Complete solution of a family of simultaneous Pellian equations

Andrej Dujella

Abstract

Let $c_{k}=P_{2 k}^{2}+1$, where P_{k} denotes the $k^{\text {th }}$ Pell number. It is proved that for all positive integers k all solutions of the system of simultaneous Pellian equations $$
z^{2}-c_{k} x^{2}=c_{k}-1, \quad 2 z^{2}-c_{k} y^{2}=c_{k}-2
$$ are given by $(x, y, z)=\left(0, \pm 1, \pm P_{2 k}\right)$. This result implies that there does not exist positive integers $d>c>2$ such that the product of any two distinct elements of the set $$
\{1,2, c, d\}
$$

diminished by 1 is a perfect square
1991 Mathematics Subject Classification: 11D09, 11D25
Keywords: simultaneous Pellian equations, Diophantine quadruples, Pell numbers

1 Introduction

Diophantus studied the following problem: Find four (positive rational) numbers such that the product of any two of them increased by 1 is a perfect square. He obtained the following solution: $\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}$ (see [7]). The first set of four positive integers with the above property was found by Fermat, and it was $\{1,3,8,120\}$.

In [4] and [8] the more general problem was considered.
Definition 1 Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{m}\right\}$ is said to have the property $D(n)$ if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. Such a set is called a Diophantine m-tuple (with the property $D(n)$) or a P_{n}-set of size m.

In 1985, Brown [4], Gupta and Singh [13] and Mohanty and Ramasamy [16] proved independently that if $n \equiv 2(\bmod 4)$, then there does not exist a Diophantine quadruple with the property $D(n)$. In 1993, Dujella [8] proved that if $n \not \equiv 2(\bmod 4)$ and $n \notin S=\{-4,-3,-1,3,5,8,12,20\}$, then there exists at least one Diophantine quadruple with the property $D(n)$. The conjecture is that for $n \in S$ there does not exist a Diophantine quadruple with the property $D(n)$.

A famous open question is whether there exists a Diophantine quintuple with the property $D(1)$. The first result in that direction was proved in 1969 by Baker and Davenport [2]. They proved that the Diophantine triple $\{1,3,8\}$ cannot be extended to a Diophantine quintuple with the property $D(1)$. Recently, we generalized this result to the parametric families of Diophantine triples $\{k, k+2,4 k+4\}$ and $\left\{F_{2 k}, F_{2 k+2}, F_{2 k+4}\right\}, k \in \mathbf{N}$ (see [9, 10]), and in the joint paper with A. Pethő [12] we proved that the Diophantine pair $\{1,3\}$ cannot be extended to a Diophantine quintuple.

In the present paper we will apply the similar methods to the special cases of the following conjecture.

Conjecture 1 There does not exist a Diophantine quadruple with the property $D(-1)$.

It follows from the theory of integer points on elliptic curves (see [1]) that for fixed Diophantine triple $\{a, b, c\}$ with the property $D(-1)$ there are only finitely many effectively computable Diophantine quadruples D with $\{a, b, c\} \subset D$.

Assume that the Diophantine triple $\{a, b, c\}$ with the property $D(-1)$ can be extended to a Diophantine quadruple. Then there exist d, x, y, z such that

$$
a d-1=x^{2}, \quad b d-1=y^{2}, \quad c d-1=z^{2} .
$$

Eliminating d, we obtain the following system of Pellian equations

$$
\begin{aligned}
a y^{2}-b x^{2} & =b-a, \\
a z^{2}-c x^{2} & =c-a, \\
b z^{2}-c y^{2} & =c-b .
\end{aligned}
$$

Thus Conjecture 1 can be rephrased in the terms of Pellian equations.
Conjecture 2 Let a, b, c be distinct positive integers with the property that there exist integers r, s, t such that

$$
a b-1=r^{2}, \quad a c-1=s^{2}, \quad b c-1=t^{2} .
$$

If $1 \notin\{a, b, c\}$, then the system of Pellian equations

$$
\begin{equation*}
a y^{2}-b x^{2}=b-a, \quad a z^{2}-c x^{2}=c-a \tag{1}
\end{equation*}
$$

has no solution. If $a=1$, then all solutions system (1) are given by $(x, y, z)=(0, \pm r, \pm s)$.

For certain triples $\{a, b, c\}$ with $1 \notin\{a, b, c\}$, the validity of Conjecture 2 can be verified by simple use of congruences (see [4]). It seems that the case $a=1$ is more involved and until now Conjecture 2 was verified for triples $\{1,2,5\}$ (by Brown [4]), $\{1,5,10\}$ (by Mohanty and Ramasamy [15]), $\{1,2,145\},\{1,2,4901\},\{1,5,65\},\{1,5,20737\},\{1,10,17\}$ and $\{1,26,37\}$ (by Kedlaya [14]).

In the present paper we will verify Conjecture 2 for all triples of the form $\{1,2, c\}$.

First of all, observe that the conditions $c-1=s^{2}$ and $2 c-1=t^{2}$ imply

$$
\begin{equation*}
t^{2}-2 s^{2}=1 \tag{2}
\end{equation*}
$$

All solutions in positive integers of Pell equation (2) are given by $s=s_{k}=$ $P_{2 k}, t=t_{k}=Q_{2 k}$, where $\left(P_{k}\right)$ and $\left(Q_{k}\right)$ are sequences of Pell and Pell-Lucas numbers defined by

$$
\begin{array}{ccc}
P_{1}=1, & P_{2}=2, & P_{k+2}=2 P_{k+1}+P_{k} \\
Q_{1}=1, & Q_{2}=3, & Q_{k+2}=2 Q_{k+1}+Q_{k}
\end{array}
$$

Hence, if $\{1,2, c\}$ is a Diophantine triple with the property $D(-1)$, then there exists $k \geq 1$ such that

$$
\begin{equation*}
c=c_{k}=P_{2 k}^{2}+1=\frac{1}{8}\left[(1+\sqrt{2})^{4 k}+(1-\sqrt{2})^{4 k}+6\right] . \tag{3}
\end{equation*}
$$

Now we formulate our main results.
Theorem 1 Let k be a positive integer and $c_{k}=P_{2 k}^{2}+1$. All solutions of the system of simultaneous Pellian equations

$$
\begin{align*}
z^{2}-c_{k} x^{2} & =c_{k}-1 \tag{4}\\
2 z^{2}-c_{k} y^{2} & =c_{k}-2 \tag{5}
\end{align*}
$$

are given by $(x, y, z)=\left(0, \pm 1, \pm P_{2 k}\right)$.

Remark 1 Since $c_{1}=5, c_{2}=145$ and $c_{3}=4901$ we may observe that the case $k=1$ of Theorem 1 was proved by Brown [4] and the cases $k=2$ and $k=3$ by Kedlaya [14].

From Theorem 1 we obtain the following corollaries immediately.
Corollary 1 The pair $\{1,2\}$ cannot be extended to a Diophantine quadruple with the property $D(-1)$.

Corollary 2 Let k be a positive integer. Then the system of simultaneous Pell equations

$$
\begin{aligned}
y^{2}-2 P_{2 k}^{2} x^{2} & =1 \\
z^{2}-\left(P_{2 k}^{2}+1\right) x^{2} & =1
\end{aligned}
$$

has only the trivial solutions $(x, y, z)=(0, \pm 1, \pm 1)$.
Let us mention that Bennett [3] proved recently that systems of simultaneous Pell equations of the form

$$
y^{2}-m x^{2}=1, \quad z^{2}-n x^{2}=1, \quad(0 \neq m \neq n \neq 0)
$$

have at most three nontrivial solutions, and suggested that such systems have at most one nontrivial solution, provided that they are not of a very specific form which is described in [3].

2 Preliminaries

Let k be the minimal positive integer, if such exists, for which the statement of Theorem 1 is not valid. Then results of Brown and Kedlaya imply that $k \geq 4$.

Since neither c_{k} nor $2 c_{k}$ is a square we see that $\mathbf{Q}\left(\sqrt{c_{k}}\right)$ and $\mathbf{Q}\left(\sqrt{2 c_{k}}\right)$ are real quadratic number fields. Moreover $2 c_{k}-1+2 s_{k} \sqrt{c_{k}}=\left(s_{k}+\sqrt{c_{k}}\right)^{2}$ and $4 c_{k}-1+2 t_{k} \sqrt{2 c_{k}}=\left(t_{k}+\sqrt{2 c_{k}}\right)^{2}$ are non-trivial units of norm 1 in the number rings $\mathbf{Z}\left[\sqrt{c_{k}}\right]$ and $\mathbf{Z}\left[\sqrt{2 c_{k}}\right]$ respectively.

The theory of Pellian equations guarantees that there are finite sets $\left\{z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c_{k}}: i=1, \ldots, i_{0}\right\}$ and $\left\{z_{1}^{(j)}+y_{1}^{(j)} \sqrt{2 c_{k}}: j=1, \ldots, j_{0}\right\}$ of elements of $\mathbf{Z}\left[\sqrt{c_{k}}\right]$ and $\mathbf{Z}\left[\sqrt{2 c_{k}}\right]$ respectively, such that all solutions of (4) and (5) are given by

$$
\begin{equation*}
z+x \sqrt{c}=\left(z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}\right)(2 c-1+2 s \sqrt{c})^{m}, \quad i=1, \ldots, i_{0}, m \geq 0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
z \sqrt{2}+y \sqrt{c}=\left(z_{1}^{(j)} \sqrt{2}+y_{1}^{(j)} \sqrt{c}\right)(4 c-1+2 t \sqrt{2 c})^{n}, j=1, \ldots, j_{0}, n \geq 0 \tag{7}
\end{equation*}
$$

respectively. For simplicity, we have omitted here the index k and will continue to do so.

From (6) we conclude that $z=v_{m}^{(i)}$ for some index i and integer m, where

$$
\begin{equation*}
v_{0}^{(i)}=z_{0}^{(i)}, v_{1}^{(i)}=(2 c-1) z_{0}^{(i)}+2 s c x_{0}^{(i)}, v_{m+2}^{(i)}=(4 c-2) v_{m+1}^{(i)}-v_{m}^{(i)}, \tag{8}
\end{equation*}
$$

and from (7) we conclude that $z=w_{n}^{(i)}$ for some index j and integer n, where

$$
\begin{equation*}
w_{0}^{(j)}=z_{1}^{(j)}, w_{1}^{(i)}=(4 c-1) z_{1}^{(j)}+2 t c y_{1}^{(j)}, w_{n+2}^{(j)}=(8 c-2) w_{n+1}^{(j)}-w_{n}^{(j)} \tag{9}
\end{equation*}
$$

Thus we reformulated the system of equations (4) and (5) to finitely many Diophantine equations of the form

$$
v_{m}^{(i)}=w_{n}^{(j)}
$$

If we choose representatives $z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}$ and $z_{1}^{(j)} \sqrt{2}+y_{1}^{(j)} \sqrt{c}$ such that $\left|z_{0}^{(i)}\right|$ and $\left|z_{1}^{(j)}\right|$ are minimal, then, by [17, Theorem 108], we have the following estimates:

$$
\begin{gathered}
0<\left|z_{0}^{(i)}\right| \leq \sqrt{\frac{1}{2} \cdot 2 c \cdot(c-1)}<c \\
0<\left|z_{1}^{(j)}\right| \leq \frac{1}{2} \sqrt{\frac{1}{2} \cdot 4 c \cdot 2(c-2)}<c .
\end{gathered}
$$

3 Application of congruence relations

From (8) and (9) it follows easily by induction that

$$
\begin{aligned}
& v_{2 m}^{(i)} \equiv z_{0}^{(i)} \quad(\bmod 2 c), v_{2 m+1}^{(i)} \equiv-z_{0}^{(i)} \quad(\bmod 2 c) \\
& w_{2 n}^{(j)} \equiv z_{1}^{(j)} \quad(\bmod 2 c), \quad w_{2 n+1}^{(j)} \equiv-z_{1}^{(j)} \quad(\bmod 2 c)
\end{aligned}
$$

Therefore, if the equation $v_{m}^{(i)}=w_{n}^{(j)}$ has a solution in integers m and n, then we must have $\left|z_{0}^{(i)}\right|=\left|z_{1}^{(j)}\right|$.

Let $d_{0}=\left[\left(z_{0}^{(i)}\right)^{2}+1\right] / c$. Then we have:

$$
\begin{equation*}
d_{0}-1=\left(x_{0}^{(i)}\right)^{2}, \quad 2 d_{0}-1=\left(y_{1}^{(j)}\right)^{2}, \quad c d_{0}-1=\left(z_{0}^{(i)}\right)^{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{0} \leq \frac{c^{2}-c+1}{c}<c \tag{11}
\end{equation*}
$$

Assume that $d_{0}>1$. It follows from (10) and (11) that there exist a positive integer $l<k$ such that $d_{0}=c_{l}$. But now the system

$$
z^{2}-c_{l} x^{2}=c_{l}-1, \quad 2 z^{2}-c_{l} y^{2}=c_{l}-2
$$

has a non-trivial solution $(x, y, z)=\left(s_{k}, t_{k}, z_{0}^{(i)}\right)$, contradicting the minimality of k. Accordingly, $d_{0}=1$ and $\left|\left(z_{0}^{(i)}\right)\right|=\left|\left(z_{1}^{(j)}\right)\right|=s$. Thus we proved the following lemma.

Lemma 1 If the equation $v_{2}^{(i)}=w_{n}^{(j)}$ has a solution, then $\left|z_{0}^{(i)}\right|=\left|z_{1}^{(j)}\right|=s$.
The following lemma can be proved easily by induction. (We will omit the superscripts (i) and (j).)

Lemma 2

$$
\begin{gathered}
v_{m} \equiv(-1)^{m}\left(z_{0}-2 c m^{2} z_{0}-2 c s m x_{0}\right) \quad\left(\bmod 8 c^{2}\right) \\
w_{n} \equiv(-1)^{n}\left(z_{1}-4 c n^{2} z_{1}-2 c t n y_{1}\right) \quad\left(\bmod 8 c^{2}\right)
\end{gathered}
$$

Observe that $\left|z_{0}\right|=\left|z_{1}\right|=s$ implies $x_{0}=0$ and $y_{1}= \pm 1$. Furthermore, since we may restrict ourself to positive solutions of the system (4) and (5), we may assume that $z_{0}=z_{1}=s$. If $y=1$, then $v_{l}<w_{l}$ for $l>0$, and $v_{m}=w_{n}, n \neq 0$ implies $m>n$. If $y=-1$, then from $v_{0}<w_{1}$ it follows $v_{l}<w_{l+1}$ for $l \geq 0$, and thus $v_{m}=w_{n}$ implies $m \geq n$.

Lemma 3 If $v_{m}=w_{n}$, then m and n are even.
Proof: Lemma 2 and the relation $z_{0}=z_{1}=s$ imply $m \equiv n(\bmod 2)$. If $v_{2 m+1}=w_{2 n+1}$, then Lemma 2 implies

$$
(2 m+1)^{2} s \equiv(2 n+1)[(4 n+2) s \pm t](\bmod 4 c),
$$

and we have a contradiction with the fact that s is even and t is odd.
Lemma 4 If $v_{2 m}=w_{2 n}$, then $n \leq m \leq n \sqrt{2}$.

Proof: We have already proved that $m \geq n$. From (8) and (9) we have

$$
\begin{aligned}
v_{m} & =\frac{s}{2}\left[(2 c-1+2 s \sqrt{c})^{m}+(2 c-1-2 s \sqrt{c})^{m}\right]>\frac{1}{2}(2 c-1+2 s \sqrt{c})^{m}, \\
w_{n} & =\frac{1}{2 \sqrt{2}}\left[(s \sqrt{2} \pm \sqrt{c})(4 c-1+2 t \sqrt{2 c})^{n}+(s \sqrt{2} \mp \sqrt{c})(4 c-1-2 t \sqrt{2 c})^{n}\right] \\
& <\frac{s \sqrt{2}+\sqrt{c}+1}{2 \sqrt{2}}(4 c-1+2 t \sqrt{2 c})^{n}<\frac{1}{2}(4 c-1+2 t \sqrt{2 c})^{n+\frac{1}{2}} .
\end{aligned}
$$

Since $k \geq 4$, we have $c \geq c_{4}=166465$. Thus $v_{2 m}=w_{2 n}$ implies

$$
\begin{equation*}
\frac{2 m}{2 n+\frac{1}{2}}<\frac{\ln (4 c-1+2 t \sqrt{2 c})}{\ln (2 c-1+2 s \sqrt{c})}<1.0517 \tag{12}
\end{equation*}
$$

If $n=0$ then $m=0$, and if $n \geq 1$ then (12) implies

$$
m<1.0517 n+0.2630<1.3147 n<n \sqrt{2} .
$$

Lemma 5 If $v_{2 m}=w_{2 n}$ and $n \neq 0$, then $m \geq n>\frac{1}{\sqrt{2}} \sqrt[4]{c}$.
Proof: If $v_{2 m}=w_{2 n}$, then Lemma 2 implies

$$
2 s\left(m^{2}-2 n^{2}\right) \equiv \pm t n(\bmod 2 c)
$$

and

$$
4\left(m^{2}-2 n^{2}\right)^{2} \equiv n^{2}(\bmod 2 c) .
$$

Assume that $n \neq 0$ and $n \leq \frac{1}{\sqrt{2}} \sqrt[4]{c}$. Since $n \leq m \leq n \sqrt{2}$ by Lemma 4 , we have

$$
\begin{aligned}
\left|2 s\left(m^{2}-2 n^{2}\right)\right| & \leq 2 \sqrt{c} n^{2} \leq c, \\
4\left(m^{2}-2 n^{2}\right)^{2} & \leq 4 n^{4} \leq c .
\end{aligned}
$$

Thus, from $n^{2}<c$ and $t n<\sqrt{2 c} n<c$ we conclude that

$$
4\left(m^{2}-2 n^{2}\right)^{2}=n^{2}, \quad \text { and } \quad 2 s\left(m^{2}-2 n^{2}\right)=-t n .
$$

These two relations imply $s^{2}=t^{2}$, a contradiction.

4 Application of a result of Rickert

In this section we will use a result of Rickert [18] on simultaneous rational approximations to the numbers $\sqrt{(N-1) / N}$ and $\sqrt{(N+1) / N}$ and we will finish the proof of Theorem 1. For the convenience of the reader, we recall Rickert's result.

Theorem 2 For an integer $N \geq 2$ the numbers

$$
\theta_{1}=\sqrt{(N-1) / N}, \quad \theta_{2}=\sqrt{(N+1) / N}
$$

satisfy

$$
\max \left(\left|\theta_{1}-p_{1} / q\right|,\left|\theta_{2}-p_{2} / q\right|\right)>(271 N)^{-1} q^{-1-\lambda}
$$

for all integers p_{1}, p_{2}, q with $q>0$, where

$$
\lambda=\lambda(N)=\frac{\log (12 N \sqrt{3}+24)}{\log \left[27\left(N^{2}-1\right) / 32\right]}
$$

Lemma 6 Let $N=t^{2}$ and $\theta_{1}=\sqrt{(N-1) / N}, \theta_{2}=\sqrt{(N+1) / N}$. Then all positive integer solutions x, y, z of the simultaneous Pellian equations (4) and (5) satisfy

$$
\max \left(\left|\theta_{1}-\frac{2 s x}{t y}\right|,\left|\theta_{2}-\frac{2 z}{t y}\right|\right)<y^{-2}
$$

Proof: We have $\theta_{1}=\frac{s}{t} \sqrt{2}$ and $\theta_{2}=\frac{1}{t} \sqrt{2 c}$. Hence,

$$
\begin{aligned}
\mid \theta_{1} & -\frac{2 s x}{t y}\left|=\frac{s}{t}\right| \sqrt{2}-\frac{2 x}{y}\left|=\frac{s}{t}\right| 2-\frac{4 x^{2}}{y^{2}}|\cdot| \sqrt{2}+\left.\frac{2 x}{y}\right|^{-1} \\
& \leq \frac{s}{t} \cdot \frac{2\left|y^{2}-2 x^{2}\right|}{y^{2}} \cdot \frac{1}{\sqrt{2}}<y^{-2}
\end{aligned}
$$

and

$$
\begin{aligned}
\mid \theta_{2} & -\frac{2 z}{t y}\left|=\frac{1}{t}\right| \sqrt{2 c}-\frac{2 z}{y}\left|=\frac{2}{t}\right| c-\frac{2 z^{2}}{y^{2}}|\cdot| \sqrt{2 c}+\left.\frac{2 z}{y}\right|^{-1} \\
& <\frac{2}{t} \cdot \frac{\left|c y^{2}-2 z^{2}\right|}{y^{2}} \cdot \frac{1}{2 \sqrt{2 c}}=\frac{c-2}{t \sqrt{2 c}} \cdot \frac{1}{y^{2}}<\frac{1}{2} y^{-2}
\end{aligned}
$$

Lemma 7 Let x, y, z be positive integers satisfying the system of Pellian equations (4) and (5). Then

$$
\begin{equation*}
\log y>0.6575 \sqrt[4]{c} \log (4 c-3) \tag{13}
\end{equation*}
$$

Proof: Let $z=v_{m}$. Since $x>0$, we have $m \neq 0$. From $y^{2}-2 x^{2}=1$ we obtain

$$
\begin{aligned}
y> & x \sqrt{2}=\frac{s}{\sqrt{2 c}}\left[(2 c-1+2 s \sqrt{c})^{m}-(2 c-1-2 s \sqrt{c})^{m}\right] \\
& >(2 c-1+2 s \sqrt{c})^{m-1}>(4 c-3)^{m-1} .
\end{aligned}
$$

Now from Lemma 5 and $k \geq 4$ we conclude that

$$
\log y>(m-1) \log (4 c-3)>0.6575 \sqrt[4]{c} \log (4 c-3) .
$$

Proof of Theorem 1. We will apply Theorem 2 for $N=t^{2}=2 c-1$. Lemma 6 and Theorem 2 imply

$$
(271)^{-1}(t y)^{-1-\lambda}<y^{-2} .
$$

It follows that

$$
y^{1-\lambda}<271 t^{3+\lambda}<271(2 c-1)^{2}<1084 c^{2} .
$$

Since $c \geq 166465$, we have

$$
\frac{1}{1-\lambda}=\frac{\log \left[27\left(N^{2}-1\right) / 32\right]}{\log \left[\frac{27\left(N^{2}-1\right)}{32(12 N \sqrt{3}+24)}\right]}<\frac{2 \log (1.8372 c)}{\log (0.08118 c)}
$$

and

$$
\begin{equation*}
\log y<\frac{2 \log (1.8372 c) \log \left(1084 c^{2}\right)}{\log (0.08118 c)} \tag{14}
\end{equation*}
$$

Combining (13) and (14) we obtain

$$
\begin{equation*}
\sqrt[4]{c}<\frac{2 \log (1.8372 c) \log \left(1084 c^{2}\right)}{0.6575 \log (4 c-3) \log (0.08118 c)} \tag{15}
\end{equation*}
$$

Since the function $f(c)$ on the right side of (15) is decreasing, it follows that

$$
\sqrt[4]{c}<f\left(c_{4}\right)=f(166465)<9.349
$$

and $c<7639$, which contradicts the fact that $k \geq 4$.

5 Concluding remarks

In [14], Kedlaya proved the statement of Theorem 1 for $k=1,2$ and 3 using the quadratic reciprocity method introduced by Cohn in [5].

However, the application of elliptic curves gives us a stronger result. Namely, consider the family of elliptic curves $E_{k}, k \geq 1$, given by

$$
y^{2}=(x-1)(2 x-1)\left(c_{k} x-1\right)
$$

The computational numbertheoretical program package SIMATH ([19]) can be used to check that for $k=1,2,3$ the rank of E_{k} is zero, and the torsion points on E_{k} are $\mathcal{O}, 1, \frac{1}{2}, \frac{1}{c_{k}}$. It implies that for $k=1,2,3$ the set $\left\{1,2, c_{k}\right\}$ cannot be extended to a rational Diophantine quadruple with the property $D(-1)$.

Let us mention that Euler found a rational Diophantine quadruple with the property $D(-1)$ and it was $\left\{\frac{7}{2}, \frac{65}{56}, \frac{233}{224}, \frac{289}{224}\right\}$ (see $[6]$), and as a special case of a two-parametric formula for Diophantine quintuples in [11] the rational Diophantine quintuple $\left\{\frac{130}{40}, \frac{25}{8}, \frac{37}{10}, 10, \frac{533}{40}\right\}$ with the property $D(-1)$ was obtained.

References

[1] Baker, A., The diophantine equation $y^{2}=a x^{3}+b x^{2}+c x+d$, J. London Math. Soc. 43 (1968), 1-9.
[2] Baker, A., Davenport,H., The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
[3] Bennett, M.A., On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math., to appear.
[4] Brown, E., Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), 613-620.
[5] Cohn, J.H.E., Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc. 7 (1965), 24-28.
[6] Dickson, L.E., History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 518-519.
[7] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.
[8] Dujella, A., Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15-27.
[9] Dujella, A., The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
[10] Dujella, A., A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc., to appear.
[11] Dujella, A., An extension of an old problem of Diophantus and Euler, (preprint).
[12] Dujella, A., Pethő, A., Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), to appear.
[13] Gupta, H., K. Singh, K., On k-triad sequences, Internat. J. Math. Math. Sci. 5 (1985), 799-804.
[14] Kedlaya, K.S., Solving constrained Pell equations, Math. Comp., to appear.
[15] Mohanty, S.P., Ramasamy, A.M.S., The simultaneous Diophantine equations $5 y^{2}-20=x^{2}$ and $2 y^{2}+1=z^{2}, \mathrm{~J}$. Number Theory 18 (1984), 356-359.
[16] Mohanty, S.P., Ramasamy, A.M.S., On $P_{r, k}$ sequences, Fibonacci Quart. 23 (1985), 36-44.
[17] Nagell, T., Introduction to Number Theory, Almqvist, Stockholm, Wiley, New York, 1951.
[18] Rickert, J.H., Simultaneous rational approximations and related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
[19] SIMATH Manual, Universität des Saarlandes, Saarbrücken, 1993.

Address: Department of Mathematics, University of Zagreb, Bijenička cesta 30 10000 Zagreb, Croatia, e-mail: duje@math.hr

