On the size of Diophantine m-tuples

Andrej Dujella
Department of Mathematics, University of Zagreb
Bijenička cesta 30, 10000 Zagreb, Croatia
E-mail: duje@math.hr

1 Introduction

Let n be a nonzero integer. A set of m positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property $D(n)$ if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple (with the property $D(n)$), or P_{n}-set of size m.

Diophantus found the quadruple $\{1,33,68,105\}$ with the property $D(256)$. The first Diophantine quadruple with the property $D(1)$, the set $\{1,3,8,120\}$, was found by Fermat (see [8, 9]). Baker and Davenport [3] proved that this Fermat's set cannot be extended to the Diophantine quintuple, and a famous conjecture is that there does not exist a Diophantine quintuple with the property $D(1)$. The theorem of Baker and Davenport has been recently generalized to several parametric families of quadruples $[12,14,16]$, but the conjecture is still unproved.

On the other hand, there are examples of Diophantine quintuples and sextuples like $\{1,33,105,320,18240\}$ with the property $D(256)$ [11] and $\{99,315,9920,32768,44460,19534284\}$ with the property $D(2985984)$ [19].

The purpose of this paper is to find some upper bounds for the numbers M_{n} defined by

$$
M_{n}=\sup \{|S|: S \text { has the property } D(n)\},
$$

where $|S|$ denotes the number of elements in the set S.
Considering congruences modulo 4 , it is easy to prove that $M_{4 k+2}=3$ for all integers k (see $[6,21,29])$. In [10] we proved that if $n \not \equiv 2(\bmod 4)$ and $n \notin\{-4,-3,-1,3,5,8,12,20\}$, then $M_{n} \geq 4$. Recently, we were able to prove that $M_{1} \leq 8$ (see [15]). (As we said before, the conjecture is that
$M_{1}=4$.) Since a set with the property $D(4)$ may contain at most two odd elements, this result implies $M_{4} \leq 10$.

Since the number of integer points on the elliptic curve

$$
\begin{equation*}
y^{2}=\left(a_{1} x+n\right)\left(a_{2} x+n\right)\left(a_{3} x+n\right) \tag{1}
\end{equation*}
$$

is finite, we conclude that there does not exist an infinite set with the property $D(n)$. However, bounds for the size [2] and for the number [33] of solutions of (1) depend not only on n but also on a_{1}, a_{2}, a_{3}.

On the other hand, we may consider the hyperelliptic curve

$$
\begin{equation*}
y^{2}=\left(a_{1} x+n\right)\left(a_{2} x+n\right)\left(a_{3} x+n\right)\left(a_{4} x+n\right)\left(a_{5} x+n\right) \tag{2}
\end{equation*}
$$

of genus $g=2$. Caporaso, Harris and Mazur [7] proved that the Lang conjecture on varieties of general type implies that for $g \geq 2$ the number $B(g, \mathbf{K})=\max _{C}|C(\mathbf{K})|$ is finite. Here C runs over all curves of genus g over a number field \mathbf{K}, and $C(\mathbf{K})$ denotes the set of all \mathbf{K}-rational points on C. However, even the question whether $B(2, \mathbf{Q})<\infty$ is still open. An example of Keller and Kulesz [26] shows that $B(2, \mathbf{Q}) \geq 588$ (see also [17, 34]). Since $M_{n} \leq 5+B(2, \mathbf{Q})$ (by [23] we have also $M_{n} \leq 4+B(4, \mathbf{Q})$), we see that the Lang conjecture implies that

$$
M=\sup \left\{M_{n}: n \in \mathbf{Z} \backslash\{0\}\right\}
$$

is finite.
At present we are able to prove only the weaker result that M_{n} is finite for all $n \in \mathbf{Z} \backslash\{0\}$. In the proof of this result we will try to estimate the number of "large" (greater than $|n|^{3}$), "small" (between n^{2} and $|n|^{3}$) and "very small" (less that n^{2}) elements of a set with the property $D(n)$. Let us introduce the following notation:

$$
\begin{aligned}
& A_{n}=\sup \left\{\left|S \cap\left[|n|^{3},+\infty\right\rangle\right|: S \text { has the property } D(n)\right\}, \\
& \left.B_{n}=\sup \left\{\left|S \cap\left\langle n^{2},\right| n\right|^{3}\right\rangle \mid: S \text { has the property } D(n)\right\}, \\
& C_{n}=\sup \left\{\left|S \cap\left[1, n^{2}\right]\right|: S \text { has the property } D(n)\right\} .
\end{aligned}
$$

In estimating the number of "large" elements, we used a theorem of Bennett [4] on simultaneous approximations of algebraic numbers and a very useful gap principle. We proved

Theorem $1 \quad A_{n} \leq 21$ for all nonzero integers n.

For the estimate of the number of "small" elements we used a "weak" variant of the gap principle and we proved

Theorem $2 B_{n}<0.65 \log |n|+2.24$ for all nonzero integers n.

Finally, in the estimate of the number of "very small" elements we used a large sieve method due to Gallagher [18] and we proved

Theorem $3 \quad C_{n}<265.55 \log |n|(\log \log |n|)^{2}+9.01 \log \log |n|$ for $|n| \geq$ 400.

Since we checked that $C_{n} \leq 5$ for $|n| \leq 400$, we may combine Theorems 1, 2 and 3 to obtain

Theorem 4

$$
\begin{aligned}
& M_{n} \leq 32 \quad \text { for }|n| \leq 400 \\
& M_{n}<267.81 \log |n|(\log \log |n|)^{2} \quad \text { for }|n|>400
\end{aligned}
$$

2 Large elements

Assume that the set $\{a, b, c, d\}$ has the property $D(n)$. Let $a b+n=r^{2}$, $a c+n=s^{2}, b c+n=t^{2}$, where r, s, t are nonegative integers. Eliminating d from the system

$$
a d+n=x^{2}, \quad b d+n=y^{2}, \quad c d+n=z^{2}
$$

we obtain the following system of Pellian equations

$$
\begin{align*}
a z^{2}-c x^{2} & =n(a-c) \tag{3}\\
b z^{2}-c y^{2} & =n(b-c) \tag{4}
\end{align*}
$$

We will apply the following theorem of Bennett [4] on simultaneous approximations of square roots of two rationals which are very close to 1 .

Theorem 5 ([4]) If c_{i}, p_{i}, q and L are integers for $0 \leq i \leq 2$, with $c_{0}<$ $c_{1}<c_{2}, c_{j}=0$ for some $0 \leq j \leq 2$, q nonzero and $L>M^{9}$, where

$$
M=\max \left\{\left|c_{0}\right|,\left|c_{1}\right|,\left|c_{2}\right|\right\}
$$

then we have

$$
\max _{0 \leq i \leq 2}\left\{\left|\sqrt{1+\frac{c_{i}}{L}}-\frac{p_{i}}{q}\right|\right\}>(130 L \gamma)^{-1} q^{-\lambda}
$$

where

$$
\lambda=1+\frac{\log (33 L \gamma)}{\log \left(1.7 L^{2} \prod_{0 \leq i<j \leq 2}\left(c_{i}-c_{j}\right)^{-2}\right)}
$$

and

$$
\gamma= \begin{cases}\frac{\left(c_{2}-c_{0}\right)^{2}\left(c_{2}-c_{1}\right)^{2}}{2 c_{2}-c_{0}-c_{1}} & \text { if } c_{2}-c_{1} \geq c_{1}-c_{0} \\ \frac{\left(c_{2}-c_{0}\right)^{2}\left(c_{1}-c_{0}\right)^{2}}{c_{1}+c_{2}-2 c_{0}} & \text { if } c_{2}-c_{1}<c_{1}-c_{0}\end{cases}
$$

We will apply Theorem 5 to the numbers

$$
\begin{aligned}
& \theta_{1}=\frac{s}{a} \sqrt{\frac{a}{c}}=\sqrt{\frac{a c+n}{a c}}=\sqrt{1+\frac{n}{a c}}=\sqrt{1+\frac{n b}{a b c}}, \\
& \theta_{2}=\frac{t}{b} \sqrt{\frac{b}{c}}=\sqrt{\frac{b c+n}{b c}}=\sqrt{1+\frac{n}{b c}}=\sqrt{1+\frac{n a}{a b c}} .
\end{aligned}
$$

Lemma 1 Assume that $a<b<c$ and $a c>n$. Then all positive integer solutions x, y, z of the system (3) and (4) satisfy

$$
\max \left(\left|\theta_{1}-\frac{s b x}{a b z}\right|,\left|\theta_{2}-\frac{z a y}{a b z}\right|\right)<\frac{c \cdot|n|}{a} z^{-2} .
$$

Proof. We have

$$
\left|\frac{s}{a} \sqrt{\frac{a}{c}}-\frac{s b x}{a b z}\right|=\frac{s}{a z \sqrt{c}}|z \sqrt{a}-x \sqrt{c}|=\frac{s}{a z \sqrt{c}} \cdot \frac{|n(c-a)|}{z \sqrt{a}+x \sqrt{c}} .
$$

If $n<0$, then $s=\sqrt{a c-|n|}<\sqrt{a c}$ and we obtain

$$
\left|\theta_{1}-\frac{s b x}{a b z}\right|<\frac{\sqrt{a c} \cdot|n| \cdot c}{a \sqrt{a c} z^{2}}=\frac{c|n|}{a} z^{-2} .
$$

If $n>0$, then $x \sqrt{c}>z \sqrt{a}$ and we obtain

$$
\left|\theta_{1}-\frac{s b x}{a b z}\right|<\frac{\sqrt{a c+n} \cdot n \cdot c}{2 a \sqrt{a c} z^{2}}=\sqrt{1+\frac{n}{a c}} \cdot \frac{c n}{2 a} z^{-2}<\frac{c n}{a} z^{-2} .
$$

In the same manner, we obtain $\left|\theta_{2}-\frac{t a y}{a b z}\right|<\frac{c|n|}{b} z^{-2}<\frac{c|n|}{a} z^{-2}$.

Lemma 2 Let $\{a, b, c, d\}, a<b<c<d$, be a Diophantine quadruple with the property $D(n)$. If $c>b^{11}|n|^{11}$, then $d \leq c^{131}$.

Proof. Let r, s, t, x, y, z be defined as in the beginning of this section. We will apply Theorem 5 with $\left\{c_{0}, c_{1}, c_{2}\right\}=\{0, n a, n b\}, L=a b c, M=|n b|$, $q=a b z, p_{1}=s b x, p_{2}=t a y$. Since $a b c>|n|^{9} b^{9}$, the condition $L>M^{9}$ is satisfied. For the quantity γ from Theorem 5 we have $\gamma=\frac{b^{2}(b-a)^{2}}{2 b-a}|n|^{3}$ if $b \geq 2 a$ and $\gamma=\frac{a^{2} b^{2}}{a+b}|n|^{3}$ if $a<b \leq 2 a$. In both cases we have

$$
\frac{b^{3}}{6}|n|^{3} \leq \gamma<\frac{b^{3}}{2}|n|^{3} .
$$

For the quantity λ from Theorem 5 we have

$$
\lambda=1+\frac{\log (33 a b c \gamma)}{\log \left(1.7 c^{2}(b-a)^{-2} n^{-6}\right)}=2-\lambda_{1},
$$

where

$$
\lambda_{1}=\frac{\log \frac{1.7 c}{33 a b(b-a)^{2} n^{6} \gamma}}{\log \left(1.7 c^{2}(b-a)^{-2} n^{-6}\right)} .
$$

Theorem 5 and Lemma 1 imply

$$
\frac{c|n|}{a z^{2}}>(130 a b c \gamma)^{-1}(a b z)^{\lambda_{1}-2}>(130 a b c \gamma)^{-1} a^{-2} b^{-2} z^{\lambda_{1}-2}
$$

This implies

$$
z^{\lambda_{1}}<130 a^{2} b^{3} c^{2}|n| \gamma
$$

and

$$
\begin{equation*}
\log z<\frac{\log \left(130 a^{2} b^{3} c^{2}|n| \gamma\right) \log \left(1.7 c^{2}(b-a)^{-2} n^{-6}\right)}{\log \left(\frac{1.7 c}{33 a b(b-a)^{2} n^{6} \gamma}\right)} . \tag{5}
\end{equation*}
$$

Let us estimate the right hand side of (5). We have

$$
130 a^{2} b^{3} c^{2}|n| \gamma<65 a^{2} b^{6} c^{2} n^{4}<c^{3} \cdot \frac{65 a^{2}}{b^{5}|n|^{7}}<c^{3},
$$

unless $n=-1, a=1, b=2$. However, in [13] it was proved that the Diophantine pair $\{1,2\}$ with the property $D(-1)$ cannot be extended to a Diophantine quadruple.

The same result implies also that if $|n|=1$, then $b-a>1$. Therefore

$$
1.7 c^{2}(b-a)^{-2} n^{-6}<c^{2} .
$$

Finally,

$$
\frac{1.7 c}{33 a b(b-a)^{2} n^{6} \gamma}>0.103 a^{-1} b^{-6} c n^{-9}>c^{\frac{1}{11}} \cdot \frac{b^{4}|n|}{9.71 a}>c^{\frac{1}{11}}
$$

The last estimate shows that $\lambda_{1}>0$, what we implicitly used in (5).
Putting these three estimates in (5), we obtain

$$
\log z<\frac{3 \log c \cdot 2 \log c}{\frac{1}{11} \log c}=66 \log c
$$

Hence, $z<c^{66}$ and

$$
d=\frac{z^{2}-n}{c} \leq \frac{z^{2}+|n|}{c}<\frac{c^{132}+c^{\frac{1}{11}}}{c}<c^{131}+1
$$

Now we will develop a very useful gap principle for the elements of a Diophantine m-tuple. The principle is based on the following construction which generalizes the constructions of Arkin, Hoggatt and Strauss [1] and Jones [25] for the case $n=1$.

Lemma 3 If $\{a, b, c\}$ is a Diophantine triple with the property $D(n)$ and $a b+n=r^{2}, a c+n=s^{2}, b c+n=t^{2}$, then there exist integers e, x, y, z such that

$$
a e+n^{2}=x^{2}, \quad b e+n^{2}=y^{2}, \quad c e+n^{2}=z^{2}
$$

and

$$
c=a+b+\frac{e}{n}+\frac{2}{n^{2}}(a b e+r x y)
$$

Proof. Define

$$
e=n(a+b+c)+2 a b c-2 r s t
$$

Then

$$
\begin{aligned}
\left(a e+n^{2}\right)-(a t-r s)^{2}= & a n(a+b+c)+2 a^{2} b c-2 a r s t+n^{2} \\
& -a^{2}(b c+n)+2 a r s t-(a b+n)(a c+n)=0
\end{aligned}
$$

Hence we may take $x=a t-r s$, and analogously $y=b s-r t, z=c r-s t$. We have

$$
\begin{aligned}
a b e+r x y & =a b n(a+b+c)+2 a^{2} b^{2} c-2 a b r s t \\
& +a b r s t-a(a b+n)(b c+n)-b(a b+n)(a c+n)+r s t(a b+n) \\
& =-a b c n-n^{2}(a+b)+r s t n
\end{aligned}
$$

and finally
$a+b+\frac{e}{n}+\frac{2}{n^{2}}(a b e+r x y)=2 a+2 b+c+\frac{2 a b c}{n}-\frac{2 r s t}{n}-\frac{2 a b c}{n}-2 a-2 b+\frac{2 r s t}{n}=c$.

Lemma 4 If $\{a, b, c, d\}$ is a Diophantine quadruple with the property $D(n)$ and $|n|^{3} \leq a<b<c<d$, then

$$
d>\frac{3.847 b c}{n^{2}}
$$

Proof. We apply Lemma 3 to the triple $\{a, c, d\}$. Since $c e+n^{2}$ is a perfect square, we have that $c e+n^{2} \geq 0$. On the other hand, the assumption is that $c>|n|^{3}$. Hence, if $e \leq-1$, then $c e+n^{2}<-|n|^{3}+n^{2}<0$, a contradiction. Since e is an integer, we have $e \geq 0$. If $e=0$, then $d=$ $a+c+2 s$. If $e \geq 1$, then

$$
\begin{equation*}
d>a+c+\frac{2 a c}{n^{2}}+\frac{2 s \sqrt{a c}}{n^{2}}>\frac{2 a c}{n^{2}} . \tag{6}
\end{equation*}
$$

(Note that if $n>0$ then $x<0, y<0$, and if $n<0$ and $b>|n|$ then $x>0$, $y>0$.)

Analogously, applying Lemma 3 to the triple $\{b, c, d\}$ we obtain that $d=b+c+2 t$ or $d>b+c+\frac{2 b c}{n^{2}}+\frac{2 t \sqrt{b c}}{n^{2}}$. However, $d=b+c+2 t$ is impossible since $b+c+2 t>a+c+2 s$ and

$$
b+c+2 t \leq b+c+2 \sqrt{c(c-1)+n}<4 c \leq \frac{2 a c}{n^{2}}
$$

unless $a<2 n^{2}$. But if $|n|^{3} \leq a<2 n^{2}$, then $|n|=1, a=1$, and in that case we have

$$
a+c+\frac{2 a c}{n^{2}}+\frac{2 s \sqrt{a c}}{n^{2}}>3 c+2 \sqrt{c(c-1)}>4 c .
$$

Hence we proved that

$$
\begin{equation*}
d>b+c+\frac{2 b c}{n^{2}}+\frac{2 t \sqrt{b c}}{n^{2}} . \tag{7}
\end{equation*}
$$

From [30] we know that the triples $\{1,2,3\}$ and $\{1,2,4\}$ cannot be extended to Diophantine quadruples. Thus $b c \geq 10$ and it implies

$$
t^{2}=b c+n \geq b c-|n|>b c-\sqrt[6]{b c}>0.853 b c
$$

If we put this in (7), we obtain $d>\frac{3.847 b c}{n^{2}}$.
Proof of Theorem 1. Assume that $\left\{a_{1}, a_{2}, \ldots, a_{22}\right\}$ has the property $D(n)$ and $|n|^{3} \leq a_{1}<a_{2}<\cdots<a_{22}$. By Lemma 4 we find that

$$
\begin{aligned}
a_{4}>\frac{a_{2}^{2}}{n^{2}}, \quad a_{5}>\frac{a_{2}^{3}}{n^{4}}, \quad a_{6}>\frac{a_{2}^{5}}{n^{8}}, \quad a_{7}>\frac{a_{2}^{8}}{n^{14}}, \\
a_{8}>\frac{a_{2}^{13}}{n^{24}}, \quad a_{9}>\frac{a_{2}^{21}}{n^{40}}, \quad a_{10}>\frac{a_{2}^{34}}{n^{66}}, \quad a_{11}>\frac{a_{2}^{55}}{n^{108}} .
\end{aligned}
$$

Since $a_{2}>|n|^{3}$, we have $\frac{a_{2}^{55}}{n^{108}}>a_{2}^{11}|n|^{11}$, and we may apply Lemma 2 with $a=a_{1}, b=a_{2}, c=a_{11}$. We conclude that $a_{22} \leq a_{11}^{131}$. However, Lemma 4 implies

$$
\begin{aligned}
a_{12}>|n| a_{11}, \quad a_{13}>\frac{a_{11}^{2}}{|n|}, \quad a_{14}>\frac{a_{11}^{3}}{n^{2}}, \quad a_{15}>\frac{a_{11}^{5}}{|n|^{5}}, \\
a_{16}>\frac{a_{11}^{8}}{|n|^{9}}, \quad a_{17}>\frac{a_{11}^{13}}{n^{16}}, \quad a_{18}>\frac{a_{11}^{21}}{|n|^{27}}, \quad a_{19}>\frac{a_{11}^{34}}{|n|^{45}}, \\
a_{20}>\frac{a_{11}^{55}}{n^{74}}, \quad a_{21}>\frac{a_{11}^{89}}{|n|^{121}}, \quad a_{22}>\frac{a_{11}^{144}}{|n|^{197}} .
\end{aligned}
$$

Since $a_{11}>a_{2}^{11}|n|^{11}>n^{44}$, we obtain

$$
a_{22}>\frac{a_{11}^{144}}{|n|^{197}} \geq a_{11}^{144-\frac{197}{44}}>a_{11}^{139}>a_{11}^{131}
$$

a contradiction.

3 Small elements

Lemma 5 If $\{a, b, c, d\}$ is a Diophantine quadruple with the property $D(n)$, $|n| \neq 1$, and $n^{2} \leq a<b<c<d$, then $c>3.88 a$ and $d>4.89 c$.

Proof. We will apply Lemma 3. Since $b>n^{2}$, we have $e \geq 0$. Thus Lemma 3 implies that

$$
c \geq a+b+2 r .
$$

Since $|n| \neq 1$ we have $a b \geq 20$ and $r^{2} \geq a b-\sqrt[4]{a b}>0.89 a b>0.89 a^{2}$. Hence, $c>3.88 a$.

Since $d \geq b+c+2 t>a+c+2 s$, from (6) we conclude that

$$
d>a+c+\frac{2 a c}{n^{2}}+\frac{2 s \sqrt{a c}}{n^{2}} .
$$

We have $a c \geq 24$ and $s^{2} \geq a c-\sqrt[4]{a c}>0.9 a c$. Therefore

$$
d>a+c+\frac{3.89 a c}{n^{2}}>4.89 c
$$

Proof of Theorem 2. We may assume that $|n| \geq 2$ since $B_{1}=$ $B_{-1}=0$. Let $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a Diophantine m-tuple with the property $D(n)$ and $n^{2}<a_{1}<a_{2}<\cdots<|n|^{3}$. By Lemma 5 we have

$$
a_{3}>3.88 a_{1}, \quad a_{4}>3.88 \cdot 4.89 a_{1}, \quad \ldots, \quad a_{m}>3.88 \cdot 4.89^{m-3} a_{1} .
$$

Therefore

$$
3.88 \cdot 4.89^{m-3} \cdot n^{2}<|n|^{3}
$$

and from $m-3<\frac{\log \frac{|n|}{\log 4.88}}{}$ we obtain $m<0.65 \log |n|+2.24$.

4 Very small elements

We are left with the task to estimate the number of "very small" elements in a Diophantine m-tuple. Let $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a Diophantine m-tuple with the property $D(n)$ and assume that $a_{1}<a_{2}<\cdots<a_{m} \leq N$, where N is a positive integer. Let $1 \leq k<m$. Then $x=a_{k+1}, \ldots, x=a_{m}$ satisfy the system

$$
\begin{equation*}
a_{1} x+n=\square, \quad a_{2} x+n=\square, \quad \ldots, \quad a_{k} x+n=\square, \tag{8}
\end{equation*}
$$

where \square denotes a square of an integer. Denote by $Z_{k}(N)$ the number of solutions of system (8) satisfying $1 \leq x \leq N$.

Motivated by the observations from the introduction of [5], we will apply a sieve method based on the following theorem of Gallagher [18] (see also [24, p.29]):

Theorem $6([18])$ If all but $g(q)$ residue classes $(\bmod q)$ are removed for each prime power q in a finite set \mathcal{S}, then the number of integers which remain in any interval of length N is at most

$$
\left(\sum_{q \in \mathcal{S}} \Lambda(q)-\log N\right) /\left(\sum_{q \in \mathcal{S}} \frac{\Lambda(q)}{g(q)}-\log N\right)
$$

provided the denominator is positive. Here $\Lambda(q)=\log p$ for $q=p^{\alpha}$.

We will use Theorem 6 to estimate the number $Z_{k}(N)$. For this purpose, we will take

$$
\mathcal{S}=\left\{p: p \text { is prime, } 83 \leq p \leq Q, \operatorname{gcd}\left(a_{1} a_{2} \cdots a_{k}, p\right)=1\right\}
$$

where Q is sufficiently large. For a prime $p \in \mathcal{S}$ we may remove all residue classes $(\bmod p)$ such that $\left(\frac{a_{i} x+n}{p}\right)=-1$ for some $i \in\{1, \ldots, k\}$. Here $(\dot{\bar{p}})$ denotes the Legendre symbol.

Let $1 \leq l \leq k$. Then

$$
\begin{aligned}
g(p) & \left.\leq \left\lvert\,\left\{x \in \mathbf{F}_{p}:\left(\frac{a_{i} x+n}{p}\right)=0 \text { or } 1, \text { for } i=1, \ldots, l\right\}\right. \right\rvert\, \\
& \left.\leq l+\left\lvert\,\left\{x \in \mathbf{F}_{p}:\left(\frac{x+n \overline{a_{i}}}{p}\right)=\left(\frac{\overline{a_{i}}}{p}\right), \text { for } i=1, \ldots, l\right\}\right. \right\rvert\,
\end{aligned}
$$

Here $a_{i} \overline{a_{i}} \equiv 1(\bmod p)$. Using estimates for character sums (see [28, p.325]), we obtain

$$
g(p) \leq l+\frac{p}{2^{l}}+\left(\frac{l-2}{l}+\frac{1}{2^{l}}\right) \sqrt{p}+\frac{l}{2}
$$

Assume that $k=\left\lfloor\log _{2} Q\right\rfloor$. We may take $l=\left\lfloor\log _{2} p\right\rfloor$. Then we have

$$
\frac{p}{2^{l}}+\frac{\sqrt{p}}{2^{l}}+\frac{3 l}{2}<2+\frac{2}{\sqrt{p}}+\frac{3 \log _{2} p}{2}<\sqrt{p}
$$

for $p \geq 179$. Hence

$$
l+\frac{p}{2^{l}}+\left(\frac{l-2}{2}+\frac{1}{2^{l}}\right) \sqrt{p}+\frac{l}{2}<\frac{l}{2} \sqrt{p}<\frac{\log _{2} p}{2} \sqrt{p}<0.722 \sqrt{p} \log p
$$

for $p \geq 179$, and we may check directly that $l+\frac{p}{2^{l}}+\left(\frac{l-2}{2}+\frac{1}{2^{l}}\right)+\frac{l}{2}<$ $0.722 \sqrt{p} \log p$ for $83 \leq p \leq 173$. Therefore we proved that

$$
g(p)<0.722 \sqrt{p} \log p
$$

By Theorem 6, we have $Z_{k}(N) \leq \frac{E}{F}$, where

$$
E=\sum_{p \in \mathcal{S}} \log p-\log N, \quad F=\sum_{p \in \mathcal{S}} \frac{1}{0.722 \sqrt{p}}-\log N
$$

By [32, Theorem 9], we have $E<\sum_{83 \leq p \leq Q} \log p<\theta(Q)<1.01624 Q$.

Assume that at least $\frac{4}{5} \pi(Q)$ primes less than Q satisfy the condition $\operatorname{gcd}\left(a_{1} a_{2} \cdots a_{k}, p\right)=1$. Then we have

$$
\begin{align*}
F & \geq \frac{1}{0.722 \sqrt{Q}}|\mathcal{S}|-\log N \geq \frac{1}{0.722 \sqrt{Q}}\left(\frac{4}{5} \pi(Q)-23\right)-\log N \\
& >1.108 \frac{\sqrt{Q}}{\log Q}-\frac{31.86}{\sqrt{Q}}-\log N \tag{9}
\end{align*}
$$

Since F must be positive in the applications of Theorem 6 , we will choose Q of the following form

$$
\begin{equation*}
Q=c_{1} \cdot \log ^{2} N \cdot(\log \log N)^{2} \tag{10}
\end{equation*}
$$

where c_{1} is a constant.
We have to check whether our assumption is correct. Suppose that $a=a_{1} a_{2} \cdots a_{k}$ is divisible by at least one fifth of the primes $\leq Q$. Then $a \geq p_{1} p_{2} \cdots p_{\left\lceil\frac{1}{5} \pi(Q)\right\rceil}$, where p_{i} denotes the $i^{\text {th }}$ prime. By [32, p.69], we have

$$
p_{\left\lceil\frac{1}{5} \pi(Q)\right\rceil}>\frac{1}{5} \pi(Q) \log \left(\frac{1}{5} \pi(Q)\right)>\frac{1}{5} \frac{Q}{\log Q} \log \left(\frac{1}{5} \frac{Q}{\log Q}\right):=R .
$$

Therefore, by [32, p.70],

$$
\log a>\sum_{p \leq R} \log p>R\left(1-\frac{1}{\log R}\right)
$$

Assume that $Q \geq 2 \cdot 10^{4}$. Then $\frac{1}{5} \frac{Q}{\log Q}>Q^{0.605}$ and $R>0.128 Q$. Furthermore, $\log R>7.793$ and therefore

$$
\log a>0.105 Q
$$

On the other hand, $a<N^{k}$ and $\log a<k \log N \leq \log _{2} Q \log N$.
Assume that $N \geq 1.6 \cdot 10^{5}$ and $c_{1} \leq 80$. Then $Q \leq \log ^{4.498} N$. In order to obtain a contradiction, it suffices to check that

$$
0.105 c_{1} \log ^{2} N(\log \log N)^{2}>\frac{4.498}{\log 2} \log N \cdot \log \log N
$$

or

$$
c_{1} \log N \log \log N>61.81
$$

and this is certainly true for $N \geq 1.6 \cdot 10^{5}$ if we choose $c_{1} \geq 2.08$.

Thus we may continue with estimating the quantity F. We are working under assumptions that (10) holds with $2.08 \leq c_{1} \leq 80, Q \geq 2 \cdot 10^{4}$ and $N \geq 1.6 \cdot 10^{5}$. We would like to have the estimate of the form

$$
\begin{equation*}
F>\frac{\sqrt{Q}}{c_{2} \log Q} . \tag{11}
\end{equation*}
$$

This estimate will lead to

$$
\begin{equation*}
Z_{k}(N)<1.01624 c_{2} \sqrt{Q} \log Q<4.572 c_{2} \sqrt{c_{1}} \log N(\log \log N)^{2} . \tag{12}
\end{equation*}
$$

In order to fulfill (11), it suffice to check

$$
\frac{31.86}{\sqrt{Q}}+\log N<\frac{\sqrt{Q}}{\log Q}\left(1.108-\frac{1}{c_{2}}\right) .
$$

Since $Q>2 \cdot 10^{4}$ we have $\frac{31.86}{\sqrt{Q}}<0.016 \frac{\sqrt{Q}}{\log Q}$. Furthermore,

$$
\frac{\log N \log Q}{\sqrt{Q}}<\frac{4.498 \log N \log \log N}{\sqrt{c_{1}} \log N \log \log N}=\frac{4.498}{\sqrt{c_{1}}} .
$$

Hence $c_{2}>1 /\left(1.092-\frac{4.498}{\sqrt{c_{1}}}\right)$. Thus if we choose $c_{1}=68$, then we may take $c_{2}=1.83$ and from (12) we obtain

$$
\begin{equation*}
Z_{k}(N)<69 \log N(\log \log N)^{2} . \tag{13}
\end{equation*}
$$

Note that with this choice of $c_{1}, N \geq 1.6 \cdot 10^{5}$ implies $Q>60222>2 \cdot 10^{4}$.
Proof of Theorem 3. Let $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ be a Diophantine m tuple with the property $D(n)$ and $a_{1}<a_{2}<\cdots<a_{m} \leq n^{2}$. Then for any $k \in\{1,2, \ldots, m\}$ we have

$$
m \leq k+Z_{k}\left(n^{2}\right) .
$$

Let $k=\left\lfloor\log _{2} Q\right\rfloor$, where $Q=68 \log ^{2} n^{2}\left(\log \log n^{2}\right)^{2}$. Since $|n| \geq 400$, we have $n^{2} \geq 1.6 \cdot 10^{5}$ and we may apply formula (13) to obtain

$$
\begin{equation*}
Z_{k}\left(n^{2}\right)<69 \log n^{2}\left(\log \log n^{2}\right)^{2}<265.55 \log |n|(\log \log |n|)^{2} \tag{14}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
k<\frac{1}{\log _{2}} \log \left(\log ^{4.489} n^{2}\right)<9.01 \log \log |n|, \tag{15}
\end{equation*}
$$

and combining (14) and (15) we finally obtain

$$
m<265.55 \log |n|(\log \log |n|)^{2}+9.01 \log \log |n| .
$$

Remark 1 In [22] Katalin Gyarmati recently considered the more general problem. She estimated $\min \{|\mathcal{A}|,|\mathcal{B}|\}$, where $\mathcal{A}, \mathcal{B} \subseteq\{1,2, \ldots, N\}$ satisfy the condition that $a b+1$ is a $k^{\text {th }}$ power for all $a \in \mathcal{A}, b \in \mathcal{B}$. Using her approach, it can be deduced that if $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ has the property $D(n)$, where $n>0$ and $a_{1}<a_{2}<\cdots<a_{m} \leq N$, then $m \leq 2 n \log N$. This yields $C_{n} \leq 4 n \log n$ for $n \geq 2$.

Remark 2 Let us mention that Rivat, Sárközy and Stewart [31] recently used Gallagher's "larger sieve" method in estimating the size of a set Z of integers such that $z+z^{\prime}$ is a perfect square whenever z and z^{\prime} are distinct elements of Z. They proved that if $Z \subset\{1,2, \ldots, N\}$, where N is greater that an effectively computable constant, then $|Z|<37 \log N$.

Largest known set with the above property is a set with six elements found by J. Lagrange [27]. Maybe this may be compared with our situation where the largest known Diophantine m-tuples are Diophantine sextuples found by Gibbs [19, 20].

Proof of Theorem 4. Since $M_{n} \leq A_{n}+B_{n}+C_{n}$, the second part of the theorem follows directly from Theorems 1,2 and 3 .

For $|n| \leq 400$, Theorem 2 gives $B_{n} \leq 6$. It is easy to verify with a computer that for $|n| \leq 400$ it holds $C_{n} \leq 5$. More precisely, $C_{n}=5$ if and only if $n \in\{-299,-255,256,400\}$. These two estimates together with Theorem 1 imply $M_{n} \leq 32$.

5 Concluding remarks

It is not surprising that in Theorem 4 the main contribution comes from C_{n}. Namely, if we define $C=\sup \left\{C_{n}: n \in \mathbf{Z} \backslash\{0\}\right\}$, then we have $M=C$. Indeed, if $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is a Diophantine m-tuple with the property $D(n)$, then $\left\{a_{1} c, a_{2} c, \ldots, a_{m} c\right\}$ has the property $D\left(n c^{2}\right)$ and for sufficiently large c we have $a_{i} c \leq\left(n c^{2}\right)^{2}, i=1,2, \ldots, m$. It means that in order to prove $M<\infty$, it suffices to prove $C<\infty$. The above argumentation shows that it suffice to prove that for some $\varepsilon>0$ it holds

$$
\sup _{n \neq 0} \sup \left\{\left|S \cap\left[1, n^{0.5+\varepsilon}\right]\right|: S \text { has the property } D(n)\right\}<\infty .
$$

We may define also $A=\sup \left\{A_{n}: n \in \mathbf{Z} \backslash\{0\}\right\}$ and $B=\sup \left\{B_{n}: n \in\right.$ $\mathbf{Z} \backslash\{0\}\}$. Gibbs' example mentioned in introduction shows that $C \geq 6$ and
$M \geq 6$. If $n=a^{2}, a \geq 5$, then $B_{n} \geq 3$ since $\left\{a^{2}+1, a^{2}+2 a+1,4 a^{2}+4 a+4\right\}$ has the property $D\left(a^{2}\right)$. Hence $B \geq 3$. Finally, since $\left\{k, k+2,4 k+4,16 k^{3}+\right.$ $\left.48 k^{2}+44 k+12\right\}$ has the property $D(1)$ we have $A \geq A_{1} \geq 4$.

References

[1] J. Arkin, V. E. Hoggatt and E. G. Strauss. On Euler's solution of a problem of Diophantus. Fibonacci Quart. 17 (1979), 333-339.
[2] A. Baker. The diophantine equation $y^{2}=a x^{3}+b x^{2}+c x+d$. J. London Math. Soc. 43 (1968), 1-9.
[3] A. Baker and H. Davenport. The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[4] M. A. Bennett. On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math. 498 (1998), 173-199.
[5] E. Bombieri, A. Granville and J. Pintz. Squares in arithmetic progressions. Duke Math. J. 66 (1992), 360-385.
[6] E. Brown. Sets in which $x y+k$ is always a square. Math. Comp. 45 (1985), 613-620.
[7] L. Caporaso, J. Harris and B. Mazur. Uniformity of rational points. J. Amer. Math. Soc. 10 (1997), 1-35.
[8] L. E. Dickson. History of the Theory of Numbers, Vol. 2. (Chelsea, 1966), pp. 513-520.
[9] Diophantus of Alexandria. Arithmetics and the Book of Polygonal Numbers. (I. G. Bashmakova, Ed.) (Nauka, 1974) (in Russian), pp. 103-104, 232.
[10] A. Dujella. Generalization of a problem of Diophantus. Acta Arith. 65 (1993), 15-27.
[11] A. Dujella. On Diophantine quintuples. Acta Arith. 81 (1997), 69-79.
[12] A. Dujella. The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311-322.
[13] A. Dujella. Complete solution of a family of simultaneous Pellian equations. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 59-67.
[14] A. Dujella. A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
[15] A. Dujella. An absolute bound for the size of Diophantine m-tuples. J. Number Theory (to appear).
[16] A. Dujella and A. Pethő. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
[17] N. Elkies. Curves with many points. preprint.
[18] P. X. Gallagher. A larger sieve. Acta Arith. 18 (1971), 77-81.
[19] P. GibBs. Some rational Diophantine sextuples. preprint, math.NT/9902081.
[20] P. Gibbs. A generalised Stern-Brocot tree from regular Diophantine quadruples. preprint, math.NT/9903035.
[21] H. Gupta and K. Singh. On k-triad sequences. Internat. J. Math. Math. Sci. 5 (1985), 799-804.
[22] K. Gyarmati. On a problem of Diophantus. preprint.
[23] E. Herrmann, A. Pethő and H. G. Zimmer. On Fermat's qudruple equations. Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291.
[24] C. Hooley. Applications of Sieve Methods to the Theory of Numbers. (Nauka, 1987) (in Russian).
[25] B. W. Jones. A second variation on a problem of Diophantus and Davenport, Fibonacci Quart. 16 (1978), 155-165.
[26] W. Keller and L. Kulesz. Courbes algébriques de genre 2 and 3 posśedant de nombreux points rationnels. C. R. Acad. Sci. Paris Sér. I 321 (1995), 1469-1472.
[27] J. Lagrange. Six entiers dont les sommes deux à deux sont des carrés. Acta Arith. 40 (1981), 91-96.
[28] R. Lidl and H. Niederreiter. Finite Fields. (Mir, 1988) (in Russian).
[29] S. P. Mohanty and A. M. S. Ramasamy. On $P_{r, k}$ sequences. Fibonacci Quart. 23 (1985), 36-44.
[30] V. K. Mootha and G. Berzsenyi. Characterization and extendibility of P_{t}-sets. Fibonacci Quart. 27 (1989), 287-288.
[31] J. Rivat, A. Sárközy and C. L. Stewart. Congruence properties of the Ω-function on sumsets. Illinois J. Math. 43 (1999), 1-18.
[32] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64-94.
[33] W. M. Schmidt. Integer points on curves of genus 1. Compositio Math. 81 (1992), 33-59.
[34] C. Stahlke. Algebraic curves over \mathbf{Q} with many rational points and minimal automorphism group. Inter. Math. Res. Not. (1997), 1-4.

