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1 Introduction

Let n be an integer. A set of positive integers {a1, . . . , am} is said to have the property
of Diophantus of order n, symbolically D(n), if for all i, j = 1, . . . ,m, i 6= j, the following
holds: aiaj +n = b2

ij , where bij is an integer. The set {a1, . . . , am} is called a Diophantine
m-tuple.

In this paper we construct several Diophantine quadruples whose elements are
represented using generalized Fibonacci numbers. It is a generalization of the following
statements (see [8], [12], [6]):

the sets
{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3} ,

{n, n + 2, 4n + 4, 4(n + 1)(2n + 1)(2n + 3)}

have the property D(1), and the set

{2Fn−1, 2Fn+1, 2F 3
nFn+1Fn+2, 2Fn+1Fn+2Fn+3(2F 2

n+1 − F 2
n)}

has the property D(F 2
n), for all positive integers n.

These results are applied to the Pell numbers and are used to obtain explicit formulas
for quadruples with the property D(l2), where l is an integer.

2 Preliminaries

2.1 The problem of Diophantus

The Greek mathematician Diophantus of Alexandria noted that the numbers x, x+2,
4x + 4 and 9x + 6, where x = 1

16 , have the following property: the product of any two of
them increased by 1 is a square of a rational number ([3]). The French mathematician
Pierre de Fermat first found a set with the property D(1), and it was {1, 3, 8, 120}. Later,
Davenport and Baker [2] showed that if there is a set {1, 3, 8, d} with the property D(1),
then d has to be 120.
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In [5], the problem of the existence of Diophantine quadruples with the property D(n)
was considered for an arbitrary integer n. The following result was proved:

If an integer n is not of the form 4k+2 and n 6∈{3, 5, 8, 12, 20,−1,−3,−4}, then there
exists a quadruple with the property D(n).

Non-existence of Diophantine quadruples with the property D(4k + 2) was proved in
[1] and [5].

In [5], the sets with the property D(l2) were particularly discussed. It was proved
that for any integer l and any set {a, b} with the property D(l2), where ab is not a perfect
square, there exists an infinite number of sets of the form {a, b, c, d} with the property
D(l2). We would like to describe the construction of those sets.

Let ab + l2 = k2 and let s and t be positive integers satisfying the Pellian equation
S2 − abT 2 = 1 (s and t exist since ab is not a perfect square). Two double sequences
yn,m and zn,m, n, m ∈ Z, can be defined as follows as in [5]:

y0,0 = l, z0,0 = l, y1,0 = k + a, z1,0 = k + b,
y−1,0 = k − a, z−1,0 = k − b,

yn+1,0 = 2k
l yn,0 − yn−1,0, zn+1,0 = 2k

l zn,0 − zn−1,0, n ∈ Z,
yn,1 = syn,0 + atzn,0, zn,1 = btyn,0 + szn,0, n ∈ Z,

yn,m+1 = 2syn,m − yn,m−1, zn,m+1 = 2szn,m − zn,m−1, n, m ∈ Z.

Let us write

xn,m = (y2
n,m − l2)/a. (1)

According to [5, Theorem 2], if xn,m and xn+1,m are positive integers then the set
{a, b, xn,m, xn+1,m} has the property D(l2). It is also proved that the sets {a, b, x0,m, x1,m},
m ∈ Z \ {−1, 0}, and {a, b, x−1,m, x0,m}, m ∈ Z \ {0, 1}, have the property D(l2). So, it
is sufficient to find one positive integer solution of the Pellian equation S2 − abT 2 = 1 to
extend a set {a, b} with the property D(l2) to a set {a, b, c, d} with the same property.

2.2 Generalized Fibonacci numbers

In [9] the Generalized Fibonacci sequence of numbers (wn) was defined by Horadam
as follows: wn = wn(a, b; p, q), w0 = a, w1 = b, wn = pwn−1 − qwn−2 (n ≥ 2), where
a, b, p, q are integers. The properties of that sequence were discussed in detail in [10], [11]
and [13]. The following identities have been proved:

wnwn+2r − eqnUr = w2
n+r (2)

4wnw2
n+1wn+2 + (eqn)2 = (wnwn+2 + w2

n+1)
2 (3)

wnwn+1wn+3wn+4 = w4
n+2 + eqn(p2 + q)w2

n+2 + e2q2n+1p2 (4)
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4wnwn+1wn+2wn+4wn+5wn+6 + e2q2n(wnU4U5 − wn+1U2U6 − wnU1U8)2

= (wn+1wn+2wn+6 + wnwn+4wn+5)2 . (5)

Here e = pab−qa2−b2 and Un = wn(0, 1; p, q). The identity (5) is due to Morgado ([13]).
Our purpose is to apply the above identities at constructing Diophantine quadruples.

Considering the construction described in 2.1, we will restrict our attention to two special
cases. For simplicity of notation these are

un = un(p) = wn(0, 1; p,−1), p ≥ 1,

gn = gn(p) = wn(0, 1; p, 1), p ≥ 2.

The Fibonacci sequence Fn = un(1), the Pell sequence Pn = un(2), the Fibonacci
numbers of even subscript F2n = gn(3), and gn(2) = n are important special cases of
the above sequences.

Apart from the sequences (un) and (gn), we also wish to investigate joined sequences
(vn) and (hn), which are defined by vn = un−1 + un+1, hn = gn+1 − gn−1. It is easy to
check that

vn = wn(2, p; p,−1) ,

hn = wn(2, p; p, 1) .

3 Quadruples with the property D(p2u2
n) and D(h2

n)

For every positive integer n,

4unun+2 + (pun+1)2 = v2
n+1 . (6)

Indeed, v2
n+1 − (pun+1)2 = (un + un+2)2 − (un+2 − un)2 = 4unun+2. From the above, it

follows that the sets {2un, 2un+2}, {un, 4un+2}, {4un, un+2} have the property D(p2u2
n+1).

In order to extend these sets to the quadruples with the property D(p2u2
n+1), by applying

the construction described in 2.1, it is necessary to find a solution of the Pellian equation
S2 − 4unun+2T

2 = 1. One solution of this equation we can get from the identity

4unu2
n+1un+2 + 1 = (u2

n+1 + unun+2)2 . (7)

which is the direct consequence of (2). Therefore, we will set s = u2
n+1 + unun+2,

t = un+1. Applying now the construction from 2.1 we get an infinite number of sets with
the property D(p2u2

n+1). Particularly, we have

Theorem 1 Let n and p be positive integers. Then the six sets

{2un, 2un+2, 2p2u3
n+1(un+1 − un)(un+2 − un), 2p2u3

n+1(un + un+1)(un+1 + un+2)},
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{2un, 2un+2, 2p2u3
n+1(un + un+1)(un+1 + un+2),

2(un + un+1)(un+1 + un+2)(un + 2un+1 + un+2)(unun+1 + 2unun+2 + un+1un+2)},

{un, 4un+2, (un+1 − un)(un+2 − un+1)(2un+2

− un − un+1)(2un+1un+2 − unun+1 − unun+2),
p2u3

n+1(un + 2un+1)(un+1 + 2un+2)},

{un, 4un+2, p2u3
n+1(un + 2un+1)(un+1 + 2un+2),

(un + un+1)(un+1 + un+2)(un + 3un+1 + 2un+2)(unun+1 + 3unun+2 + 2un+1un+2)},

{4un, un+2, (un+1 − un)(un+1 + un+2 − 2un)(unun+2 + un+1un+2 − 2unun+1),
p2u3

n+1(2un + un+1)(2un+1 + un+2)},

{4un, un+2, p2u3
n+1(2un + un+1)(2un+1 + un+2),

(un + un+1)(un+1 + un+2)(2un + 3un+1 + un+2)(2unun+1 + 3unun+2 + un+1un+2)}

have the property D(p2u2
n+1).

Proof: The main idea of the proof is to show that the six sets in Theorem 1 are of the
form {a, b, x0,1, x1,1} or {a, b, x−1,1, x0,1}. Combining (6) with (7) we obtain l = pun+1,
k = vn+1, s = u2

n+1 + unun+2, t = un+1. To simplify notation, we write un+2 = A,
un+1 = B. Hence, according to (2), A2 − pAB −B2 = (−1)n+1 and that gives

(A2 − pAB −B2)2 = 1 . (8)

We arrange the proof in three parts, each part relating to two of the six sets.
1◦ a = 2un, b = 2un+2

With notation in 2.1, we have

y0,0 = z0,0 = pun+1, y1,0 = 3un + un+2, z1,0 = un + 3un+2,
y−1,0 = pun+1, z−1,0 = −pun+1.

From this we obtain

y0,1 = pB[A2 + (2− p)AB − (2p− 1)B2]
y1,1 = 4A3 + (8− 7p)A2B + (3p2 − 10p + 4)AB2 + p(2p− 3)B3

y−1,1 = pB[A2 − (p + 2)AB + (2p + 1)B2] .

Relation (8) will be used to represent expressions of xi,1, i = −1, 0, 1, obtained by
putting yi,1 in (1), as homogeneous polynomials in two variables A and B. When those
polynomials are factored, we have

x0,1 = 2p2B3[A− (p− 1)B](A + B)
= 2p2u3

n+1(un + un+1)(un+1 + un+2)
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x1,1 = 2[A− (p− 1)B](A + B)[2A− (p− 2)B][2A2 − 2(p− 1)AB − pB2]
= 2(un + un+1)(un+1 + un+2)(un + 2un+1 + un+2)(unun+1 + 2unun+2 + un+1un+2)

x−1,1 = 2p2B3[(p + 1)B −A](A−B)
= 2p2u3

n+1(un+1 − un)(un+2 − un+1) .

2◦ a = un, b = 4un+2

We now have

y0,0 = z0,0 = pun+1, y1,0 = 2un + un+2, z1,0 = un + 5un+2,
y−1,0 = un+2, z−1,0 = un − 3un+2.

Hence

y0,1 = pB[A2 − (p− 1)AB − (p− 1)B2]
y1,1 = 3A3 − (5p− 6)A2B + (2p2 − 7p + 3)AB2 + p(p− 2)B3

y−1,1 = A3 − (p + 2)A2B + (p + 1)AB2 + pB3 ,

and, from (1) and (8),

x0,1 = p2B3(A + 2B)[2A− (p− 1)B]
= p2u3

n+1(un + 2un+1)(un+1 + 2un+2)
x1,1 = [A− (p− 1)B](A + B)[3A− (p− 3)B][3A2 − 3(p− 1)AB − pB2]

= (un + un+1)(un+1 + un+2)(un + 3un+1 + 2un+2)(unun+1+3unun+2+2un+1un+2)
x−1,1 = [A− (p− 1)B][A− (p + 1)B](A−B)[A2 − (p + 1)AB − pB2]

= (2un+2 − un − un+1)(un+1 − un)(un+2 − un+1)(2un+1un+2 − unun+1 − unun+2) .

3◦ a = 4un, b = un+2

In this case

y0,0 = z0,0 = pun+1, y1,0 = 5un + un+2, z1,0 = un + 2un+2,
y−1,0 = un+2 − 3un, z−1,0 = un.

According to that

y0,1 = pB[A2 − (p− 4)AB − (4p− 1)B2]
y1,1 = 6A3 − (11p− 12)A2B + (5p2 − 16p + 6)AB2 + p(4p− 5)B3

y−1,1 =−2A3 + (5p + 4)A2B − (3p2 + 8p + 2)AB2 + p(4p + 3)B3 ,

and finally
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x0,1 = p2B3(A + 2B)[2A− (2p− 1)B]
= p2u3

n+1(2un+1 + un+2)(2un + un+1)
x1,1 = [A− (p− 1)B](A + B)[3A− (2p− 3)B][3A2 − 3(p− 1)AB − 2pB2]

= (un + un+1)(un+1 + un+2)(2un + 3un+1 + un+2)(2unun+1+3unun+2+un+1un+2)
x−1,1 = [A− (p + 1)B][A− (2p + 1)B](A−B)[A2 − (p + 1)AB + 2pB2]

= (un+1 − un)(un+2 − un+1)(un+1 + un+2 − 2un)(unun+2 + un+1un+2 − 2unun+1) .

Using the identities
4gngn+2 + h2

n+1 = p2g2
n+1

4gng2
n+1gn+2 + 1 = (g2

n+1 + gngn+2)2

we find the following theorem may be proved in much the same way as Theorem 1.

Theorem 2 Let m ≥ 1 and p ≥ 2 be integers. Then the six sets

{2gn, 2gn+2, 2gn+1h
2
n+1(gn+1 − gn)(gn+2 − gn+1), 2gn+1h

2
n+1(gn + gn+1)(gn+1 + gn+2)},

{2gn, 2gn+2, 2gn+1h
2
n+1(gn + gn+1)(gn+1 + gn+2),

2(p + 2)gn+1(gn + gn+1)(gn+1 + gn+2)(gngn+1 + 2gngn+2 + gn+1gn+2)},

{gn, 4gn+1, (gn+1 − gn)(gn+2 − gn+1)(2gn+2−gn−gn+1)(2gn+1gn+2−gngn+1−gngn+2),
gn+1h

2
n+1(gn + 2gn+1)(gn+1 + 2gn+2)},

{gn, 4gn+2, gn+1h
2
n+1(gn + 2gn+1)(gn+1 + gn+2),

(gn + gn+1)(gn+1 + gn+2)(gn + 3gn+1 + 2gn+2)(gngn+1 + 3gngn+2 + 2gn+1gn+2)},

{4gn, gn+2, (gn+1 − gn)(gn+2 − gn+1)(gn+1+gn+2−2gn)(gngn+2+gn+1gn+2−2gngn+1),
gn+1h

2
n+1(2gn + gn+1 + gn+2)},

{4gn, gn+2, gn+1h
2
n+1(2gn + gn+1)(2gn+1 + gn+2),

(gn + gn+1)(gn+1 + gn+2)(2gn + 3gn+1 + gn+2)(2gngn+1 + 3gngn+2 + gn+1gn+2)}

have the property D(h2
n+1).

4 Morgado identity

We are now going to use the Morgado identity (5). It is easy to check that

wnU4U5 − wn+1U2U6 − wnU1U8 = U2U3(wn+4 − qwn+2) ,

wn+1wn+2wn+6 + wnwn+4wn+5 = wn+3(eqnU2
2 U3 + 2wn+2wn+4) .
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If we restrict the discussion to the sequences (un) and (gn), the Morgado identity can
be used as a base for constructing quadruples with the property D((u2u3vn+3)2) and
D((g2g3hn+3)2).

We are again going to use the construction described in 2.1. This time it is not
necessary to use the solutions of the Pellian equation. We will try to choose the numbers
a and b in the manner that the solution of the problem can be obtained using only
the sequence (xn,0). According to 2.1, if x2,0 ∈ N or x−2,0 ∈ N then respectively
{a, b, x1,0, x2,0} and {a, b, x−1,0, x−2,0} are Diophantine quadruples.

Since y2,0 = 2k
l (k + a)− l, y−2,0 = 2k

l (k − a)− l, we have

x2,0 =
y2
2,0 − l2

a
=

4k(k + a)(k + b)
l2

=
4k

l2
(kx1,0 − l2) ,

x−2,0 =
y2
−2,0 − l2

a
=
−4k(k − a)(k − b)

l2
=

4k

l2
(kx−1,0 + l2) .

Theorem 3 Let n and p be positive integers and
k = un+3[2un+2un+4 − (−1)np2(p2 + 1)]. Then the three sets

{2unun+1un+2, 2un+4un+5un+6, 2(p2 + 1)2un+3v
2
n+3, 4k(2kun+3

p2 − 1)},

{2unun+1un+4, 2un+2un+5un+6, 2p2un+3v
2
n+3, 4k( 2kun+3

(p2+1)2
+ 1)},

{2unun+2un+5, 2un+1un+4un+6, 2un+3v
2
n+3, 4k( 2kun+3

p2(p2+1)2
− 1)}

have the property D(p2(p2 + 1)2v2
n+3).

Proof: The proof is by applying the construction from 2.1 to the relation (5) for
wn = un. Three cases need to be considered.

1◦ a = 2unun+1un+2, b = 2un+4un+5un+6

Hence, a + b = 2(p2 + 2)un+3[(p2 + 1)(u2
n+2 + u2

n+4) + (p2 − 1)un+2un+4]. This gives

x1,0 = a + b + 2k

= 2(p2 + 1)2un+3(un+2 + un+4)2 = 2(p2 + 1)2un+3v
2
n+3 ,

x2,0 = 4k(
k · 2(p2 + 1)2un+3v

2
n+3

p2(p2 + 1)2v2
n+3

− 1) = 4k(
2kun+3

p2
− 1) .

2◦ a = 2unun+1un+4, b = 2un+2un+5un+6

Now we have a + b = 2un+3[(p2 + 1)(p2 + 4)un+2un+4 − u2
n+2 − u2

n+4] and

x−1,0 = a + b− 2k = 2p2un+3v
2
n+3 ,

x−2,0 = 4k(
k · 2p2un+3v

2
n+3

p2(p2 + 1)2v2
n+3

+ 1) = 4k(
2kun+3

(p2 + 1)2
+ 1) .
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3◦ a = 2unun+2un+5, b = 2un+1un+4un+6

We have a + b = 2(p2 + 2)un+3[u2
n+2 + u2

n+4 − (p2 + 1)un+2un+4] and

x1,0 = 2un+3v
2
n+3 ,

x2,0 = 4k(
2kun+3

p2(p2 + 1)2
− 1) .

It remains to prove that all elements of the sets from this theorem are integers. It is

sufficient to prove that the number
8k2un+3

p2(p2 + 1)2
is an integer for all positive integers n.

That is the direct consequence of the relation

8k2un+3

p2(p2 + 1)2
=

8u3
n+3[p

4(p2+1)2−(−1)n4p2(p2+1)un+2un+4+4u2
n+2u

2
n+4]

u2
2u

2
3

and the fact that u2|u2m and u3|u3m for all m ∈ N, which is easy to prove by induction.

The following theorem can be proved in much the same way as Theorem 3.

Theorem 4 Let n ≥ 1 and p ≥ 2 be integers and
k = gn+3[2gn+2gn+4 − p2(p2 − 1)]. Then the three sets

{2gngn+1gn+2, 2gn+4gn+5gn+6, 2(p2 − 1)2gn+3h
2
n+3, 4k(2kgn+3

p2 + 1)},

{2gngn+1gn+4, 2gn+2gn+5gn+6, 2p2gn+3h
2
n+3, 4k( 2kgn+3

(p2−1)2
− 1)},

{2gngn+2gn+5, 2gn+1gn+4gn+6, 2gn+3h
2
n+3, 4k( 2kgn+3

p2(p2−1)2
+ 1)}

have the property D(p2(p2 − 1)2h2
n+3).

We now want to show that the sequence (gn) possesses another interesting property
based on the identity

gngn+1gn+3gn+4 + [(p± 1)gn+2]2 = (g2
n+2 ± p)2 . (9)

Let us prove this relation. From (4) we have

gngn+1gn+3gn+4 = g4
n+2 − (p2 + 1)g2

n+2 + p2 = (g2
n+2 ± p)2 − (p± 1)2g2

n+2 .

Now, the construction described in 2.1 can be applied on the relation (9). We have
a = gngn+1, b = gn+3gn+4, k = g2

n+2 ± p, which gives

x∓1,0 = a + b∓ 2k = (p3 − 3p∓ 2)g2
n+2 = (p± 1)2(p∓ 2)g2

n+2 ,

x∓2,0 = 4(g2
n+2 ± p)(gn+1 ∓ gn)(gn+4 ∓ gn+3) .

We have thus proved
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Theorem 5 Let n ≥ 1 and p ≥ 2 be integers. Then the set

{gngn+1, gn+3gn+4, (p + 1)2(p− 2)g2
n+2, 4(g2

n+2 + p)(gn+1 − gn)(gn+4 − gn+3)}

has the property D((p + 1)2g2
n+2) and the set

{gngn+1, gn+3gn+4, (p− 1)2(p + 2)g2
n+2, 4(g2

n+2 − p)(gn+1 + gn)(gn+3 + gn+4)}

has the property D((p− 1)2g2
n+2).

5 Generalization of a result of Bergum

Bergum and Hoggatt have proved (see [8]) that the set

{F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3} (10)

has the property D(1) for every positive integer n. It has been proved in [4] that the set

{F2n, F2n+4, 5F2n+2, 4L2n+1F2n+2L2n+3} (11)

also has the property D(1) and in [5] the quadruples with the property D(4), D(9) and
D(64) have been found using Fibonacci numbers. We now want to extend these results to
the sequences (un) and (gn) starting from the identity (2). Applying (2) to the sequence
(un) we get

u2n · u2n+2r + u2
r = u2

2n+r . (12)

Therefore, the sets {u2n, u2n+2} and {u2n, u2n+4} have respectively the property D(1)
and D(p2), for every positive integer n. It was shown in the section 4 that if a, b, k and l
are the positive integers such that ab + l2 = k2 and if the number ±4k(k ± a)(k ± b)/l2

is a positive integer, then the set {a, b, a+b±2k,±4k(k±a)(k±b)/l2} has the property
D(l2). According to this, we have

Theorem 6 Let n and p be positive integers. Then the sets

{u2n, u2n+2, 2u2n+(p−2)u2n+1, 4u2n+1[(p− 2)u2
2n+1+2u2nu2n+1+1]},

{u2n, u2n+2, 2u2n−(p−2)u2n+1, 4u2n+1[2u2n+1u2n+2−(p−2)u2
2n+1−1]}

have the property D(1) and the set

{u2n, u2n+4, p2u2n+2, 4u2n+1u2n+2u2n+3}

has the property D(p2).
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For the sequence (gn) we can prove even a stronger result, namely from (2) we have

gn · gn+2r + g2
r = g2

n+r . (13)

for every (not only even) positive integer n. Starting now from the sets {gn, gn+2} and
{gn, gn+4} with the property D(1) and D(p2) respectively, we find the following result
may be proved in much the same way as the Theorem 6.

Theorem 7 Let n ≥ 1 and p ≥ 2 be integers. Then the sets

{gn, gn+2, (p− 2)gn+1, 4gn+1[(p− 2)g2
n+1 + 1]},

{gn, gn+2, (p + 2)gn+1, 4gn+1[(p + 2)g2
n+1 − 1]}

have the property D(1), and the set

{gn, gn+4, p2gn+2, 4gn+1gn+2gn+3}

has the property D(p2).

Example 1 It is easy to check that gn(3) = wn(0, 1; 3, 1) = F2n (generally, u2n(p) =
pgn(p2 + 2) ). We conclude from the Theorem 7, for p = 3, that the sets (10) and (11)
have the property D(1) and the set

{F2n, F2n+8, 9F2n+4, 4F2n+2F2n+4F2n+6}

has the property D(9).

6 Application to the Pell numbers and polynomials

In this section, we apply the results discussed in the previous section to the some
special cases of the sequences (un) and (gn). The case of the Fibonacci sequence Fn =
un(1) and the joined Lucas sequence Ln = vn(1) is studied in detail in [6].

Let us first examine the Pell sequence Pn = un(2) and the Pell-Lucas sequence Q′
n =

vn(2). All elements of the sequence (Q′
n) are even numbers, so we can put Q′

n = 2Qn.
The numbers Pn and Qn are the solutions of the Pellian equation x2−2y2 = ±1. Namely,
it is true that

Q2
n − 2P 2

n = (−1)n .

The sequences (Pn) and (Qn) are related by relation Pn + Pn+1 = Qn+1. Applying this
relation to the Theorem 1, we get:

Corollary 1 For every positive integer n, the sets

{Pn, Pn+2, 4P 3
n+1QnQn+1, 4P 3

n+1Qn+1Qn+2},

{Pn, Pn+2, 4P 3
n+1Qn+1Qn+2, 4Pn+2Qn+1Qn+2[Pn+1Pn+2 − (−1)n]}

have the property D(P 2
n+1).
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In [6], the quadruples with the property D(L2
n+2) are constructed using identities

4FnFn+4 + L2
n+2 = 9F 2

n+2 (14)

4FnF 2
n+2Fn+4 + 1 = (F 2

n+2 + FnFn+4)2 (15)

For the sequences (un), the following analogues of above identities are valid:

4unun+4 + (pvn+2)2 = [(p2 + 2)un+2]2 (16)

4unu2
n+2un+4 + p4 = (u2

n+2 + unun+4)2 . (17)

Unfortunately, existence of the term p4 in (17) make it impossible to apply the
construction for getting quadruples with the property D(p2v2

n+2) from 2.1. But in the
case p = 2 the solution of the equation S2 − abT 2 = 4 can be get from the relation (17).
Therefore, we can apply the modified construction described in [5, Remark 1].

Theorem 8 For every positive integer n, the sets

{Pn, Pn+4, 4Pn+1Pn+2Pn+3Q
2
n+2, 4Pn+2Qn+1Q

2
n+2Qn+3},

{Pn, Pn+4, 4Pn+2Qn+1Q
2
n+2Qn+3, 16Pn+2Qn+1Qn+3(2P 2

n+2 − Pn+1Pn+3)}

have the property D(4Q2
n+2).

Proof: The sets from the Theorem 8 are easily seen to be respectively of the form
{a, b, x′−1,1, x

′
0,1} and {a, b, x′0,1, x

′
1,1}, where the sequence (x′n,m) is constructed as it is

described in [5, Remark 1] by setting a = Pn, b = Pn+4, s′ = P 2
n+2 + PnPn+4, t′ = Pn+2.

In distinction from the identities (16) and (17), the construction from 2.1 can be
directly applied to the following identities:

QnQn+2 + Q2
n+1 = 4P 2

n+1 (18)

QnQ2
n+1Qn+2 + 1 = 4P 4

n+1 . (19)

We have thus proved

Theorem 9 For every positive integer n, the sets

{Qn, Qn+2, 4PnPn+1Q
3
n+1, 4Pn+1Pn+2Q

3
n+1},

{Qn, Qn+2, 4Pn+1Pn+2Q
3
n+1, 4Pn+1Pn+2Qn+2(Pn+1Pn+3 − PnPn+2)}

have the property D(Q2
n+1).
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Obviously, the Theorem 3 and 6 can also be applied to the sequence (Pn). But
applying Theorem 6, as it is done for Fibonacci numbers in [5, Theorem 3], gives more.

Corollary 2 For every positive integer n, the sets

{P2n, P2n+2, 2P2n, 4P2n+1Q2nQ2n+1},

{P2n, P2n+2, 2P2n+2, 4P2n+1Q2n+1Q2n+2}

have the property D(1), the sets

{P2n, P2n+4, 4P2n+2, 4P2n+1P2n+2P2n+3},

{P2n, P2n+4, 8P2n+2, 4P2n+2Q2n+1Q2n+3}

have the property D(4) and the set

{P2n, P2n+8, 36P2n+4, P2n+2P2n+4P2n+6}

has the property D(144).

In this paper, only the quadruples with the property D(n), where n is a perfect
square, have been examined. However, let us mention that the set {1, P2n+1(3P2n+1−2),
3P 2

2n+1−1, P2n+1(3P2n+1+2)} has the property D(−Q2
2n+1), for every positive integer n.

Since gn(2) = n, the results from this paper can be used to get the sets with the
property of Diophantus whose elements are polynomials. For example, from Theorem 7
we get the Jones result that the set {n, n + 2, 4(n + 1), 4(n + 1)(2n + 1)(2n + 3)}
has the property D(1) for every positive integer n (see [12]).

The following interesting property of the binomial coefficients can be obtained as a
consequence of the results from the section 4:

for every positive integer n ≥ 4, the sets

{
(

n− 1
3

)
,

(
n + 3

3

)
, 6n,

2n(n2 − 7)(n2 − 3n + 1)(n2 + 3n− 1)
3

} ,

{
(

n− 1
3

)
,

(
n + 3

3

)
,

2n(n2 + 2)
3

,
2n(n2 − 7)(n3 − 3n2 + 2n− 3)(n3 + 3n2 + 2n + 3)

27
}

have the property D(1). Note that hn(2) = 2.
Finally, let us mention that using these results the explicit formulas for quadruples

with the property D(l2), for given integer l, can be obtained. Of course, only the sets
with at least one element which is not divisible by l are of any interest.
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Corollary 3 Let l be an integer. The sets

{(l − 1)(l − 2), (l + 1)(l + 2), 4l2, 2(2l − 3)(2l + 3)(l2 − 2)}, for l ≥ 3 (20)

{1, l4 − 3l2 + 1, l2(l2 − 1), 4l2(l2 − 1)(l2 − 2)}, for l ≥ 2 (21)

have the property D(l2).

Proof: We can get the set (20) by putting p = 2 and n + 2 = l in the second set of
Theorem 5.

Since g1(p) = 1, g3(p) = p2 − 1, g5(p) = p4 − 3p2 + 1, the set (21) can be obtained
by putting n = 1 and p = l in the third set of Theorem 7.

Remark 1 One question still unanswered is whether any of the Diophantine
quadruples from this paper can be extended to the Diophantine quintuple with the same
property. In this connection, let us mention it is proved in [7] that for every integer l
and every set {a, b, c, d} with the property D(l2), where abcd 6= l4, there exists rational
number r, r 6= 0, such that the set {a, b, c, d, r} has the property that the product of any
two its elements increased by l2 is a square of a rational number.

For example, if the method from [7] is applied to the second set in the Corollary 3,
we get

r =
8l(l − 1)(l + 1)(l2 − 2)(2l2 − 3)(2l4 − 4l2 + 1)(2l4 − 6l2 + 3)

[4(l − 1)2(l + 1)2(l2 − 2)(l2 − l − 1)(l2 + l − 1)− 1]2
.

From this, for l = 2, we have the set {89760, 128881, 644405, 1546572, 12372576} with
the property D(4 · 3594).
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