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1Université de Pau, LMA CNRS-UMR 5142, France

2Department of Mathematics, University of Zagreb, Croatia

3Faculty of Electrical Engineering, University of Zagreb, Croatia

MAMERN’11,
May 23-26, 2011, Saidia-Morocco
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Flow Equations

Mass conservation for α ∈ {w,g}:

Φ
∂

∂ t
(ρα(pα)Sα)+div(ρα(Pα)qα) = Fα ,

The Darcy-Muscat law for α ∈ {w,g}:

qα =−krα(Sα)

µα

K(∇Pα −ρα(Pα)g),

Capillary law: Pc(Sg) = Pg−Pw,
No void space: Sw +Sg = 1.
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Introduction of the Global Pressure

In total flow Qt = ρw(Pw)qw +ρg(Pg)qg as a function of Sg, Pg,

Qt =−λ (Sg,Pg)K(∇Pg− fw(Sg,Pg)∇Pc(Sg)−ρ(Sg,Pg)g) ,

eliminate saturation gradient (in order to decouple equations in the fractional flow
formulation).

Idea: introduction of a new pressure-like variable that will eliminate ∇Sg term
(Chavent (1976), Antontsev-Monakhov (1978) )
Introduce global pressure P, such that Pg = Pg(Sg,P).
Then Pw(Sg,P) = Pg(Sg,P)−Pc(Sg).
Find functions Pg(Sg,P) and ω(Sg,P) that satisfy:

∇Pg− fw(Sg,Pg(Sg,P))Pc(Sg)∇Sg = ω(Sg,P)∇P
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Solution:

Pg(Sg,P) = P+Pc(0)+
∫ Sg

0
fw(s,Pg(s,P))P′c(s)ds

and:

ω(Sg,P)= exp
(
−
∫ Sg

0
(νg(s,P)−νw(s,P))

ρw(s,P)ρg(s,P)λw(s)λg(s)P′c(s)
(ρw(s,P)λw(s)+ρg(s,P)λg(s))2 ds

)
.

where

νw(Sg,P) =
ρ ′w(Pw(Sg,P))
ρw(Pw(Sg,P))

, νg(Sg,P) =
ρ ′g(Pg(Sg,P))
ρg(Pg(Sg,P))

,

are fluid compressibilities.
Notation:

ρα(Sg,P) = ρα(Pα(Sg,P)),

λ (Sg,P) = ρw(Sg,P)λw(Sw)+ρg(Sg,P)λg(Sg),

fα(Sg,P) = ρα(Sg,P)λα(Sα)/λ (Sg,P), α = w,g
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New Saturation Variable θ

Energy estimates suggest the use of the new saturation variable θ ,

θ = β (S) =
∫ S

0

√
λg(s)λw(s)P′c(s)ds,

which is invertible and denote Sg = S (θ).
Diffusivity coefficient:

A(Sg,P) = ρw(Sg,P)ρg(Sg,P)

√
λw(Sw)λg(Sg)

λ (Sg,P)

and rewrite phase mass fluxes as:

ρw(Sg,P)qw =−Λw(Sg,P)K∇P+A(Sg,P)K∇θ +λw(Sg)ρw(Sg,P)2Kg,

ρg(Sg,P)qg =−Λg(Sg,P)K∇P−A(Sg,P)K∇θ +λg(Sg)ρg(Sg,P)2Kg,
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(θ ,P) Formulation

Φ
∂

∂ t
(ρw(Sg,P)Sw)−div(Λw(Sg,P)K∇P)+div(A(Sg,P)K∇θ)

+div(λw(Sg)ρw(Sg,P)2Kg)+ρw(Sg,P)fw(Sg,P)FP = ρw(Sg,P)S∗wFI ,

(1)

Φ
∂

∂ t
(ρg(Sg,P)Sg)−div(Λg(Sg,P)K∇P)−div(A(Sg,P)K∇θ)

+div(λg(Sg)ρg(Sg,P)2Kg)+ρg(Sg,P)fg(Sg,P)FP = ρg(Sg,P)S∗gFI ,

(2)

where Sg = S (θ), Sw = 1−Sg.
Boundary conditions: Ω bounded, Lipschitz domain, ∂Ω = Γinj∪Γimp, QT = Ω×]0,T[.

θ = 0, P = 0 on Γinj×]0,T[ (3)

qw ·n = qg ·n = 0 on Γimp×]0,T[, (4)

where n is outward pointing unit normal on ∂Ω

Initial conditions:

θ(x,0) = θ0(x), P(x,0) = p0(x) in Ω. (5)
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Assumptions

(A.1) The porosity Φ belongs to L∞(Ω), and there exist constants, φM ≥ φm > 0, such
that 0 < φm ≤Φ(x)≤ φM a.e. in Ω.

(A.2) The permeability tensor K belongs to (L∞(Ω))n×n, and there exist constants
kM ≥ km > 0, such that for almost all x ∈Ω and all ξ ∈ Rn it holds:

km|ξ |2 ≤K(x)ξ ·ξ ≤ kM|ξ |2.

(A.3) Relative mobilities satisfy λw,λg∈ C([0,1];R+), λw(Sw = 0) = 0 and
λg(Sg = 0) = 0; λj is a non decreasing function of Sj. Moreover, there exist
constants λM ≥ λm > 0 such that for all Sg ∈ [0,1]

0 < λm ≤ λw(Sg)+λg(Sg)≤ λM.

(A.4) There exist constants pc,min > 0 and M > 0 such that the capillary pressure
function Sg 7→ Pc(Sg), Pc ∈ C([0,1[;R+)∩C1(]0,1[;R+), for all Sg ∈]0,1[

P′c(Sg)≥ pc,min > 0,

Pc(Sg)(1−Sg)+
∫ 1

0
Pc(s)ds+

√
λg(Sg)λw(Sg)P′c(Sg)≤M.
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(A.5) There exist S# ∈]0,1[, 0 < γ and M > 0 such that for all S ∈]0,S#]

S−γ
λg(S)(Pc(S)−Pc(0))+S2−γ P′c(S)≤M,

and for all S ∈ [S#,1[

(1−S)2−γ P′c(S)≤M.

(A.6) ρw and ρg are C1(R) non decreasing functions, and there exist ρm,ρM > 0 such
that for all p ∈ R it holds

ρm ≤ ρw(p),ρg(p)≤ ρM, 0 < ρ
′
w(p),ρ

′
g(p)≤ ρM.

(A.7) FI ,FP ∈ L2(QT), FI ,FP ≥ 0, and 0≤ S∗w ≤ 1 a.e. in QT .
(A.8) There exist 0 < τ < 1 and C > 0 such that for all S1,S2 ∈ [0,1]

C
∣∣∣∣∫ S2

S1

√
λg(s)λw(s)ds

∣∣∣∣τ ≥ |S1−S2|.

(A.9) S∗g = 1.
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Main Theorem

Existence of weak solution of (θ ,P)-formulation.

V = {ϕ ∈ H1(Ω) : ϕ|Γinj = 0}.

Theorem

Let (A.1)-(A.9) hold and assume (θ0,p0) ∈ L2(Ω)×L2(Ω), 0≤ θ0 ≤ β (1) a.e. in Ω. Then
there exists a weak solution (P,θ) of the problem (1), (2), (3), (4), (5), satisfying

P ∈ L2(0,T;V), θ ∈ L2(0,T;V), 0≤ θ ≤ β (1) a.e. in QT , S = S (θ),

Φ∂t(ρw(S,P)(1−S)) ∈ L2(0,T;V ′), Φ∂t(ρg(S,P)S) ∈ L2(0,T;V ′).
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Main Theorem - The Proof

Introducing the regularized problem.
Capillary pressure may be unbounded at S = 0, and its derivative may be unbounded
in S = 0,1. - Regularize capillary pressure and its derivative
Degeneracy of the ”diffusivity” term - Add small constant η to this term

Existence result for the regularized problem
Time discretization
Uniform estimates with respect to h
Passage to the limit as h→ 0.

Passage to the limit as regularization parameter η → 0. (compactness

lemma (Chavent-Jaffré, Galusinski-Saad ).)
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Regularization

Regularization of the capillary pressure is taken as:

Pη
c (S) = Pc(0)+

∫ S

0
Rη(P′c(s))ds, (6)

since its derivative is regularized as follows:

Rη(P′c(S)) =


2(1− S

η
)Pc(η)−Pc(0)

η
+(2 S

η
−1)P′c(η) for S≤ η

P′c(S) for η ≤ S≤ 1−η

P′c(1−η) for 1−η ≤ S≤ 1,

(7)

Pη
c (S) properties:

Pη
c (S) is bounded, monotone and C1([0,1]) function, for any η > 0.

d
dS Pη

c (S)≥ pc,min/2 > 0.

|Rη(P′c(S))| ≤ pη
c,max <+∞, pη

c,max→ ∞ when η → 0.
Rη(P′c(S))≤ P′c(S), for S≥ η
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Regularization

Define:

Pη
g (S,P) = P+Pc(0)+

∫ S

0
fw(s,P)Rη(P′c(s))ds, (8)

Pη
w(S,P) = P−

∫ S

0
fg(s,P)Rη(P′c(s))ds. (9)

ω
η (S,P) =exp

(
−
∫ S

0
(νg(s,P)−νw(s,P))

ρw(s,P)ρg(s,P)λw(s)λg(s)Rη (P′c(s))
(ρw(s,P)λw(s)+ρg(s,P)λg(s))2 ds

)
.

β
η (S) =

∫ S

0

√
λw(s)λg(s)Rη (P′c(s))ds. (10)

Replace

ρα (S,P) with ρ
η
α (S,P) = ρα (P

η
α (S,P))

A(S,P) with Aη (S,P) = ρw(S,P)ρg(S,P)
λ (S,P) λw(S)λg(S)Rη (P′c(S))+η

Λα (S,P) with Λ
η
α (S,P) = λα (S)ρα (S,P)ωη (S,P)
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Regularized problem

Φ∂t(ρ
η
w (S

η ,Pη)(1−Sη))−div(Λη
w(S

η ,Pη)K∇Pη)+div(Aη(Sη ,Pη)K∇Sη)

+div(λw(Sη)ρη
w (S

η ,Pη)2Kg)+ρ
η
w (S

η ,Pη)fw(Sη ,Pη)FP = ρ
η
w (S

η ,Pη)(1−S∗)FI

Φ∂t(ρ
η
g (S

η ,Pη)Sη)−div(Λη
g (S

η ,Pη)K∇Pη)−div(Aη(Sη ,Pη)K∇Sη)

+div(λg(Sη)ρη
g (S

η ,Pη)2Kg)+ρ
η
g (S

η ,Pη)fg(Sη ,Pη)FP = ρ
η
g (S

η ,Pη)S∗FI

Theorem

Let (A.1)-(A.8) hold and assume that (s0,p0) ∈ V×V, 0≤ s0 ≤ 1 a.e. in Ω. For all η > 0
sufficiently small there exists a weak solution (Pη ,Sη ) of the regularized problem satisfying

Pη , Sη ∈ L2(0,T;V), 0≤ Sη ≤ 1 a.e. in QT ,

Φ∂t(ρ
η
w (Sη ,Pη )(1−Sη )),Φ∂t(ρ

η
g (Sη ,Pη )Sη ) ∈ L2(0,T;V ′).
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Proof of Theorem 2 (Time Discretization)
Divide [0,T] into N subintervals: h = T/N,

tn = nh Jn =]tn−1, tn], for1≤ n≤ N

∂
hv(t) =

v(t+h)− v(t)
h

,

for h > 0. For any Hilbert space define

lh(H ) = {v ∈ L∞(0,T;H ) : v is constant in time on each subinterval Jn ⊂ [0,T]}.

For vh ∈ lh(H ) is set vn = (vh)n = vh|Jn ⇒ vh = ∑
N
n=1 vnχ]tn−1,tn](t), vh(0) = v0.

For h a discrete system is defined with unknowns Ph,Sh ∈ lh(V).

Proposition

Assume (A.1)–(A.8), 0≤ S∗ ≤ 1, 0≤ s0 ≤ 1 and p0,s0 ∈ V. Then there exists a solution
Ph,Sh ∈ lh(V) of discrete system, such that

0≤ Sh ≤ 1 a.e. in QT .

Proof - based on the Schauder fixed point theorem.
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Proof of Theorem 2 (Uniform Estimates)
Test functions used (Introduced by Galusinski-Saad)

ϕ = Gg(Pη ,k
g ) =

∫ Pη ,k
g

Pc(0)

1
ρg(z)

dz, ψ = Gw(Pη ,k
w ) =

∫ Pη ,k
w

0

1
ρw(z)

dz (11)

Defining

H η (S,P) =
[
ρw(Pη

w)Gw(Pη
w)−Pη

w
]
(1−S)+

[
ρg(Pη

g )Gg(Pη
g )−Pη

g
]
S+

∫ S

0
Pη

c (z)dz.

Basic estimate:∫
Ω

ΦH η (Sh,Ph)(T)dx+
∫

QT

(|∇Ph|2 + |∇β
η (Sh)|2)dxdt+η

∫
QT

|∇Sh|2dxdt

≤ C
∫

QT

(|FI |2 + |FP|2 +1)dxdt+
∫

Ω

ΦH η (s0,p0)dx,
(12)

which gives weak convergences:

Sh ⇀ S, Ph ⇀ P,β η (Sh)⇀ β
η (S)

B. Amaziane, M. Jurak, A. Žgaljić Keko Existence of Weak Solutions. . .



Compressible Immiscible Flow in the Global Pressure Formulation
Existence Theory

Main Assumptions and Result
Regularized Problem Formulation
Existence Result for the Regularized Problem
Passage to the Limit as η → 0

Proof of Theorem 2 (Passage to the Limit as h→ 0)

Introduce:

rk
w = ρw(Pη

w(P
k,Sh))(1−Sk), rk

g = ρg(Pη
g (P

k,Sk))Sk,

rh
α → rα strongly in L2(QT) and a.e. in QT ,

Ph converges to P a.e. in QT , (and weakly), Sh converges to S a.e. in QT (and weakly)!
This follows from the continuity of the inverse of the mapping:

(S,P) 7→ (ρw(Pη
w(S,P))(1−S),ρg(Pη

g (S,P))).

limit values can be identified: rw = ρw(P
η
w(P,S))(1−S), rg = ρg(P

η
g (P,S))S.

We have all that is needed to pass to the limit as h→ 0 in the discrete system!
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Uniform bounds with respect to η

After passing to the limit h→ 0 we get∫
Ω

ΦH η(Sη ,Pη)(T)dx+
∫

QT

(|∇Pη |2 + |∇β
η(Sη)|2)dxdt+η

∫
QT

|∇Sη |2dxdt

≤ C
∫

QT

(|FI |2 + |FP|2 +1)dxdt+
∫

Ω

ΦH η(s0,p0)dx.

It follows:

(Pη)η is uniformly bounded in L2(0,T;V),

(β η(Sη))η is uniformly bounded in L2(0,T;V),

(
√

η∇Sη)η is uniformly bounded in L2(QT)
d,

(Φ∂t(ρw(Pη
w)(1−Sη)))η is uniformly bounded in L2(0,T;V ′),

(Φ∂t(ρg(Pη
g )S

η))η is uniformly bounded in L2(0,T;V ′).
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Compactness Result in the Degenerate Case

1.

Lemma
For every c > 0 and for sufficiently small η0 > 0 the following set

Eη0
c = {(rη

w = ρw(Pη
w(S,P))(1−S),rη

g = ρg(Pη
g (S,P))S) : 0 < η ≤ η0,

‖P‖L2(0,T;V) ≤ c, ‖β η(S)‖L2(0,T;V) ≤ c,

‖Φ∂trη
w‖L2(0,T;V ′)+‖Φ∂trη

g ‖L2(0,T;V ′) ≤ c}

is relatively compact in L2(QT)×L2(QT).

2. The mapping

(S,P) 7→ (rη
w ,r

η
g )

is a homeomorphism.
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Convergences with respect to η

Lemma

Up to subsequences the following convergence results hold for (θ η )η , θ η = β η (Sη ) and
(Pη )η :

Pη ⇀ P weakly in L2(0,T;V) and a.e. in QT , (13)

θ
η ⇀ θ weakly in L2(0,T;V) and a.e. in QT , (14)

Sη →S (θ) a.e. in QT , (15)

Φ∂t(ρw(Pη
w(S

η ,Pη ))(1−Sη ))⇀ Φ∂t(ρw(Pw(S (θ),P))(1−S (θ))) (16)

weakly in L2(0,T;V ′)

Φ∂t(ρg(Pη
g (S

η ,Pη ))Sη )⇀ Φ∂t(ρg(Pg(S (θ),P))S (θ)) weakly in L2(0,T;V ′). (17)

Moreover, 0≤ θ ≤ β (1) a.e. in QT .

We have obtained all convergences needed to pass to the limit as η → 0 in the weak
formulation of the regularized problem!
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Conclusion

The global pressure formulation makes the coupling between the two equations less
strong, implying that in the mathematical analysis of the system:

Less regularization is needed.
More general data can be used.

Thank you for your attention
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