Bounds for the size of sets with the property D(n)

Andrej Dujella

University of Zagreb, Croatia

Abstract

Let n be a nonzero integer and $a_1 < a_2 < \cdots < a_m$ positive integers such that $a_i a_j + n$ is a perfect square for all $1 \le i < j \le m$. It is known that $m \le 5$ for n = 1. In this paper we prove that $m \le 31$ for $|n| \le 400$ and $m < 15.476 \log |n|$ for |n| > 400.

1 Introduction

Let n be a nonzero integer. A set of m positive integers $\{a_1, a_2, \ldots, a_m\}$ is called a D(n)-m-tuple (or a Diophantine m-tuple with the property D(n)) if $a_i a_j + n$ is a perfect square for all $1 \le i < j \le m$.

Diophantus himself found the D(256)-quadruple {1, 33, 68, 105}, while the first D(1)-quadruple, the set {1, 3, 8, 120}, was found by Fermat (see [4, 5]). In 1969, Baker and Davenport [1] proved that this Fermat's set cannot be extended to a D(1)-quintuple, and in 1998, Dujella and Pethő [10] proved that even the Diophantine pair {1,3} cannot be extended to a D(1)-quintuple. A famous conjecture is that there does not exist a D(1)quintuple. We proved recently that there does not exist a D(1)-sextuple and that there are only finitely many, effectively computable, D(1)-quintuples (see [7, 9]).

The question is what can be said about the size of sets with the property D(n) for $n \neq 1$. Let us mention that Gibbs [12] found several examples of Diophantine sextuples, e.g. {99, 315, 9920, 32768, 44460, 19534284} is a D(2985984)-sextuple.

Define

 $M_n = \sup\{|S| : S \text{ has the property } D(n)\}.$

 $^{^0\}it 2000$ Mathematics Subject Classification. 11D45, 11D09, 11N36.

Key words and phrases. Diophantine m-tuples, property D(n), large sieve.

Considering congruences modulo 4, it is easy to prove that $M_n = 3$ if $n \equiv 2 \pmod{4}$ (see [3, 13, 15]). On the other hand, if $n \not\equiv 2 \pmod{4}$ and $n \not\in \{-4, -3, -1, 3, 5, 8, 12, 20\}$, then $M_n \ge 4$ (see [6]).

In [8], we proved that $M_n \leq 32$ for $|n| \leq 400$ and

$$M_n < 267.81 \log |n| (\log \log |n|)^2$$
 for $|n| > 400$.

The purpose of the present paper is to improve this bound for M_n , specially in the case |n| > 400. We will remove the factor $(\log \log |n|)^2$, and also the constants will be considerably smaller.

The above mentioned bounds for M_n were obtained in [8] by considering separately three types (large, small and very small) of elements in a D(n)*m*-tuple. More precisely, let

$$A_n = \sup\{|S \cap [|n|^3, +\infty\rangle| : S \text{ has the property } D(n)\},\$$

$$B_n = \sup\{|S \cap \langle n^2, |n|^3\rangle| : S \text{ has the property } D(n)\},\$$

$$C_n = \sup\{|S \cap [1, n^2]\| : S \text{ has the property } D(n)\}.$$

In [8], it was proved that $A_n \leq 21$ and $B_n < 0.65 \log |n| + 2.24$ for all nonzero integers n, while $C_n < 265.55 \log |n| (\log \log |n|)^2 + 9.01 \log \log |n|$ for |n| > 400 and $C_n \leq 5$ for $|n| \leq 400$. The combination of these estimates gave the bound for M_n .

In the estimate for A_n , a theorem of Bennett [2] on simultaneous approximations of algebraic numbers was used in combination with a gap principle, while a variant of the gap principle gave the estimate for B_n . The bound for C_n (number of "very small" elements) was obtained using the Gallagher's large sieve method [11] and an estimate for sums of characters.

In the present paper, we will significantly improve the bound for C_n using a result of Vinogradov on double sums of Legendre's symbols. Let us mention that Vinogradov's result, in a slightly weaker form, was used recently, in similar context, by Gyarmati [14] and Sárközy & Stewart [17]. We will prove the following estimates for C_n .

Proposition 1 If |n| > 400, then $C_n < 11.006 \log |n|$. If $|n| \ge 10^{100}$, then $C_n < 8.37 \log |n|$.

More detailed analysis of the gap principle used in [8] will lead us to the slightly improved bounds for B_n .

Proposition 2 For all nonzero integers *n* it holds $B_n < 0.6114 \log |n| + 2.158$. If |n| > 400, then $B_n < 0.6071 \log |n| + 2.152$.

By combining Propositions 1 and 2 with the above mentioned estimate for A_n , we obtain immediately the following estimates for M_n .

Theorem 1 If $|n| \le 400$, then $M_n \le 31$. If |n| > 400, then $M_n < 15.476, \log |n|$. If $|n| \ge 10^{100}$, then $M_n < 9.078 \log |n|$.

2 Three lemmas

Lemma 1 (Vinogradov) Let p be an odd prime and gcd(n,p) = 1. If $A, B \subseteq \{0, 1, \dots, p-1\}$ and

$$T = \sum_{x \in A} \sum_{y \in B} \left(\frac{xy + n}{p} \right),$$

then $|T| < \sqrt{p|A| \cdot |B|}$.

PROOF. See [18, Problem V.8.c)].

Lemma 2 (Gallagher) If all but g(p) residue classes mod p are removed for each prime p in a finite set S, then the number of integers which remain in any interval of length N is at most

$$\Big(\sum_{p\in\mathcal{S}}\log p - \log N\Big)\Big/\Big(\sum_{p\in\mathcal{S}}\frac{\log p}{g(p)} - \log N\Big) \tag{1}$$

provided the denominator is positive.

PROOF. See [11].

Lemma 3 If $\{a, b, c\}$ is a Diophantine triple with the property D(n) and $ab + n = r^2$, $ac + n = s^2$, $bc + n = t^2$, then there exist integers e, x, y, z such that

$$ae + n^2 = x^2$$
, $be + n^2 = y^2$, $ce + n^2 = z^2$

and

$$c = a + b + \frac{e}{n} + \frac{2}{n^2}(abe + rxy).$$

PROOF. See [8, Lemma 3].

3 Proof of Proposition 1

Let $N \ge n^2$ be a positive integer. Since |n| > 400, we have $N > 1.6 \cdot 10^5$. Let $D = \{a_1, a_2, \ldots, a_m\} \subseteq \{1, 2, \ldots, N\}$ be a Diophantine *m*-tuple with the property D(n). We would like to find an upper bound for *m* in term of *N*. We will use the Gallagher's sieve (Lemma 2). Let

$$\mathcal{S} = \{ p : p \text{ is prime, } gcd(n, p) = 1 \text{ and } p \le Q \},\$$

where Q is sufficiently large. For a prime $p \in S$, let C denotes the set of integers b such that $b \in \{0, 1, 2, ..., p-1\}$ and there is at least one $a \in D$ such that $b \equiv a \pmod{p}$. Then $\left(\frac{xy+n}{p}\right) \in \{0,1\}$ for all distinct $x, y \in C$. Here $\left(\frac{\cdot}{p}\right)$ denotes the Legendre symbol. If $0 \in C$, then $\left(\frac{n}{p}\right) = 1$. For a given $x \in C \setminus \{0\}$, we have $\left(\frac{xy_0+n}{p}\right) = 0$ for at most one $y_0 \in C$. If $y \neq x, y_0$, then $\left(\frac{xy+n}{p}\right) = 1$. Therefore,

$$T = \sum_{x,y\in C} \left(\frac{xy+n}{p}\right) = \sum_{x\in C} \left(\sum_{y\in C} \left(\frac{xy+n}{p}\right)\right)$$
$$\geq \sum_{x\in C} (|C|-3) \ge |C|(|C|-3).$$

On the other hand, Lemma 1 implies

$$T < |C| \cdot \sqrt{p}.$$

Thus, $|C| < \sqrt{p} + 3$ and we may apply Lemma 2 with

$$g(p) = \min\{\lfloor \sqrt{p} \rfloor + 3, p\}.$$

Let us denote the numerator and denominator from (1) by E and F, respectively. By [16, Theorem 9], we have

$$E = \sum_{p \in \mathcal{S}} \log p - \log N < \theta(Q) < 1.01624 Q.$$

The function $f(x) = \frac{\log x}{\min\{\sqrt{x+3},x\}}$ is strictly decreasing for x > 25. Also, if $Q \ge 118$, then $f(p) \ge f(Q)$ for all $p \le Q$.

For $p \in S$ it holds gcd(n, p) = 1. This condition comes from the assumptions of Lemma 1. However, we will show later that n can be divisible only

by a small proportion of the primes $\leq Q$. Assume that n is divisible by at most 5% of primes $\leq Q$. Then, for $Q \geq 118$, we have

$$F \geq \sum_{p \in \mathcal{S}} f(p) - \log N \geq \frac{\log Q}{\sqrt{Q} + 3} \cdot |\mathcal{S}| - \log N$$
$$\geq \frac{\log Q}{\sqrt{Q} + 3} \cdot \frac{19}{20} \pi(Q) - \log N > \frac{0.95 Q}{\sqrt{Q} + 3} - \log N.$$
(2)

Since F has to be positive in the applications of Lemma 2, we will choose Q of the form

$$Q = c_1 \cdot \log^2 N.$$

We have to check whether our assumption on the proportion of primes which divide n is correct. Suppose that n is divisible by at least 5% of the primes $\leq Q$. Then $|n| \geq p_1 p_2 \cdots p_{\lceil \pi(Q)/20 \rceil}$, where p_i denotes the *i*-th prime. By [16, 3.5 and 3.12], we have $p_{\lceil \pi(Q)/20 \rceil} > R$, where

$$R = \frac{1}{20} \frac{Q}{\log Q} \log\left(\frac{1}{20} \frac{Q}{\log Q}\right).$$

Assume that $c_1 \ge 6$. Then Q > 860 and R > 11.77. From [16, 3.16], it follows that

$$\log |n| > \sum_{p \le R} \log p > R \Big(1 - \frac{1.136}{\log R} \Big).$$
(3)

Furthermore, $\frac{1}{20} \frac{Q}{\log Q} > Q^{0.273}$ and R > 0.0136 Q. Hence, (3) implies $\log R > 7.793$ and therefore

$$\log N \ge 2\log |n| > 0.01466 \, Q \ge 0.08796 \, \log^2 N,$$

contradicting the assumption that $N > 1.6 \cdot 10^5$.

Therefore, we have that n is divisible by at most 5% of the primes $\leq Q$, and hence we have justified the estimate (2).

Under the assumption that $c_1 \ge 6$, the inequality (2) implies

$$F > 0.861 \sqrt{Q} - \log N = (0.861 \sqrt{c_1} - 1) \log N$$

and

$$\frac{E}{F} < \frac{1.017 \, c_1}{0.861 \, \sqrt{c_1} - 1} \cdot \log N.$$

For $c_1 = 6$ we obtain

$$\frac{E}{F} < 5.503 \log N. \tag{4}$$

Assume now that $N \ge 10^{200}$ and $c_1 \ge 4$. Then Q > 848303 and we can prove in the same manner as above that n is divisible by at most 1% of the primes $\le Q$. This fact implies

$$\frac{E}{F} < \frac{1.017c_1}{0.986\sqrt{c_1} - 1} \cdot \log N.$$

For $c_1 = 4.11$ we obtain

$$\frac{E}{F} < 4.185 \log N. \tag{5}$$

Setting $N = n^2$ in (4) and (5), we obtain the statements of Proposition 1.

4 Proof of Proposition 2

We may assume that |n| > 1. Let $\{a, b, c, d\}$ be a D(n)-quadruple such that $n^2 < a < b < c < d$. We apply Lemma 3 on the triple $\{b, c, d\}$. Since $b > n^2$ and $be + n^2 \ge 0$, we have that $e \ge 0$. If e = 0, then $d = b + c + 2\sqrt{bc + n} < 2c + 2\sqrt{c(c-1) + n} < 4c$, contradicting the fact that d > 4.89c (see [8, Lemma 5]).

Hence $e \geq 1$ and

$$d > b + c + \frac{2bc}{n^2} + \frac{2t\sqrt{bc}}{n^2}.$$
 (6)

Lemma 3 also implies

$$c \ge a + b + 2r. \tag{7}$$

From $r^2 \ge ab - \sqrt[4]{ab}$ and $ab \ge 30$ it follows that r > 0.96 a, and (7) implies c > 3.92 a. Similarly, $bc \ge 42$ implies $t > 0.969 \sqrt{bc}$ and, by (6), $d > b + c + 3.938 \frac{bc}{n^2} > 4.938 c + b$.

Assume now that $\{a_1, a_2, \ldots, a_m\}$ is a D(n)-m-tuple and $n^2 < a_1 < a_2 < \cdots < a_m < |n|^3$. We have

$$a_3 > 3.92 a_1, \quad a_i > 4.938 a_{i-1} + a_{i-2}, \quad \text{for } i = 4, 5, \dots, m.$$

Therefore, $a_m > \alpha_m a_1$, where the sequence (α_k) is defined by

$$\alpha_k = 4.938\alpha_{k-1} + \alpha_{k-2}, \quad \alpha_2 = 1, \ \alpha_3 = 3.92.$$
(8)

Solving the recurrence (8), we obtain $\alpha_k \approx \beta \gamma^{k-3}$, with $\beta \approx 3.964355$, $\gamma \approx 5.132825$. More precisely,

$$|\alpha_k - \beta \gamma^{k-3}| < \frac{1}{\beta \gamma^{k-3}} \,.$$

From $|n|^3 - 1 \ge a_m > \alpha_m a_1 \ge \alpha_m (n^2 + 1)$, it follows $\alpha_m \le |n| - \frac{1}{|n|}$ and $\beta \gamma^{m-3} < |n|$. Hence,

$$m < \frac{1}{\log \gamma} \log |n| + 3 - \frac{\log \beta}{\log \gamma}.$$
(9)

For the above values of β and γ we obtain

$$m < 0.6114 \log |n| + 2.158.$$

Assume now that |n| > 400. Then $bc > ab > 400^4$, which implies c > 3.999999 a and d > 4.999999 c + b. Therefore, in this case the relation (9) holds with $\beta \approx 4.042648$, $\gamma \approx 5.192581$, and we obtain

$$m < 0.6071 \log |n| + 2.152.$$

Remark 1 The constants in Theorem 1 can be improved, for large |n|, by using formula (2.26) from [16] in the estimate for the sum $\sum_{p \in S} f(p)$. In that way, it can be proved that for every $\varepsilon > 0$, $F > (2 - \varepsilon)\sqrt{Q} - \log N$ holds for sufficiently large Q.

Also, in the proof of Proposition 2, for sufficiently large |n| we have $c > (4-\varepsilon)a$ and $d > (5-\varepsilon)c+b$, which leads to $B_n < \left(\frac{1}{\log(\frac{5+\sqrt{29}}{2})} + \varepsilon\right) \log |n|$.

These results imply that for every $\varepsilon > 0$ there exists $n(\varepsilon)$ such that for $|n| > n(\varepsilon)$ it holds

$$M_n < \left(2 + \frac{1}{\log(\frac{5+\sqrt{29}}{2})} + \varepsilon\right) \log|n|.$$

Acknowledgements. The author is grateful to the referees for valuable comments, and in particular for pointing out a gap in the proof of Proposition 1 in the first version of the manuscript.

References

- [1] A. Baker and H. Davenport, *The equations* $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser. (2) **20** (1969), 129–137.
- M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173–199.

ANDREJ DUJELLA

- [3] E. Brown, Sets in which xy + k is always a square, Math. Comp. 45 (1985), 613-620.
- [4] L. E. Dickson, History of the Theory of Numbers, Vol. 2, Chelsea, New York, 1966, pp. 513–520.
- [5] Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, (I. G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103–104, 232.
- [6] A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.
- [7] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory 89 (2001), 126–150.
- [8] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132 (2002), 23–33.
- [9] A. Dujella, *There are only finitely many Diophantine quintuples*, J. Reine Angew. Math., to appear.
- [10] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306.
- [11] P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77–81.
- [12] P. Gibbs, Some rational Diophantine sextuples, preprint, math.NT/9902081.
- [13] H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 5 (1985), 799–804.
- [14] K. Gyarmati, On a problem of Diophantus, Acta Arith. 97 (2001), 53-65.
- [15] S. P. Mohanty and A. M. S. Ramasamy, On $P_{r,k}$ sequences, Fibonacci Quart. **23** (1985), 36–44.
- [16] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
- [17] A. Sárközy and C. L. Stewart, On prime factors of integers of the form ab+1, Publ. Math. Debrecen 56 (2000), 559–573.
- [18] I. M. Vinogradov, Elements of Number Theory, Nauka, Moscow, 1972 (in Russian).

Department of Mathematics University of Zagreb Bijenička cesta 30, 10000 Zagreb Croatia *E-mail address*: duje@math.hr