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A note on Diophantine quintuples

Andrej Dujella

Abstract. Diophantus noted that the rational numbers 1/16, 33/16, 17/4 and 105/16
have the following property: the product of any two of them increased by 1 is a square
of a rational number.

Let q be a rational number. A set of non-zero rationals {a1, a2, . . . , am} is called a
rational Diophantine m-tuple with the property D(q) if aiaj + q is a square of a rational
number for all 1 ≤ i < j ≤ m.

It is easy to prove that for every rational number q there exist infinitely many distinct
rational Diophantine quadruples with the property D(q). Thus we come to the following
open question: For which rational numbers q there exist infinitely many distinct rational
Diophantine quintuples with the property D(q)?

In the present paper we give an affirmative answer to the above question for all
rationals of the forms q = r2 and q = −3r2, r ∈ Q.
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Introduction. Diophantus noted that the rational numbers 1/16, 33/16, 17/4
and 105/16 have the following property: the product of any two of them increased
by 1 is a square of a rational number (see [2, 3]).

Let n be an integer. A set of positive integers {a1, a2, . . . , am} is said to have
the property D(n) if aiaj + n is a perfect square for all 1 ≤ i < j ≤ m. Such a set
is called a Diophantine m-tuple. Fermat first found an example of a Diophantine
quadruple with the property D(1), and it was {1, 3, 8, 120} (see [2]).

In 1985, Brown [1], Gupta and Singh [7] and Mohanty and Ramasamy [9]
proved that if n ≡ 2 (mod 4), then there does not exist a Diophantine quadruple
with the property D(n). If n 6≡ 2 (mod 4) and n 6∈ {−4,−3,−1, 3, 5, 8, 12, 20},
then there exists at least one Diophantine quadruple with the property D(n) (see
[4, Theorem 5].

In [5], the definition of Diophantine m-tuples is extended to the rational num-
bers. If q is a rational number, the set of non-zero rationals {a1, a2, . . . , am} is
called a rational Diophantine m-tuple with the property D(q) if aiaj +q is a square
of a rational number for all 1 ≤ i < j ≤ m.

A direct consequence of [4, Theorem 5] is the following theorem.

Theorem 1. For every rational number q there exist infinitely many distinct ra-
tional Diophantine quadruples with the property D(q).

Proof. The statement of the theorem is obviously true if q = 0. Let q = m
n , where

m 6= 0 and n > 0 are integers. For a prime p define k = 64p2n2q. Then k is an
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integer, k ≡ 0(mod 8) and |k| ≥ 64. Therefore, from the proof of [4, Theorem 5]
we conclude that there exists a Diophantine quadruple of the form {1, a2, a3, a4}
with the property D(k). Now the set

Dp = { 1
8pn

,
a2

8pn
,

a3

8pn
,

a4

8pn
}

is a rational Diophantine quadruple with the property D(q). It suffices to show that
p 6= p′ implies Dp 6= Dp′ . Suppose that Dp = Dp′ . Then from 1

8pn ·
1

8p′n + m
n = �

it follows that 1
pp′ + 64mn = � and we obtain that pp′ is a perfect square, a

contradiction. ut

Thus we came to the following open question: For which rational numbers
q there exist infinitely many distinct rational Diophantine quintuples with the
property D(q)?

We can easily give an affirmative answer for all rationals of the form q = r2,
r ∈ Q. Namely, already Euler proved that an arbitrary Diophantine pair with
the property D(1) can be extended to the Diophantine quintuple (see [2]), and in
[5] it is proved that the same is true for an arbitrary Diophantine quadruple with
the property D(1) (see also [6]). Multiplying all elements of a quadruple with the
property D(1) by r, we obtain a quadruple with the property D(r2).

The main result of the present paper is the following theorem which gives an
affirmative answer to the above question for all rationals of the form q = −3r2,
r ∈ Q.

Theorem 2. There exist infinitely many distinct rational Diophantine quintuples
with the property D(−3).

Proof. We will consider quintuples of the form {αa2, βb2, C, D, E} with the prop-
erty D(−αβa2b2), where α, β, a, b, C,D,E are integers. Furthermore, we will use
the following simple and useful fact: If AB+n = k2, then the set {A,B,A+B+2k}
has the property D(n). Indeed, A(A+B+2k)+n = (A+k)2, B(A+B+2k)+n =
(B + k)2.

Applying this construction to the identity

αa2 · βb2 − αβa2b2 = 0

we obtain C = αa2 + βb2. The same construction applied to

βb2 · C − αβa2b2 = (βb2)2

gives D = αa2 + 4βb2, and applied to

C ·D − αβa2b2 = (αa2 + 2βb2)2

gives E = 4αa2 + 9βb2.
Hence, the set {αa2, βb2, C,D, E} will have the property D(−αβa2b2) if and

only if αa2 ·D−αβa2b2, αa2 ·E−αβa2b2 and βb2 ·E−αβa2b2 are perfect squares.
Remaining seven conditions are satisfied automatically. Hence, we have

αa2(αa2 + 3βb2) = �, (1)
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4αa2(αa2 + 2βb2) = �, (2)

3βb2(αa2 + 3βb2) = �. (3)

Now (1) and (3) imply 3αβ = �, and we may assume that α = 1 and β = 3. Thus
our conditions (1)–(3) become

a2 + 9b2 = c2 and a2 + 6b2 = d2,

or

c2 − 9b2 = a2 and c2 − 3b2 = d2. (4)

It is natural to assign to the system (4) the single condition

(c2 − 9b2)(c2 − 3b2) = (ad)2,

which under substitution

x = 36(
c

b
− 3)−1, y =

ad

36b
x2 (5)

gives the elliptic curve

E : y2 = x3 + 42x2 + 432x + 1296.

It is easy to verify, using the program package SIMATH (see [10]), that E(Q)tors '
Z/4Z, E(Q)tors =< A >, rank (E(Q)) = 1, E(Q)/E(Q)tors =< P >, where
A = (0,−36) and P = (−8, 4).

We are left with the task of determining points on E(Q) which gives the solu-
tions of system (4). Note that x + 6 = 6(c+3b)

c−3b = 6(c2 − 9b2)(c− 3b)−2. By [8, 4.6,
p.89], the function ϕ : E(Q) → Q∗/Q∗2 defined by

ϕ(X) =
{

(x + 6)Q∗2 if X = (x, y) 6= O, (−6, 0)
Q∗2 if X = O, (−6, 0)

is a group homomorphism. This implies that if X ∈ 2E(Q) then x + 6 = �, if
X ± A ∈ 2E(Q) then x + 6 = 6�, if X − P ∈ 2E(Q) then x + 6 = −2� and if
X − P ±A ∈ 2E(Q) then x + 6 = −3�.

Therefore, x-coordinates of all points on E of the form A + 2nP , where n is
a positive integer, induce, by (5), infinitely many distinct solutions (a, b, c, d) of
the system (4). (Note that the points A + 2nP and −A + 2nP induce the same
solution.) Accordingly we obtain infinitely many Diophantine quintuples

{a

b
,
3b

a
,
a

b
+

3b

a
,
a

b
+

12b

a
,
4a

b
+

27b

a
}

with the property D(−3). ut

In the following table we give some examples of Diophantine quintuples with
the property D(−3).
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point on E Diophantine quintuple with the property D(−3)

A + 2P { 5
4 , 12

5 , 73
20 , 217

20 , 133
5 }

A + 4P { 13199
5720 , 17160

13199 , 272368801
75498280 , 566834401

75498280 , 395062801
18874570 }

A + 6P { 478267515
492364404 , 1477093212

4782871515 , 23601214939371220873
2354817210010752060 ,

25783019296307697817
2354817210010752060 , 24510300088094752933

588704320502688015 }

A + 8P { 27456280948852799
62923528228692560 , 188770584686077680

27456280948852799 ,

12631958577783545528788015168195201
1727646069340052844027247666475440 ,

48266292220507170645420838162377601
1727646069340052844027247666475440 ,

27479597595585055994051691415771201
431911517335013211006811916618860 }
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