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ABSTRACT. We generalize the notion of Markov functions on closed
intervals [a,b] to Markov set-valued functions on compact metric spaces.
We also introduce when two such Markov set-valued functions follow the
same pattern and show that if the Markov set-valued functions F' : X — X
and G : Y — Y follow the same pattern, then the inverse limits lim (X, F)

o—

and lim (Y, G) are homeomorphic.
o

1. INTRODUCTION

In present paper, we generalize the notion of Holte’s Markov single-valued
functions [8] (which are often used in the theory of discrete topological dynam-
ical systems and they allow the symbolic dynamics to be used in the study of
such a dynamical system) to Markov upper semi-continuous set-valued func-
tions on arbitrary compacta. Note that several papers on the topic of dynam-
ical systems with (upper semi-continuous) set-valued functions have appeared
recently, see [12, 14, 15, 16, 18|, where more references may be found. How-
ever, there is not much known of such dynamical systems and therefore, there
are many properties of such set-valued dynamical systems that are yet to be
studied.

The Markov partition of a closed interval I = [0, 1] with respect to a
continuous function f : I — I is usually given by finitely many points 0 =
To < x1 < Tg < ... < XTp_1 < T, = 1 in I such that all the restrictions
Flizi_y,2 of f to [z;_1,2;] are homeomorphisms from [z;_1,2;] onto some
interval [z, z¢]. Since a Markov partition is usually given by a finite collection
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of points A = {zg,x1,...,2,} C I we usually refer to A as a Markov partition
for I. If a continuous function f has a Markov partition A, then we say that f
is a Markov function with respect to A. A Markov partition of I with respect
to f (if it exists) is a well-known tool in the dynamical system theory that
allows the symbolic dynamics to be used in the study of the dynamical system
(I, f). For more information about Markov partitions in dynamical systems
and symbolic dynamics, see [4, 13].

Let the function f be a Markov function with respect to some Markov
partition A = {ag,a1,aq,...,a,} for an interval I and let g be a Markov
function with respect to some Markov partition B = {bg, b1, b2, ..., b} of an
interval J. In [8], Holte defined when the Markov functions f and g follow the
same pattern (with respect to A and B): f(a;) = a if and only if g(b;) = by
for all j and k. Then she proved the following theorem, which is one of the
main results of [8].

THEOREM 1.1. Let I and J be closed intervals, let f be a Markov function
with respect to A C I and let g be a Markov function with respect to B C J.
If f and g follow the same pattern then the inverse limits @1(17 fn) and
l'&n(J, gn) are homeomorphic.

Some generalizations of Holte’s result have already been introduced, for
examples see [2, 3, 5, 6, 7, 9, 10] where more references may be found. In all
the mentioned papers, authors mostly generalized

1. the setting of such a Markov system from closed intervals to trees or
graphs;

2. the notion of Markov partitions A of closed intervals I (we point out
that they all have one thing in common — every generalization of Holte’s
Markov partition is closed in I);

3. the notion of Markov functions F' on intervals - they are usually upper
semi-continuous functions (or sometimes just set-valued functions) on
closed intervals I that have a special structure on

(a) the given Markov partition A on I (usually the boundary of the
set F(a) is a subset of A for any a € A), as well as

(b) on the complement of A, where it is usually assumed that on
each connected component of the complement of A, F' is a single-
valued injective function (as in the original Holte’s paper) or its
inverse is single-valued;

4. the notion when two Markov functions follow the same pattern.

Then the main theorem is proven, saying that if Markov functions F' and
G follow the same pattern, then their inverse limits are homeomorphic. In
present paper, we generalize Holte’s result in the following ways:

1. the setting of such a Markov system from closed intervals, trees or
graphs to any compact metric spaces;
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2. the notion of Markov partitions A of closed intervals I to Markov
partitions on any compact metric spaces;
3. the notion of Markov functions on intervals to Markov functions F' on
any compact metric spaces X in such a way that
(a) for a given Markov partition A on X, the boundary of the set
F(a) is a subset of A for any a € A, and
(b) on each connected component of X \ A, the function F is mim-
icking a single-valued injective function;
4. the notion when two Markov functions follow the same pattern.
Then we prove our main theorem which says that if Markov functions F' and
G follow the same pattern, then their inverse limits are homeomorphic.

2. DEFINITIONS AND NOTATION

DEFINITION 2.1. Let X be a metric space and let A C X. We use CI(A),
Int(A) and BA(A) to denote the closure, the interior, and the boundary, re-
spectively, of the set A in X.

DEFINITION 2.2. A continuum is a non-empty connected compact metric
space. A continuum is degenerate if it consists of only a single point. Oth-
erwise it is mnon-degenerate. A subcontinuum is a subspace of a continuum
which itself is also a continuum.

DEFINITION 2.3. Let X be a continuum and let a,b € X. We say that
X is irreducible between points a and b, if for any subcontinuum Y of X the
following holds:
a,beY =Y =X.
We say that X is irreducible if there are points a,b € X such that X is
trreducible between points a and b.

The following theorem is a well-known result.

THEOREM 2.4. Let X be a continuum and let a,b € X. Then there is a
subcontinuum 'Y of X such that'Y is irreducible between a and b.

PROOF. See [17, page 68]. 0
DEFINITION 2.5. Let f: X =Y be a function. We use T'(f) to denote
the graph of the function f.

DEFINITION 2.6. An inverse sequence of compact metric spaces and con-
tinuous bonding functions is any double sequence (X, f) of compact metric
spaces X, and continuous functions fn : Xn+1 — X,. The inverse limit of
such an inverse sequence (X, f») is defined to be the subspace of [])~; X, of
all points

oo
x = (21, 22,23,...) € H X,
n=1
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such that x,, = fn(xny1) for each positive integer n. The inverse limit is

denoted by @(Xn, fn)-

DEFINITION 2.7. If X is a metric space, then 2% denotes the family of
all non-empty compact subspaces of X.

DEFINITION 2.8. Let X be a compact metric space and let (A,) be a
sequence of subsets of X. Then we use limsup A,, and liminf A,, to denote
the limes superior and the limes inferior of the sequence (Ay), respectively,
where

limsup A,, = {x € X | for each open set U in X,z € U =
U N A, # 0 for infinitely many n}
and
liminf A, = {z € X | for each open set U in X,z € U =
UN A, # 0 for all but finitely many n}

If limsup A,, = liminf A,,, then we define the limit of the sequence of sets
(A4,) as follows:

lim A, =limsup A, = liminf A,,.
n— oo

OBSERVATION 2.9. Let X be a compact metric space, let © € X and
A C X, let (x,) be a sequence of points in X such that lim xz, = x and let

n—oo

A,) be a sequence of subsets of X such that lim A, = A. Then A € 2% and
(An) q

n— oo

if for each positive integer n, x, € A,, then x € A.
DEFINITION 2.10. Let X and Y be metric spaces. The function F : X —
2Y is called a set-valued function from X to Y and is denoted by F : X — Y.

The graph of a set-valued function F is defined to be the subset of X x Y,
which is defined by

I(F) ={(z,y) |y € F(z), v € X}.

DEFINITION 2.11. A set-valued function F' : X — Y is an upper semi-
continuous set-valued function if for any o € X and for any open set U in
Y, it holds that if F(xo) C U, then there is an open set V in X such that

1. zg €V and

2. for each x €V, F(z) CU.

There is a simple characterization of upper semicontinuous set-valued
functions ([1, Proposition 11, p. 128] and [11, Theorem 1.2, p. 3]):

THEOREM 2.12. Let X and Y be compact metric spaces and F: X — Y

a set-valued function. Then F is upper semicontinuous if and only if its graph
['(F) is closed in X x Y.

OBSERVATION 2.13. Let X andY be any compact metric spaces.
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1. Let F: X — Y be a set-valued function such that for each x € X there
is exactly one y, € Y such that

F(z) = {y.}
and let f : X — Y be defined by f(x) = y, for any x € X. Then
L(f) =T (F).
2. Let f : X — Y be a function and let F : X — Y be defined by
F(x)={f(x)} for each x € X. Then T'(F) =T(f).
Note that in both cases,

f is continuous <= F' is upper semicontinuous.

DEFINITION 2.14. Let F : X — Y be a set-valued function and let A C X .
Then
Fla:A—Y,
defined by F|a(x) = F(z) for each x € A, is the restriction of F' to A.

DEFINITION 2.15. Let F : X — Y be a set-valued function such that for
each x € X there is exactly one y, € Y such that F(z) = {y,}. Then we
always use F to denote the function F : X — F(X), defined by F(z) = y,
for any x € X.

DEFINITION 2.16. A generalized inverse sequence of compact metric spaces
and set-valued bonding functions is any double sequence (X,,, F,,) of compact
metric spaces X, and set-valued functions Fy, : X;,+1 — X,,. The generalized
inverse limit of such a generalized inverse sequence (X, F,,) is defined to be
the subspace of [1°2, X, of all points x = (x1,22,x3,...) € [[7ey Xn, such
that T, € Fp(xny1) for each positive integer n. The generalized inverse limit
is denoted by lim (X, Fy,).

o—

Inverse limits with upper semicontinuous set-valued bonding functions
were first introduced in 2004 by Mahavier and later by Ingram and Mahavier.
Since their introduction many authors have been interested in this area and
many papers appeared (for more details and other references see [11]).

DEFINITION 2.17. Let f : X =Y, G:Y — Z and h: Z — W. Then
Go f and ho G are defined by

(Go f)(z) =G(f(z))
for any x € X and

(hoG)(y) = h(G(y))
foranyyeY.

We also use the following well-known result in the proofs of our main
theorems.
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LEMMA 2.18. Let (X, F,) and (Y,,Gy) be two generalized inverse se-
quences of compact metric spaces and upper semicontinuous set-valued func-
tions. If for each positive integer n, there is a homeomorphism h, : X,, — Y,
such that hy, o Fy, = G, 0 hyi1, then the inverse limits lim (X, F,) and

o—

lim (Y,,, Gy,) are homeomorphic.

(2.1)
X0l x, 02 x o o X, ol X Entr
hhl th hs hn Bt
v o9y o 2y O LG y, oIn YnHoG”i.-.

PROOF. For any x = (21,22, 3,...) € lim (X, F,,), we define
o

h(X) = (hl(Il), hg(ﬂ?g), hg(l‘g), . )
Obviously, A : lim (X,,, F},) — lim (Y., G,,), since for any positive integer n,
hnan :Gnohn+1
and therefore hy, () € Gn(hnt1(zn+1)). It also follows that A : lim (X, F,) —

lim (Y;,, G,,) is a continuous function since each h,, is a continuous function.
o

Next, for any y = (y1,¥2,¥s,...) € lim(Y,, G,) we define

9(y) = (hi ' (y1), b3 ' (y2), b3 (ys), - ).

Since for any positive integer n, h,, 0 F,, = Gy, oh, 1, it follows that h,1oG,, =
F, o h,{,. Therefore hy,'(yn) € Fy(hy, L1 (Yn+1)). This means that

g:1lim(Y,,G,) — lim(X,, F,)

is a continuous function. Note that

9(h(x)) = (hy ' (ha(x1)), by (ha(x2)), by ' (hs(3)),...) = x

for each x = (1,29, x3,...) € lim (X, F},) and

h(g(y) = (ha(hy (1)), ha (g (y2)), ha(h3 H(ys)s ) =y
for eachy = (y1,¥2,¥3,-..) € lim(Y,,G,). Therefore, h is a homeomorphism.
0
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3. MARKOV SET-VALUED FUNCTIONS ON ARBITRARY COMPACT METRIC
SPACES

In this section we introduce the concept of Markov set-valued functions
on compact metric spaces and prove the main result of the paper.

DEFINITION 3.1. Let C be a continuum, let A be a totally disconnected
closed subset of C, let a,b € A, and let ngb be the family of subcontinua K
of C such that

1. K is irreducible between a and b and

2. KNA=/{a,b}.

Then we use K4 cla,b] to denote the set
Kacla,b)=C
if |Al =2, and
KA7c[CL,b] = U K
Kekg,
to denote the union of all subcontinua of C' that are irreducible between a and
b, if |A] > 2. We also use

KA7c(a, b) = KA,C[G, b] \ {a, b} and KAp[a, b) = KA@[G, b} \ {b}

OBSERVATION 3.2. Let C' be a continuum, let A be a totally disconnected
closed subset of C, and let a,b € A. Then the following holds.

1. I(ILLC'[CL7 b] = KA’C[b, a],

2. If Ky cla,b] # 0, then a,b € K4 ¢la,b].
Also, note that K4 ca,b] is not necessarily open or closed in C; see the fol-
lowing example and Figure 1 for an idea of how to construct such a K 4 c[a,b].

EXAMPLE 3.3. Let C be the continuum in Figure 1 (it is the union of
the following line segments: the black line segment from a to b, the black line
segment from ¢ to d, the black line segment from a to ¢, and the union of

blue arcs C,, all from a to b such that lim C, =Y, where Y is the union of
n— oo

the following arcs: the black line segment from a to ¢, the black line segment
from ¢ to d and the black line segment from v to b) and let A = {a,b, ¢, d}.
Then K4 ¢[a,b] is not open or closed in C.

DEFINITION 3.4. Let C' be a continuum, let A be a totally disconnected
closed subset of C and let a,b € A. We say that (a,b) is an admissible pair
in C' with respect to A, if a # b and if

1. either |A] =2

2. or |A] > 2 and there is a subcontinuum K of C which is irreducible

between a and b such that

KNA={a,b}.
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FIGURE 1. K4 cla,b] that is not closed or open in C'.

We use
A(A,C) ={(a,b) € AxA | (a,b) is an admissible pair in C' with respect to A}
to denote the set of all admissible pairs in C with respect to A.

DEFINITION 3.5. Let X be a compact metric space, let A be a totally
disconnected closed subset of X and let C be the family of all connected com-
ponents of X. We define

A(A,X) = [ A(CNn A Q).
cecC

DEFINITION 3.6. Let X be a compact metric space. For each x € X, we
use C% to denote the connected component of X that contains the point x.

DEFINITION 3.7. Let C' be a non-degenerate continuum and let A be a
totally disconnected closed subset of C. We say that A takes over C if for
each © € C\ A there is a unique admissible pair (a,b) € A(A,C) such that
WS KA,C(a,b).

DEFINITION 3.8. Let C be a non-degenerate continuum and let A be a
totally disconnected closed subset of C such that A takes over C. For each
x € C\ A, we define ay, b, € A to be the points such that (a,,b,) € A(4A,C)
and

x € KAﬁc(ax, bz).

DEFINITION 3.9. Let X be a compact metric space and let A be a totally
disconnected closed subset of X. We say that A is a Markov partition for X,
if

1. for each degenerate connected component C of X, C C A.
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2. for each non-degenerate connected component C of X, |CNA| > 2 and
C N A takes over C.
3. for each non-degenerate connected component C' of X and for each
(a,b) € A(CNA,C), the set Kcna,c(a,b) is open in X.
4. for any sequence (x,,) in X \ A such that for all positive integers k and
£7
k#0 = KC;kmAYC;k (azy,bzy) # KC;EQAYC;E (az,,bz,),

it holds that if lim x, exists, then the limit of sets
n—o0

Jlim Keenna,opr (aa,,ba,,)

exists and there is ¢ € A such that

Jim Kegnna,cqn (da,,be,) = {c}-

OBSERVATION 3.10. Note that if A is a Markov partition of X, then for
each non-degenerate connected component C of X,

CNA#D

and
Cl ( U ch&c[d,b]) =C.
(a,b)eA(CNA,C)
Also, note that there may be connected components C of X such that
U Kcna,cla, b] # C;
(a,b)€EA(CNA,C)
see the following example.

EXAMPLE 3.11. Let X = [0,1] and let A = {X | n is a positive integer} U
{0}. Then C = X is the only connected component of X and

U Keonacla,b] = (0,1] # C.
(a,b)€A(CNA,C)
In Figure 2, another Markov partition of a continuum is presented.
DEFINITION 3.12. Let X be a compact metric space, let A be a Markov

partition for X, and let F : X — X be an upper semi-continuous set-valued
function. We say that F is Markov with respect to A, if

1. for each a € A, there are uniquely determined sets A, x C A(A, X)
and Aq, x C A such that
Aqx N{be€ A | there is ¢ € A such that (b,¢) € Ay x} =10

and
Fla)=AsxU |J Kognacgled).
(C,d)eAa,X
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FIGURE 2. A Markov partition of a continuum.

2. for each non-degenerate connected component C of X and for all (a,b) €
A(CNA,C), it holds that for each © € Kcna,c(a,b) there is y, € X
such that F(z) = {y.} and the function

Flkcnacap : Konacla,b) = F(Kcna,cla,b))

is a homeomorphism.
3. for each mnon-degenerate connected component C of X, and for all

(a,b) € A(CN A,C), there are sets O,N C A(A, X), such that

F(KCmA,c(a,b))Z( U ch(mA,c;;(C,d))U< U KC’g(mA,Cg([C»d)>-
(c.d)€0 (e.d)eN

4. for each non-degenerate connected component C and for each (a,b) €
A(CNA,C), the limits lim Flienac(ay(®) and lin}) FlKenn ol ()
z—a ’ z— ’

exist and
alci_rBlFchmA,c(a,b)(m)viilg)F|KcmA,c(a,b)(x) €A

5. for each non-degenerate connected component C and for each (a,b) €
A(CNA,C), let

L,= };E%F|Kcm4,c(a,b) (1’) and Ly = algig})F‘KcmA.c(a,b)(w)-
Then

-1 - \-1
lim (F|KcmA,c(a,b)) (z) = a and linll/ <F|KcmA,c(a,b)) (z) =b.
=Ly

x—Lg
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We say that F is Markov, if there is a Markov partition A for X such that F
18 Markov with respect to A.

LEMMA 3.13. Let X andY be any compact metric spaces, let F: X — X
and G :'Y — Y be Markov set-valued functions with respect to A and B,
respectively, and let 7 : X =Y be any homeomorphism such that 7(A) = B.
Then

(a,b) € A(A, X) < (7(a),7(b)) € A(B,Y).
for any a,b € A.

PROOF. Let a,b € A. Let C be the connected component of X such
that a,b € C. If |C N A| = 2, then the statement is obvious. Suppose that
|C'NA| > 2 and that (a,b) € A(A, X). Then, since 7 is a homeomorphism,

1. 7(a) # 7(b) (since a # b) and
2. for any subcontinuum K, which is irreducible between a and b such
that K N A = {a, b}, 7(K) is irreducible between 7(a) and 7(b), and
T(K)N B ={7(a),7(b)}.

Therefore, (7(a),7(b)) € A(B,Y). The proof that (a,b) € A(A,X) follows
from (7(a),7(b)) € A(B,Y) is analogous. 0

Next we introduce when two Markov set-valued functions follow the same
pattern.

DEFINITION 3.14. Let X and Y be any compact metric spaces, let F' :
X — X and G : 'Y — Y be Markov set-valued functions with respect to
A and B, respectively. We say that F and G follow the same pattern with
respect to A and B, if there is a homeomorphism 7 : X — 'Y such that

1. 7(A) = B.
2. for each non-degenerate connected component C and for all (a,b) €

A(CNAC),

T(Kcna,c(a, b)) = K- (oynp,r(c)(T(a), 7(b)).
3. for each a € A,
Fla)=A,x U U Keognacogle, d]
(c,d)eAa, x
if and only if
Glr@) =7(Ax)V |  Koopp ool r(d)].
(e, d)eAq, x

4. for each non-degenerate connected component C, for each (a,b) €

A(CNA,C), and for all OLN C ACNA,C),
F(Kcna,cl(a, b)) =
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U KC;}OA,C;(C»d))U( U ch(mA,cg([C,d))
(e,d)eO (e, d)eN

if and only if
G(Krc)nB,r(c)(T(a), (b)) =

U KC;(C)QB’C;(C) (T(C),T(d))) U ( U KC{,(C)OB}C;(C) [T(C),T(d))).
(e,d)eO (e,d)eN

5. for each L € A, for each non-degenerate connected component C and
for all (a,b) € A(CNA,C), it holds that

lim Flkcnaclay(®) =L <= yiif(la) GlK, oynp.ric) (r(a),rv) (¥) = T(L)

and

lin Fliconscten () = L= 1 Glic om0 (rta)ro () = 7(L).

6. for each L € A, for each non-degenerate connected component C and

for all (a,b) € A(CNA,C), it holds that

@@ \-1 —1
lim (F|KcmA,c(a,b)) (1‘) = a <= lim (GlKT(C)mB,T(C)(T(a)y‘r(b))) (y) = T(a)

z—L y—7(L)

and

S | —1
Py (F|KCM>C(‘1*“> @ =b=1n, (G|Kr(c)m3,7(c)(T(G)ﬂ'(b))) (y) = 7(b).

7. For any ¢ € A and for any sequence (x,) in X \ A such that for all
positive integers k and ¢,

k#l—= KC;;’“ NA,CYF (Quyy bay ) # KC';[ NA,C3f (@5 bz, ),
it holds that
Jim Keonnacp (@a,,be,) = {c} &= lim K. connp oy (T(ar,), 7(b,))
— (7o)

We say that the Markov set-valued functions F' and G follow the same pattern,
if F' and G follow the same pattern with respect to some Markov partitions A
and B.

The following theorem is our main result.

THEOREM 3.15. Let X and Y be any compact metric spaces, and let
F:X —oX and G:Y — Y be Markov set-valued functions. If F and G
follow the same pattern, then the inverse limits im (X, F) and im (Y, G) are

homeomorphic.
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PrOOF. Using mathematical induction, we construct the following com-
mutative diagram — Diagram (3.2). Then, we use Lemma 2.18 to show that
the inverse limits lim (X, F') and lim (Y, G) are homeomorphic.

(3.2)
F F F F F F

X o X o X O e O X O X o
hl h2 hg hn h7L+1
Y o G Y o G Y o G e G Y o G Y o G

Let A be a Markov partition of X and let B be a Markov partition of
Y such that F' and G follow the same pattern with respect to A and B. For
each x € X \ 4, let ay, by, € C% N A be such that
S KC)I(HA,C}I( (aCE7 bz)
Also, for each y € Y\ B, let ¢, d,, € C§- N B be such that

Y € Koynp,oy (cy. dy).
Let 7 : X — Y be a homeomorphism satisfying Definition 3.14 and let hy :
X — Y be defined by hy = 7. Let n be a positive integer and suppose that
for each k € {1,2,3,...,n}, hy : X = Y is a homeomorphism such that

1. for each a € A, hy(a) = 7(a) for each k € {1,2,3,...,n},
2. for each connected component C and for all (a,b) € A(CNA,C),
hi(Kcna,cla, b)) = 7(Kcna,cla, b)),
for each k € {1,2,3,...,n}, and
3. hxo F=Gohyy foreach k € {1,2,3,...,n—1}.
Then we define the function h,+; : X — Y by
® hyi1(z) = 7(z) for each z € A, and

-1
b hTH’l(I) = (G‘KC;(ax)mB,C;(am)(T(az)f"(bz))) (hn(F|KC§<’EmA,C‘}1{I (az,bz)(ll)))
for each z € X \ A.
Note that by 2. of Definition 3.12, G|x
C

is a homeo-
T(aa) o oT(a0) (T(az),7(b2))

morphism, therefore, its inverse does exist. Also, note that since A and X\ A
are disjoint sets and h,11 is a single valued function on each of these sets, it
is a well-defined function. Let ¢ : Y — X be defined by

e o(y) =7 1(y) for each y € B, and )
. oy) = (F|KC;1(%)MC;W<Tﬂ<cy>,ﬂ<dy») (h Gl oo vt ()

for cach y e Y\ B
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To show that h, 1 is bijective, we show that ¢ = thlrl We treat the following
possible cases.

1. Let x € A.Then

p(hns1(2)) = o(r(x)) = 771 (7(2)) = =.
2. Let y € B. Then
hnt1(2(y) = b (17 () = 7(77H () =
3. Let z € X \ A. Also, let
Gl

T(Gr)nB C

(o (7(a2),7(02)) = Gz A0 Fli oy ) o (a0 b0) = Fo-
Then

Phns1(2) = Fr ' (0 (Go(GF (ha(Fa(2))))) = .
4. Let y € Y \ B. Also, let

ClK oy p oy (cy) = Gy and l*ﬁch;fl(cy)m gy T (ey) T dy)) = Fy
Then
hni1(p(y)) = Gyt (ha (Fy (Fy (R MGy (9))))) = -

Therefore, h, 41 is bijective.
Next, we prove that h,11 is continuous. Let z € X be any point. We

show that h,; is continuous at the point x. We treat the following possible
cases.

1. x € X\ A. Let (z,,,) be a sequence in X such that hm Zm = x. Since

Kgaena,coe (az,by) is open in X (by 3. of Deﬁnltlon 3.9) it follows

that there is a positive integer mg such that for each positive integer
m’

m > my = Ty, € KC';‘TOA,C;T' (CLw, bx)
since & € Kgazng car (@, ;). Then

Jim B (2,) =
m>mg

—1
im (Glxcgam)mc;(%)(r(az)w(bz))) (P (F K oz g 00 (0 b0) (Tm))) =

—1
(Ol cgpomr o) Pl e o (@) =

hpy1()

since (G |k

continuous.

-1
C;(QI)HB,C;(GI)(T(aw)’T(bx))) °© hn ° F‘KciwmA,0;H7 (az,bs) 18
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2. z € A. Let (z,,) be a sequence in X such that lim z,, = z. For any

m—r o0
subsequence (z;,, ) of the sequence (z,,), it follows that if z; € A for
each positive integer m, then

i fg (25,) = lm7(24,) = 7(2) = hpga (2).

Next, let (z;,,) be any subsequence of the sequence (z,,) in X \ A. We
treat the following possible cases.

Case 1. Suppose that there are a connected component C' of X
and (a,b) € A(CNA,C) such that for some positive integer my it holds
that for each positive integer m

m > myg — z;,, € KCQA,C’(a7b).

Fix such C, a, b and mg. It follows that x € {a,b}. Without any loss
of generality suppose that + = a. Let L € A such that
aljil}}lF|KCﬁA,C(a7b) (I) = L.

It follows from 4. of Definition 3.12 that this limit does exist. Then,
using 4. and 5. of Definition 3.12, and 5. and 6. of Definition 3.14, we
get

Hm hpg (25,) =
m>mo

-1
,,}il)noc (G|KT<C)mB,T<C)(T(a)ﬂ(b))) (hn(F K cnac(ab) (Tin))) =
7() = hns1(a) = hoss (@),

Case 2. Suppose that it is not true that there are a connected com-
ponent C of X and (a,b) € A(C' N A, C) such that for some positive
integer mg it holds that for each positive integer m

m>my = z;, € Kcna,cl(a,b).

Without any loss of generality suppose that for all positive integers ¢
and k,

E 7é k' —— ch(wil ﬁA,Cj(wie (amw ) ble) 7é KC;L(L”“ ﬂA,C;:wik (azik , bzzk )
For each positive integer m, let
Km = KC;Z’im 0A7C;Ifm (a$im ) bl‘im)

and

Hm =K (Cj:"im )ﬁB,T(Cj(wim )(T(a’xim )7 T(bzim ))’

T

and let NV,,, O,, € A(A, X), such that

F(Km):( U Kc;mA,C;(C,d))U( U Kc;nA,cg([C,d)),
(e,d)€O,, (c,d)ENm,
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F(Km) is equal to the union above by 3. of Definition 3.12. Note that
for each positive integer m,

G(Hm) :( . dg@ KC;(C)OB,C;(C) (T(C): T(d)))

u( U KC;<E>QB7C;(C)[T(c),f(d)))
(c,d)ENm,

by 4. of Definition 3.14. Therefore,

hn+1(xim):
()~ (Flo 3,00 € (@it ) (ha(F (o)) =
(05" (U Fesonesie) o U oxoncso))) -
(¢,d)€O, (c,d)ENm
(GTm) " (U malegnneg ed)) (U halKegnacgled))) =
(c,d)€Om, (c,d)EN
(@) ((( U rKegrnegled))u( U r(Eegnacgled))) =
(¢,d)€EOM (c,d)ENm
(W)_l(( U KC;@)QBE;M(T(C)aT(d)))
(c,d)EO,
U( U Kegonpezolr@,r@d)) =
(c,d)EN M,

Tm)_l(G(Hm)) —H,

(@

It follows from 4. of Definition 3.9 that lim K,, = {z}. Thus,
m—0o0

lim H,, = {r(x)} by 7. of Definition 3.14. Therefore,

m— 00

Jim Ay (i) = 7(2) = hnga (2).

Since h,41 is a continuous bijection from a compact metric space to a metric
space, it follows that it is a homeomorphism.

Obviously, for each a € A, hpy1(a) = 7(a). Next, let C be a connected
component of X and let (a,b) € A(C N A,C). Since h,11 and 7 are both
homeomorphisms such that for each a € A, h,,41(a) = 7(a) it follows that

hn1(Kcna,cla, b)) = 7(Kcna,cla, b]).

Finally, we show that h, o FF = G o h,y1. Let x € X. We treat the following
possible cases.
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1. x € A. Then by 1. of Definition 3.12,
Fz)=A,xU  |J Kegnacsled.
(c,d)eAs x

Then by 3. of Definition 3.14,

Gr@)=1(Aex)U |  Egropnperalr(e),7(d)] = 7(F(x)).
(e,d)eAL, x
It follows that
(G 0 hny1)(@) = G(hny1(2)) = G(7(x)) = 7(F(2))

and
(hn o F)(z) = hy(F(x)) = hn(Aoc,X U U KC;DA,C; [c,d]) =
(c,d)eAs x
hn(Am,X) U U hn(KC’%ﬂA,Cg{ [C7 d]) =
(c,d)eA
T(Aex)U | 7(Kegnacsled]) =
(c,d)eA
(A x)U Keronp,opelr(e), 7(d)] = 7(F()).
(c,d)eA
Therefore,

(G o hpi1)(2) = (hp o F)(2).
2. x € X\ A. Then

huia(@) = (Gl

and

-1
() (r(an,r(bm) (P Fl K gas 4 0t (a0 b0) ()

7(az)
cy nB,Cy

(G o hpi1)(x) = (hn o F)(x)
follows.
We have constructed the following commutative diagram — Diagram (3.3).

(3.3)
X o F X o F X o ) cee O ) X o F X o F
h1 ho h3 ha, hn+1

Y o Y o Y o G < O G Y o G Y o G

By Lemma 2.18, the inverse limits lim (X, F') and lim (Y, G) are homeomor-

o—

phic. 0
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