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Abstract

Let F be a p-adic field. We prove irreducibility of the unitary
principal series of the group S̃p(n) over F using theta correspondence.

1 Introduction

One of the basic problems when studying the induced representations of
p–adic reductive groups is a problem of describing the constituents of the
principal series representations. Although there were some earlier papers
studying this problem, we note that the unitary principal series of classical
groups (more generally, the representations parabolically induced from the
irreducible discrete series representations) were studied in an uniform way
by Goldberg in [4]. His results were based on the study of R–groups. We do
not extend the theory of R–groups from the reductive group setting to the
metaplectic case, but rather rely on the theta correspondence to carry over
known results from the classical groups case to the metaplectic case.

In the second section, we recall the notions of the metaplectic groups

S̃p(n), as double–coverings of symplectic groups. We recall of the full lift of
an irreducible representation of one group in a dual pair (with respect to the
Weil representation of the ambient metaplectic group). We recall the notation
for standard parabolic subgroups, parabolic induction and Jacquet modules.
In the third section we prove the irreducibility of the unitary principal series

representations of S̃p(n) using induction over n.
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The authors wish to thank Goran Muić for suggestion to study this prob-
lem.

2 Preliminaries

Let F be a non–archimedean local field of odd characteristic. Let S̃p(n)
be the unique non-trivial two-fold central extension of symplectic group
Sp(n, F ), i.e., the following holds:

1 → µ2 → S̃p(n) → Sp(n, F ) → 1,

where µ2 = {±1}. The multiplication in S̃p(2) (which is as a set given by
Sp(2, F )× µ2) is given by the Rao’s cocycle ([12]).

Let V0 be an anisotropic quadratic space over F of odd dimension. For
more details about the invariants of this space, we refer the reader to [9], p.
75. In each step we add a hyperbolic plane and obtain an enlarged quadratic
space, a tower of quadratic spaces and a tower of corresponding orthogonal
groups. In the case when r hyperbolic planes are added to the anisotropic
space, enlarged quadratic space will be denoted by Vr, while a corresponding
orthogonal group will be denoted by O(Vr). For us, it is enough to study the
case dimV0 = 1.

We fix a non-trivial additive character ψ of F and let ωn,r be the pullback

of the Weil representation ωn(2r+1),ψ of the group ˜Sp(n(2r + 1)), restricted to

the dual pair S̃p(n)×O(Vr).

Let ˜GL(n, F ) be a double cover of ˜GL(n, F ), where the multiplication
is given by (g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F ). Here εi ∈ µ2, i =
1, 2 and (·, ·)F denotes the Hilbert symbol of the field F, and this cocycle
on GL(n, F ) is actually a restriction of the Rao’s cocyle on Sp(n, F ) to
GL(n, F ), if we view this group as the Siegel Levi subgroup of Sp(n, F ) ([8],
p. 235).

From now on, we fix a character χV,ψ of ˜GL(n, F ), which is given by
χV,ψ(g, ε) = χV (detg)εγ(detg, 1

2
ψ)−1. Here γ denotes the Weil invariant,

while χV is a character related to the quadratic form on O(Vr) ([9], p. 37).
We denote by α = χ2

V,ψ. Observe that α is a quadratic character on GL(n).

For an irreducible smooth representation π of the group S̃p(n), Θ(π, r)
denotes it’s full lift on the r-th level of the orthogonal tower, i.e., the isotypic
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component in the representation ωn,r, so that there is a surjection ωn,r →
π ⊗ Θ(π, r). More generally, for an irreducible representation π1 of the l–
group G1 and a smooth representation ζ of the group G1 × G2 (where G2

is again an l–group), Θ(π1, ζ) denotes the isotypic component of π1 in ζ, so
that there is a G1×G2 epimorphism ζ → π1⊗Θ(π1, ζ) (observe that Θ(π1, ζ)
is a smooth representation of G2–[10], Chapter 2, III.3 and III.4).

We study liftings of the genuine (i.e, which do not factor through µ2) rep-
resentations of the metaplectic group in the split orthogonal tower, dimV0 =
1, with a quadratic form q0(x) = x2, while the character χV,ψ is adjusted to
form q0.

By ν we denote a character of GL(k, F ) defined by |det|F . Further, for
an ordered partition s = (n1, n2, . . . , nj) of some m ≤ n, we denote by
Ps a standard parabolic subgroup of Sp(n, F ) (consisting of block upper-
triangular matrices), whose Levi factor equals GL(n1) × GL(n2) × · · · ×
GL(nj) × Sp(n − |s|, F ), where |s| = m =

∑j
i=1 ni. Then the standard

parabolic subgroup P̃s of S̃p(n) is the preimage of Ps in S̃p(n). We have the
analogous notation for the Levi subgroups of the metaplectic groups, which
are described in more detail in Section 2.2 of [6]. The standard parabolic
subgroups (containing the upper triangular Borel subgroup) of O(r) have
the analogous description as the standard parabolic subgroups of Sp(n, F ).

If P̃s is a standard parabolic subgroup of S̃p(n) described above, or Ps a
similar standard parabolic subgroup of O(r), the normalized Jacquet module

of a smooth representation π of S̃p(n) (respectively, O(r)) with respect to

P̃s(respectively, Ps) is denoted by RfPs
(π) (respectively, RPs(π)). We also use

RPmin
(π) to denote the Jacquet module of π with respect to the minimal

standard parabolic subgroup. We denote by ω0 a nontrivial character of the

group µ2, viewed as a representation of S̃p(0).
The following fact, which follows directly from [6], we use frequently while

determining composition series of induced representations: for an irreducible

genuine representation π of ˜GL(k, F ) and an irreducible genuine representa-

tion σ of S̃p(n) we have (in the appropriate Grothendieck group)

π o σ = π̃αo σ,

where πo σ denotes the representation of the group ˜Sp(n+ k) parabolically

induced from the representation π ⊗ σ of the maximal Levi subgroup M̃(k).
We follow here the usual notation for parabolic induction for classical groups,
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adopted to the metaplectic case ([14],[6]). We also freely use Zelevinsky’s no-
tation for the parabolic induction for general linear groups ([15]). We note

that every irreducible genuine representation of S̃p(n) can be embedded in
the representation parabolically induced from the genuine cuspidal represen-
tations of some Levi subgroup (Proposition 4.4 of [6]).

3 Irreducibility of the unitary principal series

Let ζ1, ζ2, . . . , ζn denote the unitary characters of F×. We prove irreducibility
of the representation Π := χV,ψζ1×χV,ψζ2×· · ·×χV,ψζnoω0, using the theta
correspondence. Our theorem does not involve any assumptions about the
unitary characters ζ1, . . . , ζn or about the residual characteristic of the field
F .

Theorem 3.1. The representation Π is irreducible. There is an epimorphism

Θ(Π, n) → ζ1 × · · · × ζn o 1.

The rest of this section is devoted to the proof of the Theorem 3.1. The
proof is by induction over n. The theorem for n = 1 in known (cf. [9], p. 89,
[7]), while the case n = 2 is Proposition 3.5 of [5].

Suppose that theorem holds for all k ≤ n − 1. We prove that theorem
holds for k = n. We have divided the proof into a sequence of propositions
and lemmas.

Proposition 3.2. Let π1 be an irreducible subrepresentation of Π. Then
Θ(π1, n) is different from zero.

Proof. (of Proposition 3.2) According to the stabile range condition (cf. [9],
p. 48), Θ(π1, 2n) 6= 0. By [9], Theorem 7.1, every non-zero irreducible quo-
tient τ of Θ(π1, 2n) has a cuspidal support, which we denote by [τ ], equal to

[ν
m
2
−n− 1

2 , ν
m
2
−n−2, . . . , ν

m0
2
−n, ζ1, . . . , ζn; 1], where m = dimV2n, which implies

[τ ] = [νn−
1
2 , . . . , ν

1
2 , ζ1, . . . , ζn; 1]. If we denote by RPmin

Jacquet module with
respect to the minimal parabolic subgroup, then either RPmin

(τ) ≥ νsj1 ⊗
ζ
εi0
i0
⊗ · · · ⊗ 1 or RPmin

≥ ζ
εi0
i0
⊗ · · · ⊗ 1 holds, where sj1 ∈ {±1

2
, . . . ,±(n− 1

2
)}

and εi0 ∈ {±1}. If we suppose that the first factor is unitary, Lemma 2.6
from [2] gives

0 6= Hom(RPmin
(τ), ζε0i0 ⊗ · · · ⊗ 1) ∼= Hom(τ, ζε0i0 × · · ·o 1)

4



so τ is a subrepresentation of ζε0i0 × · · · o 1. Let νsj2 denote the first non-

unitary factor in ζ
εi0
i0
⊗ · · · ⊗ 1. Since νsj2 × ζ

εj
j is irreducible for every j

and εj, it follows that τ is also a subrepresentation of νsj2 × ζ
εi0
i0
× · · · o 1.

This gives an irreducible subquotient τ ′ of ζ
εi0
i0
× · · ·o 1 such that τ is a sub-

representation of νsj2 o τ ′, which implies RP1(τ)(ν
sj2 ) 6= 0 and gives an epi-

morphism RP1(τ) → νsj2 ⊗ τ ′, where RP1(τ)(ν
sj2 ) is the isotypic component

of RP1(τ) along the generalized character νsj2 . This gives an epimorphism
ωn,2n → π1 ⊗ Θ(π1, 2n) → π1 ⊗ τ , which directly yield to the epimorphisms
RP1(ωn,2n) → π ⊗RP1(Θ(π1, 2n)) → π1 ⊗ νsj2 ⊗ τ ′.

According to [9] (we use notation from Proposition 3.3 of [7]), the Jacquet
module RP1(ωn,2n) has the following filtration of the length 2:

I10 = ν−(n− 1
2
) ⊗ ωn,2n−1 (a quotient),

I11 = Ind
M1×S̃p(n)

GL(1,F )× eP1×O(V2n−1)
(χV,ψΣ′

1 ⊗ ωn−1,2n−1) (a subrepresentation).

Here Σ′
1 is a twist of the usual GL(1, F ) × GL(1, F ) representation on the

Schwartz space C∞c (GL(1, F )), as explained in ([9],[7]). Let us denote by T
an epimorphism RP1(ωn,2n) → π1 ⊗ νsj2 ⊗ τ ′. Suppose T |I11 6= 0. Using the
second Frobenius isomorphism, we obtain non-zero GL(1, F )-homomorphism
χV,ψΣ′

1 → νsj2 . Since the isotypic component of Θ(νsj2 , χV,ψΣ′
1) equals

χV,ψν
−sj2 , we have a non-zero homomorphism νsj2 ⊗χV,ψν−sj2 ⊗ωn−1,2n−1 →

νsj2 ⊗ R̃ eP1
(π̃1)⊗ τ ′. Immediately follows that the isotypic component

R̃ eP1
(π̃1)(χV,ψν

−sj2 ) is different from zero, which contradicts our assump-
tion that π1 is the subrepresentation of Π. Obviously, this means T |I11 = 0
so we can take T : I10 → π1 ⊗ νsj2 ⊗ τ ′ i.e., there is a homomorphism of

GL(1, F ) × O(V2n−1) × S̃p(n)-modules ν−(n− 1
2
) ⊗ ωn,2n−1 → π1 ⊗ νsj2 ⊗ τ ′.

Directly follows that there is a non-zero homomorphism ωn,2n−1 → π1 ⊗ τ ′

which implies Θ(π1, 2n− 1) 6= 0.
Now we proceed by induction, in an analogous manner.
Suppose that we have proved that Θ(π1, 2n−i) 6= 0 for i = 0, 1, . . . , k, k ≤

n−1. Now we prove Θ(π1, 2n−(k+1)) 6= 0. Let τ1 be an irreducible quotient
of Θ(π1, 2n−k). In a similar way as before, we can conclude that there are the
epimorphisms ωn,2n−k → π1 ⊗Θ(π1, 2n− k) → π1 ⊗ τ1, the cuspidal support

of τ1 equals [νn−k−
1
2 , . . . , ν

1
2 , ζ1, . . . , ζn; 1] and there is s2 ∈ {±1

2
, . . . ,±(n −

k − 1
2
)} such that νs2 ⊗ · · · ⊗ 1 is a subquotient of RPmin

(τ1). So, there is an
irreducible representation τ ′′ ofO(V2n−k−1) such that τ1 is a subrepresentation
of νs2 o τ ′′, i.e., such that there is an epimorphism RP1(τ1) → νs2 ⊗ τ ′′. This
also gives a non-zero epimorphism T : RP1(ωn,2n−k) → π1 ⊗ νs2 ⊗ τ ′′. From
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the following filtration of the Jacquet module RP1(ωn,2n−k):
I10 = ν−(n−k− 1

2
) ⊗ ωn,2n−k−1 (a quotient),

I11 = Ind
M1×S̃p(n)

GL(1,F )× eP1×O(V2n−k−1)
(χV,ψΣ′

1 ⊗ ωn−1,2n−k−1) (a subrepresentation),

in the same fashion as before we obtain T |I11 = 0. So, we may consider T :

ν−(n−k− 1
2
)⊗ωn,2n−k−1 → π1⊗νs2⊗τ ′′ that implies Θ(π1, 2n−(k+1)) 6= 0. This

gives Θ(π1, n) 6= 0, and this is precisely the assertion of the proposition.

Previous proposition implies that the cuspidal support of each irreducible
quotient of Θ(π1, n) equals [ζ1, . . . , ζn; 1]. Observe that the representation
ζ1 × · · · × ζn o 1 of the group O(Vn) is irreducible (because its restriction to
the group SO(Vn) is irreducible), so each irreducible subquotient of Θ(π1, n)
equals ζ1 × · · · × ζn o 1.

Remark. We may conclude that all subrepresentations π1 of Π appear as
quotients of the representation Θ(ζ1×· · ·× ζno1, n). If we suppose that the
residual characteristic of F is different from 2, the Howe duality conjecture
implies that all the subrepresentations of Π are mutually isomorphic, so Π ∼=
π1 ⊕ · · · ⊕ π1. Now the uniqueness of the Whittaker model for the principal

series of S̃p(n) ([1] and [13]) gives Π ∼= π1 and Π is obviously irreducible.

Now we continue with the proof of Theorem 3.1 without assumptions on
residual characteristic.

Proposition 3.3. Let J11 denote the subrepresentation of R eP1
(ωn,n) in Kudla’s

filtration. Then the following holds:

Θ(χV,ψζ1 ⊗ χV,ψζ2 × · · · × χV,ψζn o ω0, R eP1
(ωn,n)) =

Θ(χV,ψζ1 ⊗ χV,ψζ2 × · · · × χV,ψζn o ω0, J11).

Proof. R eP1
(ωn,n) has the following filtration:

J10 = χV,ψν
1
2 ⊗ ωn−1,n (a quotient),

J11 = Ind
gM1×O(Vn)

˜GL(1,F )×P1× ˜Sp(n−1)
(χV,ψΣ′

1 ⊗ ωn−1,n−1) (a subrepresentation).

Let T denote the mapping T : HomfM1
(R eP1

(ωn,n), χV,ψζ1 ⊗ χV,ψζ2 × · · · ×
χV,ψζn o ω0) → HomfM1

(J11, χV,ψζ1 ⊗ χV,ψζ2 × · · · × χV,ψζn o ω0) given by
restriction. We claim that T is an isomorphism of the vector spaces.

To prove that T is an injection, we choose f ∈ HomfM1
(R eP1

(ωn,n), χV,ψζ1⊗
χV,ψζ2 × · · · × χV,ψζn o ω0) such that T (f) = f |J11 = 0. So, we may consider
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f : J10 → χV,ψζ1 ⊗ χV,ψζ2 × · · · × χV,ψζn o ω0. Since J10 = χV,ψν
1
2 ⊗ ωn−1,n

and, if we assume that f 6= 0, we have Imf ∼= χV,ψζ1 ⊗ W , where W ↪→
χV,ψζ2 × · · ·χV,ψζn o ω0 is a non–zero smooth ˜GL(n− 1) × O(Vn)-module
([10], Chapter 2, III.3). We obtain a contradiction, so we get f = 0.

Now we prove that T is a surjection. Let f ∈ Hom(J11, χV,ψζ1⊗χV,ψζ2×
· · · × χV,ψζn o ω0). We have the following sequence of M̃1-invariant spaces:

0 ⊆ U ⊆ J11 ⊆ R eP1
(ωn,n),

where U denotes the subspace such that J11/U is isomorphic χV,ψζ1⊗χV,ψζ2×
· · ·o ω0 ⊗Θ(χV,ψζ1 ⊗ χV,ψζ2 × · · ·o ω0) as M̃1 ×O(Vn)-modules.

Clearly, (R eP1
(ωn,n)/U)/(J11/U) ∼= R eP1

(ωn,n)/J11
∼= J10. Observe that

J11/U and J10 have different central characters (as M̃1-modules). So, we
obtain the following short exact sequence:

0 −→ J11/U −→ R eP1
(ωn,n)/U −→ J10 −→ 0,

and, using the standard arguments, we get that R eP1
(ωn,n)/U is G̃L(1)-finite.

Now it can be easily seen that R eP1
(ωn,n)/U is isomorphic to the direct sum

of two submodules with the central characters equal to χV,ψζ1 and χV,ψν
1
2 .

Since these submodules are also M̃1-invariant, we obtain R eP1
(ωn,n)/U ∼=

J10⊕J11/U . Since f factors through U , we can consider f as an operator on
J11/U . Now it is obvious that T is a surjection.

Using the relations between isotypic components and spaces of homomor-
phisms ([11], Lemma 1.1) we get

Θ(χV,ψζ1⊗χV,ψζ2× · · ·oω0, R eP1
(ωn,n))

e∼= Θ(χV,ψζ1⊗χV,ψζ2× · · ·oω0, J11)
e,

if we proved that the representation Θ(χV,ψζ1 ⊗ χV,ψζ2 × · · · o ω0, J11) is
admissible. This claim follows from the following proposition.

Proposition 3.4. The following holds:

Θ(χV,ψζ1 ⊗ χV,ψζ2 × · · ·o ω0, J11) = ζ1 × ζ2 × · · · × ζn o 1.

Proof. Observe that there exist epimorphisms χV,ψΣ′
1 → χV,ψζ1 ⊗ ζ−1

1 and,
by the inductive assumption, ωn−1,n−1 → χV,ψζ2 × · · ·o ω0 ⊗ ζ2 × · · · × ζn o
1. Further, the inductive assumption of Theorem 3.1 implies irreducibility
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of the representation χV,ψζ2 × · · · × χV,ψζn o ω0 and gives an epimorphism
Θ(χV,ψζ2×· · ·×χV,ψζnoω0, n−1) → ζ2×· · ·×ζno1. By inducing, we obtain
an epimorphism J11 → χV,ψζ1 ⊗ χV,ψζ2 × · · ·o ω0 ⊗ ζ1 × · · · × ζn o 1, which
gives the epimorphism Θ(χV,ψζ1⊗χV,ψζ2× · · ·oω0, J11) → ζ1× · · · × ζno 1.

We prove that there is also an epimorphism ζ1×· · ·×ζno1 → Θ(χV,ψζ1⊗
χV,ψζ2 × · · ·o ω0). We use the second Frobenius isomorphism:
HomfM1×O(Vn−1)(J11, χV,ψζ1⊗χV,ψζ2× · · ·oω0⊗Θ(χV,ψζ1⊗ · · ·oω0, J11)) ∼=
HomfM1×M1

(χV,ψΣ′
1 ⊗ ωn−1,n−1, χV,ψζ1 ⊗ χV,ψζ2 × · · · o ω0 ⊗ RP 1

(Θ(χV,ψζ1 ⊗
· · ·o ω0, J11))).

Generally, for some reductive group G′ (and for metaplectic groups), it’s
parabolic subgroup P ′ with the Levi subgroup M ′ and opposite parabolic
subgroup P ′, the second Frobenius isomorphism gives

HomG′(IndG
′

M ′(π),Π) ∼= HomM ′(π,RP ′(Π)), (1)

for some smooth representation π (resp., Π) of the group M ′ (resp., G′). We
denote the space of the representation π by Vπ.

Above isomorphism can be explicitly described in the following way:
Let Ψ denote the embedding

Ψ : Vπ ↪→ RP ′(IndM ′(Vπ)),

which corresponds to the open cell P ′P ′ in G′ ([3]). Now, for some T ∈
HomG′(IndG

′
M ′(π),Π), compose Ψ with the corresponding mapping TP ′ : RP ′(IndG

′
M ′(π)) →

RP ′(Π).
From now on, for every f ∈ HomfM1×O(Vn−1)(J11, χV,ψζ1⊗χV,ψζ2×· · ·oω0⊗

Θ(χV,ψζ1⊗· · ·oω0, J11)), an element of HomfM1×M1
(χV,ψΣ′

1⊗ωn−1,n−1, χV,ψζ1⊗
χV,ψζ2×· · ·oω0⊗RP 1

(Θ(χV,ψζ1⊗· · ·oω0, J11))) obtained in the way described
above is denoted by f0.

Let ϕ ∈ HomfM1×O(Vn−1)(J11, χV,ψζ1⊗χV,ψζ2× · · ·oω0⊗Θ(χV,ψζ1⊗ · · ·o
ω0, J11)) denote the natural epimorphism. Clearly, Imϕ0 ⊆ χV,ψζ1⊗χV,ψζ2×
· · ·o ω0 ⊗ RP 1

(Θ(χV,ψζ1 ⊗ · · ·o ω0, J11))). But, since Imϕ0 is an M̃1 ×M1-
invariant subspace of the above representation given as a tensor product,
where the representation of M̃1 is irreducible, follows that Imϕ0 = χV,ψζ1 ⊗
χV,ψζ2 × · · · o ω0 ⊗ V ′, where V ′ is M1-invariant subspace of Θ(χV,ψζ1 ⊗
χV,ψζ2× · · ·oω0, J11). We can determine V ′, since there must be a non-zero
mapping χV,ψζ1 ⊗ Θ(χV,ψζ1, χV,ψΣ′

1) ⊗ χV,ψζ2 × · · · o ω0 ⊗ Θ(χV,ψζ2 × · · · o
ω0, n − 1) → χV,ψζ1 ⊗ χV,ψζ2 × · · · o ω0 ⊗ V ′. However, since both of these

8



isotypic components are irreducible, we obtain Imϕ0 = χV,ψζ1⊗χV,ψζ2×· · ·o
ω0 ⊗ ζ−1

1 ⊗ ζ2 × · · · × ζn o 1.
The mapping ϕ0 can be written as ϕ0 = ϕ′′ ◦ ϕ′, where ϕ′ denotes the

canonical epimorphism χV,ψΣ′
1 ⊗ ωn−1,n−1 → χV,ψζ1 ⊗ ζ−1

1 ⊗ χV,ψζ2 × · · · o
ω0⊗ζ2×· · ·×ζno1, while ϕ′′ is the inclusion of the preceding representation
in χV,ψζ1⊗χV,ψζ2× · · ·oω0⊗RP 1

(Θ(χV,ψζ1⊗χV,ψζ2× · · ·oω0, J11))). Now
we are able to construct the mapping Ind(ϕ′) : J11 → χV,ψζ1⊗χV,ψζ2× · · ·o
ω0 ⊗ ζ−1

1 × ζ2 × · · · × ζn o 1. Applying the second Frobenius isomorphism to

ϕ′′, we obtain ϕ1 ∈ Hom
fM1×O(Vn)
fM1×P1

(χV,ψζ1⊗χV,ψζ2×· · ·oω0⊗ ζ−1
1 × ζ2×· · ·×

ζn o 1, χV,ψζ1 ⊗ χV,ψζ2 × · · · o ω0 ⊗ Θ(χV,ψζ1 ⊗ χV,ψζ2 × · · · o ω0, J11)) such
that (ϕ1)0 = ϕ′′.

We claim that (ϕ1 ◦ Ind(ϕ′))0 equals ϕ0. To prove this, it is enough to
prove (ϕ1 ◦ Ind(ϕ′))0 = (ϕ1)0 ◦ ϕ′, which can easily obtained from (1) (the
details are left to the reader). This forces ϕ1 ◦ Ind(ϕ′) = ϕ.

So, the image of ϕ is a quotient of Ind(ϕ′)(J11) = χV,ψζ1 ⊗ χV,ψζ2 × · · ·o
ω0 ⊗ ζ−1

1 × ζ2 × · · · × ζn o 1 (we are using the fact Imϕ0
∼= Imϕ′ here). But,

since Imϕ = χV,ψζ1⊗χV,ψζ2×· · ·oω0⊗Θ(χV,ψζ1⊗· · ·oω0, J11), this implies
that there is an epimorphism ζ−1

1 × ζ2×· · ·× ζno1 ∼= ζ1× ζ2×· · ·× ζno1 →
Θ(χV,ψζ1 ⊗ · · ·o ω0, J11). This ends the proof of this proposition.

For the proof of the Theorem 3.1 we need the following lemma:

Lemma 3.5. There is an epimorphism

Θ(ζ1 × · · · × ζn o 1, n) → χV,ψζ1 × χV,ψζ2 × · · · × χV,ψζn o ω0.

Proof. There is an isomorphism of the vector spaces (moreover, of S̃p(n)-
modules)

HomO(Vn)(ωn,n, ζ
−1
1 ×· · ·×ζno1) ∼= HomM1(RP1(ωn,n), ζ

−1
1 ⊗ζ2×· · ·×ζno1).

From this isomorphism we obtain Θ(ζ−1
1 × · · · × ζn o 1, n)e ∼= Θ(ζ−1

1 ⊗
ζ2 × · · · × ζn o 1, RP1(ωn,n))

e. As in the Proposition 3.3, we can prove
Θ(ζ−1

1 ⊗ ζ2 × · · · × ζn o 1, RP1(ωn,n))
e ∼= Θ(ζ−1

1 ⊗ ζ2 × · · · × ζn o 1, I11)
e,

where I11 is a subrepresentation in Kudla’s filtration of RP1(ωn,n) (I11 =

Ind
M1×S̃p(n)
eP1×GL(1)×O(Vn−1)

(χV,ψΣ′
1 ⊗ ωn−1,n−1)).

9



Using the inductive assumption of the Theorem 3.1, we obtain the epi-
morphisms χV,ψΣ′

1 → χV,ψζ1⊗ζ−1
1 and ωn−1,n−1 → ζ2×· · ·×ζno1⊗χV,ψζ2×

· · ·×χV,ψζnoω0, which give the epimorphism I11 → ζ−1
1 ⊗ ζ2×· · ·× ζno1⊗

χV,ψζ1 × χV,ψζ2 × · · · × χV,ψζn o ω0. Clearly, this gives us the epimorphism
Θ(ζ−1

1 ⊗ζ2×· · ·×ζno1, I11) → χV,ψζ1×χV,ψζ2×· · ·×χV,ψζnoω0 and finally
the desired epimorphism Θ(ζ1× ζ2×· · ·× ζno1, n) → χV,ψζ1×χV,ψζ2×· · ·×
χV,ψζn o ω0.

Now we are able to finish the proof of the Theorem 3.1.
Suppose that the representation Π reduces and let Π = π1 ⊕ · · · ⊕ πk,

k ≥ 2. Then we also have R eP1
(Π) = R eP1

(π1) ⊕ · · · ⊕ R eP1
(πk). According

to the previous lemma, there is a surjection ωn,n → ζ1 × · · · × ζn o 1 ⊗
χV,ψζ1 × · · · × χV,ψζn o ω0 which gives a surjection R eP1

(ωn,n) → ζ1 × · · · ×
ζno1⊗ (R eP1

(π1)⊕· · ·⊕R eP1
(πk)). For each πi ↪→ Π there is an epimorphism

R eP1
(πi) → χV,ψζ1⊗χV,ψζ2×· · ·×χV,ψζnoω0. This gives us an epimorphism

R eP1
(ωn,n) → ζ1 × · · · × ζn o 1⊗ (χV,ψζ1 ⊗ χV,ψζ2 × · · · × χV,ψζn o ω0 ⊕ · · · ⊕

χV,ψζ1⊗χV,ψζ2×· · ·×χV,ψζnoω0) ∼= χV,ψζ1⊗χV,ψζ2×· · ·×χV,ψζnoω0⊗(ζ1×
· · ·×ζno1⊕· · ·⊕ζ1×· · ·×ζno1), where the second factors have k summands
each. Because of k ≥ 2, we get a contradiction with the Propositions 3.3 and
3.4, which proves Theorem 3.1.
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