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Abstract

We calculate reducibility for the representations of metaplectic
groups induced from cuspidal representations of maximal parabolic
subgroups via theta correspondence, in terms of the analogous repre-
sentations of the odd orthogonal groups. We also describe the lifts of
all relevant subquotients.

1 Introduction

In this paper we study rank-one reducibility for the non–trivial double S̃p(n)
cover of symplectic group Sp(n) over a non–Archimedean local field of charac-
teristic different than two using theta correspondence. This paper combined
with [8] is a fundamental step in a systematic study of smooth complex rep-
resentations of metaplectic groups. We expect application in the theory of
automorphic forms where metaplectic groups play a prominent role.

We recall that the group S̃p(n) is not a linear algebraic group. Thus,
it is not in the framework of the usual theory for p-adic groups. Neverthe-
less, some basic algebraic facts [8] are true here. More precisely, based on
a fundamental work of Bernstein and Zelevinsky ([2], [3], [26]) we checked
that the basic notions of the representation theory of p–adic groups hold for
metaplectic groups (some of that is already well–known from the previous
works of Kudla [10], [9] and the book [15]). As usual, a parabolic subgroup

of S̃p(n) is the preimage P̃ of a parabolic subgroup P of Sp(n). If we write
P = MN for a Levi decomposition, then the unipotent radical N lifts to

S̃p(n). So, we have a decomposition P̃ = M̃N . In [8] (see (1.2)) we describe
the parametrization of irreducible smooth complex representations of the
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Levi factor M̃ of a maximal proper parabolic subgroup P̃ of S̃p(n). Roughly

speaking, to M̃ is attached an integer j , 0 < j ≤ n, and there is an epimor-

phism G̃L(j) × ˜Sp(n− j) → M̃ such that irreducible representations of M̃

can be seen as ρ⊗σ, where ρ is an irreducible representation of ˜GL(j, F ) and

σ an irreducible representation of ˜Sp(n− j). The goal of the present paper

is to understand the reducibility and composition series of Ind
S̃p(n)eP (ρ ⊗ σ)

where ρ and σ are cuspidal representations. This is a hard problem for linear
groups and it is not completely solved yet (the case of generic representaions
is covered by Shahidi [21], [22], and some conjectural description is known
for classical groups due to many people (see for example [14])). One possible
approach is to develop the theory for metaplectic groups from scratch. The
other one (i.e., the one adopted in this paper) is to use the theta correspon-

dence for the dual pair ˜Sp(n− j) × O(2(r − j) + 1), where O(2(r − j) + 1)
is a F–split (full) odd–orthogonal group. The approach is based on refin-
ing and further developing methods of [16], [17]. To simplify the notation
and precisely describe our results, we shift indexes. Let σ be an irreducible

cuspidal representation of S̃p(n). So, we fix a non–trivial additive character
ψ of F and let ωn,r be the Weil representations attached to the dual pair

S̃p(n)×O(2r+ 1). We write Θ(σ, r) for the smooth isotypic component of σ
in ωn,r . Since σ is cuspidal, for the smallest r such that Θ(σ, r) 6= 0 we have
that Θ(σ, r) is an irreducible cuspidal representation of O(2r+1). We denote
it by τ. Let ρ be a self–contragredient irreducible cuspidal representation of

GL(j, F ). Finally, let χV,ψ be a character of G̃L(1) defined at the end of 2.2.

We determine the reducibility point in this situation, and also the lifts

of all irreducible subquotients of Ind
˜Sp(n+j)eP (ρ⊗ σ) and Ind

O(2(r+j)+1)
P (ρ⊗ τ).

This is accomplished in Theorem 3.5 (non–exceptional case), Theorem 4.1
(exceptional case–reducibility) and Propositions 4.2, 4.3, and Theorem 4.4
(exceptional case–theta lifts).

For the reader’s convenience, we give some of the main theorems here.
First, we recall the following non–exceptional case (see Theorem 3.5):

Theorem. Let mr = 1
2
dimVr, where Vr is a quadratic space on which O(2r+

1) acts. Let Pj be a maximal standard parabolic subgroup of O(2(r + j) + 1)
(i.e., containing the upper triangular Borel subgroup of O(2(r+j)+1)) which
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has a Levi subgroup isomorphic to GL(j, F )×O(2r+1). We define a parabolic

subgroup P̃j of ˜Sp(n+ j) analogously.

Let ρ be an irreducible, cuspidal, genuine representation of ˜GL(j, F ),
where ρ /∈ {χV,ψ| · |±(n−mr), χV,ψ| · |±(mr−n−1)}. Then, the representation

Ind
˜Sp(n+j)fPj (ρ⊗σ) reduces if and only if the representation Ind

O(2(r+j)+1)
Pj

(χ−1
V,ψρ⊗

τ) reduces. In the case of irreducibility, we have

Θ(Ind
˜Sp(n+j)fPj (ρ⊗ σ), r + j) = Ind

O(2(r+j)+1)
Pj

(χ−1
V,ψρ⊗ τ).

If the representation Ind
˜Sp(n+j)fPj (ρ ⊗ σ) reduces, then it has two irreducible

subquotients, say π1 and π2, such that the following holds:

0 −→ π1 −→ Ind
˜Sp(n+j)fPj (ρ⊗ σ) −→ π2 −→ 0.

Then, Θ(πi, r + j) 6= 0, is irreducible for i = 1, 2, and the following holds:

0 −→ Θ(π1, r + j) −→ Ind
O(2(r+j)+1)
Pj

(χ−1
V,ψρ⊗ τ) −→ Θ(π2, r + j) −→ 0.

Just described non–exceptional case is a fairly straightforward general-
ization of [17]; the exceptional case is rather different than the appropriate
case in [17] and it requires some arguments that are specific for the dual pair

S̃p(n)×O(2r + 1). Most of the paper is about that case. We just recall the
following (see Theorem 4.1):

Theorem. The representation Ind
˜Sp(n+1)fP1

(χV,ψ| · |s ⊗ σ) reduces for a unique

s ≥ 0 (which is |mr − n− 1|). This means that

Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n⊗σ) is irreducible unless mr−n = −(mr−n− 1),

i.e., mr − n = 1
2
.

In Section 5 we give some examples of reducibility. Section 5.1 describes
the Siegel case j = n and Section 5.2 describes the first non–Siegel case i.e.,
when j = n− 1.

The authors would like to thank the Erwin Schrödinger Institute in Vi-
enna and J. Schwermer for their hospitality while the paper was written. The
first named author lectured on results of the present paper in the workshop
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”Representation theory of reductive groups - local and global aspects” held
the Erwin Schrödinger Institute in Vienna in January and February of 2009.
The first named author would also like to thank the American Institute of
Mathematics for their hospitality during the workshop “Generalizing theta
correspondences” which influenced this work a great deal.

2 Preliminaries

2.1 Symplectic and orthogonal groups

Let F be a non–Archimedean field of characteristic different from 2. For
n ∈ Z≥0, let Wn be a symplectic vector space of dimension 2n. We fix a
complete polarization as follows

Wn = W ′
n ⊕W ′′

n , W
′
n = spanF{e1, . . . en}, W ′′

n = spanF{e′1, . . . e′n},

where ei, e
′
i, i = 1, . . . , n are basis vectors of Wn and the skew–symmetric

form on Wn is described by the relations

〈ei, ej〉 = 0, i, j = 1, 2, . . . , n, 〈ei, e′j〉 = δij.

The group Sp(Wn) fixes this form. Let Pj denote a maximal parabolic sub-
group of Sp(n) = Sp(Wn) stabilizing the isotropic spaceW ′j

n = spanF{e1, . . . ej};
then there is a Levi decomposition Pj = MjNj where Mj = GL(W ′j

n ). By
adding, in each step, a hyperbolic plane to the previous symplectic vector
space, we obtain a tower of symplectic spaces and corresponding symplectic
groups.

Now we describe the orthogonal groups we consider. Let V0 be an anisotropic
quadratic space over F of odd dimension; then dimV0 ∈ {1, 3}. For descrip-
tion of the invariants of this quadratic space, including the quadratic char-
acter χV0 describing the quadratic form on V0, we refer to ([9]). In each step,
as for the symplectic situation, we add a hyperbolic plane and obtain an
enlarged quadratic space and, consequently, a tower of quadratic spaces and
a tower of corresponding orthogonal groups. In the case in which r hyper-
bolic planes are added to the anisotropic space, a corresponding orthogonal
group will be denoted O(Vr), where Vr = V ′r + V0 + V ′′r and V ′r and V ′′r are
defined analogously as in the symplectic space. Again, Pj will be a maximal
parabolic subgroup stabilizing spanF{e1, . . . ej}.
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2.2 The metaplectic group

The metaplectic group S̃p(n) (or Mp(n)) is given as the central extension

1 // µ2
� � i // S̃p(n)

p
// // Sp(n) // 1, (1)

where µ2 = {1,−1} and the cocyle involved is Rao’s cocycle ([20]). For
the more thorough description of the structural theory of the metaplectic
group we refer to [9],[20],[7],[8]. Specifically, for every subgroup G of Sp(n)

we denote by G̃ its preimage in S̃p(n). In this way, the standard parabolic

subgroups of S̃p(n) are defined. Then, we have P̃j = M̃jN
′
j, where N ′j is

the image in S̃p(n) of the unique monomorphism from Nj (the unipotent

radical of Pj) to S̃p(n) ([15], Chapter 2, II.9). We emphasise that M̃j is not
a product of GL factors and a metaplectic group of smaller rank, but there
is an epimorphism (this is the case of maximal parabolic subgroup)

φ : ˜GL(j, F )× ˜Sp(n− j)→ M̃j.

Here, we can view ˜GL(j, F ) as a two fold cover of GL(j, F ) in it’s own right,
where the multiplication is given by

(g1, ε1)(g2, ε2) = (g1g2, ε1ε2(detg1, detg2)F ),

where (·, ·)F denotes the Hilbert symbol (of course, this cocoycle for ˜GL(j, F )
is just the restriction of the Rao’s cocoycle to GL(j, F ) × GL(j, F )). Then,
φ((g, ε1), (h, ε)) = (diag(g, h), ε1ε(x(h), det g)F ). The function x(h) is defined
in [20] or [9], p. 19.

In this way, an irreducible representation π of M̃j can be considered as a

representation ρ⊗σ of ˜GL(j, F )×S̃p(n), where ρ and σ are irreducible repre-
sentations, provided they are both trivial or both non–trivial when restricted
to µ2.

The pair (Sp(n), O(Vr)) constitutes a dual pair in Sp(n ·dimVr) ([9],[10]).

Since dim(Vr) is odd, the group Sp(n) does not split in S̃p(n · dimVr), so

the theta correspondence relates the representations of S̃p(n) and of O(Vr),
or more general, the representations of the metaplectic groups (as two–fold
coverings of symplectic groups attached to the symplectic towers) with the
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representations of the orthogonal groups attached to the orthogonal tower
(Section 5 of [9]).

From now on, we fix an additive, non–trivial character ψ of F related to

theta correspondence ([9],[10]), and a character χV,ψ on ˜GL(n, F ) given by
χV,ψ(g, ε) = χV (detg)εγ(detg, 1

2
ψ)−1. Here γ denotes the Weil index ([9], p.

13, p. 17) and χV is a quadratic character related to the orthogonal tower.
We denote by α = χ2

V,ψ. α is a quadratic character on GL(n, F ) given by
α(g) = (detg,−1)F ([9], p. 17)

3 The first reducibility result

We emphasise that the results in these section are valid for every F of charac-
teristic different from 2; i.e., we do not need the validity of Howe’s conjecture.

To prove the main reducibility result (Theorem 3.5), which also describes
the structure of the lift of the subquotients of the induced representation, we
need the following lemmas, which are simple extension of the results known
for linear groups to the case of metaplectic group.

Recall that M̃j is a Levi subgroup of a maximal parabolic subgroup of

S̃p(n). As such, it has a character ν = |det|F coming from the usual character
of that form on GL(j, F ). We call a representation π of some covering group
(in our case, of the metaplectic, or of the covering of general linear group, or
of the Levi subgroup of the metaplectic group) genuine if it is non–trivial on
µ2.

Lemma 3.1. Let π be an irreducible genuine cuspidal representation of M̃j,

and let V be a smooth representation of M̃j. Then, there exist two subrepre-
sentations of V, say V (π) and V (π)⊥, such that we have

V = V (π)⊕ V (π)⊥,

and all the subquotients of V (π) are isomorphic to πνs, for some s ∈ C and
V (π)⊥ does not have an irreducible subquotient isomorphic to some πνs; s ∈
C.

Proof. This claim is slightly weaker than the Bernstein center decomposi-

tion. If M̃j is Levi subgroup of S̃p(n), then there is an epimorphism from

˜GL(j, F ) × ˜Sp(n− j) to M̃j. Now, it is not difficult to see that, using the
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notation from [4], the group M̃j

◦
(the intersection of all the kernels of the

unramified characters of M̃j

◦
) corresponds to GL(j, F )◦, so the unramified

characters on M̃j indeed look as described in the statement of the lemma.

We note that the center Z(M̃j) equals Z̃(Mj). This means that because

Z(Mj)M
◦
j is of finite index in Mj, Z(M̃j)M̃◦

j is of finite index in M̃j. Because

of this, when we restrict an irreducible cuspidal representation (π, V ) of M̃j

to Z(M̃j)M̃◦
j we get a finite direct sum of irreducible cuspidal representations

of M̃◦
j (this notion makes sense since M̃◦

j contains all the unipotent radical of
it’s parabolic subgroups, and also, there is a splitting of unipotent radicals of
Mj in M̃j), in the same way as in [4], p. 43, Proposition 25. Every irreducible

cuspidal representation of M̃◦
j is compact (Harish–Chandra’s theorem, p. 36).

Indeed, we can repeat the arguments of that theorem since (the M◦
j –version

of ) Cartan decomposition M◦
j = KΛ+◦K holds (p. 36 there); we also have

M̃◦
j = K̃Λ+◦K̃, where Λ+◦ is embedded (this does not have to be a homo-

morphism) in M̃◦
j as λ 7→ (λ, 1). Since we deal with the cover of a maximal

compact subgroup, we do not need that it splits in S̃p(n), and so this works
for any residual characteristic. We continue to use the notation from p. 35
and 36 of [4]. It is now enough to show that matrix coefficients, i.e., the
functions π(a(λ))ξ have compact support in Λ+◦. Here we may take that ξ
is K ′–invariant, where K ′ is a sufficiently small congruence subgroup which

splits in S̃p(n). Now we obtain the upper and the lower bound of π(a(λ))ξ in
the same way as on p. 35 and 36 (we actually get a finite support on Λ+◦).
Then, with all the ingredients at our hand, we can apply Proposition 26 of
[4], since it relays on the fact that compact representations split the cate-
gory of smooth representations, which was proved in the fifth section of the
first chapter of [4], in a greater generality (than for just reductive algebraic

groups), so it holds for M̃j

◦
.

Lemma 3.2. Let G̃ be S̃p(n) or O(Vr). Let P̃ = M̃N ′ be a standard parabolic

subgroup of G̃ and let P̃ = M̃N ′ be the opposite parabolic subgroup. Assume
π is a smooth representation of M̃ and Π is a smooth representation of G̃.
Then, the following holds

Hom eG(Ind
eGeP (π),Π) ∼= HomfM(π,ReP (Π)).

7



Proof. First, note that the opposite unipotent subgroup N also lifts in the
metaplectic group ([15], p. 43). Then, following the original Bernstein argu-

ment ([5]; we use that, topologically, P̃ \ G̃ ∼= P \G) the claim follows (in the
case of metaplectic group). The case of non–connected O(Vr) is similar ([17]).
There is an alternative proof of this fact (for reductive algebraic groups) due
to Bushnell ([6]).

Remark. We refer to the isomorphism of the previous Lemma as “the second
Frobenius reciprocity.” Keeping the same notation as in the above Lemma,
it is obvious that it can also be expressed in the following way:

Hom eG(Ind
eGeP (π),Π) ∼= HomfM(π, (R eP (Πˇ))ˇ).

For any positive integer n and positive integer r, let (Sp(n), O(Vr)) be a
reductive dual pair in Sp(n · dimVr); let n′ = n · dimVr (with dimVr odd).

Let ωn′,ψ be the Weil representation of S̃p(n′) depending on the non–trivial
additive character ψ ([9],[10]), and let ωn,r = ωψn,r be the pull–back of that

representation to the pair (S̃p(n), O(Vr)). Let χV,ψ be as defined in the previ-

ous section. For an irreducible, genuine, smooth representation π1 of S̃p(n1),
let Θ(π1, l) be a smooth representation of O(Vl), given as the full lift of π1

to the l–level of the orthogonal tower, i.e., the biggest quotient of ωn1,l on

which S̃p(n1) acts as a multiple of π1. It is of the form π1 ⊗ Θ(π1, l), as a

representation of S̃p(n1)×O(Vl) ([9], p. 33, [15], p. 45).
We fix some notation throughout this section. Let σ be an irreducible,

cuspidal, smooth and genuine representation of S̃p(Wn) = S̃p(n), and let
Θ(σ, r) be the first (full) nontrivial lift of σ in the orthogonal tower. Then,
Θ(σ, r) is an irreducible cuspidal representation of O(Vr) and we will denote it

by τ. Let ρ denote a genuine irreducible cuspidal representation of ˜GL(j, F ).
The proof of Theorem 3.5 relays on the careful analysis of the Jacquet

modules of the oscillatory representations, due to Kudla ([10]).
Because of the completeness of the argument, we write down Kudla’s fil-

tration (we also want to emphasise a slight difference between our version
and Kudla’s original expression for the filtration, due to the difference be-
tween the choice of the isotropic spaces invariant under the action of the
parabolic subgroup). From now on, we fix a non–trivial additive character ψ
of F. Also, from now on,

mr =
1

2
dimVr.
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Proposition 3.3. [10] Let ωn+j,r+j be the oscillatory representation of

˜Sp(n+ j)×O(Vr+j) corresponding to the character ψ. Then,
1. The Jacquet module (with respect to the parabolic subgroup Pj of

O(Vr+j)) RPj(ωn+j,r+j) has the following Mj × ˜Sp(n+ j)– invariant filtra-
tion by Ijk, 0 ≤ k ≤ j :

Ijk ∼= Ind
Mj× ˜Sp(n+j)

Pjk×fPk×O(Vr)
(γjkΣ

′
k ⊗ ωn+j−k,r). (2)

Here, Pjk is a standard parabolic subgroup of GL(j, F ) corresponding to the

partition (j−k, k), P̃k is a maximal Levi of ˜Sp(n+ j), Σ′k is a twist of a usual
representation of GL(k, F )×GL(k, F ) on Schwartz space C∞c (GL(k, F )) and
is given by

Σ′k(g1, g2)f(g) = ν−(mr+
k−1
2

)(g1)νmr+
k−1
2 (g2)f(g−1

1 gg2),

and γjk is a character on GLj−k × ˜GL(k, F ) given by

γjk(g1, g2) = ν−(mr−n− j−k+1
2

)(g1)χV,ψ(g2).

Specifically, a quotient Ij0 equals ν−(mr−n− j+1
2

) ⊗ ωn+j,r and a subrepresenta-

tion Ijj equals Ind
Mj× ˜Sp(n+j)

GL(j,F )×fPj×O(Vr)
(χV,ψΣ′j ⊗ ωn,r).

2. The Jacquet module (with respect to the parabolic subgroup P̃j of

˜Sp(n+ j)) RfPj(ωn+j,r+j) has the following M̃j ×O(Vr+j)–invariant filtration

by Jjk, 0 ≤ k ≤ j :

Jjk ∼= Ind
fMj×O(Vr+j)gPjk×Pk×S̃p(n)

(βjkΣ
′
k ⊗ ωn,r+j−k). (3)

Here P̃jk is a standard parabolic subgroup of M̃j corresponding to the partition

(j − k, k), βjk is a character on ˜GL(j − k) × G̃L(k) given by βjk((g1, g2) =

(χV,ψν
mr−n+ j−k−1

2 )(g1)χV,ψ(g2). The representation Σ′k is as, before, a repre-
sentation of GL(k, F ) × GL(k, F ) on Schwartz space C∞c (GL(k, F )) given
by

Σ′k(g1, g2)f(g) = νmr+j−
k+1
2 (g1)ν−(mr+j− k+1

2
)(g2)f(g−1

1 gg2).

Specifically, the quotient Jj0 of the filtration is isomorphic to χV,ψν
mr−n+ j−1

2 ⊗
ωn,r+j and the subrepresentation Jjj is isomorphic to Ind

fMj×O(Vr+j)

G̃L(j)×Pj×S̃p(n)
(χV,ψΣ′j⊗

ωn,r).
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The following proposition describes certain isotypic components in the
filtration above and is crucial for the proof of the Theorem 3.5 (for the basic
facts about isotypic components, we refer to [15], p. 45, 46, 47). In general,
if π is an irreducible smooth representation of some group G1, and Π a
smooth representation of G1 × G2, then the isotypic component (a smooth
representation of G2) of π in Π is denoted by Θ(π,Π) (if it is understood
what G1 and G2 are).

Proposition 3.4. 1. Assume that j > 1 and s ∈ C. Then

Hom ˜GL(j,F )×S̃p(n)
(RfPj(ωn+j,r+j)/Jjj, ρν

s ⊗ σ) = 0

and
HomGL(j,F )×O(Vr)(RPj(ωn+j,r+j)/Ijj, χ

−1
V,ψρν

s ⊗ τ) = 0.

2. For cuspidal representation ρ⊗ σ (j can be equal to 1) we have

Θ(ρ⊗ σ, Jjj) ∼= Ind
O(Vr+j)
Pj

(χV,ψρ̌⊗ τ),

and

Θ(χ−1
V,ψρ⊗ τ, Ijj) ∼= Ind

˜Sp(n+j)fPj (αρ̌⊗ σ).

3. If ρ 6= χV,ψ|·|mr−n, then Θ(ρ⊗σ,RfPj(ωn+j,r+j)) ∼= Ind
O(Vr+j)
Pj

(χV,ψρ̌⊗τ),

and

if ρ 6= χV,ψ|·|n−mr+1, then Θ(χ−1
V,ψρ⊗τ, RPj(ωn+j,r+j)) ∼= Ind

˜Sp(n+j)fPj (αρ̌⊗σ).

Proof. 1. For 0 < k < j, the ˜GL(j, F )–part of the induced representa-

tion Jjk is induced from the representation of ˜GL(k, F )× ˜GL(j − k, F ) and

cannot have a cuspidal component. For k = 0, the ˜GL(j, F )–part is just

χV,ψν
mr−n+ j−1

2 and we use the assumption that j > 1.
2. Again, let us just comment on the first case. Having in mind that

the isotypic component of any irreducible representation π of GL(j, F ) in
the ”non–twisted” representation of GL(j, F ) × GL(j, F ) appearing in the

Jacquet module filtration is π̌, there is an obvious ˜GL(j, F ) × Pj × S̃p(n)–
invariant epimorphism

χV,ψΣ′j ⊗ ωn,r → ρ⊗ χV,ψρ̌⊗ σ ⊗ τ.
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We immediately get an M̃j ×O(Vr+j)–invariant epimorphism

Jjj → ρ⊗ σ ⊗ Ind
O(Vr+j)
Pj

(χV,ψρ̌⊗ τ),

so we conclude that Ind
O(Vr+j)
Pj

(χV,ψρ̌ ⊗ τ) is a quotient of Θ(ρ ⊗ σ, Jjj). We

prove that Θ(ρ⊗ σ, Jjj) is also a quotient of Ind
O(Vr+j)
Pj

(χV,ψρ̌⊗ τ). Now, by
Lemma 3.2, we have

Hom fMj×O(Vr+j)
(Jjj, ρ⊗ σ ⊗Θ(ρ⊗ σ, Jjj)) ∼=

∼= Hom fMj×GL(j,F )×O(Vr)
(χV,ψΣ′j ⊗ ωn,r, ρ⊗ σ ⊗RPj

(Θ(ρ⊗ σ, Jjj))).

For every intertwining map T from the first space, let T0 be the corresponding
intertwining map from the second space. Let φ be a natural epimorphism
of M̃j ×O(Vr+j)–modules belonging to the first space. Having in mind that
all the relevant isotypic components are irreducible, we get that the image
of φ0 is isomorphic to ρ ⊗ σ ⊗ χV,ψρ̌ ⊗ τ. Now, we write down φ0 = φ′′ ◦ φ′,
where φ′ is just the projection with respect the kernel of φ0, and φ′′ is the
isomorphism from that quotient to the image of φ0. Let φ1 be an operator
belonging to

Hom fMj×O(Vr+j)
(Ind(χV,ψΣ′j ⊗ ωn,r/Kerφ0), ρ⊗ σ ⊗Θ(ρ⊗ σ, Jjj)),

such that (φ1)0 = φ′′. Then, (φ1◦Ind(φ′))0 = φ0, which forces φ1◦Ind(φ′) = φ.

Since the image of Ind(φ′) a quotient of ρ⊗σ⊗Ind
O(Vr+j)
Pj

(χV,ψρ̌⊗τ), so is the

image of φ, i.e., ρ⊗σ⊗Θ(ρ⊗σ, Jjj) is a quotient of ρ⊗σ⊗Ind
O(Vr+j)
Pj

(χV,ψρ̌⊗τ).

3. We explain in more details only the first part of the statement; the
second is quite analogous. As it is obvious from the Statement 2 of this
proposition, we must prove that, essentially, isotypic component correspond-
ing to ρ⊗σ in the whole Jacquet module RfPj(ωn+j,r+j) actually depends only

on the Jjj–part in the filtration of that module.
We use the part of the Bernstein decomposition from Lemma 3.1 for the

representation RfPj(ωn+j,r+j) (and the notation is the same as there). If j > 1,

from the first part of this proposition it follows that

RfPj(ωn+j,r+j/Jjj)(ρ⊗ σ) = 0.

Since Jjj is a subrepresentation, we have RfPj(ωn+j,r+j)(ρ⊗ σ) = Jjj(ρ⊗ σ),

so that
Hom fMj

(RfPj(ωn+j,r+j), ρ⊗ σ) ∼= Hom fMj
(Jjj, ρ⊗ σ) (4)
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(as the restriction gives rise to an isomorphism, which is also O(Vr+j)–
equivariant). But, since there is a usual relation between taking a (smooth)
part of the isotypic component of a representation and the homomorphism
functor ([18]), we have the following

Θ(RfPj(ωn+j,r+j), ρ⊗ σ)ˇ∼= Hom fMj
(RfPj(ωn+j,r+j), ρ⊗ σ)∞.

Now, the relation (4) completes the proof of the claim 3 in the case j > 1.
If j = 1, the filtration of RfP1

(ωn+1,r+1) is of length two, and, in this case,
J10 = χV,ψ|·|mr−n⊗ωn,r+1 (we emphasise that ρ 6= χV,ψ|·|mr−n). On the other
hand, J11 has a quotient ρ⊗σ⊗Θ(ρ⊗σ, J11). Using the decomposition along
the generalized central characters, we see that ρ⊗σ⊗Θ(ρ⊗σ, J11)⊕J10 is a
quotient of RfP1

(ωn+1,r+1) (the sum is direct precisely when ρ 6= χV,ψ| · |mr−n),
and we again obtain that (4) holds.

Theorem 3.5. Let mr = 1
2
dimVr, where Vr is a quadratic space on which

O(Vr) acts. Let Pj be a maximal standard parabolic subgroup of O(Vr+j)

which has a Levi subgroup isomorphic to GL(j, F ) × O(Vr), P̃j is a stan-

dard parabolic subgroup of ˜Sp(n+ j) defined analogously. Let ρ be an ir-

reducible, cuspidal, genuine representation of ˜GL(j, F ), where ρ /∈ {χV,ψ| ·
|±(n−mr), χV,ψ| · |±(mr−n−1)}. Then, the representation Ind

˜Sp(n+j)fPj (ρ ⊗ σ) re-

duces if and only if the representation Ind
O(Vr+j)
Pj

(χ−1
V,ψρ ⊗ τ) reduces. In the

case of irreducibility, we have

Θ(Ind
˜Sp(n+j)fPj (ρ⊗ σ), r + j) = Ind

O(Vr+j)
Pj

(χ−1
V,ψρ⊗ τ).

If the representation Ind
˜Sp(n+j)fPj (ρ ⊗ σ) reduces, then it has two irreducible

subquotients, say π1 and π2, such that the following holds:

0 −→ π1 −→ Ind
˜Sp(n+j)fPj (ρ⊗ σ) −→ π2 −→ 0.

Then, Θ(πi, r + j) 6= 0, is irreducible for i = 1, 2, and the following holds:

0 −→ Θ(π1, r + j) −→ Ind
O(Vr+j)
Pj

(χ−1
V,ψρ⊗ τ) −→ Θ(π2, r + j) −→ 0.

Proof. The main tool in the proof is Proposition 3.4. Now, as soon as this is
established for the representations of the metaplectic group, we can proceed
with the proof similarly as in the case of the dual pairs consisting of the
symplectic and even–orthogonal group ([17]).
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4 The exceptional case

We continue with the notation from the previous section. We now discuss
the case ρ ∈ {χV,ψ| · |±(mr−n), χV,ψ| · |±(mr−n−1)}. The discussion is more subtle
than in the case of “the split dual pair” (i.e., symplectic, even–orthogonal
group [17]) due to the fact that the result about the unique reducibility point
in the case of the parabolic induction from a maximal parabolic subgroup
and cuspidal data ([23]) is not available for the metaplectic group.

We retain the notation from the previous section. For ρ /∈ {χV,ψ| ·
|±(mr−n), χV,ψ| · |±(mr−n−1)}, the uniqueness of the reducibility point for the
representation (we introduce a shorter notation)

ρνs o σ := Ind
˜Sp(n+j)fMj

(ρνs ⊗ σ)

follows from Theorem 3.5 and the uniqueness of the reducibility point s =

s0 ≥ 0 for the representation Ind
O(Vr+j)
Mj

(ρνs ⊗ τ) ([23]). In these exceptional
cases we study in this section, we will determine the reducibility point and the
structure of the lift of all the subquotients using again theta correspondence.

We recall that σ and τ are irreducible cuspidal representations of S̃p(n)
and O(Vr), respectively, such that Θ(σ, r) = τ.

From ([15], p. 69 Théorème principal) we know that

Θ(σ, r + 1) ↪→ Ind
O(Vr+1)
P1

(| · |n−mr ⊗ τ), RP1(Θ(σ, r + 1)) = | · |n−mr ⊗ τ.

We conclude that the representation Ind
O(Vr+1)
P1

(| · |n−mr ⊗ τ) is reducible.
Also, note that mr ∈ 1

2
+ Z, so n−mr ∈ 1

2
+ Z. In the same way we have

Θ(τ, n+ 1)) ↪→ Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n−1 ⊗ σ),

RfP1
(Θ(τ, n+ 1)) = χV,ψ| · |mr−n−1 ⊗ σ,

and the representation Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n−1 ⊗ σ) is reducible. So, The-

orem 3.5 guarantees that the only point of reducibility of the representation

Ind
˜Sp(n+1)fP1

(χV,ψ| · |s ⊗ σ), s ∈ R is s = ±(mr − n− 1) provided we show that

the representations we obtain for s = ±(n−mr) are irreducible.

Remark. In the situation where mr − n = 1
2

we have n −mr = mr − n − 1;

we know then that the representation Ind
˜Sp(n+1)fP1

(χV,ψ| · |−
1
2 ⊗ σ) is reducible
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and that s = ±1
2

is the only point of reducibility. For n = 0, this covers

the case of reducibility in ˜SL(2, F ), because, if we formally take sgn to be

a nontrivial–character of µ2
∼= ˜Sp(0, F ), it lifts, in a split orthogonal tower

to r = 0–level to a trivial representation of µ2 = O(V0), so mr = 1
2

and
n−mr = −1

2
is satisfied.

We now describe how to bypass the exceptional cases from Theorem 3.5.

Theorem 4.1. The representation Ind
˜Sp(n+1)fP1

(χV,ψ| · |s ⊗ σ) reduces for a

unique s ≥ 0 (which is |mr − n− 1|). In particular, this implies

Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n⊗σ) is irreducible unless mr−n = −(mr−n− 1),

i.e., mr − n = 1
2
.

Proof. As observed in the discussion prior to the remark above, we only have

to check that Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n ⊗ σ) is irreducible (unless mr − n = 1
2
).

Here we use the notion of pairs of orthogonal towers with the same quadratic
character χV = χV ′ , so that χV,ψ = χV ′,ψ ([9], Chapter V). So, if our original
tower has one–dimensional anisotropic space V0, then, the “dual” tower has
a three–dimensional anisotropic space V ′0 at its bottom and vice versa. Let r′

denote the level to which the representation σ lifts in this second orthogonal
tower (the first occurence), and let Θ(σ, r′) = τ ′ (a cuspidal representation).
Since Dichotomy Conjecture holds for cuspidal representations ([11]), we have
r + r′ = 2n. But, if we calculate mr′ − n, we get that mr − n /∈ {mr′ −
n,−(mr′−n)}, so we are not in the problematic situation in the second tower,
meaning that if mr − n /∈ {mr′ − n − 1,−(mr′ − n − 1)} the representation

Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n ⊗ σ) is irreducible (since then we can apply Theorem

3.5 on the representations of the second tower and Ind
O(Vr′+1)

P1
(| · |mr−n⊗ τ ′) is

irreducible). If mr−n = mr′−n−1 (the possibility mr−n = −(mr′−n−1)
leads to contradiction with r+r′ = 2n) we get mr−n = 1

2
and this is already

covered.

We now describe the lifts of the irreducible subquotients of the represen-

tation Ind
˜Sp(n+1)fP1

(χV,ψ| · |s ⊗ σ), s ∈ {±(mr − n),±(mr − n− 1)}.

Proposition 4.2. Assume that mr − n 6= 1
2
. Then,
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Θ(Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n ⊗ σ), r + 1) has a unique irreducible quotient,

isomorphic to Θ(σ, r + 1). Moreover,

Θ(Θ(σ, r + 1), n+ 1) = Ind
˜Sp(n+1)fP1

(χV,ψ| · |mr−n ⊗ σ).

If we denote by π1 the other irreducible subquotient of Ind
O(Vr+1)
P1

(| · |n−mr⊗τ),
then Θ(π1, n+ 1) = 0.

Proof. We denote π = Ind
˜Sp(n+1)fP1

(χV,ψ| · |n−mr ⊗ σ). We can apply the third

part of Proposition 3.4 to see that

Θ(χV,ψ| · |n−mr ⊗ σ,RfP1
(ωn+1,r+1)) = Ind

O(Vr+1)
P1

(| · |mr−n ⊗ τ). (5)

Now, we can apply the Frobenius reciprocity

Hom ˜Sp(n+1)
(ωn+1,r+1, π) ∼= HomgM1

(RfP1
(ωn+1,r+1), χV,ψ| · |n−mr ⊗ σ).

Observing that the Frobenius isomorphism above is also an isomorphism
of O(Vr+1)–modules, and then taking the smooth part of it, it gives us the
isomorphism between the contragredients of the corresponding isotypic com-
ponents:

Θ(π, r + 1)ˇ∼= Ind
O(Vr+1)
P1

(| · |mr−n ⊗ τ)ˇ,

and the first part of the claim follows, since Ind
O(Vr+1)
P1

(| · |mr−n ⊗ τ) has a
unique quotient, namely Θ(σ, r + 1).

To prove the second claim, we proceed as follows: Let ξ be some irre-
ducible representation of O(Vr+1). Then, the Frobenius reciprocity gives

Hom ˜Sp(n+1)×O(Vr+1)
(ωn+1,r+1, π ⊗ ξ) ∼=

HomgM1×O(Vr+1)(RfP1
(ωn+1,r+1), χV,ψ| · |n−mr ⊗ σ ⊗ ξ),

and, by the third part of Proposition 3.4, the last part is isomorphic to
HomO(Vr+1)(| · |mr−n ⊗ τ), ξ), and this is non–zero only if ξ ∼= Θ(σ, r+ 1). So,
we conclude that π is a quotient of Θ(Θ(σ, r+ 1), n+ 1). On the other hand,
we have an epimorphism

ωn+1,r+1 → Θ(σ, r + 1)⊗Θ(Θ(σ, r + 1), n+ 1),

which leads to the epimorphism
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RP1(ωn+1,r+1)→ | · |n−mr ⊗ τ ⊗Θ(Θ(σ, r + 1), n+ 1).

Now we again apply the third part of Proposition 3.4 (but the different part
of the statement from the one used just above) to get that Θ(Θ(σ, r+1), n+1)
is a quotient of π, so, at the end, π ∼= Θ(Θ(σ, r + 1), n+ 1).

To prove the last part of this proposition, we note that, if Θ(π1, n+ 1) 6=
0, an irreducible quotient of that full lift would have to have a cuspidal
support consisting of σ and | · |±(n−mr) ([9], p. 55). Then, there would exist
an epimorphism ωn+1,r+1 → π ⊗ π1, but this is impossible by the previous
discussion. This guarantees Θ(π1, n+ 1) = 0.

Proposition 4.3. Assume that mr−n 6= 1
2
. Then, the induced representation

Ind
˜Sp(n+1)fP1

(χV,ψ|·|mr−n−1⊗σ) has two irreducible subquotients, Θ(τ, n+1) and,

say π2, which lift as follows Θ(Θ(τ, n+ 1), r+ 1) = Ind
O(Vr+1)
P1

(| · |mr−n−1⊗ τ),

while Θ(π2, r+ 1) = 0. Moreover, the lift Θ(Ind
O(Vr+1)
P1

(| · |mr−n−1⊗ τ), n+ 1)
has the unique irreducible quotient isomorphic to Θ(τ, n+ 1).

Proof. The situation is totally symmetric to Proposition 4.2.

It remains to discuss the most difficult case mr − n = 1
2
.

Theorem 4.4. Assume that mr − n = 1
2
.

(i) The representations Ind
O(Vr+1)
P1

(| · | 12 ⊗ τ) and Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ)

reduce, and

Θ(τ, n+1) ↪→ Ind
˜Sp(n+1)fP1

(χV,ψ|·|−
1
2⊗σ), Θ(σ, r+1) ↪→ Ind

O(Vr+1)
P1

(|·|−
1
2⊗τ).

Moreover, we have the following:

Θ(Θ(τ, n+ 1), r + 1) = Ind
O(Vr+1)
P1

(| · |
1
2 ⊗ τ)

and

Θ(Θ(σ, r + 1), n+ 1) = Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ).

(ii) Let π1 (π2, respectively) be the other irreducible subquotient of the rep-

resentation Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ) (Ind

O(Vr+1

P1
(| · | 12 ⊗ τ), respectively).

Then, one of the following holds:
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– Θ(π1, r + 1) = 0 and Θ(π1, r + 2) 6= 0, moreover, every irre-
ducible quotient of Θ(π1, r+ 2) is a tempered subrepresentation of

δ([ν−
1
2 , ν

1
2 ])o τ,

– Θ(π1, r+ 1) 6= 0, then every irreducible quotient of Θ(π1, r+ 1) is
π2. Every irreducible quotient of Θ(π1, r+2) is the unique common

tempered subquotient of δ([ν−
1
2 , ν

1
2 ])o τ and ν

1
2 o L(ν

1
2 ; τ).

Here δ([ν−
1
2 , ν

1
2 ]) denotes the unique irreducible (and necessarily square–

integrable) subrepresentation of ν
1
2 × ν− 1

2 (we use the standard notation for
the parabolic induction for the general linear groups, [26]). The representa-

tion L(ν
1
2 ; τ) denotes the Langlands quotient of the representation ν

1
2 o τ.

Proof. We now prove (i). The reducibility of ν−
1
2 o τ and of χV,ψν

− 1
2 oσ and

the fact that Θ(σ, r + 1) and Θ(τ, n+ 1) are the subrepresentations of these
representations, follow from [15], p. 69 Théorème principal. We can apply
the third part of Proposition 3.4 to obtain

Θ(| · |−
1
2 ⊗ τ, RP1(ωn+1,r+1)) ∼= Ind

˜Sp(n+1)fP1
(χV,ψ| · |

1
2 ⊗ σ) (6)

and
Θ(χV,ψ| · |−

1
2 ⊗ σ,RfP1

(ωn+1,r+1)) ∼= Ind
O(Vr+1)
P1

(| · |
1
2 ⊗ τ). (7)

Using this and Frobenius reciprocity, we get

Hom ˜Sp(n+1)×O(Vr+1)
(ωn+1,r+1, Ind

˜Sp(n+1)fP1
(χV,ψ| · |−

1
2 ⊗ σ)⊗Θ(σ, r + 1)) ∼=

∼= HomgM1×O(Vr+1)(RfP1
(ωn+1,r+1), χV,ψ| · |−

1
2 ⊗ σ ⊗Θ(σ, r + 1)) ∼=

∼= HomO(Vr+1)(Ind
O(Vr+1)
P1

(| · |
1
2 ⊗ τ),Θ(σ, r + 1)) 6= 0.

This means that Θ(Θ(σ, r + 1), n+ 1) 6= 0, so we have an epimorphism

ωn+1,r+1 → Θ(Θ(σ, r + 1), n+ 1)⊗Θ(σ, r + 1),

and, taking Jacquet modules in the orthogonal side, we have the following
epimorphism

RP1(ωn+1,r+1)→ Θ(Θ(σ, r + 1), n+ 1)⊗ | · |−
1
2 ⊗ τ,

so, by relation (6), we conclude that Θ(Θ(σ, r + 1), n + 1) is a quotient of

Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ).
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On the other hand, using Kudla’s filtration (Proposition 3.3), and an
explicit description of quotient Jj0 we obtain the following chain of epimor-
phisms:

RfP1
(ωn+1,r+1)→ χV,ψ| · |

1
2 ⊗ ωn,r+1 → χV,ψ| · |

1
2 ⊗ σ ⊗Θ(σ, r + 1),

so that

HomgM1⊗O(Vr+1)(RfP1
(ωn+1,r+1), χV,Ψ| · |

1
2 ⊗ σ ⊗Θ(σ, r + 1)) ∼=

∼= Hom ˜Sp(n+1)×O(Vr+1)
(ωn+1,r+1, Ind

˜Sp(n+1)fP1
(χV,ψ| · |

1
2 ⊗ σ)⊗Θ(σ, r + 1)) 6= 0.

Take a non–zero intertwining operator from the last space, say T. Then,
the image of this operator is isomorphic to Π ⊗ Θ(σ, r + 1), where Π is a

subrepresentation of Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ) ([15], p. 45 Lemme III.3). On

the other hand, this Π has to be a quotient of Θ(Θ(σ, r + 1), n + 1). From
our previous reasoning about Θ(Θ(σ, r + 1), n+ 1) the only possibilities are

that Θ(Θ(σ, r + 1), n + 1) is Θ(τ, n + 1) or Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ). In the

first case, Π is a quotient of Θ(τ, n+ 1), so Π = Θ(τ, n+ 1), but this cannot

be a subrepresentation of Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ). We, then, must have

Θ(Θ(σ, r + 1), n+ 1) ∼= Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ)

and Π = Ind
˜Sp(n+1)fP1

(χV,ψ| · |
1
2 ⊗ σ).

Analogously, one gets

Θ(Θ(τ, n+ 1), r + 1) ∼= Ind
O(Vr+1)
P1

(| · |
1
2 ⊗ τ).

We now prove (ii). Firstly, we prove that Θ(π1, r) = 0. If Θ(π1, r) 6= 0,
then, examining a cuspidal support of every quotient of this representation
([9], p. 55), we see that it would have to be equal to τ. But, then Θ(τ, n) = σ
and Θ(τ, n+ 1) = π1; the last relation contradicts the results of the first part
of this theorem. Analogously, we get that Θ(π2, n) = 0.

To proceed further, we prove claim (8)(see below). We use the idea of
descending in the orthogonal tower, starting from some stable range appear-
ance place, downwards to prove that the lift does not vanish even lower in
the tower. This idea was already present in ([16]).
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Assume that Θ(π1, l) 6= 0, for some l large enough. Then, there exists
an epimorphism ωn+1,l → π1⊗Θ(π1, l). Using Kudla’s filtration (Proposition
3.3), we get epimorphisms

RP1(ωn+1,l+1)→ ν−(ml−n−1) ⊗ ωn+1,l → ν−(ml−n−1) ⊗ π1 ⊗Θ(π1, l).

Using Frobenius reciprocity, from the relation above we get that there exists

a non–zero ˜Sp(n+ 1)×O(Vl+1)–intertwining from ωn+1,l+1 to

π1 ⊗ Ind
O(VL+1)
P1

(ν−(ml−n−1) ⊗ Θ(π1, l))). This immediately gives us a non–

trivial intertwining between Θ(π1, l+1) and Ind
O(VL+1)
P1

(ν−(ml−n−1)⊗Θ(π1, l)),

and, consequently, between RP1(Θ(π1, l+ 1)) and ν−(ml−n−1)⊗Θ(π1, l). If we
denote by π(χ) an isotypic part of part of some smooth representation π
corresponding to a generalized central character χ, we can write down our
conclusion as RP1(Θ(π1, l+ 1))(ν−(ml−n−1)) 6= 0. This proves one direction of
the following claim:

Assume that ml − n− 1 6= −1
2
. Then,

Θ(π1, l) 6= 0⇔ RP1(Θ(π1, l + 1))(ν−(ml−n−1)) 6= 0. (8)

Now, we prove the other direction, so we assume that RP1(Θ(π1, l +
1))(ν−(ml−n−1)) 6= 0. This also means that Θ(π1, l + 1) 6= 0, so there is an
epimorphism ωn+1,r+1 → π1⊗Θ(π1, l+1), and, when we apply Jacquet mod-
ule, RP1(ωn+1,r+1)→ π1 ⊗RP1(Θ(π1, l+ 1))→ π1 ⊗ ν−(ml−n−1) ⊗ τ1 for some
representation τ1 of O(Vr) (a non–zero map). We use here that the Jacquet
module of Θ(π1, l+1) is of finite length. Now, if we assume that this map, re-
stricted to a subrepresentation I11 of RP1(ωn+1,r+1) (Proposition 3.3) is zero,
we get an existence of a non–zero mapping from I10

∼= ν−(ml−n−1) ⊗ ωn+1,l

to π1 ⊗ ν−(ml−n−1) ⊗ τ1. This means that Θ(π1, l) 6= 0. If we assume the op-
posite, i.e., the restriction of the above mapping to I11 is non zero, applying
the second Frobenius map, we get a non–zero intertwining map

χV,ψΣ′1 ⊗ ωn,l → ν−(ml−n−1) ⊗ τ1 ⊗RP1(π̌1)ˇ,

and, from this follows that π1 ↪→ χV,ψν
−(ml−n−1)oσ. Of course, if ml−n−1 6=

−1
2
, we get that this is impossible, and the claim (8) is proved.

Using claim (8), we prove that Θ(π1, r+ 2) 6= 0 in Lemma 4.6. Assuming
that, we now examine two possibilities: Θ(π1, r+1) 6= 0 and Θ(π1, r+1) = 0.
Firstly, assume that Θ(π1, r + 1) = 0. Let Π be an irreducible quotient of
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Θ(π1, r + 2), so that there exists an epimorphism ωn+1,r+2 → π1 ⊗ Π, and,

consequently, an epimorphism RfP1
(ωn+1,r+2) → RfP1

(π1) ⊗ Π = χV,Ψν
1
2 ⊗

σ ⊗ Π. If the last epimorphism is equal to zero on the subrepresentation
J11 of RfP1

(ωn+1,r+2), it gives rise to an epimorphism χV,ψν
3
2 ⊗ ωn,r+2 →

χV,Ψν
1
2 ⊗ σ ⊗ Π. This is impossible, so there exists a non–zero intertwining

Ind
gM1×O(Vr+2)gGL1×S̃p(n)×P1

(χV,ψΣ′1 ⊗ ωn,r+1)→ χV,ψν
1
2 ⊗ σ ⊗ Π.

Using the second Frobenius reciprocity, as before, we get an embedding
Π ↪→ ν

1
2 o Θ(σ, r + 1). An intertwining operator, induced from the GL–

situation acts on the second representation, so that we have a composition
of intertwining operators

Π ↪→ ν
1
2 oΘ(σ, r + 1) ↪→ ν

1
2 × ν−

1
2 o τ → ν−

1
2 × ν

1
2 o τ.

If we assume that Π is not embedded in the kernel of the last intertwining
operator (i.e., in δ([ν−

1
2 , ν

1
2 ])o τ), there would exist an embedding

Π ↪→ ν−
1
2 × ν

1
2 o τ,

and this would force RP1(Θ(π1, r + 2))(ν−
1
2 ) 6= 0. By plugging l = r + 1 in

the relation (8), we get that Θ(π1, r + 1) 6= 0, contrary to our assumption.

This means that Π ↪→ δ([ν−
1
2 , ν

1
2 ])o τ, and this case is covered.

Assume now that Θ(π1, r + 1) 6= 0 and let Π be an irreducible quo-
tient of Θ(π1, r + 1). Then, there exists an epimorphism of Jacquet mod-

ules RfP1
(ωn+1,r+1) → χV,ψν

1
2 ⊗ σ ⊗ Π. Again, by examining the filtration of

RfP1
(ωn+1,r+1), we firstly assume that the epimorphism above is zero, when

restricted to a subrepresentation J11 of RfP1
(ωn+1,r+1). Then, there exists an

epimorphism J10
∼= χV,ψν

1
2⊗ωn,r+1 → χV,ψν

1
2⊗σ⊗Π. We get Π ∼= Θ(σ, r+1).

Now, by Kudla’s filtration there exists an epimorphism RP1(ωn+1,r+2) →
ν−

1
2 ⊗ ωn+1,r+1, and, consequently, a non–zero map RP1(ωn+1,r+2) → ν−

1
2 ⊗

π1 ⊗ Θ(σ, r + 1) ↪→ ν−
1
2 ⊗ π1 ⊗ ν−

1
2 o τ. By Frobenius reciprocity, we get a

non–zero ( ˜Sp(n+ 1)×O(Vr+2)–invariant) intertwining map ωn+1,r+2 → π1⊗
ν−

1
2×ν− 1

2oτ. So, there exists an non–zero intertwining map RP2(ωn+1,r+2)→
π1⊗ ν−

1
2 × ν− 1

2 ⊗ τ. We now use filtration of RP2(ωn+1,r+2) ([9]); note that it
has t = min{2, n+1} members. Here we assume that n ≥ 1; if not, we are in
a simpler situation. We use, as always, Ijk to denote the members of filtra-
tion of RP2(ωn+1,r+2). We see that there cannot exist a non–zero intertwining
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map from I20
∼= 1GL(2)⊗ωn+1,r to π1⊗ν−

1
2 ×ν− 1

2 ⊗τ. Also, there cannot exist

a non–zero intertwining map from I22 to π1 ⊗ ν−
1
2 × ν− 1

2 ⊗ τ (we examine a
cuspidal support of π1). So, there must exist a non–zero intertwining

I21
∼= Ind

˜Sp(n+1)×GL(2)×O(Vr)

G̃l(1)×S̃p(n)×GL(1)×GL(1)
(β21Σ′1 ⊗ ωn,r)→ π1 ⊗ ν−

1
2 × ν−

1
2 ⊗ τ.

When we examine the last relation more carefully, applying the second

Frobenius reciprocity, we get a non–zero ˜Sp(n+ 1)–intertwining between

χV,ψν
1
2 o σ and π1, which is impossible.

We recall our assumption on RfP1
(ωn+1,r+1); the discussion above shows

that there exists a non–zero intertwining from a subrepresentation J11 to
χV,ψν

1
2 ⊗ σ ⊗ Π. After applying the second Frobenius reciprocity, we get

Π = π2.
To determine an irreducible quotient Π′ of Θ(π1, r + 2) we proceed as

follows: since there exists an epimorphism T from RP1(ωn+1,r+2) to π1 ⊗
RP1(Π

′), we study the filtration of RP1(ωn+1,r+2); if T |I11 = 0, employing 2nd

Frobenius reciprocity, as before, we get that ν−
1
2 ⊗π2 ≤ RP1(Π

′); if T |I11 6= 0,

we get that ν
1
2 ⊗ L(ν

1
2 ; τ) ≤ RP1(Π

′).
Now we calculate RP2(Π

′). The filtration of RP2(ωn+1,r+2) has three mem-
bers; easy analysis shows that there only I21 can have a non–zero intertwining
with π1⊗RP2(Π

′). If ξ⊗ τ is an irreducible subquotient of RP2(Π
′) such that

the intertwining space (we relax the notation since it is obvious which are
the inducing subgroups in question)

Hom(Ind(β21Σ′1 ⊗ ωn,r), π1 ⊗ ξ ⊗ τ)

is non–zero, we get ξ = δ([ν−
1
2 , ν

1
2 ]).

Now, the proof is complete as soon as we show Lemma 4.5. Namely,
assuming this lemma, we see that, since δ([ν−

1
2 , ν

1
2 ]) ⊗ τ ≤ RP2(Π

′), we

must have Π′ = T1 or Π′ = T2. This also means that the possibility ν−
1
2 ⊗

π2 ≤ RP1(Π
′) does not occur, since, in any case, Π′ is tempered. Now, we

refer to the first part of the proof of Lemma 4.6: This first part is valid if
Θ(π1, l + 1) 6= 0, and l ≥ r + 1, and we if we put l = r + 1 we immediately
get

Π′ ↪→ ν
1
2 oΘ(σ, r + 1) = ν

1
2 o L(ν

1
2 ; τ),

so we see that Π′ = T2.

21



To finish the proof of Theorem 4.4, we need some facts about Jacquet
modules of the representation ν

1
2 × ν 1

2 o τ.

Lemma 4.5. The representation ν
1
2 × ν

1
2 o τ is of length four; the irre-

ducible subquotients are T1, T2, L(ν
1
2 , ν

1
2 ; τ), L(ν

1
2 ; π2), where T1 and T2

are irreducible tempered subrepresentations of δ([ν−
1
2 , ν

1
2 ]) o τ. The repre-

sentations δ([ν−
1
2 , ν

1
2 ]) o τ and ν

1
2 o L(ν

1
2 ; τ) have a unique common irre-

ducible subquotient, we denote it by T2. The multiplicity of δ([ν−
1
2 , ν

1
2 ]) ⊗ τ

in RP2(ν
1
2 × ν 1

2 o τ) is two and each δ([ν−
1
2 , ν

1
2 ])⊗ τ can only come from a

Jacquet module of T1 or T2.

Proof. In the appropriate Grothendieck group, we have

ν
1
2 × ν−

1
2 o τ = δ([ν−

1
2 , ν

1
2 ])o τ + L(ν

1
2 , ν−

1
2 )o τ =

ν
1
2 o π2 + ν

1
2 o L(ν

1
2 ; τ).

The representation δ([ν−
1
2 , ν

1
2 ]) o τ is of length two (we see that by taking

a restriction to the appropriate special odd orthogonal group, and having
in mind that, for an irreducible representation π of a full odd orthogonal
group O(Vr), π|SO(Vr) is irreducible. Also, (π o τ ′)|SO(Vr+n)

∼= π o (τ ′)|SO(Vr),
if τ ′ is a representation of O(Vr) and π of GL(n, F ). Then, using Aubert
duality ([1]) for SO(Vr+n) and the fact that, in our case, we have O(Vr+n) =

{±1} ·SO(Vr+n), we see that L(ν
1
2 , ν−

1
2 )oτ is of length two; analogously, we

see that both ν
1
2 oπ2 and ν

1
2 oL(ν

1
2 ; τ) are of length two; now the Langlands

parameters of all the subquotients are easily determined. We also see that
ν

1
2 o π2 and ν

1
2 o L(ν

1
2 ; τ) must each contain one tempered subquotient; we

denote the former one by T2. Using Tadić’s formula for the Jacquet modules
of the induced representations ([24]), we get

R2(ν
1
2×ν

1
2oτ) = ν

1
2×ν

1
2⊗τ+ν−

1
2×ν−

1
2⊗τ+2δ([ν−

1
2 , ν

1
2 ])⊗τ+2L(ν

1
2 , ν−

1
2 )⊗τ.

Since T1, T2 ↪→ δ([ν−
1
2 , ν

1
2 ])oτ and T2 ↪→ ν

1
2oL(ν

1
2 ; τ), the rest of the claims

now follow.

To complete the proof of Theorem 4.4, we prove the following

Lemma 4.6. Let π1 be as before. Then, Θ(π1, r + 2) 6= 0.
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Proof. Let l > r be large enough, so Θ(π1, l+ 1) 6= 0 and the claim (8) holds
(this also means l ≥ r+1). Let Π′ be an irreducible quotient of Θ(π1, l+1). A

non–zero ˜Sp(n+ 1)×O(Vl+1)–intertwining ωn+1,l+1 → χV,ψν
1
2 oσ⊗Π′ gives

rise to a non–zero intertwining RfP1
(ωn+1,l+1)→ χV,ψν

1
2 ⊗σ⊗Π′. Using again

Kudla’s filtration of RfP1
(ωn+1,l+1), we see that either there exists a non–zero

intertwining χV,ψν
ml−n⊗ωn,l+1 → χV,ψν

1
2 ⊗σ⊗Π′, which is impossible since

ml− n > 1
2
, either (this must be a case) there exists a non–zero intertwining

Ind(χV,ψΣ′1 ⊗ ωn,l) → χV,ψν
1
2 ⊗ σ ⊗ Π′, which, by 2nd Frobenius reciprocity,

gives an intertwining χV,ψΣ′1 ⊗ ωn,l → χV,ψν
1
2 ⊗ σ ⊗ RP1(Π̌

′)ˇ. We conclude

that ν−
1
2 oΘ(σ, l)→ Π′, i. e.,

Π′ ↪→ ν
1
2 oΘ(σ, l).

Since σ is cuspidal, we have a more precise information on Θ(σ, l), namely
([9]) Θ(σ, l) ↪→ νn−ml+1 o Θ(σ, l − 1). Note that Θ(σ, l − 1) 6= 0. So, if
n − ml + 1 /∈ {3

2
,−1

2
}, by Zelevinsky results for general linear groups, we

have

Π′ ↪→ ν
1
2 oΘ(σ, l) ↪→ ν

1
2 ×νn−ml+1oΘ(σ, l−1) ∼= νn−ml+1×ν

1
2 oΘ(σ, l−1).

This is satisfied if l ≥ r + 2. In that case RP1(Θ(π1, l + 1))(νn−ml+1) ≥
RP1(Π

′)(νn−ml+1) 6= 0, and, by claim (8), we have Θ(π1, l) 6= 0. Moreover,
Θ(π1, r + 2) 6= 0.

Remark. At this stage, using our our approach, we were not able to under-
stand more thoroughly when each of the possibilities in Theorem 4.4, (ii)
occurs. But, if we assume that the Dichotomy Conjecture holds for π1, we
can easily see that, in that case, the second possibility should occur.

5 Examples

By Theorem 3.5 and Theorem 4.1, we have completely described reducibil-
ity of the representations of the metaplectic group in the generalized rank
one case, in terms of reducibility of the related representations on the odd–
orthogonal group, assuming that F has characteristic different from 2. Using
known facts about reducibility for the orthogonal groups, we can make this
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more explicit; we describe some of the situations which occur in a few exam-
ples. In the following examples we use Shahidi’s results on reducibility and
L–functions, so this requires char F = 0.

We use Shahidi’s machinery to calculate the reducibility point for the
representations of SO(Vr) induced from a maximal parabolic subgroup and
the generic representations of an appropriate Levi factor. To do so, the
odd orthogonal tower must be split, i.e., dim(V0) = 1. In general, if ρ is a
self–contagredient irreducible cuspidal representation of GL(j, F ) and τ an
irreducible, cuspidal, generic representation of SO(Vr) in the split tower, the
Plancherel measure can be expressed in terms of L–functions, and, we have,
up to an ε–factor (for example, [21],[22])

µ(s, ρ⊗ τ) ≈ L(1 + s, ρ× τ)

L(s, ρ× τ)

L(1− s, ρ× τ)

L(−s, ρ× τ)

L(1 + 2s, ρ, Sym2ρj)

L(2s, ρ, Sym2ρj)

L(1− 2s, ρ, Sym2ρj)

L(−2s, ρ, Sym2ρj)
. (9)

Here Sym2ρj is a symmetric square representation of GL(j,C), and τ
is always self–contragredient ([15]). The zeros and poles of the Plancherel
measure completely describe the reducibility point of the representation
Ind

SO(Vr)
Pj

(ρνs ⊗ σ).

5.1 The Siegel case

We recall that we study genuine representations of S̃p(n). Let ω0 denote the

non–trivial character of S̃p(0) ∼= µ2. Assume ρ is a genuine, unitarizable

cuspidal representation of ˜GL(j, F ), j ≥ 2 with (χ−1
V,ψρ)ˇ ∼= (χ−1

V,ψρ). Then,

Ind
S̃p(j)fPj (ρ⊗ω0) is the Sigel case for our considerations. We have the following

proposition:

Proposition 5.1. Assume ρ is a genuine, unitarizable suprecuspidal rep-

resentation of ˜GL(j, F ), j ≥ 2 with (χ−1
V,ψρ)ˇ ∼= (χ−1

V,ψ). The representation

Ind
S̃p(j)fPj (ρνs⊗ω0), s ∈ R≥0 reduces for s = 0 if L(s, χ−1

V,ψρ, Sym
2ρj) does not

have a pole for s = 0; otherwise, it reduces for s = 1
2
. ˙
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Proof. By ([10], p. 238) we have ωm,0 ∼= 1O(Vm)⊗ωdim(Vm)
0 . Now, assume that

we study theta correspondence between the representations of the metaplec-
tic groups with the representations of groups in the split odd–orthogonal
tower. In this case dim(V0) = 1, and O(V0) ∼= µ2. This means Θ(ω0, 0) =

1O(V0), and by Theorem 3.5, Ind
S̃p(j)fPj (ρνs ⊗ ω0) reduces if and only if π =

Ind
O(Vj)
Pj

(χ−1
V,ψρν

s ⊗ 1O(V0)) reduces. Now, we note that π reduces if and only

if π|SO(Vj) reduces. Since we are in the generic case, we can apply (9) and
the claim readily follows.

Corollary 5.2. We keep the notation of the previous proposition. Let ρ

be an irreducible, genuine, cuspidal representation of ˜GL(j, F ) with χ−1
V,ψρ

self–dual.

(i) If j is odd, the representation Ind
S̃p(j)fPj (ρνs ⊗ ω0) reduces for s = 1

2
.

(ii) If j = 2 the representation Ind
S̃p(j)fPj (ρνs ⊗ ω0) reduces for s = 1

2
if the

central character of χ−1
V,ψρ is non–trivial.

Proof. The first claim follows from Proposition 5.1 and Theorem 6.2. of
([22]). The second claim follows from the fact that L(s, χ−1

V,ψρ,Λ
2ρ2) =

L(s, ωχ−1
V,ψρ

), where ωχ−1
V,ψρ

is a central character of χ−1
V,ψρ. Since we precisely

know the form of L–function L(s, χ), where χ is a character, the claim fol-
lows.

5.2 Reducibility of Ind
˜Sp(j+1)

P̃j

(ρ ⊗ π), where π is irre-

ducible cuspidal representation of ˜SL(2, F )

In this situation we use the knowledge about the liftings of cuspidal repre-

sentations of ˜SL(2, F ) to various odd–orthogonal groups ([25]). We assume
that the characteristic of F is zero.

To simplify the calculation, we assume that if j = 1, then

ρ /∈ {χV,ψν±(mr−1), χV,ψν
±(mr−2)},

where mr(π) = 1
2
dim(Vr), and r denotes the first occurence of non–zero lift of

π in a certain odd orthogonal tower. We will fix a quadratic character χV , as
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in the introductory section, so that we have attached to it two odd–orthogonal
towers, one with dim(V0) = 1 ((+)–tower) and other with dim(V0) = 3 ((−)–
tower) ([9], Chapter V). Since for the cuspidal representations the conserva-

tion principle holds, ([12]), for a fixed cuspidal representation π of ˜SL(2, F )
having in mind our notation, we have 2mr(π)+ + 2mr(π)− = 8.

The cuspidal representations of ˜SL(2, F ) lift to 2mr(π)+ ∈ {1, 3, 5} (the
stable range!) (precise description of the lifts is rather subtle ([25], [13])).
Now assume that for a cuspidal π we know where it lifts.

The first case:
If 2mr(π)+ = 1 (i. e. r = 0) (for example, if π is an odd part of the Weil

representation attached to an appropriate additive character of F ([9], p. 89,
90). Then, Θ(π, 0)+ = sgnO(V0) (as for an odd Weil representation). The

representation Ind
˜Sp(j+1)fPj (ρ⊗π) reduces if Ind

O(Vj)
Pj

(χ−1
V,ψρ⊗sgnO(V0)) reduces,

and this reduces if and only if Ind
SO(Vj)
Pj

(χ−1
V,ψρ⊗ 1) reduces, and we are again

in the Siegel case.
The second case:
If 2mr(π)+ = 3, then Θ(π, 1) is a cuspidal representation of O(V1). The

representation Ind
O(Vj+1)
Pj

(χ−1
V,ψρ ⊗ Θ(π, 1)) reduces only if it’s restriction to

SO(Vj+1) reduces. Now, we use Θ(π, 1) to denote also a restriction of this
representation to SO(V1). So, if we plug τ = Θ(π, 1) in (9) we can draw
some conclusions, since SO(V1) ∼= PGL2(F ), so that Θ(π, 1) is necessarily
generic. The L–function L(s, χ−1

V,ψρ × Θ(π, 1)) is, essentially, an L–function

of pairs, and it has a pole for s = 0 only if Θ(π, 1) ∼= χ−1
V,ψρ. Then j = 2 and

a central character of χ−1
V,ψρ is necessarily trivial. If this isomorphism occurs,

the reducibility point is s = 1.
If, on the other hand, L(s, χ−1

V,ψρ × Θ(π, 1)) does not have a pole for

s = 0 (Θ(π, 1) � χ−1
V,ψρ; this trivially holds if j 6= 2), then Ind

˜Sp(j+1)fPj (ρ ⊗ π)

reduces if L(s, χ−1
V,ψρ, Sym

2ρj) does not have a pole for s = 0, otherwise

this representation reduces for s = 1
2
. Note that, in these cases, there is no

dependency on π.
The third case:
If 2mr(π)+ = 5, then our knowledge on L–functions appearing in (9) is

limited; also, we would like to avoid the discussion on (non)–genericity of
Θ(π, 2)+. To accomplish that, we will try to use the fact that 2m−r (π) = 3.
The vector space V −0 is a vector subspace of trace–zero quaternions in a non–
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split quaternion algebra D over F. The group SO(V0)− is anisotropic, and iso-
morphic to PD∗ and an inner form of SO(V0) is the split SO(3) (in the usual
notation), isomorphic to PGL(2). Now we want to use Jacquet–Langlands
correspondence to relate representations of SO(V0)− and split SO(3), and to
show that we can use this correspondence to calculate the Plancherel mea-
sure µ(s, χ−1

V,ψρ⊗Θ(π, 0)−), so that we can calculate the reducibility point of

Ind
SO(Vj)

−

Pj
(χ−1

V,ψρ⊗Θ(π, 0)−).

To relate µ(s, χ−1
V,ψρ ⊗ Θ(π, 0)−) with µ(s, χ−1

V,ψρ ⊗ JL(Θ(π, 0)−)), where
JL((Θ(π, 0)−) denotes a Jacquet–Langlands lift of Θ(π, 0)−, we use (in this,
non–Siegel case), an idea of ([19]), which they use in the Siegel case.

We briefly describe this idea. Let k be a number field, such that there
exist two places of k, say v1 and v2 such that kvi

∼= F, i = 1, 2. Let D
be a quaternionic algebra over k, such that it splits for every place kv 6=
kvi , i = 1, 2, and D(kvi)

∼= D. Let G be an orthogonal group over k, such
that G(kv) ∼= SO(2j + 3)(kv), v /∈ {v1, v2}, is a split group, and G(kvi)

∼=
SO(Vj)(F )−, i = 1, 2.

Let G′ be an orthogonal group over k, which is an inner form of G, but
split at every place of k. Let M and M′ be the appropriate Levi subgroups,
so that M(kvi)

∼= GL(j, kvi)× SO(V0) and M′(kvi)
∼= GL(j, kvi)× SO(3).

Let τ ∼= ⊗τv be an automorphic cuspidal representation of D∗ with the
trivial central character, such that τvi

∼= Θ(π, 0) (thought of as a represen-
tation of PD∗ ∼= SO(V0)−). Then, there exists an automorphic cuspidal
representation τ ′ ∼= ⊗τ ′v of GL(2) such that τ ′v

∼= τv, v /∈ {v1, v2}, and
τ ′vi
∼= JL(Θ(π, 0)−), i = 1, 2. The existence of such representations can be

checked by [19]. Let σ ∼= ⊗σv be an automorphic cuspidal representation of
GL(j) such that σvi

∼= χ−1
V,ψρ, i = 1, 2.

Now, using the global functional equation for the global intertwining op-
erators, and choosing the appropriate normalizations of the Haar measures
on the unipotent radicals, one can show that, on each split place, there is
a cancellation of local factors coming from the local intertwining operators;
the only thing which remains is

µ(s, χ−1
V,ψρ⊗Θ(π, 0)−)2 = µ(s, χ−1

V,ψρ⊗ JL(Θ(π, 0)−))2.

The positivity on the imaginary axis of the Plancherel measure guarantees
that we actually have an equality of the Plancherel measures above, not only
their squares.

Now, we can calculate the poles and zeroes of the Plancherel measure
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on the right side above in terms of L–functions, since JL(Θ(π, 0)−) is a
generic, square–integrable representation of GL(2, F ) (with the trivial central
character). We have two situations to consider: if Θ(π, 0)− is not one–
dimensional, JL(Θ(π, 0)−) is a cuspidal generic representation of the split
SO(3), and we are in the previous case. If Θ(π, 0)− is a character of D∗

trivial on F ∗, then it is given by χ◦ ν, where ν is a reduced norm on D∗, and
χ is a quadratic character of F ∗, and JL(Θ(π, 0)−) ∼= χStGL(2,F ) ↪→ χν

1
2 ×

χν−
1
2 . Here StGL(2,F ) denotes the Steinberg representation of GL(2, F ). Then,

the relation (9) still holds, but we use the multiplicativity of the γ–factors
to simplify the L–functions involved. We use γ(s, χ−1

V,ψρ × χStGL(2,F ), ψ) =

γ(s, χ−1
V,ψρ× χν

1
2 , ψ)× γ(s, χ−1

V,ψρ× χν−
1
2 , ψ).

If χ−1
V,ψρ 6= χ, the reducibility only depends on the poles of

L(s, χ−1
V,ψρ, Sym

2ρj) and can be described in the same way as in the pre-
vious case.

We excluded the case χ−1
V,ψρ = χ = 1 in the beginning. We now only have

to consider the case χ−1
V,ψρ = χ 6= 1. In this case, the non–negative reducibility

point is 3
2
.
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