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Abstract

It is known that if the period s(d) of the continued fraction ex-
pansion of

√
d satisfies s(d) ≤ 2, then all Newton’s approximants

Rn = 1
2 (pn

qn
+ dqn

pn
) are convergents of

√
d, and moreover we have

Rn = p2n+1
q2n+1

for all n ≥ 0. Motivated with this fact we define two
numbers j = j(d, n) and b = b(d) by Rn = p2n+1+2j

q2n+1+2j
if Rn is a conver-

gent of
√

d; b = |{n : 0 ≤ n ≤ s− 1 and Rn is a convergent of
√

d}|.
The question is how large the quantities |j| and b can be. We prove
that |j| is unbounded and give some examples which support a con-
jecture that b is unbounded too. We also discuss the magnitude of |j|
and b compared with d and s(d).

1 Introduction

Let d be a positive integer which is not a perfect square. The simple con-
tinued fraction expansion of

√
d has the form

√
d = [a0; a1, a2, . . . , as−1, 2a0].

Here s = s(d) denotes the length of the shortest period in the expansion of√
d. Moreover, the sequence a1, . . . , as−1 is symmetrical, i.e. ai = as−i for

i = 1, . . . , s− 1.
This expansion can be obtained using the following algorithm:

a0 = b
√

dc, b1 = a0, c1 = d− a2
0,

an−1 =
⌊

a0+bn−1

cn−1

⌋
, bn = an−1cn−1 − bn−1, cn = d−b2n

cn−1
for n ≥ 2

(1)
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(see [Sierpiński 1987, p. 319]).
Let pn

qn
be the nth convergent of

√
d. Then

1
(an+1 + 2)q2

n

< |
√

d− pn

qn
| < 1

an+1q2
n

(2)

(see [Schmidt 1980, p. 23]). Furthermore, if there is a rational number p
q

with q ≥ 1 such that

|
√

d− p

q
| < 1

2q2
, (3)

then p
q equals one of the convergents of

√
d.

Another method for the approximation of
√

d is by Newton’s formula

xk+1 =
1
2

(
xk +

d

xk

)
. (4)

In this paper we will discuss connections between these two methods. More
precisely, if pn

qn
is a convergent of

√
d, the questions is whether

Rn =
1
2

(pn

qn
+

dqn

pn

)
is also a convergent of

√
d.

This question was discussed by several authors. It was proved by Mikusiński
[1954] (see also [Clemens at al. 1995; Elezović 1997; Sharma 1959]) that

Rks−1 =
p2ks−1

q2ks−1
,

and if s = 2t then
Rkt−1 =

p2kt−1

q2kt−1

for all positive integers k. These results imply that if s(d) = 1 or 2, then all
approximants Rn are convergents of

√
d. Moreover, under these assumptions

we have
Rn =

p2n+1

q2n+1
(5)

for all n ≥ 0.
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2 Which convergents may appear?

Lemma 1
Rn −

√
d =

qn

2pn

(pn

qn
−
√

d
)2

Proof.

2(Rn −
√

d) = (
pn

qn
−
√

d) + (
dqn

pn
−
√

d) = (
pn

qn
−
√

d)−
√

dqn

pn
(
pn

qn
−
√

d)

=
qn

pn
(
pn

qn
−
√

d)2

Theorem 1 If Rn = pk
qk

, then k is odd.

Proof. Since pl
ql

>
√

d if and only if l is odd, and by Lemma 1 we have
Rn >

√
d, we conclude that k is odd.

Assume that Rn is a convergent of
√

d. Then by Theorem 1 we have

Rn =
p2n+1+2j

q2n+1+2j

for an integer j = j(d, n). We have already seen that if s(d) ≤ 2 then
j(d, n) = 0. In [Elezović 1997; Komatsu 1999; Mikusiński 1954] some exam-
ples can be found with j = ±1. We would like to investigate the problem
how large |j| can be.

The following result of Komatsu [1999] shows that all periods of the
continued fraction expansions of

√
d have the same behavior concerning the

questions in which we are interested, i.e. we may concentrate our attention
on Ri for 0 ≤ i ≤ s− 1.

Lemma 2 (Komatsu 1999) For n = 0, 1, . . . , bs/2c there exist αn such
that

Rks+n−1 =
αnp2ks+2n + p2ks+2n−1

αnq2ks+2n + q2ks+2n−1
for all k ≥ 0, and

Rks−n−1 =
p2ks−2n−1 − αnp2ks−2n−2

q2ks−2n−1 − αnq2ks−2n−2
for all k ≥ 1.

The following lemma reduces further our problem to the half-periods.
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Lemma 3 Let 0 ≤ n ≤ s/2. If Rn = p2n+1+2j

q2n+1+2j
, then

Rs−n−2 =
p2(s−n−2)+1−2j

q2(s−n−2)+1−2j
.

Proof. If(
p2n+1+2j q2n+1+2j

p2n+2j q2n+2j

)
=

(
a2n+1+2j 1

1 0

)
· · ·

(
a2n+3 1

1 0

) (
p2n+2 q2n+2

p2n+1 q2n+1

)
=

(
d c
f e

) (
p2n+2 q2n+2

p2n+1 q2n+1

)
, (6)

then(
p2s−2n−2−2j q2s−2n−2−2j

p2s−2n−3−2j q2s−2n−3−2j

)
=

(
−e f
c −d

) (
p2s−2n−3 q2s−2n−3

p2s−2n−4 q2s−2n−4

)
. (7)

By the assumption and formula (6), we have

Rn =
p2n+1+2j

q2n+1+2j
=

p2n+1 + d
cp2n+2

q2n+1 + d
c q2n+2

.

Now Lemma 2 and formula (7) imply

Rs−n−2 =
p2s−2n−3 − d

c q2s−2n−4

q2n−2s−3 − d
c q2s−2n−4

=
p2s−2n−3−2j

q2s−2n−3−2j
=

p2(s−n−2)+1−2j

q2(s−n−2)+1−2j
.

Lemma 4
Rn+1 < Rn

Proof. The statement of the lemma is equivalent to

(−1)n(dqnqn+1 − pnpn+1) > 0. (8)

If n is even, then pn

qn
<
√

d and pn+1

qn+1
>
√

d. Furthermore, since pn+1

qn+1
−
√

d <
√

d− pn

qn
, we have pn

qn
+ pn+1

qn+1
< 2

√
d. Therefore

pn

qn
· pn+1

qn+1
<

[(pn

qn
+

pn+1

qn+1

)/
2
]2

< d

and inequality (8) is satisfied. If n is odd, the proof is completely analogous.
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Proposition 1 If d is a square-free positive integer such that s(d) > 2, then

|j(d, n)| ≤ s(d)− 3
2

for all n ≥ 0.

Proof. According to Lemma 3 it suffices to consider the case j > 0.
Let Rn = p2n+1+2j

q2n+1+2j
. By Lemma 2 there is no loss of generality in assuming

that n < s.
Assume first that s is even, say s = 2t. Then Rt−1 = ps−1

qs−1
and Rs−1 =

p2s−1

q2s−1
. If n < t − 1, then Lemma 4 clearly implies that 2n + 1 + 2j ≤ s− 2

and 2j ≤ s− 3. Since s is even, we have j ≤ s−4
2 . For n = t− 1 or n = s− 1

we obtain j = 0. If t − 1 < n < s − 1, then 2n + 1 + 2j ≤ 2s − 2 and
2j ≤ 2s− 3− 2n ≤ s− 3. Thus we have again j ≤ s−4

2 .
Assume now that s is odd, say s = 2t + 1. Instead of applying Newton’s

method for x0 = pt−1

qt−1
, we will apply ”regula falsi” method for x0 = pt−1

qt−1
and

x1 = pt

qt
. It was proved by Frank [1962] that with this choice of x0 and x1

we have
Rt−1,t =

x0 · x1 + d

x0 + x1
=

ps−1

qs−1
.

If t− 1 < n < s− 1, then from Rs−1 = p2s−1

q2s−1
we obtain that j ≤ s−3

2 as

above. Thus, assume that n ≤ t− 1. Since the number x0x1+d
x0+x1

lies between
the numbers x0 and x1, we conclude that

|Rt−1,t −
√

d| < |Rt−1 −
√

d|.

Hence, by Lemma 4, we have 2n + 1 + 2j ≤ s− 2 and j ≤ s−3
2 .

The following lemma shows that the estimate from Proposition 1 is sharp.

Lemma 5 Let t ≥ 1 and m ≥ 5 be integers such that m ≡ ±1 (mod 6) and
let d = F 2

m−2[(2Fm−2t− Fm−4)2 + 4]/4. Then

√
d = [

1
2
Fm−2(2Fm−2t− Fm−4); 2t− 1, 1, 1, . . . , 1, 1︸ ︷︷ ︸

m−3

, 2t− 1, Fm−2(2Fm−2t− Fm−4)]. (9)

Therefore, s(d) = m.
Furthermore, R0 = pm−2

qm−2
and hence j(d, 0) = m−3

2 , j(d, km) = m−3
2 and

j(d, km− 2) = −m−3
2 for k ≥ 1.
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Proof. Since m ≡ ±1 (mod 6), the number 1
2Fm−2Fm−4 is an integer.

It is clear that a0 = b
√

dc = 1
2Fm−2(2Fm−2t− Fm−4). Then we have

a1 =
⌊ 1√

d− a0

⌋
=

⌊√d + a0

d− a2
0

⌋
=

⌊√d + a0

F 2
m−2

⌋
=

⌊ 2a0

F 2
m−2

⌋
=

⌊
2t− Fm−4

Fm−2

⌋
= 2t− 1.

Let
√

d = a0 +
1

a1 + 1
α2

.

Then
1
α2

=

√
d− a0 + Fm−2Fm−3

F 2
m−2

and
1
α2

>
Fm−3

Fm−2
. (10)

Since

√
d =

√
a2

0 + F 2
m−2 = a0

√
1 +

F 2
m−2

a2
0

< a0 +
F 2

m−2

2a0
≤ a0 +

F 2
m−2

Fm−2Fm−1

= a0 +
Fm−2

Fm−1

we have

1
α2

<

F 2
m−2

Fm−1
+ Fm−2Fm−3

F 2
m−2

=
Fm−1Fm−3 + 1

Fm−1Fm−2
=

Fm−2

Fm−1
. (11)

From inequalities (10) and (11) we conclude that

1
α2

= [0; 1, 1, . . . , 1︸ ︷︷ ︸
m−3

, y] (12)

and a2 = a3 = · · · = am−2 = 1. Furthermore, from (12) we have

1
α2

=
yFm−3 + Fm−4

yFm−2 + Fm−3
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and

y =
α2Fm−4 − Fm−3

Fm−2 − α2Fm−3

=
Fm−2 + Fm−3a0 − Fm−3

√
d

Fm−2(
√

d− a0)
·
√

d + a0√
d + a0

· Fm−2 + Fm−3a0 + Fm−3

√
d

Fm−2 + Fm−3a0 + Fm−3

√
d

=

√
d + a0

Fm−2[Fm−2 + Fm−3(
√

d + a0)]
· [1 + Fm−3Fm−2(2t− 1)] . (13)

Let 1
z = y − (2t− 1). From (13) we obtain

z =
F 2

m−2 + Fm−2Fm−3(
√

d + a0)√
d− a0 + Fm−2Fm−3

>
2a0Fm−2Fm−3

1 + Fm−2Fm−3
≥ 4

3
a0 ≥ a0 + 1 .

We have am−1 = byc = 2t−1 and am ≥ a0 +1. But now from [Perron 1954,
Satz 3.13] it follows that am = 2a0 and s(d) = m.

Let us consider now the approximant

R0 =
1
2

(
a0 +

d

a0

)
=

a2
0 + d

2a0
=

2d− F 2
m−2

Fm−2(2Fm−2t− Fm−4)

=
Fm−2[(2Fm−2t− Fm−4)2 + 2]

2(2Fm−2t− Fm−4)
.

From (9) we have

pm−2

qm−2
= a0 +

1

a1 + Fm−3

Fm−2

= a0 +
Fm−2

(2t− 1)Fm−2 + Fm−3

= a0 +
Fm−2

2tFm−2 − Fm−4
= R0 ,

and j(d, 0) = m−3
2 as we claimed. Now Lemmas 2 and 3 imply that

j(d, km) = m−3
2 and j(d, km− 2) = −m−3

2 for k ≥ 1.

Corollary 1
sup{|j(d, n)|} = +∞

lim sup
{ |j(d, n)|

s(d)

}
=

1
2
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It remains the question how large can be |j| compared with d. In
[Cohn 1977] it was proved that s(d) < 7

2π2

√
d log d + O(

√
d). However,

under the extended Riemann Hypothesis for Q(
√

d) one would expect that
s(d) = O(

√
d log log d) (see [Williams 1981; Patterson and Williams 1985])

and therefore |j(d, n)| = O(
√

d log log d).
Let

d(j) = min{d : there exist n such that j(d, n) ≥ j}.

In Table 1 we list values of d(j) for 1 ≤ j ≤ 48 such that d(j) > d(j′) for
j′ < j. We also give corresponding values n and k such that Rn = pk

qk
=

p2n+1+2j

q2n+1+2j
.

We don’t have enough data to support any conjecture about the rate of
growth of d(j). In particular, it remains open whether lim sup{ |j(d,n)|√

d
} > 0.

3 Number of good approximants

Proposition 2 If an+1 > 2
√√

d + 1, then Rn is a convergent of
√

d.

Proof. From (2) and Lemma 1 we have

Rn −
√

d <
1

2pnq3
na2

n+1

.

Let Rn = u
v , where (u, v) = 1. Then certainly v ≤ 2pnqn, and

|
√

d− u

v
| < 1

8p2
nq2

n

· 4pn

qna2
n+1

<
1

2v2
· 1√

d + 1
·
(√

d +
1

an+1q2
n

)
<

1
2v2

,

which proves the proposition.

Theorem 2 Rn is a convergent of
√

d for all n ≥ 0 if and only if s(d) ≤ 2.

Proof. As we mentioned in the introduction, the result of Mikusiński
[1954] imply that if s(d) ≤ 2, then all Rn are convergents of

√
d.

Assume now that Rn is a convergent of
√

d for all n ≥ 0. Then we must
have Rn = p2n+1

p2n+1
for all n ≥ 0. Indeed, this is a consequence of the fact that

Rs−1 = p2s−1

q2s−1
, Corollary 1 and Lemma 4. Therefore, R0 = p1

q1
and

Rks−1 =
p2ks+1

q2ks+1
(14)
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d(j) s(d) n k j(d, n) log d(j)/ log j(d, n)
√

d(j)/j(d, n)

13 5 5 3 1 3.60555
124 16 1 7 2 6.95420 5.56776
181 21 4 15 3 4.73188 4.48454
989 32 7 23 4 4.97491 7.86209
1021 49 12 35 5 4.30494 6.39062
1549 69 18 49 6 4.09953 6.55956
3277 35 6 27 7 4.15984 8.17787
3949 128 79 175 8 3.98242 7.85513
10684 212 46 113 10 4.02873 10.3363
12421 121 30 89 14 3.57216 7.96068
22081 218 62 155 15 3.69361 9.90645
33619 282 83 199 16 3.75925 11.4597
39901 449 287 609 17 3.73927 11.7501
45109 470 143 325 19 3.63969 11.1784
48196 374 129 299 20 3.59946 10.9768
60631 504 149 343 22 3.56273 11.1924
78439 696 208 467 25 3.50125 11.2028
81841 494 153 361 27 3.43237 10.5955
170689 743 207 473 29 3.57783 14.2464
179356 776 500 1063 31 3.52276 13.6614
194374 738 220 505 32 3.51370 13.7775
224239 1008 302 673 34 3.49382 13.9276
238081 979 613 1297 35 3.48218 13.9410
241021 1008 311 695 36 3.45823 13.6372
242356 1090 710 1499 39 3.38418 12.6230
253324 984 291 667 42 3.32893 11.9836

Table 1: d(j) for 1 ≤ j ≤ 42
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for all n ≥ 0. Let
√

d = [a0; a1, . . . , as−1, 2a0] and d = a2
0 + t. Then

Rks =
αp2ks+2 + p2ks+1

αq2ks+2 + q2ks+1
, (15)

where
α =

2a0 − a1t

(a1a2 + 1)t− 2a0

(see [Komatsu 1999, Corollary 1]). From (14) and (15) it follows that α = 0
and therefore t = 2a0

a1
. It is well known (see e.g. [Sierpiński 1987, p. 322])

that if d = a2
0 + t, where t is a divisor of 2a0, then s(d) ≤ 2.

If Rn is a convergent of
√

d, then we will say that Rn is a ”good approx-
imant”. Let

b(d) = |{n : 0 ≤ n ≤ s− 1 and Rn is a convergent of
√

d}|.

Theorem 2 shows that if s(d) > 2 then s(d)
b(d) > 1. Komatsu [1999] proved

that if d = (2x + 1)2 + 4 then b(d) = 3, s(d) = 5 (see also [Elezović 1997])
and if d = (2x + 3)2 − 4 then b(d) = 4, s(d) = 6.

Example 1 If d = 16x4−16x3−12x2 +16x−4, where x ≥ 2, then s(d) = 8
and b(d) = 6. Using algorithm (1) it is straightforward to check that

√
d = [(2x + 1)(2x− 2);x, 1, 1, 2x2 − x− 2, 1, 1, x, 2(2x + 1)(2x− 2)] .

Hence, s(d) = 8.
Now the direct computation shows that

R0 =
p3

q3
=

2x(4x2 − 3)
2x + 1

R1 =
p5

q5
=

(2x− 1)(8x4 − 8x2 + 1)
2x(2x2 − 1)

R3 =
p7

q7
=

(2x2 − 1)(16x4 − 16x2 + 1)
x(2x + 1)(4x2 − 3)

R5 =
p9

q9
=

(2x− 1)(128x8 − 256x6 + 160x4 − 32x2 + 1)
4x(2x2 − 1)(8x4 − 8x2 + 1)

R6 =
p11

q11
=

2x(4x2 − 3)(64x6 − 96x4 + 36x2 − 3)
(2x + 1)(8x3 − 6x− 1)(8x3 − 6x + 1)

R7 =
p15

q15
=

(8x4 − 8x2 + 1)(256x8 − 512x6 + 320x4 − 64x2 + 1)
2x(2x + 1)(2x2 − 1)(4x2 − 3)(16x4 − 16x2 + 1)

.
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Hence, b(d) = 6.
In the same manner we can check that for d = 16x4 + 48x3 + 52x2 +

32x + 12, x ≥ 1, we have also s(d) = 8 and b(d) = 6.

Let

sb = min{s : there exist d such that s(d) = s and b(d) = b}.

We know that s1 = 1, s2 = 2, s3 = 5, s4 = 6 and s6 = 8. In Table 2 we list
upper bounds for sb obtained by experiments.

b sb ≤ sb/b ≤ b sb ≤ sb/b ≤

3 5 1.66667 17 43 2.52941
4 6 1.50000 18 32 1.77778
5 9 1.80000 19 41 2.15789
6 8 1.33333 20 34 1.70000
7 13 1.85714 21 41 1.95238
8 12 1.50000 22 46 2.09091
9 17 1.88889 23 69 3.00000
10 14 1.40000 24 38 1.58333
11 23 2.09091 25 69 2.76000
12 18 1.50000 26 50 1.92308
13 27 2.07692 27 97 3.59259
14 22 1.57143 28 58 2.07143
15 41 2.73333 29 97 3.34483
16 26 1.62500 30 58 1.93333

Table 2: upper bounds for sb

Questions: Is it true that inf{sb/b : b ≥ 3} = 4
3?

What can be said about sup{sb/b : b ≥ 1}?

Example 2 Let d = 25[(10x + 1)2 + 4]. Then
√

d = [50x + 5;x, 9, 1, x− 1, 4, 1, 4x− 1, 1, 1, 1, 1, x− 1, 1, 1, 25x + 2,

4x, 2, 2, x− 1, 1, 2, 2, 1, x− 1, 2, 2, 4x, 25x + 2, 1, 1, x− 1,

1, 1, 1, 1, 4x− 1, 1, 4, x− 1, 1, 9, x, 100x + 10] .
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Hence, s(d) = 43. Furthermore, b(d) ≥ 15. Indeed, it may be verified that
Rn = pk

qk
for (n, k) ∈ {(0, 3), (3, 11), (6, 15), (11, 23), (14, 27), (15, 35), (18, 41),

(23, 43), (26, 49), (27, 57), (30, 61), (35, 69), (38, 73), (41, 81), (42, 85)}.

We expect that Example 2 may be generalized to yield positive inte-
gers d with b(d) arbitrary large. In this connection, we have the following
conjecture.

Conjecture 1 Let d = F 2
m[(2Fmx± Fm−3)2 + 4], where m ≡ ±1 (mod 6).

Then b(d) ≥ 3Fm.

We have checked Conjecture 1 for m ≤ 25. We have also the more pre-
cise form of Conjecture 1. Namely, we have noted that if d = F 2

m[(2Fmx +
Fm−3)2+4], where x is sufficiently large, then in the sequence a1, a2, . . . , as−1

the numbers x − 1, x, 4x − 1 and 4x appear 2Fn − Fn−3 − 3, Fn−3 + 2,
Ln−3 + 1 and 2Fn−3 times, respectively, and the number a0−1

2 appears
once. If this conjecture on the sequence a1, a2, . . . , as−1 is true, then at

least 3Fn elements in that sequence are greater then 2
√√

d + 1, and Propo-
sition 2 implies b(d) ≥ 3Fn. We have also noted similar phenomena for
d = F 2

m[(2Fmx− Fm−3)2 + 4].

As in the case of j(d, n), we are also interested in the question how large
can be b(d) compared with d. Let

db = min{d : b(d) ≥ b}.

In Table 3 we listed values of db for 1 ≤ b ≤ 102 such that db > db′ for b′ < b.
Consider the expression log db

log b . Conjecture 1 implies that

sup
{ log db

log b
: b ≥ 2

}
≤ 4

and Table 3 suggests that this bound might be less than 4. It would be
interesting to find exact value for sup{ log db

log b : b ≥ 2}.
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db s(db) b log db/ log b

2 1 1
3 2 2 1.58496
13 5 3 2.33472
21 6 4 2.19616
43 10 6 2.09917
76 12 8 2.08264
244 26 14 2.08300
796 44 16 2.40916
1141 58 18 2.43556
1516 76 20 2.44475
2629 100 22 2.54748
3004 108 24 2.51969
3949 128 26 2.54173
4204 116 28 2.50399
6589 134 30 2.58531
10021 190 32 2.65815
12229 174 36 2.62635
18484 258 38 2.70087
19996 272 40 2.68463
22309 250 42 2.67887
23149 288 50 2.56893
31669 368 52 2.62274
46981 430 58 2.64934
52789 514 62 2.63477
73516 644 64 2.69430
76549 548 68 2.66517
87109 648 72 2.65976
103741 618 74 2.65100
140701 690 80 2.70523
163669 776 82 2.72439
180709 954 86 2.71749
228229 1160 90 2.74192
249601 950 92 2.74839
273361 1076 94 2.75539
279301 1214 98 2.73503
344509 1164 102 2.75675

Table 3: db for b ≤ 102
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Stuttgart, 1954.

[Schmidt 1980] W. M. Schmidt, Diophantine Approximation, Lecture
Notes in Math. 785, Springer, Berlin, 1980.

[Sharma 1959] A. Sharma, ”On Newton’s method of approximation”,
Ann. Polon. Math. 6 (1959), 295–300.
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