A parametric family of elliptic curves

Andrej Dujella (Zagreb)

(extended version)

Abstract

Let $k \geq 3$ be an integer and let E_k be the elliptic curve given by

$$E_k$$
: $y^2 = ((k-1)x+1)((k+1)x+1)(4kx+1)$.

It is proven that if rank $(E_k(\mathbf{Q})) = 1$ or $k \leq 1000$, then all integer points on E_k are given by

$$(x,y) \in \{(0,\pm 1), (16k^3 - 4k, \pm (128k^6 - 112k^4 + 20k^2 - 1))\}.$$

The same result is also proven for two subfamilies with rank equal 2 and for one subfamily with rank equal 3.

1 Introduction

A set of positive integers $\{a_1, a_2, \ldots, a_m\}$ is called a Diophantine m-tuple if $a_i a_j + 1$ is a perfect square for all $1 \le i < j \le m$. The problem of construction of Diophantine m-tuples has a long history (see [6]). Diophantus found a set of four positive rationals with the above property. However, the first Diophantine quadruple was found by Fermat, and it was the set $\{1, 3, 8, 120\}$.

In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1,3,8,d\}$ is a Diophantine quadruple, then d has to be 120. Recently, the theorem of Baker and Davenport has been generalized to some parametric families of Diophantine triples ([7, 8, 10]). The main result of [7] is the following theorem.

Theorem 1 Let $k \ge 2$ be an integer. If the set $\{k-1, k+1, 4k, d\}$ is a Diophantine quadruple, then d has to be $16k^3 - 4k$.

⁰1991 Mathematics Subject Classification: 11G05, 11D09, 11Y50.

Eliminating d from the system

$$(k-1)d+1 = x_1^2$$
, $(k+1)d+1 = x_2^2$, $4kd+1 = x_3^2$, (1)

we obtain the system

$$(k+1)x_1^2 - (k-1)x_2^2 = 2, (2)$$

$$4kx_1^2 - (k-1)x_3^2 = 3k+1, (3)$$

and then we can reformulate this system into the equation $v_m = w_n$, where (v_m) and (w_n) are binary recursive sequences defined by

$$v_0 = 1$$
, $v_1 = 2k - 1$, $v_{m+2} = 2kv_{m+1} - v_m$, $m \ge 0$,
 $w_0 = 1$, $w_1 = 3k - 2$, $w_{n+2} = (4k - 2)w_{n+1} - w_n$, $n \in \mathbf{Z}$.

In order to prove Theorem 1, it suffices to prove that all solutions of the equation $v_m = w_n$ are given by $v_0 = w_0 = 1$ and $v_2 = w_{-2} = 4k^2 - 2k - 1$, which correspond to d = 0 and $d = 16k^3 - 4k$. A comparison of the upper bound for solutions, obtained from the theorem of Rickert [23] on simultaneous rational approximations to the numbers $\sqrt{(k-1)/k}$ and $\sqrt{(k+1)/k}$, with the lower bound, obtained from the congruence condition modulo 4k(k-1), finishes the proof for $k \geq 29$. In the proof of Theorem 1 for $k \leq 28$ we used Grinstead's method [15].

It is clear that every solution of the system (1) induces an integer point on the elliptic curve

$$E_k$$
: $y^2 = ((k-1)x+1)((k+1)x+1)(4kx+1)$.

Our conjecture is that the converse of this statement is also true.

Conjecture 1 Let $k \geq 3$ be an integer. All integer points on E_k are given by

$$(x,y) \in \{(0,\pm 1), (16k^3 - 4k, \pm (128k^6 - 112k^4 - 20k^2 - 1))\}.$$

In this paper we will prove Conjecture 1 under assumption that $\operatorname{rank}(E_k(\mathbf{Q})) = 1$. This condition is not unrealistic since "the generic rank" of the corresponding elliptic surface is equal 1. We will also prove Conjecture 1 for two subfamilies of curves with rank equal 2 and for one subfamily with rank equal 3. Finally, using properties of Pellian equations, we will prove Conjecture 1 for all k in the range $3 \le k \le 1000$.

Let us note that in [11] the family of elliptic curves

$$C_l$$
: $y^2 = (x+1)(3x+1)(c_lx+1)$,

where $c_1 = 8$, $c_2 = 120$, $c_{l+2} = 14c_{l+1} - c_l + 8$ for $l \ge 1$, was considered. It is proven that if rank $(C_l(\mathbf{Q})) = 2$ or $l \le 40$, with possible exceptions l = 23 and l = 37, then all integer points on C_l are given by

$$x \in \{-1, 0, c_{l-1}, c_{l+1}\}.$$

In particular, for l = 1 it follows that all integer points on E_2 are given by

$$(x,y) \in \{(-1,0), (0,\pm 1), (120,\pm 6479)\}.$$

2 Torsion group

The coordinate transformation

$$x \mapsto \frac{x}{4k(k-1)(k+1)}, \quad y \mapsto \frac{y}{4k(k-1)(k+1)}$$

applied on the curve E_k leads to the elliptic curve

$$E'_k: y^2 = (x+4k^2+4k)(x+4k^2-4k)(x+k^2-1)$$

= $x^3 + (9k^2-1)x^2 + 24k^2(k^2-1)x + 16k^2(k^2-1)^2.$

There are three rational points on E'_k of order 2, namely

$$A_k = (-4k^2 - 4k, 0), \quad B_k = (-4k^2 + 4k, 0), \quad C_k = (-k^2 + 1, 0),$$

and also another obvious rational point on E'_k , namely

$$P_k = (0, 4k^3 - 4k)$$
.

We will show that the point P_k cannot be of finite order.

Theorem 2
$$E_k'(\mathbf{Q})_{\text{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}$$

PROOF. Assume that $E'_k(\mathbf{Q})_{\text{tors}}$ contains a subgroup isomorphic to $\mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/4\mathbf{Z}$. Then a theorem of Ono [22, Main Theorem 1] implies that $3k^2 + 4k + 1$ and $3k^2 - 4k + 1$ are perfect squares. Since $\gcd(3k+1, k+1) = \gcd(3k-1, k-1) \in \{1, 2\}$, we have

$$3k + 1 = \alpha^2$$
, $k + 1 = \beta^2$, $3k - 1 = 2\gamma^2$, $k - 1 = 2\delta^2$ (4)

or

$$3k + 1 = 2\alpha^2$$
, $k + 1 = 2\beta^2$, $3k - 1 = \gamma^2$, $k - 1 = \delta^2$. (5)

From $k = 2\delta^2 + 1$ it follows that k is odd. On the other hand, from $\alpha^2 - \beta^2 = 2k$ it follows that k is even, a contradiction. Similarly, relation (5) implies $k = 2\beta^2 - 1$ and $\gamma^2 - \delta^2 = 2k$, which again leads to a contradiction.

Hence, $E_k'(\mathbf{Q})_{\mathrm{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}$ or $E_k'(\mathbf{Q})_{\mathrm{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/6\mathbf{Z}$, and according to the theorem of Ono the latter is possible iff there exist integers α and β such that $\frac{\alpha}{\beta} \notin \{-2, -1, -\frac{1}{2}, 0, 1\}$ and

$$3k^2 + 4k + 1 = \alpha^4 + 2\alpha^3\beta$$
, $3k^2 - 4k + 1 = 2\alpha\beta^3 + \beta^4$.

Now we have

$$(\alpha^2 + \alpha\beta + \beta^2)^2 - 3\alpha^2\beta^2 = 6k^2 + 2 \tag{6}$$

which is impossible since left hand side of (6) is $\equiv 0$ or 1 (mod 3), and the right hand side of (6) is $\equiv 2 \pmod{3}$.

Corollary 1 rank $(E'_k(\mathbf{Q})) \ge 1$

PROOF. By Theorem 2, the point $P_k = (0, 4k^3 - 4k)$ on E'_k is not of finite order, which shows that $\operatorname{rank}(E'_k(\mathbf{Q})) \geq 1$.

3 Case rank $(E_k(\mathbf{Q})) = 1$

In the rest of the paper we will often use the following 2-descent Proposition (see [16, 4.1, p.37], [18, 4.2, p.85]).

Proposition 1 Let E be an elliptic curve over a field k of characteristic not equal to 2 or 3. Suppose E is given by

$$y^2 = (x - \alpha)(x - \beta)(x - \gamma),$$

with $\alpha, \beta, \gamma \in k$. For $P = (x', y') \in E(k)$, there exists $Q = (x, y) \in E(k)$ such that 2Q = P iff $x' - \alpha$, $x' - \beta$, $x' - \gamma$ are squares in k.

Lemma 1 $P_k, P_k + A_k, P_k + B_k, P_k + C_k \not\in 2E'_k(\mathbf{Q})$

Proof. We have

$$P_k + A_k = (-4k^2 + 2k + 2, -6k^2 + 4k + 2),$$

$$P_k + B_k = (-4k^2 - 2k + 2, 6k^2 + 4k - 2),$$

$$P_k + C_k = (8k^2, -36k^3 + 4k).$$

Since none of the numbers k^2-1 , $-3k^2+2k+1$, $-3k^2-2k+1$ and $9k^2-1$ is a perfect square (for $k \geq 2$), Proposition 1 implies that $P_k, P_k + A_k, P_k + B_k, P_k + C_k \not\in 2E_k'(\mathbf{Q})$.

Theorem 3 Let $k \geq 3$ be an integer. If the rank of the elliptic curve

$$E_k$$
: $y^2 = ((k-1)x+1)((k+1)x+1)(4kx+1)$

is equal 1, then all integer points on E_k are given by

$$(x,y) \in \{(0,\pm 1), (16k^3 - 4k, \pm (128k^6 - 112k^4 + 20k^2 - 1))\}.$$
 (7)

PROOF. Let $E_k'(\mathbf{Q})/E_k'(\mathbf{Q})_{\mathrm{tors}} = \langle U \rangle$ and $X \in E_k'(\mathbf{Q})$. Then we can represent X in the form X = mU + T, where m is an integer and T is a torsion point, i.e. $T \in \{\mathcal{O}, A_k, B_k, C_k\}$. Similarly, $P_k = m_P U + T_P$ for an integer m_P and a torsion point T_P . By Lemma 1 we have that m_P is odd. Hence, $U \equiv P + T_P \pmod{2E_k'(\mathbf{Q})}$. Therefore we have $X \equiv X_1 \pmod{2E_k'(\mathbf{Q})}$, where

$$X_1 \in \mathcal{S} = \{ \mathcal{O}, A_k, B_k, C_k, P_k, P_k + A_k, P_k + B_k, P_k + C_k \}.$$
 (8)

Let $\{a, b, c\} = \{4k^2 + 4k, 4k^2 - 4k, k^2 - 1\}$. By [18, 4.6, p.89], the function $\varphi : E'_k(\mathbf{Q}) \to \mathbf{Q}^*/\mathbf{Q}^{*2}$ defined by

$$\varphi(X) = \begin{cases} (x+a)\mathbf{Q}^{*2} & \text{if } X = (x,y) \neq \mathcal{O}, (-a,0) \\ (b-a)(c-a)\mathbf{Q}^{*2} & \text{if } X = (-a,0) \\ \mathbf{Q}^{*2} & \text{if } X = \mathcal{O} \end{cases}$$

is a group homomorphism.

Therefore, in order to find all integer points on E_k , it suffices to solve in integers all systems of the form

$$(k-1)x + 1 = \alpha \square, \quad (k+1)x + 1 = \beta \square, \quad 4kx + 1 = \gamma \square$$
 (9)

where for $X_1 = (4k(k^2 - 1)u, 4k(k^2 - 1)v) \in \mathcal{S}$, numbers α, β, γ are defined by $\alpha = (k - 1)u + 1$, $\beta = (k + 1)u + 1$, $\gamma = 4ku + 1$ if all of these three

expressions are nonzero, and if e.g. (k-1)u+1=0 then we define $\alpha=\beta\gamma$. Here \square denotes a square of a rational number.

Observe that for $X_1 = P_k$ the system (9) becomes

$$(k-1)x + 1 = \square$$
, $(k+1)x + 1 = \square$, $4kx + 1 = \square$.

As we said in the introduction, this system is completely solved in [7], and its solutions correspond to the integers points on E_k listed in Theorem 3.

Hence, we have to prove that for $X_1 \in \mathcal{S} \setminus \{P_k\}$, the system (9) has no integer solution.

For $X_1 \in \{A_k, B_k, P_k + A_k, P_k + B_k\}$ exactly two of the numbers α, β, γ are negative and accordingly the system (9) has no integer solution. Let us consider three remaining cases. In the rest of the paper by e' we will denote the square-free part of an integer e.

1)
$$X_1 = \mathcal{O}$$

The system (9) becomes

$$(k-1)x + 1 = k(k+1)\Box, (10)$$

$$(k+1)x + 1 = k(k-1)\Box, (11)$$

$$4kx + 1 = (k-1)(k+1)\square. (12)$$

Since k' divides (k-1)x+1 and (k+1)x+1, we have k'=1 or 2, and it means that $k=\square$ or $2\square$. In the same way we obtain that $k-1=\square$ or $2\square$, and $k+1=\square$ or $2\square$. Thus, between three successive numbers k-1, k, k+1 we have two squares or two double-squares, a contradiction.

2)
$$X_1 = C_k$$

Now the system (9) becomes

$$(k-1)x + 1 = k(3k+1)\square,$$

 $(k+1)x + 1 = k(3k-1)\square,$
 $4kx + 1 = (3k-1)(3k+1)\square.$

If k is even, then $(3k-1)(3k+1) \equiv -1 \pmod{4}$ and thus the equation $4kx+1=(3k-1)(3k+1)\square$ is impossible modulo 4.

If $k \equiv 1 \pmod{4}$, then (k+1)x+1 is odd. But $k(3k-1) \equiv 2 \pmod{4}$ implies that $k(3k-1)\square$ is even, a contradiction.

If $k \equiv -1 \pmod{4}$, then (k-1)x+1 is odd, but $k(3k+1) \equiv 2 \pmod{4}$ and we have again a contradiction.

3)
$$X_1 = P_k + C_k$$

We have to solve the system

$$(k-1)x+1 = (k+1)(3k+1)\square,$$

 $(k+1)x+1 = (k-1)(3k-1)\square,$
 $4kx+1 = (k-1)(k+1)(3k-1)(3k+1)\square.$

Assume that k is even. Since (k+1)' divides (k-1)x+1 and 4kx+1 we have that (k+1)'|(3k+1), and it implies (k+1)'=1 and $k+1=\square$. In the same way we obtain that $k-1=\square$, and this is impossible.

Assume now that k is odd. Then (k-1)x+1 and (k+1)x+1 are odd. Furthermore, $(k+1)(3k+1) \equiv 0 \pmod 8$ and since the number $(k+1)(3k+1)\square = (k-1)x+1$ is odd we should have $(k+1)(3k+1) \equiv 0 \pmod 16$. It implies $k \equiv 5$ or $7 \pmod 8$.

Similarly, since $(k-1)(3k-1) \equiv 0 \pmod{8}$ and $(k-1)(3k-1) \square = (k+1)x+1$ is odd, we conclude that $(k-1)(3k-1) \equiv 0 \pmod{16}$. It implies $k \equiv 1$ or $3 \pmod{8}$ and we get a contradiction.

Remark 1 Bremner, Stroeker and Tzanakis [3] proved recently a similar result to our Theorem 3 for the family of elliptic curves

$$C_k$$
: $y^2 = \frac{1}{3}x^3 + (k - \frac{1}{2})x^2 + (k^2 - k + \frac{1}{6})x$,

under assumptions that rank $(C_k(\mathbf{Q})) = 1$ and that $C_k(\mathbf{Q})/C_k(\mathbf{Q})_{\text{tors}} = \langle (1,k) \rangle$.

We come to the following natural question: How realistic is the condition rank $(E_k(\mathbf{Q})) = 1$? We calculated the rank for $2 \le k \le 100$ using the programs SIMATH [25] and MWRANK [5]. The rank values are listed in Table 1.

$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 1$	k = 2, 3, 5, 7, 8, 9, 12, 13, 17, 18, 24, 26, 29, 33, 35, 36, 41, 44, 51, 55, 57, 58, 61, 64, 66, 67, 70, 73, 75, 78, 79, 82, 85, 86, 87, 89, 92, 96, 98, 100
$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 2$	k = 4, 6, 10, 11, 15, 16, 19, 20, 21, 22, 23, 25, 27, 30, 32, 37, 38, 39, 40, 42, 43, 45, 46, 47, 48, 49, 50, 53, 54, 59, 62, 65, 68, 69, 71, 72, 74, 81, 83, 84, 88, 90, 91, 93, 94*, 95, 97, 99
$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 3$	k = 14, 31, 34, 52, 56, 60, 63, 76, 80

Table 1:

The rank has been determined unconditionally for k in the range $2 \le k \le 100$ except for k = 94, when it is computed assuming the Birch and Swinnerton-Dyer Conjecture (Manin's conditional algorithm). We obtained the following distribution of ranks: 41 cases of rank 1, 49 cases of rank 2 and 9 cases of rank 3.

In the range $101 \le k \le 200$ we determined the rank unconditionally for all k except for k = 118, when we used the Birch and Swinnerton-Dyer Conjecture, and for k = 122, when we were able only to conclude that $2 \le \operatorname{rank}(E_{122}(\mathbf{Q})) \le 4$. The rank values are listed in Table 2.

$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 1$	k =	104, 109, 110, 120, 126, 128, 134, 136, 137, 139, 141, 143, 147, 148, 149, 151, 156, 158, 165, 169, 171, 173, 177, 182, 185, 188, 191, 192, 193, 194, 196,
$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 2$	k =	102, 103, 105, 106, 107, 108, 111, 112, 113, 114, 115, 116, 117, 118*, 119, 121, 123, 124, 125, 130, 132, 135, 138, 140, 142, 144, 145, 146, 150, 152, 153, 157, 159, 160, 161, 162, 163, 164, 167, 168, 170, 172, 176, 178, 179, 181, 187, 190, 195, 198, 199, 200
$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 3$	k =	101, 127, 129, 131, 133, 154, 155, 166, 174, 175, 180, 183, 186, 189, 197
$\operatorname{rank}\left(E_k(\mathbf{Q})\right) = 4$	k =	184

Table 2:

In the range $101 \le k \le 200$ we obtained the following distribution of ranks: 31 cases of rank 1, 52 cases of rank 2, 15 cases of rank 3 and 1 case of rank 4.

The data from Tables 1 and 2 suggest that the generic rank of the elliptic curve E' over $\mathbf{Q}(k)$ is equal 1, and we will prove this statement in the following theorem.

Theorem 4 rank $E'(\mathbf{Q}(k)) = 1$

PROOF. Let $(x(k),y(k))\in E'(\mathbf{Q}(k))$ and $x(k)=\frac{p(k)}{q^2(k)}$, where p(k),q(k) are polynomials with integer coefficients. We have

$$p(k) + (k^2 - 1)q^2(k) = \mu_1(k)\mu_2(k)\Box,$$

$$p(k) + (4k^2 - 4k)q^2(k) = \mu_1(k)\mu_3(k)\square,$$

 $p(k) + (4k^2 + 4k)q^2(k) = \mu_2(k)\mu_3(k)\square,$

where \square denotes a square of a polynomial in $\mathbf{Z}[k]$, and $\mu_1(k)$, $\mu_2(k)$, $\mu_3(k)$ are square-free polynomials in $\mathbf{Z}[k]$. We may also choose that the leading coefficient of $\mu_1(k)$ is positive. After this choice, the triple $(\mu_1(k), \mu_2(k), \mu_3(k))$ is uniquely determined by x(k).

Furthermore, we have $\mu_1(k)|(k-1)(3k-1)$, $\mu_2(k)|(k+1)(3k+1)$ and $\mu_3(k)|8k$. Hence, $\mu_1(k) \in \{1, k-1, 3k-1, (k-1)(3k-1)\}$, $\mu_2(k) \in \{\pm 1, \pm (k-1), \pm (3k-1), \pm (k-1)(3k-1)\}$, $\mu_3(k) \in \{\pm 1, \pm 2, \pm k, \pm 2k\}$.

We claim that there are exactly eight triples $(\mu_1(k), \mu_2(k), \mu_3(k))$ which may appear, namely the triples

$$(k(k+1), k(k-1), (k-1)(k+1)),$$

$$(2(3k+1), -2(k-1), -(k-1)(3k+1)),$$

$$(2(k+1), -2(3k+1), -(k+1)(3k-1)),$$

$$(k(3k+1), k(3k-1), (3k-1)(3k+1)), (1, 1, 1),$$

$$(2k(k+1)(3k+1), -2k, -(k+1)(3k+1)),$$

$$(2k, -2k(k-1)(3k-1), -(k-1)(3k-1)),$$

$$((k+1)(3k+1), (k-1)(3k-1), (k-1)(k+1)(3k-1)(3k+1)),$$

which correspond to the points \mathcal{O} , $A(k) = A_k$, $B(k) = B_k$, $C(k) = C_k$, $P(k) = P_k$, P(k) + A(k), P(k) + B(k) and P(k) + C(k).

Let us consider now the specialization k = 12. We choose k = 12 because rank $(E'_{12}(\mathbf{Q})) = 1$, $E'_{12}(\mathbf{Q})/E'_{12}(\mathbf{Q})_{\text{tors}} = \langle P_{12} \rangle$ and furthermore square-free parts of all polynomial factors of (k-1)(3k-1), (k+1)(3k+1) and 8k respectively, evaluated at k = 12, are distinct. Thus, if there are more that 8 choices for $(\mu_1(k), \mu_2(k), \mu_3(k))$ on $E'(\mathbf{Q}(k))$, there will be more than 8 choices on $E'_{12}(\mathbf{Q})$. Since this is not the case, we conclude that all possibilities for $(\mu_1(k), \mu_2(k), \mu_3(k))$ are indeed given by (13).

Let V be an arbitrary point on $E(\mathbf{Q}(k))$. Consider nine points

$$\mathcal{O}$$
, $A(k)$, $B(k)$, $C(k)$, $P(k)$, $P(k) + A(k)$, $P(k) + B(k)$, $P(k) + C(k)$, V .

Two of them have equal corresponding triples. By [16, 4.3, p.125], these two points are congruent modulo $2E'(\mathbf{Q}(k))$. We have already proved in Theorem 2 and Lemma 1 that the first eight points are incongruent modulo

 $2E'(\mathbf{Q}(k))$ (since the specialization map is a homomorphism). Hence we have two possibilities:

- 1) $V \equiv T_1 \pmod{2E'(\mathbf{Q}(k))}$,
- 2) $V \equiv P(k) + T_2 \pmod{2E'(\mathbf{Q}(k))},$

where $T_i \in \{\mathcal{O}, A(k), B(k), C(k)\}.$

Let $\{D_1, \ldots, D_r\}$ be the Mordell-Weil base for $E'(\mathbf{Q}(k))$ and assume that $r \geq 2$. Let $P(k) = \sum_{i=1}^r \alpha_i D_i + T$, where T is a torsion point. Consider the point D_r . According to the above discussion, we have two possibilities:

- 1) $D_r \equiv T_1 \pmod{2E'(\mathbf{Q}(k))}$ It implies $D_r = T_1 + 2F_r$, where $F_r = \sum_{i=1}^r \beta_i D_i + T'$, and we obtain $1 = 2\beta_r$, a contradiction
- 2) $D_r \equiv P(k) + T_2 \pmod{2E'(\mathbf{Q}(k))}$ Now we have

$$\alpha_1 D_1 + \dots + \alpha_{r-1} D_{r-1} + (\alpha_r - 1) D_r + T_2 + T \in 2E'(\mathbf{Q}(k)).$$

Hence, α_{r-1} is even and α_r is odd. Analogously, considering the point D_{r-1} , we conclude that α_{r-1} is odd and α_r is even, which leads to a contradiction.

If we define the average rank of $E'(\mathbf{Q}(k))$ to be

Avg.rank
$$E'(\mathbf{Q}(k)) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} \operatorname{rank}(E'_k(\mathbf{Q})),$$

then the Katz-Sarnak Conjecture (see [24]) states that

$$\operatorname{Avg.rank} E'(\mathbf{Q}(k)) = \operatorname{rank} E'(\mathbf{Q}(k)) + \frac{1}{2} = 1.5.$$

This means that at least 50% of curves E_k should have the rank equal 1. As explained in [24], the Katz-Sarnak Conjecture is not in complete agreement with experimental results of Fermigier [12]. Examining an extensive collection of data (66918 curves in 93 families) Fermigier found that rank $(E_t(\mathbf{Q})) = \text{rank } E(\mathbf{Q}(t))$ in 32% of cases. Perhaps it can be compared with our situation where we found that in the range $2 \le k \le 200$ we have rank $(E'_k(\mathbf{Q})) = \text{rank } E'(\mathbf{Q}(k))$ in 36% of cases.

Thus we have reasons to believe that Theorem 3 shows that Conjecture 1 is valid for a large class of positive integers k.

4 The first family with rank ≥ 2

The Katz-Sarnak Conjecture implies, and Tables 1 and 2 confirm, that there are many curves in the family E_k with rank ≥ 2 . Therefore, we may try to find an explanation for these additional rational points on E_k . We succeeded in two special cases. Namely, we used SIMATH¹ to find all integer points on E'_k in some cases with rank $(E'_k(\mathbf{Q})) > 1$. Then we transformed these integer points on E'_k to rational points on E_k . After doing it, we noticed some regularities in the appearance of these points. Namely, there were several curves with rational point with x-coordinate equal to $\frac{3}{4}$, and also several curves with two rational points with x-coordinates very close to 6. Analyzing these phenomena, we find two subfamilies of (E_k) which consist of elliptic curves with rank ≥ 2 .

More precisely, these families are $E_{k_1(n)}$ and $E_{k_2(m)}$, where $k_1(n) = 3n^2 + 2n - 2$ and $k_2(m) = \frac{1}{2}(3m^2 + 5m)$ for integers $n \neq -1, 0, 1$ and $m \neq -2, -1, 0$.

Let us first consider the family $E_{k_1(n)}$. For the sake of simplicity we denote $E'_{k_1(n)}$ by E^*_n . It is easy to verify that the point

$$R_n = (3(n+1)(3n-1)(3n^2+2n-3)(3n^2+2n-2),$$

$$(n+1)(3n-1)(3n+1)(3n^2+2n-3)(3n^2+2n-2)(9n^2+6n-5))$$

is a point on E_n^* . Note that x-coordinate of R_n is equal to

$$\frac{3}{4} \cdot 4k_1(n)(k_1(n) - 1)(k_1(n) + 1).$$

Let
$$A_n = A_{k_1(n)}$$
, $B_n = B_{k_1(n)}$, $C_n = C_{k_1(n)}$ and $P_n = P_{k_1(n)}$. Then we have
$$R_n + A_n = (-4n(3n+2)(3n^2+2n-3)),$$

$$-8(3n+1)(3n^2+2n-3)),$$

$$R_n + B_n = \left(-\frac{4(n+1)^2(3n-2)(3n-1)^2(3n+4)}{(3n+1)^2},$$

$$\frac{8(n+1)(3n-1)(9n^2+6n-7)(9n^2+6n-5)}{(3n+1)^3}\right),$$

$$R_n + C_n = (-(n-1)(3n+5)(3n^2+2n-2),$$

$$-(3n+1)(3n^2+2n-2)(9n^2+6n-7)),$$

$$R_n + P_n = (-8(3n^3-3n+1),$$

$$4n(n-1)(n+1)(3n-2)(9n^2+6n-5)),$$

¹In Simath there is implemented the algorithm of Gebel, Pethő and Zimmer [13] for computing all integer points of the elliptic curve.

$$R_{n} + P_{n} + A_{n} = \left(-\frac{2(n+1)(3n-1)(2n^{2}-1)(3n^{2}+2n-2)}{n^{2}}, -\frac{-2(n-1)(n+1)^{2}(3n-2)(3n-1)(3n^{2}+2n-2)}{n^{3}} \right),$$

$$R_{n} + P_{n} + B_{n} = \left(-\frac{2(3n+1)(3n^{2}+2n-3)(3n^{2}+2n-2)(6n^{3}+2n^{2}-5n+1)}{(3n-2)^{2}(n+1)^{2}}, -\frac{2n(n-1)(3n^{2}+2n-3)(3n^{2}+2n-2)(9n^{2}+6n-7)(9n^{2}+6n-5)}{(3n-2)^{3}(n+1)^{3}} \right),$$

$$R_{n} + P_{n} + C_{n} = \left(\frac{8(n+1)(3n-1)(n^{2}+n-1)(3n^{2}+2n-3)}{(n-1)^{2}}, -\frac{4n(n+1)^{2}(3n-2)(3n-1)(3n^{2}+2n-3)(9n^{2}+6n-7)}{(n-1)^{3}} \right).$$

Lemma 2 If $n \neq -1, 0, 1$, then $R_n, R_n + A_n, R_n + B_n, R_n + C_n, R_n + P_n, R_n + P_n + A_n, R_n + P_n + B_n, R_n + P_n + C_n \notin 2E_n^*(\mathbf{Q})$.

PROOF. As in the proof of Lemma 1, we use Proposition 1. For the points $R_n + A_n$, $R_n + B_n$, $R_n + P_n + A_n$ and $R_n + P_n + B_n$ the conditions from Proposition 1 are obviously not satisfied, because two of these conditions give $\square < 0$.

If
$$R_n = (x, y) \in 2E_n^*(\mathbf{Q})$$
, then we have

$$x + 4k_1^2(n) - 4k_1(n) = (3n^2 + 2n - 3)(3n^2 + 3n - 2)(3n + 1)^2 = \square,$$

a contradiction.

If
$$R_n + C_n = (x, y) \in 2E_n^*(\mathbf{Q})$$
, then we have

$$x + k_1^2(n) - 1 = 9n^2 + 6n - 7 = (3n+1)^2 - 8 = \square,$$

which implies $3n + 1 = \pm 3$, a contradiction.

If
$$R_n + P_n = (x, y) \in 2E_n^*(\mathbf{Q})$$
, then we have

$$x + 4k_1^2(n) + 4k_1(n) = 4n^2(9n^2 + 6n - 5) = \square,$$

which implies $6 = (3n+1)^2 - \square$, a contradiction.

If
$$R_n + P_n + C_n = (x, y) \in 2E_n^*(\mathbf{Q})$$
, then we have

$$x + 4k_1^2(n) - 4k_1(n) = \frac{4n^2(3n^2 + 2n - 3)(9n^2 + 6n - 7)}{(n - 1)^2} = \square.$$

Since $gcd(3n^2 + 2n - 3, 9n^2 + 6n - 7) = 1$ or 2, and we have already seen that $9n^2 + 6n - 7 = \square$ is impossible, this implies that

$$3n^2 + 2n - 3 = 2\alpha^2$$
 and $9n^2 + 6n - 7 = 2\beta^2$. (14)

The condition $x + k_1^2(n) - 1 = \square$ gives

$$3n^2 + 2n - 1 = \gamma^2. (15)$$

Combining (14) and (15) we obtain the following system of Pellian equations

$$\gamma^2 - 2\alpha^2 = 2,$$

$$2\beta^2 - 3\gamma^2 = -4.$$

These two equations imply that γ and β are even, say $\gamma=2\delta$, $\beta=2\varepsilon$. Define the integer s by $s=\frac{\varepsilon^2-1}{3}$. Then we have: $3s+1=\varepsilon^2$, $2s+1=\delta^2$, $4s+1=\alpha^2$. Hence, s satisfies the equation

$$t^{2} = (2s+1)(3s+1)(4s+1), (16)$$

which under substitution $t_1 = 24t$, $s_1 = 24s$ becomes

$$t_1^2 = s_1^3 + 26s_1^2 + 216s_1 + 576. (17)$$

Using SIMATH we find that all integer points on (17) are (-6,0), (-8,0), (-12,0), $(-10,\pm 4)$, $(-9,\pm 3)$, $(-4,\pm 8)$, $(0,\pm 24)$, $(42,\pm 360)$. Hence, the only integer solution of (16) is s=0, which implies $\alpha^2=1$ and n=1.

Corollary 2 If $n \neq -1, 0, 1$, then rank $(E_n^*(\mathbf{Q})) \geq 2$.

PROOF. We claim that the points P_n and R_n generate a subgroup of rank 2 in $E_n^*(\mathbf{Q})/E_n^*(\mathbf{Q})_{\text{tors}}$. We have to prove that $p_1P_n+r_1R_n \in E_n^*(\mathbf{Q})_{\text{tors}}$, $p_1, r_1 \in \mathbf{Z}$, implies $p_1 = r_1 = 0$.

Assume that $p_1P_n + r_1R_n = T \in E_n^*(\mathbf{Q})_{\text{tors}} = \{\mathcal{O}, A_n, B_n, C_n\}$. If p_1 and r_1 are not both even, then $T + P_n \in 2E_n^*(\mathbf{Q})$ or $T + R_n \in 2E_n^*(\mathbf{Q})$ or $T + P_n + R_n \in 2E_n^*(\mathbf{Q})$. But this is impossible by Lemmas 1 and 2. Hence, p_1 and r_1 are even, say $p_1 = 2p_2$, $r_1 = 2r_2$. Since, by Theorem 2, $A_n, B_n, C_n \notin 2E_n^*(\mathbf{Q})$, we have $T = \mathcal{O}$. Hence,

$$2p_2P_n + 2r_2R_n = \mathcal{O}.$$

Thus we obtain $p_2P_n+r_2R_n \in E_n^*(\mathbf{Q})_{\mathrm{tors}}$ and we can continue with the same argumentation to conclude that p_2 and r_2 are even. Continuing this process, we finally conclude that $p_1=r_1=0$.

Theorem 5 If rank $(E_n^*(\mathbf{Q})) = 2$, then all integer points on E_k , where $k = k_1(n)$, are given by (7).

PROOF. We follow the strategy from the proof of Theorem 3. Let $E_n^*(\mathbf{Q})/E_n^*(\mathbf{Q})_{\mathrm{tors}} = \langle U, V \rangle$ and $X \in E_n^*(\mathbf{Q})$. Let $P_n = m_P U + n_P V + T_P$, $R_n = m_R U + n_R V + T_R$, where $T_P, T_R \in \{\mathcal{O}, A_n, B_n, C_n\}$. Let $\mathcal{U} = \{\mathcal{O}, U, V, U + V\}$. There exist $U_1, U_2 \in \mathcal{U}, T_1, T_2 \in E_n^*(\mathbf{Q})_{\mathrm{tors}}$ such that $P_n \equiv U_1 + T_1 \pmod{2E_n^*(\mathbf{Q})}$, $R_n \equiv U_2 + T_2 \pmod{2E_n^*(\mathbf{Q})}$. Let $U_3 \in \mathcal{U}$ such that $U_3 \equiv U_1 + U_2 \pmod{2E_n^*(\mathbf{Q})}$ and $T_3 = T_1 + T_2$. Then $P_n + R_n \equiv U_3 + T_3 \pmod{2E_n^*(\mathbf{Q})}$. Now Lemmas 1, 2 imply that $U_1, U_2, U_3 \neq \mathcal{O}$. Hence $\{U_1, U_2, U_3\} = \{U, V, U + V\}$ and $X \equiv X_1 \pmod{2E_n^*(\mathbf{Q})}$, $X_1 \in \mathcal{S} \cup \mathcal{S}_1$, where \mathcal{S} is defined by (8) and

$$S_1 = \{R_n, R_n + A_n, R_n + B_n, R_n + C_n, R_n + P_n, R_n + P_n + A_n, R_n + P_n + B_n, R_n + P_n + C_n\}.$$

Therefore, we have to solve the systems (9), with numbers α , β , γ defined in the proof of Theorem 3, for $X_1 \in \mathcal{S}_1$. However, for $X_1 \in \{R_n + A_n, R_n + B_n, R_n + P_n + A_n, R_n + P_n + B_n\}$ the system (9) has no integer solution since exactly two of the numbers α , β , γ are negative. Let us consider four remaining cases.

For the sake of simplicity, in the rest of the proof we will denote $k_1(n)$ by k. Note that from $k = 3n^2 + 2n - 2$ it follows $k \equiv 2$ or $3 \pmod{4}$.

1)
$$X_1 = R_n$$

The system (9) becomes

$$(k-1)x+1=(3k+1)\square$$
, $(k+1)x+1=\square$, $4kx+1=(3k+1)\square$.

The third equation implies $k \equiv 0$ or $1 \pmod{4}$, a contradiction.

$$\mathbf{2)} \quad X_1 = R_n + C_n$$
 We have

$$(k-1)x+1 = (k+1)\square,$$

 $(k+1)x+1 = (k-1)(3k-1)\square,$
 $4kx+1 = (k-1)(k+1)(3k-1)\square.$

Since $\gcd(k+1,(k-1)(3k-1))|8$, we conclude that at least one of the numbers (k+1)' and [2(k+1)]' divides 3k+1 and accordingly this number divides 2. Hence, $k+1=\square$ or $2\square$. In the same manner we conclude that $k-1=\square$ or $2\square$. We have two possibilities:

$$k+1 = \square \quad \text{and} \quad k-1 = 2\square, \tag{18}$$

or

$$k+1 = 2\square \quad \text{and} \quad k-1 = \square. \tag{19}$$

The system (18) leads to

$$(3n-1)(n+1) = u^2, \quad 3n^2 + 2n - 3 = 2v^2.$$
 (20)

The second equation implies $n \equiv 1 \pmod{4}$, and then the first equation implies that there exist integers w and z such that

$$n+1=2w^2$$
, $3n-1=2z^2$.

Let $s = (wz)^2$. Then we have: $3s + 1 = (z^2 + 1)^2$, $2s - 1 = v^2$. Hence, s satisfies the equation

$$t^2 = s(3s+1)(2s-1). (21)$$

By substitution $t_1 = 6t$, $s_1 = 6s$, we obtain the elliptic curve

$$t_1^2 = s_1^3 - s_1^2 - 6s_1, (22)$$

and using SIMATH we find that all integer points on (22) are given by $(0,0), (3,0), (-2,0), (-1,\pm 2), (6,\pm 12), (8,\pm 20), (243,\pm 3780)$. Hence, the only integer solution of (21) is s=1, which implies n=1.

The second equation in (19) implies $(3n+1)^2 - 10 = 3\square$, and this is impossible modulo 8.

3)
$$X_1 = R_n + P_n$$

We have

$$(k-1)x+1 = k(k+1)(3k+1)\square,$$

 $(k+1)x+1 = k(k-1)\square,$
 $4kx+1 = (k-1)(k+1)(3k+1)\square.$

As in 2), we obtain that $k-1=\square$ or $2\square$, $k=\square$ or $2\square$, $k+1=\square$ or $2\square$, in this leads to a contradiction.

4)
$$X_1 = R_n + P_n + C_n$$

Now the system (9) becomes

$$(k-1)x+1=k\square$$
, $(k+1)x+1=k(3k-1)\square$, $4kx+1=(3k-1)\square$.

The first two equations imply $k = \square$ or $2\square$. Since $k \equiv 2$ or $3 \pmod{4}$, it has to hold $k = 2\square$ and $k \equiv 2 \pmod{8}$. Now the third equation gives $5\square \equiv 1 \pmod{8}$, a contradiction.

In Table 3 we list the rank values of $E_n^*(\mathbf{Q})$ in the range $2 \leq |n| \leq 21$, which we were able to compute using SIMATH and MWRANK.

$$\operatorname{rank}(E_n^*(\mathbf{Q})) = 2 \quad n = 4, 5, 6^*, 7, 12, 21, \\ -2, -3, -4, -6^*, -11, -17, -19$$

$$\operatorname{rank}(E_n^*(\mathbf{Q})) = 3 \quad n = 2, 3, 8, 9, 10, 13, 17, \\ -5, -7, -8, -9, -10, -12, -14, \\ -15, -16, -18, -20$$

$$\operatorname{rank}(E_n^*(\mathbf{Q})) = 4 \quad n = 11, 14, 16, 18 \\ -21$$

Table 3:

Theorem 6 The rank of the elliptic curve

$$E^*: y^2 = [(k_1(n) - 1)x + 1][(k_1(n) + 1)x + 1][4k_1(n)x + 1]$$

over $\mathbf{Q}(n)$ is equal 2.

PROOF. As in the proof of Theorem 4, we consider the triples $(\mu_1(n), \mu_2(n), \mu_3(n))$. Now we have:

$$\mu_1(n) \mid (3n^2 + 2n - 3)(9n^2 + 6n - 7),$$
 $\mu_2(n) \mid (n+1)(3n-1)(9n^2 + 6n - 5),$
 $\mu_3(n) \mid 8(3n^2 + 2n - 2).$

We want to choose an integer n such that $\operatorname{rank}(E_n^*(\mathbf{Q})) = 2$, $E_n^*(\mathbf{Q})/E_n^*(\mathbf{Q})_{\operatorname{tors}} = \langle P_n, R_n \rangle$ and square-free parts of the polynomial factors of $(3n^2 + 2n - 2)(9n^2 + 6n - 7)$, $(n+1)(3n-1)(9n^2 + 6n - 5)$ and $8(3n^2 + 2n - 2)$, evaluated at n, are distinct. We may choose n = 4 (then $k_1(n) = 54$).

Since for n=4 we have exactly 16 choices of (μ_1, μ_2, μ_3) on $E_4^*(\mathbf{Q})$, we conclude that there are also exactly 16 choices of $(\mu_1(n), \mu_2(n), \mu_3(n))$ on $E^*(\mathbf{Q}(n))$, which correspond to the points \mathcal{O} , $A(n)=A_n$, $B(n)=B_n$, $C(n)=C_n$, $P(n)=P_n$, P(n)+A(n), P(n)+B(n), P(n)+C(n), $R(n)=R_n$,

R(n) + A(n), R(n) + B(n), R(n) + C(n), R(n) + P(n), R(n) + P(n) + A(n), R(n) + P(n) + B(n), R(n) + P(n) + C(n).

Let $V \in E^*(\mathbf{Q}(n))$. Together with the previous 16 points, it makes 17 points on $E^*(\mathbf{Q}(n))$. Two of them have equal corresponding triples $(\mu_1(n), \mu_2(n), \mu_3(n))$. Therefore, these two points are congruent modulo $2E^*(\mathbf{Q}(n))$. We have already proved that the first sixteen points are incongruent modulo $2E^*(\mathbf{Q}(n))$. Hence we have four possibilities:

- 1) $V \equiv T_1 \pmod{2E^*(\mathbf{Q}(n))},$
- 2) $V \equiv P(n) + T_2 \pmod{2E^*(\mathbf{Q}(n))},$
- 3) $V \equiv R(n) + T_3 \pmod{2E^*(\mathbf{Q}(n))},$
- 4) $V \equiv P(n) + R(n) + T_4 \pmod{2E^*(\mathbf{Q}(n))},$

where $T_i \in \{\mathcal{O}, A(n), B(n), C(n)\}.$

Let $\{D_1,\ldots,D_r\}$ be the Mordell-Weil base for $E^*(\mathbf{Q}(n))$ and assume that $r\geq 3$. Let $P(n)=\sum_{i=1}^r\alpha_iD_i+T_P,\ R(n)=\sum_{i=1}^r\beta_iD_i+T_R,\ P(n)+R(n)=\sum_{i=1}^r\gamma_iD_i+T_S.$ As we have already seen in the proof of Theorem 4, the points D_i cannot satisfy the condition 1). Hence, $D_r\equiv P(n)+T_2$ (mod $2E^*(\mathbf{Q}(n))$) or $D_r\equiv R(n)+T_3$ (mod $2E^*(\mathbf{Q}(n))$) or $D_r\equiv P(n)+R(n)+T_4$ (mod $2E^*(\mathbf{Q}(n))$). It implies that α_r is odd and $\alpha_1,\ldots,\alpha_{r-1}$ are even, or β_r is odd and $\beta_1,\ldots,\beta_{r-1}$ are even, or γ_r is odd and $\gamma_1,\ldots,\gamma_{r-1}$ are even. The same possibilities we have also for the points D_{r-1} and D_{r-2} . Therefore, for these three points all of the possibilities 2), 3) and 4) appear exactly once. Thus, we may assume that α_r is odd, β_{r-1} is odd and γ_{r-2} is odd. But then $\gamma_{r-2}=\alpha_{r-2}+\beta_{r-2}$ is even, a contradiction.

5 The second family with rank ≥ 2

Let us now consider the family $E_{k_2(m)}$, where $k_2(m) = \frac{1}{2}(3m^2 + 5m)$ for $m \in \mathbf{Z}$. For the sake of simplicity we denote $E'_{k_2(m)} = E^{\circ}_m$. We have the following rational point on E°_m :

$$Q_m = \left(3m(m+1)(m+2)(27m^3 + 54m^2 + 9m - 1, \frac{1}{2}m(m+1)(m+2)(3m+2)(6m+1)(9m^2 + 15 - 2)(9m^2 + 18m + 2)\right).$$

Let $A_m = A_{k_2(m)}$, $B_m = B_{k_2(m)}$, $C_m = C_{k_2(m)}$ and $P_m = P_{k_2(m)}$. Then we have

$$Q_m + A_m = \left(-\frac{(m+2)(3m+1)(3m+2)(3m+5)(27m^4 + 72m^3 + 42m^2 - 2m - 1)}{(9m^2 + 18m + 2)^2}, \right)$$

$$-\frac{(m+2)(3m+2)^2(3m+5)(6m+1)(9m^2+15m-2)(9m^2+15m+2)}{2(9m^2+18m+2)^3},$$

$$Q_m + B_m = \left(-\frac{(m+1)(3m-1)(3m+5)(9m^3+21m^2+7m+1)}{(3m+2)^2}, \frac{(m+1)(3m-2)(3m+5)(6m+1)(9m^2+18m+2)}{2(3m+2)^3}\right),$$

$$Q_m + C_m = \left(-\frac{m(3m-1)(3m+2)(9m^3+30m^2+25m+3)}{(6m+1)^2}, -\frac{m(3m-1)(3m+2)^2(9m^2+15m+2)(9m^2+18m+2)}{2(6m+1)^3}\right),$$

$$Q_m + P_m = \left(-\frac{1}{9}(3m-1)(3m+2)(3m+5), \frac{1}{54}(3m-1)(3m+1)(3m+2)(3m+5)(9m^2+15m-2)\right),$$

$$Q_m + P_m + A_m = \left(-\frac{m(m+1)(3m-1)(3m+4)(9m^2+18m+2)}{(3m+1)^2}, -\frac{3m(m+1)(3m-1)(9m^2+15m-2)(9m^2+15m+2)}{2(3m+1)^3}\right),$$

$$Q_m + P_m + B_m = \left(-m(m+2)(3m+2)^2, \frac{3}{2}m(m+2)(3m+1)(3m+2)^2, -\frac{3}{2}m(m+2)(3m+1)(3m+2)(3m+5)(6m+1), -\frac{3}{2}(m+1)(m+2)(3m+5)(6m+1), -\frac{3}{2}(m+1)(m+2)(3m+5)(6m+1),$$

Lemma 3 If $m \neq -2, -1, 0$, then $Q_m, Q_m + A_m, Q_m + B_m, Q_m + C_m, Q_m + P_m, Q_m + P_m + A_m, Q_m + P_m + B_m, Q_m + P_m + C_m \notin 2E_m^{\circ}(\mathbf{Q})$.

PROOF. As in the proof of Lemma 2, we conclude that $Q_m + A_m$, $Q_m + B_m$, $Q_m + P_m + A_m$, $Q_m + P_m + B_m \notin 2E_m^{\circ}(\mathbf{Q})$.

Furthermore, $Q_m \in 2E_m^{\circ}(\mathbf{Q})$ is impossible since it implies $m(m+1) = \square$, and $Q_m + P_m \in 2E_m^{\circ}(\mathbf{Q})$ is impossible since it implies $(3m+2)(3m+5) = (6m+7)^2 - 9 = \square$.

If
$$Q_m + C_m = (x, y) \in 2E_m^{\circ}(\mathbf{Q})$$
, then we have

$$m = \alpha^2$$
, $3m - 1 = \beta^2$, $3m + 2 = 2\gamma^2$, $9m^2 + 15m + 2 = 2\delta^2$.

It implies $\beta^2 - 2\gamma^2 = -3$, which is impossible modulo 8.

If
$$Q_m + P_m + C_m = (x, y) \in 2E_m^{\circ}(\mathbf{Q})$$
, then we have

$$m+2=\alpha^2$$
, $3m+5=\beta^2$, $m+1=2\gamma^2$, $9m^2+15m+2=2\delta^2$.

It implies $\beta^2 - 6\gamma^2 = 2$. Hence β is even, say $\beta = 2\varepsilon$, and we obtain $2\varepsilon^2 - 3\gamma^2 = 1$, which is impossible modulo 8.

Corollary 3 If $m \neq -2, -1, 0$, then rank $E_m^{\circ}(\mathbf{Q}) \geq 2$.

PROOF. As in the proof of Corollary 2, using Lemmas 1 and 3, we can check that P_m and Q_m generate a subgroup of rank 2 in $E_m^{\circ}(\mathbf{Q})/E_m^{\circ}(\mathbf{Q})_{\text{tors}}$.

Theorem 7 If rank $(E_m^{\circ}(\mathbf{Q})) = 2$, then all integer points on E_k , where $k = k_2(m)$, are given by (7).

PROOF. As in the proof of Theorem 5, it suffices to prove that the systems (9), with numbers α , β , γ defined in the proof of Theorem 3, for $X_1 \in \mathcal{S}_2$, where

$$S_2 = \{Q_m, Q_m + A_m, Q_m + B_m, Q_m + C_m, Q_m + P_m, Q_m + P_m + A_m, Q_m + P_m + B_m, Q_m + P_m + C_m\},$$

have no solutions in integers. Note that for $X_1 \in \{Q_m + A_m, Q_m + B_m, Q_m + P_m + A_m, Q_m + P_m + B_m\}$ exactly two of the numbers α, β, γ are negative. Let us consider four remaining cases. We will denote $k_2(m)$ by k. Note that $k + 1 = \frac{1}{2}(3m+2)(m+1)$ and $k - 1 = \frac{1}{2}(3m-1)(m+2)$.

1)
$$X_1 = Q_m$$

The system (9) becomes

$$(k-1)x+1 = (3m+2)(3m+5)\square,$$

 $(k+1)x+1 = (3m-1)(3m+5)(6k-2)\square,$
 $4kx+1 = (3m-1)(3m+2)(6k-2)\square.$

It implies that $3m-1=\square$ or $2\square$, $3m+2=\square$ or $2\square$ and $3m+5=\square$ or $2\square$, a contradiction.

2)
$$X_1 = Q_m + C_m$$

Now the system (9) becomes

$$(k-1)x+1 = (m+1)(3m+5)(6k+2)\square,$$

 $(k+1)x+1 = (m+2)(3m+5)\square,$
 $4kx+1 = (m+1)(m+2)(6k+2)\square,$

and this implies $m+1=\square$ or $2\square$, $m+2=\square$ or $2\square$ and $3m+5=\square$ or $2\square$. We have three possibilities:

(a)
$$m+1=\alpha^2$$
, $m+2=2\beta^2$, $3m+5=\gamma^2$

It gives $\gamma^2 - 6\beta^2 = -1$, a contradiction.

(b)
$$m+1=2\alpha^2$$
, $m+2=\beta^2$, $3m+5=\gamma^2$

It gives $\gamma^2 - 3\beta^2 = -1$, a contradiction.

(c)
$$m+1=2\alpha^2$$
, $m+2=2\beta^2$, $3m+5=2\gamma^2$

This yields to the system of Pell equations

$$\beta^2 - 2\alpha^2 = 1,$$

$$\gamma^2 - 3\alpha^2 = 1.$$

In [1] it is proved that this system has only the trivial solution. Hence, $\alpha = 0$ and m = -1.

$$3) \quad X_1 = Q_m + P_m$$

We have

$$(k-1)x+1 = m(m+1)\square,$$

 $(k+1)x+1 = m(m+2)(6k-2)\square,$
 $4kx+1 = (m+1)(m+2)(6k-2)\square.$

which implies that $m=\square$ or $2\square$, $m+1=\square$ or $2\square$ and $m+2=\square$ or $2\square$, a contradiction.

4)
$$X_1 = Q_m + P_m + C_m$$

We have

$$(k-1)x+1 = m(3m+2)(6k+2)\square,$$

 $(k+1)x+1 = m(3m-1)\square,$
 $4kx+1 = (3m-1)(3m+2)(6k+2)\square,$

which implies that $m = \square$ or $2\square$, $3m-1 = \square$ or $2\square$ and $3m+2 = \square$ or $2\square$. We have three possibilities:

(a)
$$m = \alpha^2$$
, $3m - 1 = \beta^2$, $3m + 2 = 2\gamma^2$

It implies $\beta^2 - 3\alpha^2 = -1$, a contradiction.

(b)
$$m = \alpha^2$$
, $3m - 1 = 2\beta^2$, $3m + 2 = \gamma^2$

It implies $\gamma^2 - 3\beta^2 = 2$, which is impossible modulo 8.

(c)
$$m = 2\alpha^2$$
, $3m - 1 = \beta^2$, $3m + 2 = 2\gamma^2$

It gives $\beta^2 - 6\alpha^2 = -1$, a contradiction.

In Table 4 we list the rank values of $E_m^{\circ}(\mathbf{Q})$ in the ranges $1 \leq m \leq 20$ and $-22 \leq m \leq -3$, which we were able to compute.

$\operatorname{rank}\left(E_m^{\circ}(\mathbf{Q})\right) = 2$	$n = 1, 2, 3, 5, 6, 7, 8, 9, 12, 14, 15$ $-3, -5, -6, -9, -10, -16^*, -18, -20, -22$
$\operatorname{rank}\left(E_m^{\circ}(\mathbf{Q})\right) = 3$	n = 4, 10, 11, 16, 17, 18, 19, 20 $-4, -7, -8, -11, -12, -13, -14, -15, -17,$ $-19, -21$

Table 4:

Theorem 8 The rank of elliptic curve

$$E^{\circ}: y^2 = [(k_2(m) - 1)x + 1][(k_2(m) + 1)x + 1][4k_2(m)x + 1]$$

over $\mathbf{Q}(m)$ is equal 2.

PROOF. The proof is completely analogous to the proof of Theorem 6. This time we choose m=12 (and k=246) because rank $(E_{12}^{\circ}(\mathbf{Q}))=2$, $E_{12}^{\circ}(\mathbf{Q})/E_{12}^{\circ}(\mathbf{Q})_{\text{tors}}=< P_{12}, Q_{12}>$ and square-free parts of the polynomial factors of $(m+2)(3m-1)(9m^2+15m-1)$, $(m+1)(3m+2)(9m^2+15m+2)$ and 4m(3m+5), evaluated at m=12, are distinct.

Assuming the Katz-Sarnak Conjecture, Theorems 5–8 imply that Conjecture 1 is valid for infinitely many curves of rank 2.

6 A family with rank ≥ 3

We will now consider the intersection of families $E_{k_1(n)}$ and $E_{k_2(m)}$. From $3n^2 + 2n - 2 = \frac{1}{2}(3m^2 + 5m)$ it follows

$$(6m+5)^2 - 2(6n+2)^2 = -31. (23)$$

Define the sequences $(r_i)_{i \in \mathbf{Z}}$ and $(s_i)_{i \in \mathbf{Z}}$ by

$$r_0 = 1, \quad r_1 = 19, \quad r_{i+2} = 6r_{i+1} - r_i, \quad i \in \mathbf{Z};$$
 (24)

$$s_0 = 1, \quad s_1 = 14, \quad s_{i+2} = 6s_{i+1} - s_i, \quad i \in \mathbf{Z}.$$
 (25)

Let 6m + 5 = r and 6n + 2 = s. Then there exists an integer i such that $r = \pm r_i$ and $s = \pm s_i$.

We have

$$k_2(m) = \frac{1}{24}(r^2 - 25), \quad k_2(m) - 1 = \frac{1}{24}(r^2 - 49), \quad k_2(m) + 1 = \frac{1}{24}(r^2 - 1),$$

$$3k_2(m) - 1 = \frac{1}{8}(r^2 - 33), \quad 3k_2(m) + 1 = \frac{1}{8}(r^2 - 17).$$

For the sake of simplicity, denote $E'_{(r^2-25)/24}$ by E_i^{\diamond} and $A_{(r^2-25)/24} = A_i$, $B_{(r^2-25)/24} = B_i$, $C_{(r^2-25)/24} = C_i$, $P_{(r^2-25)/24} = P_i$, $Q_{(r-5)/6} = Q_i$, $R_{(s-2)/6} = Q_i$ $R_i, \frac{1}{24}(r^2 - 25) = k.$

We will need some properties of the sequence (r_i) which are stated in the following three lemmas.

Lemma 4 Let the sequence (r_i) be defined by (24). Then the equations $r_i^2 - 33 = \square$, $2\square$, $3\square$, $6\square$ and $r_i^2 - 17 = \square$, $2\square$, $3\square$, $6\square$ have no solutions.

PROOF. The equation $r_i^2 - 33 = \square$ implies $r_i = \pm 7$ or ± 17 , a contradic-

tion. The equation $r_i^2 - 33 = 2\square$ is impossible modulo 3, and the equations $r_i^2 - 33 = 3\square$ and $r_i^2 - 33 = 6\square$ imply $3|r_i$, a contradiction. The equation $r_i^2 - 33 = \square$ implies $r_i = \pm 9$, a contradiction. The equations $r_i^2 - 33 = 3\square$ and $r_i^2 - 17 = 6\square$ are impossible modulo 3. Let $r_i^2 - 17 = 2t^2$. Then from $r_i^2 - 2s_i^2 = -31$ we obtain $s_i = \pm 5$ or ± 7 , a contradiction.

Lemma 5 Let the sequence (r_i) be defined by (24). Then the equations

$$|r_i| + 7 = \square, 3\square;$$

 $|r_i| - 7 = \square, 2\square, 3\square, 6\square;$
 $|r_i| + 5 = 3\square;$
 $|r_i| - 5 = \square, 3\square, 6\square$

have no solutions with $|i| \geq 3$.

PROOF. In [17], Kedlaya presented a systematic procedure, using the method of Cohn introduced in [4], for solving certain systems of Diophantine equations of the form

$$x^2 - ay^2 = b$$
, $P(x, y) = z^2$.

Using Kedlaya's program GENPELLSQUARE, we obtain that all solutions of the equations from the lemma are given by

$$r_1 - 7 = 3 \cdot 2^2$$
, $|r_{-1}| - 7 = 6 \cdot 1^2$, $|r_{-2}| - 7 = 2 \cdot 6^2$, $r_2 - 5 = 3 \cdot 6^2$.

Lemma 6 $r \equiv 1, 6 \pmod{7}$ or $r \equiv 19, 30 \pmod{49}$.

PROOF. Considering the sequence $(r_i \mod 49)$ one can easily deduce that $r_i \equiv 1 \pmod{7}$ or $r_i \equiv 19 \pmod{49}$.

Lemma 7 If $i \neq -1, 0$, then $Q_i + R_i$, $Q_i + R_i + A_i$, $Q_i + R_i + B_i$, $Q_i + R_i + C_i$, $Q_i + R_i + P_i$, $Q_i + R_i + P_i + A_i$, $Q_i + R_i + P_i + B_i$, $Q_i + R_i + P_i + C_i \notin 2E_i^{\diamond}(\mathbf{Q})$.

Proof. 1)

$$x(Q_i + R_i) + k^2 - 1 = 2(r - 1)(r - 7)(r^2 - 17)(r^2 - 33)\square,$$

$$x(Q_i + R_i) + 4k(k - 1) = (r + 5)(r - 7)(r^2 - 33)\square,$$

$$x(Q_i + R_i) + 4k(k + 1) = 2(r - 1)(r + 5)(r^2 - 17)\square,$$

where \square denotes a square of a rational number. If $Q_i + R_i \in 2E_i^{\diamond}(\mathbf{Q})$, then Proposition 1 implies $r^2 - 33 = \square$, $2\square$, $3\square$ or $6\square$, and this is impossible by Lemma 4.

2)

$$x(Q_i + R_i + A_i) + k^2 - 1 = -6(r+1)(r-7)(r^2 - 33)\square,$$

$$x(Q_i + R_i + A_i) + 4k(k-1) = -3(r-5)(r-7)(r^2 - 33)\square,$$

$$x(Q_i + R_i + A_i) + 4k(k+1) = 2(r+1)(r-5)\square.$$

Since $-3(r-5)(r-7)(r^2-33) < 0$, we conclude that $Q_i + R_i + A_i \notin 2E_i^{\diamond}(\mathbf{Q})$.

3)

$$x(Q_i + R_i + B_i) + k^2 - 1 = -6(r - 1)(r + 7)(r^2 - 17)\Box,$$

$$x(Q_i + R_i + B_i) + 4k(k - 1) = -(r - 5)(r + 7)\Box,$$

$$x(Q_i + R_i + B_i) + 4k(k + 1) = 6(r - 1)(r - 5)(r^2 - 17)\Box.$$

Since -(r-5)(r+7) < 0, we conclude that $Q_i + R_i + B_i \notin 2E_i^{\diamond}(\mathbf{Q})$.

4)

$$x(Q_i + R_i + C_i) + k^2 - 1 = 2(r+1)(r+7)\square,$$

 $x(Q_i + R_i + C_i) + 4k(k-1) = 3(r+5)(r+7)\square,$
 $x(Q_i + R_i + C_i) + 4k(k+1) = 6(r+1)(r+5)\square.$

By Lemma 5 we have $r+7=2\square$ or $6\square$ if r is positive, and r=-19 or -79 if r is negative. However, if r=-19 or -79, then 2(r+1)(r+7) is not a perfect square. Hence we have two possibilities:

$$r+7=2\alpha^2$$
, $r+1=\beta^2$, $r+5=6\gamma^2$;

or

$$r+7=6\alpha^2$$
, $r+1=3\beta^2$, $r+5=2\gamma^2$;

but both systems are impossible modulo 3.

5)

$$x(Q_i + R_i + P_i) + k^2 - 1 = 2(r+1)(r+7)(r^2 - 17)(r^2 - 33)\square,$$

 $x(Q_i + R_i + P_i) + 4k(k-1) = (r-5)(r+7)(r^2 - 33)\square,$
 $x(Q_i + R_i + P_i) + 4k(k+1) = 2(r+1)(r-5)(r^2 - 17)\square.$

Since $r^2 - 33 \neq \square$, $2\square$, $3\square$, $6\square$ by Lemma 5, Proposition 1 implies $Q_i + R_i + P_i \notin 2E_i^{\diamond}(\mathbf{Q})$.

6)

$$x(Q_i + R_i + P_i + A_i) + k^2 - 1 = -6(r - 1)(r + 7)(r^2 - 33)\square,$$

$$x(Q_i + R_i + P_i + A_i) + 4k(k - 1) = -3(r + 5)(r + 7)(r^2 - 33)\square,$$

$$x(Q_i + R_i + P_i + A_i) + 4k(k + 1) = 2(r - 1)(r + 5)\square.$$

Since $-3(r+5)(r+7)(r^2-33) < 0$, we have $Q_i + R_i + P_i + A_i \notin 2E_i^{\diamond}(\mathbf{Q})$.

7)

$$x(Q_i + R_i + P_i + B_i) + k^2 - 1 = -6(r+1)(r-7)(r^2 - 17)\Box,$$

$$x(Q_i + R_i + P_i + B_i) + 4k(k-1) = -(r+5)(r-7)\Box,$$

$$x(Q_i + R_i + P_i + B_i) + 4k(k+1) = 6(r+1)(r+5)(r^2 - 17)\Box.$$

Since -(r+5)(r-7) < 0, we have $Q_i + R_i + P_i + B_i \notin 2E_i^{\diamond}(\mathbf{Q})$.

8)

$$x(Q_i + R_i + P_i + C_i) + k^2 - 1 = 2(r - 1)(r - 7)\Box,$$

$$x(Q_i + R_i + P_i + C_i) + 4k(k - 1) = 3(r - 5)(r - 7)\Box,$$

$$x(Q_i + R_i + P_i + C_i) + 4k(k + 1) = 6(r - 1)(r - 5)\Box.$$

This case is completely analogous to the case 4).

Corollary 4 If $i \neq -1, 0$, then rank $(E_i^{\diamond}(\mathbf{Q})) \geq 3$.

PROOF. As in the proof of Corollary 2, using Lemmas 1–3 and 7, we can prove that P_i , Q_i and R_i generate a subgroup of rank 3 in $E_i^{\diamond}(\mathbf{Q})/E_i^{\diamond}(\mathbf{Q})_{\text{tors}}$.

Theorem 9 If rank $(E_i^{\diamond}(\mathbf{Q})) = 3$, then all integer points on E_k , where $k = \frac{1}{24}(r_i^2 - 25)$, are given by (7).

PROOF. As in the proofs of Theorems 5 and 7, it suffices to prove that the systems (9), with the numbers α , β , γ defined in the proof of Theorem 3 for $X_1 \in \mathcal{S}_3$, where

$$S_3 = \{Q_i + R_i, Q_i + R_i + A_i, Q_i + R_i + B_i, Q_i + R_i + C_i, Q_i + R_i + P_i, Q_i + R_i + P_i + A_i, Q_i + R_i + P_i + B_i, Q_i + R_i + P_i + C_i\},$$

have no solutions in integers.

As we have already seen in the proof of Lemma 7, for $X_i \in \{Q_i + R_i + A_i, Q_i + R_i + B_i, Q_i + R_i + P_i + A_i, Q_i + R_i + P_i + B_i\}$ exactly two of the numbers α , β , γ are negative and accordingly the corresponding systems have no integer solutions. Let us consider four remaining cases. We will use the following notation: $e'' = \min\{|e'|, |2e'|, |3e'|, |6e'|\}$ for an integer e.

1) $X_1 = Q_i + R_i$ The system (9) becomes

$$(k-1)x+1 = 2(r+1)(r-5)(r^2-17)\square,$$

 $(k+1)x+1 = (r-5)(r+7)(r^2-33)\square,$
 $4kx+1 = 2(r+1)(r+7)(r^2-17)(r^2-33)\square.$

From the first two equations of this system we have that (r-5)'' divides (k-1)x+1 and (k+1)x+1. Therefore, $(r-5)'' \in \{1,2\}$ which implies

$$r - 5 = \pm \square, \pm 2\square, \pm 3\square, \pm 6\square. \tag{26}$$

Similarly we obtain

$$r + 1 = \pm \square, \pm 2\square, \pm 3\square, \pm 6\square \tag{27}$$

and

$$r + 7 = \pm \Box, \pm 2\Box, \pm 3\Box, \pm 6\Box.$$
 (28)

Assume that r is positive. Since r = 113 does not satisfy the conditions (27) and (28), Lemma 5 implies

$$r-5=2\square$$
, $r+7=2\square$ or $6\square$.

Hence, $r-5=2\alpha^2$, $r+7=6\beta^2$. Then $\alpha=3\delta$ and we have $\beta^2-3\delta^2=2$, which is impossible modulo 3.

Assume now that r is negative. Then Lemma 5 implies that r=-19 or -79, but r=-79 does not satisfy the condition (27), and for r=-19 we have $15x+1=41\square$ which is impossible modulo 3.

$$2) \quad X_1 = Q_i + R_i + C_i$$

We have

$$(k-1)x+1 = 6(r-1)(r-5)\square,$$

 $(k+1)x+1 = 3(r-5)(r-7)\square,$
 $4kx+1 = 2(r-1)(r-7)\square.$

As in 1) we obtain that

$$r - 1 = \pm \square, \pm 2\square, \pm 3\square, \pm 6\square, \tag{29}$$

$$r - 5 = \pm \square, \pm 2\square, \pm 3\square, \pm 6\square \tag{30}$$

and

$$r - 7 = \pm \square, \pm 2\square, \pm 3\square, \pm 6\square. \tag{31}$$

If r is positive, then Lemma 5 implies that r = 19 or r = 79, which both contradict the condition (30).

Assume that r negative. Then Lemma 5 implies

$$r-7=-2\square$$
 or $-6\square$, $r-5=-\square$, $-2\square$ or $-6\square$.

Consideration modulo 3 rules out all but three possibilities: $r-7=-2\square$ and $r-5=-\square$; $r-7=-2\square$ and $r-5=-6\square$; $r-7=-6\square$ and $r-5=-\square$.

a)
$$r-7=-2\alpha^2$$
, $r-5=-\beta^2$

By Lemma 6, the first equation implies $r \equiv 5,6 \pmod{7}$ and the second implies $r \equiv 1 \pmod{7}$, a contradiction.

b)
$$r-7=-2\alpha^2$$
, $r-5=-6\beta^2$, $r-1=-4\gamma$ It implies $\alpha^2-2\gamma^2=3$, which is impossible modulo 3.

c1)
$$r-7=-6\alpha^2$$
, $r-5=-4\beta^2$, $r-1=-72\gamma^2$

We obtain the system of Pell equations

$$\alpha^2 - 12\gamma^2 = 1,$$

$$\beta^2 - 18\gamma^2 = 1,$$

and by [1] this system has no non-trivial solution. It means that r = -1, contradicting the assumption that $i \neq 0$.

c2)
$$r-7=-6\alpha^2, \quad r-5=-4\beta^2, \quad r-1=-12\gamma^2$$

This leads to the system

$$\alpha^2 - 2\gamma^2 = 1,$$

$$\beta^2 - 3\gamma^2 = 1,$$

which has no non-trivial solution by [1].

3)
$$X_1 = Q_i + R_i + P_i$$

We have

$$(k-1)x+1 = 2(r-1)(r+5)(r^2-17)\Box,$$

$$(k+1)x+1 = (r+5)(r-7)(r^2-33)\Box,$$

$$4kx+1 = 2(r-1)(r-7)(r^2-17)(r^2-33)\Box.$$

Therefore, this case is completely analogous to the case 1).

4)
$$X_1 = Q_i + R_i + P_i + C_i$$

We have

$$(k-1)x+1 = 6(r+1)(r+5)\square,$$

 $(k+1)x+1 = 3(r+5)(r+7)\square,$
 $4kx+1 = 2(r+1)(r+7)\square,$

and this case is completely analogous to the case 2).

In Table 5 we list a few rank values of $E_i^{\diamond}(\mathbf{Q})$.

We have not enough data to support any conjecture about distribution of rank $(E_i^{\diamond}(\mathbf{Q}))$. However, from Theorem 9 and Table 5 we obtain immediately

i	r	m	s	n	k	$\operatorname{rank}\left(E_{i}^{\diamond}(\mathbf{Q})\right)$
1	-19	-4	14	2	14	3
2	113	18	80	13	531	3
3	659	109	-466	-78	18094	5
-2	-79	-14	56	9	259	3

Table 5:

Corollary 5

$$\limsup \left\{ \operatorname{rank} \left(E_k(\mathbf{Q}) \right) : k \ge 2 \right\} \ge 3$$

$$\sup \left\{ \operatorname{rank} \left(E_k(\mathbf{Q}) \right) : k \ge 2 \right\} \ge 5$$

Let us note that in [9] an example is constructed which shows that $\sup \{ \operatorname{rank}(E(\mathbf{Q})) : E(\mathbf{Q})_{\operatorname{tors}} \simeq \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z} \} \geq 7.$

7 Case $k \le 1000$

In this section we will check Conjecture 1 for $k \leq 1000$ using the approach introduced in [11]. Assume that (x, y) is a solution of

$$y^{2} = ((k-1)x+1)((k+1)x+1)(4kx+1).$$
(32)

Then there exist integers x_1, x_2, x_3 such that

$$(k-1)x + 1 = \mu_2 \mu_3 x_1^2$$

$$(k+1)x + 1 = \mu_1 \mu_3 x_2^2$$

$$4kx + 1 = \mu_1 \mu_2 x_3^2,$$

where $\mu_1|3k-1$, $\mu_2|3k+1$, $\mu_3|2$.

If $\mu_3 = 1$, eliminating x we obtain the system

$$(k+1)\mu_2 x_1^2 - (k-1)\mu_1 x_2^2 = 2$$

$$4kx_1^2 - (k-1)\mu_1 x_3^2 = \frac{3k+1}{\mu_2},$$

and if $\mu_3 = 2$, we obtain the system

$$(k+1)\mu_2 x_1^2 - (k-1)\mu_1 x_2^2 = 1$$

$$8kx_1^2 - (k-1)\mu_1 x_3^2 = \frac{3k+1}{\mu_2}.$$

Hence, to find all integer solutions of (32), it is enough to find all integer solutions of the systems of equations

$$d_1 x_1^2 - d_2 x_2^2 = j_1, (33)$$

$$d_3x_1^2 - d_2x_3^2 = j_2, (34)$$

where

 $d_1 = (k+1)\mu_2$, μ_2 is a square-free factor of 3k+1, $d_2 = (k-1)\mu_1$, μ_1 is a square-free factor of 3k-1, $(d_3,j_1,j_2) = (4k,2,\frac{3k+1}{\mu_2})$ or $(8k,1,\frac{3k+1}{\mu_2})$. Note that the system

the system

$$(k+1)x_1^2 - (k-1)x_2^2 = 2$$

$$4kx_1^2 - (k-1)x_3^2 = 3k+1$$

is completely solved in [7]. Hence we may assume that $(d_1, d_2, d_3, j_1, j_2) \neq (k+1, k-1, 4k, 2, 3k+1)$.

From (33) and (34) we obtain

$$d_1 x_3^2 - d_3 x_2^2 = j_3, (35)$$

where $j_3 = \frac{j_1 d_3 - j_2 d_1}{d_2}$.

We first consider the equations (33), (34) and (35) separately modulo appropriate prime powers. More precisely, assume that p_1 is an odd prime divisor of d_1 , p_2 is an odd prime divisor of d_2 , p_3 is an odd prime divisor of d_3 , p_4 is an odd prime divisor of j_2 such that $\operatorname{ord}_{p_4}(j_2)$ is odd, p_5 is an odd prime divisor of j_3 such that $\operatorname{ord}_{p_5}(j_3)$ is odd. Then necessary conditions for solvability of (33), (34) and (35) are:

$$\left(\frac{-j_1d_2}{p_1}\right)=1,\quad \left(\frac{j_1d_1}{p_2}\right)=1,\quad \left(\frac{j_2d_3}{p_2}\right)=1,$$

$$\left(\frac{-j_2d_2}{p_3}\right)=1,\quad \left(\frac{d_2d_3}{p_4}\right)=1,\quad \left(\frac{d_1d_3}{p_5}\right)=1,$$

where $(\dot{-})$ denotes the Legendre symbol.

Furthermore, if k is even, we have also the conditions

$$j_1 \equiv d_1 - d_2 \pmod{8}$$
 or $j_1 \equiv d_1 \pmod{4}$ or $j_1 \equiv -d_2 \pmod{4}$;
$$j_2 \equiv 0 \pmod{4} \text{ or } j_2 \equiv -d_2 \pmod{8};$$

$$j_3 \equiv 0 \pmod{4} \text{ or } j_3 \equiv d_1 \pmod{8}.$$

If k is odd, then $j_1 = 2$ and j_2, j_3 are even, say $j_2 = 2i_2$, $j_3 = 2i_3$. We have the following solvability conditions:

$$1 \equiv \frac{d_1}{2} - \frac{d_2}{2} \pmod{8} \quad \text{or} \quad \left(d_1 \equiv 0 \pmod{4} \text{ and } d_2 \equiv -2 \pmod{16}\right)$$
or
$$\left(d_1 \equiv 2 \pmod{16} \text{ and } d_2 \equiv 0 \pmod{4}\right);$$

$$i_2 \equiv \frac{d_3}{2} - \frac{d_2}{2}, \ -\frac{d_2}{2}, \ \frac{d_3}{2}, \text{ or } \frac{d_3}{2} - 2d_2 \pmod{8};$$

$$i_3 \equiv \frac{d_1}{2} - \frac{d_3}{2}, \ -\frac{d_3}{2}, \ \frac{d_1}{2}, \text{ or } -\frac{d_3}{2} + 2d_1 \pmod{8}.$$

We performed these tests for $2 \le k \le 1000$ using A. Pethő's program developed for the purposes of our joint paper [11]. We found that all systems are unsolvable apart from 106 systems on which we apply the further tests based on the properties of Pellian equations.

Lemma 8 a) Let a > 1, b > 0 be integers such that gcd(a, b) = 1 and d = ab is not a perfect square, and let (u_0, v_0) be the minimal solution of Pell equation $u^2 - dv^2 = 1$. Then the equation

$$ax^2 - by^2 = 1$$

has a solution if and only if $2a|u_0 + 1$ and $2b|u_0 - 1$.

b) Let a, b be positive integers such that gcd(a, b) = gcd(a, 2) = gcd(b, 2) = 1 and d = ab is not a perfect square, and let (u_0, v_0) be the minimal solution of Pell equation $u^2 - dv^2 = 1$. Then the equation

$$ax^2 - by^2 = 2$$

has a solution if and only if $a|u_0 + 1$ and $b|u_0 - 1$.

PROOF. See [14, Criteria 1 and 2].

Corollary 6 Let $k \geq 2$ be an integer. The equations

$$4kx^{2} - (k-1)y^{2} = 1,$$

$$(k+1)x^{2} - (k-1)y^{2} = 1,$$

$$4kx^{2} - (k-1)y^{2} = 2,$$

$$4kx^{2} - (k+1)y^{2} = 1$$

have no integer solutions.

PROOF. Consider first the equation $4kx^2 - (k-1)y^2 = 1$. In the notation of Lemma 8, we have a = 4k, b = k-1, $u_0 = 2k-1$, $v_0 = 1$ and $\frac{u_0+1}{2a} = \frac{1}{4} \notin \mathbf{Z}$. For the equation $(k+1)x^2 - (k-1)y^2 = 1$ we have a = k+1, b = k-1,

 $u_0 = k$, $v_0 = 1$ and $\frac{u_0 + 1}{2a} = \frac{1}{2} \notin \mathbf{Z}$.

For the equation $4kx^2 - (k-1)y^2 = 2$ we have a = 4k, b = k-1,

 $u_0 = 2k - 1$, $v_0 = 1$ and $\frac{u_0 + 1}{a} = \frac{1}{2} \notin \mathbf{Z}$. For the equation $4kx^2 - (k+1)y^2 = 2$ we have a = 4k, b = k+1, $u_0 = 2k + 1$, $v_0 = 1$ and $\frac{u_0 + 1}{a} = \frac{k + 1}{2k} \notin \mathbf{Z}$.

Corollary 6 rules out 46+4+4+4=58 cases from the list of the remaining 106 cases. Lemma 8 can be also applied to the equation $123x^2 - 8833y^2 = 2$ when we have a = 123, b = 8833, $u_0 = 9778130$, $v_0 = 9381$ and $\frac{u_0 - 1}{b} \notin \mathbf{Z}$, and to the equation $14065x^2 - 24y^2 = 1$ when we have a = 14065, b = 24, $u_0 = 581, v_0 = 1$ and $\frac{u_0+1}{2a} \notin \mathbf{Z}$. Hence, after the application of Lemma 8, our list of remaining cases is reduced to 46 cases.

Lemma 9 Let a > 1 and b > 0 be square-free integers. If (x_1, y_1) is the minimal solution of the equation

$$ax^2 - by^2 = 1, (36)$$

then all solutions of (36) in positive integers are given by

$$x\sqrt{a} + y\sqrt{b} = (x_1\sqrt{a} + y_1\sqrt{b})^n,$$

where n is a positive odd integer.

In particular, $x_1|x$ and $y_1|y$.

PROOF. See [20, Theorem 11.1].

Corollary 7 Let $k \equiv 1 \pmod{4}$ be a square-free positive integer. Then the system of equations

$$4kx^2 - (k-1)z^2 = 4, (37)$$

$$\frac{1}{8}(3k+1)(k+1)z^2 - 2ky^2 = -\frac{1}{2}(3k-1)$$
 (38)

has no solutions in integers.

PROOF. Let $k-1=4l^2(k-1)'$. We will apply Lemma 9 to the equation

$$kx^2 - (k-1)'v^2 = 1.$$

We have $x_1 = 1$, $v_1 = 2l$ and Lemma 9 implies that 2l|v. From (37) it follows that 2l|lz. Hence, z is even and we obtain a contradiction since left hand side of (38) even, while the right hand side is odd.

Corollary 7 rules out 7 cases from our list of remaining cases. The similar even-odd type of the argumentation can be applied to some other cases.

Consider the system

$$969x^2 - 50y^2 = 1,$$

$$101x^2 - 25z^2 = 4.$$

All solutions of $v^2 - 101x^2 = -4$ are given by $\frac{v + x\sqrt{101}}{2} = (10 + \sqrt{101})^{2n+1}$. Hence, x is even, contradicting the first equation of the system.

Consider the system

$$801x^2 - 200z^2 = 1,$$

$$241001z^2 - 1602y^2 = -1201.$$

Applying Lemma 9 to the equation $89u^2 - 2v^2 = 1$, we obtain $u_1 = 3$, $v_1 = 20$. It implies that z is even, a contradiction.

Next system in our consideration is

$$869x^2 - 217z^2 = 4,$$

$$70905z^2 - 1738y^2 = -1303.$$

The first equation implies $(217z^2+2)^2-869\cdot217(xz)^2=4$ and since all solutions of $a^2-869\cdot217b^2=4$ are given by $\frac{a+b\sqrt{869\cdot217}}{2}=(1737+4\sqrt{869\cdot217})^n$, we conclude that z is even, a contradiction.

Completely the same argumentation shows that the system

$$229x^2 - 57z^2 = 4,$$

$$4945z^2 - 458y^2 = -343$$

has no integer solution.

At this point we are left with 35 cases in our list of remaining cases.

Lemma 10 Let $C \neq 0$ and $d \neq \square$ be integers and let (u_0, v_0) be the minimal solution of Pell equation $u^2 - dv^2 = 1$. If the Pellian equation

$$x^2 - dy^2 = C (39)$$

has a solution, then there exists a solution of (39) such that

$$0 < x \le \sqrt{\frac{(u_0 + 1)C}{2}}, \quad 0 \le y \le \frac{v_0\sqrt{C}}{\sqrt{2(u_0 + 1)}} \quad \text{if } C > 0,$$

$$0 \le x \le \sqrt{\frac{(u_0 - 1)(-C)}{2}}, \quad 0 < y \le \frac{v_0\sqrt{-C}}{\sqrt{2(u_0 - 1)}} \quad \text{if } C < 0,$$

PROOF. See [19, Theorems 108 and 108a].

Using Lemma 10 it is easy to verify that the following equations have no integer solutions:

$$x^{2} - 163 \cdot 648y^{2} = -5 \cdot 163,$$

$$x^{2} - 191 \cdot 766y^{2} = -25 \cdot 191,$$

$$x^{2} - 523 \cdot 2088y^{2} = -5 \cdot 523,$$

$$x^{2} - 563 \cdot 2248y^{2} = -5 \cdot 563,$$

$$x^{2} - 2432 \cdot 607y^{2} = -25 \cdot 607,$$

$$x^{2} - 1286 \cdot 321y^{2} = -5 \cdot 321,$$

$$x^{2} - 162 \cdot 647y^{2} = -5 \cdot 162,$$

$$x^{2} - 5392 \cdot 21y^{2} = -43 \cdot 21,$$

$$x^{2} - 339 \cdot 1354y^{2} = -7 \cdot 339,$$

$$x^{2} - 709 \cdot 177y^{2} = -28 \cdot 177,$$

$$x^{2} - 1442 \cdot 361y^{2} = -47 \cdot 361,$$

$$x^{2} - 3048 \cdot 763y^{2} = -5 \cdot 763,$$

$$x^{2} - 3232 \cdot 807y^{2} = -25 \cdot 807,$$

$$x^{2} - 823 \cdot 3288y^{2} = -17 \cdot 823,$$

$$x^{2} - 843 \cdot 3368y^{2} = -5 \cdot 843,$$

$$x^{2} - 853 \cdot 3408y^{2} = -35 \cdot 853,$$

$$x^{2} - 953 \cdot 3816y^{2} = -7 \cdot 953.$$

Note that in all 17 cases we have $v_0 \le 4$ and by Lemma 10 it suffices to check that the above equations have no solutions with $1 \le y \le 5$.

Two cases can be excluded by reduction modulo 5. These systems are

$$25123x^2 - 258y^2 = 1, (40)$$

$$517x^2 - 129z^2 = 4 (41)$$

and

$$317x^2 - 23068y^2 = 1, (42)$$

$$633x^2 - 11534z^2 = 475. (43)$$

Namely, (40) implies $x^2 \equiv 1, 2, 3 \pmod{5}$ and (41) implies $x^2 \equiv 0, 2, 4 \pmod{5}$. Hence, $x^2 \equiv 2 \pmod{5}$, a contradiction. Furthermore, (43) implies $x \equiv z \equiv 0 \pmod{5}$ and then (42) implies $y^2 \equiv 3 \pmod{5}$, a contradiction.

Hence, it remains to consider 16 systems listed in Table 6.

Lemma 11 Let d be a positive integer which is not a perfect square. If d is not square-free, then there is at most one square-free integer C which divides 2d, such that $C \neq 1$, -d and that the equation

$$x^2 - dy^2 = C (44)$$

is solvable.

If d is square-free, then there are exactly two square-free integers C which divide 2d, such that $C \neq 1$, -d and that the equation (44) is solvable. The product of these two values of C is equal -4d when d is odd and C is even; in all other cases the product is equal -d.

PROOF. See [20, Theorems 11.2 and 11.3].

k	d_1,d_2,d_3,j_1,j_2
108	7085, 1819, 864, 1, 5
192	111361, 191, 1536, 1, 1
312	293281, 311, 2496, 1, 1
405	7714, 404, 1620, 2, 64
432	561601, 431, 3456, 1, 1
513	197891, 393728, 2052, 2, 4
548	2745, 28991, 4384, 1, 329
600	1082401, 599, 4800, 1, 1
602	1089621, 57095, 4816, 1, 1
673	340370,678048,2692,2,4
675	684788, 15502, 2700, 2, 2
698	1464405, 16031, 5584, 1, 1
720	1558081, 719, 5760, 1, 1
744	1663585, 72071, 5952, 1, 1
801	482002, 960800, 3204, 2, 4
838	422017, 5859, 6704, 1, 5

Table 6:

Lemma 12 Let d and n be integers such that d > 0, d is not a perfect square, and $|n| < \sqrt{d}$. If $x^2 - dy^2 = n$, then $\frac{x}{y}$ is a convergent of the simple continued fraction of \sqrt{d} .

PROOF. See [21, Theorem 7.24]

$$k = 108$$

We have the system

$$7085x^2 - 1819y^2 = 1, (45)$$

$$864x^2 - 1819z^2 = 5. (46)$$

By Lemma 12 we have that $\frac{1819y}{x}$ is a convergent of the simple continued fraction of $\sqrt{1819 \cdot 7085}$. Using MATHEMATICA, we find that the minimal solution of (45) is

 $x_1 = 5 \cdot 31 \cdot 33368342233133865229398608608608237,$ $y_1 = 2 \cdot 7 \cdot 11 \cdot 19 \cdot 73 \cdot 97 \cdot 191 \cdot 2579393633609401704423241.$

Since $5|x_1$, Lemma 9 implies 5|x which contradicts the equation (46).

$$k = 192$$

Using continued fraction algorithm we find that the equation $a^2 - 111361 \cdot 191b^2 = 193$ is solvable. Note that $111361 = 193 \cdot 577$. Hence, Lemma 11 implies that the equation $a^2 - 111361 \cdot 191b^2 = -191$ is not solvable and accordingly the equation $111361x^2 - 191y^2 = 1$ has no integer solution.

$$k = 312$$

As in the case k=192, since the equation $a^2-311\cdot 293281b^2=626$ is solvable and $293281=313\cdot 937$, we conclude that the equation $293281x^2-311y^2=1$ is not solvable.

$$k = 405$$

From [19, Theorem 108] if follows that the fundamental solutions of the equation $u^2 - 405 \cdot 101v^2 = 16 \cdot 405$ are $(u_0, v_0) = (\pm 1620, 8)$. Hence, from

 $405x^2 - 101z^2 = 16$ it follows that x is even, and this is in a contradiction with $3875x^2 - 202y^2 = 1$.

$$k = 432$$

Using continued fraction algorithm we conclude from Lemma 12 that the equation $a^2-3456\cdot431b^2=-431$ is not solvable, and therefore the equation $3456x^2-431y^2=1$ is not solvable too.

$$k = 513$$

Since the equation $a^2 - 57 \cdot 1538b^2 = -2$ has a solution, Lemma 11 implies that the equation $57 \cdot (3x)^2 - 1538(8y)^2 = 1$ has no solution.

$$k = 548$$

As in the case k=108, we find that the minimal solution of the equation $2745x^2-28991y^2=1$ is $x_1=293\cdot760351607\cdot305381425231, y_1=2^6\cdot7^3\cdot1823\cdot523122644602993$. Hence 523122644602993|y, but then $2745z^2-4384y^2=-31$ is impossible since $\left(\frac{-2745\cdot31}{523122644602993}\right)=-1$.

$$k = 600$$

Since the equation $a^2 - 1082401 \cdot 599b^2 = 3602$ has a solution and $1082401 = 601 \cdot 1801$, we conclude that the equation $1082401x^2 - 599y^2 = 1$ is not solvable.

$$k = 602$$

Solvability of the equation $a^2 - 301 \cdot 57095b^2 = -1634$ implies unsolvability of the equation $301 \cdot (4x)^2 - 57095y^2 = 1$.

$$k = 673$$

As in the previous two cases, solvability of the equation $a^2-170185 \cdot 21189b^2=-1011$ implies, by Lemma 11, unsolvability of the equation $170185x^2-339024y^2=1$.

$$k = 675$$

The minimal solution of the equation $150u^2 - 7751z^2 = 1$ is $u_1 = 2 \cdot 343488449$, $z_1 = 19 \cdot 71 \cdot 70843$. Hence by Lemma 9 we have 71|z. But then $171197z^2 - 675y^2 = -22$ is impossible since $\left(\frac{675 \cdot 22}{71}\right) = -1$.

$$k = 698$$

As in the previous case, from the minimal solution of the equation $1464405x^2 - 16031y^2 = 1$ we conclude that 3|x. Furthermore, in the same way, from the equation $5584x^2 - 16031z^2 = 1$ we obtain that 3|z and this is an obvious contradiction.

$$k = 720$$

Since the equation $a^2 - 1558081 \cdot 719b^2 = -1438$ has a solution, we conclude that the equation $155808x^2 - 719y^2 = 1$ has no solution.

$$k = 744$$

Since the equation $a^2 - 5952 \cdot 72071b^2 = 97$ has a solution, the equation $5952x^2 - 72071y^2 = 1$ has no solution.

$$k = 801$$

The solvability of the equation $a^2 - 1201 \cdot 241001b^2 = 401$ implies unsolvability of the equation $241001x^2 - 1201 \cdot (20y)^2 = 1$.

$$k = 838$$

The minimal solution of the equation $422017x^2 - 5859y^2 = 1$ satisfies $5|x_1$. It implies that 5|x. But then $6704x^2 - 5859z^2 = 5$ is clearly impossible.

Therefore, we eliminated all cases and we proved the following theorem.

Theorem 10 If $3 \le k \le 1000$, then all integer points on E_k are given by (7).

References

- [1] W. A. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), 355–359.
- [2] A. Baker and H. Davenport, The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser. (2) **20** (1969), 129–137.
- [3] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares,
 J. Number Theory 62 (1997), 39–70.
- [4] J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24–28.
- [5] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
- [6] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 513–520.
- [7] A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen **51** (1997), 311–322.
- [8] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
- [9] A. Dujella, Diophantine triples and construction of high-rank elliptic curves over **Q** with three non-trivial 2-torsion points, Rocky Mountain J. Math., to appear.
- [10] A. Dujella and A. Pethő, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) (49) (1998), 291–306.
- [11] A. Dujella and A. Pethő, *Integer points on a family of elliptic curves*, Publ. Math. Debrecen, to appear.
- [12] S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur Q, Experimental Math. 5 (1996), 119-130.
- [13] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curve, Acta Arith. 68 (1994), 171–192.
- [14] A. Grelak and A. Grytczuk, On the diophantine equation $ax^2 by^2 = c$, Publ. Math. Debrecen **44** (1994), 191–199.
- [15] C. M. Grinstead, On a method of solving a class od Diophantine equations, Math. Comp. 32 (1978), 936–940.
- [16] D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.

- [17] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), 833–842.
- [18] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
- [19] T. Nagell, Introduction on Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
- [20] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1954), 1–38.
- [21] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Wesley, New York, 1991.
- [22] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101–123.
- [23] J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461–472.
- [24] J. H. Silverman, Rational points on elliptic surfaces, preprint.
- [25] SIMATH manual, Saarbrücken, 1997.

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

E-mail address: duje@math.hr