Torsion group Z/2Z, rank = 20


Elkies - Klagsbrun (2020)

y2 + xy + y = x3 - x2 - 244537673336319601463803487168961769270757573821859853707x 
         + 961710182053183034546222979258806817743270682028964434238957830989898438151121499931

	Torsion points: 

O, [-69288588686111702678625616725/4, 69288588686111702678625616721/8]

	Independent points of infinite order:

P1 = [-5976635286513806621064126789, -1486518161621811752215471892311622350764326]
P2 = [595416388787490259443766591, 903504029373113768509734316584679010931354]
P3 = [2434562872293108275107029075, 617088105910990842809058933920186352787402]
P4 = [3513074027344435171140978981, 382084415613590558839076708139976548338374]
P5 = [399682145249051758133327419, 929535737737305075763667416604801178363754]
P6 = [-10714754038296881855524018251, -1533542840817584957359022971329370697480444]
P7 = [-16034220456847626275437501599, -871976826237835562350053313866844829289386]
P8 = [1185828672355214392425799131, 820608248516937017244986013572105379548074]
P9 = [-11190697582885409770718510409, -1515528657208794070421971888182751388116946]
P10 = [2634316446310680332042122261, 579484021184216876019568884495793999507014]
P11 = [64222149978369055569434725591, 15815822465644868585416444171217848754979354]
P12 = [23945425437351916471937562579, 2972551260335618106366053972465493213480034]
P13 = [251112537077876411029986504415821/72361, 7660680492845270503732516891131042427064917041476/19465109]
P14 = [13094114400583295432756346651, 69052082853368511623611930199368498525114]
P15 = [2689776334541089917424552236511, 4411303346731260129651357011579276750542331014]
P16 = [-2627014038979941829331861469, -1259358775896763343051694775385987771517806]
P17 = [13434870681765045829611551147217379/1026169, 67909287018595777234819162150437056031048512222738/1039509197]
P18 = [-2128476924703349108908527744522501/243049, -186847352402051756015896357808242938299356659058862/119823157]
P19 = [-7364938748841807757773625709, -1537278043534293249189664536251504660398646]
P20 = [785686589410787916270883192839, 696287187804791686384919800041247659097028446]

Some curves with torsion group Z/2Z and rank = 14, 15, 16, 17, 18 or 19
High rank curves with prescribed torsion Andrej Dujella home page