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Abstract. We have developed a user friendly computational tool, Homogenizer++, for
the computation of effective parameters. The platform Homogenizer++ is based on Ob-
ject Oriented Programming approach. It currently includes modules to compute effective
permeability, effective capillary pressures and relative permeabilities, macrodiffusion in
solute transport and simples code for computing solutions for flow in porous media.
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§1. Introduction

The homogenization method is used to analyse the equivalent behavior of a certain number
of problems arising in flow and transport through heterogeneous porous media. We treat
both single and multiphase flow in porous media. Each homogenization method leads to the
definition of a global or effective model of a homogeneous medium defined by the computed
effective coefficients. Homogenization methods allow the determination of these effective co-
efficients from knowledge of the geometrical structure of a basic cell and its heterogeneities
by solving appropriate local problems. The technique is based on numerics. In the homog-
enization methods described and implemented in this work we use conforming, mixed finite
elements and finite volume methods to compute approximate solutions of the local problems
used in the calculation of the effective coefficients.

The goal of this paper is to present a short description of the methods used for com-
puting the effective permeability, effective capillary pressures and relative permeabilities,
and macrodiffusion in solute transport of heterogeneous porous media. General organiza-
tion of the developed software system, called Homogenizer++, is presented in details in
http://www.math.usu.edu/˜ koebbe/wwwHomog/ which includes the solver and the pre/post
processors with a user-friendly GUI. Examples with graphical visualization of results are pre-
sented to illustrate functionality of the program. The software is freely available for research
and educational purposes. The open architecture of the program facilitates further develop-
ments and adapts to suit specific needs easily and quickly. A series of numerical examples
demonstrates the effectiveness of the methodology for two-phase flow in heterogeneous reser-
voirs. Homogenizer++ is an extension of the platform JHomogenizer [3] to mutliphase flow
in porous media.
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§2. Upscaling of permeability

We consider the model problem of incompressible two-phase flow in moderately heteroge-
neous media. For instance in [5], using homogenization theory, the case where the phase
permeabilities and the capillary pressures are identical in all parts of the medium was in-
vestigated. It was then shown, that the homogenized model has the same form as the intial
model and then defining effective parameters makes sense. These methods are based on com-
puting the average of either the energy or the flux on a Representative Elementary Volume
(REV) with some boundary conditions; for instance periodic, Dirichlet, or Neumann bound-
ary conditions (see [3]). These approximation procedures are widely used in the engineering
literature.

2.1. Periodic boundary conditions

Let Ω ⊂ Rd,d = 1,2, or 3, be a bounded domain with a periodic structure. More precisely,
we shall scale this periodic structure by a parameterε which represents the ratio of the cell
size to the size of the whole regionΩ and we assume that 0< ε� 1 in a decreasing sequence
tending to zero. LetY represent the microscopic domain of the basic cell. Assume that
in such a configuration the absolute permeability tensor depends only on the microscopic
variabley = x/ε wherex is the variable in the macroscopic scale. NamelyKε(x) = K(x/ε)
with K a Y-periodic function in y. Assume thatK is a symmetric, strictly positive definite,
tensor. ThenK∗p, the effective permeability, is given by

(K∗p)i j =
1
|Y|

∫
Y

K (y)
[
∇wi +

−→ei
]
.
[
∇w j +

−→ej
]
dy, 1≤ i, j ≤ d, (1)

with w j , j = 1, . . . ,d, the solution of the so-called local or cell problem defined by:{
w j ∈ H1

p(Y) /R,

−∇.
[
K(y)(∇w j +

−→ej )
]
= 0 in Y.

(2)

Here−→ej is the jth standard basis vector ofRd. The computation ofw j has been performed
by a conforming finite element method, then we compute an approximation of the effective
permeability.

2.2. Linear boundary conditions

In this section we outline the homogenization method used for the determination of the effec-
tive permeability of heterogeneous reservoir regions without any periodic assumption on the
microstructure. In the multi-dimensional case, to compute the effective permeability tensor,
K∗l , we have to solve the local problems forj = 1, ...,d{

−∇. [K(y)∇p j ] = 0 in Y,

p j = y j on ∂Y.
(3)
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wherey j is the j th coordinate. Solving these local problems gives the following expression
for the coefficients of the tensorK∗l :

(K∗l )i j =
1
|Y|

∫
Y

K(y)∇pi .∇p j dy, 1≤ i, j ≤ d. (4)

Both conforming and mixed finite elements may be used to solve the local problems (3) and
compute approximations from above and below of the effective permeability, respectively (cf.
[2]). Linear boundary conditions are convenient, particularly in complicated geometries with
non-rectangular coarse grid cells.

2.3. Confined boundary conditions

This technique considers each coarse grid cell separately and performsd independent flow
problems with no-flow boundary conditions on four sides of the cell and constant pressure
conditions on two opposing faces. Consider a domain containing fine-scale microscopic grid
blocks. The effective permeability tensor,K∗c , is given fori = 1, ...,d by:

(K∗c )ii =
1
|Y|

∫
Y

K(y)∇wi .
−→ei dy, 1≤ i ≤ d, (5)

with wi , i = 1, ...,d, the solution of the local problem defined by:
−∇. [K(y)∇wi ] = 0 in Y,

K(y)∇wi ·~ν = 0 on Si ,

wi = yi on ∂Y\Si ,

(6)

whereSi is a union of faces of the blockY parallel toyi axis and~ν is the outward normal
to ∂Si . Again both conforming and mixed finite elements methods may be used to solve the
local problems (6). Note that this technique leads to a diagonal effective permeability tensor.

2.4. A fractured porous medium

This section is devoted to computing effective permeability for a double-porosity model de-
scribing single-phase flows in a fractured porous medium (see for instance [4]). We consider
a periodic porous medium where the rescaled unit cellY is made of two complementary parts,
the matrix blockYm and the fracture setYf . The effective permeability is given by:

(K∗f )i j =
1
|Y|

∫
Yf

K (y)
[
∇wi +

−→ei
]
.
[
∇w j +

−→ej
]
dy, 1≤ i, j ≤ d, (7)

wherew j , j = 1, . . . ,d is the unique solution of the following cell problem:
w j ∈ H1

p(Y) /R,

−∇.
[
K(y)(∇w j +

−→ej )
]
= 0 in Yf ,[

K(y)(∇w j +
−→ej )
]
·~ν = 0 in ∂Yf .

(8)

As in the previous section, the effective permeability tensor is determined by solving the local
problems (8) via a conforming finite elements method.
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2.5. Wavelets and homogenization

In this section a brief description of an analogy between homogenization and wavelet repre-
sentation will be given (cf. [8]). The analogy will be illustrated in one dimension for ease of
presentation. Assume that the coefficient,k(x), for the elliptic problem

d
dx

k(x)
dh
dx

= f , x∈ ]0,1[ ,

with appropriate boundary conditions is a piecewise constant function. Also assume that the
coefficient function is defined on 2m equally sized subintervals of the entire domain. One
might imagine that some functionk(x) is sampled at 2m equally spaced points. The idea is to
develop a transform method that can be used to compute the correct homogenized value for
k(x).

The next step is to compute the solution of a local problem using two neighboring samples
of k(x); for example, we may choose to solve forj = 1,2, . . . ,2m−1 the local problems

d
dy

k j(y)
dwj

dy
=− d

dy
k j(y),

with

k j(y) =


k2 j , 0≤ y≤ 1/2,

k2 j+1, 1/2≤ y≤ 1,

0, otherwise,

and periodic boundary conditions,w j(0) = w j(1) = 0. This definition gives a total of 2m−1

local problems to solve. Once the problems have been solved the homogenized value for a
pair can be computed using

k#
j =

∫ 1

0
k j(y)(1+

dwj

dy
)dy.

It pays to define level estimates

kl , j(y) =


kl ,2 j , 0≤ y≤ 1/2,

kl ,2 j+1, 1/2≤ y≤ 1,

0, otherwise,

and

kl−1, j =
∫ 1

0
kl , j(y)(1+

dwl , j

dy
)dy.

With these definitions it is not a difficult task to develop a fast wavelet based transform for
computing a homogenized value for the entire region as defined in [8].

To do this in a computationally effective way we would need to know the solutions of
the local problems. Fortunately, in one dimension the local problem defined above admits a
solution of the form

wl , j(y) =
kl ,2 j+1−kl ,2 j

kl ,2 j +kl ,2 j+1


y, 0≤ y≤ 1/2,

1−y, 1/2≤ y≤ 1,

0, otherwise,
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with piecewise derivative given by

d
dy

wl , j(y) =
kl ,2 j+1−kl ,2 j

kl ,2 j +kl ,2 j+1


1, 0≤ y≤ 1/2,

−1, 1/2≤ y≤ 1,

0, otherwise.

(9)

For those familiar with wavelets it is easy to see that the derivative of the solution (a piecewise
constant function) is a scaled Haar wavelet. The scaling is a nonlinear combination of the two
neighboring sample values or homogenized values from the previous level.

One should note that the wavelet characterization is based on the solution of the local
problem that results from performing the perturbation analysis in the homogenization proce-
dure. Thus the wavelet characterization will change as the homogenization method changes.
The extension to multiple dimensions is conceptually very easy (cf. [8]).

§3. Upscaling of capillary pressures and relative permeabilities

We consider a two-phase flow in a heterogeneous porous mediumΩ ⊂ Rd of two immisci-
ble and incompressible fluids. The porous medium is supposed to be rigid and composed of
different rock types corresponding to subdomainsΩ1, . . . ,Ωn of Ω. Each rock type is charac-
terized by its porosityφ i , absolute permeability tensorK i , capillary pressure functionpi

c(S)
and two relative permeability functionski

o(S) andki
w(S). The viscosities and mass densities

of the fluids are constant. The wetting fluid phase is denoted by indexw (water) and non
wetting phase by indexo (oil); for simplicity we use symbolS instead ofSw.

The governing equations that describe the fluid flow in a subdomainΩi consist of the
mass conservation law for each phase, generalized Darcy’s law for fluid velocities:

φ
i ∂Si

∂ t
+div~q i

w = 0, −φ
i ∂Si

∂ t
+div~q i

o = 0,

~q i
w =− 1

µw
K iki

w(Si)(∇Pi
w−ρw~g), ~q i

o =− 1
µo

K iki
o(S

i)(∇Pi
o−ρo~g),

and the capillary pressure law:pi
c(S

i) = Pi
o−Pi

w. On the boundary between two subdomains
we impose the continuity of pressures and fluxes, and on the boundary of the domainΩ
different boundary conditions could be given (see for instance [7] ).

In the homogenization procedure, rigorously justified in the periodic setting in [6], the
fine grid blocksΩi are grouped in coarse grid blocks to which we apply the homogeneous
properties, computed as discribed below. LetV be one such coarse grid block composed
of fine grid blocksΩl i , i = 1,2, . . . ,k ≤ n. Effective porosity of the volumeV is given by
arithmetic mean:

φ
∗ =

1
vol(V)

k

∑
i=1

vol(Ωl i )φl i .

For a fixed mean value of the saturationS∗ we compute the corresponding fine grid block
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saturations(Sl i , i = 1,2, . . . ,k) by solvingφ
∗S∗ =

1
vol(V)

k

∑
i=1

vol(Ωl i )φl i S
l i ,

pc
l1(Sl1) = pc

l2(Sl2) = · · ·= pc
lk(Slk).

(10)

Effective capillary pressure at saturationS∗ is then given bypc
∗(S∗) = pc

l1(Sl1).
In the next step we compute effective relative permeabilities. Forξ ∈ {o,w} we solve d

local problems (i = 1,2,d): find Pi
ξ

such that

div
(

Λξ (x,S∗)∇Pi
ξ

)
= 0 in V, (11)

Pi
ξ

= xi on ∂V, (12)

whereΛξ (x,S∗) = ∑k
i=1 χΩli

(x)K l i kl i
ξ
(Sl i ), and saturationsSl i are given by (10). We define

then the effective full permeability tensorsΛ∗
ξ
(S∗) by

Λ∗
ξ
(S∗)~ei =

1
vol(V)

∫
V

Λξ (x,S∗)∇Pi
ξ

dx, i = 1,2,d, ξ ∈ {o,w}. (13)

Note that we have to solve 2d local problems for any chosen value ofS∗. Therefore, these
tensors will be computed only in a given number of saturation points. Finally, effective flow
equations in a subdomainV take the form

φ
∗ ∂S∗

∂ t
+div~Φ∗w = 0, −φ

∗ ∂S∗

∂ t
+div~Φ∗o = 0,

~Φ∗w =−Λ∗w(S∗)(∇P∗w−ρw~g), ~Φ∗o =−Λ∗o(S
∗)(∇P∗o −ρo~g),

with the effective capillary pressure lawpc
∗(S∗) = P∗o −P∗w. On the boundary of different

corse grid block we again impose the continuity of the pressures and fluxes. Finally, if nec-
essary, the effective relative permeabilities is defined by

kr∗
ξ
(S∗) = (K∗)−1Λ∗

ξ
(S∗), (14)

whereK∗ is the effective absolute permeability tensor.

§4. Macrodiffusion in solute transport

A miscible displacement of an incompressible fluid with a dissolved solute in a heterogeneous
confined aquiferΩ⊂ Rd over a time period(0,T), is given by (see, e.g., [7])

φ(x)
∂c
∂ t

+~q(x) ·∇c = div(D(x)∇c) in Ω× (0,T), (15)

where~q(x) is the Darcy velocity, given by the hydraulic gradient∇H:

~q =−K(x)∇H, div~q = 0 in Ω, (16)
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subject to appropriate boundary and initial conditions. Herec(x, t) is the transported solute
concentration,φ and K are the porosity and the hydraulic conductivity tensor of the het-
erogeneous medium, andD is the diffusivity tensor at the Darcy scale. We will assume that
φ(x) = φ(x/ε), K(x) = K(x/ε) andD(x) = D(x/ε), whereφ , K andD are periodic functions,
andε is a small parameter.

The effective macroscale equations have the form

〈φ〉∂c
∂ t

+~q0 ·∇c = div(Dh(x)∇c) in Ω× (0,T), (17)

~q0 =−Kh∇H0, div~q0 = 0 in Ω. (18)

The effective properties are computed in the following way (see [1]): First we solve the local
problems defined in the periodic cellY:

divy
(
K(y)(∇yχ

1
i +~ei)

)
= 0 in Y (19)

for i = 1,2, . . . ,d. From the vectors

~wi(y) =−K(y)(∇χ
1
i (y)+~ei), i = 1,2, . . . ,d,

we build the matrixQ(y) = [~w1(y),~w2(y), . . . ,~wd(y)] and we define the effective hydraulic
conductivity

Kh =−〈Q〉=− 1
|Y|

∫
Y

Q(y)dy. (20)

For the effective macro-diffusivityDh(x), we first find theY-periodic solutionsy 7→
ψk(y;~λ ) of the d convection-diffusion equations:

−divy
(
D(y)(∇yψk +~ek)

)
+Q(y)~λ ·∇yψk =

[
φ(y)
〈φ〉
〈Q〉~λ −Q(y)~λ

]
·~ek in Y, (21)

k = 1,2, . . . ,d, for every~λ ∈ Rd, and then we compute the tensorDh(~λ ) defined by

Dh(~λ )~ek = 〈D(∇yψk +~ek)〉+
〈(

φ(y)
〈φ〉
〈Q〉~λ −Q~λ

)
ψk

〉
, (22)

k = 1,2, . . . ,d. Finally we setDh(x) = Dh(∇H0(x)). The tensorDh(~λ ) should be computed
for any~λ = ∇H0(x), x ∈ Ω. In practice we take an approximation procedure consisting of
clustering of∇H0(x) vectors, and working only with a finite subset of these vectors (for more
details see [1]).
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