory model defined by C standards in wide
use (such as ISO/IEC 9899:1990) is that it is very permissive. The memory is seen
as a sequence of bytes (actually, a collection of byte sequences), and interpretation
of a chunk of memory depends on the type of the pointer used for accessing it.

Type-safe languages such as Java or C# see memory as a collection of objects,
and the aliasing between two objects can happen only if two pointers (of the same
type) are pointing to the same object. This approach is not sound for C since in C
objects can overlap almost arbitrarily, however, it can be extended to become sound
and complete with respect to the byte-level C memory model (see [9] for a detailed
discussion). The key ingredient is having a way to represent when an object is a
structural descendent of another, and this is the step we follow as well.

The C memory model in our approach represents memory locations as abstract
symbolic values. We provide necessary aliasing and anti-aliasing information by
unfolding denotations of locations with rewrite rules. The rewrite rules take into
account the memory layout of objects (i.e., the offsets of object fields and array
components). This is motivated by the fact that if two denotations refer to the
same location, rewrite rules should eventually yield equivalent representations of
them.

3.1 Structures

When a memory location is accessed via a sequence of object’s fields (as in &(∗p).a),
the rewrite rules provide a way to get rid of field accesses in exchange for adding
corresponding field offsets to the memory location of the object. For instance,
&(∗p).a refers to the same memory location as p + offset (S.a), which equals to p
since the field a in structure S is at offset 0. Here the function offset gives a field’s
offset which is calculated by summing up sizes of the preceding fields together with
all intermediate padding (if any). The function Loc formalizes this idea:

Loc(x, [ ]) = x,

Loc(x, [f1, . . . , fn]) = Loc(x + offset(f1), [f2, . . . , fn]).
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Loc is used whenever we want to deal with memory locations that are accessed via
a sequence of object’s fields.

To see how this works in practice, let us consider the case of a nested structure:
struct T { struct S s ; int c; };

and let t be a pointer to an object of type T, and let S.a, S.b, T.s and T.c be the
qualified field names of structures S and T, respectively. Then access to the memory
location &(∗t).s .a is represented as Loc(t, [T.s, S.a]) which unfolds to t, establishing
in this way aliasing between &(∗t).s .a and t. Similarly, &(∗t).c refers to a memory
location different than t since Loc(t, [T.c]) equals to t + offset(T.c).

Loc participates in rewrite rules for the typed version of the “points to” relation
which are unfolded whenever one is accessing an object’s field (i.e., a memory loca-
tion accessible by a field offset from the object). For the structure T, the definition
would look as follows:

t 7→T T{S{x,y},z} ⇔ Loc(t, [T.s]) 7→T S{x,y} ∗ Loc(t, [T.c]) 7→T z.

In general, if T is a structure with fields f1, . . . , fn of types T1, . . . , Tn with
values x1, . . . , xn, then we have the following definition for an object p of type T :

p 7→T T{x1, x2, . . . , xn} ⇔ Loc(p, [T.f1]) 7→T1 x1 ∗ . . . ∗ Loc(p, [T.fn]) 7→Tn xn.

Note that we do not mention padding in this definition. We aim to apply our
approach to the environment where padding fields are required to be introduced
explicitly (and where a compiler issues a warning if it would introduce padding
fields itself). Should account of padding be presented in the model, one would
employ the following definition:

p 7→T T{x1, x2, . . . , xn}⇔ Loc(p, [T.f1]) 7→T1 x1 ∗ Pad(p, [T.f1]) ∗ . . . ∗
Pad(p, [T.fn−1]) ∗ Loc(p, [T.fn]) 7→Tn xn.

Here the padding predicate Pad stands for the padding introduced for a particular
field. It is not meant to be unrolled further, but is just passed around in the prover
during the proof search.

3.2 Unions

The approach we used for structures can be applied for unions as well, the difference
being the way field offsets are calculated. Each field of a union begins at the
same memory location, thus the function offset yields the same value for all fields
belonging to the same union. For instance, consider a union U:
union U { struct S s ; int c; double d; };

and let u be an object of type U. Then Loc(u, [U.s]), Loc(u, [U.c]) and Loc(u, [U.d])
are all equal to u.

Unions in C are untagged, thus one can choose to read a union’s field that was
not most recently assigned to. Should types of the fields match, the field read
access is to be considered safe. To see how this is supported within our model,
consider again the object u. If u‘−>‘S{x,y}, then one can access (∗u). s (and thus
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(∗u). s .a and (∗u). s .b), as well as (∗u).c (since it has the same offset and the type
as U.s.a). Due to a different type, however, (∗u).d can not be accessed in this case.
If u‘−>‘int{x}, then (∗u).c and (∗u). s .a are accessible, but (∗u). s .b and (∗u).d
are not. Yet, if u‘−>‘double{x}, then one can access only (∗u).d. In our tool, if an
inaccessible field gets encountered, the associated assertion cannot be verified and
the inaccessibility is reported as the reason back to the user.

3.3 Bitfields

During the preprocessing phase, we compile bitfields away into unsigned integer(s)
(respecting the order of appearance in the declaration) and manipulate them at field
accesses explicitly with bitvector arithmetic. A related approach has been described
in [8], where the correctness of such compilation is machine-checked with a theorem
prover.

3.4 Arrays

An array of T ’s in C is a pointer to a contiguous block of memory encompassing a
sequence of elements of type T numbered from 0. The memory location of the i-th
element of the array equals to the memory location of the 0-th increased by i times
the size of the array element type, as given by IndT :

IndT (p, i) := p + i ∗ sizeof(T ).

Arrays can be split in the following way:

p 7→T [n] {x0, . . . , xn−1}⇔ p 7→T [l] {x0, . . . , xl−1} ∗
IndT (p, l) 7→T [h−l] {xl, . . . , xh−1} ∗
IndT (p, h) 7→T [n−h] {xh, . . . , xn−1}.

Here T [k] denotes an array of T ’s of length k, and 0 ≤ l ≤ h < n. We equate the
empty array with the empty predicate:

p 7→T [0] {} ⇔ empty

In the later part of the paper, we explain how we use guards to guide unfolding of
the rules.

4 The Tool Architecture

The architecture of our prototype tool for automated separation logic verification
of C programs is depicted in Figure 1. The tool takes a C program annotated with
pre/post-conditions, assumptions and assertions as its input and transforms it into
an equivalent program that uses only a compact subset of the C language, named
CoreC*. This program representation is then sent to the symbolic interpreter.

The symbolic interpreter symbolically executes the control flow graph of each
function in the CoreC*program. The state of the heap gets updated according to the
symbolic execution rules. Since states of the heap are represented with separation
logic formulae, a support from a theorem prover is needed.
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Fig. 1. The Tool Architecture

The theorem prover comprises a separation logic prover and an SMT solver. The
separation logic prover is a modified version of the prover used in the jStar tool [14]
and is used for frame inference, deciding spatial implication and rewriting modulo
user provided rewrite rules. The key difference with respect to [14] is use of an SMT
solver for deciding pure implication and congruence closure computation.

5 Symbolic Interpreter

In this section, we describe the symbolic interpreter. We first deal with the abstract
syntax of its input language, CoreC*, and then with the symbolic execution rules
defining the effects of CoreC* statements on symbolic states.

5.1 CoreC*

The design of language CoreC* has been inspired with the design of CoreC, a small
subset of the C language to which any C program can be transformed to, as described
in [31]. The goal of CoreC* is to enrich CoreC with design by contract annotations,
and reorganize its abstract syntax to make symbolic execution of C programs easy
with respect to the separation logic based heap representation. A simplified abstract
syntax of CoreC* function declarations, statements and expressions is shown on
Figure 2. Here V ar stands for program variables, Type for types (including user
defined ones), Field for fields of composite types, and Fun for function identifiers.

A CoreC* program that is handed as an input to the symbolic interpreter consists
of a list of top level function declarations. Before the symbolic execution begins, all
type declarations are processed and necessary rules for the separation logic prover
are created. The symbolic interpreter goes over each function declaration in the
CoreC* program and runs symbolic execution rules over its control flow graph.

5.2 Symbolic execution

The goal of the symbolic execution is to prove correctness of each function with
respect to its contract, i.e., the interpreter assumes preconditions on function entry,
and asserts the function’s postcondition on exit. On function call, the caller is
required to establish the called function’s precondition, and then assumes that the
called function ensured its postcondition. This makes the approach modular.
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FunDecl ::= Fun(V ar∗)
(requires Expr)∗

(ensures Expr)∗

Stmt?

Expr ::= Constant

| V ar

| Expr op Expr

| ∃V ar .Expr

| Fun (Expr∗)
| cast (Type,Expr)
| (∗V ar).F ield∗

| &(∗V ar).F ield∗

| Expr[Expr]
| &Expr[Expr]

Stmt ::= V arDecl

| V ar = Expr

| (∗V ar).F ield∗ = Expr

| Expr[Expr] = Expr

| V ar = Fun (Expr∗)
| Fun (Expr∗)
| if (Expr) then goto Label

else goto Label

| label Label

| goto Label

| returnExpr?

| assertExpr

| assumeExpr

| blockStmt+

Fig. 2. Abstract syntax of CoreC*function declarations, statements and expressions

Symbolic execution is formally defined on a transition system with states of the
form (pc, H), where pc is the index of the statement currently being executed, and
H is the symbolic representation of the heap. Each statement increments pc by 1
(except for if and goto) and updates the state of the heap.

States of the heap are symbolically represented in terms of separation logic
formulae. The basic ingredient of separation logic used here is the separating con-
junction * which allows specifying properties about disjoint portions of the heap.
Namely, the formula H1 ∗H2 asserts that the heap can be split into two parts, one
of them being described only by H1, and the other only by H2.

The state of the heap gets updated according to the symbolic execution rules
following the symbolic operational semantics. Some of the rules are nondetermin-
istic since when splitting the heap with respect to H, one can find more than one
remaining heap that conjoined with H gives back the original heap. Figure 3 shows
the most interesting symbolic execution rules: (1) assignment; (2) field mutation;
(3) field look-up; (4) array element mutation; (5) array element look-up. Each
variable with a hat is assumed implicitly existentially quantified.

6 Theorem Prover

The key parts of the symbolic execution require deciding separation logic entailment,
i.e., checking implication or performing frame inference. This is where the separation
logic prover comes in. It performs judgements and rewrites terms modulo its internal
and user-provided sets of rules until it completes the proof or gets stuck with a
formula it does not know how to reason about further. We have extended the
separation logic prover so that it can call an SMT solver on such events.
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H ` x = E  H[x̂/x] ∧ x = E[x̂/x]
(1)

H ⇒ (Loc(x, [f1, . . . , fn]) 7→T E1) ∗H ′

H ` (∗x).f1 . . . fn = E2  (Loc(x, [f1, . . . , fn]) 7→T E2) ∗H ′
(2)

H ⇒ (Loc(E, [f1, . . . , fn]) 7→T F ) ∗H ′

H ` x = (∗E).f1 . . . fn  ((Loc(E, [f1, . . . , fn]) 7→T F ) ∗H ′)[x̂/x] ∧ x = F [x̂/x]
(3)

H ⇒ (IndT (x, i) 7→T E1) ∗H ′

H ` x[i] = E2  (IndT (x, i) 7→T E2) ∗H ′
(4)

H ⇒ (IndT (E, i) 7→T F ) ∗H ′

H ` x = E[i] ((IndT (E, i) 7→T F ) ∗H ′)[x̂/x] ∧ x = F [x̂/x]
(5)

Fig. 3. Symbolic execution rules

6.1 Separation logic prover

The separation logic prover uses a restricted form of separation logic formulae of the
form ∃x̂1 . . . x̂n . Π∧Σ. Here Π is a pure formula not involving heap allocated objects,
Σ is a spatial formula speaking about the heap, and x̂1, . . . , x̂n are existential
variables occurring in Π ∧ Σ (for brevity, the quantifier over existential variables is
left implicit further in the text).

The set of expressions E used in separation logic formulae comprise program
variables (denoted by x, y, . . . ), existential variables (denoted by x̂, ŷ, . . . ), con-
stants and function applications. Pure and spatial formulae are built according to
the following grammar:

Π ::= true | false | E = E | E 6= E | p(E) | Π ∧Π
Σ ::= empty | s(E) | Σ ∗ Σ.

The prover allows definition of arbitrary pure predicates p and spatial predicates s.
The predicate empty asserts that the heap is empty. The meaning of the separating
conjunction is that the formula S1 ∗ S2 holds in a heap iff the heap can be split
into two disjoint parts in which S1 and S2 hold, respectively. A more detailed
introduction to separation logic can be found for example in [27].

The design of the separation logic prover is based on the entailment checker in
the Smallfoot tool [5]. It works on sequents of the form

Σf | Π1 | Σ1 ` Π2 | Σ2

where Π1 and Π2 are pure formulae, and Σ1 and Σ2 are spatial formulae. Here
Π1 | Σ1 is the assumed formula, Π2 | Σ2 the goal formula, and Σf the subtracted
formula. The underlying semantics of such judgements is Π1 ∧ (Σ1 ∗ Σf ) implies
Π2 ∧ (Σ1 ∗ Σf ).

The prover is built in such a way that it can be extended with arbitrary judgment
and term rewriting rules. For instance, our typed version of the “points to” relation
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is defined as a ternary spatial predicate 7→ taking as parameters a location, a type,
and a value. This is how its basic match rule looks like:

p 7→T x | Π1 | Σ1 ` Π2 ∧ x = y | Σ2

Σf | Π1 | Σ1 ∗ p 7→T x ` Π2 | Σ2 ∗ p 7→T y

To simplify the presentation, henceforth, we only present the parts of the rule that
change:

p 7→T x | true | empty ` x = y | empty

empty | true | p 7→T x ` true | p 7→T y

The C memory model is defined in terms of rewrite and sequent rules as described
in Section 3. For instance, after one defines rewrite rules for accessing fields in the
structure via the Loc function, the unfold and fold rules for a structure T with fields
f1, . . . , fn of types T1, . . . , Tn are in the prover given as:

empty | x = T{x̂1, . . . , x̂n} | ~n
i=1Loc(p, [T.fi]) 7→Ti x̂i ` true | Loc(p, fs) 7→T ′ v′

empty | true | p 7→T x ` true | Loc(p, fs) 7→T ′ v′

empty | true | Loc(p, fs) 7→T ′ v′ ` x = T{x̂1, . . . , x̂n} | ~n
i=1Loc(p, [T.fi]) 7→Ti x̂i

empty | true | Loc(p, fs) 7→T ′ v′ ` true | p 7→T x

The rule uses Loc(p, fs) 7→T ′ v′ to only allow unfolding and folding a data
structure when a subcomponent is involved in the proof. Here fs is an arbitrary
list of fields.

During the proof search, the prover applies internal and user-defined rules to
sequents to generate new ones. The prover unfolds definitions only when they are
actually needed and that does so to a level required for the proof. In order to prove
implication or perform frame inference, it searches for a particular kind of sequent,
namely:

• Σf | Π1 | empty ` Π2 | empty for checking implication; and
• Σf | Π1 | F ` Π2 | empty for frame inference (here F is the frame).

If a sequent of this form is reached, then all that is left to prove is Π1 ⇒ Π2, and
this is what gets sent to the SMT solver. If the SMT solver succeeds in checking
the implication, then the proof search is complete. Otherwise, the separation logic
prover tries any backtracking points that have remained, or admits defeat.

The separation logic prover can, however, also get stuck with determining equal-
ity between terms that occur in the spatial part. For instance, consider the situation
when it has to prove that

Σf | Π1 | p + 2 ∗ 4 7→int x ` Σf | Π2 | 8 + p 7→int x.

If no rules for arithmetics are provided, the prover cannot know whether the terms
p + 2 ∗ 4 and 8 + p do match or not.

A possible solution for this problem is to employ the SMT solver for determining
the equality between pairs of terms. More precisely, for every pair of terms t1, t2

in the sequent the SMT solver can be asked if Π1 ⇒ t1 = t2 holds, and if so, then
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add t1 = t2 to Π1. In our example, one should ask if Π1 ⇒ p + 2 ∗ 4 = 8 + p, and
hopefully obtain the wanted equality. We describe in more details this approach in
the final part of this section.

Having an SMT solver at hand also allows us to add guards to rules involving
complex predicates. That is, during the proof search, the prover can match Π1, Σ1,
Π2 and Σ2 in Σf | Π1 | Σ1 ` Π2 | Σ2 not just syntactically, but can also employ
the power of the SMT solver. We take this approach when dealing with arrays:

empty | true | IndT (p, l) 7→T x̂l ∗ . . . ∗ IndT (p, h− 1) 7→T x̂h−1 ` true | q 7→T ′ x̂′

empty | true | IndT (p, l) 7→T [h−l] {x̂l, . . . , x̂h−1} ∗ guard ` true | q 7→T ′ x̂′

empty | true | q 7→T ′ x̂′ ` true | IndT (p, l) 7→T x̂l ∗ . . . ∗ IndT (p, h− 1) 7→T x̂h−1

empty | true | q 7→T ′ x̂′ ∗ guard ` true | IndT (p, l) 7→T [h−l] {x̂l, . . . , x̂h−1}

where guard equals

IndT (p, l) <= q ∧ q <= IndT (p, h− 1) ∧ sizeof(T ′) <= sizeof(T [h− l]).

The guard predicate is sent to the SMT solver and helps guide the unfolding. Con-
juncts together with the right hand side of the sequents allow rule to be fired for any
object smaller than the array itself (e.g., even for subcomponents of a structure),
while preventing unfolding the array when on the right there is an object containing
the array.

6.2 Pure prover

The pure prover serves as a mediator between the separation logic prover and the
SMT solver. It does all necessary translation of pure formulae into SMT solver for-
mulae, deals with conversion of types, and communicates back the results obtained
from the SMT solver. One can also attach different SMT solvers to the separation
logic prover via the same interface.

The pure prover can be asked for one of the two tasks: to check implication
between pure formulae or to determine equalities among terms in a given set of
terms. The second task refers to what is commonly known as the congruence closure
computation.

6.2.1 Checking implication.
Let Π1 and Π2 be pure formulae, where x̂1, . . . , x̂s and ŷ1, . . . , ŷt are existential
variables occurring in Π1 and Π2, respectively, and v1, . . . , vr program variables
occurring in both Π1 and Π2. For checking implication, the SMT solver is asked to
check satisfiability of the following formula:

¬∀v1 . . . vr(∃x̂1 . . . x̂sΠ1 → ∃ŷ1 . . . ŷtΠ2).

6.2.2 Congruence closure computation.
We present two algorithms used in the pure prover to compute congruence closure
with an SMT solver. The first one computes congruence closure for uninterpreted
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functions with Z3, while the second one is a general (and less efficient) approach for
dealing with both uninterpreted and interpreted functions in any SMT solver.

The way we compute the congruence closure for uninterpreted functions relies on
specific features of Z3 [12]. Once asked to check for satisfiability, Z3 can produce a
model as a part of the output. The model assigns values to the constants in the input
and generates partial function graphs for predicates and function symbols. The
implementation of the congruence closure computation for uninterpreted functions
in Z3 happens to compute a coarsest partition satisfying asserted equalities, so terms
found equal in the generated model are guaranteed to be implied equal.

Algorithm 1 describes the process of computing the congruence closure for unin-
terpreted functions with Z3. The input to the algorithm is a set of terms {t1, . . . , tn}
and a pure formula Π representing assumptions about terms (i.e., the knowledge
about which congruence exists among terms). Only constants and uninterpreted
functions can appear in terms and assumptions. The output of the algorithm is
the congruence closure of the given set of terms, i.e., a partition {R1, . . . , Rk} of
resulting equivalence classes.

Algorithm 1 Congruence closure for uninterpreted functions with Z3
Input: Set of terms {t1, . . . , tn} and pure formula Π.
Output: Partition {R1, . . . , Rk} of equivalence classes of terms.

procedure CongruenceClosureUF({t1, . . . , tn}, Π)
Assert constraints Π;
Generate model M;

eq(M, ti, tj) :=

 false, if JtiKM = unknown or JtjKM = unknown,

true, if JtiKM = JtjKM.
;

Define congruence relation ∼ with ti ∼ tj iff eq(M, ti, tj) = true;
{R1, . . . , Rk} = equivalence classes of ∼;
return {R1, . . . , Rk};

end procedure

The implementation of the congruence closure computation for uninterpreted
functions in Z3 computes a coarsest partition satisfying asserted equalities. The
terms that are not interpreted within the generated model (i.e., for which the value
of J·KM is unknown) are placed in singleton partitions. This preserves the minimal-
ity of the returned congruence relation, which ensures that returned is indeed the
congruence closure of the congruence defined by Π over the set of terms {t1, . . . , tn}.

In order to compute congruence closure for interpreted functions we cannot just
inspect the model and check whether given terms are equal. A possible approach is
shown in Algorithm 2. It does not rely on a model generation capability, nor specifics
of SMT solver implementation, so it can be employed with any SMT solver. The
algorithm assumes that the SMT solver supports Push/Pop backtracking mecha-
nism (this mechanism provides that constraints asserted after a Push gets removed
after a Pop). Should this not be the case, one can run each iteration of the loop
separately (with constraints each time being asserted).
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Algorithm 2 Congruence closure computation
Input: Set of terms {t1, . . . , tn} and pure formula Π representing assumptions.
Output: Partition {R1, . . . , Rk} of equivalence classes of terms.

procedure CongruenceClosure({t1, . . . , tn}, Π)
Assert constraints Π;
S := {1, . . . , n};
while S 6= ∅ do

Remove i from S;
for all j ∈ S do

Push context;
Assert constraint ti 6= tj ;
Check for satisfiability;
if unsatisfiable then remove j from S and ti ∼ tj else ti 6∼ tj ;
Pop context;

end for
end while
{R1, . . . , Rk} = equivalence classes of ∼;
return {R1, . . . , Rk};

end procedure

7 Conclusions and Future Work

This paper described a methodology for automated modular verification of C pro-
grams against specifications written in separation logic that we implemented in a
prototype tool. The tool is in an early stage of development and has been tested
just on a handful of small examples. It performs at a reasonable speed; for instance,
the queue example from Section 2 takes about 8 seconds to verify.

We believe that there is a promising potential lying in the tight integration of a
separation logic prover and an SMT solver. Larger case studies, however, are needed
to explore whether such approach when applied to verification of C programs could
be seen as better (at least in some aspects) than other approaches.

An important drawback is lack of termination guarantees. If the tool stops,
then it has either proven the program to be correct against the specifications or has
found a failing point. However, it may loop forever. In order to ensure termination,
it would be sensible to apply abstraction in the spirit of abstract interpretation, as
it has been done in the jStar tool [14].
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helpful suggestions and remarks on the earlier version of this paper.
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[25] J. Peleska and H. Löding. Symbolic and abstract interpretation for C/C++ programs. In Proceedings
of the 3rd International Workshop on Systems Software Verification (SSV’08), 2008.

[26] Z. Rakamaric, R. Bruttomesso, A. J. Hu, and A. Cimatti. Verifying heap-manipulating programs in an
SMT framework. In Proceedings of ATVA 2007, volume 4762 of LNCS, pages 237–252. Springer, 2007.

[27] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of LICS
2002, pages 55–74. IEEE Computer Society, 2002.

[28] H. Tuch. Formal Memory Models for Verifying C Systems Code. PhD thesis, University of New South
Wales, Australia, 2008.

[29] H. Tuch. Structured types and separation logic. Electr. Notes Theor. Comput. Sci., 217:41–59, 2008.

[30] H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In Proceedings of POPL 2007,
pages 97–108. ACM, 2007.

[31] G. Yorsh. Logical characterizations of heap abstractions. Master’s thesis, School of Computer Science,
Tel-Aviv University, Israel, 2003.

15


	Introduction
	Related Work

	A Motivating Example
	A brief introduction to the syntax
	Specification of the queue

	The C Memory Model
	Structures
	Unions
	Bitfields
	Arrays

	The Tool Architecture
	Symbolic Interpreter
	CoreC*
	Symbolic execution

	Theorem Prover
	Separation logic prover
	Pure prover

	Conclusions and Future Work
	References

