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Abstract. In this paper, we prove that there does not exist a set of 11
polynomials with coefficients in a field of characteristic 0 with the prop-
erty that the product of any two distinct elements plus 1 is a perfect
square. Moreover, we prove that there does not exist a set of 5 polyno-
mials and the property that the product of any two distinct elements
plus 1 is a perfect kth power with k ≥ 7. Combining these results, we
get an absolute upper bound for the size of a set with the property that
the product of any two elements plus 1 is a pure power.
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1. Introduction

Diophantus of Alexandria [6] was interested in finding sets with the
property that the product of any two of its distinct elements increased by
one is a perfect square. Such a set consisting of m elements is therefore
called a Diophantine m-tuple. He gave the example

{
1
16 , 33

16 , 17
4 , 105

16

}
. The

first Diophantine quadruple consisting of positive integers was found by
Fermat and it was the set {1, 3, 8, 120}. The folklore conjecture is that there
does not exist a quintuple consisting of positive integers and having the
property of Diophantus. In 1969, Baker and Davenport [1] proved that the
Fermat’s set cannot be extended to a Diophantine quintuple in Z. Recently,
the first author proved that there does not exist a Diophantine sextuple,
and there are only finitely many Diophantine quintuples over the integers
(see [8]).

Many generalizations of this problem were considered since then, for ex-
ample by adding a fixed integer n instead of 1 (which was first considered
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in [2], cf. also [7, 9] for bounds for general n and [14] for a recent absolute
upper bound for the size of such a set for n prime), kth powers instead of
squares (see [3]), or considering the problem over other domains than Z or
Q. So we define:

Definition 1. Let m ≥ 2, k ≥ 2 and R be a commutative ring with 1.
A kth power Diophantine m-tuple in R is a set {a1, . . . , am} consisting of
m different nonzero elements from R such that aiaj + 1 is a kth power of
an element of R for 1 ≤ i < j ≤ m. Moreover, a set {a1, . . . , am} of m
different nonzero elements from R is called a pure power Diophantine m-
tuple if aiaj + 1 is a kth power of an element of R for some k ≥ 2 and all
1 ≤ i < j ≤ m.

We have already seen that for k = 2 and R = Z we have m ≤ 5. For larger
values of k and R = Z, Bugeaud and Dujella [3] proved that

m ≤ 7 for k = 3,

m ≤ 5 for k = 4,

m ≤ 4 for 5 ≤ k ≤ 176,

m ≤ 3 for k ≥ 177.

Recently, Luca [21] proved that if {a1, . . . , am} ⊆ {1, . . . , N} is a pure
power Diophantine m-tuple in Z, then

m ≤ c

(
log N

log log N

)3
2

for all sufficiently large values of N and an effectively computable constant
c. This improves earlier results by several authors (cf. [17, 18, 4]). More-
over, he proved that under the ABC-conjecture the size of a pure power
Diophantine m-tuple in Z is bounded by an absolute constant (see [21,
Theorem 1.4, p. 14]). This improves a result from [5].

Besides the cases R = Q and R = Z, also polynomial variants of the
above problem have been considered. The first such variant was studied by
Jones [19], [20], and it was for the case R = Z[X] and k = 2. Other results
for this case can be found in [11], where the authors proved that for every
Diophantine quadruple {a, b, c, d} in Z[X], where not all the polynomials are
constant, we have (a+b−c−d)2 = 4(ab+1)(cd+1). This implies that every
Diophantine triple in Z[X] can be extended to a Diophantine quadruple in
an essentially unique way.

In [10], Dujella and Fuchs proved that there does not exist a set of four
polynomials in Z[X] with the property that the product of any two is one
greater than a perfect square in Z[X]. Dujella and Fuchs jointly with Tichy
[12] and Walsh [13] considered generalizations of the problem to sets where
the product of any two plus a linear polynomial n = aX + b is a perfect
square. In this case, they proved best possible upper bounds for sets where
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all polynomials have the same degree. Moreover, they showed that there
does not exist a set with more than 12 polynomials in Z[X] with the prop-
erty that the product of any two plus a linear polynomial is a perfect square.

Dujella and Luca considered the case k ≥ 3 and R = K[X], where K
is an algebraically closed field of characteristic zero. Let us mention that
in this case we have to assume that not all the polynomials in a kth power
Diophantine m-tuple {a1, . . . , am} are constant since any m-tuple of constant
polynomials is a kth Diophantine m-tuple for any k ≥ 2. We will also assume
this for the rest of the paper.

From this assumption, it follows that at most one of the polynomials ai

for i = 1, . . . ,m is constant (this is Lemma 1 in [15]). We mention that the
same conclusion is true (with very little modification of the proof) for pure
power Diophantine m-tuples in K[X].

Now the main result from [15] was: if {a1, . . . , am} is a kth power Dio-
phantine m-tuple in K[X], then

m ≤ 5 for k = 3,

m ≤ 4 for k = 4,

m ≤ 3 for k ≥ 5,

m ≤ 2 for k ≥ 5 and k even.

Observe that the result for k = 2 is missing. The first aim of this paper
is to close that gap by proving an upper bound for the size of a 2nd power
Diophantine m-tuple in K[X]. We have the following theorem:

Theorem 1. There does not exist a 2nd power Diophantine 11-tuple in
K[X], i.e.

m ≤ 10 for k = 2.

We remind the reader that in the case K = Z we already know that there
does not exist a Diophantine 5-tuple (which is a consequence of the main
result from [8]).

This result is derived by considering a gap principle together with an
upper bound for the degrees of the elements of such a Diophantine m-tuple,
which is obtained by reducing the problem to a system of Pellian equations
and by studying the solutions to these Pellian equations which lie in finitely
many binary linear recursive sequences. Here we will use auxiliary results
which are contained in the paper by Dujella and Luca [15].

As a second result, we prove an analogue of the conditional result for pure
power Diophantine m-tuples which was obtained by Luca in [21] and which
was mentioned above. We prove:

Theorem 2. There does not exist a pure power Diophantine quintuple where
all perfect powers which appear are ≥ 7. In more details: there does not exist
a set of five polynomials in K[X], not all of them constant, with the property
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that the product of any two distinct elements plus 1 is a perfect kth power
with k ≥ 7.

As a consequence, we get the following result, which can be obtained as a
combination of the previous results for fixed exponent and Ramsey theory
[16] (this is the reason why the upper bound explodes compared to the
results above). We mention that this strategy was first introduced in this
context by Gyarmati, Sárközy and Stewart [18] and was later also used in
[4, 5, 21].

Theorem 3. If {a1, . . . , am} is a pure power Diophantine m-tuple in K[X],
then m ≤ 2 · 109.

In fact, one can choose the Ramsey number R(11, 6, 4, 5; 2) as an upper
bound (for a definition of Ramsey numbers we refer to Section 3). The
parameters in this Ramsey number come from the cases of k = 2, 3, 5
and from Theorem 2. So, improving the above results on kth power
Diophantine m-tuples will also reduce this bound. This is the case e.g.
for pure power Diophantine m-tuples in Z[X], as mentioned above, where
we get m ≤ R(5, 6, 4, 5; 2) ≤ 7362115 ≤ 8 · 105. By slightly changing the
arguments in the proof of Theorem 2, it is possible to prove that there does
not exist a pure power Diophantine quadruple in K[X] with all powers ≥ 8,
but this would lead to m ≤ R(11, 6, 4, 4, 4; 2) ≤ 6 · 1010.

The proofs of the last two theorems essentially run along the same line
as the proof given by Luca in [21] (for the proof of Theorem 2 compare
also with Lemma 2 and 3 in [15]). It is well known that the polynomial
variant of the ABC-conjecture is solved, namely it appears as special case
of the fundamental inequality obtained first by Mason (see [22] and also
[24]), which is the function field analog of Baker’s method for linear forms
in logarithms of algebraic numbers.

In Section 2, we will consider the case of k = 2 and R = K[X]. There
we will give a proof of Theorem 1. In Section 3, we turn to the case of pure
power Diophantine m-tuples and give proofs of Theorems 2 and 3.

2. Proof of Theorem 1

We start by proving a gap principle, which is well known in the classical
case and which was also used in the results for Z[X].

We will say polynomial Diophantine m-tuple instead of 2nd power Dio-
phantine m-tuple in K[X] for brevity.

Lemma 1. Let {a, b, c} be a polynomial Diophantine triple and ab+1 = r2.
Let α, β, γ be degrees of a, b, c, respectively, and assume that α ≤ β ≤ γ.
Then c = a + b± 2r or γ ≥ α + β.
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Proof. Let ac + 1 = s2 and bc + 1 = t2. Consider the polynomials

d1 = a + b + c + 2abc + 2rst,

d2 = a + b + c + 2abc− 2rst.

We have
d1 · d2 = a2 + b2 + c2 − 2ab− 2ac− 2bc− 4.

Therefore, deg(d1) + deg(d2) ≤ 2γ. Since at most one of the elements of
a polynomial Diophantine m-tuple is constant, we have that deg(d1) 6=
deg(d2). Let d− be the polynomial with smaller degree among d1 and d2.
Then deg(d−) < γ. It holds

ad− + 1 = (at± rs)2 = R2, bd− + 1 = (bs± rt)2 = S2.

Denote

c1 = a + b + d− + 2abd− + 2rRS,

c2 = a + b + d− + 2abd− − 2rRS.

Then ac1 + 1 = (aS + rR)2 = (abs ± art + art ± abs ± s)2 and ac2 + 1 =
(aS − rR)2 = (abs ± art − art ∓ abs ∓ s)2. Hence, there exist i ∈ {1, 2}
such that aci + 1 = s2 = ac + 1, which implies c = ci. Let c′ = cj , where
j ∈ {1, 2}, j 6= i. Since c · c′ = c1c2 = a2 + b2 + d2

− − 2ab− 2ad− − 2bd− − 4,
we have deg(c) + deg(c′) ≤ 2γ. Hence, deg(c) ≥ deg(c′).

Now we have two possibilities:
1) If d− = 0, then R = ±1, S = ±1 and c = a + b± 2r.
2) If d− 6= 0, then γ ≥ deg(abd−) ≥ α + β. �

As a consequence of Lemma 1, we can prove the following gap principle
for a polynomial Diophantine quadruple.

Lemma 2. If {a, b, c, d} is a polynomial Diophantine quadruple with 0 <
α ≤ β ≤ γ ≤ δ, then δ ≥ β + γ.

Proof. Assume that δ < β + γ. Then, by Lemma 1, we have δ = γ. Consider
the Diophantine triples {a, c, d} and {b, c, d}. Lemma 1 implies that d =
a+ c+2s = b+ c+2t. This relation implies a− b = 2(t− s). Multiplying by
t + s we obtain t + s = −2c, which clearly implies β = γ. But now we may
apply Lemma 1 to the triple {a, b, d} and obtain

d = a + b + 2r = a + c + 2s = b + c + 2t.

From 2t− 2s = a− b and 2t+2s = −4c, it follows 4t = a− b− 4c. Similarly,
from 2t − 2r = a − c and 2t + 2r = −4b, it follows 4t = a − c − 4b. Hence,
we obtained b = c, a contradiction. �

Before we can prove an upper bound for the degrees of the elements
contained in a polynomial Diophantine quadruple, we will recall the method
of reducing the problem of extending a Diophantine triple to a quadruple
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to the resolution of a system of Pellian equations.

Let ab + 1 = r2, ac + 1 = s2, bc + 1 = t2, ad + 1 = x2, bd + 1 = y2,
cd + 1 = z2. Then

az2 − cx2 = a− c,(1)
bz2 − cy2 = b− c.(2)

By [15, Lemma 4], there exist a nonnegative integer m0 and a solution
(Z0, X0) of (1) such that deg(Z0) ≤ 3γ−α

4 , deg(X0) ≤ α+γ
4 and

z
√

a + x
√

c = (Z0

√
a + X0

√
c)(s +

√
ac)m0 ,

and there exist a nonnegative integer n0 and a solution (Z1, Y0) of (2) such
that deg(Z1) ≤ 3γ−β

4 , deg(Y1) ≤ β+γ
4 and

z
√

b + y
√

c = (Z1

√
b + Y1

√
c)(t +

√
bc)n0 .

Hence, z = Vm0 = Wn0 , where the sequences (Vm)m≥0 and (Un)n≥0 are
defined by

V0 = Z0, V1 = sZ0 + cX0, Vm+2 = 2sVm+1 − Vm,(3)
W0 = Z1, W1 = tZ1 + cY1, Wn+2 = 2tWn+1 −Wn.(4)

The sequences satisfy the following congruence relations.

Lemma 3. We have

V2m ≡ Z0 (mod c), V2m+1 ≡ sZ0 (mod c),
W2n ≡ Z1 (mod c), W2n+1 ≡ tZ1 (mod c),

and

V2m ≡ Z0 + 2c(aZ0m
2 + sX0m) (mod c2),

V2m+1 ≡ sZ0 + c(2asZ0m(m + 1) + X0(2m + 1)) (mod c2),
W2n ≡ Z1 + 2c(bZ1n

2 + tY1n) (mod c2),
W2n+1 ≡ tZ1 + c(2btZ1n(n + 1) + Y1(2n + 1)) (mod c2).

Proof. This follows from (3) and (4) by induction. �

In the next lemma, we give relations between the initial terms
Z0, Z1, X0, Y1.

Lemma 4.
1) If V2m = W2n, then Z0 = Z1.
2) If V2m+1 = W2n, then (Z0, Z1) = (±1,±s), or (Z0, Z1) = (±s,±1),

or Z1 = sZ0 + cX0 or Z1 = sZ0 − cX0.
3) If V2m = W2n+1, then (Z0, Z1) = (±t,±1), or Z0 = tZ1 + cY1, or

Z0 = tZ1 − cY1.
4) If V2m+1 = W2n+1, then sZ0 + cX0 = tZ1 ± cY1, or sZ0 − cX0 =

tZ1 ± cY1.
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Proof.
1) From Lemma 3, we have Z0 ≡ Z1 (mod c), and since deg(Z0) < γ,

deg(Z1) < γ, we conclude that Z0 = Z1.
2) We have Z1 ≡ sZ0 (mod c). If Z0 = ±1, then Z1 = ±s. If Z0 6= ±1,

then deg(Z0) ≥ γ
2 , deg(X0) ≥ α

2 [15, Lemma 5]. If α = 0 and X0 is constant,
then (Z0, Z1) = (±s,±1). Indeed, assume that X0 is constant and put e =
(X2

0 − 1)/a. Then {a, e, c} is a Diophantine triple, and now [15, Lemma 1]
implies a = e, X2

0 = a2 + 1 and Z2
0 = s2. Furthermore, Z1 ≡ sZ0 ≡ ±1

(mod c). Assume now that X0 is not constant. Since

(cX0 + sZ0)(cX0 − sZ0) = c2 − ac− Z2
0 ,

we conclude that one of the polynomials cX0 + sZ0, cX0 − sZ0 has degree
less that γ, and they are both congruent to Z1 modulo c. Hence, one of these
polynomials is equal to Z1.

3) This case in completely analogous to case 2), except that β cannot be
equal to zero.

4) We have sZ0 ≡ tZ1 (mod c). If X0 and Y1 are not constant then, as
above, we conclude that one of the polynomials cX0+sZ0, cX0−sZ0 and one
of the polynomials cY1+tZ1, cY1−tZ1 have degrees less than γ, and these two
polynomials are congruent modulo c, thus, they have to be equal. If Z0 = ±1,
then Z1 ≡ ±st (mod c). Since (±st− cr)(±st+ cr) = ac+ bc+1− c2, one of
the polynomials ±st−cr, ±st+cr has degree less then γ, and therefore it has
to be equal to Z1. But deg(Z1) ≤ 3γ−β

4 , while deg(±st±cr) ≥ 2γ−(γ+ α+β
2 ),

a contradiction.
We have shown in 2) that if X0 is constant and Z0 6= ±1, then Z0 = ±s.

Now from tZ1 ≡ ±1 (mod c), it follows Z1 = ±t and Y 2
1 = b2 + 1,

a contradiction. Finally, if Z1 = 1, then Z0 ≡ ±st (mod c) and Z0 has
to be equal to ±st−cr or ±st+cr. But, as above, deg(Z0) < deg(±st±cr).�

Now we are ready to prove the above mentioned upper bound.

Proposition 1. Let {a, b, c, d} be a polynomial Diophantine quadruple. De-
note by α, β, γ, δ degrees of a,b,c,d, respectively. Assume that β > α and
γ > 4β − α. Then δ < 3γ.

Proof. We will consider three cases, depending on parities of m0 and n0.

Case 1. m0 = 2m, n0 = 2n.

From Lemmas 3 and 4, we have

aZ0m
2 + sX0m ≡ bZ0n

2 + tY1n (mod c).(5)

Both sides of (5) have degrees ≤ β + 3γ−β
4 < γ. Therefore, we can replace ≡

by = in (5):

aZ0m
2 + sX0m = bZ0n

2 + tY1n.(6)



8 A. DUJELLA, C. FUCHS AND F. LUCA

Since α < β, we may assume that Z0 6= ±1. Furthermore, (6) implies that

(7) deg(bZ0n
2 + tY1n) < max(deg(bZ0),deg(tY1)).

We have
(bZ0 + tY1)(bZ0 − tY1) = b2 − bc− Y 2

1 ,

which implies that deg(bZ0) = deg(tY1) and that one of the polynomials
bZ0 + tY1, bZ0− tY1 has degree less than deg(bZ0). But now (7) implies that
n = 0 or n = 1.

Case 2. m0 = 2m + 1, n0 = 2n.

By Lemma 4, we have to consider three cases.
a) (Z0, Z1) = (±1,±s).
Lemma 3 implies

(8) ±2asm(m + 1)± (2m + 1) ≡ ±2bsn2 ± 2rtn (mod c).

Both sides of (8) have degrees ≤ β + α+γ
2 < γ. Hence, we have equality

in (8). From (bs − rt)(bs + rt) = b2 − ab − bc − 1, we conclude that one
of the polynomials bs − rt, bs + rt has degree less that deg(bs). Since the
polynomial bsn2 ± rtn also has degree less that deg(bs), we conclude that
n = 0 or n = 1.

b) (Z0, Z1) = (±s,±1).
Now Lemma 3 implies

(9) ±a± 2am(m + 1) + X0(2m + 1) ≡ ±2bn2 ± 2tn (mod c).

Since the degree of left-hand side is ≤ α+γ
4 , and the degree of right-hand

side is = β+γ
2 < γ, we obtained a contradiction (unless n = 0).

c) Z1 = sZ0 ± cX0.
Now Lemma 3 gives

(10) 2aZ1m(m + 1) + X0(2m + 1∓ 1) ≡ 2bZ1n
2 + 2tY1n (mod c).

As in 1), we replace ≡ by =, and by examining the degree of right-hand side
obtain a contradiction (unless n ≤ 1).

Case 3. m0 = 2m, n0 = 2n + 1.

We have to consider two cases.
a) (Z0, Z1) = (±t,±1).
We obtain the following congruence

(11) ±2atm2 ± 2rsm ≡ ±2btn(n + 1)± (2n + 1) (mod c).

Since the degree of right-hand side of (11) is greater than the degree of
left-hand side and less than γ, we obtain a contradiction as before (unless
n = 0).

b) Z0 = tZ1 ± cY1.
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Now we have the congruence

(12) 2aZ0m
2 + 2sX0m ≡ 2bZ0n(n + 1) + Y1(2n + 1± 1) (mod c),

and again the degree of right-hand side of (12) is greater than the degree of
left-hand side and ≤ β + 3γ−α

4 < γ, which yields a contradiction (for n 6= 0).

Case 4. m0 = 2m + 1, n0 = 2n + 1.

Now Lemma 3 gives
(13)
2asZ0m(m+1)+X0(2m+1±1) ≡ 2btZ1n(n+1)+Y1(2n+1∓1) (mod c).

Noticing that tZ1 ≡ sZ0 (mod c) and multiplying (13) by s, we obtain
(14)
2aZ0m(m+1)+sX0(2m+1±1) ≡ 2bZ0n(n+1)+sY1(2n+1±1) (mod c).

Among the four polynomials in (14), the largest degree has the polynomial
2bZ0n(n + 1), and its degree is less than γ. This leads to a contradiction
(unless n = 0).

Up to now, we proved that if n0 = 2n, then n = 0 or n = 1, and if
n0 = 2n + 1, then n = 0. Therefore, we actually proved that

n0 ≤ 2.

Now, we have
cd + 1 = z2 = W 2

n ≤ W 2
2 .

From
W2 = Z1 + 2c(bZ1 + tY1),

we obtain
deg(W2) ≤ γ + β +

3γ − β

4
=

7γ + 3β

4
and

δ ≤ 7γ + 3β

2
− γ =

5γ + 3β

2
< 3γ.

�

Now we are ready to proof our first theorem. This will be done by
combining the gap principle with the upper bound from the last proposition.

Proof of Theorem 1.
Assume that {a1, a2, . . . , a11} is a polynomial Diophantine 11-tuple. De-

note the degree of ai by αi, for i = 1, 2, . . . , 11. Let α1 ≤ α2 ≤ . . . ≤ α11.
We will show that the triple {a1, a4, a8} satisfies conditions on the triple

{a, b, c} in Proposition 1. By Lemma 2, we have α4 > α1 and

α8 ≥ α7 + α6 ≥ 2α6 + α5 ≥ 3α5 + 2α4 ≥ 5α4.

Therefore, we may apply Proposition 1. We obtain that

α11 < 3α8.
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On the other hand, Lemma 2 implies

α11 ≥ α10 + α9 ≥ 2α9 + α8 > 3α8,

a contradiction. �

3. Proofs of Theorems 2 and 3

Let us recall the definitions of the discrete valuations on the field K(X),
where X is transcendental over the field K. For ξ ∈ K define the valuation νξ

such that for f ∈ K(X) we have f(X) = (X − ξ)νξ(Q)a(X)/b(X) where a, b
are polynomials with a(ξ)b(ξ) 6= 0. Further, for f = a/b with a, b ∈ K[X],
we put deg f := deg a − deg b; thus ν∞ := −deg is a discrete valuation on
K(X). These are all discrete valuations on K(X).

We need the following generalization of the degree from K[X] to K(X).
We define the height of f by

H(f) = −
∑

ν

min{0, ν(f)}

where the sum is taken over all valuations on K(X); thus the height H(f)
is just the number of poles of f counted according to multiplicity. We note
that if f lies in C[X], then H(f) = d deg f .

Now we state the following theorem on the solutions of two-dimensional
unit equations over an algebraic function field, which is usually referred to as
Mason’s inequality and which can be seen as an analog of Baker’s theorem
concerning lower bounds for linear forms in logarithms of algebraic numbers.
A proof of this theorem can be found in the monograph of Mason (cf. [22,
Lemma 2]).

Theorem 4. (R.C. Mason) Let γ1, γ2 and γ3 be non-zero elements of
K(X) with γ1 + γ2 + γ3 = 0, and such that ν(γ1) = ν(γ2) = ν(γ3) for each
valuation ν not in the finite set V. Then

H(γ1/γ2) ≤ max{0, |V| − 2},

where |V| denotes the number of elements of V.

Now we are ready to prove our theorems. We start by obtaining a gap
principle which gives an inequality between the degrees of the elements in a
pure power Diophantine triple.

Lemma 5. Assume that a, b, c ∈ K[X] satisfy ac + 1 = uk and bc + 1 = v`

with u, v ∈ K[X] and k, ` ≥ k0 ≥ 3. Let α, β, γ be the degree of a, b, c,
respectively, and assume that α ≤ β ≤ γ. Then

γ ≤ k0 + 2
k0 − 2

β.

Proof. By eliminating c from the equations ac + 1 = uk, bc + 1 = v` we get

buk − av` = b− a.
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Applying Mason’s inequality (cf. Theorem 4) to this unit equation we get

H(buk/(b− a)) ≤ |V| − 2,

where V = {∞} ∪ {z ∈ K : u(z) = 0, v(z) = 0, a(z) = 0, b(z) = 0, b(z) −
a(z) = 0}. Observe that some of the zeros of a, b and b − a may coincide.
The cardinality of this set can be bounded by

|V| ≤ 1 +
1
k
α +

1
k
γ +

1
`
β +

1
`
γ + β + α +

∑
z∈K

max{0, νz(b− a)− νz(buk)},

since k deg u = deg ac = α + γ and `deg v = deg bc = β + γ. Of course,
this upper bound is not sharp in general. On the other hand, calculating the
height under consideration, we get

H(buk/(b− a))

= −min{deg(b− a)− deg(buk), 0} −
∑
z∈K

min{0, νz(buk)− νz(b− a)}

= deg(buk)− deg(b− a) +
∑
z∈K

max{0, νz(b− a)− νz(buk)}

≥ γ + α +
∑
z∈K

max{0, νz(b− a)− νz(buk)}.

Observe that deg(buk) − deg(b − a) ≥ deg(uk) = deg(ac) = γ + α ≥ 0. It
follows that

γ ≤
(

1
k

+
1
`

+ 1
)

β +
(

1
k

+
1
`

)
γ ≤

(
2
k0

+ 1
)

β +
2
k0

γ

and therefore the bound in the lemma. �

By using Mason’s inequality once again, we prove an upper bound for the
degree of the first element in a pure power Diophantine quadruple in terms
of the degrees of the other three elements. We have:

Lemma 6. Assume that a1, a2, a3, a4 ∈ K[X] are four different polynomials
that satisfy a1a2+1 = xp1

1 , a2a3+1 = xp2
2 , a3a4+1 = xp3

3 , a4a1+1 = xp4
4 with

x1, x2, x3, x4 ∈ K[X] and p1, p2, p3, p4 ≥ k0 ≥ 2 and let α1, α2, α3, α4 denote
the degree of a1, a2, a3, a4, respectively. Assume that α1 ≤ α2 ≤ α3 ≤ α4.
Then

α1 ≤
1

k0 − 1
(α2 + α3 + α4).

Proof. We have a1a2a3a4 = (xp1
1 − 1)(xp3

3 − 1) = (xp2
2 − 1)(xp4

4 − 1) and using
this identity we get

xp1
1 xp3

3 − xp2
2 xp4

4 = xp1
1 + xp3

3 − xp2
2 − xp4

4 = (a1 − a3)(a2 − a4).

Observe that this expression is different from 0 since we assume that the
polynomials are different. Now we apply Mason’s inequality (cf. Theorem 4)
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to the unit equation

xp1
1 xp3

3 − xp2
2 xp4

4 = (a1 − a3)(a2 − a4).

Let V be the set of distinct zeros of x1x2x3x4(a1−a3)(a2−a4) in K together
with ∞. Observe that some of the zeros of x1x2x3x4 and (a1 − a3)(a2 − a4)
may coincide. Therefore the cardinality of V can be estimated by

|V| ≤ 1 +
1
p1

(α1 + α2) +
1
p3

(α3 + α4) +
1
p2

(α2 + α3) +
1
p4

(α1 + α4)

+
∑
z∈K

max{0, νz((a1 − a3)(a2 − a4))− νz(x
p1
1 xp3

3 )}.

We mention that the upper bound is not sharp in general, since we counted
the roots of x1x2x3x4 by multiplicity and just used a partial correction in
the term involving (a1 − a3)(a2 − a4), but this will be enough to get our
desired bound. First we get

H(xp1
1 xp3

3 /((a1 − a3)(a2 − a4)) ≤ |V| − 2,

and by calculating the height directly we obtain

H(xp1
1 xp3

3 /((a1 − a3)(a2 − a4))
= −min{0,deg((a1 − a3)(a2 − a4))− (α1 + α2 + α3 + α4)}

−
∑
z∈K

min{0, νz(x
p1
1 xp3

3 )− νz((a1 − a3)(a2 − a4))}

≥ α1 + α2 +
∑
z∈K

max{0, νz((a1 − a2)(a3 − a4))− νz(x
p1
1 xp3

3 )}.

By comparing upper and lower bound we get

2α1 ≤ α1 + α2 ≤
1
p1

(α1 + α2) +
1
p3

(α3 + α4) +
1
p2

(α2 + α3) +
1
p4

(α1 + α4)

≤ 2
k0

(α1 + α2 + α3 + α4)

and thus (
1− 1

k0

)
α1 ≤

1
k0

(α2 + α3 + α4).

From this, the claim follows. �

Now we are ready the give the proof of Theorem 2, which is obtained by
comparing the upper and lower bound from Lemma 5 and 6.

Proof of Theorem 2.
Let {a1, a2, a3, a4, a5} be a pure power Diophantine quintuple in K[X]

such that the product of any two distinct elements plus 1 is a perfect kth
power for some k ≥ k0 ≥ 3. We denote the degrees by α1, α2, α3, α4, α5,
respectively. Since at most one element in a pure power Diophantine m-
tuple is constant, it follows that α2 ≥ 1.
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By Lemma 6, we get that

α2 ≤
1

k0 − 1
(α3 + α4 + α5).

Now, by using Lemma 5 several times (applied to {a1, a2, a3}, {a1, a2, a4}
and {a1, a2, a5}, respectively), it follows that

α2 ≤
1

k0 − 1

[
k0 + 2
k0 − 2

+
k0 + 2
k0 − 2

+
k0 + 2
k0 − 2

]
α2 =

3(k0 + 2)
(k0 − 1)(k0 − 2)

α2.

Observe again that α2 ≥ 1. It follows

3(k0 + 2)
(k0 − 1)(k0 − 2)

≥ 1.

This inequality leads to a contradiction if k0 ≥ 7 (the left-hand side is a
rational function in k0 which tends to 0 for k0 to infinity). This proves the
theorem. �

Proof of Theorem 3.
We first note that we already know that there is no quintuple such that

the product of any two plus one is a kth power with k ≥ 7 by Theorem
2. It remains to take only the possibilities with smaller exponents into ac-
count. Clearly, we can restrict to prime exponents and thus assume that the
exponent k belongs to the list P = {2, 3, 5} of primes below 7.

Now let G be the graph whose vertices are the elements of the pure power
Diophantine m-tuple. We color the edge of G with the 4 colors P ∪ {∞} in
the following way: if aiaj + 1 = xk, then the edge from ai to aj is colored
with p if p is the smallest prime from P dividing k and with ∞ if there is
no such p ∈ P.

Now it is clear that m ≤ R(11, 6, 4, 5; 2). Recall that the Ramsey number
R(ns1 , ns2 , . . . , nst ; 2) is the smallest positive integer R such that no matter
how we color the edges of the complete graph with R vertices with the colors
s1, s2, . . . , st, there exist i and a complete monochromatic subgraph with ni

vertices colored with color i. The numbers ni in our upper bound follow
from our Theorem 1 (namely, n2 = 11), the bounds proved in [15] (namely,
n3 = 6 and n5 = 4) and the bound from Theorem 2 (namely, n∞ = 5).

To simplify the upper bound we use the recurrence

R(ns1 , ns2 , . . . , nst ; 2)

≤ t− 2 +
t∑

i=1

R(ns1 , . . . , nsi−1 , nsi − 1, nsi+1 , . . . , nst ; 2),

together with the facts that Ramsey numbers are symmetric with respect
to the ni, i.e.

R(ns1 , ns2 , . . . , nst ; 2) = R(nσ(s1), nσ(s2), . . . , nσ(st); 2)
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for a permutation σ of the set {s1, . . . , st}, and that we have

R(2, ns1 , ns2 , . . . , nst−1 ; 2) = R(ns1 , ns2 , . . . , nst−1 ; 2),
R(n; 2) = n.

A list of upper bounds for small Ramsey numbers can be found in [23],
e.g. we have R(3, 3; 2) = 6, R(3, 3, 3; 2) = 17 and R(3, 3, 3, 3; 2) ≤ 62. For
all these results, we refer to the survey paper [23]. By using all the bounds
there together with the general recurrence formula from above, it is easy to
show that m ≤ 180952390 ≤ 2 · 109. This finishes the proof. �
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