A PROBLEM OF DIOPHANTUS AND PELL NUMBERS

Andrej Dujella
Department of Mathematics, University of Zagreb, 10000 Zagreb, CROATIA

1 Introduction

The Greek mathematician Diophantus of Alexandria noted that the set $\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}\right.$, $\left.\frac{105}{16}\right\}$ has the following property: the product of its any two distinct elements increased by 1 is a square of a rational number (see [3]). Fermat first found a set of four positive integers with the above property, and it was $\{1,3,8,120\}$. In 1969, Davenport and Baker [2] showed that if positive integers $1,3,8$ and d have this property then d must be 120 .

Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property of Diophantus of order n, symbolically $D(n)$, if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$. The sets with the property $D\left(l^{2}\right)$ were particularly discussed in [4]. It was proved that for any integer l and any set $\{a, b\}$ with the property $D\left(l^{2}\right)$, where $a b$ is not a perfect square, there exist an infinite number of sets of the form $\{a, b, c, d\}$ with the property $D\left(l^{2}\right)$. This result is the generalization of well known result for $l=1$ (see [8]). The proof of this result is based on the construction of the double sequences $y_{n, m}$ and $z_{n, m}$ which are defined in [4] by second order recurrences in each indices. Solving these recurrences we obtain

$$
\begin{aligned}
y_{n, m}= & \frac{l}{2 \sqrt{b}}\left\{(\sqrt{a}+\sqrt{b})\left[\frac{1}{l}(k+\sqrt{a b})\right]^{n}(s+t \sqrt{a b})^{m}\right. \\
& \left.+(\sqrt{b}-\sqrt{a})\left[\frac{1}{l}(k-\sqrt{a b})\right]^{n}(s-t \sqrt{a b})^{m}\right\} \\
z_{n, m}= & \frac{l}{2 \sqrt{a}}\left\{(\sqrt{a}+\sqrt{b})\left[\frac{1}{l}(k+\sqrt{a b})\right]^{n}(s+t \sqrt{a b})^{m}\right. \\
& \left.+(\sqrt{a}-\sqrt{b})\left[\frac{1}{l}(k-\sqrt{a b})\right]^{n}(s-t \sqrt{a b})^{m}\right\}
\end{aligned}
$$

where s and t are positive integers satisfying the Pellian equation $s^{2}-a b t^{2}=1$. The desired quadruples have the form $\left\{a, b, x_{n, m}, x_{n+1, m}\right\}$, where

$$
x_{n, m}=\left(y_{n, m}^{2}-l^{2}\right) / a=\left(z_{n, m}^{2}-l^{2}\right) / b .
$$

In [5], using the above construction, some Diophantine quadruples for the squares of Fibonacci and Lucas numbers are obtained. In [6], similar results are obtained for some
classes of generalized Fibonacci numbers $w_{n}=w_{n}(a, b ; p, q)$, defined as follows:

$$
w_{0}=a, w_{1}=b, \quad w_{n}=p w_{n-1}-q w_{n-2} \quad(n \geq 2)
$$

The properties of that sequence were discussed in detail in [10], [11] and [12].
In present paper we will apply the results from [6] to Pell numbers $P_{n}=w_{n}(0,1 ; 2,-1)$ and Pell-Lucas numbers $Q_{n}^{\prime}=2 Q_{n}=w_{n}(2,2 ; 2,-1)$.

2 Properties of the sequence $x_{n, m}$

In this section we repeat the relevant material from [4] with some improvements.
Theorem 1 For all integers m and n the product of any two distinct elements of the set $\left\{a, b, x_{n, m}, x_{n+1, m}\right\}$ increased by l^{2} is a square of a rational number. If m is an integer and $n \in\{-1,0,1\}$, then $x_{n, m}$ is the integer.

Proof: See [4].
Remark 1 From Theorem 1 it follows that if $x_{ \pm 1,0}$ and $x_{ \pm 2,0}$ are positive integers then the set $\left\{a, b, x_{ \pm 1,0}, x_{ \pm 2,0}\right\}$ has the property $D\left(l^{2}\right)$. Note that $x_{ \pm 1,0}=a+b \pm 2 k$ and $x_{ \pm 2,0}= \pm 4 k(k \pm a)(k \pm b) / l^{2}$.

Theorem 2 If $n \in\{-1,0,1\}$ and $(n, m) \notin\{(-1,0),(-1,1),(0,-1),(0,0),(1,-2)$, $(1,-1)\}$, then $x_{n, m}$ is the positive integer greater than b.

Proof: We have

$$
\begin{align*}
x_{n, m+3}-x_{n, m} & =\frac{1}{a}\left(y_{n, m+3}+y_{n, m}\right)\left(y_{n, m+3}-y_{n, m}\right) \\
& =\frac{1}{a}(2 s-1)\left(y_{n, m+2}+y_{n, m+1}\right)(2 s+1)\left(y_{n, m+2}-y_{n, m+1}\right) \\
& =\left(4 s^{2}-1\right)\left(x_{n, m+2}-x_{n, m+1}\right) . \tag{1}
\end{align*}
$$

We conclude from $y_{0,1}=l(s+a t)>k$ and $y_{0,-1}=l(s-a t) \geq l$ that $x_{0,1}>b$ and $x_{0,-1} \geq 0$. We will prove by induction that for $m \geq 1$ it holds:

$$
x_{0, m+1} \geq\left(4 s^{2}-3\right) x_{0, m}
$$

For $m=1$ the assertion follows from (1). Assume the assertion holds for the positive integer m. Then from (1) and $s \geq 2$ it follows that

$$
\begin{aligned}
x_{0, m+2} & =\left(4 s^{2}-1\right)\left(x_{0, m+1}-x_{0, m}\right)+x_{0, m-1} \\
\geq & \geq\left(4 s^{2}-1\right)\left(1-\frac{1}{4 s^{2}-3}\right) x_{0, m+1} \geq\left(4 s^{2}-3\right) x_{0, m+1}
\end{aligned}
$$

In the same manner we can see that for $m \leq-1$ it holds: $x_{0, m-1} \geq\left(4 s^{2}-3\right) x_{0, m}$. Since $x_{0,-2}=x_{0,1}+\left(4 s^{2}-1\right)\left(x_{0,-1}-x_{0,0}\right) \geq x_{0,1}>b$, we conclude that $x_{0, m}>b$ for $m \notin\{-1,0\}$.

It is easy to prove by induction that for every integer m it holds:

$$
\begin{equation*}
y_{1, m}=\frac{1}{l}\left(k y_{0, m}+a z_{0, m}\right), \quad y_{-1, m}=\frac{1}{l}\left(k y_{0, m}-a z_{0, m}\right) \tag{2}
\end{equation*}
$$

Therefore, if

$$
\begin{equation*}
k y_{0, m}-a\left|z_{0, m}\right|>k l \tag{3}
\end{equation*}
$$

then $x_{1, m}$ and $x_{-1, m}$ are integers greater than b. The condition (3) is equivalent to $x_{0, m}>w$, where

$$
w=\frac{1}{l^{2}}\left[a l^{2}+2 k^{2} b+2 k^{2} \sqrt{l^{2}+b^{2}}\right]
$$

Since $w=a+\left(2+\frac{2 a b}{l^{2}}\right)\left(b+\sqrt{l^{2}+b^{2}}\right)<a+2 b+b(a+2)+2 a b(2 b+1)<4 a b(b+2)$, it suffices to hold

$$
x_{0, m}>4 a b(b+2)
$$

Note that $x_{0,2} \geq\left(4 s^{2}-3\right) x_{0,1}$ and $x_{0,-3} \geq\left(4 s^{2}-3\right) x_{0,-2} \geq\left(4 s^{2}-3\right) x_{0,1}$. Furthermore,

$$
\begin{aligned}
\left(4 s^{2}-3\right) x_{0,1} & >4\left(s^{2}-1\right) x_{0,1}=4 a b t^{2} \frac{l^{2}(s+a t)^{2}-l^{2}}{a}=4 a b t^{2} \cdot l^{2} t(2 s+a t+b t) \\
& >4 a b(b+2)
\end{aligned}
$$

Hence, if m is an integer such that $m \geq 2$ or $m \leq-3$, then $x_{0, m}>w$.
Thus, we proved that if $n \in\{-1,1\}$ and $(n, m) \notin\{(-1,-2),(-1,-1),(-1,0),(-1,1)$, $(1,-2),(1,-1),(1,0),(1,1)\}$ then the integer $x_{n, m}$ is greater than b. But the integers $x_{1,0}=a+b+2 k$ and $x_{1,1}=(t k+s)[(a t+b t+2 s) k+(a s+b s+2 b t)]$ are obviously greater than b. Furthermore, from $y_{-1,-1}=s(k-a)-a t(k-b)=k(s-a t)+a(b t-s) \geq$ $k+a>k$ we obtain $x_{-1,-1}>b$. Since $z_{-1,-1}=k(s-b t)+b(a t-s)<0$, the relation $y_{n, m-1}=s y_{n, m}-a t z_{n, m}$ implies $y_{-1,-2}>y_{-1,-1}>k$ and $x_{-1,-2}>b$. This completes the proof.

See [4, Example 3] for the illustration of situation where $x_{n, m}=0$ for all $(n, m) \in$ $\{(-1,0),(-1,1),(0,-1),(0,0),(1,-2),(1,-1)\}$.

Theorem 3 Let l be an integer and let $\{a, b\}$ be the Diophantine pair with the property $D\left(l^{2}\right)$. If the integer ab is not a perfect square then there exist an infinite number of Diophantine quadruples of the form $\{a, b, c, d\}$ with the property $D\left(l^{2}\right)$.

Proof: We will show that the sets $\left\{a, b, x_{0, m}, x_{-1, m}\right\}, m \notin\{-1,0,1\}$, and $\left\{a, b, x_{0, m}\right.$, $\left.x_{1, m}\right\}, m \notin\{-2,-1,0\}$, are Diophantine quadruples with the property $D\left(l^{2}\right)$.

By Theorems 1 and 2, it suffices to prove that $x_{0, m} \neq x_{-1, m}$ and $x_{0, m} \neq x_{1, m}$ respectively. Let us first observe that $y_{0, m}>0$ and (2) implies $y_{1, m}>0$ and $y_{-1, m}>0$. If $x_{0, m}=x_{ \pm 1, m}$ then $y_{0, m}^{2}=\frac{a l(b-a)}{2(k-l)}$. From $y_{0, m}>k$ we obtain $(k-l)^{2}(2 k+l)+a^{2} l<0$, which is impossible. This proves that the above sets are Diophantine quadruples. There is an infinite number of distinct quadruples between them, since $x_{0, m+1}>x_{0, m}$ for $m \geq 1$.

3 Diophantine quadruples and Pell numbers

In this section we construct several Diophantine quadruples represented in terms of Pell numbers P_{n} and Pell-Lucas numbers $Q_{n}^{\prime}=2 Q_{n}$. These numbers are defined by

$$
\begin{aligned}
& P_{0}=0, P_{1}=1, \quad P_{n+2}=2 P_{n+1}+P_{n}, \quad n \geq 0 ; \\
& Q_{0}=1, Q_{1}=1, \quad Q_{n+2}=2 Q_{n+1}+Q_{n}, \quad n \geq 0 .
\end{aligned}
$$

We will start with the analogs of the fact that the sets

$$
\begin{gathered}
\{n, n+2,4(n+1), 4(n+1)(2 n+1)(2 n+3)\}, \\
\quad\left\{F_{2 n}, F_{2 n+2}, F_{2 n+4}, 4 F_{2 n+1} F_{2 n+2} F_{2 n+3}\right\}
\end{gathered}
$$

have the property $D(1)$ (see [13], [9], [14]).
Theorem 4 For every positive integer n, the sets

$$
\begin{gathered}
\left\{P_{2 n}, P_{2 n+2}, 2 P_{2 n}, 4 Q_{2 n} P_{2 n+1} Q_{2 n+1}\right\}, \\
\left\{P_{2 n}, P_{2 n+2}, 2 P_{2 n+2}, 4 P_{2 n+1} Q_{2 n+1} Q_{2 n+2}\right\}
\end{gathered}
$$

have the property $D(1)$, the sets

$$
\begin{aligned}
& \left\{P_{2 n}, P_{2 n+4}, 4 P_{2 n+2}, 4 P_{2 n+1} P_{2 n+2} P_{2 n+3}\right\}, \\
& \left\{P_{2 n}, P_{2 n+4}, 8 P_{2 n+2}, 4 Q_{2 n+1} P_{2 n+2} Q_{2 n+3}\right\}
\end{aligned}
$$

have the property $D(4)$ and the set

$$
\left\{P_{2 n}, P_{2 n+8}, 36 P_{2 n+4}, P_{2 n+2} P_{2 n+4} P_{2 n+6}\right\}
$$

has the property $D(144)$.
Since $P_{2 n}=2 w_{n}(0,1 ; 6,1)$, we obtain from $[6,(9)]$ the identity:

$$
P_{2 n-4} P_{2 n-2} P_{2 n+2} P_{2 n+4}+\left[(12 \pm 2) P_{2 n}\right]^{2}=\left(P_{2 n}^{2} \pm 24\right)^{2},
$$

and the following theorem can be proved using the construction from Remark 1 (see [6, Theorem 5]).

Theorem 5 For every integer $n \geq 3$, the set

$$
\left\{P_{2 n-4} P_{2 n-2}, P_{2 n+2} P_{2 n+4}, 196 P_{2 n}^{2}, 4 P_{2 n-3} P_{2 n+3}\left(P_{2 n}^{2}+24\right)\right\}
$$

has the property $D\left(196 P_{2 n}^{2}\right)$, and the set

$$
\left\{P_{2 n-4} P_{2 n-2}, P_{2 n+2} P_{2 n+4}, 200 P_{2 n}^{2}, 4 Q_{2 n-3} Q_{2 n+3}\left(P_{2 n}^{2}-24\right)\right\}
$$

has the property $D\left(100 P_{2 n}^{2}\right)$.
If we have the pair of identities of the form: $a b+l^{2}=k^{2}$ and $s^{2}-a b t^{2}=1$, then we can construct the sequence $x_{n, m}$ and obtain an infinite number of Diophantine quadruples with the property $D\left(l^{2}\right)$. There are several pairs of identities for Pell and Pell-Lucas numbers which have the above form. For example,

$$
\begin{align*}
P_{n-1} P_{n+1}+P_{n}^{2} & =Q_{n}^{2}, \tag{4}\\
\left(P_{n}^{2}+P_{n-1} P_{n+1}\right)^{2}-4 P_{n-1} P_{n+1} P_{n}^{2} & =1 \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
Q_{n-1} Q_{n+1}+Q_{n}^{2} & =4 P_{n}^{2}, \tag{6}\\
4 P_{n}^{4}-Q_{n-1} Q_{n+1} Q_{n}^{2} & =1 . \tag{7}
\end{align*}
$$

Applying the construction of section 2 to these pairs of identities we get
Theorem 6 For every positive integer $n \geq 2$, the sets

$$
\begin{gather*}
\left\{P_{n-1}, P_{n+1}, 4 Q_{n-1} P_{n}^{3} Q_{n}, 4 P_{n}^{3} Q_{n} Q_{n+1}\right\}, \tag{8}\\
\left\{P_{n-1}, P_{n+1}, 4 P_{n}^{3} Q_{n} Q_{n+1}, 4 Q_{n} P_{n+1} Q_{n+1}\left(P_{n+1}^{2}-P_{n} P_{n+1}-P_{n}^{2}\right)\right\} \tag{9}
\end{gather*}
$$

have the property $D\left(P_{n}^{2}\right)$, and the sets

$$
\begin{gather*}
\left\{Q_{n-1}, Q_{n+1}, 4 P_{n-1} P_{n} Q_{n}^{3}, 4 P_{n} Q_{n}^{3} P_{n+1}\right\}, \tag{10}\\
\left\{Q_{n-1}, Q_{n+1}, 4 P_{n} Q_{n}^{3} P_{n+1}, 4 P_{n} P_{n+1} Q_{n+1}\left(P_{n} P_{n+2}-P_{n-1} P_{n+1}\right)\right\} \tag{11}
\end{gather*}
$$

have the property $D\left(Q_{n}^{2}\right)$.
Theorem 7 For every positive integer $n \geq 3$, the sets

$$
\begin{gathered}
\left\{P_{n-2}, P_{n+2}, 4 P_{n-1} P_{n+1} Q_{n}^{2} P_{n+1}, 4 Q_{n-1} P_{n} Q_{n}^{2} Q_{n+1}\right\}, \\
\left\{P_{n-2}, P_{n+2}, 4 Q_{n-1} P_{n} Q_{n}^{2} Q_{n+1}, 16 Q_{n-1} P_{n} Q_{n+1}\left(2 P_{n}^{2}-P_{n-1} P_{n+1}\right)\right\}
\end{gathered}
$$

have the property $D\left(4 Q_{n}^{2}\right)$.

Proof: The proof is based of the following identities:

$$
\begin{align*}
P_{n-2} P_{n+2}+4 Q_{n}^{2} & =9 P_{n}^{2} \tag{12}\\
\left(3 P_{n}^{2}-2 P_{n-1} P_{n+1}\right)^{2}-P_{n-2} P_{n+2} P_{n}^{2} & =4 . \tag{13}
\end{align*}
$$

Dividing both sides of the identity (13) by 4 , we can set $a=P_{n-2}, b=P_{n+2}, l=2 Q_{n}$, $k=3 P_{n}, s=\frac{1}{2}\left(3 P_{n}^{2}-2 P_{n-1} P_{n+1}\right)$ and $t=\frac{1}{2} P_{n}$.

We have

$$
\begin{gathered}
y_{0,0}=z_{0,0}=3 P_{n}, \quad y_{1,0}=3 P_{n}+P_{n-2}, \quad z_{1,0}=3 P_{n}+P_{n+2}, \\
y_{-1,0}=3 P_{n}-P_{n-2}, \quad z_{-1,0}=3 P_{n}-P_{n+2} .
\end{gathered}
$$

To simplify notation, we write $P_{n+1}=A, P_{n}=B$. This gives

$$
\begin{equation*}
\left(A^{2}-2 A B-B^{2}\right)^{2}=1 \tag{14}
\end{equation*}
$$

We now have

$$
\begin{aligned}
y_{0,1} & =s y_{0,0}+a t z_{0,0}=2(A-B)\left(4 B^{2}+A B-A^{2}\right) \\
y_{1,1} & =2\left(A^{3}-7 A^{2} b+7 A B^{2}+11 B^{3}\right) \\
y_{-1,1} & =2(A-B)\left(3 A B-A^{2}-B^{2}\right)
\end{aligned}
$$

and, by (14), we get

$$
\begin{aligned}
x_{0,1} & =\left[y_{0,1}^{2}-l^{2}\left(A^{2}-2 A B-B^{2}\right)^{2}\right] / a=4 B(A-B)^{2}(A+B)(3 B-A) \\
& =4 P_{n} Q_{n}^{2} Q_{n+1} Q_{n-1} \\
x_{1,1} & =16 B(A+B)(3 B-A)\left(2 B^{2}+2 A B-A^{2}\right) \\
& =16 P_{n} Q_{n+1} Q_{n-1}\left(2 P_{n}^{2}-P_{n-1} P_{n+1}\right) \\
x_{-1,1} & =4 A B(A-2 B)(A-B)^{2} \\
& =4 P_{n} P_{n+1} P_{n-1} Q_{n}^{2},
\end{aligned}
$$

which proves the theorem.

4 Diophantine quintuples

It was proved in [7] that for every Diophantine quadruple $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with the property $D\left(l^{2}\right)$ such that $x_{1} x_{2} x_{3} x_{4} \neq l^{4}$, there exist a positive rational number x_{5} with the property that $x_{i} x_{5}+l^{2}$ is a square of a rational number for $i=1,2,3,4$. This construction generalizes that of [1]. However, on the quadruples in this paper these two constructions coincide. We proceed with an example.

Example 1 From (6) it follows that the set $\left\{1, Q_{n-1} P_{n}^{2} Q_{n+1}\right\}$ has the property $D\left(P_{n}^{2} Q_{n}^{2}\right)$. For $a=1, b=Q_{n-1} P_{n}^{2} Q_{n+1}, k=2 P_{n}^{2}$ and $l=P_{n} Q_{n}$ we get $x_{1,0}=$ $P_{n-1} Q_{n}^{2} P_{n+1}, x_{2,0}=8 P_{n}^{2} Q_{n}^{2}$. The constructions from [1] and [7] on the set $\left\{a, b, x_{1,0}, x_{2,0}\right\}$ give the rational number $\frac{6 P_{2 n}^{2}\left(Q_{2 n}^{2}-4\right)}{\left(Q_{2 n}^{2}-10\right)^{2}}$. Hence, for every integer $n \geq 2$ the set

$$
\begin{gather*}
\left\{\left(Q_{2 n}^{2}-10\right)^{2}, Q_{n-1} P_{n}^{2} Q_{n+1}\left(Q_{2 n}^{2}-10\right)^{2}, P_{n-1} Q_{n}^{2} P_{n+1}\left(Q_{2 n}^{2}-10\right)^{2},\right. \tag{15}\\
\left.2 P_{2 n}^{2}\left(Q_{2 n}^{2}-10\right)^{2}, 6 P_{2 n}^{2}\left(Q_{2 n}^{2}-4\right)\right\}
\end{gather*}
$$

is the Diophantine quintuple with the property $D\left(P_{n}^{2} Q_{n}^{2}\left(Q_{2 n}^{2}-10\right)^{4}\right)$. From (15) for $n=2$ we get the Diophantine quintuple $\{961,3040,26908,43245,276768\}$ with the property $D\left(36 \cdot 31^{4}\right)$.

One question still unanswered is whether exists a Diophantine quintuple with the property $D(1)$. Therefore one may ask which is the least positive integer n_{1}, and which is the greatest negative integer n_{2}, for which there exists a Diophantine quintuple with the property $D\left(n_{i}\right), i=1,2$. It holds: $n_{1} \leq 256$ and $n_{2} \geq-255$, since the sets $\{1,33,105,320,18240\}$ and $\{5,21,64,285,6720\}$ have the property $D(256)$, and the set $\{8,32,77,203,528\}$ has the property $D(-255)$.

References

[1] J. Arkin, V. E. Hoggatt \& E. G. Strauss. "On Euler's solution of a problem of Diophantus." The Fibonacci Quarterly 17 (1979):333-339.
[2] A. Baker \& H. Davenport. "The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$." Quart. J. Math. Oxford Ser. (2) 20 (1969):129-137.
[3] Diofant Aleksandriiskii. Arifmetika i kniga o mnogougol'nyh chislakh. Moscow: Nauka, 1974.
[4] A. Dujella. "Generalization of a problem of Diophantus." Acta Arithmetica 65 (1993):15-27.
[5] A. Dujella. "Diophantine quadruples for squares of Fibonacci and Lucas numbers." Portugaliae Mathematica 52 (1995):305-318.
[6] A. Dujella. "Generalized Fibonacci numbers and the problem of Diophantus." The Fibonacci Quarterly 34 (1996):164-175.
[7] A. Dujella. "On Diophantine quintuples." Acta Arithmetica, to appear.
[8] P. Heichelheim. "The study of positive integers (a, b) such that $a b+1$ is a square." The Fibonacci Quarterly 17 (1979):269-274.
[9] V. E. Hoggatt \& G. E. Bergum. "A problem of Fermat and the Fibonacci sequence." The Fibonacci Quarterly 15 (1977):323-330.
[10] A. F. Horadam. "Generating functions for powers of a certain generalized sequence of numbers." Duke Mathematical Journal 32 (1965):437-446.
[11] A. F. Horadam. "Generalization of a result of Morgado." Portugaliae Mathematica 44 (1987):131-136.
[12] A. F. Horadam \& A. G. Shannon. "Generalization of identities of Catalan and others." Portugaliae Mathematica 44 (1987):137-148.
[13] B. W. Jones. "A variation on a problem of Davenport and Diophantus." Quart. J. Math. Oxford Ser. (2) 27 (1976):349-353.
[14] C. Long \& G. E. Bergum. "On a problem of Diophantus." In Application of Fibonacci Numbers 2:183-191. Ed. A. N. Philippou, A. F. Horadam \& G. E. Bergum. Dordrecht: Kluwer, 1988.

AMS Classification Numbers: 11B37, 11D09, 11B39

