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Abstract
A rational Diophantine m-tuple is a set of m nonzero rationals such

that the product of any two of them is one less than a perfect square.
Recently Gibbs constructed several examples of rational Diophantine
sextuples with positive elements. In this note, we construct examples
of rational Diophantine sextuples with mixed signs. Indeed, we show
that such examples exist for all possible combinations of signs.

1 Introduction

A set of m nonzero rationals {a1, a2, . . . , am} is called a (rational) Diophan-
tine m-tuple if aiaj + 1 is a perfect square for all 1 ≤ i < j ≤ m (see
[5]).

The principal question is how large a rational Diophantine tuple can
be. In case of integer Diophantine tuples, the corresponding question is
almost completely answered. Namely, it is well-known and easy to prove
that there exist infinitely many integer Diophantine quadruples (e.g. {k −
1, k + 1, 4k, 16k3 − 4k} for k ≥ 2), while it was proved in [8] that there does
not exist an integer Diophantine sextuple and there are only finitely many
such quintuples (see also [10]). However, in the case of rational Diophantine
tuples, no absolute upper bound for the size of such sets is known (the
existence of such a bound follows from the Lang conjecture on varieties of
general type). The first example of a rational Diophantine quadruple was the
set { 1

16 , 33
16 , 17

4 , 105
16 } found by Diophantus (see [4]). Euler found infinitely

many rational Diophantine quintuples (see [13]). E.g.{
1, 3, 8, 120,

777480
8288641

}
.
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Since 1999, several examples of rational Diophantine sextuples were found
by Gibbs [11, 12]. The first example was

{
11
192

,
35
192

,
155
27

,
512
27

,
1235
48

,
180873

16

}
.

No example of a rational Diophantine septuple is known.
If {a1, a2, a3, a4, a5} is a rational Diophantine quintuple, we may consider

the hyperelliptic curve

y2 = (a1x + n)(a2x + n)(a3x + n)(a4x + n)(a5x + n)

of genus g = 2. Caporaso, Harris and Mazur [2] proved that the Lang
conjecture on varieties of general type implies that for g ≥ 2 the number
B(g,K) = maxC |C(K)| is finite. Here C runs over all curves of genus g over
a number field K, and C(K) denotes the set of all K-rational points on C.
Therefore, the number of elements in a rational Diophantine tuple should
be bounded by 5 + B(2,Q) (and also by 4 + B(4,Q), see [14]).

It can be noted that all Gibbs’ examples of sextuples contain six positive
rationals. Thus, it makes sense to ask if there exist such sextuples with
mixed signs. Since {a1, . . . , a6} is a Diophantine sextuple if and only if
{−a1, . . . ,−a6} has the same property, it suffices to find sextuples with
exactly one, two and three negative elements.

2 The constructions

In the constructions of rational Diophantine sextuples, we use several tech-
niques. Most of them can be explained in terms of elliptic curves.

If {a, b} is a rational Diophantine pair, then {a, b, a + b± 2
√

ab + 1} is a
rational Diophantine triple. Such triples are called regular.

Let {a, b, c} be a (rational) Diophantine triple. In order to extend this
triple to a quadruple, we have to solve the system

ax + 1 = ¤, bx + 1 = ¤, cx + 1 = ¤. (1)

It is a natural idea to assign to the system (1) the elliptic curve

E : y2 = (ax + 1)(bx + 1)(cx + 1). (2)

There are three rational points on E of order 2, and also other obvious
rational points

P = [0, 1], S = [1,
√

(ab + 1)(ac + 1)(bc + 1)].
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The x-coordinate of a point T ∈ E(Q) satisfies (1) if and only if T − P ∈
2E(Q) (see [6]). It can be verified that S ∈ 2E(Q). This implies that the
numbers x(P ± S) satisfy the system (1). These numbers are exactly the
numbers

d+,− = a + b + c + 2abc± 2
√

(ab + 1)(ac + 1)(bc + 1)

obtained by Arkin, Hoggatt and Strauss [1]. They proved that {a, b, c, d+}
and {a, b, c, d−} are rational Diophantine quadruples (if their elements are
distinct and nonzero). Quadruples of this form are called regular. The
conjecture is that all integer Diophantine quadruples are regular. Note that
if {a, b, c} is a regular triple, then d+d− = 0.

Let {a, b, c, d} be a rational Diophantine quadruple such that abcd 6= 1
and let

e+,− =
(a+b+c+d)(abcd + 1) + 2abc + 2abd + 2acd + 2bcd± 2

p
(ab+1)(ac+1)(ad+1)(bc+1)(bd+1)(cd+1)

(abcd− 1)2
.

In [5] we proved that {a, b, c, d, e+} and {a, b, c, d, e−} are rational Dio-
phantine quintuples (if their elements are distinct and nonzero). Note that
if {a, b, c, d} is a regular quadruple, then e+e− = 0 (see [5, Proposition 2]). A
rational Diophantine quintuple {a, b, c, d, e} is called regular if it is obtained
by the construction from [5] or, equivalently, if

(abcde + 2abc + a + b + c− d− e)2 = 4(ab + 1)(ac + 1)(bc + 1)(de + 1) .

This construction can be explained also in the terms of elliptic curve E .
Namely, let D be the point on E with the x-coordinate d. Then the numbers
e+ and e− are exactly the x-coordinates of the points D ± S on E . (See [7]
for the characterization of regular quadruples and quintuples in terms of the
elliptic curve y2 = (ax + 1)(bx + 1)(cx + 1)(dx + 1).)

Now we describe briefly three techniques for contruction of rational Dio-
phantine sextuples.

• Let ab + 1 = r2 and c = a + b + 2r, i.e. take {a, b, c} to be a regular
rational Diophantine triple. Consider the elliptic curve E given by (2).
We may expect that it has infinitely many rational points (see [9]). Of
course, we can test only finitely many such points. The test will involve
the condition that certain rational number, with randomly-looking
numerator, is a perfect square, which is more likely to be satisfied if the
numerator is small. Thus, in this construction we use rational points
of relatively small heights on E . For example, if rank(E(Q)) = 2 and
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X1, X2 are generators of E(Q)/E(Q)tors, we consider the points of the
form T = m1X1+m2X2, for |mi| ∈ {0, 1, 2, 3}. If D = P +2T = [d, d′],
then {a, b, c, d} is a rational Diophantine quadruple (at least some of
these quadruples are irregular; this is why we prefer to avoid curves
with rank 1). Define the points E = D + S = [e, e′] and E = D− S =
[f, f ′]. Then {a, b, c, d, e} and {a, b, c, d, f} are rational Diophantine
quintuples (and if {a, b, c, d} was irregular, then ef 6= 0). If ef +1 is a
perfect square, then {a, b, c, d, e, f} is a rational Diophantine sextuple
(assuming that all its elements are distinct and nonzero).

In that way, we find e.g. the sextuple { 5
36 , 5

4 , 32
9 , 189

4 , 665
1521 , 3213

676 } with
positive elements (found already by Gibbs [12]), but also several sex-
tuples with mixed signs, e.g. { 5

14 , 7
2 , 48

7 , 1680
361 ,− 2310

19321 , 93840
71407}.

• Take again the regular triple {a, b, c}, where c = a + b + 2r, and apply
the same construction to obtain a regular triple {b, c, d}. We find that
d = a+4b+4r. The only remaining condition in order that {a, b, c, d}
be a Diophantine quadruple is that ad + 1 is a perfect square. This
condition leads to (a + 2r)2 − 3 = ¤, and it is satisfied if we take
r = u−a

2 , where u = α2+3
2α for α ∈ Q.

Applying the construction from [5] to the quadruple {a, b, c, d}, we
obtain the quintuples {a, b, c, d, e+} and {a, b, c, d, e−}. If e+e− + 1
is a perfect square, then {a, b, c, d, e+, e−} is a rational Diophantine
sextuple (assuming that all its elements are distinct and nonzero).
As an example of a sextuple obtained by this construction, we give
{27

35 ,−35
36 , 1007

1260 ,−352
315 , 72765

106276 ,−5600
4489}.

• Let {a, b} be a rational Diophantine pair. For a rational number
t, define c = −4t(−1+t)(bt−a)

(−a+bt2)2
. It is easy to check that ac + 1 and

bc+1 are perfect squares, and therefore {a, b, c} is a rational Diophan-
tine triple. We can extend this triple to an (irregular) quadruple by
d = 8(c−a−b)(a+c−b)(b+c−a)

(a2+b2+c2−2ab−2ac−2bc)2
(see [5, Proposition 3]). This number is

the x-coordinate of the point 3P on E . Again, we can apply the con-
struction from [5] to the quadruple {a, b, c, d}, to obtain e+ and e−,
and if e+e−+1 is a perfect square, then we get a rational Diophantine
sextuple {a, b, c, d, e+, e−} (provided that all its elements are distinct
and nonzero). The reason why in this construction we use irregular
triples {a, b, c} is that for regular triples, we have d = d+, so the re-
sulted quadruple is regular and gives e+e− = 0. By this construction
we find e.g. the sextuple {−5

9 , 32
45 , 27

20 , 216032
937445 ,−185232905

263802564 , 175578975
136095556}.
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The described algorithms are implemented in PARI/GP [15], and for
computing the ranks we use MWRANK [3].

3 Examples

We give the list of 26 rational Diophantine sextuples with mixed signs ob-
tained by the constructions described in the previous section.

By the first method we obtain the following rational Diophantine sextu-
ples: n19

12
,
33

4
,
52

3
,

60

2209
,− 495

24964
,
595

12

o
,
n31

84
,
9

7
,
49

12
,
160

21
,− 455

3468
,
7200

2023

o
,

n 5

14
,
7

2
,
48

7
,
1680

361
,− 2310

19321
,
93840

71407

o
,
n 7

40
,−75

56
,
41

70
,−5376

4805
,−300288

241115
,
165

224

o
,

n 5

24
,−64

15
,−407

120
,−1530

361
,
2088

9245
,

399245

2889816

o
,
n
− 8

17
,
85

72
,− 763

1224
,
18360

11449
,
4914

8993
,
332605

496008

o
,

n
− 5

33
,
121

60
,
131

660
,
171360

30899
,
51978528

54014455
,
8041

1500

o
,

n 8

23
,
161

72
,
8695

1656
,
54648

22201
,−11270

62001
,
46288935

9481336

o
.

We note that the sextuple {31
84 , 9

7 , 49
12 , 160

21 ,− 455
3468 , 7200

2023

}
is rediscovered by the

second method. By the second method we also find the following rational
Diophantine sextuples:

n147

20
,
25

28
,
96

35
,− 11

140
,
30723

3380
,

165

1183

o
,
n 253

1140
,− 9

380
,
125

57
,
247

60
,
6688

375
,
2016

95

o
,

n27

35
,−35

36
,
1007

1260
,−352

315
,

72765

106276
,−5600

4489

o
,

Finally, we list the rational Diophantine sextuples found by the third method:
n1

6
,
27

8
,
385

96
,
1280

243
,
250705

44376
,− 25415

161376

o
,

n27

14
,
49

18
,−16

63
,
269654

113569
,
11572496

19969047
,−15578784

44488087

o
,

n24

35
,−75

56
,

77

120
,−846600

634207
,
5629624

7540215
,−4456963

3346680

o
,

n5

9
,−27

20
,−55

36
,

96305

158404
,
23144992

59202405
,−31157568

20220605

o
,

n5

9
,−27

20
,
13

20
,−304083

212180
,
20055200

31573161
,−79520320

67125249

o
,

n
− 5

9
,
27

20
,
32

45
,
216032

937445
,−185232905

263802564
,
175578975

136095556

o
,

n27

11
,
77

36
,−32

99
,− 43424

2297339
,
811864053

368716804
,− 808311427

2102956164

o
,

n21

22
,
33

56
,−64

77
,−3340352

3625853
,
1092049959

1018087688
,− 778578801

1587999368

o
,
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n27

35
,−35

36
,
161

180
,−4771879

4287380
,

917801280

4823805007
,−2117588000

6213359943

o
,

n 5

28
,−27

35
,
35

36
,

3838005

64606108
,
324705510976

300303876645
,−329539009184

358699363245

o
,

n 7

26
,−221

72
,−297

104
,

226791

1867424
,
18453763328

60529284729
,−19040799232

6576074649

o
,

n
− 14

45
,
135

56
,−185

504
,
25432135

14622776
,
11585718144

50291423405
,
314271141184

117352732005

o
,

n14

45
,−135

56
,−832

315
,

21739328

125951315
,
197932494375

570623898632
,−207609892105

76457704968

o
,

n
− 14

45
,
77

40
,
135

56
,
203687253

361681960
,− 5323853454400

12959750399967
,
4826209930880

3371383988343

o
,

n
− 7

17
,− 425

1008
,
2432

1071
,
80888528768

50503742919
,
1661966668042065

1421147949949456
,
13748985346416705

5799449383741456

o
.

4 Curves with the rank 8

The examples of rational Diophantine sextuples found by Gibbs were used
in [7] and [9] to find examples of elliptic curves of the form

y2 = (ax + 1)(bx + 1)(cx + 1)(dx + 1), (3)

where {a, b, c, d} is a Diophantine quadruple, and

y2 = (ax + 1)(bx + 1)(cx + 1), (4)

where {a, b, c} is a Diophantine triple, with relatively large rank. In both
cases, examples with rank equal to 8 were found. Using the examples from
the previous section, i.e. taking {a, b, c, d} and {a, b, c} to be subquadruples
and subtriples of Diophantine sextuples, we can find more examples with
the same property. Indeed, we have found by MWRANK that the curve (3)
has rank 8 for

{a, b, c, d} =
{

385
96

,
1280
243

,
250705
44376

,− 25415
161376

}
,

while the curve (4) has rank 8 for {a, b, c} equal to
{
−1530

361
,
2088
9245

,
399245
2889816

}
,

{
8695
1656

,
54648
22201

,
46288935
9481336

}
,

{
8695
1656

,−11270
62001

,
46288935
9481336

}
,

{
21
22

,
1092049959
1018087688

,− 778578801
1587999368

}
,

{
96305
158404

,
23144992
59202405

,−31157568
20220605

}
,

{
269654
113569

,
11572496
19969047

,−15578784
44488087

}
.

The ranks have been computed unconditionally, except for the last two
triples where MWRANK gives that the rank is equal to 7 or 8, while the
Parity Conjeture gives that the rank is even.
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