A parametric family of elliptic curves

Andrej Dujella (Zagreb)
(extended version)

Abstract

Let $k \geq 3$ be an integer and let E_{k} be the elliptic curve given by $$
E_{k}: \quad y^{2}=((k-1) x+1)((k+1) x+1)(4 k x+1) .
$$

It is proven that if $\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=1$ or $k \leq 1000$, then all integer points on E_{k} are given by

$$
(x, y) \in\left\{(0, \pm 1),\left(16 k^{3}-4 k, \pm\left(128 k^{6}-112 k^{4}+20 k^{2}-1\right)\right)\right\}
$$

The same result is also proven for two subfamilies with rank equal 2 and for one subfamily with rank equal 3 .

1 Introduction

A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a Diophantine m-tuple if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$. The problem of construction of Diophantine m-tuples has a long history (see [6]). Diophantus found a set of four positive rationals with the above property. However, the first Diophantine quadruple was found by Fermat, and it was the set $\{1,3,8,120\}$.

In 1969, Baker and Davenport [2] proved that if d is a positive integer such that $\{1,3,8, d\}$ is a Diophantine quadruple, then d has to be 120 . Recently, the theorem of Baker and Davenport has been generalized to some parametric families of Diophantine triples ($[7,8,10]$). The main result of [7] is the following theorem.

Theorem 1 Let $k \geq 2$ be an integer. If the set $\{k-1, k+1,4 k, d\}$ is a Diophantine quadruple, then d has to be $16 k^{3}-4 k$.

[^0]Eliminating d from the system

$$
\begin{equation*}
(k-1) d+1=x_{1}^{2}, \quad(k+1) d+1=x_{2}^{2}, \quad 4 k d+1=x_{3}^{2} \tag{1}
\end{equation*}
$$

we obtain the system

$$
\begin{align*}
(k+1) x_{1}^{2}-(k-1) x_{2}^{2} & =2 \tag{2}\\
4 k x_{1}^{2}-(k-1) x_{3}^{2} & =3 k+1 \tag{3}
\end{align*}
$$

and then we can reformulate this system into the equation $v_{m}=w_{n}$, where $\left(v_{m}\right)$ and $\left(w_{n}\right)$ are binary recursive sequences defined by

$$
\begin{gathered}
v_{0}=1, \quad v_{1}=2 k-1, \quad v_{m+2}=2 k v_{m+1}-v_{m}, \quad m \geq 0 \\
w_{0}=1, \quad w_{1}=3 k-2, \quad w_{n+2}=(4 k-2) w_{n+1}-w_{n}, \quad n \in \mathbf{Z}
\end{gathered}
$$

In order to prove Theorem 1, it suffices to prove that all solutions of the equation $v_{m}=w_{n}$ are given by $v_{0}=w_{0}=1$ and $v_{2}=w_{-2}=4 k^{2}-$ $2 k-1$, which correspond to $d=0$ and $d=16 k^{3}-4 k$. A comparison of the upper bound for solutions, obtained from the theorem of Rickert [23] on simultaneous rational approximations to the numbers $\sqrt{(k-1) / k}$ and $\sqrt{(k+1) / k}$, with the lower bound, obtained from the congruence condition modulo $4 k(k-1)$, finishes the proof for $k \geq 29$. In the proof of Theorem 1 for $k \leq 28$ we used Grinstead's method [15].

It is clear that every solution of the system (1) induces an integer point on the elliptic curve

$$
E_{k}: \quad y^{2}=((k-1) x+1)((k+1) x+1)(4 k x+1)
$$

Our conjecture is that the converse of this statement is also true.
Conjecture 1 Let $k \geq 3$ be an integer. All integer points on E_{k} are given by

$$
(x, y) \in\left\{(0, \pm 1),\left(16 k^{3}-4 k, \pm\left(128 k^{6}-112 k^{4}-20 k^{2}-1\right)\right)\right\}
$$

In this paper we will prove Conjecture 1 under assumption that $\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=1$. This condition is not unrealistic since "the generic rank" of the corresponding elliptic surface is equal 1 . We will also prove Conjecture 1 for two subfamilies of curves with rank equal 2 and for one subfamily with rank equal 3. Finally, using properties of Pellian equations, we will prove Conjecture 1 for all k in the range $3 \leq k \leq 1000$.

Let us note that in [11] the family of elliptic curves

$$
C_{l}: \quad y^{2}=(x+1)(3 x+1)\left(c_{l} x+1\right),
$$

where $c_{1}=8, c_{2}=120, c_{l+2}=14 c_{l+1}-c_{l}+8$ for $l \geq 1$, was considered. It is proven that if $\operatorname{rank}\left(C_{l}(\mathbf{Q})\right)=2$ or $l \leq 40$, with possible exceptions $l=23$ and $l=37$, then all integer points on C_{l} are given by

$$
x \in\left\{-1,0, c_{l-1}, c_{l+1}\right\} .
$$

In particular, for $l=1$ it follows that all integer points on E_{2} are given by

$$
(x, y) \in\{(-1,0),(0, \pm 1),(120, \pm 6479)\}
$$

2 Torsion group

The coordinate transformation

$$
x \mapsto \frac{x}{4 k(k-1)(k+1)}, \quad y \mapsto \frac{y}{4 k(k-1)(k+1)}
$$

applied on the curve E_{k} leads to the elliptic curve

$$
\begin{aligned}
E_{k}^{\prime}: \quad y^{2} & =\left(x+4 k^{2}+4 k\right)\left(x+4 k^{2}-4 k\right)\left(x+k^{2}-1\right) \\
& =x^{3}+\left(9 k^{2}-1\right) x^{2}+24 k^{2}\left(k^{2}-1\right) x+16 k^{2}\left(k^{2}-1\right)^{2} .
\end{aligned}
$$

There are three rational points on E_{k}^{\prime} of order 2, namely

$$
A_{k}=\left(-4 k^{2}-4 k, 0\right), \quad B_{k}=\left(-4 k^{2}+4 k, 0\right), \quad C_{k}=\left(-k^{2}+1,0\right),
$$

and also another obvious rational point on E_{k}^{\prime}, namely

$$
P_{k}=\left(0,4 k^{3}-4 k\right) .
$$

We will show that the point P_{k} cannot be of finite order.
Theorem $2 E_{k}^{\prime}(\mathbf{Q})_{\text {tors }} \simeq \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$
Proof. Assume that $E_{k}^{\prime}(\mathbf{Q})_{\text {tors }}$ contains a subgroup isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 4 \mathbf{Z}$. Then a theorem of Ono [22, Main Theorem 1] implies that $3 k^{2}+4 k+1$ and $3 k^{2}-4 k+1$ are perfect squares. Since $\operatorname{gcd}(3 k+1, k+1)=$ $\operatorname{gcd}(3 k-1, k-1) \in\{1,2\}$, we have

$$
\begin{equation*}
3 k+1=\alpha^{2}, \quad k+1=\beta^{2}, \quad 3 k-1=2 \gamma^{2}, \quad k-1=2 \delta^{2} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
3 k+1=2 \alpha^{2}, \quad k+1=2 \beta^{2}, \quad 3 k-1=\gamma^{2}, \quad k-1=\delta^{2} \tag{5}
\end{equation*}
$$

From $k=2 \delta^{2}+1$ it follows that k is odd. On the other hand, from $\alpha^{2}-\beta^{2}=$ $2 k$ it follows that k is even, a contradiction. Similarly, relation (5) implies $k=2 \beta^{2}-1$ and $\gamma^{2}-\delta^{2}=2 k$, which again leads to a contradiction.

Hence, $E_{k}^{\prime}(\mathbf{Q})_{\text {tors }} \simeq \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}$ or $E_{k}^{\prime}(\mathbf{Q})_{\text {tors }} \simeq \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 6 \mathbf{Z}$, and according to the theorem of Ono the latter is possible iff there exist integers α and β such that $\frac{\alpha}{\beta} \notin\left\{-2,-1,-\frac{1}{2}, 0,1\right\}$ and

$$
3 k^{2}+4 k+1=\alpha^{4}+2 \alpha^{3} \beta, \quad 3 k^{2}-4 k+1=2 \alpha \beta^{3}+\beta^{4}
$$

Now we have

$$
\begin{equation*}
\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)^{2}-3 \alpha^{2} \beta^{2}=6 k^{2}+2 \tag{6}
\end{equation*}
$$

which is impossible since left hand side of (6) is $\equiv 0$ or $1(\bmod 3)$, and the right hand side of (6) is $\equiv 2(\bmod 3)$.

Corollary $1 \operatorname{rank}\left(E_{k}^{\prime}(\mathbf{Q})\right) \geq 1$
Proof. By Theorem 2, the point $P_{k}=\left(0,4 k^{3}-4 k\right)$ on E_{k}^{\prime} is not of finite order, which shows that $\operatorname{rank}\left(E_{k}^{\prime}(\mathbf{Q})\right) \geq 1$.

3 Case $\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=1$

In the rest of the paper we will often use the following 2-descent Proposition (see [16, 4.1, p.37], [18, 4.2, p.85]).

Proposition 1 Let E be an elliptic curve over a field k of characteristic not equal to 2 or 3 . Suppose E is given by

$$
y^{2}=(x-\alpha)(x-\beta)(x-\gamma)
$$

with $\alpha, \beta, \gamma \in k$. For $P=\left(x^{\prime}, y^{\prime}\right) \in E(k)$, there exists $Q=(x, y) \in E(k)$ such that $2 Q=P$ iff $x^{\prime}-\alpha, x^{\prime}-\beta, x^{\prime}-\gamma$ are squares in k.

Lemma $1 P_{k}, P_{k}+A_{k}, P_{k}+B_{k}, P_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbf{Q})$

Proof. We have

$$
\begin{aligned}
& P_{k}+A_{k}=\left(-4 k^{2}+2 k+2,-6 k^{2}+4 k+2\right), \\
& P_{k}+B_{k}=\left(-4 k^{2}-2 k+2,6 k^{2}+4 k-2\right), \\
& P_{k}+C_{k}=\left(8 k^{2},-36 k^{3}+4 k\right) .
\end{aligned}
$$

Since none of the numbers $k^{2}-1,-3 k^{2}+2 k+1,-3 k^{2}-2 k+1$ and $9 k^{2}-1$ is a perfect square (for $k \geq 2$), Proposition 1 implies that $P_{k}, P_{k}+A_{k}, P_{k}+$ $B_{k}, P_{k}+C_{k} \notin 2 E_{k}^{\prime}(\mathbf{Q})$.

Theorem 3 Let $k \geq 3$ be an integer. If the rank of the elliptic curve

$$
E_{k}: \quad y^{2}=((k-1) x+1)((k+1) x+1)(4 k x+1)
$$

is equal 1 , then all integer points on E_{k} are given by

$$
\begin{equation*}
(x, y) \in\left\{(0, \pm 1),\left(16 k^{3}-4 k, \pm\left(128 k^{6}-112 k^{4}+20 k^{2}-1\right)\right)\right\} \tag{7}
\end{equation*}
$$

Proof. Let $E_{k}^{\prime}(\mathbf{Q}) / E_{k}^{\prime}(\mathbf{Q})_{\text {tors }}=\langle U\rangle$ and $X \in E_{k}^{\prime}(\mathbf{Q})$. Then we can represent X in the form $X=m U+T$, where m is an integer and T is a torsion point, i.e. $T \in\left\{\mathcal{O}, A_{k}, B_{k}, C_{k}\right\}$. Similarly, $P_{k}=m_{P} U+T_{P}$ for an integer m_{P} and a torsion point T_{P}. By Lemma 1 we have that m_{P} is odd. Hence, $U \equiv P+T_{P}\left(\bmod 2 E_{k}^{\prime}(\mathbf{Q})\right)$. Therefore we have $X \equiv X_{1}$ $\left(\bmod 2 E_{k}^{\prime}(\mathbf{Q})\right)$, where

$$
\begin{equation*}
X_{1} \in \mathcal{S}=\left\{\mathcal{O}, A_{k}, B_{k}, C_{k}, P_{k}, P_{k}+A_{k}, P_{k}+B_{k}, P_{k}+C_{k}\right\} . \tag{8}
\end{equation*}
$$

Let $\{a, b, c\}=\left\{4 k^{2}+4 k, 4 k^{2}-4 k, k^{2}-1\right\}$. By [18, 4.6, p.89], the function $\varphi: E_{k}^{\prime}(\mathbf{Q}) \rightarrow \mathbf{Q}^{*} / \mathbf{Q}^{* 2}$ defined by

$$
\varphi(X)= \begin{cases}(x+a) \mathbf{Q}^{* 2} & \text { if } X=(x, y) \neq \mathcal{O},(-a, 0) \\ (b-a)(c-a) \mathbf{Q}^{* 2} & \text { if } X=(-a, 0) \\ \mathbf{Q}^{* 2} & \text { if } X=\mathcal{O}\end{cases}
$$

is a group homomorphism.
Therefore, in order to find all integer points on E_{k}, it suffices to solve in integers all systems of the form

$$
\begin{equation*}
(k-1) x+1=\alpha \square, \quad(k+1) x+1=\beta \square, \quad 4 k x+1=\gamma \square \tag{9}
\end{equation*}
$$

where for $X_{1}=\left(4 k\left(k^{2}-1\right) u, 4 k\left(k^{2}-1\right) v\right) \in \mathcal{S}$, numbers α, β, γ are defined by $\alpha=(k-1) u+1, \beta=(k+1) u+1, \gamma=4 k u+1$ if all of these three
expressions are nonzero, and if e.g. $(k-1) u+1=0$ then we define $\alpha=\beta \gamma$. Here \square denotes a square of a rational number.

Observe that for $X_{1}=P_{k}$ the system (9) becomes

$$
(k-1) x+1=\square, \quad(k+1) x+1=\square, \quad 4 k x+1=\square .
$$

As we said in the introduction, this system is completely solved in [7], and its solutions correspond to the integers points on E_{k} listed in Theorem 3.

Hence, we have to prove that for $X_{1} \in \mathcal{S} \backslash\left\{P_{k}\right\}$, the system (9) has no integer solution.

For $X_{1} \in\left\{A_{k}, B_{k}, P_{k}+A_{k}, P_{k}+B_{k}\right\}$ exactly two of the numbers α, β, γ are negative and accordingly the system (9) has no integer solution. Let us consider three remaining cases. In the rest of the paper by e^{\prime} we will denote the square-free part of an integer e.

1) $X_{1}=\mathcal{O}$

The system (9) becomes

$$
\begin{align*}
(k-1) x+1 & =k(k+1) \square \tag{10}\\
(k+1) x+1 & =k(k-1) \square \tag{11}\\
4 k x+1 & =(k-1)(k+1) \square \tag{12}
\end{align*}
$$

Since k^{\prime} divides $(k-1) x+1$ and $(k+1) x+1$, we have $k^{\prime}=1$ or 2 , and it means that $k=\square$ or $2 \square$. In the same way we obtain that $k-1=\square$ or $2 \square$, and $k+1=\square$ or $2 \square$. Thus, between three successive numbers $k-1, k$, $k+1$ we have two squares or two double-squares, a contradiction.
2) $X_{1}=C_{k}$

Now the system (9) becomes

$$
\begin{aligned}
(k-1) x+1 & =k(3 k+1) \square \\
(k+1) x+1 & =k(3 k-1) \square \\
4 k x+1 & =(3 k-1)(3 k+1) \square .
\end{aligned}
$$

If k is even, then $(3 k-1)(3 k+1) \equiv-1 \quad(\bmod 4)$ and thus the equation $4 k x+1=(3 k-1)(3 k+1) \square$ is impossible modulo 4 .

If $k \equiv 1(\bmod 4)$, then $(k+1) x+1$ is odd. But $k(3 k-1) \equiv 2(\bmod 4)$ implies that $k(3 k-1) \square$ is even, a contradiction.

If $k \equiv-1(\bmod 4)$, then $(k-1) x+1$ is odd, but $k(3 k+1) \equiv 2(\bmod 4)$ and we have again a contradiction.
3) $X_{1}=P_{k}+C_{k}$

We have to solve the system

$$
\begin{aligned}
(k-1) x+1 & =(k+1)(3 k+1) \square \\
(k+1) x+1 & =(k-1)(3 k-1) \square \\
4 k x+1 & =(k-1)(k+1)(3 k-1)(3 k+1) \square
\end{aligned}
$$

Assume that k is even. Since $(k+1)^{\prime}$ divides $(k-1) x+1$ and $4 k x+1$ we have that $(k+1)^{\prime} \mid(3 k+1)$, and it implies $(k+1)^{\prime}=1$ and $k+1=\square$. In the same way we obtain that $k-1=\square$, and this is impossible.

Assume now that k is odd. Then $(k-1) x+1$ and $(k+1) x+1$ are odd. Furthermore, $(k+1)(3 k+1) \equiv 0(\bmod 8)$ and since the number $(k+1)(3 k+1) \square=(k-1) x+1$ is odd we should have $(k+1)(3 k+1) \equiv 0$ $(\bmod 16)$. It implies $k \equiv 5$ or $7(\bmod 8)$.

Similarly, since $(k-1)(3 k-1) \equiv 0(\bmod 8)$ and $(k-1)(3 k-1) \square=$ $(k+1) x+1$ is odd, we conclude that $(k-1)(3 k-1) \equiv 0(\bmod 16)$. It implies $k \equiv 1$ or $3(\bmod 8)$ and we get a contradiction.

Remark 1 Bremner, Stroeker and Tzanakis [3] proved recently a similar result to our Theorem 3 for the family of elliptic curves

$$
C_{k}: \quad y^{2}=\frac{1}{3} x^{3}+\left(k-\frac{1}{2}\right) x^{2}+\left(k^{2}-k+\frac{1}{6}\right) x
$$

under assumptions that $\operatorname{rank}\left(C_{k}(\mathbf{Q})\right)=1$ and that $C_{k}(\mathbf{Q}) / C_{k}(\mathbf{Q})_{\text {tors }}=$ $<(1, k)>$.

We come to the following natural question: How realistic is the condition $\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=1$? We calculated the rank for $2 \leq k \leq 100$ using the programs Simath [25] and MWrank [5]. The rank values are listed in Table 1.

$\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=1$	$\begin{aligned} k= & 2,3,5,7,8,9,12,13,17,18,24,26,29, \\ & 33,35,36,41,44,51,55,57,58,61,64, \\ & 66,67,70,73,75,78,79,82,85,86,87, \\ & 89,92,96,98,100 \end{aligned}$
$\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=2$	$\begin{aligned} k= & 4,6,10,11,15,16,19,20,21,22,23,25, \\ & 27,30,32,37,38,39,40,42,43,45,46, \\ & 47,48,49,50,53,54,59,62,65,68,69, \\ & 71,72,74,81,83,84,88,90,91,93, \\ & 94^{*}, 95,97,99 \end{aligned}$
$\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=3$	$k=14,31,34,52,56,60,63,76,80$

Table 1:

The rank has been determined unconditionally for k in the range $2 \leq$ $k \leq 100$ except for $k=94$, when it is computed assuming the Birch and Swinnerton-Dyer Conjecture (Manin's conditional algorithm). We obtained the following distribution of ranks: 41 cases of rank 1, 49 cases of rank 2 and 9 cases of rank 3 .

In the range $101 \leq k \leq 200$ we determined the rank unconditionally for all k except for $k=118$, when we used the Birch and Swinnerton-Dyer Conjecture, and for $k=122$, when we were able only to conclude that $2 \leq \operatorname{rank}\left(E_{122}(\mathbf{Q})\right) \leq 4$. The rank values are listed in Table 2 .

$\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=1$	$k=$$104,109,110,120,126,128,134,136,137$, $139,141,143,147,148,149,151,156,158$, $165,169,171,173,177,182,185,188,191$, $192,193,194,196$,		
$\operatorname{rank}\left(E_{k}(\mathbf{Q})\right)=2$		$\quad k=$	$102,103,105,106,107,108,111,112,113$,
:---			
$114,115,116,117,118 *, 119,121,123,124$,			
$125,130,132,135,138,140,142,144,145$,			
$146,150,152,153,157,159,160,161,162$,			
$163,164,167,168,170,172,176,178,179$,			
$181,187,190,195,198,199,200$,		

Table 2:
In the range $101 \leq k \leq 200$ we obtained the following distribution of ranks: 31 cases of rank 1,52 cases of rank 2,15 cases of rank 3 and 1 case of rank 4.

The data from Tables 1 and 2 suggest that the generic rank of the elliptic curve E^{\prime} over $\mathbf{Q}(k)$ is equal 1, and we will prove this statement in the following theorem.

Theorem $4 \operatorname{rank} E^{\prime}(\mathbf{Q}(k))=1$
Proof. Let $(x(k), y(k)) \in E^{\prime}(\mathbf{Q}(k))$ and $x(k)=\frac{p(k)}{q^{2}(k)}$, where $p(k), q(k)$ are polynomials with integer coefficients. We have

$$
p(k)+\left(k^{2}-1\right) q^{2}(k)=\mu_{1}(k) \mu_{2}(k) \square,
$$

$$
\begin{aligned}
& p(k)+\left(4 k^{2}-4 k\right) q^{2}(k)=\mu_{1}(k) \mu_{3}(k) \square \\
& p(k)+\left(4 k^{2}+4 k\right) q^{2}(k)=\mu_{2}(k) \mu_{3}(k) \square
\end{aligned}
$$

where \square denotes a square of a polynomial in $\mathbf{Z}[k]$, and $\mu_{1}(k), \mu_{2}(k), \mu_{3}(k)$ are square-free polynomials in $\mathbf{Z}[k]$. We may also choose that the leading coefficient of $\mu_{1}(k)$ is positive. After this choice, the triple $\left(\mu_{1}(k), \mu_{2}(k), \mu_{3}(k)\right)$ is uniquely determined by $x(k)$.

Furthermore, we have $\mu_{1}(k)\left|(k-1)(3 k-1), \mu_{2}(k)\right|(k+1)(3 k+1)$ and $\mu_{3}(k) \mid 8 k$. Hence, $\mu_{1}(k) \in\{1, k-1,3 k-1,(k-1)(3 k-1)\}, \mu_{2}(k) \in\{ \pm 1$, $\pm(k-1), \pm(3 k-1), \pm(k-1)(3 k-1)\}, \mu_{3}(k) \in\{ \pm 1, \pm 2, \pm k, \pm 2 k\}$.

We claim that there are exactly eight triples $\left(\mu_{1}(k), \mu_{2}(k), \mu_{3}(k)\right)$ which may appear, namely the triples

$$
\begin{gather*}
(k(k+1), k(k-1),(k-1)(k+1)), \\
(2(3 k+1),-2(k-1),-(k-1)(3 k+1)), \\
(2(k+1),-2(3 k+1),-(k+1)(3 k-1)), \\
(k(3 k+1), k(3 k-1),(3 k-1)(3 k+1)),(1,1,1), \tag{13}\\
(2 k(k+1)(3 k+1),-2 k,-(k+1)(3 k+1)), \\
(2 k,-2 k(k-1)(3 k-1),-(k-1)(3 k-1)), \\
((k+1)(3 k+1),(k-1)(3 k-1),(k-1)(k+1)(3 k-1)(3 k+1)),
\end{gather*}
$$

which correspond to the points $\mathcal{O}, A(k)=A_{k}, B(k)=B_{k}, C(k)=C_{k}$, $P(k)=P_{k}, P(k)+A(k), P(k)+B(k)$ and $P(k)+C(k)$.

Let us consider now the specialization $k=12$. We choose $k=12$ because $\operatorname{rank}\left(E_{12}^{\prime}(\mathbf{Q})\right)=1, E_{12}^{\prime}(\mathbf{Q}) / E_{12}^{\prime}(\mathbf{Q})_{\text {tors }}=<P_{12}>$ and furthermore square-free parts of all polynomial factors of $(k-1)(3 k-1),(k+1)(3 k+1)$ and $8 k$ respectively, evaluated at $k=12$, are distinct. Thus, if there are more that 8 choices for $\left(\mu_{1}(k), \mu_{2}(k), \mu_{3}(k)\right)$ on $E^{\prime}(\mathbf{Q}(k))$, there will be more than 8 choices on $E_{12}^{\prime}(\mathbf{Q})$. Since this is not the case, we conclude that all possibilities for $\left(\mu_{1}(k), \mu_{2}(k), \mu_{3}(k)\right)$ are indeed given by (13).

Let V be an arbitrary point on $E(\mathbf{Q}(k))$. Consider nine points

$$
\mathcal{O}, A(k), B(k), C(k), P(k), P(k)+A(k), P(k)+B(k), P(k)+C(k), V
$$

Two of them have equal corresponding triples. By [16, 4.3, p.125], these two points are congruent modulo $2 E^{\prime}(\mathbf{Q}(k))$. We have already proved in Theorem 2 and Lemma 1 that the first eight points are incongruent modulo
$2 E^{\prime}(\mathbf{Q}(k))$ (since the specialization map is a homomorphism). Hence we have two possibilities:

1) $\quad V \equiv T_{1}\left(\bmod 2 E^{\prime}(\mathbf{Q}(k))\right)$,
2) $\quad V \equiv P(k)+T_{2}\left(\bmod 2 E^{\prime}(\mathbf{Q}(k))\right)$,
where $T_{i} \in\{\mathcal{O}, A(k), B(k), C(k)\}$.
Let $\left\{D_{1}, \ldots, D_{r}\right\}$ be the Mordell-Weil base for $E^{\prime}(\mathbf{Q}(k))$ and assume that $r \geq 2$. Let $P(k)=\sum_{i=1}^{r} \alpha_{i} D_{i}+T$, where T is a torsion point. Consider the point D_{r}. According to the above discussion, we have two possibilities:
3) $\quad D_{r} \equiv T_{1}\left(\bmod 2 E^{\prime}(\mathbf{Q}(k))\right)$

It implies $D_{r}=T_{1}+2 F_{r}$, where $F_{r}=\sum_{i=1}^{r} \beta_{i} D_{i}+T^{\prime}$, and we obtain $1=2 \beta_{r}$, a contradiction.
2) $\quad D_{r} \equiv P(k)+T_{2}\left(\bmod 2 E^{\prime}(\mathbf{Q}(k))\right)$

Now we have

$$
\alpha_{1} D_{1}+\cdots+\alpha_{r-1} D_{r-1}+\left(\alpha_{r}-1\right) D_{r}+T_{2}+T \in 2 E^{\prime}(\mathbf{Q}(k))
$$

Hence, α_{r-1} is even and α_{r} is odd. Analogously, considering the point D_{r-1}, we conclude that α_{r-1} is odd and α_{r} is even, which leads to a contradiction.

If we define the average rank of $E^{\prime}(\mathbf{Q}(k))$ to be

$$
\text { Avg.rank } E^{\prime}(\mathbf{Q}(k))=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N} \operatorname{rank}\left(E_{k}^{\prime}(\mathbf{Q})\right)
$$

then the Katz-Sarnak Conjecture (see [24]) states that

$$
\text { Avg.rank } E^{\prime}(\mathbf{Q}(k))=\operatorname{rank} E^{\prime}(\mathbf{Q}(k))+\frac{1}{2}=1.5
$$

This means that at least 50% of curves E_{k} should have the rank equal 1. As explained in [24], the Katz-Sarnak Conjecture is not in complete agreement with experimental results of Fermigier [12]. Examining an extensive collection of data (66918 curves in 93 families) Fermigier found that $\operatorname{rank}\left(E_{t}(\mathbf{Q})\right)=\operatorname{rank} E(\mathbf{Q}(t))$ in 32% of cases. Perhaps it can be compared with our situation where we found that in the range $2 \leq k \leq 200$ we have $\operatorname{rank}\left(E_{k}^{\prime}(\mathbf{Q})\right)=\operatorname{rank} E^{\prime}(\mathbf{Q}(k))$ in 36% of cases.

Thus we have reasons to believe that Theorem 3 shows that Conjecture 1 is valid for a large class of positive integers k.

4 The first family with rank ≥ 2

The Katz-Sarnak Conjecture implies, and Tables 1 and 2 confirm, that there are many curves in the family E_{k} with rank ≥ 2. Therefore, we may try to find an explanation for these additional rational points on E_{k}. We succeeded in two special cases. Namely, we used Simath ${ }^{1}$ to find all integer points on E_{k}^{\prime} in some cases with $\operatorname{rank}\left(E_{k}^{\prime}(\mathbf{Q})\right)>1$. Then we transformed these integer points on E_{k}^{\prime} to rational points on E_{k}. After doing it, we noticed some regularities in the appearance of these points. Namely, there were several curves with rational point with x-coordinate equal to $\frac{3}{4}$, and also several curves with two rational points with x-coordinates very close to 6 . Analyzing these phenomena, we find two subfamilies of $\left(E_{k}\right)$ which consist of elliptic curves with rank ≥ 2.

More precisely, these families are $E_{k_{1}(n)}$ and $E_{k_{2}(m)}$, where $k_{1}(n)=3 n^{2}+$ $2 n-2$ and $k_{2}(m)=\frac{1}{2}\left(3 m^{2}+5 m\right)$ for integers $n \neq-1,0,1$ and $m \neq-2,-1,0$.

Let us first consider the family $E_{k_{1}(n)}$. For the sake of simplicity we denote $E_{k_{1}(n)}^{\prime}$ by E_{n}^{*}. It is easy to verify that the point

$$
\begin{aligned}
R_{n}= & \left(3(n+1)(3 n-1)\left(3 n^{2}+2 n-3\right)\left(3 n^{2}+2 n-2\right),\right. \\
& \left.(n+1)(3 n-1)(3 n+1)\left(3 n^{2}+2 n-3\right)\left(3 n^{2}+2 n-2\right)\left(9 n^{2}+6 n-5\right)\right)
\end{aligned}
$$

is a point on E_{n}^{*}. Note that x-coordinate of R_{n} is equal to

$$
\frac{3}{4} \cdot 4 k_{1}(n)\left(k_{1}(n)-1\right)\left(k_{1}(n)+1\right) .
$$

Let $A_{n}=A_{k_{1}(n)}, B_{n}=B_{k_{1}(n)}, C_{n}=C_{k_{1}(n)}$ and $P_{n}=P_{k_{1}(n)}$. Then we have

$$
\begin{aligned}
R_{n}+A_{n}= & \left(-4 n(3 n+2)\left(3 n^{2}+2 n-3\right),\right. \\
& \left.-8(3 n+1)\left(3 n^{2}+2 n-3\right)\right), \\
R_{n}+B_{n}= & \left(-\frac{4(n+1)^{2}(3 n-2)(3 n-1)^{2}(3 n+4)}{(3 n+1)^{2}},\right. \\
& \left.\frac{8(n+1)(3 n-1)\left(9 n^{2}+6 n-7\right)\left(9 n^{2}+6 n-5\right)}{(3 n+1)^{3}}\right), \\
R_{n}+C_{n}= & \left(-(n-1)(3 n+5)\left(3 n^{2}+2 n-2\right),\right. \\
& \left.-(3 n+1)\left(3 n^{2}+2 n-2\right)\left(9 n^{2}+6 n-7\right)\right), \\
R_{n}+P_{n}= & \left(-8\left(3 n^{3}-3 n+1\right),\right. \\
& \left.4 n(n-1)(n+1)(3 n-2)\left(9 n^{2}+6 n-5\right)\right),
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
R_{n}+P_{n}+A_{n}= & \left(-\frac{2(n+1)(3 n-1)\left(2 n^{2}-1\right)\left(3 n^{2}+2 n-2\right)}{n^{2}},\right. \\
& \left.-\frac{-2(n-1)(n+1)^{2}(3 n-2)(3 n-1)\left(3 n^{2}+2 n-2\right)}{n^{3}}\right), \\
R_{n}+P_{n}+B_{n}= & \left(-\frac{2(3 n+1)\left(3 n^{2}+2 n-3\right)\left(3 n^{2}+2 n-2\right)\left(6 n^{3}+2 n^{2}-5 n+1\right)}{(3 n-2)^{2}(n+1)^{2}},\right. \\
& \left.\frac{2 n(n-1)\left(3 n^{2}+2 n-3\right)\left(3 n^{2}+2 n-2\right)\left(9 n^{2}+6 n-7\right)\left(9 n^{2}+6 n-5\right)}{(3 n-2)^{3}(n+1)^{3}}\right), \\
R_{n}+P_{n}+C_{n}= & \left(\frac{8(n+1)(3 n-1)\left(n^{2}+n-1\right)\left(3 n^{2}+2 n-3\right)}{(n-1)^{2}},\right. \\
& \left.-\frac{4 n(n+1)^{2}(3 n-2)(3 n-1)\left(3 n^{2}+2 n-3\right)\left(9 n^{2}+6 n-7\right)}{(n-1)^{3}}\right) .
\end{aligned}
$$
\]

Lemma 2 If $n \neq-1,0,1$, then $R_{n}, R_{n}+A_{n}, R_{n}+B_{n}, R_{n}+C_{n}, R_{n}+$ $P_{n}, R_{n}+P_{n}+A_{n}, R_{n}+P_{n}+B_{n}, R_{n}+P_{n}+C_{n} \notin 2 E_{n}^{*}(\mathbf{Q})$.

Proof. As in the proof of Lemma 1, we use Proposition 1. For the points $R_{n}+A_{n}, R_{n}+B_{n}, R_{n}+P_{n}+A_{n}$ and $R_{n}+P_{n}+B_{n}$ the conditions from Proposition 1 are obviously not satisfied, because two of these conditions give $\square<0$.

If $R_{n}=(x, y) \in 2 E_{n}^{*}(\mathbf{Q})$, then we have

$$
x+4 k_{1}^{2}(n)-4 k_{1}(n)=\left(3 n^{2}+2 n-3\right)\left(3 n^{2}+3 n-2\right)(3 n+1)^{2}=\square,
$$

a contradiction.
If $R_{n}+C_{n}=(x, y) \in 2 E_{n}^{*}(\mathbf{Q})$, then we have

$$
x+k_{1}^{2}(n)-1=9 n^{2}+6 n-7=(3 n+1)^{2}-8=\square,
$$

which implies $3 n+1= \pm 3$, a contradiction.
If $R_{n}+P_{n}=(x, y) \in 2 E_{n}^{*}(\mathbf{Q})$, then we have

$$
x+4 k_{1}^{2}(n)+4 k_{1}(n)=4 n^{2}\left(9 n^{2}+6 n-5\right)=\square
$$

which implies $6=(3 n+1)^{2}-\square$, a contradiction.
If $R_{n}+P_{n}+C_{n}=(x, y) \in 2 E_{n}^{*}(\mathbf{Q})$, then we have

$$
x+4 k_{1}^{2}(n)-4 k_{1}(n)=\frac{4 n^{2}\left(3 n^{2}+2 n-3\right)\left(9 n^{2}+6 n-7\right)}{(n-1)^{2}}=\square .
$$

Since $\operatorname{gcd}\left(3 n^{2}+2 n-3,9 n^{2}+6 n-7\right)=1$ or 2 , and we have already seen that $9 n^{2}+6 n-7=\square$ is impossible, this implies that

$$
\begin{equation*}
3 n^{2}+2 n-3=2 \alpha^{2} \quad \text { and } \quad 9 n^{2}+6 n-7=2 \beta^{2} \tag{14}
\end{equation*}
$$

The condition $x+k_{1}^{2}(n)-1=\square$ gives

$$
\begin{equation*}
3 n^{2}+2 n-1=\gamma^{2} \tag{15}
\end{equation*}
$$

Combining (14) and (15) we obtain the following system of Pellian equations

$$
\begin{aligned}
\gamma^{2}-2 \alpha^{2} & =2 \\
2 \beta^{2}-3 \gamma^{2} & =-4
\end{aligned}
$$

These two equations imply that γ and β are even, say $\gamma=2 \delta, \beta=2 \varepsilon$. Define the integer s by $s=\frac{\varepsilon^{2}-1}{3}$. Then we have: $3 s+1=\varepsilon^{2}, 2 s+1=\delta^{2}$, $4 s+1=\alpha^{2}$. Hence, s satisfies the equation

$$
\begin{equation*}
t^{2}=(2 s+1)(3 s+1)(4 s+1) \tag{16}
\end{equation*}
$$

which under substitution $t_{1}=24 t, s_{1}=24 s$ becomes

$$
\begin{equation*}
t_{1}^{2}=s_{1}^{3}+26 s_{1}^{2}+216 s_{1}+576 \tag{17}
\end{equation*}
$$

Using Simath we find that all integer points on (17) are $(-6,0),(-8,0)$, $(-12,0),(-10, \pm 4),(-9, \pm 3),(-4, \pm 8),(0, \pm 24),(42, \pm 360)$. Hence, the only integer solution of (16) is $s=0$, which implies $\alpha^{2}=1$ and $n=1$.

Corollary 2 If $n \neq-1,0,1$, then $\operatorname{rank}\left(E_{n}^{*}(\mathbf{Q})\right) \geq 2$.
Proof. We claim that the points P_{n} and R_{n} generate a subgroup of rank 2 in $E_{n}^{*}(\mathbf{Q}) / E_{n}^{*}(\mathbf{Q})_{\text {tors }}$. We have to prove that $p_{1} P_{n}+r_{1} R_{n} \in E_{n}^{*}(\mathbf{Q})_{\text {tors }}$, $p_{1}, r_{1} \in \mathbf{Z}$, implies $p_{1}=r_{1}=0$.

Assume that $p_{1} P_{n}+r_{1} R_{n}=T \in E_{n}^{*}(\mathbf{Q})_{\text {tors }}=\left\{\mathcal{O}, A_{n}, B_{n}, C_{n}\right\}$. If p_{1} and r_{1} are not both even, then $T+P_{n} \in 2 E_{n}^{*}(\mathbf{Q})$ or $T+R_{n} \in 2 E_{n}^{*}(\mathbf{Q})$ or $T+P_{n}+R_{n} \in 2 E_{n}^{*}(\mathbf{Q})$. But this is impossible by Lemmas 1 and 2 . Hence, p_{1} and r_{1} are even, say $p_{1}=2 p_{2}, r_{1}=2 r_{2}$. Since, by Theorem 2 , $A_{n}, B_{n}, C_{n} \notin 2 E_{n}^{*}(\mathbf{Q})$, we have $T=\mathcal{O}$. Hence,

$$
2 p_{2} P_{n}+2 r_{2} R_{n}=\mathcal{O}
$$

Thus we obtain $p_{2} P_{n}+r_{2} R_{n} \in E_{n}^{*}(\mathbf{Q})_{\text {tors }}$ and we can continue with the same argumentation to conclude that p_{2} and r_{2} are even. Continuing this process, we finally conclude that $p_{1}=r_{1}=0$.

Theorem 5 If $\operatorname{rank}\left(E_{n}^{*}(\mathbf{Q})\right)=2$, then all integer points on E_{k}, where $k=k_{1}(n)$, are given by (7).

Proof. We follow the strategy from the proof of Theorem 3. Let $E_{n}^{*}(\mathbf{Q}) / E_{n}^{*}(\mathbf{Q})_{\text {tors }}=<U, V>$ and $X \in E_{n}^{*}(\mathbf{Q})$. Let $P_{n}=m_{P} U+n_{P} V+T_{P}$, $R_{n}=m_{R} U+n_{R} V+T_{R}$, where $T_{P}, T_{R} \in\left\{\mathcal{O}, A_{n}, B_{n}, C_{n}\right\}$. Let $\mathcal{U}=$ $\{\mathcal{O}, U, V, U+V\}$. There exist $U_{1}, U_{2} \in \mathcal{U}, T_{1}, T_{2} \in E_{n}^{*}(\mathbf{Q})_{\text {tors }}$ such that $P_{n} \equiv$ $U_{1}+T_{1}\left(\bmod 2 E_{n}^{*}(\mathbf{Q})\right), R_{n} \equiv U_{2}+T_{2}\left(\bmod 2 E_{n}^{*}(\mathbf{Q})\right)$. Let $U_{3} \in \mathcal{U}$ such that $U_{3} \equiv U_{1}+U_{2}\left(\bmod 2 E_{n}^{*}(\mathbf{Q})\right)$ and $T_{3}=T_{1}+T_{2}$. Then $P_{n}+R_{n} \equiv U_{3}+T_{3}$ $\left(\bmod 2 E_{n}^{*}(\mathbf{Q})\right)$. Now Lemmas 1, 2 imply that $U_{1}, U_{2}, U_{3} \neq \mathcal{O}$. Hence $\left\{U_{1}, U_{2}, U_{3}\right\}=\{U, V, U+V\}$ and $X \equiv X_{1}\left(\bmod 2 E_{n}^{*}(\mathbf{Q})\right), X_{1} \in \mathcal{S} \cup \mathcal{S}_{1}$, where \mathcal{S} is defined by (8) and

$$
\begin{aligned}
\mathcal{S}_{1}= & \left\{R_{n}, R_{n}+A_{n}, R_{n}+B_{n}, R_{n}+C_{n}, R_{n}+P_{n}, R_{n}+P_{n}+A_{n},\right. \\
& \left.R_{n}+P_{n}+B_{n}, R_{n}+P_{n}+C_{n}\right\} .
\end{aligned}
$$

Therefore, we have to solve the systems (9), with numbers α, β, γ defined in the proof of Theorem 3, for $X_{1} \in \mathcal{S}_{1}$. However, for $X_{1} \in\left\{R_{n}+A_{n}, R_{n}+\right.$ $\left.B_{n}, R_{n}+P_{n}+A_{n}, R_{n}+P_{n}+B_{n}\right\}$ the system (9) has no integer solution since exactly two of the numbers α, β, γ are negative. Let us consider four remaining cases.

For the sake of simplicity, in the rest of the proof we will denote $k_{1}(n)$ by k. Note that from $k=3 n^{2}+2 n-2$ it follows $k \equiv 2$ or $3(\bmod 4)$.

1) $X_{1}=R_{n}$

The system (9) becomes

$$
(k-1) x+1=(3 k+1) \square, \quad(k+1) x+1=\square, \quad 4 k x+1=(3 k+1) \square .
$$

The third equation implies $k \equiv 0$ or $1(\bmod 4)$, a contradiction.
2) $X_{1}=R_{n}+C_{n}$

We have

$$
\begin{aligned}
(k-1) x+1 & =(k+1) \square \\
(k+1) x+1 & =(k-1)(3 k-1) \square \\
4 k x+1 & =(k-1)(k+1)(3 k-1) \square .
\end{aligned}
$$

Since $\operatorname{gcd}(k+1,(k-1)(3 k-1)) \mid 8$, we conclude that at least one of the numbers $(k+1)^{\prime}$ and $[2(k+1)]^{\prime}$ divides $3 k+1$ and accordingly this number divides 2 . Hence, $k+1=\square$ or $2 \square$. In the same manner we conclude that $k-1=\square$ or $2 \square$. We have two possibilities:

$$
\begin{equation*}
k+1=\square \quad \text { and } \quad k-1=2 \square, \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
k+1=2 \square \quad \text { and } \quad k-1=\square . \tag{19}
\end{equation*}
$$

The system (18) leads to

$$
\begin{equation*}
(3 n-1)(n+1)=u^{2}, \quad 3 n^{2}+2 n-3=2 v^{2} . \tag{20}
\end{equation*}
$$

The second equation implies $n \equiv 1(\bmod 4)$, and then the first equation implies that there exist integers w and z such that

$$
n+1=2 w^{2}, \quad 3 n-1=2 z^{2} .
$$

Let $s=(w z)^{2}$. Then we have: $3 s+1=\left(z^{2}+1\right)^{2}, 2 s-1=v^{2}$. Hence, s satisfies the equation

$$
\begin{equation*}
t^{2}=s(3 s+1)(2 s-1) \tag{21}
\end{equation*}
$$

By substitution $t_{1}=6 t, s_{1}=6 s$, we obtain the elliptic curve

$$
\begin{equation*}
t_{1}^{2}=s_{1}^{3}-s_{1}^{2}-6 s_{1}, \tag{22}
\end{equation*}
$$

and using Simath we find that all integer points on (22) are given by $(0,0),(3,0),(-2,0),(-1, \pm 2),(6, \pm 12),(8, \pm 20),(243, \pm 3780)$. Hence, the only integer solution of (21) is $s=1$, which implies $n=1$.

The second equation in (19) implies $(3 n+1)^{2}-10=3 \square$, and this is impossible modulo 8.
3) $X_{1}=R_{n}+P_{n}$

We have

$$
\begin{aligned}
(k-1) x+1 & =k(k+1)(3 k+1) \square, \\
(k+1) x+1 & =k(k-1) \square \\
4 k x+1 & =(k-1)(k+1)(3 k+1) \square .
\end{aligned}
$$

As in 2), we obtain that $k-1=\square$ or $2 \square, k=\square$ or $2 \square, k+1=\square$ or $2 \square$, in this leads to a contradiction.
4) $X_{1}=R_{n}+P_{n}+C_{n}$

Now the system (9) becomes
$(k-1) x+1=k \square, \quad(k+1) x+1=k(3 k-1) \square, \quad 4 k x+1=(3 k-1) \square$.
The first two equations imply $k=\square$ or $2 \square$. Since $k \equiv 2$ or $3(\bmod 4)$, it has to hold $k=2 \square$ and $k \equiv 2(\bmod 8)$. Now the third equation gives $5 \square \equiv 1(\bmod 8)$, a contradiction.

In Table 3 we list the rank values of $E_{n}^{*}(\mathbf{Q})$ in the range $2 \leq|n| \leq 21$, which we were able to compute using Simath and Mwrank.

$\operatorname{rank}\left(E_{n}^{*}(\mathbf{Q})\right)=2$	$n=$$4,5,6^{*}, 7,12,21$, $-2,-3,-4,-6^{*},-11,-17,-19$ $\operatorname{rank}\left(E_{n}^{*}(\mathbf{Q})\right)=3$ $n=$$2,3,8,9,10,13,17$, $-5,-7,-8,-9,-10,-12,-14$, $-15,-16,-18,-20$ $\operatorname{rank}\left(E_{n}^{*}(\mathbf{Q})\right)=4$$n=11,14,16,18$ -21

Table 3:

Theorem 6 The rank of the elliptic curve

$$
E^{*}: \quad y^{2}=\left[\left(k_{1}(n)-1\right) x+1\right]\left[\left(k_{1}(n)+1\right) x+1\right]\left[4 k_{1}(n) x+1\right]
$$

over $\mathbf{Q}(n)$ is equal 2 .
Proof. As in the proof of Theorem 4, we consider the triples $\left(\mu_{1}(n)\right.$, $\left.\mu_{2}(n), \mu_{3}(n)\right)$. Now we have:

$$
\begin{array}{l|l}
\mu_{1}(n) & \left(3 n^{2}+2 n-3\right)\left(9 n^{2}+6 n-7\right) \\
\mu_{2}(n) & \mid(n+1)(3 n-1)\left(9 n^{2}+6 n-5\right) \\
\mu_{3}(n) & \mid 8\left(3 n^{2}+2 n-2\right)
\end{array}
$$

We want to choose an integer n such that $\operatorname{rank}\left(E_{n}^{*}(\mathbf{Q})\right)=2$, $E_{n}^{*}(\mathbf{Q}) / E_{n}^{*}(\mathbf{Q})_{\text {tors }}=<P_{n}, R_{n}>$ and square-free parts of the polynomial factors of $\left(3 n^{2}+2 n-2\right)\left(9 n^{2}+6 n-7\right),(n+1)(3 n-1)\left(9 n^{2}+6 n-5\right)$ and $8\left(3 n^{2}+2 n-2\right)$, evaluated at n, are distinct. We may choose $n=4$ (then $\left.k_{1}(n)=54\right)$.

Since for $n=4$ we have exactly 16 choices of $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ on $E_{4}^{*}(\mathbf{Q})$, we conclude that there are also exactly 16 choices of $\left(\mu_{1}(n), \mu_{2}(n), \mu_{3}(n)\right)$ on $E^{*}(\mathbf{Q}(n))$, which correspond to the points $\mathcal{O}, A(n)=A_{n}, B(n)=B_{n}$, $C(n)=C_{n}, P(n)=P_{n}, P(n)+A(n), P(n)+B(n), P(n)+C(n), R(n)=R_{n}$,
$R(n)+A(n), R(n)+B(n), R(n)+C(n), R(n)+P(n), R(n)+P(n)+A(n)$, $R(n)+P(n)+B(n), R(n)+P(n)+C(n)$.

Let $V \in E^{*}(\mathbf{Q}(n)$. Together with the previous 16 points, it makes 17 points on $E^{*}(\mathbf{Q}(n))$. Two of them have equal corresponding triples $\left(\mu_{1}(n), \mu_{2}(n), \mu_{3}(n)\right)$. Therefore, these two points are congruent modulo $2 E^{*}(\mathbf{Q}(n))$. We have already proved that the first sixteen points are incongruent modulo $2 E^{*}(\mathbf{Q}(n))$. Hence we have four possibilities:

1) $\quad V \equiv T_{1}\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$,
2) $\quad V \equiv P(n)+T_{2}\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$,
3) $\quad V \equiv R(n)+T_{3}\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$,
4) $\quad V \equiv P(n)+R(n)+T_{4}\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$,
where $T_{i} \in\{\mathcal{O}, A(n), B(n), C(n)\}$.
Let $\left\{D_{1}, \ldots, D_{r}\right\}$ be the Mordell-Weil base for $E^{*}(\mathbf{Q}(n))$ and assume that $r \geq 3$. Let $P(n)=\sum_{i=1}^{r} \alpha_{i} D_{i}+T_{P}, R(n)=\sum_{i=1}^{r} \beta_{i} D_{i}+T_{R}, P(n)+$ $R(n)=\sum_{i=1}^{r} \gamma_{i} D_{i}+T_{S}$. As we have already seen in the proof of Theorem 4, the points D_{i} cannot satisfy the condition $\mathbf{1)}$. Hence, $D_{r} \equiv P(n)+T_{2}$ $\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$ or $D_{r} \equiv R(n)+T_{3}\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$ or $D_{r} \equiv P(n)+$ $R(n)+T_{4}\left(\bmod 2 E^{*}(\mathbf{Q}(n))\right)$. It implies that α_{r} is odd and $\alpha_{1}, \ldots, \alpha_{r-1}$ are even, or β_{r} is odd and $\beta_{1}, \ldots, \beta_{r-1}$ are even, or γ_{r} is odd and $\gamma_{1}, \ldots, \gamma_{r-1}$ are even. The same possibilities we have also for the points D_{r-1} and D_{r-2}. Therefore, for these three points all of the possibilities 2), 3) and 4) appear exactly once. Thus, we may assume that α_{r} is odd, β_{r-1} is odd and γ_{r-2} is odd. But then $\gamma_{r-2}=\alpha_{r-2}+\beta_{r-2}$ is even, a contradiction.

5 The second family with rank ≥ 2

Let us now consider the family $E_{k_{2}(m)}$, where $k_{2}(m)=\frac{1}{2}\left(3 m^{2}+5 m\right)$ for $m \in \mathbf{Z}$. For the sake of simplicity we denote $E_{k_{2}(m)}^{\prime}=E_{m}^{\circ}$. We have the following rational point on E_{m}° :

$$
\begin{aligned}
& Q_{m}=\left(3 m (m + 1) (m + 2) \left(27 m^{3}+54 m^{2}+9 m-1\right.\right. \\
& \left.\quad \frac{1}{2} m(m+1)(m+2)(3 m+2)(6 m+1)\left(9 m^{2}+15-2\right)\left(9 m^{2}+18 m+2\right)\right)
\end{aligned}
$$

Let $A_{m}=A_{k_{2}(m)}, B_{m}=B_{k_{2}(m)}, C_{m}=C_{k_{2}(m)}$ and $P_{m}=P_{k_{2}(m)}$. Then we have

$$
Q_{m}+A_{m}=\left(-\frac{(m+2)(3 m+1)(3 m+2)(3 m+5)\left(27 m^{4}+72 m^{3}+42 m^{2}-2 m-1\right)}{\left(9 m^{2}+18 m+2\right)^{2}},\right.
$$

$$
\begin{aligned}
&-\left.-\frac{(m+2)(3 m+2)^{2}(3 m+5)(6 m+1)\left(9 m^{2}+15 m-2\right)\left(9 m^{2}+15 m+2\right)}{2\left(9 m^{2}+18 m+2\right)^{3}}\right) \\
& Q_{m}+B_{m}=\left(-\frac{(m+1)(3 m-1)(3 m+5)\left(9 m^{3}+21 m^{2}+7 m+1\right)}{(3 m+2)^{2}},\right. \\
&\left.\frac{(m+1)(3 m-2)(3 m+5)(6 m+1)\left(9 m^{2}+18 m+2\right)}{2(3 m+2)^{3}}\right), \\
& Q_{m}+C_{m}=\left(-\frac{m(3 m-1)(3 m+2)\left(9 m^{3}+30 m^{2}+25 m+3\right)}{(6 m+1)^{2}},\right. \\
&\left.-\frac{m(3 m-1)(3 m+2)^{2}\left(9 m^{2}+15 m+2\right)\left(9 m^{2}+18 m+2\right)}{2(6 m+1)^{3}}\right), \\
& Q_{m}+P_{m}=\left(-\frac{1}{9}(3 m-1)(3 m+2)(3 m+5),\right. \\
&\left.\frac{1}{54}(3 m-1)(3 m+1)(3 m+2)(3 m+5)\left(9 m^{2}+15 m-2\right)\right), \\
& Q_{m}+P_{m}+A_{m}=\left(-\frac{m(m+1)(3 m-1)(3 m+4)\left(9 m^{2}+18 m+2\right)}{(3 m+1)^{2}},\right. \\
& Q_{m}+P_{m}+B_{m}=\left(-\frac{3 m(m+1)(3 m-1)\left(9 m^{2}+15 m-2\right)\left(9 m^{2}+15 m+2\right)}{2(3 m+1)^{3}}\right), \\
& \quad(m+2)(3 m+2)^{2}, \\
& Q_{m}+P_{m}+C_{m}=((m+1)(m+2)(3 m+5)(6 m+1), \\
&\left.-\frac{3}{2}(m+1)(m+2)(3 m+1)(3 m+5)\left(9 m^{2}+15 m+2\right)\right) .
\end{aligned}
$$

Lemma 3 If $m \neq-2,-1,0$, then $Q_{m}, Q_{m}+A_{m}, Q_{m}+B_{m}, Q_{m}+$ $C_{m}, Q_{m}+P_{m}, Q_{m}+P_{m}+A_{m}, Q_{m}+P_{m}+B_{m}, Q_{m}+P_{m}+C_{m} \notin 2 E_{m}^{\circ}(\mathbf{Q})$.

Proof. As in the proof of Lemma 2, we conclude that $Q_{m}+A_{m}, Q_{m}+$ $B_{m}, Q_{m}+P_{m}+A_{m}, Q_{m}+P_{m}+B_{m} \notin 2 E_{m}^{\circ}(\mathbf{Q})$.

Furthermore, $Q_{m} \in 2 E_{m}^{\circ}(\mathbf{Q})$ is impossible since it implies $m(m+1)=\square$, and $Q_{m}+P_{m} \in 2 E_{m}^{\circ}(\mathbf{Q})$ is impossible since it implies $(3 m+2)(3 m+5)=$ $(6 m+7)^{2}-9=\square$.

If $Q_{m}+C_{m}=(x, y) \in 2 E_{m}^{\circ}(\mathbf{Q})$, then we have

$$
m=\alpha^{2}, \quad 3 m-1=\beta^{2}, \quad 3 m+2=2 \gamma^{2}, \quad 9 m^{2}+15 m+2=2 \delta^{2}
$$

It implies $\beta^{2}-2 \gamma^{2}=-3$, which is impossible modulo 8 .
If $Q_{m}+P_{m}+C_{m}=(x, y) \in 2 E_{m}^{\circ}(\mathbf{Q})$, then we have

$$
m+2=\alpha^{2}, \quad 3 m+5=\beta^{2}, \quad m+1=2 \gamma^{2}, \quad 9 m^{2}+15 m+2=2 \delta^{2}
$$

It implies $\beta^{2}-6 \gamma^{2}=2$. Hence β is even, say $\beta=2 \varepsilon$, and we obtain $2 \varepsilon^{2}-3 \gamma^{2}=1$, which is impossible modulo 8 .

Corollary 3 If $m \neq-2,-1,0$, then $\operatorname{rank} E_{m}^{\circ}(\mathbf{Q}) \geq 2$.
Proof. As in the proof of Corollary 2, using Lemmas 1 and 3, we can check that P_{m} and Q_{m} generate a subgroup of rank 2 in $E_{m}^{\circ}(\mathbf{Q}) / E_{m}^{\circ}(\mathbf{Q})_{\text {tors }}$.

Theorem 7 If rank $\left(E_{m}^{\circ}(\mathbf{Q})\right)=2$, then all integer points on E_{k}, where $k=k_{2}(m)$, are given by (7).

Proof. As in the proof of Theorem 5, it suffices to prove that the systems (9), with numbers α, β, γ defined in the proof of Theorem 3 , for $X_{1} \in \mathcal{S}_{2}$, where

$$
\begin{aligned}
\mathcal{S}_{2}= & \left\{Q_{m}, Q_{m}+A_{m}, Q_{m}+B_{m}, Q_{m}+C_{m}, Q_{m}+P_{m}, Q_{m}+P_{m}+A_{m}\right. \\
& \left.Q_{m}+P_{m}+B_{m}, Q_{m}+P_{m}+C_{m}\right\}
\end{aligned}
$$

have no solutions in integers. Note that for $X_{1} \in\left\{Q_{m}+A_{m}, Q_{m}+B_{m}, Q_{m}+\right.$ $\left.P_{m}+A_{m}, Q_{m}+P_{m}+B_{m}\right\}$ exactly two of the numbers α, β, γ are negative. Let us consider four remaining cases. We will denote $k_{2}(m)$ by k. Note that $k+1=\frac{1}{2}(3 m+2)(m+1)$ and $k-1=\frac{1}{2}(3 m-1)(m+2)$.

1) $X_{1}=Q_{m}$

The system (9) becomes

$$
\begin{aligned}
(k-1) x+1 & =(3 m+2)(3 m+5) \square \\
(k+1) x+1 & =(3 m-1)(3 m+5)(6 k-2) \square \\
4 k x+1 & =(3 m-1)(3 m+2)(6 k-2) \square
\end{aligned}
$$

It implies that $3 m-1=\square$ or $2 \square, 3 m+2=$or $2 \square$ and $3 m+5=$or $2 \square$, a contradiction.
2) $X_{1}=Q_{m}+C_{m}$

Now the system (9) becomes

$$
\begin{aligned}
(k-1) x+1 & =(m+1)(3 m+5)(6 k+2) \square \\
(k+1) x+1 & =(m+2)(3 m+5) \square \\
4 k x+1 & =(m+1)(m+2)(6 k+2) \square
\end{aligned}
$$

and this implies $m+1=\square$ or $2 \square, m+2=\square$ or $2 \square$ and $3 m+5=\square$ or $2 \square$. We have three possibilities:
(a) $m+1=\alpha^{2}, \quad m+2=2 \beta^{2}, \quad 3 m+5=\gamma^{2}$

It gives $\gamma^{2}-6 \beta^{2}=-1$, a contradiction.
(b) $m+1=2 \alpha^{2}, \quad m+2=\beta^{2}, \quad 3 m+5=\gamma^{2}$

It gives $\gamma^{2}-3 \beta^{2}=-1$, a contradiction.
(c) $m+1=2 \alpha^{2}, \quad m+2=2 \beta^{2}, \quad 3 m+5=2 \gamma^{2}$

This yields to the system of Pell equations

$$
\begin{aligned}
& \beta^{2}-2 \alpha^{2}=1 \\
& \gamma^{2}-3 \alpha^{2}=1
\end{aligned}
$$

In [1] it is proved that this system has only the trivial solution. Hence, $\alpha=0$ and $m=-1$.
3) $X_{1}=Q_{m}+P_{m}$

We have

$$
\begin{aligned}
(k-1) x+1 & =m(m+1) \square, \\
(k+1) x+1 & =m(m+2)(6 k-2) \square, \\
4 k x+1 & =(m+1)(m+2)(6 k-2) \square .
\end{aligned}
$$

which implies that $m=\square$ or $2 \square, m+1=$or $2 \square$ and $m+2=$or $2 \square$, a contradiction.
4) $X_{1}=Q_{m}+P_{m}+C_{m}$

We have

$$
\begin{aligned}
(k-1) x+1 & =m(3 m+2)(6 k+2) \square \\
(k+1) x+1 & =m(3 m-1) \square \\
4 k x+1 & =(3 m-1)(3 m+2)(6 k+2) \square
\end{aligned}
$$

which implies that $m=\square$ or $2 \square, 3 m-1=\square$ or $2 \square$ and $3 m+2=\square$ or $2 \square$. We have three possibilities:
(a) $\quad m=\alpha^{2}, \quad 3 m-1=\beta^{2}, \quad 3 m+2=2 \gamma^{2}$

It implies $\beta^{2}-3 \alpha^{2}=-1$, a contradiction.
(b) $\quad m=\alpha^{2}, \quad 3 m-1=2 \beta^{2}, \quad 3 m+2=\gamma^{2}$

It implies $\gamma^{2}-3 \beta^{2}=2$, which is impossible modulo 8 .
(c) $\quad m=2 \alpha^{2}, \quad 3 m-1=\beta^{2}, \quad 3 m+2=2 \gamma^{2}$

It gives $\beta^{2}-6 \alpha^{2}=-1$, a contradiction.

In Table 4 we list the rank values of $E_{m}^{\circ}(\mathbf{Q})$ in the ranges $1 \leq m \leq 20$ and $-22 \leq m \leq-3$, which we were able to compute.

$\operatorname{rank}\left(E_{m}^{\circ}(\mathbf{Q})\right)=2$	$n=$$1,2,3,5,6,7,8,9,12,14,15$ $-3,-5,-6,-9,-10,-16^{*},-18,-20,-22$ $\operatorname{rank}\left(E_{m}^{\circ}(\mathbf{Q})\right)=3$$n=$$4,10,11,16,17,18,19,20$ $-4,-7,-8,-11,-12,-13,-14,-15,-17$, $-19,-21$

Table 4:

Theorem 8 The rank of elliptic curve

$$
E^{\circ}: \quad y^{2}=\left[\left(k_{2}(m)-1\right) x+1\right]\left[\left(k_{2}(m)+1\right) x+1\right]\left[4 k_{2}(m) x+1\right]
$$

over $\mathbf{Q}(m)$ is equal 2.

Proof. The proof is completely analogous to the proof of Theorem 6. This time we choose $m=12$ (and $k=246$) because $\operatorname{rank}\left(E_{12}^{\circ}(\mathbf{Q})\right)=2$, $E_{12}^{\circ}(\mathbf{Q}) / E_{12}^{\circ}(\mathbf{Q})_{\text {tors }}=<P_{12}, Q_{12}>$ and square-free parts of the polynomial factors of $(m+2)(3 m-1)\left(9 m^{2}+15 m-1\right),(m+1)(3 m+2)\left(9 m^{2}+15 m+2\right)$ and $4 m(3 m+5)$, evaluated at $m=12$, are distinct.

Assuming the Katz-Sarnak Conjecture, Theorems 5-8 imply that Conjecture 1 is valid for infinitely many curves of rank 2 .

6 A family with rank ≥ 3

We will now consider the intersection of families $E_{k_{1}(n)}$ and $E_{k_{2}(m)}$. From $3 n^{2}+2 n-2=\frac{1}{2}\left(3 m^{2}+5 m\right)$ it follows

$$
\begin{equation*}
(6 m+5)^{2}-2(6 n+2)^{2}=-31 \tag{23}
\end{equation*}
$$

Define the sequences $\left(r_{i}\right)_{i \in \mathbf{Z}}$ and $\left(s_{i}\right)_{i \in \mathbf{Z}}$ by

$$
\begin{array}{ll}
r_{0}=1, & r_{1}=19, \quad r_{i+2}=6 r_{i+1}-r_{i}, \quad i \in \mathbf{Z} \\
s_{0}=1, & s_{1}=14, \quad s_{i+2}=6 s_{i+1}-s_{i}, \quad i \in \mathbf{Z} \tag{25}
\end{array}
$$

Let $6 m+5=r$ and $6 n+2=s$. Then there exists an integer i such that $r= \pm r_{i}$ and $s= \pm s_{i}$.

We have

$$
\begin{gathered}
k_{2}(m)=\frac{1}{24}\left(r^{2}-25\right), \quad k_{2}(m)-1=\frac{1}{24}\left(r^{2}-49\right), \quad k_{2}(m)+1=\frac{1}{24}\left(r^{2}-1\right) \\
3 k_{2}(m)-1=\frac{1}{8}\left(r^{2}-33\right), \quad 3 k_{2}(m)+1=\frac{1}{8}\left(r^{2}-17\right)
\end{gathered}
$$

For the sake of simplicity, denote $E_{\left(r^{2}-25\right) / 24}^{\prime}$ by E_{i}^{\diamond} and $A_{\left(r^{2}-25\right) / 24}=A_{i}$, $B_{\left(r^{2}-25\right) / 24}=B_{i}, C_{\left(r^{2}-25\right) / 24}=C_{i}, P_{\left(r^{2}-25\right) / 24}=P_{i}, Q_{(r-5) / 6}=Q_{i}, R_{(s-2) / 6}=$ $R_{i}, \frac{1}{24}\left(r^{2}-25\right)=k$.

We will need some properties of the sequence $\left(r_{i}\right)$ which are stated in the following three lemmas.

Lemma 4 Let the sequence $\left(r_{i}\right)$ be defined by (24). Then the equations $r_{i}^{2}-33=\square, 2 \square, 3 \square, 6 \square \quad$ and $\quad r_{i}^{2}-17=\square, 2 \square, 3 \square, 6 \square \quad$ have no solutions.

Proof. The equation $r_{i}^{2}-33=\square$ implies $r_{i}= \pm 7$ or ± 17, a contradiction. The equation $r_{i}^{2}-33=2 \square$ is impossible modulo 3 , and the equations $r_{i}^{2}-33=3 \square$ and $r_{i}^{2}-33=6 \square$ imply $3 \mid r_{i}$, a contradiction.

The equation $r_{i}^{2}-33=\square$ implies $r_{i}= \pm 9$, a contradiction. The equations $r_{i}^{2}-33=3 \square$ and $r_{i}^{2}-17=6 \square$ are impossible modulo 3. Let $r_{i}^{2}-17=2 t^{2}$. Then from $r_{i}^{2}-2 s_{i}^{2}=-31$ we obtain $s_{i}= \pm 5$ or ± 7, a contradiction.

Lemma 5 Let the sequence $\left(r_{i}\right)$ be defined by (24). Then the equations

$$
\begin{aligned}
& \left|r_{i}\right|+7=\square, 3 \square ; \\
& \left|r_{i}\right|-7=\square, 2 \square, 3 \square, 6 \square ; \\
& \left|r_{i}\right|+5=3 \square ; \\
& \left|r_{i}\right|-5=\square, 3 \square, 6 \square
\end{aligned}
$$

have no solutions with $|i| \geq 3$.

Proof. In [17], Kedlaya presented a systematic procedure, using the method of Cohn introduced in [4], for solving certain systems of Diophantine equations of the form

$$
x^{2}-a y^{2}=b, \quad P(x, y)=z^{2}
$$

Using Kedlaya's program Genpellsquare, we obtain that all solutions of the equations from the lemma are given by

$$
r_{1}-7=3 \cdot 2^{2}, \quad\left|r_{-1}\right|-7=6 \cdot 1^{2}, \quad\left|r_{-2}\right|-7=2 \cdot 6^{2}, \quad r_{2}-5=3 \cdot 6^{2}
$$

Lemma $6 r \equiv 1,6(\bmod 7)$ or $r \equiv 19,30(\bmod 49)$.
Proof. Considering the sequence $\left(r_{i} \bmod 49\right)$ one can easily deduce that $r_{i} \equiv 1(\bmod 7)$ or $r_{i} \equiv 19(\bmod 49)$.

Lemma 7 If $i \neq-1,0$, then $Q_{i}+R_{i}, Q_{i}+R_{i}+A_{i}, Q_{i}+R_{i}+B_{i}, Q_{i}+R_{i}+$ $C_{i}, Q_{i}+R_{i}+P_{i}, Q_{i}+R_{i}+P_{i}+A_{i}, Q_{i}+R_{i}+P_{i}+B_{i}, Q_{i}+R_{i}+P_{i}+C_{i} \notin 2 E_{i}^{\diamond}(\mathbf{Q})$.

Proof. 1)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}\right)+k^{2}-1 & =2(r-1)(r-7)\left(r^{2}-17\right)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}\right)+4 k(k-1) & =(r+5)(r-7)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}\right)+4 k(k+1) & =2(r-1)(r+5)\left(r^{2}-17\right) \square,
\end{aligned}
$$

where \square denotes a square of a rational number. If $Q_{i}+R_{i} \in 2 E_{i}^{\diamond}(\mathbf{Q})$, then Proposition 1 implies $r^{2}-33=\square, 2 \square, 3 \square$ or $6 \square$, and this is impossible by Lemma 4.
2)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+A_{i}\right)+k^{2}-1 & =-6(r+1)(r-7)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}+A_{i}\right)+4 k(k-1) & =-3(r-5)(r-7)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}+A_{i}\right)+4 k(k+1) & =2(r+1)(r-5) \square .
\end{aligned}
$$

Since $-3(r-5)(r-7)\left(r^{2}-33\right)<0$, we conclude that $Q_{i}+R_{i}+A_{i} \notin 2 E_{i}^{\diamond}(\mathbf{Q})$.
3)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+B_{i}\right)+k^{2}-1 & =-6(r-1)(r+7)\left(r^{2}-17\right) \square, \\
x\left(Q_{i}+R_{i}+B_{i}\right)+4 k(k-1) & =-(r-5)(r+7) \square \\
x\left(Q_{i}+R_{i}+B_{i}\right)+4 k(k+1) & =6(r-1)(r-5)\left(r^{2}-17\right) \square .
\end{aligned}
$$

Since $-(r-5)(r+7)<0$, we conclude that $Q_{i}+R_{i}+B_{i} \notin 2 E_{i}^{\diamond}(\mathbf{Q})$.
4)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+C_{i}\right)+k^{2}-1 & =2(r+1)(r+7) \square, \\
x\left(Q_{i}+R_{i}+C_{i}\right)+4 k(k-1) & =3(r+5)(r+7) \square \\
x\left(Q_{i}+R_{i}+C_{i}\right)+4 k(k+1) & =6(r+1)(r+5) \square .
\end{aligned}
$$

By Lemma 5 we have $r+7=2 \square$ or $6 \square$ if r is positive, and $r=-19$ or -79 if r is negative. However, if $r=-19$ or -79 , then $2(r+1)(r+7)$ is not a perfect square. Hence we have two possibilities:

$$
r+7=2 \alpha^{2}, \quad r+1=\beta^{2}, \quad r+5=6 \gamma^{2}
$$

or

$$
r+7=6 \alpha^{2}, \quad r+1=3 \beta^{2}, \quad r+5=2 \gamma^{2}
$$

but both systems are impossible modulo 3 .
5)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+P_{i}\right)+k^{2}-1 & =2(r+1)(r+7)\left(r^{2}-17\right)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}+P_{i}\right)+4 k(k-1) & =(r-5)(r+7)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}+P_{i}\right)+4 k(k+1) & =2(r+1)(r-5)\left(r^{2}-17\right) \square .
\end{aligned}
$$

Since $r^{2}-33 \neq \square, 2 \square, 3 \square, 6 \square$ by Lemma 5, Proposition 1 implies $Q_{i}+R_{i}+$ $P_{i} \notin 2 E_{i}^{\diamond}(\mathbf{Q})$.
6)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+P_{i}+A_{i}\right)+k^{2}-1 & =-6(r-1)(r+7)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}+P_{i}+A_{i}\right)+4 k(k-1) & =-3(r+5)(r+7)\left(r^{2}-33\right) \square, \\
x\left(Q_{i}+R_{i}+P_{i}+A_{i}\right)+4 k(k+1) & =2(r-1)(r+5) \square .
\end{aligned}
$$

Since $-3(r+5)(r+7)\left(r^{2}-33\right)<0$, we have $Q_{i}+R_{i}+P_{i}+A_{i} \notin 2 E_{i}^{\diamond}(\mathbf{Q})$.
7)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+P_{i}+B_{i}\right)+k^{2}-1 & =-6(r+1)(r-7)\left(r^{2}-17\right) \square, \\
x\left(Q_{i}+R_{i}+P_{i}+B_{i}\right)+4 k(k-1) & =-(r+5)(r-7) \square, \\
x\left(Q_{i}+R_{i}+P_{i}+B_{i}\right)+4 k(k+1) & =6(r+1)(r+5)\left(r^{2}-17\right) \square .
\end{aligned}
$$

Since $-(r+5)(r-7)<0$, we have $Q_{i}+R_{i}+P_{i}+B_{i} \notin 2 E_{i}^{\diamond}(\mathbf{Q})$.
8)

$$
\begin{aligned}
x\left(Q_{i}+R_{i}+P_{i}+C_{i}\right)+k^{2}-1 & =2(r-1)(r-7) \square \\
x\left(Q_{i}+R_{i}+P_{i}+C_{i}\right)+4 k(k-1) & =3(r-5)(r-7) \square \\
x\left(Q_{i}+R_{i}+P_{i}+C_{i}\right)+4 k(k+1) & =6(r-1)(r-5) \square .
\end{aligned}
$$

This case is completely analogous to the case 4).
Corollary 4 If $i \neq-1,0$, then $\operatorname{rank}\left(E_{i}^{\diamond}(\mathbf{Q})\right) \geq 3$.
Proof. As in the proof of Corollary 2, using Lemmas 1-3 and 7, we can prove that $P_{i}, \quad Q_{i}$ and R_{i} generate a subgroup of rank 3 in $E_{i}^{\diamond}(\mathbf{Q}) / E_{i}^{\diamond}(\mathbf{Q})_{\text {tors }}$.

Theorem 9 If $\operatorname{rank}\left(E_{i}^{\diamond}(\mathbf{Q})\right)=3$, then all integer points on E_{k}, where $k=\frac{1}{24}\left(r_{i}^{2}-25\right)$, are given by (7).

Proof. As in the proofs of Theorems 5 and 7 , it suffices to prove that the systems (9), with the numbers α, β, γ defined in the proof of Theorem 3 for $X_{1} \in \mathcal{S}_{3}$, where

$$
\begin{aligned}
\mathcal{S}_{3}= & \left\{Q_{i}+R_{i}, Q_{i}+R_{i}+A_{i}, Q_{i}+R_{i}+B_{i}, Q_{i}+R_{i}+C_{i}, Q_{i}+R_{i}+P_{i},\right. \\
& \left.Q_{i}+R_{i}+P_{i}+A_{i}, Q_{i}+R_{i}+P_{i}+B_{i}, Q_{i}+R_{i}+P_{i}+C_{i}\right\},
\end{aligned}
$$

have no solutions in integers.
As we have already seen in the proof of Lemma 7 , for $X_{i} \in\left\{Q_{i}+R_{i}+\right.$ $\left.A_{i}, Q_{i}+R_{i}+B_{i}, Q_{i}+R_{i}+P_{i}+A_{i}, Q_{i}+R_{i}+P_{i}+B_{i}\right\}$ exactly two of the numbers α, β, γ are negative and accordingly the corresponding systems have no integer solutions. Let us consider four remaining cases. We will use the following notation: $e^{\prime \prime}=\min \left\{|e|^{\prime},|2 e|^{\prime},|3 e|^{\prime},|6 e|^{\prime}\right\}$ for an integer e.

1) $X_{1}=Q_{i}+R_{i}$

The system (9) becomes

$$
\begin{aligned}
(k-1) x+1 & =2(r+1)(r-5)\left(r^{2}-17\right) \square \\
(k+1) x+1 & =(r-5)(r+7)\left(r^{2}-33\right) \square \\
4 k x+1 & =2(r+1)(r+7)\left(r^{2}-17\right)\left(r^{2}-33\right) \square
\end{aligned}
$$

From the first two equations of this system we have that $(r-5)^{\prime \prime}$ divides $(k-1) x+1$ and $(k+1) x+1$. Therefore, $(r-5)^{\prime \prime} \in\{1,2\}$ which implies

$$
\begin{equation*}
r-5= \pm \square, \pm 2 \square, \pm 3 \square, \pm 6 \square . \tag{26}
\end{equation*}
$$

Similarly we obtain

$$
\begin{equation*}
r+1= \pm \square, \pm 2 \square, \pm 3 \square, \pm 6 \square \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
r+7= \pm \square, \pm 2 \square, \pm 3 \square, \pm 6 \square . \tag{28}
\end{equation*}
$$

Assume that r is positive. Since $r=113$ does not satisfy the conditions (27) and (28), Lemma 5 implies

$$
r-5=2 \square, \quad r+7=2 \square \text { or } 6 \square .
$$

Hence, $r-5=2 \alpha^{2}, r+7=6 \beta^{2}$. Then $\alpha=3 \delta$ and we have $\beta^{2}-3 \delta^{2}=2$, which is impossible modulo 3 .

Assume now that r is negative. Then Lemma 5 implies that $r=-19$ or -79 , but $r=-79$ does not satisfy the condition (27), and for $r=-19$ we have $15 x+1=41 \square$ which is impossible modulo 3 .
2) $X_{1}=Q_{i}+R_{i}+C_{i}$

We have

$$
\begin{aligned}
(k-1) x+1 & =6(r-1)(r-5) \square, \\
(k+1) x+1 & =3(r-5)(r-7) \square, \\
4 k x+1 & =2(r-1)(r-7) \square .
\end{aligned}
$$

As in 1) we obtain that

$$
\begin{align*}
& r-1= \pm \square, \pm 2 \square, \pm 3 \square, \pm 6 \square, \tag{29}\\
& r-5= \pm \square, \pm 2 \square, \pm 3 \square, \pm 6 \square \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
r-7= \pm \square, \pm 2 \square, \pm 3 \square, \pm 6 \square . \tag{31}
\end{equation*}
$$

If r is positive, then Lemma 5 implies that $r=19$ or $r=79$, which both contradict the condition (30).

Assume that r negative. Then Lemma 5 implies

$$
r-7=-2 \square \text { or }-6 \square, \quad r-5=-\square,-2 \square \text { or }-6 \square .
$$

Consideration modulo 3 rules out all but three possibilities: $r-7=-2 \square$ and $r-5=-\square ; r-7=-2 \square$ and $r-5=-6 \square ; r-7=-6 \square$ and $r-5=-\square$.
a) $r-7=-2 \alpha^{2}, \quad r-5=-\beta^{2}$

By Lemma 6, the first equation implies $r \equiv 5,6(\bmod 7)$ and the second implies $r \equiv 1(\bmod 7)$, a contradiction.
b) $r-7=-2 \alpha^{2}, \quad r-5=-6 \beta^{2}, \quad r-1=-4 \gamma$

It implies $\alpha^{2}-2 \gamma^{2}=3$, which is impossible modulo 3 .
c1) $\quad r-7=-6 \alpha^{2}, \quad r-5=-4 \beta^{2}, \quad r-1=-72 \gamma^{2}$
We obtain the system of Pell equations

$$
\begin{aligned}
& \alpha^{2}-12 \gamma^{2}=1 \\
& \beta^{2}-18 \gamma^{2}=1
\end{aligned}
$$

and by [1] this system has no non-trivial solution. It means that $r=-1$, contradicting the assumption that $i \neq 0$.
c2) $\quad r-7=-6 \alpha^{2}, \quad r-5=-4 \beta^{2}, \quad r-1=-12 \gamma^{2}$
This leads to the system

$$
\begin{aligned}
& \alpha^{2}-2 \gamma^{2}=1 \\
& \beta^{2}-3 \gamma^{2}=1
\end{aligned}
$$

which has no non-trivial solution by [1].

$$
\text { 3) } \quad X_{1}=Q_{i}+R_{i}+P_{i}
$$

We have

$$
\begin{aligned}
(k-1) x+1 & =2(r-1)(r+5)\left(r^{2}-17\right) \square \\
(k+1) x+1 & =(r+5)(r-7)\left(r^{2}-33\right) \square \\
4 k x+1 & =2(r-1)(r-7)\left(r^{2}-17\right)\left(r^{2}-33\right) \square
\end{aligned}
$$

Therefore, this case is completely analogous to the case $\mathbf{1}$).
4) $X_{1}=Q_{i}+R_{i}+P_{i}+C_{i}$

We have

$$
\begin{aligned}
(k-1) x+1 & =6(r+1)(r+5) \square \\
(k+1) x+1 & =3(r+5)(r+7) \square \\
4 k x+1 & =2(r+1)(r+7) \square
\end{aligned}
$$

and this case is completely analogous to the case $\mathbf{2}$).
In Table 5 we list a few rank values of $E_{i}^{\diamond}(\mathbf{Q})$.
We have not enough data to support any conjecture about distribution of $\operatorname{rank}\left(E_{i}^{\diamond}(\mathbf{Q})\right)$. However, from Theorem 9 and Table 5 we obtain immediately

i	r	m	s	n	k	$\operatorname{rank}\left(E_{i}^{\diamond}(\mathbf{Q})\right)$
1	-19	-4	14	2	14	3
2	113	18	80	13	531	3
3	659	109	-466	-78	18094	5
-2	-79	-14	56	9	259	3

Table 5:

Corollary 5

$$
\begin{array}{r}
\lim \sup \left\{\operatorname{rank}\left(E_{k}(\mathbf{Q})\right): k \geq 2\right\} \geq 3 \\
\sup \left\{\operatorname{rank}\left(E_{k}(\mathbf{Q})\right): k \geq 2\right\} \geq 5
\end{array}
$$

Let us note that in [9] an example is constructed which shows that $\sup \left\{\operatorname{rank}(E(\mathbf{Q})): E(\mathbf{Q})_{\text {tors }} \simeq \mathbf{Z} / 2 \mathbf{Z} \oplus \mathbf{Z} / 2 \mathbf{Z}\right\} \geq 7$.

7 Case $k \leq 1000$

In this section we will check Conjecture 1 for $k \leq 1000$ using the approach introduced in [11]. Assume that (x, y) is a solution of

$$
\begin{equation*}
y^{2}=((k-1) x+1)((k+1) x+1)(4 k x+1) . \tag{32}
\end{equation*}
$$

Then there exist integers x_{1}, x_{2}, x_{3} such that

$$
\begin{aligned}
(k-1) x+1 & =\mu_{2} \mu_{3} x_{1}^{2} \\
(k+1) x+1 & =\mu_{1} \mu_{3} x_{2}^{2} \\
4 k x+1 & =\mu_{1} \mu_{2} x_{3}^{2}
\end{aligned}
$$

where $\mu_{1}\left|3 k-1, \mu_{2}\right| 3 k+1, \mu_{3} \mid 2$.
If $\mu_{3}=1$, eliminating x we obtain the system

$$
\begin{aligned}
(k+1) \mu_{2} x_{1}^{2}-(k-1) \mu_{1} x_{2}^{2} & =2 \\
4 k x_{1}^{2}-(k-1) \mu_{1} x_{3}^{2} & =\frac{3 k+1}{\mu_{2}}
\end{aligned}
$$

and if $\mu_{3}=2$, we obtain the system

$$
\begin{aligned}
(k+1) \mu_{2} x_{1}^{2}-(k-1) \mu_{1} x_{2}^{2} & =1 \\
8 k x_{1}^{2}-(k-1) \mu_{1} x_{3}^{2} & =\frac{3 k+1}{\mu_{2}}
\end{aligned}
$$

Hence, to find all integer solutions of (32), it is enough to find all integer solutions of the systems of equations

$$
\begin{align*}
d_{1} x_{1}^{2}-d_{2} x_{2}^{2} & =j_{1} \tag{33}\\
d_{3} x_{1}^{2}-d_{2} x_{3}^{2} & =j_{2} \tag{34}
\end{align*}
$$

where
$d_{1}=(k+1) \mu_{2}, \mu_{2}$ is a square-free factor of $3 k+1$,
$d_{2}=(k-1) \mu_{1}, \mu_{1}$ is a square-free factor of $3 k-1$,
$\left(d_{3}, j_{1}, j_{2}\right)=\left(4 k, 2, \frac{3 k+1}{\mu_{2}}\right)$ or $\left(8 k, 1, \frac{3 k+1}{\mu_{2}}\right)$.
Note that the system

$$
\begin{aligned}
(k+1) x_{1}^{2}-(k-1) x_{2}^{2} & =2 \\
4 k x_{1}^{2}-(k-1) x_{3}^{2} & =3 k+1
\end{aligned}
$$

is completely solved in [7]. Hence we may assume that $\left(d_{1}, d_{2}, d_{3}, j_{1}, j_{2}\right) \neq$ $(k+1, k-1,4 k, 2,3 k+1)$.

From (33) and (34) we obtain

$$
\begin{equation*}
d_{1} x_{3}^{2}-d_{3} x_{2}^{2}=j_{3} \tag{35}
\end{equation*}
$$

where $j_{3}=\frac{j_{1} d_{3}-j_{2} d_{1}}{d_{2}}$.
We first consider the equations (33), (34) and (35) separately modulo appropriate prime powers. More precisely, assume that p_{1} is an odd prime divisor of d_{1}, p_{2} is an odd prime divisor of d_{2}, p_{3} is an odd prime divisor of d_{3}, p_{4} is an odd prime divisor of j_{2} such that $\operatorname{ord}_{p_{4}}\left(j_{2}\right)$ is odd, p_{5} is an odd prime divisor of j_{3} such that $\operatorname{ord}_{p_{5}}\left(j_{3}\right)$ is odd. Then necessary conditions for solvability of (33), (34) and (35) are:

$$
\begin{aligned}
& \left(\frac{-j_{1} d_{2}}{p_{1}}\right)=1, \quad\left(\frac{j_{1} d_{1}}{p_{2}}\right)=1, \quad\left(\frac{j_{2} d_{3}}{p_{2}}\right)=1 \\
& \left(\frac{-j_{2} d_{2}}{p_{3}}\right)=1, \quad\left(\frac{d_{2} d_{3}}{p_{4}}\right)=1, \quad\left(\frac{d_{1} d_{3}}{p_{5}}\right)=1
\end{aligned}
$$

where (\div) denotes the Legendre symbol.

Furthermore, if k is even, we have also the conditions

$$
\begin{gathered}
j_{1} \equiv d_{1}-d_{2}(\bmod 8) \text { or } j_{1} \equiv d_{1}(\bmod 4) \text { or } j_{1} \equiv-d_{2}(\bmod 4) \\
j_{2} \equiv 0(\bmod 4) \text { or } j_{2} \equiv-d_{2}(\bmod 8) \\
j_{3} \equiv 0(\bmod 4) \text { or } j_{3} \equiv d_{1}(\bmod 8)
\end{gathered}
$$

If k is odd, then $j_{1}=2$ and j_{2}, j_{3} are even, say $j_{2}=2 i_{2}, j_{3}=2 i_{3}$. We have the following solvability conditions:

$$
\begin{gathered}
1 \equiv \frac{d_{1}}{2}-\frac{d_{2}}{2}(\bmod 8) \quad \text { or } \quad\left(d_{1} \equiv 0(\bmod 4) \text { and } d_{2} \equiv-2(\bmod 16)\right) \\
\text { or }\left(d_{1} \equiv 2(\bmod 16) \text { and } d_{2} \equiv 0(\bmod 4)\right) \\
i_{2} \equiv \frac{d_{3}}{2}-\frac{d_{2}}{2},-\frac{d_{2}}{2}, \frac{d_{3}}{2}, \text { or } \frac{d_{3}}{2}-2 d_{2}(\bmod 8) \\
i_{3} \equiv \frac{d_{1}}{2}-\frac{d_{3}}{2},-\frac{d_{3}}{2}, \frac{d_{1}}{2}, \text { or }-\frac{d_{3}}{2}+2 d_{1}(\bmod 8)
\end{gathered}
$$

We performed these tests for $2 \leq k \leq 1000$ using A. Pethő's program developed for the purposes of our joint paper [11]. We found that all systems are unsolvable apart from 106 systems on which we apply the further tests based on the properties of Pellian equations.

Lemma 8 a) Let $a>1, b>0$ be integers such that $\operatorname{gcd}(a, b)=1$ and $d=a b$ is not a perfect square, and let $\left(u_{0}, v_{0}\right)$ be the minimal solution of Pell equation $u^{2}-d v^{2}=1$. Then the equation

$$
a x^{2}-b y^{2}=1
$$

has a solution if and only if $2 a \mid u_{0}+1$ and $2 b \mid u_{0}-1$.
b) Let a, b be positive integers such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, 2)=\operatorname{gcd}(b, 2)=$ 1 and $d=a b$ is not a perfect square, and let $\left(u_{0}, v_{0}\right)$ be the minimal solution of Pell equation $u^{2}-d v^{2}=1$. Then the equation

$$
a x^{2}-b y^{2}=2
$$

has a solution if and only if $a \mid u_{0}+1$ and $b \mid u_{0}-1$.

Proof. See [14, Criteria 1 and 2].

Corollary 6 Let $k \geq 2$ be an integer. The equations

$$
\begin{aligned}
4 k x^{2}-(k-1) y^{2} & =1 \\
(k+1) x^{2}-(k-1) y^{2} & =1 \\
4 k x^{2}-(k-1) y^{2} & =2 \\
4 k x^{2}-(k+1) y^{2} & =1
\end{aligned}
$$

have no integer solutions.
Proof. Consider first the equation $4 k x^{2}-(k-1) y^{2}=1$. In the notation of Lemma 8, we have $a=4 k, b=k-1, u_{0}=2 k-1, v_{0}=1$ and $\frac{u_{0}+1}{2 a}=\frac{1}{4} \notin \mathbf{Z}$.

For the equation $(k+1) x^{2}-(k-1) y^{2}=1$ we have $a=k+1, b=k-1$, $u_{0}=k, v_{0}=1$ and $\frac{u_{0}+1}{2 a}=\frac{1}{2} \notin \mathbf{Z}$.

For the equation $4 k x^{2}-(k-1) y^{2}=2$ we have $a=4 k, b=k-1$, $u_{0}=2 k-1, v_{0}=1$ and $\frac{u_{0}+1}{a}=\frac{1}{2} \notin \mathbf{Z}$.

For the equation $4 k x^{2}-(k+1) y^{2}=2$ we have $a=4 k, b=k+1$, $u_{0}=2 k+1, v_{0}=1$ and $\frac{u_{0}+1}{a}=\frac{k+1}{2 k} \notin \mathbf{Z}$.

Corollary 6 rules out $46+4+4+4=58$ cases from the list of the remaining 106 cases. Lemma 8 can be also applied to the equation $123 x^{2}-8833 y^{2}=2$ when we have $a=123, b=8833, u_{0}=9778130, v_{0}=9381$ and $\frac{u_{0}-1}{b} \notin \mathbf{Z}$, and to the equation $14065 x^{2}-24 y^{2}=1$ when we have $a=14065, b=24$, $u_{0}=581, v_{0}=1$ and $\frac{u_{0}+1}{2 a} \notin \mathbf{Z}$. Hence, after the application of Lemma 8, our list of remaining cases is reduced to 46 cases.

Lemma 9 Let $a>1$ and $b>0$ be square-free integers. If $\left(x_{1}, y_{1}\right)$ is the minimal solution of the equation

$$
\begin{equation*}
a x^{2}-b y^{2}=1 \tag{36}
\end{equation*}
$$

then all solutions of (36) in positive integers are given by

$$
x \sqrt{a}+y \sqrt{b}=\left(x_{1} \sqrt{a}+y_{1} \sqrt{b}\right)^{n}
$$

where n is a positive odd integer.
In particular, $x_{1} \mid x$ and $y_{1} \mid y$.

Proof. See [20, Theorem 11.1].

Corollary 7 Let $k \equiv 1(\bmod 4)$ be a square-free positive integer. Then the system of equations

$$
\begin{align*}
4 k x^{2}-(k-1) z^{2} & =4 \tag{37}\\
\frac{1}{8}(3 k+1)(k+1) z^{2}-2 k y^{2} & =-\frac{1}{2}(3 k-1) \tag{38}
\end{align*}
$$

has no solutions in integers.
Proof. Let $k-1=4 l^{2}(k-1)^{\prime}$. We will apply Lemma 9 to the equation

$$
k x^{2}-(k-1)^{\prime} v^{2}=1
$$

We have $x_{1}=1, v_{1}=2 l$ and Lemma 9 implies that $2 l \mid v$. From (37) it follows that $2 l \mid l z$. Hence, z is even and we obtain a contradiction since left hand side of (38) even, while the right hand side is odd.

Corollary 7 rules out 7 cases from our list of remaining cases. The similar even-odd type of the argumentation can be applied to some other cases.

Consider the system

$$
\begin{aligned}
& 969 x^{2}-50 y^{2}=1 \\
& 101 x^{2}-25 z^{2}=4
\end{aligned}
$$

All solutions of $v^{2}-101 x^{2}=-4$ are given by $\frac{v+x \sqrt{101}}{2}=(10+\sqrt{101})^{2 n+1}$. Hence, x is even, contradicting the first equation of the system.

Consider the system

$$
\begin{aligned}
801 x^{2}-200 z^{2} & =1 \\
241001 z^{2}-1602 y^{2} & =-1201
\end{aligned}
$$

Applying Lemma 9 to the equation $89 u^{2}-2 v^{2}=1$, we obtain $u_{1}=3$, $v_{1}=20$. It implies that z is even, a contradiction.

Next system in our consideration is

$$
\begin{aligned}
869 x^{2}-217 z^{2} & =4 \\
70905 z^{2}-1738 y^{2} & =-1303
\end{aligned}
$$

The first equation implies $\left(217 z^{2}+2\right)^{2}-869 \cdot 217(x z)^{2}=4$ and since all solutions of $a^{2}-869 \cdot 217 b^{2}=4$ are given by $\frac{a+b \sqrt{869 \cdot 217}}{2}=(1737+4 \sqrt{869 \cdot 217})^{n}$, we conclude that z is even, a contradiction.

Completely the same argumentation shows that the system

$$
\begin{aligned}
229 x^{2}-57 z^{2} & =4 \\
4945 z^{2}-458 y^{2} & =-343
\end{aligned}
$$

has no integer solution.
At this point we are left with 35 cases in our list of remaining cases.
Lemma 10 Let $C \neq 0$ and $d \neq \square$ be integers and let $\left(u_{0}, v_{0}\right)$ be the minimal solution of Pell equation $u^{2}-d v^{2}=1$. If the Pellian equation

$$
\begin{equation*}
x^{2}-d y^{2}=C \tag{39}
\end{equation*}
$$

has a solution, then there exists a solution of (39) such that

$$
\begin{gathered}
0<x \leq \sqrt{\frac{\left(u_{0}+1\right) C}{2}}, \quad 0 \leq y \leq \frac{v_{0} \sqrt{C}}{\sqrt{2\left(u_{0}+1\right)}} \quad \text { if } C>0 \\
0 \leq x \leq \sqrt{\frac{\left(u_{0}-1\right)(-C)}{2}}, \quad 0<y \leq \frac{v_{0} \sqrt{-C}}{\sqrt{2\left(u_{0}-1\right)}} \quad \text { if } C<0
\end{gathered}
$$

Proof. See [19, Theorems 108 and 108a].
Using Lemma 10 it is easy to verify that the following equations have no integer solutions:

$$
\begin{aligned}
x^{2}-163 \cdot 648 y^{2} & =-5 \cdot 163, \\
x^{2}-191 \cdot 766 y^{2} & =-25 \cdot 191, \\
x^{2}-523 \cdot 2088 y^{2} & =-5 \cdot 523, \\
x^{2}-563 \cdot 2248 y^{2} & =-5 \cdot 563, \\
x^{2}-2432 \cdot 607 y^{2} & =-25 \cdot 607, \\
x^{2}-1286 \cdot 321 y^{2} & =-5 \cdot 321, \\
x^{2}-162 \cdot 647 y^{2} & =-5 \cdot 162, \\
x^{2}-5392 \cdot 21 y^{2} & =-43 \cdot 21, \\
x^{2}-339 \cdot 1354 y^{2} & =-7 \cdot 339, \\
x^{2}-709 \cdot 177 y^{2} & =-28 \cdot 177, \\
x^{2}-1442 \cdot 361 y^{2} & =-47 \cdot 361, \\
x^{2}-3048 \cdot 763 y^{2} & =-5 \cdot 763,
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-3232 \cdot 807 y^{2} & =-25 \cdot 807, \\
x^{2}-823 \cdot 3288 y^{2} & =-17 \cdot 823, \\
x^{2}-843 \cdot 3368 y^{2} & =-5 \cdot 843, \\
x^{2}-853 \cdot 3408 y^{2} & =-35 \cdot 853, \\
x^{2}-953 \cdot 3816 y^{2} & =-7 \cdot 953 .
\end{aligned}
$$

Note that in all 17 cases we have $v_{0} \leq 4$ and by Lemma 10 it suffices to check that the above equations have no solutions with $1 \leq y \leq 5$.

Two cases can be excluded by reduction modulo 5 . These systems are

$$
\begin{align*}
25123 x^{2}-258 y^{2} & =1 \tag{40}\\
517 x^{2}-129 z^{2} & =4 \tag{41}
\end{align*}
$$

and

$$
\begin{align*}
317 x^{2}-23068 y^{2} & =1 \tag{42}\\
633 x^{2}-11534 z^{2} & =475 \tag{43}
\end{align*}
$$

Namely, (40) implies $x^{2} \equiv 1,2,3(\bmod 5)$ and (41) implies $x^{2} \equiv 0,2,4$ $(\bmod 5)$. Hence, $x^{2} \equiv 2(\bmod 5)$, a contradiction. Furthermore, (43) implies $x \equiv z \equiv 0(\bmod 5)$ and then (42) implies $y^{2} \equiv 3(\bmod 5)$, a contradiction.

Hence, it remains to consider 16 systems listed in Table 6.

Lemma 11 Let d be a positive integer which is not a perfect square. If d is not square-free, then there is at most one square-free integer C which divides $2 d$, such that $C \neq 1,-d$ and that the equation

$$
\begin{equation*}
x^{2}-d y^{2}=C \tag{44}
\end{equation*}
$$

is solvable.
If d is square-free, then there are exactly two square-free integers C which divide $2 d$, such that $C \neq 1,-d$ and that the equation (44) is solvable. The product of these two values of C is equal $-4 d$ when d is odd and C is even; in all other cases the product is equal -d.

Proof. See [20, Theorems 11.2 and 11.3].

k	$d_{1}, d_{2}, d_{3}, j_{1}, j_{2}$
108	$7085,1819,864,1,5$
192	$111361,191,1536,1,1$
312	$293281,311,2496,1,1$
405	$7714,404,1620,2,64$
432	$561601,431,3456,1,1$
513	$197891,393728,2052,2,4$
548	$2745,28991,4384,1,329$
600	$1082401,599,4800,1,1$
602	$1089621,57095,4816,1,1$
673	$340370,678048,2692,2,4$
675	$684788,15502,2700,2,2$
698	$1464405,16031,5584,1,1$
720	$1558081,719,5760,1,1$
744	$1663585,72071,5952,1,1$
801	$482002,960800,3204,2,4$
838	$422017,5859,6704,1,5$

Table 6:

Lemma 12 Let d and n be integers such that $d>0, d$ is not a perfect square, and $|n|<\sqrt{d}$. If $x^{2}-d y^{2}=n$, then $\frac{x}{y}$ is a convergent of the simple continued fraction of \sqrt{d}.

Proof. See [21, Theorem 7.24]

$$
k=108
$$

We have the system

$$
\begin{array}{r}
7085 x^{2}-1819 y^{2}=1 \\
864 x^{2}-1819 z^{2}=5 \tag{46}
\end{array}
$$

By Lemma 12 we have that $\frac{1819 y}{x}$ is a convergent of the simple continued fraction of $\sqrt{1819 \cdot 7085}$. Using Mathematica, we find that the minimal solution of (45) is

$$
\begin{aligned}
& x_{1}=5 \cdot 31 \cdot 33368342233133865229398608608608237, \\
& y_{1}=2 \cdot 7 \cdot 11 \cdot 19 \cdot 73 \cdot 97 \cdot 191 \cdot 2579393633609401704423241 .
\end{aligned}
$$

Since $5 \mid x_{1}$, Lemma 9 implies $5 \mid x$ which contradicts the equation (46).

$$
k=192
$$

Using continued fraction algorithm we find that the equation $a^{2}-111361$. $191 b^{2}=193$ is solvable. Note that $111361=193 \cdot 577$. Hence, Lemma 11 implies that the equation $a^{2}-111361 \cdot 191 b^{2}=-191$ is not solvable and accordingly the equation $111361 x^{2}-191 y^{2}=1$ has no integer solution.

$$
k=312
$$

As in the case $k=192$, since the equation $a^{2}-311 \cdot 293281 b^{2}=626$ is solvable and $293281=313 \cdot 937$, we conclude that the equation $293281 x^{2}-311 y^{2}=1$ is not solvable.

$$
k=405
$$

From [19, Theorem 108] if follows that the fundamental solutions of the equation $u^{2}-405 \cdot 101 v^{2}=16 \cdot 405$ are $\left(u_{0}, v_{0}\right)=(\pm 1620,8)$. Hence, from
$405 x^{2}-101 z^{2}=16$ it follows that x is even, and this is in a contradiction with $3875 x^{2}-202 y^{2}=1$.

$$
k=432
$$

Using continued fraction algorithm we conclude from Lemma 12 that the equation $a^{2}-3456 \cdot 431 b^{2}=-431$ is not solvable, and therefore the equation $3456 x^{2}-431 y^{2}=1$ is not solvable too.

$$
k=513
$$

Since the equation $a^{2}-57 \cdot 1538 b^{2}=-2$ has a solution, Lemma 11 implies that the equation $57 \cdot(3 x)^{2}-1538(8 y)^{2}=1$ has no solution.

$$
k=548
$$

As in the case $k=108$, we find that the minimal solution of the equation $2745 x^{2}-28991 y^{2}=1$ is $x_{1}=293 \cdot 760351607 \cdot 305381425231, y_{1}=2^{6} \cdot 7^{3} \cdot 1823$. 523122644602993 . Hence $523122644602993 \mid y$, but then $2745 z^{2}-4384 y^{2}=$ -31 is impossible since $\left(\frac{-2745 \cdot 31}{523122644602993}\right)=-1$.

$$
k=600
$$

Since the equation $a^{2}-1082401 \cdot 599 b^{2}=3602$ has a solution and $1082401=$ $601 \cdot 1801$, we conclude that the equation $1082401 x^{2}-599 y^{2}=1$ is not solvable.

$$
k=602
$$

Solvability of the equation $a^{2}-301 \cdot 57095 b^{2}=-1634$ implies unsolvability of the equation $301 \cdot(4 x)^{2}-57095 y^{2}=1$.

$$
k=673
$$

As in the previous two cases, solvability of the equation $a^{2}-170185$. $21189 b^{2}=-1011$ implies, by Lemma 11, unsolvability of the equation $170185 x^{2}-339024 y^{2}=1$.

$$
k=675
$$

The minimal solution of the equation $150 u^{2}-7751 z^{2}=1$ is $u_{1}=2$. $343488449, z_{1}=19 \cdot 71 \cdot 70843$. Hence by Lemma 9 we have $71 \mid z$. But then $171197 z^{2}-675 y^{2}=-22$ is impossible since $\left(\frac{675 \cdot 22}{71}\right)=-1$.

$$
k=698
$$

As in the previous case, from the minimal solution of the equation $1464405 x^{2}$ $-16031 y^{2}=1$ we conclude that $3 \mid x$. Furthermore, in the same way, from the equation $5584 x^{2}-16031 z^{2}=1$ we obtain that $3 \mid z$ and this is an obvious contradiction.

$$
k=720
$$

Since the equation $a^{2}-1558081 \cdot 719 b^{2}=-1438$ has a solution, we conclude that the equation $155808 x^{2}-719 y^{2}=1$ has no solution.

$$
k=744
$$

Since the equation $a^{2}-5952 \cdot 72071 b^{2}=97$ has a solution, the equation $5952 x^{2}-72071 y^{2}=1$ has no solution.

$$
\begin{array}{|l|}
\hline k=801 \\
\hline
\end{array}
$$

The solvability of the equation $a^{2}-1201 \cdot 241001 b^{2}=401$ implies unsolvability ot the equation $241001 x^{2}-1201 \cdot(20 y)^{2}=1$.

$$
k=838
$$

The minimal solution of the equation $422017 x^{2}-5859 y^{2}=1$ satisfies $5 \mid x_{1}$. It implies that $5 \mid x$. But then $6704 x^{2}-5859 z^{2}=5$ is clearly impossible.

Therefore, we eliminated all cases and we proved the following theorem.
Theorem 10 If $3 \leq k \leq 1000$, then all integer points on E_{k} are given by (7).

References

[1] W. A. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), 355-359.
[2] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70.
[4] J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24-28.
[5] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1997.
[6] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 513-520.
[7] A. Dujella, The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
[8] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
[9] A. Dujella, Diophantine triples and construction of high-rank elliptic curves over \mathbf{Q} with three non-trivial 2-torsion points, Rocky Mountain J. Math., to appear.
[10] A. Dujella and A. Pethő, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) (49) (1998), 291-306.
[11] A. Dujella and A. Pethő, Integer points on a family of elliptic curves, Publ. Math. Debrecen, to appear.
[12] S. Fermigier, Étude expérimentale du rang de familles de courbes elliptiques sur Q, Experimental Math. 5 (1996), 119-130.
[13] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curve, Acta Arith. 68 (1994), 171-192.
[14] A. Grelak and A. Grytczuk, On the diophantine equation $a x^{2}-b y^{2}=c$, Publ. Math. Debrecen 44 (1994), 191-199.
[15] C. M. Grinstead, On a method of solving a class od Diophantine equations, Math. Comp. 32 (1978), 936-940.
[16] D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.
[17] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), 833-842.
[18] A. Knapp, Elliptic Curves, Princeton Univ. Press, 1992.
[19] T. Nagell, Introduction on Number Theory, Almqvist, Stockholm; Wiley, New York, 1951.
[20] T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. 16 (1954), 1-38.
[21] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, Wesley, New York, 1991.
[22] K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
[23] J. H. Rickert, Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
[24] J. H. Silverman, Rational points on elliptic surfaces, preprint.
[25] SIMATH manual, Saarbrücken, 1997.

Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia

E-mail address: duje@math.hr

[^0]: ${ }^{0} 1991$ Mathematics Subject Classification: 11G05, 11D09, 11 Y 50.

[^1]: ${ }^{1}$ In Simath there is implemented the algorithm of Gebel, Pethő and Zimmer [13] for computing all integer points of the elliptic curve.

