DIOPHANTINE QUADRUPLES AND QUINTUPLES MODULO 4

Andrej Dujella

Abstract

A Diophantine m-tuple with the property $D(n)$ is a set $\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$ of positive integers such that for $1 \leq i<j \leq m$, the number $a_{i} a_{j}+n$ is a perfect square. In the present paper we give necessary conditions that the elements a_{i} of a set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}$ must satisfy modulo 4 in order to be a Diophantine quintuple.

Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a Diophantine m-tuple with the property $D(n)$, or P_{n}-set of size m, if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. A P_{n}-set X will be termed extendable if, for some integer $d, d \notin X$, the set $X \cup\{d\}$ is a P_{n}-set.

The problem of extending P_{n}-sets is an old one, dating from the time of Diophantus (see [4, 5]). The first P_{1}-set of size 4 was found by Fermat, and it was $\{1,3,8,120\}$. The most famous result on P_{n}-sets is due to Baker and Davenport [2], who proved that if $\{1,3,8, d\}$ is a P_{1}-set, then d has to be 120 .

In 1985, Brown [3], Gupta and Singh [8] and Mohanty and Ramasamy [9] proved independently that if $n \equiv 2(\bmod 4)$, then there does not exist a $P_{n^{-}}$ set of size 4. In 1993, the author proved that if $n \not \equiv 2(\bmod 4)$ and $n \notin$ $\{-4,-3,-1,3,5,8,12,20\}$, then there exists at least one P_{n}-set of size 4 (see [6]). P_{n}-sets of size 5 were studied in $[1,7,10]$.

The purpose of the present paper is to characterize congruence types modulo 4 of Diophantine quadruples and quintuples. We will say that a set $X=$ $\left\{a_{1}, \ldots, a_{m}\right\}$ has a congruence type $\left[b_{1}, \ldots, b_{m}\right]$, where $b_{i} \in\{0,1,2,3\}$, if $a_{i} \equiv b_{i}$ $(\bmod 4)$ for $i=1, \ldots, m$.

[^0]Our starting point is the following result of Mootha and Berzsenyi [11, Theorems 1, 2 and 3].

Theorem 1 (a) If all of the elements of a P_{n}-set of size $m \geq 3$ are odd, then they are congruent to one another, modulo 4.
(b) If only one of the elements of P_{n}-set of size $m \geq 3$ is odd, then all of the others are congruent to 0 , modulo 4 .
(c) P_{n}-sets of the congruence type $[1,2,3]$ are not extendable.

Proof: (a) Let $\{a, b, c\}$ be a P_{n}-set. Assume that a, b, c are odd and $a \equiv$ $b \equiv c-2(\bmod 4)$. Since square of an integer is congruent to 0 or 1 modulo 4 , $a b+n=\square$ implies $n \equiv 0,3(\bmod 4)$, and $a c+n=\square$ implies $n \equiv 1,2(\bmod 4)$. Contradiction.
(b) Assume that $\{a, b, c\}$ is a P_{n}-set, a is odd, b is even and $c \equiv 2(\bmod 4)$. Then $a c+n=\square$ implies $n \equiv 2,3(\bmod 4)$, and $b c+n=\square$ implies $n \equiv 0,1$ $(\bmod 4)$. Contradiction.
(c) Assume that $\{a, b, c, d\}$ is a P_{n}-set, $a \equiv 1(\bmod 4), b \equiv 2(\bmod 4)$ and $c \equiv 3(\bmod 4)$. Applying (a) on the set $\{a, c, d\}$ we see that d cannot be odd, and applying (b) on the set $\{a, b, d\}$ we see that d cannot be even.

Theorem $2 A P_{n}$-set of size 4 has one of the following congruence types:

$$
\begin{array}{ccccc}
{[0,0,0,0],} & {[0,0,0,2],} & {[0,0,2,2],} & {[0,2,2,2],} & {[2,2,2,2],} \\
{[0,0,0,1],} & {[0,0,0,3],} & {[0,0,1,1],} & {[0,0,1,3],} & {[0,0,3,3],} \\
{[0,1,1,1],} & {[0,3,3,3],} & {[2,1,1,1],} & {[2,3,3,3],} & {[1,1,1,1],}
\end{array} \quad[3,3,3,3], ~ \$
$$

and all of these congruence types are indeed possible.
Proof: The first part of the theorem follows directly from Theorem 1, and the second part will follow from Theorem 4 below.

Theorem 3 A P_{n}-set of size 5 has one of the following congruence types:

$$
\begin{array}{rllll}
{[0,0,0,0,0],} & {[0,0,0,0,2],} & {[0,0,0,2,2],} & {[0,0,2,2,2],} & {[0,2,2,2,2],} \\
{[2,2,2,2,2],} & {[0,0,0,0,1],} & {[0,0,0,0,3],} & {[0,0,0,1,1],} & {[0,0,0,1,3],} \\
{[0,0,0,3,3],} & {[0,0,1,1,1],} & {[0,0,3,3,3],} & {[0,1,1,1,1],} & {[2,1,1,1,1],} \\
{[0,3,3,3,3],} & {[2,3,3,3,3],} & {[1,1,1,1,1],} & {[3,3,3,3,3] .}
\end{array}
$$

Proof: The theorem is a direct consequence of Theorem 2.

Theorem 4 For all congruence types from Theorem 3, apart from maybe $[1,1,1,1,1]$ and $[3,3,3,3,3]$, there exists a nonzero integer n and $a P_{n}$-set of size 5 with that congruence type.

Proof: The theorem follows from the following table:

n	P_{n}-set of size 5	Congruence type
-1196	$\{28,44,60,84,180\}$	$[0,0,0,0,0]$
-455	$\{8,72,102,148,492\}$	[0, 0, 0, 0, 2]
1600	$\{8,42,250,768,22272\}$	[0, 0, 0, 2, 2]
1024	$\{2,66,210,640,36480\}$	[0, 0, 2, 2, 2]
14400	$\{26,200,266,506,9450\}$	[0,2,2,2,2]
-299	$\{14,22,30,42,90\}$	[2, 2, 2, 2, 2]
1024	$\{4,33,2660,5520,245760\}$	$[0,0,0,0,1]$
9216	$\{12,99,7980,16560,737280\}$	$[0,0,0,0,3]$
400	$\{4,21,125,384,11136\}$	$[0,0,0,1,1]$
-255	$\{8,32,77,203,528\}$	$[0,0,0,1,3]$
-476	$\{20,31,75,96,192\}$	$[0,0,0,3,3]$
400	$\{4,21,69,125,384\}$	$[0,0,1,1,1]$
400	$\{7,12,63,128,375\}$	[0, 0, 3, 3, 3]
3600	$\{13,100,133,253,4725\}$	$[0,1,1,1,1]$
-3185325	$\{1113,2958,3417,3993,4725\}$	$[2,1,1,1,1]$
1296	$\{11,35,128,243,315\}$	[$0,3,3,3,3]$
-353925	$\{371,986,1139,1331,1575\}$	$[2,3,3,3,3]$

Corollary 1 For all congruence types from Theorem 3, there exists an integer n and a P_{n}-set of size 5 with that congruence type.

Proof: The statement follows directly from Theorem 4, using the fact that $\{1,9,25,49,81\}$ and $\{3,27,75,147,243\}$ are P_{0}-sets.

References

[1] J. Arkin, V. E. Hoggatt, E. G. Strauss, On Euler's solution of a problem of Diophantus, Fibonacci Quart. 17(1979), 333-339.
[2] A. Baker, H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20(1969), 129-137.
[3] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45(1985), 613620.
[4] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1992, pp. 513-520.
[5] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (I. G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
[6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65(1993), 15-27.
[7] A. Dujella, On Diophantine quintuples, Acta Arith. 81(1997), 69-79.
[8] H. Gupta, K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 5(1985), 799-804.
[9] S. P. Mohanty, A. M. S. Ramasamy, On $P_{r, k}$ sequences, Fibonacci Quart. 23(1985), 36-44.
[10] V. K. Моотна, On the set of numbers $\{14,22,30,42,90\}$, Acta Arith. 71(1995), 259-263.
[11] V. K. Mootha, G. Berzsenyi, Characterizations and extendibility of P_{t}-sets, Fibonacci Quart. 27(1989), 287-288.

Andrej Dujella
Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, CROATIA

E-mail: duje@math.hr

[^0]: ${ }^{0}$ Mathematics Subject Classification (1991): 11A07, 11B75, 11D79
 Keywords and Phrases: Diophantine m-tuple, P_{n}-set, congruences

