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1 Introduction

Let Q(
√
d) be a real quadratic field. Following [Mau] we define a compact

representation of an algebraic number β ∈ Q(
√
d) to be

β =
k∏
j=1

(
αj
dj

)2k−j

, (1)

where dj ∈ Z, αj = (aj+bj
√
d)

2 ∈ Q(
√
d), aj , bj ∈ Z, j = 1, . . . , k. Bounds on

k, α and dj are given in [Mau], and all depend polynomially on log d. Com-
pact representations are used to store the fundamental unit of the quadratic
order OK . The reason for doing this is that, as is shown in [Lag], there is
an infinite set of quadratic orders, such that the binary length of the fun-
damental unit is exponential in log d. This makes it impossible to create
an algorithm for solving the Pell equation with complexity less than expo-
nential. Compact representations are polynomial in log d, and allow faster
algorithms for solving the Pell equation.

This representation is an extension of a compact representation as de-
fined in [BTW] from algebraic integers to all elements of Q∗(

√
d). It is often

useful to do modular arithmetic on compact representations, for example
for determening the solvability of certain Diophantine equations, as seen in
[JW]. We present an algorithm for computing the value of a quadratic inte-
ger represented by a compact representation as defined in [Mau]. In [BTW]
and [JW] there are algorithms for doing modular arithmetic on compact
representations as defined in [BTW], but to our knowledge there are no
algorithms for doing modular arithmetic on compact representations as de-
fined in [Mau]. The main problem is that the [BTW] representation requires
that the partial products

γj = αj

j−1∏
i=1

(
αi
di

)2j−i

(2)

be quadratic integers. Using Maurer’s methods, we obtain representations
that do not satisfy this requirement. On such a representation, using algo-
rithms from [BTW] and [JW] is not possible.
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It is expected that the number of integer points on an elliptic curve
E in Weierstrass form depends on the rank E(Q). More precisely, Lang
conjectured that it grows exponentially with the rank (see [JSil]). Since not
much is known on the distribution of ranks in parametric families of elliptic
curves, this makes it hard to expect to find (or even predict) all integer
points on a family of elliptic curves in Weierstrass form. However, for some
families of elliptic curves not in Weierstarss form, there are results which
give evidence that the number of integer points might not depend on rank,
and that actually the number of points can be the same for all curves in a
family. Several such results involve so called D(n)-m-tuples.
A set of positive integers {a1, a2, . . . , am} is called a Diophantine D(n) m-
tuple if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. Using our
algorithm we shall improve the following results. In [Fuj1], the following
theorem is proved:

Theorem 1. Let {1, 2, c} be a D(−1)-triple such that c = ck = 1
8((1 +√

2)4k + (1−
√

2)4k + 6), and E the elliptic curve given by

Ek : y2 = (x+ 1)(2x+ 1)(cx+ 1). (3)

Assume that c− 2 is square-free and that the rank of E over Q equals two.
Then, the integer points on E are given by

(x, y) ∈ {(−1, 0), (0,±1), (
c− 3

2
,±s(c−2)), (s(3s−2t),±(t−s)(2s−t)(st−c)),

(s(3s+ 2t),±(t+ s)(2s+ t)(st+ c))}, (4)

where s =
√
c− 1 and t =

√
2c− 1.

It is shown in [Fuj1] that if {1, 2, c} is a D(−1)-triple, then c = ck,
where k is a positive integer. It should be mentioned that the assump-
tion that rk(Ek(Q)) = 2 does not always hold. One example of this is
that rk(E4(Q)) = 4. Also c − 2 does not always have to be square-free.
Examples of this are c26 − 2 and c40 − 2. Fujita showed that Theorem 1
holds without the assumptions on the rank and c − 2 for k ≤ 40, except
for k ∈ {4, 7, 8, 11, 12, 15, 20, 24, 25, 27, 30, 36, 39}. We will exclude the cases
k = 4, 7, 8, 11, 12, 15, 20, 25, 27, 30 and under the Extended Riemann Hy-
pothesis, also the case k = 39.

In [Fuj2] it is proved

Theorem 2. Let k ≥ 1 be an integer, and Ek the elliptic curve given by

Ek : y2 = (F2k+1 + 1)(F2k+3x+ 1)(F2k+5x+ 1). (5)

If the rank of Ek over Q equals one, then the integer points on Ek are given
by

(x, y) ∈ {(0,±1), (4F2k+2F2k+3F2k+4,
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±(2F2k+2F2k+3 + 1)(2F 2
2k+3 − 1)(2F2k+3F2k+4 − 1))}. (6)

Note that {F2k+1, F2k+3, F2k+5} is a D(−1)-triple.

As in Theorem 1, in Theorem 2 the assumption rk(Ek(Q)) = 1 does not
always hold. For example, rk(Ek(Q)) 6= 1 for k = 2, 3, 4, 5, 7, 9, 10. Fujita
showed that Theorem 2 holds without the assumption on the rank of Ek
for f ≤ k ≤ 50, except for the cases k ∈ {9, 20, 24, 25, 32, 43}. We shall
eliminate the cases k = 9, 20, 24, 25 and under the Extended Riemann Hy-
pothesis, also the case k = 43.

In [Duj3] it is proved

Theorem 3. Let Ek be the elliptic curve given by

Ek : y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1). (7)

If the rank of Ek over Q equals one or 3 ≤ k ≤ 1000, then all integer points
on Ek are given by

(x, y) ∈ {(0,±1), (16k3 − 4k,±(128k6 − 112k4 + 20k2 − 1))}. (8)

We shall extend this result to 3 ≤ k ≤ 5000.

Note that {k − 1, k + 1, 4k} is a D(1)-triple. In [Duj1] it was proven
that this triple extends uniquely to a Diophantine quadruple {k − 1, k +
1, 4k, 16k3 − 4k}. Note also that in [Duj3] it was shown that the statement
of Theorem 3 is valid for some subfamilies with ranks 2 and 3, which makes
the conjecture that for all k ≥ 3 all integer points on (7) are given by (8)
plausible.

In [Duj4] it is proved

Theorem 4. Let Ek be the elliptic curve given by

Ek : y2 = (F2k + 1)(F2k+2x+ 1)(F2k+4x+ 1). (9)

If the rank of Ek over Q equals one or 2 ≤ k ≤ 50, then all integer points
on Ek are given by

(x, y) ∈ {(0,±1), (4F2k+1F2k+2F2k+3,

±(2F2k+1F2k+2 − 1)(2F 2
2k+2 + 1)(2F2k+2F2k+3 + 1))} (10)

We shall extend this result to 2 ≤ k ≤ 200.
Note that {F2k, F2k+2, F2k+4} is a D(1)-triple. In [Duj2] it was proven
that this triple extends uniquely to a Diophantine quadruple {F2k, F2k+2,
F2k+4, 4Fk+1F2k+2F2k+3}.
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2 An algorithm for modular arithmetic on compact representations

We develop an algorithm, which for a given compact representation (1) of

a quadratic integer x+y
√

∆
2 =

∏k
j=1

(
αj

dj

)2k−j

, where x+y
√

∆
2 is the standard

representation of the given quadratic integer, and a positive integer n, com-
putes the values x and y modulo n. Our algorithm is a modification of the
algorithm described in Theorem 5.7 in [BTW].

Algorithm 1

mdl:=n·2k−1
∏k
i=1 d

2
k

a[1]:=c1 (mod mdl), b[1]:=f1 (mod mdl), rem:= 1
For (i=2,i<k−1,++i)
{
xtmp:=(a[i−1]2+b[i−1]2∆) ai + 2∆a[i−1]b[i−1]bi (mod mdl)
ytmp:=(a[i−1]2+b[i−1]2∆) bi + 2a[i−1]b[i−1]ai (mod mdl)
rem:=rem2

divisor:=gcd(4d2
i−1,xtmp,ytmp)

rem:=
4d2

i−1·rem

divisor

mdl:= mdl
gcd(mdl, divisor)

a[i]:= xtmp
divisor (mod mdl)

b[i]:= ytmp
divisor (mod mdl)

reduction:= rem
gcd(rem, mdl)

while (gcd(reduction,mdl)> 1)
reduction= reduction

gcd(reduction,mdl)
If reduction 6= 1

{
mult:=reduction−1 (mod mdl)
rem:= rem

reduction
a[i]:=a[i]· mult (mod mdl)
b[i]:=b[i]· mult (mod mdl)
}
}
This algorithm would be exactly the same algorithm as the one from The-
orem 5.7 in [BTW] if all the γj , as defined in (2), are quadratic integers.
Algorithm 1 takes polynomial time. As in the algorithm from [BTW], we
make use of the recursive equation

4d2
i−1γi = γ2

i−1αi. (11)

If all the γj are not quadratic integers, then 4d2
i−1 does not divide the right

hand side in (11), so we must remember the part that does not divide (rem
in the algorithm). Also, it may occur that a factor of n is canceled, so we
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actually get x (mod n′) and y (mod n′), where n′ divides n. To correct this
we have Algorithm 2:

Algorithm 2

Algorithm 2 receives as input a compact representation of a quadratic in-
teger P , and a positive integer n. It also uses a version of Algorithm
1, alg1(P, n, k), which receives P and n, and stores the value of n′ in k.
Also this version prints the obtained values of x (mod n′) and y (mod n′) if
n′ = n. Algorithm 2 actually finds a multiple of n, n′′ such that alg1(P, n′′, k)
returns P (mod n), as wanted.

alg1(P,n,k)
pot:=20
While (k<n)
{
fix:=(n

k )pot

ko:=k
fix:=fix· n
fixo:=fix alg1(P,fix,k)
if(fixo==fix and ko==k) pot:=pot+20

}
If (n<k) alg1(P, fix·n

k ,k)

Algorithm 2 also runs in polynomial time.

3 The solvability of ax2 − by2 = c

The main method of improving Theorems 1-4 is going to be, for given
a, b, c ∈ Z, proving the insolubility of a given Diophantine equation of the
type

ax2 − by2 = c, (12)

where a, b, c ∈ Z, one of a, b is greater than one, gcd(a, b) = gcd(ab, c) = 1
and ab is not a perfect square. For doing this when a, b, c are large, we will
need a fast way to solve the Pell equation. Let Rd = log ηd, where ηd is the
fundamental unit of the real quadratic field Q(

√
d). It is shown in [BTW]

that given Rd, there is a polynomial time algorithm for computing a com-
pact representation of ε(d) = x1 +y1

√
d, where x1 +y1

√
d is the fundamental

solution of the Pell equation x2− dy2 = 1. We use the well-known fact that
ε(d) = ηvd , where v = 1, 2, 3 or 6. It is always possible to determine the exact
value of v, as shown in [JW]. Maurer in [Mau] explicitly shows methods for
computing the compact representation. We will use Maurer’s methods.
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The most time consuming part of solving the Pell equation is computing Rd.
We will use two methods for doing this. Both these methods also compute
the class group.
The first is the Babystep-Giantstep method of Shanks described in [Sha].
This method has running time complexity of O(d

1
4 ), and the result is uncon-

ditionally correct. We used the implementation of this algorithm in LiDIA,
the quadratic order::regulator shanks() function.
The second method is the subexponential algorithm first described in [Buc]
that gives a multiple of the regulator, mRd where m = 1 under the Ex-
tended Riemann Hypothesis. As explained in [JW], we can unconditionally
compute an odd multiple of the regulator. We used the implementation of
this algorithm in PARI, the quadclassunit function.
All of our programs were written in C++, using the LiDIA library [LiD].
First we examine the case when c = 1, 2, unless mentioned otherwise. Using
the subexponential algorithm we unconditionally compute an odd multiple
of the regulator, and then compute a power product that is an odd power
of the fundamental solution of the Pell equation.

Theorem 5. Let m be an odd integer. If c = 1, 2, the equation (12) has a
solution in integers if and only if

(
2a
c

)|vm + 1 and (
2b
c

)|vm − 1,

where vm + um
√
ab = ε(ab)m.

Proof :
See [JW], Theorem 4.2.

Now using Algorithm 2 we can compute the value of vm, and by Theorem
5 we get an answer to the solvability of (12). We will always use this method
if c = 1, 2, unless said otherwise. This method was used by the authors of
[JW] to eliminate the exceptional cases and extend the results from [DP].
If c 6= 1, 2, suppose that ax2 − by2 = c has a solution. Then, x2 − aby2 = ac
has a solution, i.e. there exists x+y

√
ab ∈ OQ(

√
ab), such that N(x+y

√
ab) =

ac. Then there exists a principal ideal (x + y
√
ab) that has norm ac. It

follows, that to show that (12) has no solution, it is sufficient to show that
there are no principal ideals of norm ac in OQ(

√
ab). For checking whether an

ideal is principal we again need to compute the regulator and class group.
So, we can, as explained in [ASil], find all ideals in OQ(

√
ab) of norm ac,

then, after computing Rab, check whether they are principal. We do this
with the function quadratic ideal::is principal() from LiDIA that is
an implementation of the methods described in [Jac]. If none are, (12) is
insoluble. We have to test at most 2ω(|c|) ideals. If a, b are small enough
(ab < 1035) we use the algorithm of Shanks to compute the regulator. If we
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get that (12) is insoluble and Rab was computed by the algorithm of Shanks,
this is unconditional.

4 Improvements of Theorem 1

As shown in [Fuj1], proving that (4) are the only integer points on (3) is
equivalent to proving that the following system has no integer solutions:

d2x
2
1 − d1x

2
2 = 1,

d3x
2
1 − d1x

2
3 = j2, (13)

d3x
2
2 − d2x

2
3 = j1,

where c = ck, d1 = D1, d2 = 2D2, d3 = c, j1 = c−2
D1
, j2 = c−1

D2
, and D1 and

D2 are square-free integers dividing c−2 and c−1 respectively. This system
is obtained by eliminating x from the system (4.18) in [Fuj1].
By examining these equations modulo various primes, it can be shown that
all except the following cases can be eliminated:

k (D1, D2)
4 (407, 17)
7 (3, 2), (2175243841, 1)
8 (470831, 1)
11 (248375433167, 2026573)
12 (543339719, 1153), (543339719, 2306)
15 (264489, 5945), (1343597439, 5945), (2300867879, 1),

(43756594946086091, 11890)
20 (1, 1330561), (c20 − 2, 20213),

(c20 − 2, 2661122), (c20 − 2, 26894629493)
24 (1, 5654885), (c24 − 2, 7921633),

(c24 − 2, 11309770), (c24 − 2, 1345510645)
25 (1, 2433376321462076761), (c25 − 2, 4866752642924153522)
27 (1, 985), (c27 − 2, 1970)
30 (1, 93521), (1, 161669), (1, 15119446549)

(c30− 2, 187042), (c30 − 2, 323338), (c30 − 2, 30238893098)
36 (1283229546787304717998403161, 1409409905),

(1283229546787304717998403159, 2818819810)
39 (254072969141257218722003304911, 1791421633)

All these systems are locally solvable. The reason Fujita could not elim-
inate these systems is because the fundamental solutions of the attached
Pell equations are too large. We overcome this problem by using compact
representations. Using the methods described in chapter 3, we are able to
eliminate some of the cases.
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k = 4

We get that the first and third equation of (13) have solutions, but the
second equation,

166465x2
1 − 407x2

3 = 9792

is not solvable. This can be easily proven using (more powerful) methods
from chapter 3, but we will demonstrate a nice elementary way of solving the
Diophantine equation ax2 − by2 = c. Suppose ax2 − by2 = c has a solution.
We can suppose without loss of generality that c > 0 (otherwise we multiply
the equation with −1).

ax2−by2 = c =⇒ (
√
ax+
√
by)(
√
ax−
√
by) = c =⇒ (

√
ax−
√
by) =

c
√
ax+

√
by

=⇒ |x
y
−
√
b

a
| = c

y
√
a(
√
ax+

√
by)

.

Because c > 0, it follows that
√
ax >

√
by. Combining this we get

|x
y
−
√
b

a
| < c

2y2
√
ab
. (14)

Theorem 6. Let α be a real number and c a positive real number. If a
rational number p

q satisfies the inequality

|α− p

q
| < c

q2
,

then
p

q
=
rpn ± spn−1

rqn ± sqn−1
,

for some non negative integers n, r, s, such that rs < 2c, where pn

qn
is the

n-th convergent in the continued fraction of α.

Proof:
See [Duj5], Theorem 1.

Using this theorem and computing 9792
2
√

407(
√

166465+
√

407)
≈ 0.56679, it

follows that rs < 1.133, i.e for solutions of our equation, we only have to
check the following possibilities: p

q = pn

qn
, p
q = pn+1+pn

qn+1+qn
or p

q = pn+1−pn

qn+1−qn ,

where pn

qn
is the n-th convergent in the expansion of

√
407

166465 to a continued
fraction.
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Lemma 1. Let αβ be a positive integer which is not a perfect square, r, u
integers and let pn

qn
denote the n-th convergent of the continued fraction ex-

pansion of
√

α
β =

√
αβ
β , where a, b, d are integers. Let the sequences (sn) and

(tn) be defined by s0 = 0, t0 = β, d = αβ and

an = bsn +
√
d

tn
c, sn+1 = antn − sn, tn+1 =

d− s2
n+1

tn
. (15)

Then

α(rqn+1+uqn)2−β(rpn+1+upn)2 = (−1)n(u2tn+1+2rusn+2−r2tn+2) (16)

Proof:
See [DB], Lemma 2.

Since the values sn and tn from Lemma 1 are periodic and start repeating
after half of a period, it follows that the values of ap2 − bq2 start repeating
after half a period. Thus we only have to check half of the period of the

expansion of
√

407
166465 to a continued fraction. The length of the period is

240. After checking that 166465p2 − 407q2 6= 9792 for all p, q as above, we
conclude that 166465x2

1 − 407x2
3 = 9792 has no solutions. We will also use

this method for k = 7, 8.
We can also examine the minimal value that ax2 − by2 can obtain. If

this is larger than c, the equation is not solvable. Let α = [a0, a1, . . .], αi =
[ai, ai+1, . . .] and βi = qi−2

qi−1
. We see that

|α− pn
qn
| = 1

q2
n(αn+1 + βn+1)

,

and αn ∈< an, an + 1 >, βn ∈< 0, 1 >, from which it follows that

1
y2(an+1 + 2)

< |x
y
−
√
b

a
| < c

2y2
√
ab
,

and furthermore

c >
2
√
ab

an + 2
,

where an is the largest value that appears in the continued fraction expansion

of
√

b
a . Since we only have to remember the largest an and don’t have to

compute pn and qn this method is much faster and can be used on equations
with larger coefficients.

We will use this method for the cases k = 11, 12 and some of the cases
for k = 15.
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k = 7

For the system (D1, D2) = (3, 2) we get, that the third equation, 261029261x2
2−

x2
3 = 2175243841 is not solvable. For the system (D1, D2) = (2175243841, 1),

we get that the first equation, 2x2
1 − 2175243841x2

3 = 1, has no solutions.

k = 8

We obtain that the first equation, 2x2
1 − 470831x2

2 = 1 has no solutions.

k = 11

We obtain that the first equation, 4053146x2
1 − 248375433167x2

2 = 1 has
no solutions. Using the method mentioned above we get that |4053146x2

1 −
248375433167x2

2| has to be at least 10. This is the case with the largest
coefficients for which we used the continued fraction method. The length of
the period was more than 124000000 and the largest an that appeared was
222965633.

k = 12

For (D1, D2) = (543339719, 1153), (543339719, 2306), we obtain that for
both systems the first equation is not solvable. These equations are 1153x2

1−
543339719x2

2 = 1, and 2306x2
1 − 543339719x2

2 = 1, respectively.

k = 15

For all the cases, the first equation is unsolvable. The equations are:

(264489, 5945) : 11890x2
1 − 264489x2

2 = 1,

(1343597439, 5945) : 11890x2
1 − 1343597439x2

2 = 1,

(2300867879, 1) : 2x2
1 − 2300867879x2

2 = 1,

(43756594946086091, 11890) : 5945x2
1 − 43756594946086091x2

2 = 1.

We also note that the last equation is the first one we were not able to
eliminate using the continued fraction method described for k = 4. Here we
were forced to use the more powerful methods from section 3.

k = 20

For the case (D1, D2) = (1, 1330561) we will demonstrate another method
to prove the insolubility of the second equation

523558048235232333173006827585x2
1 − x2

3 = 393486693383642187898944.

We compute the regulator R = 34.90836989050174. From ε(d) = η2 = e2R

it follows that u ≈ v
√
d ≈

e2R

2 .

10



Theorem 7. Let u+ v
√
d be the fundamental solution of the equation x2−

dy2 = 1. Then for every fundamental solution a + b
√
d of the equation

x2 − dy2 = N the following inequalities hold:

0 ≤ b ≤ v
√
N√

2(u+ ε)
,

|a| ≤
√

1
2

(u+ ε)|N |,

where ε = sign(N).

Proof:
See [Nag2], Theorems 108 and 108a.

Using this theorem we obtain a bound on the possible solutions x3 <
641892709406285410143744897, which is still too large to check if we run
through all the numbers.
We now note that

523558048235232333173006827585 = 5 · 389 · 4605197 · 1746860020068409.

If the equation is soluble, then

x2
3 ≡ −393486693383642187898944 ≡ 1312874810 (mod 1746860020068409),

from which we obtain

x3 ≡ ±696660282513640 (mod 1746860020068409).

Likewise,
x2

3 ≡ 4204250 (mod 4605197),

x3 ≡ ±3171874 (mod 4605197).

Using the Chinese remainder theorem, we get

x3 ≡ 1661420046287125561041, 3112159696733073182126,

4932474827105903739447 or 6383214477551851360532

(mod 8044634523838976921573).

So we only have to check x3 satisfying the above congruences and x3 <
641892709406285410143744897. We get that none are solutions to the start-
ing equation. Note that this method can be used effectively only when the
regulator is small enough. For the remaining three cases, we get that the
equations

(c20 − 2, 20213) : 523558048235232333173006827585x2
2 − 40426x2

3 = 1,

(c20 − 2, 2661122) : 1330561x2
1 − 523558048235232333173006827583x2

2 = 1,

(c20−2, 26894629493) : 523558048235232333173006827585x2
2−53789258986x2

3 = 1,

are insoluble.
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k = 24

For the first case (D1, D2) = (1, 5654885), we get that the second equation

4125618832231603818503842513202329x2
1−x2

3 = 12329678695647863708137647360

is not solvable. For the cases (c24 − 2, 7921633) the first equation,

15843266x2
1 − 697229582647141045327149384731193599x2

2 = 1,

is not solvable. In the case (c24 − 2, 1345510645), the third equation is not
solvable,

4125618832231603818503842513202329x2
2 − 2691021290x2

3 = 1.

All these results were obtains by methods from section 3.

k = 25

In the case (c25 − 2, 4866752642924153522), the first equation

23685281287409233354468269980225004485x2
2−2433376321462076761x2

3 = 1,

has no solution.
In the case (1, 2433376321462076761) we get that all three equations have
solutions. We examine the equation 4866752642924153522x2

1 − x2
2 = 1, and

compute a compact representation of the fundamental solution u + v
√
d.

Using Algorithm 2, we test whether u and v are divisible by primes smaller
than 100000000. We obtain that u is divisible by 127. In this case we again
first used the subexponential algorithm to compute the regulator. We get
R = 43.7221057. Seeing that the regulator is small, we recompute it using
the algorithm of Shanks. This makes the result unconditionally correct.

Theorem 8. Let a > 1, b > 0 be square-free positive integers. If (x1, y1)
is the minimal solution in positive integers of the equation

ax2 − by2 = 1,

then, all solutions of this equation in positive integers are of the form

x
√
a+ y

√
b = (x1

√
a+ y1

√
b)n,

where n is a odd positive integer. Furthermore, x1|x and y1|y.

Proof:
See [Nag1], Theorem 11.1

From the above theorem we conclude that 127 divides x2. Using this,
from the first and third equations of the system (13), we get x2

1 ≡ 107
(mod 127), x2

3 ≡ 88 (mod 127). Then the second equation implies 42 ≡ 38
(mod 127), contradiction. Hence, the system is unsolvable.
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k = 27

For the case (1, 985), the first and third equations are solvable, so we
are forced to examine the second equation. We first compute the regu-
lator with the subexponential algorithm, since the d is large and we ex-
pect the algorithm of Shanks to be too slow in this case. We get R =
47.24760010877535070, a very small regulator. Seeing this, we redo the
computation using Shanks’ algorithm, and obtain the same result in less
than a second. We now obtain that the second equation,

27332794081147661728869728748079019596901x2
1 − x2

3 =

27749029524007778404943887053887329540,

has no solutions. Since we used the algorithm of Shanks, the result is un-
conditional.
In the second case, (D1, D2) = (c27 − 2, 1970), the third equation,

27332794081147661728869728748079019596901x2
2 − 985x2

1 = 1,

has no solutions.

k = 30

In the cases (D1, D2) = (1, 93521), (1, 161669), (1, 15119446549) the second
equation is unsolvable. Since the coefficients on the left side are the same for
all three equations, all three cases have the same attached quadratic field.
The regulator of that quadratic field is R = 52.53584, so we can compute
it with the algorithm of Shanks implying the unconditional unsolvability of
these three cases. The equations are

1071500192871921052448010061055044341506490001x2
1 − x2

3 =

11457321808705221848012853381112737690000,

1071500192871921052448010061055044341506490001x2
1 − x2

3 =

6627740586457026717849495333397524210000,

1071500192871921052448010061055044341506490001x2
1 − x2

3 =

70869008954748417123956066909010000,

respectively.
In the cases (c30 − 2, 187042), (c30 − 2, 323338), (c30 − 2, 30238893098) the
third equation is unsolvable. The equations are

27332794081147661728869728748079019596901x2
2 − 985x2

3 = 1,

1071500192871921052448010061055044341506490001x2
2 − 93521x2

3 = 1,

1071500192871921052448010061055044341506490001x2
2−15119446549x2

3 = 1,

respectively.

13



k = 36

In the case (D1, D2) = (1283229546787304717998403161, 1409409905) the
first equation,

2818819810x2
1 − 1283229546787304717998403161x2

2 = 1,

is not solvable. We prove this using methods from section 3.

k = 39

The first equation is solvable, so we examine the third equation. The coef-
ficients are too large to use the algorithm of Shanks, so we are forced to use
the subexponential algorithm. We get

R = 5104775786742513766375293263.2217080210

after ten days of computation on a Intel Xeon 2.66 GHz. We obtain that
the equation

381970849989670076489450487891525660225286704502736272829x2
2−

3582843266x2
3 = 254072969141257218722003304909

is unsolvable. Since the right hand side is not 1 or 2 and we used the subex-
ponential algorithm, the correctness of this result depends on the truth of
the Extended Riemann Hypothesis.
Remaining cases
For the system k = 36, (1283229546787304717998403159, 2818819810) we
get that the first and third equation are solvable, while for the second equa-
tion the coefficients are too large for the regulator to be computed, even with
the subexponential algorithm. For the system k = 24, (c24 − 2, 11309770)
the first and third equation are solvable, while for the second the coefficients
are too large for the regulator to be computed.

5 Improvements of Theorem 2

As in Theorem 2, it can be easily shown that to show that (6) are all integer
points on (5) if the following system has no solutions:

d2x
2
1 − d1x

2
2 = j3,

d3x
2
1 − d1x

2
3 = j2, (17)

d3x
2
2 − d2x

2
3 = j1,

where a = F2k+1, b = F2k+3, c = F2k+5, d1 = aD1, d2 = bD2, d3 =
cD3, j1 = c−b

D1
, j2 = c−a

D2
, j3 = b−a

D3
, while D1, D2 and D3 are square-free

integers dividing c− b, c− a and b− a respectively.
Examining the system modulo various primes, we are able to eliminate all
but the following cases:
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k (D1, D2, D3)
9 (89, 29, 2255)
20 (1174889, 144481, 5473)
24 (1563, 2, 503450761)
25 (98209, 1, 47140601)
32 (303955413, 4021, 1762289)
43 (3932105689, 22235502640988369, 153088726119)

Using methods from section 3, we prove that the following equations are
unsolvable

k = 9, 64621535x2
1 − 372109x2

3 = 844

k = 20, 6211325049410x2
1 − 194538286279349x2

3 = 6709,

k = 24, 40730022148x2
1 − 12158173822587x2

2 = 25,

k = 25, 53316291173x2
1 − 2000027372566466x2

2 = 699,

k = 43, 713400599237553863213884440771x2
2−2673405776262313785746935762x2

3

= 732449080.

The case k = 9 can be eliminated using elementary methods, without using
compact representations. For the cases k = 20, 24, 25, the regulators were
computed using the algorithm of Shanks, while for k = 43 we had to use the
subexponential algorithm, so the result is conditional on the truth of the
Extended Riemann Hypothesis. The computation of this regulator lasted
26 hours. For the case k = 32 we obtain that all three equations in (17) are
solvable.

6 Improvements of Theorem 3

Here we examine, for a given k, the system

d1x
2
1 − d2x

2
2 = j1,

d3x
2
1 − d2x

2
3 = j2, (18)

d1x
2
3 − d3x

2
2 = j3,

where d1 = (k+ 1)µ2, µ2 is a square-free factor of 3k+ 1, d2 = (k−1)µ1, µ1

is a square-free factor of 3k − 1, (d3, j1, j2) = (4k, 2, 3k+1
µ2

) or (8k, 1, 3k+1
µ2

)

and j3 = j1d3−j2d1
d2

if d2 divides j1d3 − j2d1. If j1d3 − j2d1 is not divisible
by d2, we can eliminate the case. We use all the tests as in [Duj3], and in
addition add the following tests:
If p is a odd prime dividing d3j1−d1j2 and not dividing d1d2d3, (d1d3p ) = −1

and ( (d1j1p ) = −1 or (d3j2p ) = −1 ) then the system (18) is not solvable.
If p is a odd prime dividing d3j1−d2j3 and not dividing d1d2d3, (d2d3p ) = −1

15



and ( (−d3j3p ) = −1 or (−d2j1p ) = −1 ) then the system (18) is not solvable.
If p is a odd prime dividing j2d1−j3d2 and not dividing d1d2d3, (d1d2p ) = −1

and ( (−d2j2p ) = −1 or (d1j3p ) = −1 ) then the system (18) is not solvable.
The proof of these statements can be found in [JW]. Also, if p is an odd
prime dividing j2 such that ordpj2 is even, and (d3d2p ) 6= 1 and ( (−d3j3p ) 6= 1

or (−d2j1p ) 6= 1 ) then the system (18) is not solvable. If p is an odd prime

dividing j3 such that ordpj3 is even, and (d3d1p ) 6= 1 and ( (d1j1p ) 6= 1 or

(d3j2p ) 6= 1 then the system (18) is not solvable. If a system passes all these
tests we test whether each equation has a global solution using methods
from section 3. The only systems that passed the test for 1001 ≤ k ≤ 5000
are the following two cases:

k = 3192, d1 = 30579361, d2 = 3191, d3 = 25536, j1 = 1, j2 = 1, j3 = −9575

and

k = 3836, d1 = 44160033, d2 = 141895, d3 = 15344, j1 = 1, j2 = 1, j3 = −311.

k = 3192

We examine the first equation

30579361x2
1 − 3191x2

3 = 1.

We obtain the fundamental solution of this equation a0, b0, i.e. x1

√
30579361+

x3

√
3191 = (a0

√
30579361 + b0

√
3191)n, where n is odd. We obtain that

a0 is the 3513 digit integer 12461 . . . 47471

b0 is the 3515 digit integer 21984 . . . 47440

By Theorem 8 this implies, since b0 is even and b0|x2, that x2 is even.
But then the second equation

25536x2
3 − 3191x2

2 = 1

is not solvable.

k = 3192

We examine the second equation

959a2 − 141895x2
3 = 1,

where a = 4x1. Like in the previous case we find the fundamental solution
a0

√
959 + b0

√
141895. We compute
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a0 =
3972124728871352748146248224225361253889831055731137874811947499
39623321602689392120346256970570871390845891427276129513517872,

b0 =
326549207978216061572049902148838109063570553218599839603117470148

096142282478889347992316537301393043425948230559313290158013.

We see that 103 divides b0, so 103 divides x1. From the second equation
we get x2

1 ≡ 34 (mod 103), and from the third equation we get x2
2 ≡ 68

(mod 103). But then the first equation gives 2 ≡ 1 (mod 103), a contradic-
tion.
We have proven

Theorem 9. All integer points on the elliptic curve

Ek : y2 = ((k − 1)x+ 1)((k + 1)x+ 1)(4kx+ 1)

are given by (8) for 3 ≤ k ≤ 5000.

7 Improvements of Theorem 4

For Theorem 4 we examine, for a given k, the system of equations:

d1x
2
1 − d2x

2
2 = j1,

d3x
2
1 − d2x

2
3 = j2, (19)

d1x
2
3 − d3x

2
2 = j3,

where d1 = F2k+2D2, D2 is a square-free factor of F2k+4 − F2k, d2 =
F2kD1, D1 is a square-free factor of F2k+4, d3 = F2k+4D3, D3 is a square-
free factor of F2k+1, j1 = F2k+1

D3
, j2 = F2k+4−F2k

D2
and j3 = j1d3−j2d1

d2
if d2

divides j1d3 − j2d1. If j1d3 − j2d1 is not divisible by d2, we can eliminate
the case. In fact, the vast majority of the cases was eliminated by this test.
The only case that passed all the above tests for 50 ≤ k ≤ 200 is the case

k = 67, d1 = 11825896447871834976429068427,

d2 = 4517090495650391871408712937

d3 = 3389580060344630223665064551797129030591864726456, j1 = 66759010,

j2 = 26443508352314721186469779407, j3 = −19134702400093278081449423917.

We have proven

Theorem 10. All integer points on the elliptic curve (9) are given by (10)
for 2 ≤ k ≤ 200, except maybe for k = 67.
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