A note on Diophantine quintuples

Andrej Dujella

Abstract

Diophantus noted that the rational numbers 1/16, 33/16, 17/4 and 105/16 have the following property: the product of any two of them increased by 1 is a square of a rational number.

Let q be a rational number. A set of non-zero rationals $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a rational Diophantine m-tuple with the property $D(q)$ if $a_{i} a_{j}+q$ is a square of a rational number for all $1 \leq i<j \leq m$.

It is easy to prove that for every rational number q there exist infinitely many distinct rational Diophantine quadruples with the property $D(q)$. Thus we come to the following open question: For which rational numbers q there exist infinitely many distinct rational Diophantine quintuples with the property $D(q)$?

In the present paper we give an affirmative answer to the above question for all rationals of the forms $q=r^{2}$ and $q=-3 r^{2}, r \in \mathbb{Q}$.

1991 Mathematics Subject Classification: 11D09, 11G05.
Introduction. Diophantus noted that the rational numbers $1 / 16,33 / 16,17 / 4$ and 105/16 have the following property: the product of any two of them increased by 1 is a square of a rational number (see $[2,3]$).

Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property $D(n)$ if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple. Fermat first found an example of a Diophantine quadruple with the property $D(1)$, and it was $\{1,3,8,120\}$ (see [2]).

In 1985, Brown [1], Gupta and Singh [7] and Mohanty and Ramasamy [9] proved that if $n \equiv 2(\bmod 4)$, then there does not exist a Diophantine quadruple with the property $D(n)$. If $n \not \equiv 2(\bmod 4)$ and $n \notin\{-4,-3,-1,3,5,8,12,20\}$, then there exists at least one Diophantine quadruple with the property $D(n)$ (see [4, Theorem 5].

In [5], the definition of Diophantine m-tuples is extended to the rational numbers. If q is a rational number, the set of non-zero rationals $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a rational Diophantine m-tuple with the property $D(q)$ if $a_{i} a_{j}+q$ is a square of a rational number for all $1 \leq i<j \leq m$.

A direct consequence of [4, Theorem 5] is the following theorem.
Theorem 1. For every rational number q there exist infinitely many distinct rational Diophantine quadruples with the property $D(q)$.

Proof. The statement of the theorem is obviously true if $q=0$. Let $q=\frac{m}{n}$, where $m \neq 0$ and $n>0$ are integers. For a prime p define $k=64 p^{2} n^{2} q$. Then k is an
integer, $k \equiv 0(\bmod 8)$ and $|k| \geq 64$. Therefore, from the proof of [4, Theorem 5] we conclude that there exists a Diophantine quadruple of the form $\left\{1, a_{2}, a_{3}, a_{4}\right\}$ with the property $D(k)$. Now the set

$$
D_{p}=\left\{\frac{1}{8 p n}, \frac{a_{2}}{8 p n}, \frac{a_{3}}{8 p n}, \frac{a_{4}}{8 p n}\right\}
$$

is a rational Diophantine quadruple with the property $D(q)$. It suffices to show that $p \neq p^{\prime}$ implies $D_{p} \neq D_{p^{\prime}}$. Suppose that $D_{p}=D_{p^{\prime}}$. Then from $\frac{1}{8 p n} \cdot \frac{1}{8 p^{\prime} n}+\frac{m}{n}=\square$ it follows that $\frac{1}{p p^{\prime}}+64 m n=\square$ and we obtain that $p p^{\prime}$ is a perfect square, a contradiction.

Thus we came to the following open question: For which rational numbers q there exist infinitely many distinct rational Diophantine quintuples with the property $D(q)$?

We can easily give an affirmative answer for all rationals of the form $q=r^{2}$, $r \in \mathbb{Q}$. Namely, already Euler proved that an arbitrary Diophantine pair with the property $D(1)$ can be extended to the Diophantine quintuple (see [2]), and in [5] it is proved that the same is true for an arbitrary Diophantine quadruple with the property $D(1)$ (see also [6]). Multiplying all elements of a quadruple with the property $D(1)$ by r, we obtain a quadruple with the property $D\left(r^{2}\right)$.

The main result of the present paper is the following theorem which gives an affirmative answer to the above question for all rationals of the form $q=-3 r^{2}$, $r \in \mathbb{Q}$.
Theorem 2. There exist infinitely many distinct rational Diophantine quintuples with the property $D(-3)$.
Proof. We will consider quintuples of the form $\left\{\alpha a^{2}, \beta b^{2}, C, D, E\right\}$ with the property $D\left(-\alpha \beta a^{2} b^{2}\right)$, where $\alpha, \beta, a, b, C, D, E$ are integers. Furthermore, we will use the following simple and useful fact: If $A B+n=k^{2}$, then the set $\{A, B, A+B+2 k\}$ has the property $D(n)$. Indeed, $A(A+B+2 k)+n=(A+k)^{2}, B(A+B+2 k)+n=$ $(B+k)^{2}$.

Applying this construction to the identity

$$
\alpha a^{2} \cdot \beta b^{2}-\alpha \beta a^{2} b^{2}=0
$$

we obtain $C=\alpha a^{2}+\beta b^{2}$. The same construction applied to

$$
\beta b^{2} \cdot C-\alpha \beta a^{2} b^{2}=\left(\beta b^{2}\right)^{2}
$$

gives $D=\alpha a^{2}+4 \beta b^{2}$, and applied to

$$
C \cdot D-\alpha \beta a^{2} b^{2}=\left(\alpha a^{2}+2 \beta b^{2}\right)^{2}
$$

gives $E=4 \alpha a^{2}+9 \beta b^{2}$.
Hence, the set $\left\{\alpha a^{2}, \beta b^{2}, C, D, E\right\}$ will have the property $D\left(-\alpha \beta a^{2} b^{2}\right)$ if and only if $\alpha a^{2} \cdot D-\alpha \beta a^{2} b^{2}, \alpha a^{2} \cdot E-\alpha \beta a^{2} b^{2}$ and $\beta b^{2} \cdot E-\alpha \beta a^{2} b^{2}$ are perfect squares. Remaining seven conditions are satisfied automatically. Hence, we have

$$
\begin{equation*}
\alpha a^{2}\left(\alpha a^{2}+3 \beta b^{2}\right)=\square \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& 4 \alpha a^{2}\left(\alpha a^{2}+2 \beta b^{2}\right)=\square, \tag{2}\\
& 3 \beta b^{2}\left(\alpha a^{2}+3 \beta b^{2}\right)=\square . \tag{3}
\end{align*}
$$

Now (1) and (3) imply $3 \alpha \beta=\square$, and we may assume that $\alpha=1$ and $\beta=3$. Thus our conditions (1)-(3) become

$$
a^{2}+9 b^{2}=c^{2} \quad \text { and } \quad a^{2}+6 b^{2}=d^{2}
$$

or

$$
\begin{equation*}
c^{2}-9 b^{2}=a^{2} \quad \text { and } \quad c^{2}-3 b^{2}=d^{2} \tag{4}
\end{equation*}
$$

It is natural to assign to the system (4) the single condition

$$
\left(c^{2}-9 b^{2}\right)\left(c^{2}-3 b^{2}\right)=(a d)^{2}
$$

which under substitution

$$
\begin{equation*}
x=36\left(\frac{c}{b}-3\right)^{-1}, \quad y=\frac{a d}{36 b} x^{2} \tag{5}
\end{equation*}
$$

gives the elliptic curve

$$
E: \quad y^{2}=x^{3}+42 x^{2}+432 x+1296 .
$$

It is easy to verify, using the program package SIMATH (see [10]), that $E(\mathbb{Q})_{\text {tors }} \simeq$ $\mathbb{Z} / 4 \mathbb{Z}, E(\mathbb{Q})_{\text {tors }}=<A>, \operatorname{rank}(E(\mathbb{Q}))=1, E(\mathbb{Q}) / E(\mathbb{Q})_{\text {tors }}=<P>$, where $A=(0,-36)$ and $P=(-8,4)$.

We are left with the task of determining points on $E(\mathbb{Q})$ which gives the solutions of system (4). Note that $x+6=\frac{6(c+3 b)}{c-3 b}=6\left(c^{2}-9 b^{2}\right)(c-3 b)^{-2}$. By [8, 4.6, p.89], the function $\varphi: E(\mathbb{Q}) \rightarrow \mathbb{Q}^{*} / \mathbb{Q}^{* 2}$ defined by

$$
\varphi(X)= \begin{cases}(x+6) \mathbb{Q}^{* 2} & \text { if } X=(x, y) \neq \mathcal{O},(-6,0) \\ \mathbb{Q}^{* 2} & \text { if } X=\mathcal{O},(-6,0)\end{cases}
$$

is a group homomorphism. This implies that if $X \in 2 E(\mathbb{Q})$ then $x+6=\square$, if $X \pm A \in 2 E(\mathbb{Q})$ then $x+6=6 \square$, if $X-P \in 2 E(\mathbb{Q})$ then $x+6=-2 \square$ and if $X-P \pm A \in 2 E(\mathbb{Q})$ then $x+6=-3 \square$.

Therefore, x-coordinates of all points on E of the form $A+2 n P$, where n is a positive integer, induce, by (5), infinitely many distinct solutions (a, b, c, d) of the system (4). (Note that the points $A+2 n P$ and $-A+2 n P$ induce the same solution.) Accordingly we obtain infinitely many Diophantine quintuples

$$
\left\{\frac{a}{b}, \frac{3 b}{a}, \frac{a}{b}+\frac{3 b}{a}, \frac{a}{b}+\frac{12 b}{a}, \frac{4 a}{b}+\frac{27 b}{a}\right\}
$$

with the property $D(-3)$.
In the following table we give some examples of Diophantine quintuples with the property $D(-3)$.

point on E	Diophantine quintuple with the property $D(-3)$
$A+2 P$	$\left\{\frac{5}{4}, \frac{12}{5}, \frac{73}{20}, \frac{217}{20}, \frac{133}{5}\right\}$
$A+4 P$	$\left\{\frac{13199}{5720}, \frac{17160}{13199}, \frac{272368801}{75498280}, \frac{566834401}{75498280}, \frac{395062801}{18874570}\right\}$
$A+6 P$	$\begin{aligned} & \left\{\frac{478267515}{492364404}, \frac{1477093212}{4782871515}, \frac{23601214939371220873}{2354817210010752060},\right. \\ & \left.\frac{25783019296307697817}{2354817210010752060}, \frac{24510300088094752933}{588704320502688015}\right\} \end{aligned}$
$A+8 P$	$\begin{gathered} \left\{\frac{27456280948852799}{62923528288692560}, \frac{188770584686077680}{27456280948852799},\right. \\ \frac{12631958577783545528788015168195201}{1727646069340052844027247666475440}, \\ \frac{48266292220507170645420838162377601}{1727646069340052844027247666475440}, \\ \left.\frac{27479597595585055994051691415771201}{431911517335013211006811916618860}\right\} \end{gathered}$

References

[1] Brown, E., Sets in which $x y+k$ is always a square. Math. Comp. 45 (1985), 613-620.
[2] Dickson, L.E., History of the Theory of Numbers, Vol. 2. Chelsea, New York, 1966, pp. 513-520.
[3] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers (in Russian). (Bashmakova, I.G., Ed.), Nauka, Moscow, 1974, pp. 103-104, 232.
[4] Dujella, A., Generalization of a problem of Diophantus. Acta Arith. 65 (1993), 15-27.
[5] -, On Diophantine quintuples. Acta Arith. 81 (1997), 69-79.
[6] -, The problem of Diophantus and Davenport. Mathematical Communications 2 (1997), 153-160.
[7] H. Gupta, H., Singh, K., On k-triad sequences. Internat. J. Math. Math. Sci. 5 (1985), 799-804.
[8] Knapp, A., Elliptic Curves. Princeton Univ. Press, Princeton, New Jersey, 1992.
[9] Mohanty, S.P., Ramasamy, A.M.S., On $P_{r, k}$ sequences. Fibonacci Quart. 23 (1985), 36-44.
[10] SIMATH manual. Saarbrücken, 1997.

